xref: /titanic_51/usr/src/uts/i86pc/os/cpuid.c (revision 7f79af0b29c00a006403444f61b261219f63cfbf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Various routines to handle identification
28  * and classification of x86 processors.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/archsystm.h>
33 #include <sys/x86_archext.h>
34 #include <sys/kmem.h>
35 #include <sys/systm.h>
36 #include <sys/cmn_err.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cpuvar.h>
40 #include <sys/processor.h>
41 #include <sys/sysmacros.h>
42 #include <sys/pg.h>
43 #include <sys/fp.h>
44 #include <sys/controlregs.h>
45 #include <sys/auxv_386.h>
46 #include <sys/bitmap.h>
47 #include <sys/memnode.h>
48 
49 #ifdef __xpv
50 #include <sys/hypervisor.h>
51 #endif
52 
53 /*
54  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
55  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
56  * them accordingly. For most modern processors, feature detection occurs here
57  * in pass 1.
58  *
59  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
60  * for the boot CPU and does the basic analysis that the early kernel needs.
61  * x86_feature is set based on the return value of cpuid_pass1() of the boot
62  * CPU.
63  *
64  * Pass 1 includes:
65  *
66  *	o Determining vendor/model/family/stepping and setting x86_type and
67  *	  x86_vendor accordingly.
68  *	o Processing the feature flags returned by the cpuid instruction while
69  *	  applying any workarounds or tricks for the specific processor.
70  *	o Mapping the feature flags into Solaris feature bits (X86_*).
71  *	o Processing extended feature flags if supported by the processor,
72  *	  again while applying specific processor knowledge.
73  *	o Determining the CMT characteristics of the system.
74  *
75  * Pass 1 is done on non-boot CPUs during their initialization and the results
76  * are used only as a meager attempt at ensuring that all processors within the
77  * system support the same features.
78  *
79  * Pass 2 of cpuid feature analysis happens just at the beginning
80  * of startup().  It just copies in and corrects the remainder
81  * of the cpuid data we depend on: standard cpuid functions that we didn't
82  * need for pass1 feature analysis, and extended cpuid functions beyond the
83  * simple feature processing done in pass1.
84  *
85  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
86  * particular kernel memory allocation has been made available. It creates a
87  * readable brand string based on the data collected in the first two passes.
88  *
89  * Pass 4 of cpuid analysis is invoked after post_startup() when all
90  * the support infrastructure for various hardware features has been
91  * initialized. It determines which processor features will be reported
92  * to userland via the aux vector.
93  *
94  * All passes are executed on all CPUs, but only the boot CPU determines what
95  * features the kernel will use.
96  *
97  * Much of the worst junk in this file is for the support of processors
98  * that didn't really implement the cpuid instruction properly.
99  *
100  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
101  * the pass numbers.  Accordingly, changes to the pass code may require changes
102  * to the accessor code.
103  */
104 
105 uint_t x86_feature = 0;
106 uint_t x86_vendor = X86_VENDOR_IntelClone;
107 uint_t x86_type = X86_TYPE_OTHER;
108 uint_t x86_clflush_size = 0;
109 
110 uint_t pentiumpro_bug4046376;
111 uint_t pentiumpro_bug4064495;
112 
113 uint_t enable486;
114 
115 /*
116  * monitor/mwait info.
117  *
118  * size_actual and buf_actual are the real address and size allocated to get
119  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
120  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
121  * processor cache-line alignment, but this is not guarantied in the furture.
122  */
123 struct mwait_info {
124 	size_t		mon_min;	/* min size to avoid missed wakeups */
125 	size_t		mon_max;	/* size to avoid false wakeups */
126 	size_t		size_actual;	/* size actually allocated */
127 	void		*buf_actual;	/* memory actually allocated */
128 	uint32_t	support;	/* processor support of monitor/mwait */
129 };
130 
131 /*
132  * These constants determine how many of the elements of the
133  * cpuid we cache in the cpuid_info data structure; the
134  * remaining elements are accessible via the cpuid instruction.
135  */
136 
137 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
138 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
139 
140 struct cpuid_info {
141 	uint_t cpi_pass;		/* last pass completed */
142 	/*
143 	 * standard function information
144 	 */
145 	uint_t cpi_maxeax;		/* fn 0: %eax */
146 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
147 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
148 
149 	uint_t cpi_family;		/* fn 1: extended family */
150 	uint_t cpi_model;		/* fn 1: extended model */
151 	uint_t cpi_step;		/* fn 1: stepping */
152 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
153 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
154 	int cpi_clogid;			/* fn 1: %ebx: thread # */
155 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
156 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
157 	uint_t cpi_ncache;		/* fn 2: number of elements */
158 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
159 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
160 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
161 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
162 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
163 	/*
164 	 * extended function information
165 	 */
166 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
167 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
168 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
169 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
170 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
171 	id_t cpi_coreid;		/* same coreid => strands share core */
172 	int cpi_pkgcoreid;		/* core number within single package */
173 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
174 					/* Intel: fn 4: %eax[31-26] */
175 	/*
176 	 * supported feature information
177 	 */
178 	uint32_t cpi_support[5];
179 #define	STD_EDX_FEATURES	0
180 #define	AMD_EDX_FEATURES	1
181 #define	TM_EDX_FEATURES		2
182 #define	STD_ECX_FEATURES	3
183 #define	AMD_ECX_FEATURES	4
184 	/*
185 	 * Synthesized information, where known.
186 	 */
187 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
188 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
189 	uint32_t cpi_socket;		/* Chip package/socket type */
190 
191 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
192 	uint32_t cpi_apicid;
193 };
194 
195 
196 static struct cpuid_info cpuid_info0;
197 
198 /*
199  * These bit fields are defined by the Intel Application Note AP-485
200  * "Intel Processor Identification and the CPUID Instruction"
201  */
202 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
203 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
204 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
205 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
206 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
207 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
208 
209 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
210 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
211 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
212 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
213 
214 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
215 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
216 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
217 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
218 
219 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
220 #define	CPI_XMAXEAX_MAX		0x80000100
221 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
222 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
235 
236 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
237 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
238 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
239 
240 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
241 
242 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
243 
244 
245 /*
246  * A couple of shorthand macros to identify "later" P6-family chips
247  * like the Pentium M and Core.  First, the "older" P6-based stuff
248  * (loosely defined as "pre-Pentium-4"):
249  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
250  */
251 
252 #define	IS_LEGACY_P6(cpi) (			\
253 	cpi->cpi_family == 6 && 		\
254 		(cpi->cpi_model == 1 ||		\
255 		cpi->cpi_model == 3 ||		\
256 		cpi->cpi_model == 5 ||		\
257 		cpi->cpi_model == 6 ||		\
258 		cpi->cpi_model == 7 ||		\
259 		cpi->cpi_model == 8 ||		\
260 		cpi->cpi_model == 0xA ||	\
261 		cpi->cpi_model == 0xB)		\
262 )
263 
264 /* A "new F6" is everything with family 6 that's not the above */
265 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
266 
267 /* Extended family/model support */
268 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
269 	cpi->cpi_family >= 0xf)
270 
271 /*
272  * Info for monitor/mwait idle loop.
273  *
274  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
275  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
276  * 2006.
277  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
278  * Documentation Updates" #33633, Rev 2.05, December 2006.
279  */
280 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
281 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
282 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
283 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
284 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
285 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
286 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
287 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
288 /*
289  * Number of sub-cstates for a given c-state.
290  */
291 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
292 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
293 
294 /*
295  * Functions we consune from cpuid_subr.c;  don't publish these in a header
296  * file to try and keep people using the expected cpuid_* interfaces.
297  */
298 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
299 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
300 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
301 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
302 
303 /*
304  * Apply up various platform-dependent restrictions where the
305  * underlying platform restrictions mean the CPU can be marked
306  * as less capable than its cpuid instruction would imply.
307  */
308 #if defined(__xpv)
309 static void
310 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
311 {
312 	switch (eax) {
313 	case 1: {
314 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
315 		    0 : CPUID_INTC_EDX_MCA;
316 		cp->cp_edx &=
317 		    ~(mcamask |
318 		    CPUID_INTC_EDX_PSE |
319 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
320 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
321 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
322 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
323 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
324 		break;
325 	}
326 
327 	case 0x80000001:
328 		cp->cp_edx &=
329 		    ~(CPUID_AMD_EDX_PSE |
330 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
331 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
332 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
333 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
334 		    CPUID_AMD_EDX_TSCP);
335 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
336 		break;
337 	default:
338 		break;
339 	}
340 
341 	switch (vendor) {
342 	case X86_VENDOR_Intel:
343 		switch (eax) {
344 		case 4:
345 			/*
346 			 * Zero out the (ncores-per-chip - 1) field
347 			 */
348 			cp->cp_eax &= 0x03fffffff;
349 			break;
350 		default:
351 			break;
352 		}
353 		break;
354 	case X86_VENDOR_AMD:
355 		switch (eax) {
356 		case 0x80000008:
357 			/*
358 			 * Zero out the (ncores-per-chip - 1) field
359 			 */
360 			cp->cp_ecx &= 0xffffff00;
361 			break;
362 		default:
363 			break;
364 		}
365 		break;
366 	default:
367 		break;
368 	}
369 }
370 #else
371 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
372 #endif
373 
374 /*
375  *  Some undocumented ways of patching the results of the cpuid
376  *  instruction to permit running Solaris 10 on future cpus that
377  *  we don't currently support.  Could be set to non-zero values
378  *  via settings in eeprom.
379  */
380 
381 uint32_t cpuid_feature_ecx_include;
382 uint32_t cpuid_feature_ecx_exclude;
383 uint32_t cpuid_feature_edx_include;
384 uint32_t cpuid_feature_edx_exclude;
385 
386 void
387 cpuid_alloc_space(cpu_t *cpu)
388 {
389 	/*
390 	 * By convention, cpu0 is the boot cpu, which is set up
391 	 * before memory allocation is available.  All other cpus get
392 	 * their cpuid_info struct allocated here.
393 	 */
394 	ASSERT(cpu->cpu_id != 0);
395 	cpu->cpu_m.mcpu_cpi =
396 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
397 }
398 
399 void
400 cpuid_free_space(cpu_t *cpu)
401 {
402 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
403 	int i;
404 
405 	ASSERT(cpu->cpu_id != 0);
406 
407 	/*
408 	 * Free up any function 4 related dynamic storage
409 	 */
410 	for (i = 1; i < cpi->cpi_std_4_size; i++)
411 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
412 	if (cpi->cpi_std_4_size > 0)
413 		kmem_free(cpi->cpi_std_4,
414 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
415 
416 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
417 }
418 
419 #if !defined(__xpv)
420 
421 static void
422 check_for_hvm()
423 {
424 	struct cpuid_regs cp;
425 	char *xen_str;
426 	uint32_t xen_signature[4];
427 	extern int xpv_is_hvm;
428 
429 	/*
430 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
431 	 * 0x40000000 returns a string representing the Xen signature in
432 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
433 	 * function.
434 	 */
435 	cp.cp_eax = 0x40000000;
436 	(void) __cpuid_insn(&cp);
437 	xen_signature[0] = cp.cp_ebx;
438 	xen_signature[1] = cp.cp_ecx;
439 	xen_signature[2] = cp.cp_edx;
440 	xen_signature[3] = 0;
441 	xen_str = (char *)xen_signature;
442 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
443 		xpv_is_hvm = 1;
444 }
445 #endif	/* __xpv */
446 
447 uint_t
448 cpuid_pass1(cpu_t *cpu)
449 {
450 	uint32_t mask_ecx, mask_edx;
451 	uint_t feature = X86_CPUID;
452 	struct cpuid_info *cpi;
453 	struct cpuid_regs *cp;
454 	int xcpuid;
455 #if !defined(__xpv)
456 	extern int idle_cpu_prefer_mwait;
457 #endif
458 
459 	/*
460 	 * Space statically allocated for cpu0, ensure pointer is set
461 	 */
462 	if (cpu->cpu_id == 0)
463 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
464 	cpi = cpu->cpu_m.mcpu_cpi;
465 	ASSERT(cpi != NULL);
466 	cp = &cpi->cpi_std[0];
467 	cp->cp_eax = 0;
468 	cpi->cpi_maxeax = __cpuid_insn(cp);
469 	{
470 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
471 		*iptr++ = cp->cp_ebx;
472 		*iptr++ = cp->cp_edx;
473 		*iptr++ = cp->cp_ecx;
474 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
475 	}
476 
477 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
478 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
479 
480 	/*
481 	 * Limit the range in case of weird hardware
482 	 */
483 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
484 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
485 	if (cpi->cpi_maxeax < 1)
486 		goto pass1_done;
487 
488 	cp = &cpi->cpi_std[1];
489 	cp->cp_eax = 1;
490 	(void) __cpuid_insn(cp);
491 
492 	/*
493 	 * Extract identifying constants for easy access.
494 	 */
495 	cpi->cpi_model = CPI_MODEL(cpi);
496 	cpi->cpi_family = CPI_FAMILY(cpi);
497 
498 	if (cpi->cpi_family == 0xf)
499 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
500 
501 	/*
502 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
503 	 * Intel, and presumably everyone else, uses model == 0xf, as
504 	 * one would expect (max value means possible overflow).  Sigh.
505 	 */
506 
507 	switch (cpi->cpi_vendor) {
508 	case X86_VENDOR_Intel:
509 		if (IS_EXTENDED_MODEL_INTEL(cpi))
510 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
511 		break;
512 	case X86_VENDOR_AMD:
513 		if (CPI_FAMILY(cpi) == 0xf)
514 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
515 		break;
516 	default:
517 		if (cpi->cpi_model == 0xf)
518 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
519 		break;
520 	}
521 
522 	cpi->cpi_step = CPI_STEP(cpi);
523 	cpi->cpi_brandid = CPI_BRANDID(cpi);
524 
525 	/*
526 	 * *default* assumptions:
527 	 * - believe %edx feature word
528 	 * - ignore %ecx feature word
529 	 * - 32-bit virtual and physical addressing
530 	 */
531 	mask_edx = 0xffffffff;
532 	mask_ecx = 0;
533 
534 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
535 
536 	switch (cpi->cpi_vendor) {
537 	case X86_VENDOR_Intel:
538 		if (cpi->cpi_family == 5)
539 			x86_type = X86_TYPE_P5;
540 		else if (IS_LEGACY_P6(cpi)) {
541 			x86_type = X86_TYPE_P6;
542 			pentiumpro_bug4046376 = 1;
543 			pentiumpro_bug4064495 = 1;
544 			/*
545 			 * Clear the SEP bit when it was set erroneously
546 			 */
547 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
548 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
549 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
550 			x86_type = X86_TYPE_P4;
551 			/*
552 			 * We don't currently depend on any of the %ecx
553 			 * features until Prescott, so we'll only check
554 			 * this from P4 onwards.  We might want to revisit
555 			 * that idea later.
556 			 */
557 			mask_ecx = 0xffffffff;
558 		} else if (cpi->cpi_family > 0xf)
559 			mask_ecx = 0xffffffff;
560 		/*
561 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
562 		 * to obtain the monitor linesize.
563 		 */
564 		if (cpi->cpi_maxeax < 5)
565 			mask_ecx &= ~CPUID_INTC_ECX_MON;
566 		break;
567 	case X86_VENDOR_IntelClone:
568 	default:
569 		break;
570 	case X86_VENDOR_AMD:
571 #if defined(OPTERON_ERRATUM_108)
572 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
573 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
574 			cpi->cpi_model = 0xc;
575 		} else
576 #endif
577 		if (cpi->cpi_family == 5) {
578 			/*
579 			 * AMD K5 and K6
580 			 *
581 			 * These CPUs have an incomplete implementation
582 			 * of MCA/MCE which we mask away.
583 			 */
584 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
585 
586 			/*
587 			 * Model 0 uses the wrong (APIC) bit
588 			 * to indicate PGE.  Fix it here.
589 			 */
590 			if (cpi->cpi_model == 0) {
591 				if (cp->cp_edx & 0x200) {
592 					cp->cp_edx &= ~0x200;
593 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
594 				}
595 			}
596 
597 			/*
598 			 * Early models had problems w/ MMX; disable.
599 			 */
600 			if (cpi->cpi_model < 6)
601 				mask_edx &= ~CPUID_INTC_EDX_MMX;
602 		}
603 
604 		/*
605 		 * For newer families, SSE3 and CX16, at least, are valid;
606 		 * enable all
607 		 */
608 		if (cpi->cpi_family >= 0xf)
609 			mask_ecx = 0xffffffff;
610 		/*
611 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
612 		 * to obtain the monitor linesize.
613 		 */
614 		if (cpi->cpi_maxeax < 5)
615 			mask_ecx &= ~CPUID_INTC_ECX_MON;
616 
617 #if !defined(__xpv)
618 		/*
619 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
620 		 * processors.  AMD does not intend MWAIT to be used in the cpu
621 		 * idle loop on current and future processors.  10h and future
622 		 * AMD processors use more power in MWAIT than HLT.
623 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
624 		 */
625 		idle_cpu_prefer_mwait = 0;
626 #endif
627 
628 		break;
629 	case X86_VENDOR_TM:
630 		/*
631 		 * workaround the NT workaround in CMS 4.1
632 		 */
633 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
634 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
635 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
636 		break;
637 	case X86_VENDOR_Centaur:
638 		/*
639 		 * workaround the NT workarounds again
640 		 */
641 		if (cpi->cpi_family == 6)
642 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
643 		break;
644 	case X86_VENDOR_Cyrix:
645 		/*
646 		 * We rely heavily on the probing in locore
647 		 * to actually figure out what parts, if any,
648 		 * of the Cyrix cpuid instruction to believe.
649 		 */
650 		switch (x86_type) {
651 		case X86_TYPE_CYRIX_486:
652 			mask_edx = 0;
653 			break;
654 		case X86_TYPE_CYRIX_6x86:
655 			mask_edx = 0;
656 			break;
657 		case X86_TYPE_CYRIX_6x86L:
658 			mask_edx =
659 			    CPUID_INTC_EDX_DE |
660 			    CPUID_INTC_EDX_CX8;
661 			break;
662 		case X86_TYPE_CYRIX_6x86MX:
663 			mask_edx =
664 			    CPUID_INTC_EDX_DE |
665 			    CPUID_INTC_EDX_MSR |
666 			    CPUID_INTC_EDX_CX8 |
667 			    CPUID_INTC_EDX_PGE |
668 			    CPUID_INTC_EDX_CMOV |
669 			    CPUID_INTC_EDX_MMX;
670 			break;
671 		case X86_TYPE_CYRIX_GXm:
672 			mask_edx =
673 			    CPUID_INTC_EDX_MSR |
674 			    CPUID_INTC_EDX_CX8 |
675 			    CPUID_INTC_EDX_CMOV |
676 			    CPUID_INTC_EDX_MMX;
677 			break;
678 		case X86_TYPE_CYRIX_MediaGX:
679 			break;
680 		case X86_TYPE_CYRIX_MII:
681 		case X86_TYPE_VIA_CYRIX_III:
682 			mask_edx =
683 			    CPUID_INTC_EDX_DE |
684 			    CPUID_INTC_EDX_TSC |
685 			    CPUID_INTC_EDX_MSR |
686 			    CPUID_INTC_EDX_CX8 |
687 			    CPUID_INTC_EDX_PGE |
688 			    CPUID_INTC_EDX_CMOV |
689 			    CPUID_INTC_EDX_MMX;
690 			break;
691 		default:
692 			break;
693 		}
694 		break;
695 	}
696 
697 #if defined(__xpv)
698 	/*
699 	 * Do not support MONITOR/MWAIT under a hypervisor
700 	 */
701 	mask_ecx &= ~CPUID_INTC_ECX_MON;
702 #endif	/* __xpv */
703 
704 	/*
705 	 * Now we've figured out the masks that determine
706 	 * which bits we choose to believe, apply the masks
707 	 * to the feature words, then map the kernel's view
708 	 * of these feature words into its feature word.
709 	 */
710 	cp->cp_edx &= mask_edx;
711 	cp->cp_ecx &= mask_ecx;
712 
713 	/*
714 	 * apply any platform restrictions (we don't call this
715 	 * immediately after __cpuid_insn here, because we need the
716 	 * workarounds applied above first)
717 	 */
718 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
719 
720 	/*
721 	 * fold in overrides from the "eeprom" mechanism
722 	 */
723 	cp->cp_edx |= cpuid_feature_edx_include;
724 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
725 
726 	cp->cp_ecx |= cpuid_feature_ecx_include;
727 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
728 
729 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
730 		feature |= X86_LARGEPAGE;
731 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
732 		feature |= X86_TSC;
733 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
734 		feature |= X86_MSR;
735 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
736 		feature |= X86_MTRR;
737 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
738 		feature |= X86_PGE;
739 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
740 		feature |= X86_CMOV;
741 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
742 		feature |= X86_MMX;
743 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
744 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
745 		feature |= X86_MCA;
746 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
747 		feature |= X86_PAE;
748 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
749 		feature |= X86_CX8;
750 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
751 		feature |= X86_CX16;
752 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
753 		feature |= X86_PAT;
754 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
755 		feature |= X86_SEP;
756 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
757 		/*
758 		 * In our implementation, fxsave/fxrstor
759 		 * are prerequisites before we'll even
760 		 * try and do SSE things.
761 		 */
762 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
763 			feature |= X86_SSE;
764 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
765 			feature |= X86_SSE2;
766 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
767 			feature |= X86_SSE3;
768 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
769 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
770 				feature |= X86_SSSE3;
771 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
772 				feature |= X86_SSE4_1;
773 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
774 				feature |= X86_SSE4_2;
775 		}
776 	}
777 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
778 		feature |= X86_DE;
779 #if !defined(__xpv)
780 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
781 
782 		/*
783 		 * We require the CLFLUSH instruction for erratum workaround
784 		 * to use MONITOR/MWAIT.
785 		 */
786 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
787 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
788 			feature |= X86_MWAIT;
789 		} else {
790 			extern int idle_cpu_assert_cflush_monitor;
791 
792 			/*
793 			 * All processors we are aware of which have
794 			 * MONITOR/MWAIT also have CLFLUSH.
795 			 */
796 			if (idle_cpu_assert_cflush_monitor) {
797 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
798 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
799 			}
800 		}
801 	}
802 #endif	/* __xpv */
803 
804 	/*
805 	 * Only need it first time, rest of the cpus would follow suite.
806 	 * we only capture this for the bootcpu.
807 	 */
808 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
809 		feature |= X86_CLFSH;
810 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
811 	}
812 
813 	if (feature & X86_PAE)
814 		cpi->cpi_pabits = 36;
815 
816 	/*
817 	 * Hyperthreading configuration is slightly tricky on Intel
818 	 * and pure clones, and even trickier on AMD.
819 	 *
820 	 * (AMD chose to set the HTT bit on their CMP processors,
821 	 * even though they're not actually hyperthreaded.  Thus it
822 	 * takes a bit more work to figure out what's really going
823 	 * on ... see the handling of the CMP_LGCY bit below)
824 	 */
825 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
826 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
827 		if (cpi->cpi_ncpu_per_chip > 1)
828 			feature |= X86_HTT;
829 	} else {
830 		cpi->cpi_ncpu_per_chip = 1;
831 	}
832 
833 	/*
834 	 * Work on the "extended" feature information, doing
835 	 * some basic initialization for cpuid_pass2()
836 	 */
837 	xcpuid = 0;
838 	switch (cpi->cpi_vendor) {
839 	case X86_VENDOR_Intel:
840 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
841 			xcpuid++;
842 		break;
843 	case X86_VENDOR_AMD:
844 		if (cpi->cpi_family > 5 ||
845 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
846 			xcpuid++;
847 		break;
848 	case X86_VENDOR_Cyrix:
849 		/*
850 		 * Only these Cyrix CPUs are -known- to support
851 		 * extended cpuid operations.
852 		 */
853 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
854 		    x86_type == X86_TYPE_CYRIX_GXm)
855 			xcpuid++;
856 		break;
857 	case X86_VENDOR_Centaur:
858 	case X86_VENDOR_TM:
859 	default:
860 		xcpuid++;
861 		break;
862 	}
863 
864 	if (xcpuid) {
865 		cp = &cpi->cpi_extd[0];
866 		cp->cp_eax = 0x80000000;
867 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
868 	}
869 
870 	if (cpi->cpi_xmaxeax & 0x80000000) {
871 
872 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
873 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
874 
875 		switch (cpi->cpi_vendor) {
876 		case X86_VENDOR_Intel:
877 		case X86_VENDOR_AMD:
878 			if (cpi->cpi_xmaxeax < 0x80000001)
879 				break;
880 			cp = &cpi->cpi_extd[1];
881 			cp->cp_eax = 0x80000001;
882 			(void) __cpuid_insn(cp);
883 
884 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
885 			    cpi->cpi_family == 5 &&
886 			    cpi->cpi_model == 6 &&
887 			    cpi->cpi_step == 6) {
888 				/*
889 				 * K6 model 6 uses bit 10 to indicate SYSC
890 				 * Later models use bit 11. Fix it here.
891 				 */
892 				if (cp->cp_edx & 0x400) {
893 					cp->cp_edx &= ~0x400;
894 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
895 				}
896 			}
897 
898 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
899 
900 			/*
901 			 * Compute the additions to the kernel's feature word.
902 			 */
903 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
904 				feature |= X86_NX;
905 
906 			/*
907 			 * Regardless whether or not we boot 64-bit,
908 			 * we should have a way to identify whether
909 			 * the CPU is capable of running 64-bit.
910 			 */
911 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
912 				feature |= X86_64;
913 
914 #if defined(__amd64)
915 			/* 1 GB large page - enable only for 64 bit kernel */
916 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
917 				feature |= X86_1GPG;
918 #endif
919 
920 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
921 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
922 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
923 				feature |= X86_SSE4A;
924 
925 			/*
926 			 * If both the HTT and CMP_LGCY bits are set,
927 			 * then we're not actually HyperThreaded.  Read
928 			 * "AMD CPUID Specification" for more details.
929 			 */
930 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
931 			    (feature & X86_HTT) &&
932 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
933 				feature &= ~X86_HTT;
934 				feature |= X86_CMP;
935 			}
936 #if defined(__amd64)
937 			/*
938 			 * It's really tricky to support syscall/sysret in
939 			 * the i386 kernel; we rely on sysenter/sysexit
940 			 * instead.  In the amd64 kernel, things are -way-
941 			 * better.
942 			 */
943 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
944 				feature |= X86_ASYSC;
945 
946 			/*
947 			 * While we're thinking about system calls, note
948 			 * that AMD processors don't support sysenter
949 			 * in long mode at all, so don't try to program them.
950 			 */
951 			if (x86_vendor == X86_VENDOR_AMD)
952 				feature &= ~X86_SEP;
953 #endif
954 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
955 				feature |= X86_TSCP;
956 			break;
957 		default:
958 			break;
959 		}
960 
961 		/*
962 		 * Get CPUID data about processor cores and hyperthreads.
963 		 */
964 		switch (cpi->cpi_vendor) {
965 		case X86_VENDOR_Intel:
966 			if (cpi->cpi_maxeax >= 4) {
967 				cp = &cpi->cpi_std[4];
968 				cp->cp_eax = 4;
969 				cp->cp_ecx = 0;
970 				(void) __cpuid_insn(cp);
971 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
972 			}
973 			/*FALLTHROUGH*/
974 		case X86_VENDOR_AMD:
975 			if (cpi->cpi_xmaxeax < 0x80000008)
976 				break;
977 			cp = &cpi->cpi_extd[8];
978 			cp->cp_eax = 0x80000008;
979 			(void) __cpuid_insn(cp);
980 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
981 
982 			/*
983 			 * Virtual and physical address limits from
984 			 * cpuid override previously guessed values.
985 			 */
986 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
987 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
988 			break;
989 		default:
990 			break;
991 		}
992 
993 		/*
994 		 * Derive the number of cores per chip
995 		 */
996 		switch (cpi->cpi_vendor) {
997 		case X86_VENDOR_Intel:
998 			if (cpi->cpi_maxeax < 4) {
999 				cpi->cpi_ncore_per_chip = 1;
1000 				break;
1001 			} else {
1002 				cpi->cpi_ncore_per_chip =
1003 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1004 			}
1005 			break;
1006 		case X86_VENDOR_AMD:
1007 			if (cpi->cpi_xmaxeax < 0x80000008) {
1008 				cpi->cpi_ncore_per_chip = 1;
1009 				break;
1010 			} else {
1011 				/*
1012 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1013 				 * 1 less than the number of physical cores on
1014 				 * the chip.  In family 0x10 this value can
1015 				 * be affected by "downcoring" - it reflects
1016 				 * 1 less than the number of cores actually
1017 				 * enabled on this node.
1018 				 */
1019 				cpi->cpi_ncore_per_chip =
1020 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1021 			}
1022 			break;
1023 		default:
1024 			cpi->cpi_ncore_per_chip = 1;
1025 			break;
1026 		}
1027 	} else {
1028 		cpi->cpi_ncore_per_chip = 1;
1029 	}
1030 
1031 	/*
1032 	 * If more than one core, then this processor is CMP.
1033 	 */
1034 	if (cpi->cpi_ncore_per_chip > 1)
1035 		feature |= X86_CMP;
1036 
1037 	/*
1038 	 * If the number of cores is the same as the number
1039 	 * of CPUs, then we cannot have HyperThreading.
1040 	 */
1041 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1042 		feature &= ~X86_HTT;
1043 
1044 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1045 		/*
1046 		 * Single-core single-threaded processors.
1047 		 */
1048 		cpi->cpi_chipid = -1;
1049 		cpi->cpi_clogid = 0;
1050 		cpi->cpi_coreid = cpu->cpu_id;
1051 		cpi->cpi_pkgcoreid = 0;
1052 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1053 		uint_t i;
1054 		uint_t chipid_shift = 0;
1055 		uint_t coreid_shift = 0;
1056 		uint_t apic_id = CPI_APIC_ID(cpi);
1057 
1058 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1059 			chipid_shift++;
1060 		cpi->cpi_chipid = apic_id >> chipid_shift;
1061 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1062 
1063 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1064 			if (feature & X86_CMP) {
1065 				/*
1066 				 * Multi-core (and possibly multi-threaded)
1067 				 * processors.
1068 				 */
1069 				uint_t ncpu_per_core;
1070 				if (cpi->cpi_ncore_per_chip == 1)
1071 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1072 				else if (cpi->cpi_ncore_per_chip > 1)
1073 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1074 					    cpi->cpi_ncore_per_chip;
1075 				/*
1076 				 * 8bit APIC IDs on dual core Pentiums
1077 				 * look like this:
1078 				 *
1079 				 * +-----------------------+------+------+
1080 				 * | Physical Package ID   |  MC  |  HT  |
1081 				 * +-----------------------+------+------+
1082 				 * <------- chipid -------->
1083 				 * <------- coreid --------------->
1084 				 *			   <--- clogid -->
1085 				 *			   <------>
1086 				 *			   pkgcoreid
1087 				 *
1088 				 * Where the number of bits necessary to
1089 				 * represent MC and HT fields together equals
1090 				 * to the minimum number of bits necessary to
1091 				 * store the value of cpi->cpi_ncpu_per_chip.
1092 				 * Of those bits, the MC part uses the number
1093 				 * of bits necessary to store the value of
1094 				 * cpi->cpi_ncore_per_chip.
1095 				 */
1096 				for (i = 1; i < ncpu_per_core; i <<= 1)
1097 					coreid_shift++;
1098 				cpi->cpi_coreid = apic_id >> coreid_shift;
1099 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1100 				    coreid_shift;
1101 			} else if (feature & X86_HTT) {
1102 				/*
1103 				 * Single-core multi-threaded processors.
1104 				 */
1105 				cpi->cpi_coreid = cpi->cpi_chipid;
1106 				cpi->cpi_pkgcoreid = 0;
1107 			}
1108 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1109 			/*
1110 			 * AMD CMP chips currently have a single thread per
1111 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1112 			 * cores on family 0x10.
1113 			 *
1114 			 * Since no two cpus share a core we must assign a
1115 			 * distinct coreid per cpu, and we do this by using
1116 			 * the cpu_id.  This scheme does not, however,
1117 			 * guarantee that sibling cores of a chip will have
1118 			 * sequential coreids starting at a multiple of the
1119 			 * number of cores per chip - that is usually the
1120 			 * case, but if the ACPI MADT table is presented
1121 			 * in a different order then we need to perform a
1122 			 * few more gymnastics for the pkgcoreid.
1123 			 *
1124 			 * In family 0xf CMPs there are 2 cores on all nodes
1125 			 * present - no mixing of single and dual core parts.
1126 			 *
1127 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1128 			 * "ApicIdCoreIdSize[3:0]" tells us how
1129 			 * many least-significant bits in the ApicId
1130 			 * are used to represent the core number
1131 			 * within the node.  Cores are always
1132 			 * numbered sequentially from 0 regardless
1133 			 * of how many or which are disabled, and
1134 			 * there seems to be no way to discover the
1135 			 * real core id when some are disabled.
1136 			 */
1137 			cpi->cpi_coreid = cpu->cpu_id;
1138 
1139 			if (cpi->cpi_family == 0x10 &&
1140 			    cpi->cpi_xmaxeax >= 0x80000008) {
1141 				int coreidsz =
1142 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1143 
1144 				cpi->cpi_pkgcoreid =
1145 				    apic_id & ((1 << coreidsz) - 1);
1146 			} else {
1147 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1148 			}
1149 		} else {
1150 			/*
1151 			 * All other processors are currently
1152 			 * assumed to have single cores.
1153 			 */
1154 			cpi->cpi_coreid = cpi->cpi_chipid;
1155 			cpi->cpi_pkgcoreid = 0;
1156 		}
1157 	}
1158 
1159 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1160 
1161 	/*
1162 	 * Synthesize chip "revision" and socket type
1163 	 */
1164 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1165 	    cpi->cpi_model, cpi->cpi_step);
1166 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1167 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1168 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1169 	    cpi->cpi_model, cpi->cpi_step);
1170 
1171 pass1_done:
1172 #if !defined(__xpv)
1173 	check_for_hvm();
1174 #endif
1175 	cpi->cpi_pass = 1;
1176 	return (feature);
1177 }
1178 
1179 /*
1180  * Make copies of the cpuid table entries we depend on, in
1181  * part for ease of parsing now, in part so that we have only
1182  * one place to correct any of it, in part for ease of
1183  * later export to userland, and in part so we can look at
1184  * this stuff in a crash dump.
1185  */
1186 
1187 /*ARGSUSED*/
1188 void
1189 cpuid_pass2(cpu_t *cpu)
1190 {
1191 	uint_t n, nmax;
1192 	int i;
1193 	struct cpuid_regs *cp;
1194 	uint8_t *dp;
1195 	uint32_t *iptr;
1196 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1197 
1198 	ASSERT(cpi->cpi_pass == 1);
1199 
1200 	if (cpi->cpi_maxeax < 1)
1201 		goto pass2_done;
1202 
1203 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1204 		nmax = NMAX_CPI_STD;
1205 	/*
1206 	 * (We already handled n == 0 and n == 1 in pass 1)
1207 	 */
1208 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1209 		cp->cp_eax = n;
1210 
1211 		/*
1212 		 * CPUID function 4 expects %ecx to be initialized
1213 		 * with an index which indicates which cache to return
1214 		 * information about. The OS is expected to call function 4
1215 		 * with %ecx set to 0, 1, 2, ... until it returns with
1216 		 * EAX[4:0] set to 0, which indicates there are no more
1217 		 * caches.
1218 		 *
1219 		 * Here, populate cpi_std[4] with the information returned by
1220 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1221 		 * when dynamic memory allocation becomes available.
1222 		 *
1223 		 * Note: we need to explicitly initialize %ecx here, since
1224 		 * function 4 may have been previously invoked.
1225 		 */
1226 		if (n == 4)
1227 			cp->cp_ecx = 0;
1228 
1229 		(void) __cpuid_insn(cp);
1230 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1231 		switch (n) {
1232 		case 2:
1233 			/*
1234 			 * "the lower 8 bits of the %eax register
1235 			 * contain a value that identifies the number
1236 			 * of times the cpuid [instruction] has to be
1237 			 * executed to obtain a complete image of the
1238 			 * processor's caching systems."
1239 			 *
1240 			 * How *do* they make this stuff up?
1241 			 */
1242 			cpi->cpi_ncache = sizeof (*cp) *
1243 			    BITX(cp->cp_eax, 7, 0);
1244 			if (cpi->cpi_ncache == 0)
1245 				break;
1246 			cpi->cpi_ncache--;	/* skip count byte */
1247 
1248 			/*
1249 			 * Well, for now, rather than attempt to implement
1250 			 * this slightly dubious algorithm, we just look
1251 			 * at the first 15 ..
1252 			 */
1253 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1254 				cpi->cpi_ncache = sizeof (*cp) - 1;
1255 
1256 			dp = cpi->cpi_cacheinfo;
1257 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1258 				uint8_t *p = (void *)&cp->cp_eax;
1259 				for (i = 1; i < 4; i++)
1260 					if (p[i] != 0)
1261 						*dp++ = p[i];
1262 			}
1263 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1264 				uint8_t *p = (void *)&cp->cp_ebx;
1265 				for (i = 0; i < 4; i++)
1266 					if (p[i] != 0)
1267 						*dp++ = p[i];
1268 			}
1269 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1270 				uint8_t *p = (void *)&cp->cp_ecx;
1271 				for (i = 0; i < 4; i++)
1272 					if (p[i] != 0)
1273 						*dp++ = p[i];
1274 			}
1275 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1276 				uint8_t *p = (void *)&cp->cp_edx;
1277 				for (i = 0; i < 4; i++)
1278 					if (p[i] != 0)
1279 						*dp++ = p[i];
1280 			}
1281 			break;
1282 
1283 		case 3:	/* Processor serial number, if PSN supported */
1284 			break;
1285 
1286 		case 4:	/* Deterministic cache parameters */
1287 			break;
1288 
1289 		case 5:	/* Monitor/Mwait parameters */
1290 		{
1291 			size_t mwait_size;
1292 
1293 			/*
1294 			 * check cpi_mwait.support which was set in cpuid_pass1
1295 			 */
1296 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1297 				break;
1298 
1299 			/*
1300 			 * Protect ourself from insane mwait line size.
1301 			 * Workaround for incomplete hardware emulator(s).
1302 			 */
1303 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1304 			if (mwait_size < sizeof (uint32_t) ||
1305 			    !ISP2(mwait_size)) {
1306 #if DEBUG
1307 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1308 				    "size %ld", cpu->cpu_id, (long)mwait_size);
1309 #endif
1310 				break;
1311 			}
1312 
1313 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1314 			cpi->cpi_mwait.mon_max = mwait_size;
1315 			if (MWAIT_EXTENSION(cpi)) {
1316 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1317 				if (MWAIT_INT_ENABLE(cpi))
1318 					cpi->cpi_mwait.support |=
1319 					    MWAIT_ECX_INT_ENABLE;
1320 			}
1321 			break;
1322 		}
1323 		default:
1324 			break;
1325 		}
1326 	}
1327 
1328 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1329 		struct cpuid_regs regs;
1330 
1331 		cp = &regs;
1332 		cp->cp_eax = 0xB;
1333 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1334 
1335 		(void) __cpuid_insn(cp);
1336 
1337 		/*
1338 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1339 		 * indicates that the extended topology enumeration leaf is
1340 		 * available.
1341 		 */
1342 		if (cp->cp_ebx) {
1343 			uint32_t x2apic_id;
1344 			uint_t coreid_shift = 0;
1345 			uint_t ncpu_per_core = 1;
1346 			uint_t chipid_shift = 0;
1347 			uint_t ncpu_per_chip = 1;
1348 			uint_t i;
1349 			uint_t level;
1350 
1351 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1352 				cp->cp_eax = 0xB;
1353 				cp->cp_ecx = i;
1354 
1355 				(void) __cpuid_insn(cp);
1356 				level = CPI_CPU_LEVEL_TYPE(cp);
1357 
1358 				if (level == 1) {
1359 					x2apic_id = cp->cp_edx;
1360 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1361 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1362 				} else if (level == 2) {
1363 					x2apic_id = cp->cp_edx;
1364 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1365 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1366 				}
1367 			}
1368 
1369 			cpi->cpi_apicid = x2apic_id;
1370 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1371 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1372 			    ncpu_per_core;
1373 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1374 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1375 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1376 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1377 		}
1378 
1379 		/* Make cp NULL so that we don't stumble on others */
1380 		cp = NULL;
1381 	}
1382 
1383 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1384 		goto pass2_done;
1385 
1386 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1387 		nmax = NMAX_CPI_EXTD;
1388 	/*
1389 	 * Copy the extended properties, fixing them as we go.
1390 	 * (We already handled n == 0 and n == 1 in pass 1)
1391 	 */
1392 	iptr = (void *)cpi->cpi_brandstr;
1393 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1394 		cp->cp_eax = 0x80000000 + n;
1395 		(void) __cpuid_insn(cp);
1396 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1397 		switch (n) {
1398 		case 2:
1399 		case 3:
1400 		case 4:
1401 			/*
1402 			 * Extract the brand string
1403 			 */
1404 			*iptr++ = cp->cp_eax;
1405 			*iptr++ = cp->cp_ebx;
1406 			*iptr++ = cp->cp_ecx;
1407 			*iptr++ = cp->cp_edx;
1408 			break;
1409 		case 5:
1410 			switch (cpi->cpi_vendor) {
1411 			case X86_VENDOR_AMD:
1412 				/*
1413 				 * The Athlon and Duron were the first
1414 				 * parts to report the sizes of the
1415 				 * TLB for large pages. Before then,
1416 				 * we don't trust the data.
1417 				 */
1418 				if (cpi->cpi_family < 6 ||
1419 				    (cpi->cpi_family == 6 &&
1420 				    cpi->cpi_model < 1))
1421 					cp->cp_eax = 0;
1422 				break;
1423 			default:
1424 				break;
1425 			}
1426 			break;
1427 		case 6:
1428 			switch (cpi->cpi_vendor) {
1429 			case X86_VENDOR_AMD:
1430 				/*
1431 				 * The Athlon and Duron were the first
1432 				 * AMD parts with L2 TLB's.
1433 				 * Before then, don't trust the data.
1434 				 */
1435 				if (cpi->cpi_family < 6 ||
1436 				    cpi->cpi_family == 6 &&
1437 				    cpi->cpi_model < 1)
1438 					cp->cp_eax = cp->cp_ebx = 0;
1439 				/*
1440 				 * AMD Duron rev A0 reports L2
1441 				 * cache size incorrectly as 1K
1442 				 * when it is really 64K
1443 				 */
1444 				if (cpi->cpi_family == 6 &&
1445 				    cpi->cpi_model == 3 &&
1446 				    cpi->cpi_step == 0) {
1447 					cp->cp_ecx &= 0xffff;
1448 					cp->cp_ecx |= 0x400000;
1449 				}
1450 				break;
1451 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1452 				/*
1453 				 * VIA C3 processors are a bit messed
1454 				 * up w.r.t. encoding cache sizes in %ecx
1455 				 */
1456 				if (cpi->cpi_family != 6)
1457 					break;
1458 				/*
1459 				 * model 7 and 8 were incorrectly encoded
1460 				 *
1461 				 * xxx is model 8 really broken?
1462 				 */
1463 				if (cpi->cpi_model == 7 ||
1464 				    cpi->cpi_model == 8)
1465 					cp->cp_ecx =
1466 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1467 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1468 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1469 					    BITX(cp->cp_ecx, 7, 0);
1470 				/*
1471 				 * model 9 stepping 1 has wrong associativity
1472 				 */
1473 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1474 					cp->cp_ecx |= 8 << 12;
1475 				break;
1476 			case X86_VENDOR_Intel:
1477 				/*
1478 				 * Extended L2 Cache features function.
1479 				 * First appeared on Prescott.
1480 				 */
1481 			default:
1482 				break;
1483 			}
1484 			break;
1485 		default:
1486 			break;
1487 		}
1488 	}
1489 
1490 pass2_done:
1491 	cpi->cpi_pass = 2;
1492 }
1493 
1494 static const char *
1495 intel_cpubrand(const struct cpuid_info *cpi)
1496 {
1497 	int i;
1498 
1499 	if ((x86_feature & X86_CPUID) == 0 ||
1500 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1501 		return ("i486");
1502 
1503 	switch (cpi->cpi_family) {
1504 	case 5:
1505 		return ("Intel Pentium(r)");
1506 	case 6:
1507 		switch (cpi->cpi_model) {
1508 			uint_t celeron, xeon;
1509 			const struct cpuid_regs *cp;
1510 		case 0:
1511 		case 1:
1512 		case 2:
1513 			return ("Intel Pentium(r) Pro");
1514 		case 3:
1515 		case 4:
1516 			return ("Intel Pentium(r) II");
1517 		case 6:
1518 			return ("Intel Celeron(r)");
1519 		case 5:
1520 		case 7:
1521 			celeron = xeon = 0;
1522 			cp = &cpi->cpi_std[2];	/* cache info */
1523 
1524 			for (i = 1; i < 4; i++) {
1525 				uint_t tmp;
1526 
1527 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1528 				if (tmp == 0x40)
1529 					celeron++;
1530 				if (tmp >= 0x44 && tmp <= 0x45)
1531 					xeon++;
1532 			}
1533 
1534 			for (i = 0; i < 2; i++) {
1535 				uint_t tmp;
1536 
1537 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1538 				if (tmp == 0x40)
1539 					celeron++;
1540 				else if (tmp >= 0x44 && tmp <= 0x45)
1541 					xeon++;
1542 			}
1543 
1544 			for (i = 0; i < 4; i++) {
1545 				uint_t tmp;
1546 
1547 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1548 				if (tmp == 0x40)
1549 					celeron++;
1550 				else if (tmp >= 0x44 && tmp <= 0x45)
1551 					xeon++;
1552 			}
1553 
1554 			for (i = 0; i < 4; i++) {
1555 				uint_t tmp;
1556 
1557 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1558 				if (tmp == 0x40)
1559 					celeron++;
1560 				else if (tmp >= 0x44 && tmp <= 0x45)
1561 					xeon++;
1562 			}
1563 
1564 			if (celeron)
1565 				return ("Intel Celeron(r)");
1566 			if (xeon)
1567 				return (cpi->cpi_model == 5 ?
1568 				    "Intel Pentium(r) II Xeon(tm)" :
1569 				    "Intel Pentium(r) III Xeon(tm)");
1570 			return (cpi->cpi_model == 5 ?
1571 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1572 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1573 		default:
1574 			break;
1575 		}
1576 	default:
1577 		break;
1578 	}
1579 
1580 	/* BrandID is present if the field is nonzero */
1581 	if (cpi->cpi_brandid != 0) {
1582 		static const struct {
1583 			uint_t bt_bid;
1584 			const char *bt_str;
1585 		} brand_tbl[] = {
1586 			{ 0x1,	"Intel(r) Celeron(r)" },
1587 			{ 0x2,	"Intel(r) Pentium(r) III" },
1588 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1589 			{ 0x4,	"Intel(r) Pentium(r) III" },
1590 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1591 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1592 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1593 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1594 			{ 0xa,	"Intel(r) Celeron(r)" },
1595 			{ 0xb,	"Intel(r) Xeon(tm)" },
1596 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1597 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1598 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1599 			{ 0x11, "Mobile Genuine Intel(r)" },
1600 			{ 0x12, "Intel(r) Celeron(r) M" },
1601 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1602 			{ 0x14, "Intel(r) Celeron(r)" },
1603 			{ 0x15, "Mobile Genuine Intel(r)" },
1604 			{ 0x16,	"Intel(r) Pentium(r) M" },
1605 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1606 		};
1607 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1608 		uint_t sgn;
1609 
1610 		sgn = (cpi->cpi_family << 8) |
1611 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1612 
1613 		for (i = 0; i < btblmax; i++)
1614 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1615 				break;
1616 		if (i < btblmax) {
1617 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1618 				return ("Intel(r) Celeron(r)");
1619 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1620 				return ("Intel(r) Xeon(tm) MP");
1621 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1622 				return ("Intel(r) Xeon(tm)");
1623 			return (brand_tbl[i].bt_str);
1624 		}
1625 	}
1626 
1627 	return (NULL);
1628 }
1629 
1630 static const char *
1631 amd_cpubrand(const struct cpuid_info *cpi)
1632 {
1633 	if ((x86_feature & X86_CPUID) == 0 ||
1634 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1635 		return ("i486 compatible");
1636 
1637 	switch (cpi->cpi_family) {
1638 	case 5:
1639 		switch (cpi->cpi_model) {
1640 		case 0:
1641 		case 1:
1642 		case 2:
1643 		case 3:
1644 		case 4:
1645 		case 5:
1646 			return ("AMD-K5(r)");
1647 		case 6:
1648 		case 7:
1649 			return ("AMD-K6(r)");
1650 		case 8:
1651 			return ("AMD-K6(r)-2");
1652 		case 9:
1653 			return ("AMD-K6(r)-III");
1654 		default:
1655 			return ("AMD (family 5)");
1656 		}
1657 	case 6:
1658 		switch (cpi->cpi_model) {
1659 		case 1:
1660 			return ("AMD-K7(tm)");
1661 		case 0:
1662 		case 2:
1663 		case 4:
1664 			return ("AMD Athlon(tm)");
1665 		case 3:
1666 		case 7:
1667 			return ("AMD Duron(tm)");
1668 		case 6:
1669 		case 8:
1670 		case 10:
1671 			/*
1672 			 * Use the L2 cache size to distinguish
1673 			 */
1674 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1675 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1676 		default:
1677 			return ("AMD (family 6)");
1678 		}
1679 	default:
1680 		break;
1681 	}
1682 
1683 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1684 	    cpi->cpi_brandid != 0) {
1685 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1686 		case 3:
1687 			return ("AMD Opteron(tm) UP 1xx");
1688 		case 4:
1689 			return ("AMD Opteron(tm) DP 2xx");
1690 		case 5:
1691 			return ("AMD Opteron(tm) MP 8xx");
1692 		default:
1693 			return ("AMD Opteron(tm)");
1694 		}
1695 	}
1696 
1697 	return (NULL);
1698 }
1699 
1700 static const char *
1701 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1702 {
1703 	if ((x86_feature & X86_CPUID) == 0 ||
1704 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1705 	    type == X86_TYPE_CYRIX_486)
1706 		return ("i486 compatible");
1707 
1708 	switch (type) {
1709 	case X86_TYPE_CYRIX_6x86:
1710 		return ("Cyrix 6x86");
1711 	case X86_TYPE_CYRIX_6x86L:
1712 		return ("Cyrix 6x86L");
1713 	case X86_TYPE_CYRIX_6x86MX:
1714 		return ("Cyrix 6x86MX");
1715 	case X86_TYPE_CYRIX_GXm:
1716 		return ("Cyrix GXm");
1717 	case X86_TYPE_CYRIX_MediaGX:
1718 		return ("Cyrix MediaGX");
1719 	case X86_TYPE_CYRIX_MII:
1720 		return ("Cyrix M2");
1721 	case X86_TYPE_VIA_CYRIX_III:
1722 		return ("VIA Cyrix M3");
1723 	default:
1724 		/*
1725 		 * Have another wild guess ..
1726 		 */
1727 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1728 			return ("Cyrix 5x86");
1729 		else if (cpi->cpi_family == 5) {
1730 			switch (cpi->cpi_model) {
1731 			case 2:
1732 				return ("Cyrix 6x86");	/* Cyrix M1 */
1733 			case 4:
1734 				return ("Cyrix MediaGX");
1735 			default:
1736 				break;
1737 			}
1738 		} else if (cpi->cpi_family == 6) {
1739 			switch (cpi->cpi_model) {
1740 			case 0:
1741 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1742 			case 5:
1743 			case 6:
1744 			case 7:
1745 			case 8:
1746 			case 9:
1747 				return ("VIA C3");
1748 			default:
1749 				break;
1750 			}
1751 		}
1752 		break;
1753 	}
1754 	return (NULL);
1755 }
1756 
1757 /*
1758  * This only gets called in the case that the CPU extended
1759  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1760  * aren't available, or contain null bytes for some reason.
1761  */
1762 static void
1763 fabricate_brandstr(struct cpuid_info *cpi)
1764 {
1765 	const char *brand = NULL;
1766 
1767 	switch (cpi->cpi_vendor) {
1768 	case X86_VENDOR_Intel:
1769 		brand = intel_cpubrand(cpi);
1770 		break;
1771 	case X86_VENDOR_AMD:
1772 		brand = amd_cpubrand(cpi);
1773 		break;
1774 	case X86_VENDOR_Cyrix:
1775 		brand = cyrix_cpubrand(cpi, x86_type);
1776 		break;
1777 	case X86_VENDOR_NexGen:
1778 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1779 			brand = "NexGen Nx586";
1780 		break;
1781 	case X86_VENDOR_Centaur:
1782 		if (cpi->cpi_family == 5)
1783 			switch (cpi->cpi_model) {
1784 			case 4:
1785 				brand = "Centaur C6";
1786 				break;
1787 			case 8:
1788 				brand = "Centaur C2";
1789 				break;
1790 			case 9:
1791 				brand = "Centaur C3";
1792 				break;
1793 			default:
1794 				break;
1795 			}
1796 		break;
1797 	case X86_VENDOR_Rise:
1798 		if (cpi->cpi_family == 5 &&
1799 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1800 			brand = "Rise mP6";
1801 		break;
1802 	case X86_VENDOR_SiS:
1803 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1804 			brand = "SiS 55x";
1805 		break;
1806 	case X86_VENDOR_TM:
1807 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1808 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1809 		break;
1810 	case X86_VENDOR_NSC:
1811 	case X86_VENDOR_UMC:
1812 	default:
1813 		break;
1814 	}
1815 	if (brand) {
1816 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1817 		return;
1818 	}
1819 
1820 	/*
1821 	 * If all else fails ...
1822 	 */
1823 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1824 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1825 	    cpi->cpi_model, cpi->cpi_step);
1826 }
1827 
1828 /*
1829  * This routine is called just after kernel memory allocation
1830  * becomes available on cpu0, and as part of mp_startup() on
1831  * the other cpus.
1832  *
1833  * Fixup the brand string, and collect any information from cpuid
1834  * that requires dynamicically allocated storage to represent.
1835  */
1836 /*ARGSUSED*/
1837 void
1838 cpuid_pass3(cpu_t *cpu)
1839 {
1840 	int	i, max, shft, level, size;
1841 	struct cpuid_regs regs;
1842 	struct cpuid_regs *cp;
1843 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1844 
1845 	ASSERT(cpi->cpi_pass == 2);
1846 
1847 	/*
1848 	 * Function 4: Deterministic cache parameters
1849 	 *
1850 	 * Take this opportunity to detect the number of threads
1851 	 * sharing the last level cache, and construct a corresponding
1852 	 * cache id. The respective cpuid_info members are initialized
1853 	 * to the default case of "no last level cache sharing".
1854 	 */
1855 	cpi->cpi_ncpu_shr_last_cache = 1;
1856 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1857 
1858 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1859 
1860 		/*
1861 		 * Find the # of elements (size) returned by fn 4, and along
1862 		 * the way detect last level cache sharing details.
1863 		 */
1864 		bzero(&regs, sizeof (regs));
1865 		cp = &regs;
1866 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1867 			cp->cp_eax = 4;
1868 			cp->cp_ecx = i;
1869 
1870 			(void) __cpuid_insn(cp);
1871 
1872 			if (CPI_CACHE_TYPE(cp) == 0)
1873 				break;
1874 			level = CPI_CACHE_LVL(cp);
1875 			if (level > max) {
1876 				max = level;
1877 				cpi->cpi_ncpu_shr_last_cache =
1878 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1879 			}
1880 		}
1881 		cpi->cpi_std_4_size = size = i;
1882 
1883 		/*
1884 		 * Allocate the cpi_std_4 array. The first element
1885 		 * references the regs for fn 4, %ecx == 0, which
1886 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1887 		 */
1888 		if (size > 0) {
1889 			cpi->cpi_std_4 =
1890 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1891 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1892 
1893 			/*
1894 			 * Allocate storage to hold the additional regs
1895 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1896 			 *
1897 			 * The regs for fn 4, %ecx == 0 has already
1898 			 * been allocated as indicated above.
1899 			 */
1900 			for (i = 1; i < size; i++) {
1901 				cp = cpi->cpi_std_4[i] =
1902 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1903 				cp->cp_eax = 4;
1904 				cp->cp_ecx = i;
1905 
1906 				(void) __cpuid_insn(cp);
1907 			}
1908 		}
1909 		/*
1910 		 * Determine the number of bits needed to represent
1911 		 * the number of CPUs sharing the last level cache.
1912 		 *
1913 		 * Shift off that number of bits from the APIC id to
1914 		 * derive the cache id.
1915 		 */
1916 		shft = 0;
1917 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1918 			shft++;
1919 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1920 	}
1921 
1922 	/*
1923 	 * Now fixup the brand string
1924 	 */
1925 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1926 		fabricate_brandstr(cpi);
1927 	} else {
1928 
1929 		/*
1930 		 * If we successfully extracted a brand string from the cpuid
1931 		 * instruction, clean it up by removing leading spaces and
1932 		 * similar junk.
1933 		 */
1934 		if (cpi->cpi_brandstr[0]) {
1935 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1936 			char *src, *dst;
1937 
1938 			dst = src = (char *)cpi->cpi_brandstr;
1939 			src[maxlen - 1] = '\0';
1940 			/*
1941 			 * strip leading spaces
1942 			 */
1943 			while (*src == ' ')
1944 				src++;
1945 			/*
1946 			 * Remove any 'Genuine' or "Authentic" prefixes
1947 			 */
1948 			if (strncmp(src, "Genuine ", 8) == 0)
1949 				src += 8;
1950 			if (strncmp(src, "Authentic ", 10) == 0)
1951 				src += 10;
1952 
1953 			/*
1954 			 * Now do an in-place copy.
1955 			 * Map (R) to (r) and (TM) to (tm).
1956 			 * The era of teletypes is long gone, and there's
1957 			 * -really- no need to shout.
1958 			 */
1959 			while (*src != '\0') {
1960 				if (src[0] == '(') {
1961 					if (strncmp(src + 1, "R)", 2) == 0) {
1962 						(void) strncpy(dst, "(r)", 3);
1963 						src += 3;
1964 						dst += 3;
1965 						continue;
1966 					}
1967 					if (strncmp(src + 1, "TM)", 3) == 0) {
1968 						(void) strncpy(dst, "(tm)", 4);
1969 						src += 4;
1970 						dst += 4;
1971 						continue;
1972 					}
1973 				}
1974 				*dst++ = *src++;
1975 			}
1976 			*dst = '\0';
1977 
1978 			/*
1979 			 * Finally, remove any trailing spaces
1980 			 */
1981 			while (--dst > cpi->cpi_brandstr)
1982 				if (*dst == ' ')
1983 					*dst = '\0';
1984 				else
1985 					break;
1986 		} else
1987 			fabricate_brandstr(cpi);
1988 	}
1989 	cpi->cpi_pass = 3;
1990 }
1991 
1992 /*
1993  * This routine is called out of bind_hwcap() much later in the life
1994  * of the kernel (post_startup()).  The job of this routine is to resolve
1995  * the hardware feature support and kernel support for those features into
1996  * what we're actually going to tell applications via the aux vector.
1997  */
1998 uint_t
1999 cpuid_pass4(cpu_t *cpu)
2000 {
2001 	struct cpuid_info *cpi;
2002 	uint_t hwcap_flags = 0;
2003 
2004 	if (cpu == NULL)
2005 		cpu = CPU;
2006 	cpi = cpu->cpu_m.mcpu_cpi;
2007 
2008 	ASSERT(cpi->cpi_pass == 3);
2009 
2010 	if (cpi->cpi_maxeax >= 1) {
2011 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2012 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2013 
2014 		*edx = CPI_FEATURES_EDX(cpi);
2015 		*ecx = CPI_FEATURES_ECX(cpi);
2016 
2017 		/*
2018 		 * [these require explicit kernel support]
2019 		 */
2020 		if ((x86_feature & X86_SEP) == 0)
2021 			*edx &= ~CPUID_INTC_EDX_SEP;
2022 
2023 		if ((x86_feature & X86_SSE) == 0)
2024 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2025 		if ((x86_feature & X86_SSE2) == 0)
2026 			*edx &= ~CPUID_INTC_EDX_SSE2;
2027 
2028 		if ((x86_feature & X86_HTT) == 0)
2029 			*edx &= ~CPUID_INTC_EDX_HTT;
2030 
2031 		if ((x86_feature & X86_SSE3) == 0)
2032 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2033 
2034 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2035 			if ((x86_feature & X86_SSSE3) == 0)
2036 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2037 			if ((x86_feature & X86_SSE4_1) == 0)
2038 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2039 			if ((x86_feature & X86_SSE4_2) == 0)
2040 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2041 		}
2042 
2043 		/*
2044 		 * [no explicit support required beyond x87 fp context]
2045 		 */
2046 		if (!fpu_exists)
2047 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2048 
2049 		/*
2050 		 * Now map the supported feature vector to things that we
2051 		 * think userland will care about.
2052 		 */
2053 		if (*edx & CPUID_INTC_EDX_SEP)
2054 			hwcap_flags |= AV_386_SEP;
2055 		if (*edx & CPUID_INTC_EDX_SSE)
2056 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2057 		if (*edx & CPUID_INTC_EDX_SSE2)
2058 			hwcap_flags |= AV_386_SSE2;
2059 		if (*ecx & CPUID_INTC_ECX_SSE3)
2060 			hwcap_flags |= AV_386_SSE3;
2061 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2062 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2063 				hwcap_flags |= AV_386_SSSE3;
2064 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2065 				hwcap_flags |= AV_386_SSE4_1;
2066 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2067 				hwcap_flags |= AV_386_SSE4_2;
2068 		}
2069 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2070 			hwcap_flags |= AV_386_POPCNT;
2071 		if (*edx & CPUID_INTC_EDX_FPU)
2072 			hwcap_flags |= AV_386_FPU;
2073 		if (*edx & CPUID_INTC_EDX_MMX)
2074 			hwcap_flags |= AV_386_MMX;
2075 
2076 		if (*edx & CPUID_INTC_EDX_TSC)
2077 			hwcap_flags |= AV_386_TSC;
2078 		if (*edx & CPUID_INTC_EDX_CX8)
2079 			hwcap_flags |= AV_386_CX8;
2080 		if (*edx & CPUID_INTC_EDX_CMOV)
2081 			hwcap_flags |= AV_386_CMOV;
2082 		if (*ecx & CPUID_INTC_ECX_MON)
2083 			hwcap_flags |= AV_386_MON;
2084 		if (*ecx & CPUID_INTC_ECX_CX16)
2085 			hwcap_flags |= AV_386_CX16;
2086 	}
2087 
2088 	if (x86_feature & X86_HTT)
2089 		hwcap_flags |= AV_386_PAUSE;
2090 
2091 	if (cpi->cpi_xmaxeax < 0x80000001)
2092 		goto pass4_done;
2093 
2094 	switch (cpi->cpi_vendor) {
2095 		struct cpuid_regs cp;
2096 		uint32_t *edx, *ecx;
2097 
2098 	case X86_VENDOR_Intel:
2099 		/*
2100 		 * Seems like Intel duplicated what we necessary
2101 		 * here to make the initial crop of 64-bit OS's work.
2102 		 * Hopefully, those are the only "extended" bits
2103 		 * they'll add.
2104 		 */
2105 		/*FALLTHROUGH*/
2106 
2107 	case X86_VENDOR_AMD:
2108 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2109 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2110 
2111 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2112 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2113 
2114 		/*
2115 		 * [these features require explicit kernel support]
2116 		 */
2117 		switch (cpi->cpi_vendor) {
2118 		case X86_VENDOR_Intel:
2119 			if ((x86_feature & X86_TSCP) == 0)
2120 				*edx &= ~CPUID_AMD_EDX_TSCP;
2121 			break;
2122 
2123 		case X86_VENDOR_AMD:
2124 			if ((x86_feature & X86_TSCP) == 0)
2125 				*edx &= ~CPUID_AMD_EDX_TSCP;
2126 			if ((x86_feature & X86_SSE4A) == 0)
2127 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2128 			break;
2129 
2130 		default:
2131 			break;
2132 		}
2133 
2134 		/*
2135 		 * [no explicit support required beyond
2136 		 * x87 fp context and exception handlers]
2137 		 */
2138 		if (!fpu_exists)
2139 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2140 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2141 
2142 		if ((x86_feature & X86_NX) == 0)
2143 			*edx &= ~CPUID_AMD_EDX_NX;
2144 #if !defined(__amd64)
2145 		*edx &= ~CPUID_AMD_EDX_LM;
2146 #endif
2147 		/*
2148 		 * Now map the supported feature vector to
2149 		 * things that we think userland will care about.
2150 		 */
2151 #if defined(__amd64)
2152 		if (*edx & CPUID_AMD_EDX_SYSC)
2153 			hwcap_flags |= AV_386_AMD_SYSC;
2154 #endif
2155 		if (*edx & CPUID_AMD_EDX_MMXamd)
2156 			hwcap_flags |= AV_386_AMD_MMX;
2157 		if (*edx & CPUID_AMD_EDX_3DNow)
2158 			hwcap_flags |= AV_386_AMD_3DNow;
2159 		if (*edx & CPUID_AMD_EDX_3DNowx)
2160 			hwcap_flags |= AV_386_AMD_3DNowx;
2161 
2162 		switch (cpi->cpi_vendor) {
2163 		case X86_VENDOR_AMD:
2164 			if (*edx & CPUID_AMD_EDX_TSCP)
2165 				hwcap_flags |= AV_386_TSCP;
2166 			if (*ecx & CPUID_AMD_ECX_AHF64)
2167 				hwcap_flags |= AV_386_AHF;
2168 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2169 				hwcap_flags |= AV_386_AMD_SSE4A;
2170 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2171 				hwcap_flags |= AV_386_AMD_LZCNT;
2172 			break;
2173 
2174 		case X86_VENDOR_Intel:
2175 			if (*edx & CPUID_AMD_EDX_TSCP)
2176 				hwcap_flags |= AV_386_TSCP;
2177 			/*
2178 			 * Aarrgh.
2179 			 * Intel uses a different bit in the same word.
2180 			 */
2181 			if (*ecx & CPUID_INTC_ECX_AHF64)
2182 				hwcap_flags |= AV_386_AHF;
2183 			break;
2184 
2185 		default:
2186 			break;
2187 		}
2188 		break;
2189 
2190 	case X86_VENDOR_TM:
2191 		cp.cp_eax = 0x80860001;
2192 		(void) __cpuid_insn(&cp);
2193 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2194 		break;
2195 
2196 	default:
2197 		break;
2198 	}
2199 
2200 pass4_done:
2201 	cpi->cpi_pass = 4;
2202 	return (hwcap_flags);
2203 }
2204 
2205 
2206 /*
2207  * Simulate the cpuid instruction using the data we previously
2208  * captured about this CPU.  We try our best to return the truth
2209  * about the hardware, independently of kernel support.
2210  */
2211 uint32_t
2212 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2213 {
2214 	struct cpuid_info *cpi;
2215 	struct cpuid_regs *xcp;
2216 
2217 	if (cpu == NULL)
2218 		cpu = CPU;
2219 	cpi = cpu->cpu_m.mcpu_cpi;
2220 
2221 	ASSERT(cpuid_checkpass(cpu, 3));
2222 
2223 	/*
2224 	 * CPUID data is cached in two separate places: cpi_std for standard
2225 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2226 	 */
2227 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2228 		xcp = &cpi->cpi_std[cp->cp_eax];
2229 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2230 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2231 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2232 	else
2233 		/*
2234 		 * The caller is asking for data from an input parameter which
2235 		 * the kernel has not cached.  In this case we go fetch from
2236 		 * the hardware and return the data directly to the user.
2237 		 */
2238 		return (__cpuid_insn(cp));
2239 
2240 	cp->cp_eax = xcp->cp_eax;
2241 	cp->cp_ebx = xcp->cp_ebx;
2242 	cp->cp_ecx = xcp->cp_ecx;
2243 	cp->cp_edx = xcp->cp_edx;
2244 	return (cp->cp_eax);
2245 }
2246 
2247 int
2248 cpuid_checkpass(cpu_t *cpu, int pass)
2249 {
2250 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2251 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2252 }
2253 
2254 int
2255 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2256 {
2257 	ASSERT(cpuid_checkpass(cpu, 3));
2258 
2259 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2260 }
2261 
2262 int
2263 cpuid_is_cmt(cpu_t *cpu)
2264 {
2265 	if (cpu == NULL)
2266 		cpu = CPU;
2267 
2268 	ASSERT(cpuid_checkpass(cpu, 1));
2269 
2270 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2271 }
2272 
2273 /*
2274  * AMD and Intel both implement the 64-bit variant of the syscall
2275  * instruction (syscallq), so if there's -any- support for syscall,
2276  * cpuid currently says "yes, we support this".
2277  *
2278  * However, Intel decided to -not- implement the 32-bit variant of the
2279  * syscall instruction, so we provide a predicate to allow our caller
2280  * to test that subtlety here.
2281  *
2282  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2283  *	even in the case where the hardware would in fact support it.
2284  */
2285 /*ARGSUSED*/
2286 int
2287 cpuid_syscall32_insn(cpu_t *cpu)
2288 {
2289 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2290 
2291 #if !defined(__xpv)
2292 	if (cpu == NULL)
2293 		cpu = CPU;
2294 
2295 	/*CSTYLED*/
2296 	{
2297 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2298 
2299 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2300 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2301 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2302 			return (1);
2303 	}
2304 #endif
2305 	return (0);
2306 }
2307 
2308 int
2309 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2310 {
2311 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2312 
2313 	static const char fmt[] =
2314 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2315 	static const char fmt_ht[] =
2316 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2317 
2318 	ASSERT(cpuid_checkpass(cpu, 1));
2319 
2320 	if (cpuid_is_cmt(cpu))
2321 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2322 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2323 		    cpi->cpi_family, cpi->cpi_model,
2324 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2325 	return (snprintf(s, n, fmt,
2326 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2327 	    cpi->cpi_family, cpi->cpi_model,
2328 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2329 }
2330 
2331 const char *
2332 cpuid_getvendorstr(cpu_t *cpu)
2333 {
2334 	ASSERT(cpuid_checkpass(cpu, 1));
2335 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2336 }
2337 
2338 uint_t
2339 cpuid_getvendor(cpu_t *cpu)
2340 {
2341 	ASSERT(cpuid_checkpass(cpu, 1));
2342 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2343 }
2344 
2345 uint_t
2346 cpuid_getfamily(cpu_t *cpu)
2347 {
2348 	ASSERT(cpuid_checkpass(cpu, 1));
2349 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2350 }
2351 
2352 uint_t
2353 cpuid_getmodel(cpu_t *cpu)
2354 {
2355 	ASSERT(cpuid_checkpass(cpu, 1));
2356 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2357 }
2358 
2359 uint_t
2360 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2361 {
2362 	ASSERT(cpuid_checkpass(cpu, 1));
2363 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2364 }
2365 
2366 uint_t
2367 cpuid_get_ncore_per_chip(cpu_t *cpu)
2368 {
2369 	ASSERT(cpuid_checkpass(cpu, 1));
2370 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2371 }
2372 
2373 uint_t
2374 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2375 {
2376 	ASSERT(cpuid_checkpass(cpu, 2));
2377 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2378 }
2379 
2380 id_t
2381 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2382 {
2383 	ASSERT(cpuid_checkpass(cpu, 2));
2384 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2385 }
2386 
2387 uint_t
2388 cpuid_getstep(cpu_t *cpu)
2389 {
2390 	ASSERT(cpuid_checkpass(cpu, 1));
2391 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2392 }
2393 
2394 uint_t
2395 cpuid_getsig(struct cpu *cpu)
2396 {
2397 	ASSERT(cpuid_checkpass(cpu, 1));
2398 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2399 }
2400 
2401 uint32_t
2402 cpuid_getchiprev(struct cpu *cpu)
2403 {
2404 	ASSERT(cpuid_checkpass(cpu, 1));
2405 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2406 }
2407 
2408 const char *
2409 cpuid_getchiprevstr(struct cpu *cpu)
2410 {
2411 	ASSERT(cpuid_checkpass(cpu, 1));
2412 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2413 }
2414 
2415 uint32_t
2416 cpuid_getsockettype(struct cpu *cpu)
2417 {
2418 	ASSERT(cpuid_checkpass(cpu, 1));
2419 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2420 }
2421 
2422 int
2423 cpuid_get_chipid(cpu_t *cpu)
2424 {
2425 	ASSERT(cpuid_checkpass(cpu, 1));
2426 
2427 	if (cpuid_is_cmt(cpu))
2428 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2429 	return (cpu->cpu_id);
2430 }
2431 
2432 id_t
2433 cpuid_get_coreid(cpu_t *cpu)
2434 {
2435 	ASSERT(cpuid_checkpass(cpu, 1));
2436 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2437 }
2438 
2439 int
2440 cpuid_get_pkgcoreid(cpu_t *cpu)
2441 {
2442 	ASSERT(cpuid_checkpass(cpu, 1));
2443 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2444 }
2445 
2446 int
2447 cpuid_get_clogid(cpu_t *cpu)
2448 {
2449 	ASSERT(cpuid_checkpass(cpu, 1));
2450 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2451 }
2452 
2453 void
2454 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2455 {
2456 	struct cpuid_info *cpi;
2457 
2458 	if (cpu == NULL)
2459 		cpu = CPU;
2460 	cpi = cpu->cpu_m.mcpu_cpi;
2461 
2462 	ASSERT(cpuid_checkpass(cpu, 1));
2463 
2464 	if (pabits)
2465 		*pabits = cpi->cpi_pabits;
2466 	if (vabits)
2467 		*vabits = cpi->cpi_vabits;
2468 }
2469 
2470 /*
2471  * Returns the number of data TLB entries for a corresponding
2472  * pagesize.  If it can't be computed, or isn't known, the
2473  * routine returns zero.  If you ask about an architecturally
2474  * impossible pagesize, the routine will panic (so that the
2475  * hat implementor knows that things are inconsistent.)
2476  */
2477 uint_t
2478 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2479 {
2480 	struct cpuid_info *cpi;
2481 	uint_t dtlb_nent = 0;
2482 
2483 	if (cpu == NULL)
2484 		cpu = CPU;
2485 	cpi = cpu->cpu_m.mcpu_cpi;
2486 
2487 	ASSERT(cpuid_checkpass(cpu, 1));
2488 
2489 	/*
2490 	 * Check the L2 TLB info
2491 	 */
2492 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2493 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2494 
2495 		switch (pagesize) {
2496 
2497 		case 4 * 1024:
2498 			/*
2499 			 * All zero in the top 16 bits of the register
2500 			 * indicates a unified TLB. Size is in low 16 bits.
2501 			 */
2502 			if ((cp->cp_ebx & 0xffff0000) == 0)
2503 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2504 			else
2505 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2506 			break;
2507 
2508 		case 2 * 1024 * 1024:
2509 			if ((cp->cp_eax & 0xffff0000) == 0)
2510 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2511 			else
2512 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2513 			break;
2514 
2515 		default:
2516 			panic("unknown L2 pagesize");
2517 			/*NOTREACHED*/
2518 		}
2519 	}
2520 
2521 	if (dtlb_nent != 0)
2522 		return (dtlb_nent);
2523 
2524 	/*
2525 	 * No L2 TLB support for this size, try L1.
2526 	 */
2527 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2528 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2529 
2530 		switch (pagesize) {
2531 		case 4 * 1024:
2532 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2533 			break;
2534 		case 2 * 1024 * 1024:
2535 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2536 			break;
2537 		default:
2538 			panic("unknown L1 d-TLB pagesize");
2539 			/*NOTREACHED*/
2540 		}
2541 	}
2542 
2543 	return (dtlb_nent);
2544 }
2545 
2546 /*
2547  * Return 0 if the erratum is not present or not applicable, positive
2548  * if it is, and negative if the status of the erratum is unknown.
2549  *
2550  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2551  * Processors" #25759, Rev 3.57, August 2005
2552  */
2553 int
2554 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2555 {
2556 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2557 	uint_t eax;
2558 
2559 	/*
2560 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2561 	 * a legacy (32-bit) AMD CPU.
2562 	 */
2563 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2564 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2565 	    cpi->cpi_family == 6)
2566 
2567 		return (0);
2568 
2569 	eax = cpi->cpi_std[1].cp_eax;
2570 
2571 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2572 #define	SH_B3(eax) 	(eax == 0xf51)
2573 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2574 
2575 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2576 
2577 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2578 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2579 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2580 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2581 
2582 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2583 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2584 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2585 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2586 
2587 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2588 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2589 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2590 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2591 #define	BH_E4(eax)	(eax == 0x20fb1)
2592 #define	SH_E5(eax)	(eax == 0x20f42)
2593 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2594 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2595 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2596 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2597 			    DH_E6(eax) || JH_E6(eax))
2598 
2599 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2600 #define	DR_B0(eax)	(eax == 0x100f20)
2601 #define	DR_B1(eax)	(eax == 0x100f21)
2602 #define	DR_BA(eax)	(eax == 0x100f2a)
2603 #define	DR_B2(eax)	(eax == 0x100f22)
2604 #define	DR_B3(eax)	(eax == 0x100f23)
2605 #define	RB_C0(eax)	(eax == 0x100f40)
2606 
2607 	switch (erratum) {
2608 	case 1:
2609 		return (cpi->cpi_family < 0x10);
2610 	case 51:	/* what does the asterisk mean? */
2611 		return (B(eax) || SH_C0(eax) || CG(eax));
2612 	case 52:
2613 		return (B(eax));
2614 	case 57:
2615 		return (cpi->cpi_family <= 0x11);
2616 	case 58:
2617 		return (B(eax));
2618 	case 60:
2619 		return (cpi->cpi_family <= 0x11);
2620 	case 61:
2621 	case 62:
2622 	case 63:
2623 	case 64:
2624 	case 65:
2625 	case 66:
2626 	case 68:
2627 	case 69:
2628 	case 70:
2629 	case 71:
2630 		return (B(eax));
2631 	case 72:
2632 		return (SH_B0(eax));
2633 	case 74:
2634 		return (B(eax));
2635 	case 75:
2636 		return (cpi->cpi_family < 0x10);
2637 	case 76:
2638 		return (B(eax));
2639 	case 77:
2640 		return (cpi->cpi_family <= 0x11);
2641 	case 78:
2642 		return (B(eax) || SH_C0(eax));
2643 	case 79:
2644 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2645 	case 80:
2646 	case 81:
2647 	case 82:
2648 		return (B(eax));
2649 	case 83:
2650 		return (B(eax) || SH_C0(eax) || CG(eax));
2651 	case 85:
2652 		return (cpi->cpi_family < 0x10);
2653 	case 86:
2654 		return (SH_C0(eax) || CG(eax));
2655 	case 88:
2656 #if !defined(__amd64)
2657 		return (0);
2658 #else
2659 		return (B(eax) || SH_C0(eax));
2660 #endif
2661 	case 89:
2662 		return (cpi->cpi_family < 0x10);
2663 	case 90:
2664 		return (B(eax) || SH_C0(eax) || CG(eax));
2665 	case 91:
2666 	case 92:
2667 		return (B(eax) || SH_C0(eax));
2668 	case 93:
2669 		return (SH_C0(eax));
2670 	case 94:
2671 		return (B(eax) || SH_C0(eax) || CG(eax));
2672 	case 95:
2673 #if !defined(__amd64)
2674 		return (0);
2675 #else
2676 		return (B(eax) || SH_C0(eax));
2677 #endif
2678 	case 96:
2679 		return (B(eax) || SH_C0(eax) || CG(eax));
2680 	case 97:
2681 	case 98:
2682 		return (SH_C0(eax) || CG(eax));
2683 	case 99:
2684 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2685 	case 100:
2686 		return (B(eax) || SH_C0(eax));
2687 	case 101:
2688 	case 103:
2689 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2690 	case 104:
2691 		return (SH_C0(eax) || CG(eax) || D0(eax));
2692 	case 105:
2693 	case 106:
2694 	case 107:
2695 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2696 	case 108:
2697 		return (DH_CG(eax));
2698 	case 109:
2699 		return (SH_C0(eax) || CG(eax) || D0(eax));
2700 	case 110:
2701 		return (D0(eax) || EX(eax));
2702 	case 111:
2703 		return (CG(eax));
2704 	case 112:
2705 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2706 	case 113:
2707 		return (eax == 0x20fc0);
2708 	case 114:
2709 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2710 	case 115:
2711 		return (SH_E0(eax) || JH_E1(eax));
2712 	case 116:
2713 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2714 	case 117:
2715 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2716 	case 118:
2717 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2718 		    JH_E6(eax));
2719 	case 121:
2720 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2721 	case 122:
2722 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2723 	case 123:
2724 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2725 	case 131:
2726 		return (cpi->cpi_family < 0x10);
2727 	case 6336786:
2728 		/*
2729 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2730 		 * if this is a K8 family or newer processor
2731 		 */
2732 		if (CPI_FAMILY(cpi) == 0xf) {
2733 			struct cpuid_regs regs;
2734 			regs.cp_eax = 0x80000007;
2735 			(void) __cpuid_insn(&regs);
2736 			return (!(regs.cp_edx & 0x100));
2737 		}
2738 		return (0);
2739 	case 6323525:
2740 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2741 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2742 
2743 	case 6671130:
2744 		/*
2745 		 * check for processors (pre-Shanghai) that do not provide
2746 		 * optimal management of 1gb ptes in its tlb.
2747 		 */
2748 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2749 
2750 	case 298:
2751 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2752 		    DR_B2(eax) || RB_C0(eax));
2753 
2754 	default:
2755 		return (-1);
2756 
2757 	}
2758 }
2759 
2760 /*
2761  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2762  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2763  */
2764 int
2765 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2766 {
2767 	struct cpuid_info	*cpi;
2768 	uint_t			osvwid;
2769 	static int		osvwfeature = -1;
2770 	uint64_t		osvwlength;
2771 
2772 
2773 	cpi = cpu->cpu_m.mcpu_cpi;
2774 
2775 	/* confirm OSVW supported */
2776 	if (osvwfeature == -1) {
2777 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2778 	} else {
2779 		/* assert that osvw feature setting is consistent on all cpus */
2780 		ASSERT(osvwfeature ==
2781 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2782 	}
2783 	if (!osvwfeature)
2784 		return (-1);
2785 
2786 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2787 
2788 	switch (erratum) {
2789 	case 298:	/* osvwid is 0 */
2790 		osvwid = 0;
2791 		if (osvwlength <= (uint64_t)osvwid) {
2792 			/* osvwid 0 is unknown */
2793 			return (-1);
2794 		}
2795 
2796 		/*
2797 		 * Check the OSVW STATUS MSR to determine the state
2798 		 * of the erratum where:
2799 		 *   0 - fixed by HW
2800 		 *   1 - BIOS has applied the workaround when BIOS
2801 		 *   workaround is available. (Or for other errata,
2802 		 *   OS workaround is required.)
2803 		 * For a value of 1, caller will confirm that the
2804 		 * erratum 298 workaround has indeed been applied by BIOS.
2805 		 *
2806 		 * A 1 may be set in cpus that have a HW fix
2807 		 * in a mixed cpu system. Regarding erratum 298:
2808 		 *   In a multiprocessor platform, the workaround above
2809 		 *   should be applied to all processors regardless of
2810 		 *   silicon revision when an affected processor is
2811 		 *   present.
2812 		 */
2813 
2814 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2815 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2816 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2817 
2818 	default:
2819 		return (-1);
2820 	}
2821 }
2822 
2823 static const char assoc_str[] = "associativity";
2824 static const char line_str[] = "line-size";
2825 static const char size_str[] = "size";
2826 
2827 static void
2828 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2829     uint32_t val)
2830 {
2831 	char buf[128];
2832 
2833 	/*
2834 	 * ndi_prop_update_int() is used because it is desirable for
2835 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2836 	 */
2837 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2838 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2839 }
2840 
2841 /*
2842  * Intel-style cache/tlb description
2843  *
2844  * Standard cpuid level 2 gives a randomly ordered
2845  * selection of tags that index into a table that describes
2846  * cache and tlb properties.
2847  */
2848 
2849 static const char l1_icache_str[] = "l1-icache";
2850 static const char l1_dcache_str[] = "l1-dcache";
2851 static const char l2_cache_str[] = "l2-cache";
2852 static const char l3_cache_str[] = "l3-cache";
2853 static const char itlb4k_str[] = "itlb-4K";
2854 static const char dtlb4k_str[] = "dtlb-4K";
2855 static const char itlb2M_str[] = "itlb-2M";
2856 static const char itlb4M_str[] = "itlb-4M";
2857 static const char dtlb4M_str[] = "dtlb-4M";
2858 static const char dtlb24_str[] = "dtlb0-2M-4M";
2859 static const char itlb424_str[] = "itlb-4K-2M-4M";
2860 static const char itlb24_str[] = "itlb-2M-4M";
2861 static const char dtlb44_str[] = "dtlb-4K-4M";
2862 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2863 static const char sl2_cache_str[] = "sectored-l2-cache";
2864 static const char itrace_str[] = "itrace-cache";
2865 static const char sl3_cache_str[] = "sectored-l3-cache";
2866 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2867 
2868 static const struct cachetab {
2869 	uint8_t 	ct_code;
2870 	uint8_t		ct_assoc;
2871 	uint16_t 	ct_line_size;
2872 	size_t		ct_size;
2873 	const char	*ct_label;
2874 } intel_ctab[] = {
2875 	/*
2876 	 * maintain descending order!
2877 	 *
2878 	 * Codes ignored - Reason
2879 	 * ----------------------
2880 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
2881 	 * f0H/f1H - Currently we do not interpret prefetch size by design
2882 	 */
2883 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
2884 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
2885 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
2886 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
2887 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
2888 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
2889 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
2890 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
2891 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
2892 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
2893 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
2894 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
2895 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
2896 	{ 0xc0, 4, 0, 8, dtlb44_str },
2897 	{ 0xba, 4, 0, 64, dtlb4k_str },
2898 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2899 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2900 	{ 0xb2, 4, 0, 64, itlb4k_str },
2901 	{ 0xb0, 4, 0, 128, itlb4k_str },
2902 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2903 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2904 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2905 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2906 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2907 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2908 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
2909 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2910 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2911 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2912 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2913 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2914 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2915 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2916 	{ 0x73, 8, 0, 64*1024, itrace_str},
2917 	{ 0x72, 8, 0, 32*1024, itrace_str},
2918 	{ 0x71, 8, 0, 16*1024, itrace_str},
2919 	{ 0x70, 8, 0, 12*1024, itrace_str},
2920 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2921 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2922 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2923 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2924 	{ 0x5d, 0, 0, 256, dtlb44_str},
2925 	{ 0x5c, 0, 0, 128, dtlb44_str},
2926 	{ 0x5b, 0, 0, 64, dtlb44_str},
2927 	{ 0x5a, 4, 0, 32, dtlb24_str},
2928 	{ 0x59, 0, 0, 16, dtlb4k_str},
2929 	{ 0x57, 4, 0, 16, dtlb4k_str},
2930 	{ 0x56, 4, 0, 16, dtlb4M_str},
2931 	{ 0x55, 0, 0, 7, itlb24_str},
2932 	{ 0x52, 0, 0, 256, itlb424_str},
2933 	{ 0x51, 0, 0, 128, itlb424_str},
2934 	{ 0x50, 0, 0, 64, itlb424_str},
2935 	{ 0x4f, 0, 0, 32, itlb4k_str},
2936 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
2937 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2938 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2939 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2940 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2941 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2942 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
2943 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2944 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2945 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2946 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2947 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2948 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2949 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2950 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2951 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2952 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2953 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2954 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2955 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2956 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2957 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2958 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2959 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2960 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2961 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2962 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
2963 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
2964 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2965 	{ 0x0b, 4, 0, 4, itlb4M_str},
2966 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2967 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2968 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2969 	{ 0x05, 4, 0, 32, dtlb4M_str},
2970 	{ 0x04, 4, 0, 8, dtlb4M_str},
2971 	{ 0x03, 4, 0, 64, dtlb4k_str},
2972 	{ 0x02, 4, 0, 2, itlb4M_str},
2973 	{ 0x01, 4, 0, 32, itlb4k_str},
2974 	{ 0 }
2975 };
2976 
2977 static const struct cachetab cyrix_ctab[] = {
2978 	{ 0x70, 4, 0, 32, "tlb-4K" },
2979 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2980 	{ 0 }
2981 };
2982 
2983 /*
2984  * Search a cache table for a matching entry
2985  */
2986 static const struct cachetab *
2987 find_cacheent(const struct cachetab *ct, uint_t code)
2988 {
2989 	if (code != 0) {
2990 		for (; ct->ct_code != 0; ct++)
2991 			if (ct->ct_code <= code)
2992 				break;
2993 		if (ct->ct_code == code)
2994 			return (ct);
2995 	}
2996 	return (NULL);
2997 }
2998 
2999 /*
3000  * Populate cachetab entry with L2 or L3 cache-information using
3001  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3002  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3003  * information is found.
3004  */
3005 static int
3006 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3007 {
3008 	uint32_t level, i;
3009 	int ret = 0;
3010 
3011 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3012 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3013 
3014 		if (level == 2 || level == 3) {
3015 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3016 			ct->ct_line_size =
3017 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3018 			ct->ct_size = ct->ct_assoc *
3019 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3020 			    ct->ct_line_size *
3021 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3022 
3023 			if (level == 2) {
3024 				ct->ct_label = l2_cache_str;
3025 			} else if (level == 3) {
3026 				ct->ct_label = l3_cache_str;
3027 			}
3028 			ret = 1;
3029 		}
3030 	}
3031 
3032 	return (ret);
3033 }
3034 
3035 /*
3036  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3037  * The walk is terminated if the walker returns non-zero.
3038  */
3039 static void
3040 intel_walk_cacheinfo(struct cpuid_info *cpi,
3041     void *arg, int (*func)(void *, const struct cachetab *))
3042 {
3043 	const struct cachetab *ct;
3044 	struct cachetab des_49_ct, des_b1_ct;
3045 	uint8_t *dp;
3046 	int i;
3047 
3048 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3049 		return;
3050 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3051 		/*
3052 		 * For overloaded descriptor 0x49 we use cpuid function 4
3053 		 * if supported by the current processor, to create
3054 		 * cache information.
3055 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3056 		 * to disambiguate the cache information.
3057 		 */
3058 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3059 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3060 				ct = &des_49_ct;
3061 		} else if (*dp == 0xb1) {
3062 			des_b1_ct.ct_code = 0xb1;
3063 			des_b1_ct.ct_assoc = 4;
3064 			des_b1_ct.ct_line_size = 0;
3065 			if (x86_feature & X86_PAE) {
3066 				des_b1_ct.ct_size = 8;
3067 				des_b1_ct.ct_label = itlb2M_str;
3068 			} else {
3069 				des_b1_ct.ct_size = 4;
3070 				des_b1_ct.ct_label = itlb4M_str;
3071 			}
3072 			ct = &des_b1_ct;
3073 		} else {
3074 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3075 				continue;
3076 			}
3077 		}
3078 
3079 		if (func(arg, ct) != 0) {
3080 			break;
3081 		}
3082 	}
3083 }
3084 
3085 /*
3086  * (Like the Intel one, except for Cyrix CPUs)
3087  */
3088 static void
3089 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3090     void *arg, int (*func)(void *, const struct cachetab *))
3091 {
3092 	const struct cachetab *ct;
3093 	uint8_t *dp;
3094 	int i;
3095 
3096 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3097 		return;
3098 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3099 		/*
3100 		 * Search Cyrix-specific descriptor table first ..
3101 		 */
3102 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3103 			if (func(arg, ct) != 0)
3104 				break;
3105 			continue;
3106 		}
3107 		/*
3108 		 * .. else fall back to the Intel one
3109 		 */
3110 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3111 			if (func(arg, ct) != 0)
3112 				break;
3113 			continue;
3114 		}
3115 	}
3116 }
3117 
3118 /*
3119  * A cacheinfo walker that adds associativity, line-size, and size properties
3120  * to the devinfo node it is passed as an argument.
3121  */
3122 static int
3123 add_cacheent_props(void *arg, const struct cachetab *ct)
3124 {
3125 	dev_info_t *devi = arg;
3126 
3127 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3128 	if (ct->ct_line_size != 0)
3129 		add_cache_prop(devi, ct->ct_label, line_str,
3130 		    ct->ct_line_size);
3131 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3132 	return (0);
3133 }
3134 
3135 
3136 static const char fully_assoc[] = "fully-associative?";
3137 
3138 /*
3139  * AMD style cache/tlb description
3140  *
3141  * Extended functions 5 and 6 directly describe properties of
3142  * tlbs and various cache levels.
3143  */
3144 static void
3145 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3146 {
3147 	switch (assoc) {
3148 	case 0:	/* reserved; ignore */
3149 		break;
3150 	default:
3151 		add_cache_prop(devi, label, assoc_str, assoc);
3152 		break;
3153 	case 0xff:
3154 		add_cache_prop(devi, label, fully_assoc, 1);
3155 		break;
3156 	}
3157 }
3158 
3159 static void
3160 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3161 {
3162 	if (size == 0)
3163 		return;
3164 	add_cache_prop(devi, label, size_str, size);
3165 	add_amd_assoc(devi, label, assoc);
3166 }
3167 
3168 static void
3169 add_amd_cache(dev_info_t *devi, const char *label,
3170     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3171 {
3172 	if (size == 0 || line_size == 0)
3173 		return;
3174 	add_amd_assoc(devi, label, assoc);
3175 	/*
3176 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3177 	 * associated with each tag. A sector consists of all cache lines
3178 	 * associated with a tag. For example, the AMD K6-III has a sector
3179 	 * size of 2 cache lines per tag.
3180 	 */
3181 	if (lines_per_tag != 0)
3182 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3183 	add_cache_prop(devi, label, line_str, line_size);
3184 	add_cache_prop(devi, label, size_str, size * 1024);
3185 }
3186 
3187 static void
3188 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3189 {
3190 	switch (assoc) {
3191 	case 0:	/* off */
3192 		break;
3193 	case 1:
3194 	case 2:
3195 	case 4:
3196 		add_cache_prop(devi, label, assoc_str, assoc);
3197 		break;
3198 	case 6:
3199 		add_cache_prop(devi, label, assoc_str, 8);
3200 		break;
3201 	case 8:
3202 		add_cache_prop(devi, label, assoc_str, 16);
3203 		break;
3204 	case 0xf:
3205 		add_cache_prop(devi, label, fully_assoc, 1);
3206 		break;
3207 	default: /* reserved; ignore */
3208 		break;
3209 	}
3210 }
3211 
3212 static void
3213 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3214 {
3215 	if (size == 0 || assoc == 0)
3216 		return;
3217 	add_amd_l2_assoc(devi, label, assoc);
3218 	add_cache_prop(devi, label, size_str, size);
3219 }
3220 
3221 static void
3222 add_amd_l2_cache(dev_info_t *devi, const char *label,
3223     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3224 {
3225 	if (size == 0 || assoc == 0 || line_size == 0)
3226 		return;
3227 	add_amd_l2_assoc(devi, label, assoc);
3228 	if (lines_per_tag != 0)
3229 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3230 	add_cache_prop(devi, label, line_str, line_size);
3231 	add_cache_prop(devi, label, size_str, size * 1024);
3232 }
3233 
3234 static void
3235 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3236 {
3237 	struct cpuid_regs *cp;
3238 
3239 	if (cpi->cpi_xmaxeax < 0x80000005)
3240 		return;
3241 	cp = &cpi->cpi_extd[5];
3242 
3243 	/*
3244 	 * 4M/2M L1 TLB configuration
3245 	 *
3246 	 * We report the size for 2M pages because AMD uses two
3247 	 * TLB entries for one 4M page.
3248 	 */
3249 	add_amd_tlb(devi, "dtlb-2M",
3250 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3251 	add_amd_tlb(devi, "itlb-2M",
3252 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3253 
3254 	/*
3255 	 * 4K L1 TLB configuration
3256 	 */
3257 
3258 	switch (cpi->cpi_vendor) {
3259 		uint_t nentries;
3260 	case X86_VENDOR_TM:
3261 		if (cpi->cpi_family >= 5) {
3262 			/*
3263 			 * Crusoe processors have 256 TLB entries, but
3264 			 * cpuid data format constrains them to only
3265 			 * reporting 255 of them.
3266 			 */
3267 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3268 				nentries = 256;
3269 			/*
3270 			 * Crusoe processors also have a unified TLB
3271 			 */
3272 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3273 			    nentries);
3274 			break;
3275 		}
3276 		/*FALLTHROUGH*/
3277 	default:
3278 		add_amd_tlb(devi, itlb4k_str,
3279 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3280 		add_amd_tlb(devi, dtlb4k_str,
3281 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3282 		break;
3283 	}
3284 
3285 	/*
3286 	 * data L1 cache configuration
3287 	 */
3288 
3289 	add_amd_cache(devi, l1_dcache_str,
3290 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3291 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3292 
3293 	/*
3294 	 * code L1 cache configuration
3295 	 */
3296 
3297 	add_amd_cache(devi, l1_icache_str,
3298 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3299 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3300 
3301 	if (cpi->cpi_xmaxeax < 0x80000006)
3302 		return;
3303 	cp = &cpi->cpi_extd[6];
3304 
3305 	/* Check for a unified L2 TLB for large pages */
3306 
3307 	if (BITX(cp->cp_eax, 31, 16) == 0)
3308 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3309 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3310 	else {
3311 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3312 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3313 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3314 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3315 	}
3316 
3317 	/* Check for a unified L2 TLB for 4K pages */
3318 
3319 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3320 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3321 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3322 	} else {
3323 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3324 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3325 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3326 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3327 	}
3328 
3329 	add_amd_l2_cache(devi, l2_cache_str,
3330 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3331 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3332 }
3333 
3334 /*
3335  * There are two basic ways that the x86 world describes it cache
3336  * and tlb architecture - Intel's way and AMD's way.
3337  *
3338  * Return which flavor of cache architecture we should use
3339  */
3340 static int
3341 x86_which_cacheinfo(struct cpuid_info *cpi)
3342 {
3343 	switch (cpi->cpi_vendor) {
3344 	case X86_VENDOR_Intel:
3345 		if (cpi->cpi_maxeax >= 2)
3346 			return (X86_VENDOR_Intel);
3347 		break;
3348 	case X86_VENDOR_AMD:
3349 		/*
3350 		 * The K5 model 1 was the first part from AMD that reported
3351 		 * cache sizes via extended cpuid functions.
3352 		 */
3353 		if (cpi->cpi_family > 5 ||
3354 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3355 			return (X86_VENDOR_AMD);
3356 		break;
3357 	case X86_VENDOR_TM:
3358 		if (cpi->cpi_family >= 5)
3359 			return (X86_VENDOR_AMD);
3360 		/*FALLTHROUGH*/
3361 	default:
3362 		/*
3363 		 * If they have extended CPU data for 0x80000005
3364 		 * then we assume they have AMD-format cache
3365 		 * information.
3366 		 *
3367 		 * If not, and the vendor happens to be Cyrix,
3368 		 * then try our-Cyrix specific handler.
3369 		 *
3370 		 * If we're not Cyrix, then assume we're using Intel's
3371 		 * table-driven format instead.
3372 		 */
3373 		if (cpi->cpi_xmaxeax >= 0x80000005)
3374 			return (X86_VENDOR_AMD);
3375 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3376 			return (X86_VENDOR_Cyrix);
3377 		else if (cpi->cpi_maxeax >= 2)
3378 			return (X86_VENDOR_Intel);
3379 		break;
3380 	}
3381 	return (-1);
3382 }
3383 
3384 /*
3385  * create a node for the given cpu under the prom root node.
3386  * Also, create a cpu node in the device tree.
3387  */
3388 static dev_info_t *cpu_nex_devi = NULL;
3389 static kmutex_t cpu_node_lock;
3390 
3391 /*
3392  * Called from post_startup() and mp_startup()
3393  */
3394 void
3395 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3396 {
3397 	dev_info_t *cpu_devi;
3398 	int create;
3399 
3400 	mutex_enter(&cpu_node_lock);
3401 
3402 	/*
3403 	 * create a nexus node for all cpus identified as 'cpu_id' under
3404 	 * the root node.
3405 	 */
3406 	if (cpu_nex_devi == NULL) {
3407 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3408 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3409 			mutex_exit(&cpu_node_lock);
3410 			return;
3411 		}
3412 		(void) ndi_devi_online(cpu_nex_devi, 0);
3413 	}
3414 
3415 	/*
3416 	 * create a child node for cpu identified as 'cpu_id'
3417 	 */
3418 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3419 	    cpu_id);
3420 	if (cpu_devi == NULL) {
3421 		mutex_exit(&cpu_node_lock);
3422 		return;
3423 	}
3424 
3425 	/* device_type */
3426 
3427 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3428 	    "device_type", "cpu");
3429 
3430 	/* reg */
3431 
3432 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3433 	    "reg", cpu_id);
3434 
3435 	/* cpu-mhz, and clock-frequency */
3436 
3437 	if (cpu_freq > 0) {
3438 		long long mul;
3439 
3440 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3441 		    "cpu-mhz", cpu_freq);
3442 
3443 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3444 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3445 			    "clock-frequency", (int)mul);
3446 	}
3447 
3448 	(void) ndi_devi_online(cpu_devi, 0);
3449 
3450 	if ((x86_feature & X86_CPUID) == 0) {
3451 		mutex_exit(&cpu_node_lock);
3452 		return;
3453 	}
3454 
3455 	/* vendor-id */
3456 
3457 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3458 	    "vendor-id", cpi->cpi_vendorstr);
3459 
3460 	if (cpi->cpi_maxeax == 0) {
3461 		mutex_exit(&cpu_node_lock);
3462 		return;
3463 	}
3464 
3465 	/*
3466 	 * family, model, and step
3467 	 */
3468 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3469 	    "family", CPI_FAMILY(cpi));
3470 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3471 	    "cpu-model", CPI_MODEL(cpi));
3472 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3473 	    "stepping-id", CPI_STEP(cpi));
3474 
3475 	/* type */
3476 
3477 	switch (cpi->cpi_vendor) {
3478 	case X86_VENDOR_Intel:
3479 		create = 1;
3480 		break;
3481 	default:
3482 		create = 0;
3483 		break;
3484 	}
3485 	if (create)
3486 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3487 		    "type", CPI_TYPE(cpi));
3488 
3489 	/* ext-family */
3490 
3491 	switch (cpi->cpi_vendor) {
3492 	case X86_VENDOR_Intel:
3493 	case X86_VENDOR_AMD:
3494 		create = cpi->cpi_family >= 0xf;
3495 		break;
3496 	default:
3497 		create = 0;
3498 		break;
3499 	}
3500 	if (create)
3501 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3502 		    "ext-family", CPI_FAMILY_XTD(cpi));
3503 
3504 	/* ext-model */
3505 
3506 	switch (cpi->cpi_vendor) {
3507 	case X86_VENDOR_Intel:
3508 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3509 		break;
3510 	case X86_VENDOR_AMD:
3511 		create = CPI_FAMILY(cpi) == 0xf;
3512 		break;
3513 	default:
3514 		create = 0;
3515 		break;
3516 	}
3517 	if (create)
3518 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3519 		    "ext-model", CPI_MODEL_XTD(cpi));
3520 
3521 	/* generation */
3522 
3523 	switch (cpi->cpi_vendor) {
3524 	case X86_VENDOR_AMD:
3525 		/*
3526 		 * AMD K5 model 1 was the first part to support this
3527 		 */
3528 		create = cpi->cpi_xmaxeax >= 0x80000001;
3529 		break;
3530 	default:
3531 		create = 0;
3532 		break;
3533 	}
3534 	if (create)
3535 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3536 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3537 
3538 	/* brand-id */
3539 
3540 	switch (cpi->cpi_vendor) {
3541 	case X86_VENDOR_Intel:
3542 		/*
3543 		 * brand id first appeared on Pentium III Xeon model 8,
3544 		 * and Celeron model 8 processors and Opteron
3545 		 */
3546 		create = cpi->cpi_family > 6 ||
3547 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3548 		break;
3549 	case X86_VENDOR_AMD:
3550 		create = cpi->cpi_family >= 0xf;
3551 		break;
3552 	default:
3553 		create = 0;
3554 		break;
3555 	}
3556 	if (create && cpi->cpi_brandid != 0) {
3557 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3558 		    "brand-id", cpi->cpi_brandid);
3559 	}
3560 
3561 	/* chunks, and apic-id */
3562 
3563 	switch (cpi->cpi_vendor) {
3564 		/*
3565 		 * first available on Pentium IV and Opteron (K8)
3566 		 */
3567 	case X86_VENDOR_Intel:
3568 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3569 		break;
3570 	case X86_VENDOR_AMD:
3571 		create = cpi->cpi_family >= 0xf;
3572 		break;
3573 	default:
3574 		create = 0;
3575 		break;
3576 	}
3577 	if (create) {
3578 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3579 		    "chunks", CPI_CHUNKS(cpi));
3580 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3581 		    "apic-id", cpi->cpi_apicid);
3582 		if (cpi->cpi_chipid >= 0) {
3583 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3584 			    "chip#", cpi->cpi_chipid);
3585 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3586 			    "clog#", cpi->cpi_clogid);
3587 		}
3588 	}
3589 
3590 	/* cpuid-features */
3591 
3592 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3593 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3594 
3595 
3596 	/* cpuid-features-ecx */
3597 
3598 	switch (cpi->cpi_vendor) {
3599 	case X86_VENDOR_Intel:
3600 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3601 		break;
3602 	default:
3603 		create = 0;
3604 		break;
3605 	}
3606 	if (create)
3607 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3608 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3609 
3610 	/* ext-cpuid-features */
3611 
3612 	switch (cpi->cpi_vendor) {
3613 	case X86_VENDOR_Intel:
3614 	case X86_VENDOR_AMD:
3615 	case X86_VENDOR_Cyrix:
3616 	case X86_VENDOR_TM:
3617 	case X86_VENDOR_Centaur:
3618 		create = cpi->cpi_xmaxeax >= 0x80000001;
3619 		break;
3620 	default:
3621 		create = 0;
3622 		break;
3623 	}
3624 	if (create) {
3625 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3626 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3627 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3628 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3629 	}
3630 
3631 	/*
3632 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3633 	 * model 1, and Cyrix GXm.  On earlier models we try and
3634 	 * simulate something similar .. so this string should always
3635 	 * same -something- about the processor, however lame.
3636 	 */
3637 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3638 	    "brand-string", cpi->cpi_brandstr);
3639 
3640 	/*
3641 	 * Finally, cache and tlb information
3642 	 */
3643 	switch (x86_which_cacheinfo(cpi)) {
3644 	case X86_VENDOR_Intel:
3645 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3646 		break;
3647 	case X86_VENDOR_Cyrix:
3648 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3649 		break;
3650 	case X86_VENDOR_AMD:
3651 		amd_cache_info(cpi, cpu_devi);
3652 		break;
3653 	default:
3654 		break;
3655 	}
3656 
3657 	mutex_exit(&cpu_node_lock);
3658 }
3659 
3660 struct l2info {
3661 	int *l2i_csz;
3662 	int *l2i_lsz;
3663 	int *l2i_assoc;
3664 	int l2i_ret;
3665 };
3666 
3667 /*
3668  * A cacheinfo walker that fetches the size, line-size and associativity
3669  * of the L2 cache
3670  */
3671 static int
3672 intel_l2cinfo(void *arg, const struct cachetab *ct)
3673 {
3674 	struct l2info *l2i = arg;
3675 	int *ip;
3676 
3677 	if (ct->ct_label != l2_cache_str &&
3678 	    ct->ct_label != sl2_cache_str)
3679 		return (0);	/* not an L2 -- keep walking */
3680 
3681 	if ((ip = l2i->l2i_csz) != NULL)
3682 		*ip = ct->ct_size;
3683 	if ((ip = l2i->l2i_lsz) != NULL)
3684 		*ip = ct->ct_line_size;
3685 	if ((ip = l2i->l2i_assoc) != NULL)
3686 		*ip = ct->ct_assoc;
3687 	l2i->l2i_ret = ct->ct_size;
3688 	return (1);		/* was an L2 -- terminate walk */
3689 }
3690 
3691 /*
3692  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3693  *
3694  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3695  *	value is the associativity, the associativity for the L2 cache and
3696  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3697  *	an index into the amd_afd[] array to determine the associativity.
3698  *	-1 is undefined. 0 is fully associative.
3699  */
3700 
3701 static int amd_afd[] =
3702 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3703 
3704 static void
3705 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3706 {
3707 	struct cpuid_regs *cp;
3708 	uint_t size, assoc;
3709 	int i;
3710 	int *ip;
3711 
3712 	if (cpi->cpi_xmaxeax < 0x80000006)
3713 		return;
3714 	cp = &cpi->cpi_extd[6];
3715 
3716 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3717 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3718 		uint_t cachesz = size * 1024;
3719 		assoc = amd_afd[i];
3720 
3721 		ASSERT(assoc != -1);
3722 
3723 		if ((ip = l2i->l2i_csz) != NULL)
3724 			*ip = cachesz;
3725 		if ((ip = l2i->l2i_lsz) != NULL)
3726 			*ip = BITX(cp->cp_ecx, 7, 0);
3727 		if ((ip = l2i->l2i_assoc) != NULL)
3728 			*ip = assoc;
3729 		l2i->l2i_ret = cachesz;
3730 	}
3731 }
3732 
3733 int
3734 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3735 {
3736 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3737 	struct l2info __l2info, *l2i = &__l2info;
3738 
3739 	l2i->l2i_csz = csz;
3740 	l2i->l2i_lsz = lsz;
3741 	l2i->l2i_assoc = assoc;
3742 	l2i->l2i_ret = -1;
3743 
3744 	switch (x86_which_cacheinfo(cpi)) {
3745 	case X86_VENDOR_Intel:
3746 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3747 		break;
3748 	case X86_VENDOR_Cyrix:
3749 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3750 		break;
3751 	case X86_VENDOR_AMD:
3752 		amd_l2cacheinfo(cpi, l2i);
3753 		break;
3754 	default:
3755 		break;
3756 	}
3757 	return (l2i->l2i_ret);
3758 }
3759 
3760 #if !defined(__xpv)
3761 
3762 uint32_t *
3763 cpuid_mwait_alloc(cpu_t *cpu)
3764 {
3765 	uint32_t	*ret;
3766 	size_t		mwait_size;
3767 
3768 	ASSERT(cpuid_checkpass(cpu, 2));
3769 
3770 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3771 	if (mwait_size == 0)
3772 		return (NULL);
3773 
3774 	/*
3775 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3776 	 * allocations.  mwait_size is currently cache line sized.  Neither
3777 	 * of these implementation details are guarantied to be true in the
3778 	 * future.
3779 	 *
3780 	 * First try allocating mwait_size as kmem_alloc() currently returns
3781 	 * correctly aligned memory.  If kmem_alloc() does not return
3782 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3783 	 *
3784 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3785 	 * decide to free this memory.
3786 	 */
3787 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3788 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3789 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3790 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3791 		*ret = MWAIT_RUNNING;
3792 		return (ret);
3793 	} else {
3794 		kmem_free(ret, mwait_size);
3795 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3796 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3797 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3798 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3799 		*ret = MWAIT_RUNNING;
3800 		return (ret);
3801 	}
3802 }
3803 
3804 void
3805 cpuid_mwait_free(cpu_t *cpu)
3806 {
3807 	ASSERT(cpuid_checkpass(cpu, 2));
3808 
3809 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3810 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3811 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3812 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3813 	}
3814 
3815 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3816 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3817 }
3818 
3819 void
3820 patch_tsc_read(int flag)
3821 {
3822 	size_t cnt;
3823 
3824 	switch (flag) {
3825 	case X86_NO_TSC:
3826 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3827 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3828 		break;
3829 	case X86_HAVE_TSCP:
3830 		cnt = &_tscp_end - &_tscp_start;
3831 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3832 		break;
3833 	case X86_TSC_MFENCE:
3834 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3835 		(void) memcpy((void *)tsc_read,
3836 		    (void *)&_tsc_mfence_start, cnt);
3837 		break;
3838 	case X86_TSC_LFENCE:
3839 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3840 		(void) memcpy((void *)tsc_read,
3841 		    (void *)&_tsc_lfence_start, cnt);
3842 		break;
3843 	default:
3844 		break;
3845 	}
3846 }
3847 
3848 #endif	/* !__xpv */
3849