xref: /titanic_51/usr/src/uts/common/os/ndifm.c (revision 00687e57f8c568d4f8fb446b6530a2942842292f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Fault Management for Nexus Device Drivers
30  *
31  * In addition to implementing and supporting Fault Management for Device
32  * Drivers (ddifm.c), nexus drivers must support their children by
33  * reporting FM capabilities, intializing interrupt block cookies
34  * for error handling callbacks and caching mapped resources for lookup
35  * during the detection of an IO transaction error.
36  *
37  * It is typically the nexus driver that receives an error indication
38  * for a fault that may have occurred in the data path of an IO transaction.
39  * Errors may be detected or received via an interrupt, a callback from
40  * another subsystem (e.g. a cpu trap) or examination of control data.
41  *
42  * Upon detection of an error, the nexus has a responsibility to alert
43  * its children of the error and the transaction associated with that
44  * error.  The actual implementation may vary depending upon the capabilities
45  * of the nexus, its underlying hardware and its children.  In this file,
46  * we provide support for typical nexus driver fault management tasks.
47  *
48  * Fault Management Initialization
49  *
50  *      Nexus drivers must implement two new busops, bus_fm_init() and
51  *      bus_fm_fini().  bus_fm_init() is called from a child nexus or device
52  *      driver and is expected to initialize any per-child state and return
53  *      the FM and error interrupt priority levels of the nexus driver.
54  *      Similarly, bus_fm_fini() is called by child drivers and should
55  *      clean-up any resources allocated during bus_fm_init().
56  *      These functions are called from passive kernel context, typically from
57  *      driver attach(9F) and detach(9F) entry points.
58  *
59  * Error Handler Dispatching
60  *
61  *      Nexus drivers implemented to support error handler capabilities
62  *	should invoke registered error handler callbacks for child drivers
63  *	thought to be involved in the error.
64  *	ndi_fm_handler_dispatch() is used to invoke
65  *      all error handlers and returns one of the following status
66  *      indications:
67  *
68  *      DDI_FM_OK - No errors found by any child
69  *      DDI_FM_FATAL - one or more children have detected a fatal error
70  *      DDI_FM_NONFATAL - no fatal errors, but one or more children have
71  *                            detected a non-fatal error
72  *
73  *      ndi_fm_handler_dispatch() may be called in any context
74  *      subject to the constraints specified by the interrupt iblock cookie
75  *      returned during initialization.
76  *
77  * Protected Accesses
78  *
79  *      When an access handle is mapped or a DMA handle is bound via the
80  *      standard busops, bus_map() or bus_dma_bindhdl(), a child driver
81  *      implemented to support DDI_FM_ACCCHK_CAPABLE or
82  *	DDI_FM_DMACHK_CAPABLE capabilites
83  *	expects the nexus to flag any errors detected for transactions
84  *	associated with the mapped or bound handles.
85  *
86  *      Children nexus or device drivers will set the following flags
87  *      in their ddi_device_access or dma_attr_flags when requesting
88  *      the an access or DMA handle mapping:
89  *
90  *      DDI_DMA_FLAGERR - nexus should set error status for any errors
91  *                              detected for a failed DMA transaction.
92  *      DDI_ACC_FLAGERR - nexus should set error status for any errors
93  *                              detected for a failed PIO transaction.
94  *
95  *      A nexus is expected to provide additional error detection and
96  *      handling for handles with these flags set.
97  *
98  * Exclusive Bus Access
99  *
100  *      In cases where a driver requires a high level of fault tolerance
101  *      for a programmed IO transaction, it is neccessary to grant exclusive
102  *      access to the bus resource.  Exclusivity guarantees that a fault
103  *      resulting from a transaction on the bus can be easily traced and
104  *      reported to the driver requesting the transaction.
105  *
106  *      Nexus drivers must implement two new busops to support exclusive
107  *      access, bus_fm_access_enter() and bus_fm_access_exit().  The IO
108  *      framework will use these functions when it must set-up access
109  *      handles that set devacc_attr_access to DDI_ACC_CAUTIOUS in
110  *      their ddi_device_acc_attr_t request.
111  *
112  *      Upon receipt of a bus_fm_access_enter() request, the nexus must prevent
113  *      all other access requests until it receives bus_fm_access_exit()
114  *      for the requested bus instance. bus_fm_access_enter() and
115  *	bus_fm_access_exit() may be called from user, kernel or kernel
116  *	interrupt context.
117  *
118  * Access and DMA Handle Caching
119  *
120  *      To aid a nexus driver in associating access or DMA handles with
121  *      a detected error, the nexus should cache all handles that are
122  *      associated with DDI_ACC_FLAGERR, DDI_ACC_CAUTIOUS_ACC or
123  *	DDI_DMA_FLAGERR requests from its children.  ndi_fmc_insert() is
124  *	called by a nexus to cache handles with the above protection flags
125  *	and ndi_fmc_remove() is called when that handle is unmapped or
126  *	unbound by the requesting child.  ndi_fmc_insert() and
127  *	ndi_fmc_remove() may be called from any user or kernel context.
128  *
129  *	FM caches are allocated during ddi_fm_init() and maintained
130  *	as an array of elements that may be on one of two lists:
131  *	free or active.  The free list is a singly-linked list of
132  *	elements available for activity.  ndi_fm_insert() moves the
133  *	element at the head of the free to the active list.  The active
134  *	list is a doubly-linked searchable list.
135  *	When a handle is unmapped or unbound, its associated cache
136  *	entry is removed from the active list back to the free list.
137  *
138  *      Upon detection of an error, the nexus may invoke ndi_fmc_error() to
139  *      iterate over the handle cache of one or more of its FM compliant
140  *      children.  A comparison callback function is provided upon each
141  *      invocation of ndi_fmc_error() to tell the IO framework if a
142  *      handle is associated with an error.  If so, the framework will
143  *      set the error status for that handle before returning from
144  *      ndi_fmc_error().
145  *
146  *      ndi_fmc_error() may be called in any context
147  *      subject to the constraints specified by the interrupt iblock cookie
148  *      returned during initialization of the nexus and its children.
149  *
150  */
151 
152 #include <sys/types.h>
153 #include <sys/param.h>
154 #include <sys/debug.h>
155 #include <sys/sunddi.h>
156 #include <sys/sunndi.h>
157 #include <sys/ddi.h>
158 #include <sys/ndi_impldefs.h>
159 #include <sys/devctl.h>
160 #include <sys/nvpair.h>
161 #include <sys/ddifm.h>
162 #include <sys/ndifm.h>
163 #include <sys/spl.h>
164 #include <sys/sysmacros.h>
165 #include <sys/devops.h>
166 #include <sys/atomic.h>
167 #include <sys/fm/io/ddi.h>
168 
169 /*
170  * Allocate and initialize a fault management resource cache
171  * A fault management cache consists of a set of cache elements that
172  * may be on one of two lists: free or active.
173  *
174  * At creation time, every element but one is placed on the free list
175  * except for the first element.  This element is reserved as the first
176  * element of the active list and serves as an anchor for the active
177  * list in ndi_fmc_insert() and ndi_fmc_remove().  In these functions,
178  * it is not neccessary to check for the existence or validity of
179  * the active list.
180  */
181 void
182 i_ndi_fmc_create(ndi_fmc_t **fcpp, int qlen, ddi_iblock_cookie_t ibc)
183 {
184 	ndi_fmc_t *fcp;
185 	ndi_fmcentry_t *fep;
186 
187 	ASSERT(qlen > 1);
188 
189 	fcp = kmem_zalloc(sizeof (ndi_fmc_t), KM_SLEEP);
190 	mutex_init(&fcp->fc_lock, NULL, MUTEX_DRIVER, ibc);
191 	mutex_init(&fcp->fc_free_lock, NULL, MUTEX_DRIVER, NULL);
192 
193 	/* Preallocate and initialize entries for this fm cache */
194 	fcp->fc_elems = kmem_zalloc(qlen * sizeof (ndi_fmcentry_t), KM_SLEEP);
195 
196 	fcp->fc_len = qlen;
197 
198 	/* Intialize the active and free lists */
199 	fcp->fc_active = fcp->fc_tail = fcp->fc_elems;
200 	fcp->fc_free = fcp->fc_elems + 1;
201 	qlen--;
202 	for (fep = fcp->fc_free; qlen > 1; qlen--) {
203 		fep->fce_prev = fep + 1;
204 		fep++;
205 	}
206 
207 	*fcpp = fcp;
208 }
209 
210 /*
211  * Destroy and resources associated with the given fault management cache.
212  */
213 void
214 i_ndi_fmc_destroy(ndi_fmc_t *fcp)
215 {
216 	if (fcp == NULL)
217 		return;
218 
219 	kmem_free(fcp->fc_elems, fcp->fc_len * sizeof (ndi_fmcentry_t));
220 	kmem_free(fcp, sizeof (ndi_fmc_t));
221 }
222 
223 /*
224  * Grow an existing fault management cache by grow_sz number of entries
225  */
226 static int
227 fmc_grow(ndi_fmc_t *fcp, int flag, int grow_sz)
228 {
229 	int olen, nlen;
230 	void *resource;
231 	ndi_fmcentry_t *ncp, *oep, *nep, *nnep;
232 
233 	ASSERT(grow_sz);
234 	ASSERT(MUTEX_HELD(&fcp->fc_free_lock));
235 
236 	/* Allocate a new cache */
237 	nlen = grow_sz + fcp->fc_len;
238 	if ((ncp = kmem_zalloc(nlen * sizeof (ndi_fmcentry_t),
239 	    KM_NOSLEEP)) == NULL)
240 		return (1);
241 
242 	/* Migrate old cache to new cache */
243 	oep = fcp->fc_elems;
244 	olen = fcp->fc_len;
245 	for (nep = ncp; ; olen--) {
246 		resource = nep->fce_resource = oep->fce_resource;
247 		nep->fce_bus_specific = oep->fce_bus_specific;
248 		if (resource) {
249 			if (flag == DMA_HANDLE) {
250 				((ddi_dma_impl_t *)resource)->
251 				    dmai_error.err_fep = nep;
252 			} else if (flag == ACC_HANDLE) {
253 				((ddi_acc_impl_t *)resource)->
254 				    ahi_err->err_fep = nep;
255 			}
256 		}
257 
258 		/*
259 		 * This is the last entry.  Set the tail pointer and
260 		 * terminate processing of the old cache.
261 		 */
262 		if (olen == 1) {
263 			fcp->fc_tail = nep;
264 			++nep;
265 			break;
266 		}
267 
268 		/*
269 		 * Set the next and previous pointer for the new cache
270 		 * entry.
271 		 */
272 		nnep = nep + 1;
273 		nep->fce_next = nnep;
274 		nnep->fce_prev = nep;
275 
276 		/* Advance to the next entry */
277 		++oep;
278 		nep = nnep;
279 	}
280 
281 	kmem_free(fcp->fc_elems, fcp->fc_len * sizeof (ndi_fmcentry_t));
282 
283 	/* Initialize and add remaining new cache entries to the free list */
284 	olen = fcp->fc_len + 1;
285 	fcp->fc_len = nlen;
286 	for (fcp->fc_free = nep; nlen > olen; nlen--) {
287 		nep->fce_prev = nep + 1;
288 		nep++;
289 	}
290 
291 	fcp->fc_active = ncp;
292 	fcp->fc_elems = ncp;
293 
294 	return (0);
295 }
296 
297 /*
298  * ndi_fmc_insert -
299  * 	Add a new entry to the specified cache.
300  *
301  * 	This function must be called at or below LOCK_LEVEL
302  */
303 void
304 ndi_fmc_insert(dev_info_t *dip, int flag, void *resource, void *bus_specific)
305 {
306 	struct dev_info *devi = DEVI(dip);
307 	ndi_fmc_t *fcp;
308 	ndi_fmcentry_t *fep, **fpp;
309 	struct i_ddi_fmhdl *fmhdl;
310 
311 	ASSERT(devi);
312 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
313 
314 	fmhdl = devi->devi_fmhdl;
315 	if (fmhdl == NULL) {
316 		i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
317 		return;
318 	}
319 
320 	if (flag == DMA_HANDLE) {
321 		if (!DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap)) {
322 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
323 			    DDI_NOSLEEP);
324 			return;
325 		}
326 		fcp = fmhdl->fh_dma_cache;
327 		fpp = &((ddi_dma_impl_t *)resource)->dmai_error.err_fep;
328 	} else if (flag == ACC_HANDLE) {
329 		if (!DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
330 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
331 			    DDI_NOSLEEP);
332 			return;
333 		}
334 		fcp = fmhdl->fh_acc_cache;
335 		fpp = &((ddi_acc_impl_t *)resource)->ahi_err->err_fep;
336 	}
337 	ASSERT(*fpp == NULL);
338 
339 	mutex_enter(&fcp->fc_free_lock);
340 
341 	/* Get an entry from the free list */
342 	fep = fcp->fc_free;
343 	if (fep == NULL) {
344 		if (fmc_grow(fcp, flag,
345 		    (flag == ACC_HANDLE ? default_acccache_sz :
346 		    default_dmacache_sz)) != 0) {
347 
348 			/* Unable to get an entry or grow this cache */
349 			atomic_add_64(
350 			    &fmhdl->fh_kstat.fek_fmc_full.value.ui64, 1);
351 			mutex_exit(&fcp->fc_free_lock);
352 			return;
353 		}
354 		atomic_add_64(&fmhdl->fh_kstat.fek_fmc_grew.value.ui64, 1);
355 		fep = fcp->fc_free;
356 	}
357 	fcp->fc_free = fep->fce_prev;
358 	mutex_exit(&fcp->fc_free_lock);
359 
360 	/*
361 	 * Set-up the handle resource and bus_specific information.
362 	 * Also remember the pointer back to the cache for quick removal.
363 	 */
364 	fep->fce_bus_specific = bus_specific;
365 	fep->fce_resource = resource;
366 	fep->fce_next = NULL;
367 	*fpp = fep;
368 
369 	/* Add entry to the end of the active list */
370 	mutex_enter(&fcp->fc_lock);
371 	fep->fce_prev = fcp->fc_tail;
372 	fcp->fc_tail->fce_next = fep;
373 	fcp->fc_tail = fep;
374 	mutex_exit(&fcp->fc_lock);
375 }
376 
377 /*
378  * 	Remove an entry from the specified cache of access or dma mappings
379  *
380  * 	This function must be called at or below LOCK_LEVEL.
381  */
382 void
383 ndi_fmc_remove(dev_info_t *dip, int flag, const void *resource)
384 {
385 	ndi_fmc_t *fcp;
386 	ndi_fmcentry_t *fep;
387 	struct dev_info *devi = DEVI(dip);
388 	struct i_ddi_fmhdl *fmhdl;
389 
390 	ASSERT(devi);
391 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
392 
393 	fmhdl = devi->devi_fmhdl;
394 	if (fmhdl == NULL) {
395 		i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
396 		return;
397 	}
398 
399 	/* Find cache entry pointer for this resource */
400 	if (flag == DMA_HANDLE) {
401 		if (!DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap)) {
402 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
403 			    DDI_NOSLEEP);
404 			return;
405 		}
406 		fcp = fmhdl->fh_dma_cache;
407 
408 		ASSERT(fcp);
409 
410 		fep = ((ddi_dma_impl_t *)resource)->dmai_error.err_fep;
411 		((ddi_dma_impl_t *)resource)->dmai_error.err_fep = NULL;
412 	} else if (flag == ACC_HANDLE) {
413 		if (!DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
414 			i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL,
415 			    DDI_NOSLEEP);
416 			return;
417 		}
418 		fcp = fmhdl->fh_acc_cache;
419 
420 		ASSERT(fcp);
421 
422 		fep = ((ddi_acc_impl_t *)resource)->ahi_err->err_fep;
423 		((ddi_acc_impl_t *)resource)->ahi_err->err_fep = NULL;
424 	}
425 
426 	/*
427 	 * Resource not in cache, return
428 	 */
429 	if (fep == NULL)
430 		return;
431 
432 	mutex_enter(&fcp->fc_lock);
433 	fep->fce_prev->fce_next = fep->fce_next;
434 	if (fep == fcp->fc_tail)
435 		fcp->fc_tail = fep->fce_prev;
436 	else
437 		fep->fce_next->fce_prev = fep->fce_prev;
438 	mutex_exit(&fcp->fc_lock);
439 
440 	/* Add entry back to the free list */
441 	mutex_enter(&fcp->fc_free_lock);
442 	fep->fce_prev = fcp->fc_free;
443 	fcp->fc_free = fep;
444 	mutex_exit(&fcp->fc_free_lock);
445 }
446 
447 int
448 ndi_fmc_entry_error(dev_info_t *dip, int flag, ddi_fm_error_t *derr,
449     const void *bus_err_state)
450 {
451 	int status, fatal = 0, nonfatal = 0;
452 	ndi_fmc_t *fcp = NULL;
453 	ndi_fmcentry_t *fep;
454 	struct i_ddi_fmhdl *fmhdl;
455 
456 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
457 
458 	fmhdl = DEVI(dip)->devi_fmhdl;
459 	ASSERT(fmhdl);
460 	status = DDI_FM_UNKNOWN;
461 
462 	if (flag == DMA_HANDLE && DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap)) {
463 		fcp = fmhdl->fh_dma_cache;
464 		ASSERT(fcp);
465 	} else if (flag == ACC_HANDLE && DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
466 		fcp = fmhdl->fh_acc_cache;
467 		ASSERT(fcp);
468 	}
469 
470 	if (fcp != NULL) {
471 
472 		/*
473 		 * Check active resource entries
474 		 */
475 		mutex_enter(&fcp->fc_lock);
476 		for (fep = fcp->fc_active->fce_next; fep != NULL;
477 		    fep = fep->fce_next) {
478 			ddi_fmcompare_t compare_func;
479 
480 			/*
481 			 * Compare captured error state with handle
482 			 * resources.  During the comparison and
483 			 * subsequent error handling, we block
484 			 * attempts to free the cache entry.
485 			 */
486 			compare_func = (flag == ACC_HANDLE) ?
487 			    i_ddi_fm_acc_err_cf_get((ddi_acc_handle_t)
488 				fep->fce_resource) :
489 			    i_ddi_fm_dma_err_cf_get((ddi_dma_handle_t)
490 				fep->fce_resource);
491 
492 			status = compare_func(dip, fep->fce_resource,
493 			    bus_err_state, fep->fce_bus_specific);
494 			if (status == DDI_FM_UNKNOWN || status == DDI_FM_OK)
495 				continue;
496 
497 			if (status == DDI_FM_FATAL)
498 				++fatal;
499 			else if (status == DDI_FM_NONFATAL)
500 				++nonfatal;
501 
502 			/* Set the error for this resource handle */
503 			if (flag == ACC_HANDLE) {
504 				ddi_acc_handle_t ap = fep->fce_resource;
505 
506 				i_ddi_fm_acc_err_set(ap, derr->fme_ena, status,
507 				    DDI_FM_ERR_UNEXPECTED);
508 				ddi_fm_acc_err_get(ap, derr, DDI_FME_VERSION);
509 				derr->fme_acc_handle = ap;
510 			} else {
511 				ddi_dma_handle_t dp = fep->fce_resource;
512 
513 				i_ddi_fm_dma_err_set(dp, derr->fme_ena, status,
514 				    DDI_FM_ERR_UNEXPECTED);
515 				ddi_fm_dma_err_get(dp, derr, DDI_FME_VERSION);
516 				derr->fme_dma_handle = dp;
517 			}
518 			break;
519 		}
520 		mutex_exit(&fcp->fc_lock);
521 	}
522 	return (fatal ? DDI_FM_FATAL : nonfatal ? DDI_FM_NONFATAL :
523 	    DDI_FM_UNKNOWN);
524 }
525 
526 /*
527  * Check error state against the handle resource stored in the specified
528  * FM cache.  If tdip != NULL, we check only the cache entries for tdip.
529  * The caller must ensure that tdip is valid throughout the call and
530  * all FM data structures can be safely accesses.
531  *
532  * If tdip == NULL, we check all children that have registered their
533  * FM_DMA_CHK or FM_ACC_CHK capabilities.
534  *
535  * The following status values may be returned:
536  *
537  *	DDI_FM_FATAL - if at least one cache entry comparison yields a
538  *			fatal error.
539  *
540  *	DDI_FM_NONFATAL - if at least one cache entry comparison yields a
541  *			non-fatal error and no comparison yields a fatal error.
542  *
543  *	DDI_FM_UNKNOWN - cache entry comparisons did not yield fatal or
544  *			non-fatal errors.
545  *
546  */
547 int
548 ndi_fmc_error(dev_info_t *dip, dev_info_t *tdip, int flag, uint64_t ena,
549     const void *bus_err_state)
550 {
551 	int status, fatal = 0, nonfatal = 0;
552 	ddi_fm_error_t derr;
553 	struct i_ddi_fmhdl *fmhdl;
554 	struct i_ddi_fmtgt *tgt;
555 
556 	ASSERT(flag == DMA_HANDLE || flag == ACC_HANDLE);
557 
558 	i_ddi_fm_handler_enter(dip);
559 	fmhdl = DEVI(dip)->devi_fmhdl;
560 	ASSERT(fmhdl);
561 
562 	bzero(&derr, sizeof (ddi_fm_error_t));
563 	derr.fme_version = DDI_FME_VERSION;
564 	derr.fme_flag = DDI_FM_ERR_UNEXPECTED;
565 	derr.fme_ena = ena;
566 
567 	for (tgt = fmhdl->fh_tgts; tgt != NULL; tgt = tgt->ft_next) {
568 
569 		if (tdip != NULL && tdip != tgt->ft_dip)
570 			continue;
571 
572 		/*
573 		 * Attempt to find the entry in this childs handle cache
574 		 */
575 		status = ndi_fmc_entry_error(tgt->ft_dip, flag, &derr,
576 		    bus_err_state);
577 
578 		if (status == DDI_FM_FATAL)
579 			++fatal;
580 		else if (status == DDI_FM_NONFATAL)
581 			++nonfatal;
582 		else
583 			continue;
584 
585 		/*
586 		 * Call our child to process this error.
587 		 */
588 		status = tgt->ft_errhdl->eh_func(tgt->ft_dip, &derr,
589 		    tgt->ft_errhdl->eh_impl);
590 
591 		if (status == DDI_FM_FATAL)
592 			++fatal;
593 		else if (status == DDI_FM_NONFATAL)
594 			++nonfatal;
595 	}
596 
597 	i_ddi_fm_handler_exit(dip);
598 
599 	if (fatal)
600 		return (DDI_FM_FATAL);
601 	else if (nonfatal)
602 		return (DDI_FM_NONFATAL);
603 
604 	return (DDI_FM_UNKNOWN);
605 }
606 
607 /*
608  * Dispatch registered error handlers for dip.  If tdip != NULL, only
609  * the error handler (if available) for tdip is invoked.  Otherwise,
610  * all registered error handlers are invoked.
611  *
612  * The following status values may be returned:
613  *
614  *	DDI_FM_FATAL - if at least one error handler returns a
615  *			fatal error.
616  *
617  *	DDI_FM_NONFATAL - if at least one error handler returns a
618  *			non-fatal error and none returned a fatal error.
619  *
620  *	DDI_FM_UNKNOWN - if at least one error handler returns
621  *			unknown status and none return fatal or non-fatal.
622  *
623  *	DDI_FM_OK - if all error handlers return DDI_FM_OK
624  */
625 int
626 ndi_fm_handler_dispatch(dev_info_t *dip, dev_info_t *tdip,
627     const ddi_fm_error_t *nerr)
628 {
629 	int status;
630 	int unknown = 0, fatal = 0, nonfatal = 0;
631 	struct i_ddi_fmhdl *hdl;
632 	struct i_ddi_fmtgt *tgt;
633 
634 	status = DDI_FM_UNKNOWN;
635 
636 	i_ddi_fm_handler_enter(dip);
637 	hdl = DEVI(dip)->devi_fmhdl;
638 	tgt = hdl->fh_tgts;
639 	while (tgt != NULL) {
640 		if (tdip == NULL || tdip == tgt->ft_dip) {
641 			struct i_ddi_errhdl *errhdl;
642 
643 			errhdl = tgt->ft_errhdl;
644 			status = errhdl->eh_func(tgt->ft_dip, nerr,
645 			    errhdl->eh_impl);
646 
647 			if (status == DDI_FM_FATAL)
648 				++fatal;
649 			else if (status == DDI_FM_NONFATAL)
650 				++nonfatal;
651 			else if (status == DDI_FM_UNKNOWN)
652 				++unknown;
653 
654 			/* Only interested in one target */
655 			if (tdip != NULL)
656 				break;
657 		}
658 		tgt = tgt->ft_next;
659 	}
660 	i_ddi_fm_handler_exit(dip);
661 
662 	if (fatal)
663 		return (DDI_FM_FATAL);
664 	else if (nonfatal)
665 		return (DDI_FM_NONFATAL);
666 	else if (unknown)
667 		return (DDI_FM_UNKNOWN);
668 	else
669 		return (DDI_FM_OK);
670 }
671 
672 /*
673  * Set error status for specified access or DMA handle
674  *
675  * May be called in any context but caller must insure validity of
676  * handle.
677  */
678 void
679 ndi_fm_acc_err_set(ddi_acc_handle_t handle, ddi_fm_error_t *dfe)
680 {
681 	i_ddi_fm_acc_err_set(handle, dfe->fme_ena, dfe->fme_status,
682 	    dfe->fme_flag);
683 }
684 
685 void
686 ndi_fm_dma_err_set(ddi_dma_handle_t handle, ddi_fm_error_t *dfe)
687 {
688 	i_ddi_fm_dma_err_set(handle, dfe->fme_ena, dfe->fme_status,
689 	    dfe->fme_flag);
690 }
691 
692 /*
693  * Call parent busop fm initialization routine.
694  *
695  * Called during driver attach(1M)
696  */
697 int
698 i_ndi_busop_fm_init(dev_info_t *dip, int tcap, ddi_iblock_cookie_t *ibc)
699 {
700 	int pcap;
701 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
702 
703 	if (dip == ddi_root_node())
704 		return (ddi_system_fmcap | DDI_FM_EREPORT_CAPABLE);
705 
706 	/* Valid operation for BUSO_REV_6 and above */
707 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
708 		return (DDI_FM_NOT_CAPABLE);
709 
710 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_init == NULL)
711 		return (DDI_FM_NOT_CAPABLE);
712 
713 	pcap = (*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_init)
714 	    (pdip, dip, tcap, ibc);
715 
716 	return (pcap);
717 }
718 
719 /*
720  * Call parent busop fm clean-up routine.
721  *
722  * Called during driver detach(1M)
723  */
724 void
725 i_ndi_busop_fm_fini(dev_info_t *dip)
726 {
727 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
728 
729 	if (dip == ddi_root_node())
730 		return;
731 
732 	/* Valid operation for BUSO_REV_6 and above */
733 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
734 		return;
735 
736 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_fini == NULL)
737 		return;
738 
739 	(*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_fini)(pdip, dip);
740 }
741 
742 /*
743  * The following routines provide exclusive access to a nexus resource
744  *
745  * These busops may be called in user or kernel driver context.
746  */
747 void
748 i_ndi_busop_access_enter(dev_info_t *dip, ddi_acc_handle_t handle)
749 {
750 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
751 
752 	/* Valid operation for BUSO_REV_6 and above */
753 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
754 		return;
755 
756 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_enter == NULL)
757 		return;
758 
759 	(*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_enter)
760 	    (pdip, handle);
761 }
762 
763 void
764 i_ndi_busop_access_exit(dev_info_t *dip, ddi_acc_handle_t handle)
765 {
766 	dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
767 
768 	/* Valid operation for BUSO_REV_6 and above */
769 	if (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_6)
770 		return;
771 
772 	if (DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_exit == NULL)
773 		return;
774 
775 	(*DEVI(pdip)->devi_ops->devo_bus_ops->bus_fm_access_exit)(pdip, handle);
776 }
777