1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */ 109 cpu_t *cpu_active; /* list of active CPUs */ 110 static cpuset_t cpu_available; /* set of available CPUs */ 111 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 112 113 /* 114 * max_ncpus keeps the max cpus the system can have. Initially 115 * it's NCPU, but since most archs scan the devtree for cpus 116 * fairly early on during boot, the real max can be known before 117 * ncpus is set (useful for early NCPU based allocations). 118 */ 119 int max_ncpus = NCPU; 120 /* 121 * platforms that set max_ncpus to maxiumum number of cpus that can be 122 * dynamically added will set boot_max_ncpus to the number of cpus found 123 * at device tree scan time during boot. 124 */ 125 int boot_max_ncpus = -1; 126 /* 127 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 128 * used to size arrays that are indexed by CPU id. 129 */ 130 processorid_t max_cpuid = NCPU - 1; 131 132 int ncpus = 1; 133 int ncpus_online = 1; 134 135 /* 136 * CPU that we're trying to offline. Protected by cpu_lock. 137 */ 138 cpu_t *cpu_inmotion; 139 140 /* 141 * Can be raised to suppress further weakbinding, which are instead 142 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 143 * while individual thread weakbinding synchronisation is done under thread 144 * lock. 145 */ 146 int weakbindingbarrier; 147 148 /* 149 * Variables used in pause_cpus(). 150 */ 151 static volatile char safe_list[NCPU]; 152 153 static struct _cpu_pause_info { 154 int cp_spl; /* spl saved in pause_cpus() */ 155 volatile int cp_go; /* Go signal sent after all ready */ 156 int cp_count; /* # of CPUs to pause */ 157 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 158 kthread_id_t cp_paused; 159 } cpu_pause_info; 160 161 static kmutex_t pause_free_mutex; 162 static kcondvar_t pause_free_cv; 163 164 static struct cpu_sys_stats_ks_data { 165 kstat_named_t cpu_ticks_idle; 166 kstat_named_t cpu_ticks_user; 167 kstat_named_t cpu_ticks_kernel; 168 kstat_named_t cpu_ticks_wait; 169 kstat_named_t cpu_nsec_idle; 170 kstat_named_t cpu_nsec_user; 171 kstat_named_t cpu_nsec_kernel; 172 kstat_named_t wait_ticks_io; 173 kstat_named_t bread; 174 kstat_named_t bwrite; 175 kstat_named_t lread; 176 kstat_named_t lwrite; 177 kstat_named_t phread; 178 kstat_named_t phwrite; 179 kstat_named_t pswitch; 180 kstat_named_t trap; 181 kstat_named_t intr; 182 kstat_named_t syscall; 183 kstat_named_t sysread; 184 kstat_named_t syswrite; 185 kstat_named_t sysfork; 186 kstat_named_t sysvfork; 187 kstat_named_t sysexec; 188 kstat_named_t readch; 189 kstat_named_t writech; 190 kstat_named_t rcvint; 191 kstat_named_t xmtint; 192 kstat_named_t mdmint; 193 kstat_named_t rawch; 194 kstat_named_t canch; 195 kstat_named_t outch; 196 kstat_named_t msg; 197 kstat_named_t sema; 198 kstat_named_t namei; 199 kstat_named_t ufsiget; 200 kstat_named_t ufsdirblk; 201 kstat_named_t ufsipage; 202 kstat_named_t ufsinopage; 203 kstat_named_t procovf; 204 kstat_named_t intrthread; 205 kstat_named_t intrblk; 206 kstat_named_t intrunpin; 207 kstat_named_t idlethread; 208 kstat_named_t inv_swtch; 209 kstat_named_t nthreads; 210 kstat_named_t cpumigrate; 211 kstat_named_t xcalls; 212 kstat_named_t mutex_adenters; 213 kstat_named_t rw_rdfails; 214 kstat_named_t rw_wrfails; 215 kstat_named_t modload; 216 kstat_named_t modunload; 217 kstat_named_t bawrite; 218 kstat_named_t iowait; 219 } cpu_sys_stats_ks_data_template = { 220 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 221 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 222 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 223 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 224 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 225 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 226 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 227 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 228 { "bread", KSTAT_DATA_UINT64 }, 229 { "bwrite", KSTAT_DATA_UINT64 }, 230 { "lread", KSTAT_DATA_UINT64 }, 231 { "lwrite", KSTAT_DATA_UINT64 }, 232 { "phread", KSTAT_DATA_UINT64 }, 233 { "phwrite", KSTAT_DATA_UINT64 }, 234 { "pswitch", KSTAT_DATA_UINT64 }, 235 { "trap", KSTAT_DATA_UINT64 }, 236 { "intr", KSTAT_DATA_UINT64 }, 237 { "syscall", KSTAT_DATA_UINT64 }, 238 { "sysread", KSTAT_DATA_UINT64 }, 239 { "syswrite", KSTAT_DATA_UINT64 }, 240 { "sysfork", KSTAT_DATA_UINT64 }, 241 { "sysvfork", KSTAT_DATA_UINT64 }, 242 { "sysexec", KSTAT_DATA_UINT64 }, 243 { "readch", KSTAT_DATA_UINT64 }, 244 { "writech", KSTAT_DATA_UINT64 }, 245 { "rcvint", KSTAT_DATA_UINT64 }, 246 { "xmtint", KSTAT_DATA_UINT64 }, 247 { "mdmint", KSTAT_DATA_UINT64 }, 248 { "rawch", KSTAT_DATA_UINT64 }, 249 { "canch", KSTAT_DATA_UINT64 }, 250 { "outch", KSTAT_DATA_UINT64 }, 251 { "msg", KSTAT_DATA_UINT64 }, 252 { "sema", KSTAT_DATA_UINT64 }, 253 { "namei", KSTAT_DATA_UINT64 }, 254 { "ufsiget", KSTAT_DATA_UINT64 }, 255 { "ufsdirblk", KSTAT_DATA_UINT64 }, 256 { "ufsipage", KSTAT_DATA_UINT64 }, 257 { "ufsinopage", KSTAT_DATA_UINT64 }, 258 { "procovf", KSTAT_DATA_UINT64 }, 259 { "intrthread", KSTAT_DATA_UINT64 }, 260 { "intrblk", KSTAT_DATA_UINT64 }, 261 { "intrunpin", KSTAT_DATA_UINT64 }, 262 { "idlethread", KSTAT_DATA_UINT64 }, 263 { "inv_swtch", KSTAT_DATA_UINT64 }, 264 { "nthreads", KSTAT_DATA_UINT64 }, 265 { "cpumigrate", KSTAT_DATA_UINT64 }, 266 { "xcalls", KSTAT_DATA_UINT64 }, 267 { "mutex_adenters", KSTAT_DATA_UINT64 }, 268 { "rw_rdfails", KSTAT_DATA_UINT64 }, 269 { "rw_wrfails", KSTAT_DATA_UINT64 }, 270 { "modload", KSTAT_DATA_UINT64 }, 271 { "modunload", KSTAT_DATA_UINT64 }, 272 { "bawrite", KSTAT_DATA_UINT64 }, 273 { "iowait", KSTAT_DATA_UINT64 }, 274 }; 275 276 static struct cpu_vm_stats_ks_data { 277 kstat_named_t pgrec; 278 kstat_named_t pgfrec; 279 kstat_named_t pgin; 280 kstat_named_t pgpgin; 281 kstat_named_t pgout; 282 kstat_named_t pgpgout; 283 kstat_named_t swapin; 284 kstat_named_t pgswapin; 285 kstat_named_t swapout; 286 kstat_named_t pgswapout; 287 kstat_named_t zfod; 288 kstat_named_t dfree; 289 kstat_named_t scan; 290 kstat_named_t rev; 291 kstat_named_t hat_fault; 292 kstat_named_t as_fault; 293 kstat_named_t maj_fault; 294 kstat_named_t cow_fault; 295 kstat_named_t prot_fault; 296 kstat_named_t softlock; 297 kstat_named_t kernel_asflt; 298 kstat_named_t pgrrun; 299 kstat_named_t execpgin; 300 kstat_named_t execpgout; 301 kstat_named_t execfree; 302 kstat_named_t anonpgin; 303 kstat_named_t anonpgout; 304 kstat_named_t anonfree; 305 kstat_named_t fspgin; 306 kstat_named_t fspgout; 307 kstat_named_t fsfree; 308 } cpu_vm_stats_ks_data_template = { 309 { "pgrec", KSTAT_DATA_UINT64 }, 310 { "pgfrec", KSTAT_DATA_UINT64 }, 311 { "pgin", KSTAT_DATA_UINT64 }, 312 { "pgpgin", KSTAT_DATA_UINT64 }, 313 { "pgout", KSTAT_DATA_UINT64 }, 314 { "pgpgout", KSTAT_DATA_UINT64 }, 315 { "swapin", KSTAT_DATA_UINT64 }, 316 { "pgswapin", KSTAT_DATA_UINT64 }, 317 { "swapout", KSTAT_DATA_UINT64 }, 318 { "pgswapout", KSTAT_DATA_UINT64 }, 319 { "zfod", KSTAT_DATA_UINT64 }, 320 { "dfree", KSTAT_DATA_UINT64 }, 321 { "scan", KSTAT_DATA_UINT64 }, 322 { "rev", KSTAT_DATA_UINT64 }, 323 { "hat_fault", KSTAT_DATA_UINT64 }, 324 { "as_fault", KSTAT_DATA_UINT64 }, 325 { "maj_fault", KSTAT_DATA_UINT64 }, 326 { "cow_fault", KSTAT_DATA_UINT64 }, 327 { "prot_fault", KSTAT_DATA_UINT64 }, 328 { "softlock", KSTAT_DATA_UINT64 }, 329 { "kernel_asflt", KSTAT_DATA_UINT64 }, 330 { "pgrrun", KSTAT_DATA_UINT64 }, 331 { "execpgin", KSTAT_DATA_UINT64 }, 332 { "execpgout", KSTAT_DATA_UINT64 }, 333 { "execfree", KSTAT_DATA_UINT64 }, 334 { "anonpgin", KSTAT_DATA_UINT64 }, 335 { "anonpgout", KSTAT_DATA_UINT64 }, 336 { "anonfree", KSTAT_DATA_UINT64 }, 337 { "fspgin", KSTAT_DATA_UINT64 }, 338 { "fspgout", KSTAT_DATA_UINT64 }, 339 { "fsfree", KSTAT_DATA_UINT64 }, 340 }; 341 342 /* 343 * Force the specified thread to migrate to the appropriate processor. 344 * Called with thread lock held, returns with it dropped. 345 */ 346 static void 347 force_thread_migrate(kthread_id_t tp) 348 { 349 ASSERT(THREAD_LOCK_HELD(tp)); 350 if (tp == curthread) { 351 THREAD_TRANSITION(tp); 352 CL_SETRUN(tp); 353 thread_unlock_nopreempt(tp); 354 swtch(); 355 } else { 356 if (tp->t_state == TS_ONPROC) { 357 cpu_surrender(tp); 358 } else if (tp->t_state == TS_RUN) { 359 (void) dispdeq(tp); 360 setbackdq(tp); 361 } 362 thread_unlock(tp); 363 } 364 } 365 366 /* 367 * Set affinity for a specified CPU. 368 * A reference count is incremented and the affinity is held until the 369 * reference count is decremented to zero by thread_affinity_clear(). 370 * This is so regions of code requiring affinity can be nested. 371 * Caller needs to ensure that cpu_id remains valid, which can be 372 * done by holding cpu_lock across this call, unless the caller 373 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 374 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 375 */ 376 void 377 thread_affinity_set(kthread_id_t t, int cpu_id) 378 { 379 cpu_t *cp; 380 int c; 381 382 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 383 384 if ((c = cpu_id) == CPU_CURRENT) { 385 mutex_enter(&cpu_lock); 386 cpu_id = CPU->cpu_id; 387 } 388 /* 389 * We should be asserting that cpu_lock is held here, but 390 * the NCA code doesn't acquire it. The following assert 391 * should be uncommented when the NCA code is fixed. 392 * 393 * ASSERT(MUTEX_HELD(&cpu_lock)); 394 */ 395 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 396 cp = cpu[cpu_id]; 397 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 398 /* 399 * If there is already a hard affinity requested, and this affinity 400 * conflicts with that, panic. 401 */ 402 thread_lock(t); 403 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 404 panic("affinity_set: setting %p but already bound to %p", 405 (void *)cp, (void *)t->t_bound_cpu); 406 } 407 t->t_affinitycnt++; 408 t->t_bound_cpu = cp; 409 410 /* 411 * Make sure we're running on the right CPU. 412 */ 413 if (cp != t->t_cpu || t != curthread) { 414 force_thread_migrate(t); /* drops thread lock */ 415 } else { 416 thread_unlock(t); 417 } 418 419 if (c == CPU_CURRENT) 420 mutex_exit(&cpu_lock); 421 } 422 423 /* 424 * Wrapper for backward compatibility. 425 */ 426 void 427 affinity_set(int cpu_id) 428 { 429 thread_affinity_set(curthread, cpu_id); 430 } 431 432 /* 433 * Decrement the affinity reservation count and if it becomes zero, 434 * clear the CPU affinity for the current thread, or set it to the user's 435 * software binding request. 436 */ 437 void 438 thread_affinity_clear(kthread_id_t t) 439 { 440 register processorid_t binding; 441 442 thread_lock(t); 443 if (--t->t_affinitycnt == 0) { 444 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 445 /* 446 * Adjust disp_max_unbound_pri if necessary. 447 */ 448 disp_adjust_unbound_pri(t); 449 t->t_bound_cpu = NULL; 450 if (t->t_cpu->cpu_part != t->t_cpupart) { 451 force_thread_migrate(t); 452 return; 453 } 454 } else { 455 t->t_bound_cpu = cpu[binding]; 456 /* 457 * Make sure the thread is running on the bound CPU. 458 */ 459 if (t->t_cpu != t->t_bound_cpu) { 460 force_thread_migrate(t); 461 return; /* already dropped lock */ 462 } 463 } 464 } 465 thread_unlock(t); 466 } 467 468 /* 469 * Wrapper for backward compatibility. 470 */ 471 void 472 affinity_clear(void) 473 { 474 thread_affinity_clear(curthread); 475 } 476 477 /* 478 * Weak cpu affinity. Bind to the "current" cpu for short periods 479 * of time during which the thread must not block (but may be preempted). 480 * Use this instead of kpreempt_disable() when it is only "no migration" 481 * rather than "no preemption" semantics that are required - disabling 482 * preemption holds higher priority threads off of cpu and if the 483 * operation that is protected is more than momentary this is not good 484 * for realtime etc. 485 * 486 * Weakly bound threads will not prevent a cpu from being offlined - 487 * we'll only run them on the cpu to which they are weakly bound but 488 * (because they do not block) we'll always be able to move them on to 489 * another cpu at offline time if we give them just a short moment to 490 * run during which they will unbind. To give a cpu a chance of offlining, 491 * however, we require a barrier to weak bindings that may be raised for a 492 * given cpu (offline/move code may set this and then wait a short time for 493 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 494 * 495 * There are few restrictions on the calling context of thread_nomigrate. 496 * The caller must not hold the thread lock. Calls may be nested. 497 * 498 * After weakbinding a thread must not perform actions that may block. 499 * In particular it must not call thread_affinity_set; calling that when 500 * already weakbound is nonsensical anyway. 501 * 502 * If curthread is prevented from migrating for other reasons 503 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 504 * then the weak binding will succeed even if this cpu is the target of an 505 * offline/move request. 506 */ 507 void 508 thread_nomigrate(void) 509 { 510 cpu_t *cp; 511 kthread_id_t t = curthread; 512 513 again: 514 kpreempt_disable(); 515 cp = CPU; 516 517 /* 518 * A highlevel interrupt must not modify t_nomigrate or 519 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 520 * interrupt thread cannot migrate and we can avoid the 521 * thread_lock call below by short-circuiting here. In either 522 * case we can just return since no migration is possible and 523 * the condition will persist (ie, when we test for these again 524 * in thread_allowmigrate they can't have changed). Migration 525 * is also impossible if we're at or above DISP_LEVEL pil. 526 */ 527 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 528 getpil() >= DISP_LEVEL) { 529 kpreempt_enable(); 530 return; 531 } 532 533 /* 534 * We must be consistent with existing weak bindings. Since we 535 * may be interrupted between the increment of t_nomigrate and 536 * the store to t_weakbound_cpu below we cannot assume that 537 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 538 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 539 * always the case. 540 */ 541 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 542 if (!panicstr) 543 panic("thread_nomigrate: binding to %p but already " 544 "bound to %p", (void *)cp, 545 (void *)t->t_weakbound_cpu); 546 } 547 548 /* 549 * At this point we have preemption disabled and we don't yet hold 550 * the thread lock. So it's possible that somebody else could 551 * set t_bind_cpu here and not be able to force us across to the 552 * new cpu (since we have preemption disabled). 553 */ 554 thread_lock(curthread); 555 556 /* 557 * If further weak bindings are being (temporarily) suppressed then 558 * we'll settle for disabling kernel preemption (which assures 559 * no migration provided the thread does not block which it is 560 * not allowed to if using thread_nomigrate). We must remember 561 * this disposition so we can take appropriate action in 562 * thread_allowmigrate. If this is a nested call and the 563 * thread is already weakbound then fall through as normal. 564 * We remember the decision to settle for kpreempt_disable through 565 * negative nesting counting in t_nomigrate. Once a thread has had one 566 * weakbinding request satisfied in this way any further (nested) 567 * requests will continue to be satisfied in the same way, 568 * even if weak bindings have recommenced. 569 */ 570 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 571 --t->t_nomigrate; 572 thread_unlock(curthread); 573 return; /* with kpreempt_disable still active */ 574 } 575 576 /* 577 * We hold thread_lock so t_bind_cpu cannot change. We could, 578 * however, be running on a different cpu to which we are t_bound_cpu 579 * to (as explained above). If we grant the weak binding request 580 * in that case then the dispatcher must favour our weak binding 581 * over our strong (in which case, just as when preemption is 582 * disabled, we can continue to run on a cpu other than the one to 583 * which we are strongbound; the difference in this case is that 584 * this thread can be preempted and so can appear on the dispatch 585 * queues of a cpu other than the one it is strongbound to). 586 * 587 * If the cpu we are running on does not appear to be a current 588 * offline target (we check cpu_inmotion to determine this - since 589 * we don't hold cpu_lock we may not see a recent store to that, 590 * so it's possible that we at times can grant a weak binding to a 591 * cpu that is an offline target, but that one request will not 592 * prevent the offline from succeeding) then we will always grant 593 * the weak binding request. This includes the case above where 594 * we grant a weakbinding not commensurate with our strong binding. 595 * 596 * If our cpu does appear to be an offline target then we're inclined 597 * not to grant the weakbinding request just yet - we'd prefer to 598 * migrate to another cpu and grant the request there. The 599 * exceptions are those cases where going through preemption code 600 * will not result in us changing cpu: 601 * 602 * . interrupts have already bypassed this case (see above) 603 * . we are already weakbound to this cpu (dispatcher code will 604 * always return us to the weakbound cpu) 605 * . preemption was disabled even before we disabled it above 606 * . we are strongbound to this cpu (if we're strongbound to 607 * another and not yet running there the trip through the 608 * dispatcher will move us to the strongbound cpu and we 609 * will grant the weak binding there) 610 */ 611 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 612 t->t_bound_cpu == cp) { 613 /* 614 * Don't be tempted to store to t_weakbound_cpu only on 615 * the first nested bind request - if we're interrupted 616 * after the increment of t_nomigrate and before the 617 * store to t_weakbound_cpu and the interrupt calls 618 * thread_nomigrate then the assertion in thread_allowmigrate 619 * would fail. 620 */ 621 t->t_nomigrate++; 622 t->t_weakbound_cpu = cp; 623 membar_producer(); 624 thread_unlock(curthread); 625 /* 626 * Now that we have dropped the thread_lock another thread 627 * can set our t_weakbound_cpu, and will try to migrate us 628 * to the strongbound cpu (which will not be prevented by 629 * preemption being disabled since we're about to enable 630 * preemption). We have granted the weakbinding to the current 631 * cpu, so again we are in the position that is is is possible 632 * that our weak and strong bindings differ. Again this 633 * is catered for by dispatcher code which will favour our 634 * weak binding. 635 */ 636 kpreempt_enable(); 637 } else { 638 /* 639 * Move to another cpu before granting the request by 640 * forcing this thread through preemption code. When we 641 * get to set{front,back}dq called from CL_PREEMPT() 642 * cpu_choose() will be used to select a cpu to queue 643 * us on - that will see cpu_inmotion and take 644 * steps to avoid returning us to this cpu. 645 */ 646 cp->cpu_kprunrun = 1; 647 thread_unlock(curthread); 648 kpreempt_enable(); /* will call preempt() */ 649 goto again; 650 } 651 } 652 653 void 654 thread_allowmigrate(void) 655 { 656 kthread_id_t t = curthread; 657 658 ASSERT(t->t_weakbound_cpu == CPU || 659 (t->t_nomigrate < 0 && t->t_preempt > 0) || 660 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 661 getpil() >= DISP_LEVEL); 662 663 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 664 getpil() >= DISP_LEVEL) 665 return; 666 667 if (t->t_nomigrate < 0) { 668 /* 669 * This thread was granted "weak binding" in the 670 * stronger form of kernel preemption disabling. 671 * Undo a level of nesting for both t_nomigrate 672 * and t_preempt. 673 */ 674 ++t->t_nomigrate; 675 kpreempt_enable(); 676 } else if (--t->t_nomigrate == 0) { 677 /* 678 * Time to drop the weak binding. We need to cater 679 * for the case where we're weakbound to a different 680 * cpu than that to which we're strongbound (a very 681 * temporary arrangement that must only persist until 682 * weak binding drops). We don't acquire thread_lock 683 * here so even as this code executes t_bound_cpu 684 * may be changing. So we disable preemption and 685 * a) in the case that t_bound_cpu changes while we 686 * have preemption disabled kprunrun will be set 687 * asynchronously, and b) if before disabling 688 * preemption we were already on a different cpu to 689 * our t_bound_cpu then we set kprunrun ourselves 690 * to force a trip through the dispatcher when 691 * preemption is enabled. 692 */ 693 kpreempt_disable(); 694 if (t->t_bound_cpu && 695 t->t_weakbound_cpu != t->t_bound_cpu) 696 CPU->cpu_kprunrun = 1; 697 t->t_weakbound_cpu = NULL; 698 membar_producer(); 699 kpreempt_enable(); 700 } 701 } 702 703 /* 704 * weakbinding_stop can be used to temporarily cause weakbindings made 705 * with thread_nomigrate to be satisfied through the stronger action of 706 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 707 */ 708 709 void 710 weakbinding_stop(void) 711 { 712 ASSERT(MUTEX_HELD(&cpu_lock)); 713 weakbindingbarrier = 1; 714 membar_producer(); /* make visible before subsequent thread_lock */ 715 } 716 717 void 718 weakbinding_start(void) 719 { 720 ASSERT(MUTEX_HELD(&cpu_lock)); 721 weakbindingbarrier = 0; 722 } 723 724 /* 725 * This routine is called to place the CPUs in a safe place so that 726 * one of them can be taken off line or placed on line. What we are 727 * trying to do here is prevent a thread from traversing the list 728 * of active CPUs while we are changing it or from getting placed on 729 * the run queue of a CPU that has just gone off line. We do this by 730 * creating a thread with the highest possible prio for each CPU and 731 * having it call this routine. The advantage of this method is that 732 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 733 * This makes disp faster at the expense of making p_online() slower 734 * which is a good trade off. 735 */ 736 static void 737 cpu_pause(volatile char *safe) 738 { 739 int s; 740 struct _cpu_pause_info *cpi = &cpu_pause_info; 741 742 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 743 744 while (*safe != PAUSE_DIE) { 745 *safe = PAUSE_READY; 746 membar_enter(); /* make sure stores are flushed */ 747 sema_v(&cpi->cp_sem); /* signal requesting thread */ 748 749 /* 750 * Wait here until all pause threads are running. That 751 * indicates that it's safe to do the spl. Until 752 * cpu_pause_info.cp_go is set, we don't want to spl 753 * because that might block clock interrupts needed 754 * to preempt threads on other CPUs. 755 */ 756 while (cpi->cp_go == 0) 757 ; 758 /* 759 * Even though we are at the highest disp prio, we need 760 * to block out all interrupts below LOCK_LEVEL so that 761 * an intr doesn't come in, wake up a thread, and call 762 * setbackdq/setfrontdq. 763 */ 764 s = splhigh(); 765 766 mach_cpu_pause(safe); 767 768 splx(s); 769 /* 770 * Waiting is at an end. Switch out of cpu_pause 771 * loop and resume useful work. 772 */ 773 swtch(); 774 } 775 776 mutex_enter(&pause_free_mutex); 777 *safe = PAUSE_DEAD; 778 cv_broadcast(&pause_free_cv); 779 mutex_exit(&pause_free_mutex); 780 } 781 782 /* 783 * Allow the cpus to start running again. 784 */ 785 void 786 start_cpus() 787 { 788 int i; 789 790 ASSERT(MUTEX_HELD(&cpu_lock)); 791 ASSERT(cpu_pause_info.cp_paused); 792 cpu_pause_info.cp_paused = NULL; 793 for (i = 0; i < NCPU; i++) 794 safe_list[i] = PAUSE_IDLE; 795 membar_enter(); /* make sure stores are flushed */ 796 affinity_clear(); 797 splx(cpu_pause_info.cp_spl); 798 kpreempt_enable(); 799 } 800 801 /* 802 * Allocate a pause thread for a CPU. 803 */ 804 static void 805 cpu_pause_alloc(cpu_t *cp) 806 { 807 kthread_id_t t; 808 int cpun = cp->cpu_id; 809 810 /* 811 * Note, v.v_nglobpris will not change value as long as I hold 812 * cpu_lock. 813 */ 814 t = thread_create(NULL, 0, cpu_pause, (caddr_t)&safe_list[cpun], 815 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 816 thread_lock(t); 817 t->t_bound_cpu = cp; 818 t->t_disp_queue = cp->cpu_disp; 819 t->t_affinitycnt = 1; 820 t->t_preempt = 1; 821 thread_unlock(t); 822 cp->cpu_pause_thread = t; 823 /* 824 * Registering a thread in the callback table is usually done 825 * in the initialization code of the thread. In this 826 * case, we do it right after thread creation because the 827 * thread itself may never run, and we need to register the 828 * fact that it is safe for cpr suspend. 829 */ 830 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 831 } 832 833 /* 834 * Free a pause thread for a CPU. 835 */ 836 static void 837 cpu_pause_free(cpu_t *cp) 838 { 839 kthread_id_t t; 840 int cpun = cp->cpu_id; 841 842 ASSERT(MUTEX_HELD(&cpu_lock)); 843 /* 844 * We have to get the thread and tell him to die. 845 */ 846 if ((t = cp->cpu_pause_thread) == NULL) { 847 ASSERT(safe_list[cpun] == PAUSE_IDLE); 848 return; 849 } 850 thread_lock(t); 851 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 852 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 853 t->t_pri = v.v_nglobpris - 1; 854 ASSERT(safe_list[cpun] == PAUSE_IDLE); 855 safe_list[cpun] = PAUSE_DIE; 856 THREAD_TRANSITION(t); 857 setbackdq(t); 858 thread_unlock_nopreempt(t); 859 860 /* 861 * If we don't wait for the thread to actually die, it may try to 862 * run on the wrong cpu as part of an actual call to pause_cpus(). 863 */ 864 mutex_enter(&pause_free_mutex); 865 while (safe_list[cpun] != PAUSE_DEAD) { 866 cv_wait(&pause_free_cv, &pause_free_mutex); 867 } 868 mutex_exit(&pause_free_mutex); 869 safe_list[cpun] = PAUSE_IDLE; 870 871 cp->cpu_pause_thread = NULL; 872 } 873 874 /* 875 * Initialize basic structures for pausing CPUs. 876 */ 877 void 878 cpu_pause_init() 879 { 880 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 881 /* 882 * Create initial CPU pause thread. 883 */ 884 cpu_pause_alloc(CPU); 885 } 886 887 /* 888 * Start the threads used to pause another CPU. 889 */ 890 static int 891 cpu_pause_start(processorid_t cpu_id) 892 { 893 int i; 894 int cpu_count = 0; 895 896 for (i = 0; i < NCPU; i++) { 897 cpu_t *cp; 898 kthread_id_t t; 899 900 cp = cpu[i]; 901 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 902 safe_list[i] = PAUSE_WAIT; 903 continue; 904 } 905 906 /* 907 * Skip CPU if it is quiesced or not yet started. 908 */ 909 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 910 safe_list[i] = PAUSE_WAIT; 911 continue; 912 } 913 914 /* 915 * Start this CPU's pause thread. 916 */ 917 t = cp->cpu_pause_thread; 918 thread_lock(t); 919 /* 920 * Reset the priority, since nglobpris may have 921 * changed since the thread was created, if someone 922 * has loaded the RT (or some other) scheduling 923 * class. 924 */ 925 t->t_pri = v.v_nglobpris - 1; 926 THREAD_TRANSITION(t); 927 setbackdq(t); 928 thread_unlock_nopreempt(t); 929 ++cpu_count; 930 } 931 return (cpu_count); 932 } 933 934 935 /* 936 * Pause all of the CPUs except the one we are on by creating a high 937 * priority thread bound to those CPUs. 938 * 939 * Note that one must be extremely careful regarding code 940 * executed while CPUs are paused. Since a CPU may be paused 941 * while a thread scheduling on that CPU is holding an adaptive 942 * lock, code executed with CPUs paused must not acquire adaptive 943 * (or low-level spin) locks. Also, such code must not block, 944 * since the thread that is supposed to initiate the wakeup may 945 * never run. 946 * 947 * With a few exceptions, the restrictions on code executed with CPUs 948 * paused match those for code executed at high-level interrupt 949 * context. 950 */ 951 void 952 pause_cpus(cpu_t *off_cp) 953 { 954 processorid_t cpu_id; 955 int i; 956 struct _cpu_pause_info *cpi = &cpu_pause_info; 957 958 ASSERT(MUTEX_HELD(&cpu_lock)); 959 ASSERT(cpi->cp_paused == NULL); 960 cpi->cp_count = 0; 961 cpi->cp_go = 0; 962 for (i = 0; i < NCPU; i++) 963 safe_list[i] = PAUSE_IDLE; 964 kpreempt_disable(); 965 966 /* 967 * If running on the cpu that is going offline, get off it. 968 * This is so that it won't be necessary to rechoose a CPU 969 * when done. 970 */ 971 if (CPU == off_cp) 972 cpu_id = off_cp->cpu_next_part->cpu_id; 973 else 974 cpu_id = CPU->cpu_id; 975 affinity_set(cpu_id); 976 977 /* 978 * Start the pause threads and record how many were started 979 */ 980 cpi->cp_count = cpu_pause_start(cpu_id); 981 982 /* 983 * Now wait for all CPUs to be running the pause thread. 984 */ 985 while (cpi->cp_count > 0) { 986 /* 987 * Spin reading the count without grabbing the disp 988 * lock to make sure we don't prevent the pause 989 * threads from getting the lock. 990 */ 991 while (sema_held(&cpi->cp_sem)) 992 ; 993 if (sema_tryp(&cpi->cp_sem)) 994 --cpi->cp_count; 995 } 996 cpi->cp_go = 1; /* all have reached cpu_pause */ 997 998 /* 999 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 1000 * to PAUSE_WAIT.) 1001 */ 1002 for (i = 0; i < NCPU; i++) { 1003 while (safe_list[i] != PAUSE_WAIT) 1004 ; 1005 } 1006 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1007 cpi->cp_paused = curthread; 1008 } 1009 1010 /* 1011 * Check whether the current thread has CPUs paused 1012 */ 1013 int 1014 cpus_paused(void) 1015 { 1016 if (cpu_pause_info.cp_paused != NULL) { 1017 ASSERT(cpu_pause_info.cp_paused == curthread); 1018 return (1); 1019 } 1020 return (0); 1021 } 1022 1023 static cpu_t * 1024 cpu_get_all(processorid_t cpun) 1025 { 1026 ASSERT(MUTEX_HELD(&cpu_lock)); 1027 1028 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1029 return (NULL); 1030 return (cpu[cpun]); 1031 } 1032 1033 /* 1034 * Check whether cpun is a valid processor id and whether it should be 1035 * visible from the current zone. If it is, return a pointer to the 1036 * associated CPU structure. 1037 */ 1038 cpu_t * 1039 cpu_get(processorid_t cpun) 1040 { 1041 cpu_t *c; 1042 1043 ASSERT(MUTEX_HELD(&cpu_lock)); 1044 c = cpu_get_all(cpun); 1045 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1046 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1047 return (NULL); 1048 return (c); 1049 } 1050 1051 /* 1052 * The following functions should be used to check CPU states in the kernel. 1053 * They should be invoked with cpu_lock held. Kernel subsystems interested 1054 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1055 * states. Those are for user-land (and system call) use only. 1056 */ 1057 1058 /* 1059 * Determine whether the CPU is online and handling interrupts. 1060 */ 1061 int 1062 cpu_is_online(cpu_t *cpu) 1063 { 1064 ASSERT(MUTEX_HELD(&cpu_lock)); 1065 return (cpu_flagged_online(cpu->cpu_flags)); 1066 } 1067 1068 /* 1069 * Determine whether the CPU is offline (this includes spare and faulted). 1070 */ 1071 int 1072 cpu_is_offline(cpu_t *cpu) 1073 { 1074 ASSERT(MUTEX_HELD(&cpu_lock)); 1075 return (cpu_flagged_offline(cpu->cpu_flags)); 1076 } 1077 1078 /* 1079 * Determine whether the CPU is powered off. 1080 */ 1081 int 1082 cpu_is_poweredoff(cpu_t *cpu) 1083 { 1084 ASSERT(MUTEX_HELD(&cpu_lock)); 1085 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1086 } 1087 1088 /* 1089 * Determine whether the CPU is handling interrupts. 1090 */ 1091 int 1092 cpu_is_nointr(cpu_t *cpu) 1093 { 1094 ASSERT(MUTEX_HELD(&cpu_lock)); 1095 return (cpu_flagged_nointr(cpu->cpu_flags)); 1096 } 1097 1098 /* 1099 * Determine whether the CPU is active (scheduling threads). 1100 */ 1101 int 1102 cpu_is_active(cpu_t *cpu) 1103 { 1104 ASSERT(MUTEX_HELD(&cpu_lock)); 1105 return (cpu_flagged_active(cpu->cpu_flags)); 1106 } 1107 1108 /* 1109 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1110 */ 1111 int 1112 cpu_flagged_online(cpu_flag_t cpu_flags) 1113 { 1114 return (cpu_flagged_active(cpu_flags) && 1115 (cpu_flags & CPU_ENABLE)); 1116 } 1117 1118 int 1119 cpu_flagged_offline(cpu_flag_t cpu_flags) 1120 { 1121 return (((cpu_flags & CPU_POWEROFF) == 0) && 1122 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1123 } 1124 1125 int 1126 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1127 { 1128 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1129 } 1130 1131 int 1132 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1133 { 1134 return (cpu_flagged_active(cpu_flags) && 1135 (cpu_flags & CPU_ENABLE) == 0); 1136 } 1137 1138 int 1139 cpu_flagged_active(cpu_flag_t cpu_flags) 1140 { 1141 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1142 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1143 } 1144 1145 /* 1146 * Bring the indicated CPU online. 1147 */ 1148 int 1149 cpu_online(cpu_t *cp) 1150 { 1151 int error = 0; 1152 1153 /* 1154 * Handle on-line request. 1155 * This code must put the new CPU on the active list before 1156 * starting it because it will not be paused, and will start 1157 * using the active list immediately. The real start occurs 1158 * when the CPU_QUIESCED flag is turned off. 1159 */ 1160 1161 ASSERT(MUTEX_HELD(&cpu_lock)); 1162 1163 /* 1164 * Put all the cpus into a known safe place. 1165 * No mutexes can be entered while CPUs are paused. 1166 */ 1167 error = mp_cpu_start(cp); /* arch-dep hook */ 1168 if (error == 0) { 1169 pg_cpupart_in(cp, cp->cpu_part); 1170 pause_cpus(NULL); 1171 cpu_add_active_internal(cp); 1172 if (cp->cpu_flags & CPU_FAULTED) { 1173 cp->cpu_flags &= ~CPU_FAULTED; 1174 mp_cpu_faulted_exit(cp); 1175 } 1176 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1177 CPU_SPARE); 1178 start_cpus(); 1179 cpu_stats_kstat_create(cp); 1180 cpu_create_intrstat(cp); 1181 lgrp_kstat_create(cp); 1182 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1183 cpu_intr_enable(cp); /* arch-dep hook */ 1184 cpu_set_state(cp); 1185 cyclic_online(cp); 1186 poke_cpu(cp->cpu_id); 1187 } 1188 1189 return (error); 1190 } 1191 1192 /* 1193 * Take the indicated CPU offline. 1194 */ 1195 int 1196 cpu_offline(cpu_t *cp, int flags) 1197 { 1198 cpupart_t *pp; 1199 int error = 0; 1200 cpu_t *ncp; 1201 int intr_enable; 1202 int cyclic_off = 0; 1203 int loop_count; 1204 int no_quiesce = 0; 1205 int (*bound_func)(struct cpu *, int); 1206 kthread_t *t; 1207 lpl_t *cpu_lpl; 1208 proc_t *p; 1209 int lgrp_diff_lpl; 1210 1211 ASSERT(MUTEX_HELD(&cpu_lock)); 1212 1213 /* 1214 * If we're going from faulted or spare to offline, just 1215 * clear these flags and update CPU state. 1216 */ 1217 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1218 if (cp->cpu_flags & CPU_FAULTED) { 1219 cp->cpu_flags &= ~CPU_FAULTED; 1220 mp_cpu_faulted_exit(cp); 1221 } 1222 cp->cpu_flags &= ~CPU_SPARE; 1223 cpu_set_state(cp); 1224 return (0); 1225 } 1226 1227 /* 1228 * Handle off-line request. 1229 */ 1230 pp = cp->cpu_part; 1231 /* 1232 * Don't offline last online CPU in partition 1233 */ 1234 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1235 return (EBUSY); 1236 /* 1237 * Unbind all thread bound to our CPU if we were asked to. 1238 */ 1239 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1240 return (error); 1241 /* 1242 * We shouldn't be bound to this CPU ourselves. 1243 */ 1244 if (curthread->t_bound_cpu == cp) 1245 return (EBUSY); 1246 1247 /* 1248 * Tell interested parties that this CPU is going offline. 1249 */ 1250 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1251 1252 /* 1253 * Tell the PG subsystem that the CPU is leaving the partition 1254 */ 1255 pg_cpupart_out(cp, pp); 1256 1257 /* 1258 * Take the CPU out of interrupt participation so we won't find 1259 * bound kernel threads. If the architecture cannot completely 1260 * shut off interrupts on the CPU, don't quiesce it, but don't 1261 * run anything but interrupt thread... this is indicated by 1262 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1263 * off. 1264 */ 1265 intr_enable = cp->cpu_flags & CPU_ENABLE; 1266 if (intr_enable) 1267 no_quiesce = cpu_intr_disable(cp); 1268 1269 /* 1270 * Record that we are aiming to offline this cpu. This acts as 1271 * a barrier to further weak binding requests in thread_nomigrate 1272 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1273 * lean away from this cpu. Further strong bindings are already 1274 * avoided since we hold cpu_lock. Since threads that are set 1275 * runnable around now and others coming off the target cpu are 1276 * directed away from the target, existing strong and weak bindings 1277 * (especially the latter) to the target cpu stand maximum chance of 1278 * being able to unbind during the short delay loop below (if other 1279 * unbound threads compete they may not see cpu in time to unbind 1280 * even if they would do so immediately. 1281 */ 1282 cpu_inmotion = cp; 1283 membar_enter(); 1284 1285 /* 1286 * Check for kernel threads (strong or weak) bound to that CPU. 1287 * Strongly bound threads may not unbind, and we'll have to return 1288 * EBUSY. Weakly bound threads should always disappear - we've 1289 * stopped more weak binding with cpu_inmotion and existing 1290 * bindings will drain imminently (they may not block). Nonetheless 1291 * we will wait for a fixed period for all bound threads to disappear. 1292 * Inactive interrupt threads are OK (they'll be in TS_FREE 1293 * state). If test finds some bound threads, wait a few ticks 1294 * to give short-lived threads (such as interrupts) chance to 1295 * complete. Note that if no_quiesce is set, i.e. this cpu 1296 * is required to service interrupts, then we take the route 1297 * that permits interrupt threads to be active (or bypassed). 1298 */ 1299 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1300 1301 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1302 if (loop_count >= 5) { 1303 error = EBUSY; /* some threads still bound */ 1304 break; 1305 } 1306 1307 /* 1308 * If some threads were assigned, give them 1309 * a chance to complete or move. 1310 * 1311 * This assumes that the clock_thread is not bound 1312 * to any CPU, because the clock_thread is needed to 1313 * do the delay(hz/100). 1314 * 1315 * Note: we still hold the cpu_lock while waiting for 1316 * the next clock tick. This is OK since it isn't 1317 * needed for anything else except processor_bind(2), 1318 * and system initialization. If we drop the lock, 1319 * we would risk another p_online disabling the last 1320 * processor. 1321 */ 1322 delay(hz/100); 1323 } 1324 1325 if (error == 0 && cyclic_off == 0) { 1326 if (!cyclic_offline(cp)) { 1327 /* 1328 * We must have bound cyclics... 1329 */ 1330 error = EBUSY; 1331 goto out; 1332 } 1333 cyclic_off = 1; 1334 } 1335 1336 /* 1337 * Call mp_cpu_stop() to perform any special operations 1338 * needed for this machine architecture to offline a CPU. 1339 */ 1340 if (error == 0) 1341 error = mp_cpu_stop(cp); /* arch-dep hook */ 1342 1343 /* 1344 * If that all worked, take the CPU offline and decrement 1345 * ncpus_online. 1346 */ 1347 if (error == 0) { 1348 /* 1349 * Put all the cpus into a known safe place. 1350 * No mutexes can be entered while CPUs are paused. 1351 */ 1352 pause_cpus(cp); 1353 /* 1354 * Repeat the operation, if necessary, to make sure that 1355 * all outstanding low-level interrupts run to completion 1356 * before we set the CPU_QUIESCED flag. It's also possible 1357 * that a thread has weak bound to the cpu despite our raising 1358 * cpu_inmotion above since it may have loaded that 1359 * value before the barrier became visible (this would have 1360 * to be the thread that was on the target cpu at the time 1361 * we raised the barrier). 1362 */ 1363 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1364 (*bound_func)(cp, 1)) { 1365 start_cpus(); 1366 (void) mp_cpu_start(cp); 1367 goto again; 1368 } 1369 ncp = cp->cpu_next_part; 1370 cpu_lpl = cp->cpu_lpl; 1371 ASSERT(cpu_lpl != NULL); 1372 1373 /* 1374 * Remove the CPU from the list of active CPUs. 1375 */ 1376 cpu_remove_active(cp); 1377 1378 /* 1379 * Walk the active process list and look for threads 1380 * whose home lgroup needs to be updated, or 1381 * the last CPU they run on is the one being offlined now. 1382 */ 1383 1384 ASSERT(curthread->t_cpu != cp); 1385 for (p = practive; p != NULL; p = p->p_next) { 1386 1387 t = p->p_tlist; 1388 1389 if (t == NULL) 1390 continue; 1391 1392 lgrp_diff_lpl = 0; 1393 1394 do { 1395 ASSERT(t->t_lpl != NULL); 1396 /* 1397 * Taking last CPU in lpl offline 1398 * Rehome thread if it is in this lpl 1399 * Otherwise, update the count of how many 1400 * threads are in this CPU's lgroup but have 1401 * a different lpl. 1402 */ 1403 1404 if (cpu_lpl->lpl_ncpu == 0) { 1405 if (t->t_lpl == cpu_lpl) 1406 lgrp_move_thread(t, 1407 lgrp_choose(t, 1408 t->t_cpupart), 0); 1409 else if (t->t_lpl->lpl_lgrpid == 1410 cpu_lpl->lpl_lgrpid) 1411 lgrp_diff_lpl++; 1412 } 1413 ASSERT(t->t_lpl->lpl_ncpu > 0); 1414 1415 /* 1416 * Update CPU last ran on if it was this CPU 1417 */ 1418 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1419 t->t_cpu = disp_lowpri_cpu(ncp, 1420 t->t_lpl, t->t_pri, NULL); 1421 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1422 t->t_weakbound_cpu == cp); 1423 1424 t = t->t_forw; 1425 } while (t != p->p_tlist); 1426 1427 /* 1428 * Didn't find any threads in the same lgroup as this 1429 * CPU with a different lpl, so remove the lgroup from 1430 * the process lgroup bitmask. 1431 */ 1432 1433 if (lgrp_diff_lpl == 0) 1434 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1435 } 1436 1437 /* 1438 * Walk thread list looking for threads that need to be 1439 * rehomed, since there are some threads that are not in 1440 * their process's p_tlist. 1441 */ 1442 1443 t = curthread; 1444 do { 1445 ASSERT(t != NULL && t->t_lpl != NULL); 1446 1447 /* 1448 * Rehome threads with same lpl as this CPU when this 1449 * is the last CPU in the lpl. 1450 */ 1451 1452 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1453 lgrp_move_thread(t, 1454 lgrp_choose(t, t->t_cpupart), 1); 1455 1456 ASSERT(t->t_lpl->lpl_ncpu > 0); 1457 1458 /* 1459 * Update CPU last ran on if it was this CPU 1460 */ 1461 1462 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1463 t->t_cpu = disp_lowpri_cpu(ncp, 1464 t->t_lpl, t->t_pri, NULL); 1465 } 1466 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1467 t->t_weakbound_cpu == cp); 1468 t = t->t_next; 1469 1470 } while (t != curthread); 1471 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1472 cp->cpu_flags |= CPU_OFFLINE; 1473 disp_cpu_inactive(cp); 1474 if (!no_quiesce) 1475 cp->cpu_flags |= CPU_QUIESCED; 1476 ncpus_online--; 1477 cpu_set_state(cp); 1478 cpu_inmotion = NULL; 1479 start_cpus(); 1480 cpu_stats_kstat_destroy(cp); 1481 cpu_delete_intrstat(cp); 1482 lgrp_kstat_destroy(cp); 1483 } 1484 1485 out: 1486 cpu_inmotion = NULL; 1487 1488 /* 1489 * If we failed, re-enable interrupts. 1490 * Do this even if cpu_intr_disable returned an error, because 1491 * it may have partially disabled interrupts. 1492 */ 1493 if (error && intr_enable) 1494 cpu_intr_enable(cp); 1495 1496 /* 1497 * If we failed, but managed to offline the cyclic subsystem on this 1498 * CPU, bring it back online. 1499 */ 1500 if (error && cyclic_off) 1501 cyclic_online(cp); 1502 1503 /* 1504 * If we failed, tell the PG subsystem that the CPU is back 1505 */ 1506 pg_cpupart_in(cp, pp); 1507 1508 /* 1509 * If we failed, we need to notify everyone that this CPU is back on. 1510 */ 1511 if (error != 0) 1512 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1513 1514 return (error); 1515 } 1516 1517 /* 1518 * Mark the indicated CPU as faulted, taking it offline. 1519 */ 1520 int 1521 cpu_faulted(cpu_t *cp, int flags) 1522 { 1523 int error = 0; 1524 1525 ASSERT(MUTEX_HELD(&cpu_lock)); 1526 ASSERT(!cpu_is_poweredoff(cp)); 1527 1528 if (cpu_is_offline(cp)) { 1529 cp->cpu_flags &= ~CPU_SPARE; 1530 cp->cpu_flags |= CPU_FAULTED; 1531 mp_cpu_faulted_enter(cp); 1532 cpu_set_state(cp); 1533 return (0); 1534 } 1535 1536 if ((error = cpu_offline(cp, flags)) == 0) { 1537 cp->cpu_flags |= CPU_FAULTED; 1538 mp_cpu_faulted_enter(cp); 1539 cpu_set_state(cp); 1540 } 1541 1542 return (error); 1543 } 1544 1545 /* 1546 * Mark the indicated CPU as a spare, taking it offline. 1547 */ 1548 int 1549 cpu_spare(cpu_t *cp, int flags) 1550 { 1551 int error = 0; 1552 1553 ASSERT(MUTEX_HELD(&cpu_lock)); 1554 ASSERT(!cpu_is_poweredoff(cp)); 1555 1556 if (cpu_is_offline(cp)) { 1557 if (cp->cpu_flags & CPU_FAULTED) { 1558 cp->cpu_flags &= ~CPU_FAULTED; 1559 mp_cpu_faulted_exit(cp); 1560 } 1561 cp->cpu_flags |= CPU_SPARE; 1562 cpu_set_state(cp); 1563 return (0); 1564 } 1565 1566 if ((error = cpu_offline(cp, flags)) == 0) { 1567 cp->cpu_flags |= CPU_SPARE; 1568 cpu_set_state(cp); 1569 } 1570 1571 return (error); 1572 } 1573 1574 /* 1575 * Take the indicated CPU from poweroff to offline. 1576 */ 1577 int 1578 cpu_poweron(cpu_t *cp) 1579 { 1580 int error = ENOTSUP; 1581 1582 ASSERT(MUTEX_HELD(&cpu_lock)); 1583 ASSERT(cpu_is_poweredoff(cp)); 1584 1585 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1586 if (error == 0) 1587 cpu_set_state(cp); 1588 1589 return (error); 1590 } 1591 1592 /* 1593 * Take the indicated CPU from any inactive state to powered off. 1594 */ 1595 int 1596 cpu_poweroff(cpu_t *cp) 1597 { 1598 int error = ENOTSUP; 1599 1600 ASSERT(MUTEX_HELD(&cpu_lock)); 1601 ASSERT(cpu_is_offline(cp)); 1602 1603 if (!(cp->cpu_flags & CPU_QUIESCED)) 1604 return (EBUSY); /* not completely idle */ 1605 1606 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1607 if (error == 0) 1608 cpu_set_state(cp); 1609 1610 return (error); 1611 } 1612 1613 /* 1614 * Initialize the CPU lists for the first CPU. 1615 */ 1616 void 1617 cpu_list_init(cpu_t *cp) 1618 { 1619 cp->cpu_next = cp; 1620 cp->cpu_prev = cp; 1621 cpu_list = cp; 1622 clock_cpu_list = cp; 1623 1624 cp->cpu_next_onln = cp; 1625 cp->cpu_prev_onln = cp; 1626 cpu_active = cp; 1627 1628 cp->cpu_seqid = 0; 1629 CPUSET_ADD(cpu_seqid_inuse, 0); 1630 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1631 cp_default.cp_mach = &cp_default_mach; 1632 cp_default.cp_cpulist = cp; 1633 cp_default.cp_ncpus = 1; 1634 cp->cpu_next_part = cp; 1635 cp->cpu_prev_part = cp; 1636 cp->cpu_part = &cp_default; 1637 1638 CPUSET_ADD(cpu_available, cp->cpu_id); 1639 } 1640 1641 /* 1642 * Insert a CPU into the list of available CPUs. 1643 */ 1644 void 1645 cpu_add_unit(cpu_t *cp) 1646 { 1647 int seqid; 1648 1649 ASSERT(MUTEX_HELD(&cpu_lock)); 1650 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1651 1652 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1653 1654 /* 1655 * Note: most users of the cpu_list will grab the 1656 * cpu_lock to insure that it isn't modified. However, 1657 * certain users can't or won't do that. To allow this 1658 * we pause the other cpus. Users who walk the list 1659 * without cpu_lock, must disable kernel preemption 1660 * to insure that the list isn't modified underneath 1661 * them. Also, any cached pointers to cpu structures 1662 * must be revalidated by checking to see if the 1663 * cpu_next pointer points to itself. This check must 1664 * be done with the cpu_lock held or kernel preemption 1665 * disabled. This check relies upon the fact that 1666 * old cpu structures are not free'ed or cleared after 1667 * then are removed from the cpu_list. 1668 * 1669 * Note that the clock code walks the cpu list dereferencing 1670 * the cpu_part pointer, so we need to initialize it before 1671 * adding the cpu to the list. 1672 */ 1673 cp->cpu_part = &cp_default; 1674 (void) pause_cpus(NULL); 1675 cp->cpu_next = cpu_list; 1676 cp->cpu_prev = cpu_list->cpu_prev; 1677 cpu_list->cpu_prev->cpu_next = cp; 1678 cpu_list->cpu_prev = cp; 1679 start_cpus(); 1680 1681 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1682 continue; 1683 CPUSET_ADD(cpu_seqid_inuse, seqid); 1684 cp->cpu_seqid = seqid; 1685 ASSERT(ncpus < max_ncpus); 1686 ncpus++; 1687 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1688 cpu[cp->cpu_id] = cp; 1689 CPUSET_ADD(cpu_available, cp->cpu_id); 1690 1691 /* 1692 * allocate a pause thread for this CPU. 1693 */ 1694 cpu_pause_alloc(cp); 1695 1696 /* 1697 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1698 * link them into a list of just that CPU. 1699 * This is so that disp_lowpri_cpu will work for thread_create in 1700 * pause_cpus() when called from the startup thread in a new CPU. 1701 */ 1702 cp->cpu_next_onln = cp; 1703 cp->cpu_prev_onln = cp; 1704 cpu_info_kstat_create(cp); 1705 cp->cpu_next_part = cp; 1706 cp->cpu_prev_part = cp; 1707 1708 init_cpu_mstate(cp, CMS_SYSTEM); 1709 1710 pool_pset_mod = gethrtime(); 1711 } 1712 1713 /* 1714 * Do the opposite of cpu_add_unit(). 1715 */ 1716 void 1717 cpu_del_unit(int cpuid) 1718 { 1719 struct cpu *cp, *cpnext; 1720 1721 ASSERT(MUTEX_HELD(&cpu_lock)); 1722 cp = cpu[cpuid]; 1723 ASSERT(cp != NULL); 1724 1725 ASSERT(cp->cpu_next_onln == cp); 1726 ASSERT(cp->cpu_prev_onln == cp); 1727 ASSERT(cp->cpu_next_part == cp); 1728 ASSERT(cp->cpu_prev_part == cp); 1729 1730 /* 1731 * Tear down the CPU's physical ID cache, and update any 1732 * processor groups 1733 */ 1734 pg_cpu_fini(cp); 1735 pghw_physid_destroy(cp); 1736 1737 /* 1738 * Destroy kstat stuff. 1739 */ 1740 cpu_info_kstat_destroy(cp); 1741 term_cpu_mstate(cp); 1742 /* 1743 * Free up pause thread. 1744 */ 1745 cpu_pause_free(cp); 1746 CPUSET_DEL(cpu_available, cp->cpu_id); 1747 cpu[cp->cpu_id] = NULL; 1748 /* 1749 * The clock thread and mutex_vector_enter cannot hold the 1750 * cpu_lock while traversing the cpu list, therefore we pause 1751 * all other threads by pausing the other cpus. These, and any 1752 * other routines holding cpu pointers while possibly sleeping 1753 * must be sure to call kpreempt_disable before processing the 1754 * list and be sure to check that the cpu has not been deleted 1755 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1756 * to keep the deleted cpu structure around. 1757 * 1758 * Note that this MUST be done AFTER cpu_available 1759 * has been updated so that we don't waste time 1760 * trying to pause the cpu we're trying to delete. 1761 */ 1762 (void) pause_cpus(NULL); 1763 1764 cpnext = cp->cpu_next; 1765 cp->cpu_prev->cpu_next = cp->cpu_next; 1766 cp->cpu_next->cpu_prev = cp->cpu_prev; 1767 if (cp == cpu_list) 1768 cpu_list = cpnext; 1769 if (cp == clock_cpu_list) 1770 clock_cpu_list = cpnext; 1771 1772 1773 /* 1774 * Signals that the cpu has been deleted (see above). 1775 */ 1776 cp->cpu_next = NULL; 1777 cp->cpu_prev = NULL; 1778 1779 start_cpus(); 1780 1781 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1782 ncpus--; 1783 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1784 1785 pool_pset_mod = gethrtime(); 1786 } 1787 1788 /* 1789 * Add a CPU to the list of active CPUs. 1790 * This routine must not get any locks, because other CPUs are paused. 1791 */ 1792 static void 1793 cpu_add_active_internal(cpu_t *cp) 1794 { 1795 cpupart_t *pp = cp->cpu_part; 1796 1797 ASSERT(MUTEX_HELD(&cpu_lock)); 1798 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1799 1800 ncpus_online++; 1801 cpu_set_state(cp); 1802 cp->cpu_next_onln = cpu_active; 1803 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1804 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1805 cpu_active->cpu_prev_onln = cp; 1806 1807 if (pp->cp_cpulist) { 1808 cp->cpu_next_part = pp->cp_cpulist; 1809 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1810 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1811 pp->cp_cpulist->cpu_prev_part = cp; 1812 } else { 1813 ASSERT(pp->cp_ncpus == 0); 1814 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1815 } 1816 pp->cp_ncpus++; 1817 if (pp->cp_ncpus == 1) { 1818 cp_numparts_nonempty++; 1819 ASSERT(cp_numparts_nonempty != 0); 1820 } 1821 1822 pg_cpu_active(cp); 1823 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1824 1825 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1826 } 1827 1828 /* 1829 * Add a CPU to the list of active CPUs. 1830 * This is called from machine-dependent layers when a new CPU is started. 1831 */ 1832 void 1833 cpu_add_active(cpu_t *cp) 1834 { 1835 pg_cpupart_in(cp, cp->cpu_part); 1836 1837 pause_cpus(NULL); 1838 cpu_add_active_internal(cp); 1839 start_cpus(); 1840 1841 cpu_stats_kstat_create(cp); 1842 cpu_create_intrstat(cp); 1843 lgrp_kstat_create(cp); 1844 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1845 } 1846 1847 1848 /* 1849 * Remove a CPU from the list of active CPUs. 1850 * This routine must not get any locks, because other CPUs are paused. 1851 */ 1852 /* ARGSUSED */ 1853 static void 1854 cpu_remove_active(cpu_t *cp) 1855 { 1856 cpupart_t *pp = cp->cpu_part; 1857 1858 ASSERT(MUTEX_HELD(&cpu_lock)); 1859 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1860 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1861 1862 pg_cpu_inactive(cp); 1863 1864 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1865 1866 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1867 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1868 if (cpu_active == cp) { 1869 cpu_active = cp->cpu_next_onln; 1870 } 1871 cp->cpu_next_onln = cp; 1872 cp->cpu_prev_onln = cp; 1873 1874 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1875 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1876 if (pp->cp_cpulist == cp) { 1877 pp->cp_cpulist = cp->cpu_next_part; 1878 ASSERT(pp->cp_cpulist != cp); 1879 } 1880 cp->cpu_next_part = cp; 1881 cp->cpu_prev_part = cp; 1882 pp->cp_ncpus--; 1883 if (pp->cp_ncpus == 0) { 1884 cp_numparts_nonempty--; 1885 ASSERT(cp_numparts_nonempty != 0); 1886 } 1887 } 1888 1889 /* 1890 * Routine used to setup a newly inserted CPU in preparation for starting 1891 * it running code. 1892 */ 1893 int 1894 cpu_configure(int cpuid) 1895 { 1896 int retval = 0; 1897 1898 ASSERT(MUTEX_HELD(&cpu_lock)); 1899 1900 /* 1901 * Some structures are statically allocated based upon 1902 * the maximum number of cpus the system supports. Do not 1903 * try to add anything beyond this limit. 1904 */ 1905 if (cpuid < 0 || cpuid >= NCPU) { 1906 return (EINVAL); 1907 } 1908 1909 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1910 return (EALREADY); 1911 } 1912 1913 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1914 return (retval); 1915 } 1916 1917 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1918 cpu_set_state(cpu[cpuid]); 1919 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1920 if (retval != 0) 1921 (void) mp_cpu_unconfigure(cpuid); 1922 1923 return (retval); 1924 } 1925 1926 /* 1927 * Routine used to cleanup a CPU that has been powered off. This will 1928 * destroy all per-cpu information related to this cpu. 1929 */ 1930 int 1931 cpu_unconfigure(int cpuid) 1932 { 1933 int error; 1934 1935 ASSERT(MUTEX_HELD(&cpu_lock)); 1936 1937 if (cpu[cpuid] == NULL) { 1938 return (ENODEV); 1939 } 1940 1941 if (cpu[cpuid]->cpu_flags == 0) { 1942 return (EALREADY); 1943 } 1944 1945 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1946 return (EBUSY); 1947 } 1948 1949 if (cpu[cpuid]->cpu_props != NULL) { 1950 (void) nvlist_free(cpu[cpuid]->cpu_props); 1951 cpu[cpuid]->cpu_props = NULL; 1952 } 1953 1954 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1955 1956 if (error != 0) 1957 return (error); 1958 1959 return (mp_cpu_unconfigure(cpuid)); 1960 } 1961 1962 /* 1963 * Routines for registering and de-registering cpu_setup callback functions. 1964 * 1965 * Caller's context 1966 * These routines must not be called from a driver's attach(9E) or 1967 * detach(9E) entry point. 1968 * 1969 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1970 */ 1971 1972 /* 1973 * Ideally, these would be dynamically allocated and put into a linked 1974 * list; however that is not feasible because the registration routine 1975 * has to be available before the kmem allocator is working (in fact, 1976 * it is called by the kmem allocator init code). In any case, there 1977 * are quite a few extra entries for future users. 1978 */ 1979 #define NCPU_SETUPS 20 1980 1981 struct cpu_setup { 1982 cpu_setup_func_t *func; 1983 void *arg; 1984 } cpu_setups[NCPU_SETUPS]; 1985 1986 void 1987 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1988 { 1989 int i; 1990 1991 ASSERT(MUTEX_HELD(&cpu_lock)); 1992 1993 for (i = 0; i < NCPU_SETUPS; i++) 1994 if (cpu_setups[i].func == NULL) 1995 break; 1996 if (i >= NCPU_SETUPS) 1997 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 1998 1999 cpu_setups[i].func = func; 2000 cpu_setups[i].arg = arg; 2001 } 2002 2003 void 2004 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2005 { 2006 int i; 2007 2008 ASSERT(MUTEX_HELD(&cpu_lock)); 2009 2010 for (i = 0; i < NCPU_SETUPS; i++) 2011 if ((cpu_setups[i].func == func) && 2012 (cpu_setups[i].arg == arg)) 2013 break; 2014 if (i >= NCPU_SETUPS) 2015 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2016 "deregister"); 2017 2018 cpu_setups[i].func = NULL; 2019 cpu_setups[i].arg = 0; 2020 } 2021 2022 /* 2023 * Call any state change hooks for this CPU, ignore any errors. 2024 */ 2025 void 2026 cpu_state_change_notify(int id, cpu_setup_t what) 2027 { 2028 int i; 2029 2030 ASSERT(MUTEX_HELD(&cpu_lock)); 2031 2032 for (i = 0; i < NCPU_SETUPS; i++) { 2033 if (cpu_setups[i].func != NULL) { 2034 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2035 } 2036 } 2037 } 2038 2039 /* 2040 * Call any state change hooks for this CPU, undo it if error found. 2041 */ 2042 static int 2043 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2044 { 2045 int i; 2046 int retval = 0; 2047 2048 ASSERT(MUTEX_HELD(&cpu_lock)); 2049 2050 for (i = 0; i < NCPU_SETUPS; i++) { 2051 if (cpu_setups[i].func != NULL) { 2052 retval = cpu_setups[i].func(what, id, 2053 cpu_setups[i].arg); 2054 if (retval) { 2055 for (i--; i >= 0; i--) { 2056 if (cpu_setups[i].func != NULL) 2057 cpu_setups[i].func(undo, 2058 id, cpu_setups[i].arg); 2059 } 2060 break; 2061 } 2062 } 2063 } 2064 return (retval); 2065 } 2066 2067 /* 2068 * Export information about this CPU via the kstat mechanism. 2069 */ 2070 static struct { 2071 kstat_named_t ci_state; 2072 kstat_named_t ci_state_begin; 2073 kstat_named_t ci_cpu_type; 2074 kstat_named_t ci_fpu_type; 2075 kstat_named_t ci_clock_MHz; 2076 kstat_named_t ci_chip_id; 2077 kstat_named_t ci_implementation; 2078 kstat_named_t ci_brandstr; 2079 kstat_named_t ci_core_id; 2080 kstat_named_t ci_curr_clock_Hz; 2081 kstat_named_t ci_supp_freq_Hz; 2082 #if defined(__sparcv9) 2083 kstat_named_t ci_device_ID; 2084 kstat_named_t ci_cpu_fru; 2085 #endif 2086 #if defined(__x86) 2087 kstat_named_t ci_vendorstr; 2088 kstat_named_t ci_family; 2089 kstat_named_t ci_model; 2090 kstat_named_t ci_step; 2091 kstat_named_t ci_clogid; 2092 #endif 2093 } cpu_info_template = { 2094 { "state", KSTAT_DATA_CHAR }, 2095 { "state_begin", KSTAT_DATA_LONG }, 2096 { "cpu_type", KSTAT_DATA_CHAR }, 2097 { "fpu_type", KSTAT_DATA_CHAR }, 2098 { "clock_MHz", KSTAT_DATA_LONG }, 2099 { "chip_id", KSTAT_DATA_LONG }, 2100 { "implementation", KSTAT_DATA_STRING }, 2101 { "brand", KSTAT_DATA_STRING }, 2102 { "core_id", KSTAT_DATA_LONG }, 2103 { "current_clock_Hz", KSTAT_DATA_UINT64 }, 2104 { "supported_frequencies_Hz", KSTAT_DATA_STRING }, 2105 #if defined(__sparcv9) 2106 { "device_ID", KSTAT_DATA_UINT64 }, 2107 { "cpu_fru", KSTAT_DATA_STRING }, 2108 #endif 2109 #if defined(__x86) 2110 { "vendor_id", KSTAT_DATA_STRING }, 2111 { "family", KSTAT_DATA_INT32 }, 2112 { "model", KSTAT_DATA_INT32 }, 2113 { "stepping", KSTAT_DATA_INT32 }, 2114 { "clog_id", KSTAT_DATA_INT32 }, 2115 #endif 2116 }; 2117 2118 static kmutex_t cpu_info_template_lock; 2119 2120 static int 2121 cpu_info_kstat_update(kstat_t *ksp, int rw) 2122 { 2123 cpu_t *cp = ksp->ks_private; 2124 const char *pi_state; 2125 2126 if (rw == KSTAT_WRITE) 2127 return (EACCES); 2128 2129 switch (cp->cpu_type_info.pi_state) { 2130 case P_ONLINE: 2131 pi_state = PS_ONLINE; 2132 break; 2133 case P_POWEROFF: 2134 pi_state = PS_POWEROFF; 2135 break; 2136 case P_NOINTR: 2137 pi_state = PS_NOINTR; 2138 break; 2139 case P_FAULTED: 2140 pi_state = PS_FAULTED; 2141 break; 2142 case P_SPARE: 2143 pi_state = PS_SPARE; 2144 break; 2145 case P_OFFLINE: 2146 pi_state = PS_OFFLINE; 2147 break; 2148 default: 2149 pi_state = "unknown"; 2150 } 2151 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2152 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2153 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2154 cp->cpu_type_info.pi_processor_type, 15); 2155 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2156 cp->cpu_type_info.pi_fputypes, 15); 2157 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2158 cpu_info_template.ci_chip_id.value.l = 2159 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2160 kstat_named_setstr(&cpu_info_template.ci_implementation, 2161 cp->cpu_idstr); 2162 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2163 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2164 cpu_info_template.ci_curr_clock_Hz.value.ui64 = 2165 cp->cpu_curr_clock; 2166 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz, 2167 cp->cpu_supp_freqs); 2168 #if defined(__sparcv9) 2169 cpu_info_template.ci_device_ID.value.ui64 = 2170 cpunodes[cp->cpu_id].device_id; 2171 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2172 #endif 2173 #if defined(__x86) 2174 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2175 cpuid_getvendorstr(cp)); 2176 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2177 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2178 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2179 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2180 #endif 2181 2182 return (0); 2183 } 2184 2185 static void 2186 cpu_info_kstat_create(cpu_t *cp) 2187 { 2188 zoneid_t zoneid; 2189 2190 ASSERT(MUTEX_HELD(&cpu_lock)); 2191 2192 if (pool_pset_enabled()) 2193 zoneid = GLOBAL_ZONEID; 2194 else 2195 zoneid = ALL_ZONES; 2196 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2197 NULL, "misc", KSTAT_TYPE_NAMED, 2198 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2199 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2200 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2201 #if defined(__sparcv9) 2202 cp->cpu_info_kstat->ks_data_size += 2203 strlen(cpu_fru_fmri(cp)) + 1; 2204 #endif 2205 #if defined(__x86) 2206 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2207 #endif 2208 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2209 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2210 cp->cpu_info_kstat->ks_private = cp; 2211 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2212 kstat_install(cp->cpu_info_kstat); 2213 } 2214 } 2215 2216 static void 2217 cpu_info_kstat_destroy(cpu_t *cp) 2218 { 2219 ASSERT(MUTEX_HELD(&cpu_lock)); 2220 2221 kstat_delete(cp->cpu_info_kstat); 2222 cp->cpu_info_kstat = NULL; 2223 } 2224 2225 /* 2226 * Create and install kstats for the boot CPU. 2227 */ 2228 void 2229 cpu_kstat_init(cpu_t *cp) 2230 { 2231 mutex_enter(&cpu_lock); 2232 cpu_info_kstat_create(cp); 2233 cpu_stats_kstat_create(cp); 2234 cpu_create_intrstat(cp); 2235 cpu_set_state(cp); 2236 mutex_exit(&cpu_lock); 2237 } 2238 2239 /* 2240 * Make visible to the zone that subset of the cpu information that would be 2241 * initialized when a cpu is configured (but still offline). 2242 */ 2243 void 2244 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2245 { 2246 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2247 2248 ASSERT(MUTEX_HELD(&cpu_lock)); 2249 ASSERT(pool_pset_enabled()); 2250 ASSERT(cp != NULL); 2251 2252 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2253 zone->zone_ncpus++; 2254 ASSERT(zone->zone_ncpus <= ncpus); 2255 } 2256 if (cp->cpu_info_kstat != NULL) 2257 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2258 } 2259 2260 /* 2261 * Make visible to the zone that subset of the cpu information that would be 2262 * initialized when a previously configured cpu is onlined. 2263 */ 2264 void 2265 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2266 { 2267 kstat_t *ksp; 2268 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2269 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2270 processorid_t cpun; 2271 2272 ASSERT(MUTEX_HELD(&cpu_lock)); 2273 ASSERT(pool_pset_enabled()); 2274 ASSERT(cp != NULL); 2275 ASSERT(cpu_is_active(cp)); 2276 2277 cpun = cp->cpu_id; 2278 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2279 zone->zone_ncpus_online++; 2280 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2281 } 2282 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2283 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2284 != NULL) { 2285 kstat_zone_add(ksp, zoneid); 2286 kstat_rele(ksp); 2287 } 2288 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2289 kstat_zone_add(ksp, zoneid); 2290 kstat_rele(ksp); 2291 } 2292 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2293 kstat_zone_add(ksp, zoneid); 2294 kstat_rele(ksp); 2295 } 2296 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2297 NULL) { 2298 kstat_zone_add(ksp, zoneid); 2299 kstat_rele(ksp); 2300 } 2301 } 2302 2303 /* 2304 * Update relevant kstats such that cpu is now visible to processes 2305 * executing in specified zone. 2306 */ 2307 void 2308 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2309 { 2310 cpu_visibility_configure(cp, zone); 2311 if (cpu_is_active(cp)) 2312 cpu_visibility_online(cp, zone); 2313 } 2314 2315 /* 2316 * Make invisible to the zone that subset of the cpu information that would be 2317 * torn down when a previously offlined cpu is unconfigured. 2318 */ 2319 void 2320 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2321 { 2322 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2323 2324 ASSERT(MUTEX_HELD(&cpu_lock)); 2325 ASSERT(pool_pset_enabled()); 2326 ASSERT(cp != NULL); 2327 2328 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2329 ASSERT(zone->zone_ncpus != 0); 2330 zone->zone_ncpus--; 2331 } 2332 if (cp->cpu_info_kstat) 2333 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2334 } 2335 2336 /* 2337 * Make invisible to the zone that subset of the cpu information that would be 2338 * torn down when a cpu is offlined (but still configured). 2339 */ 2340 void 2341 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2342 { 2343 kstat_t *ksp; 2344 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2345 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2346 processorid_t cpun; 2347 2348 ASSERT(MUTEX_HELD(&cpu_lock)); 2349 ASSERT(pool_pset_enabled()); 2350 ASSERT(cp != NULL); 2351 ASSERT(cpu_is_active(cp)); 2352 2353 cpun = cp->cpu_id; 2354 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2355 ASSERT(zone->zone_ncpus_online != 0); 2356 zone->zone_ncpus_online--; 2357 } 2358 2359 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2360 NULL) { 2361 kstat_zone_remove(ksp, zoneid); 2362 kstat_rele(ksp); 2363 } 2364 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2365 kstat_zone_remove(ksp, zoneid); 2366 kstat_rele(ksp); 2367 } 2368 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2369 kstat_zone_remove(ksp, zoneid); 2370 kstat_rele(ksp); 2371 } 2372 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2373 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2374 != NULL) { 2375 kstat_zone_remove(ksp, zoneid); 2376 kstat_rele(ksp); 2377 } 2378 } 2379 2380 /* 2381 * Update relevant kstats such that cpu is no longer visible to processes 2382 * executing in specified zone. 2383 */ 2384 void 2385 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2386 { 2387 if (cpu_is_active(cp)) 2388 cpu_visibility_offline(cp, zone); 2389 cpu_visibility_unconfigure(cp, zone); 2390 } 2391 2392 /* 2393 * Bind a thread to a CPU as requested. 2394 */ 2395 int 2396 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2397 int *error) 2398 { 2399 processorid_t binding; 2400 cpu_t *cp; 2401 2402 ASSERT(MUTEX_HELD(&cpu_lock)); 2403 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2404 2405 thread_lock(tp); 2406 2407 /* 2408 * Record old binding, but change the obind, which was initialized 2409 * to PBIND_NONE, only if this thread has a binding. This avoids 2410 * reporting PBIND_NONE for a process when some LWPs are bound. 2411 */ 2412 binding = tp->t_bind_cpu; 2413 if (binding != PBIND_NONE) 2414 *obind = binding; /* record old binding */ 2415 2416 if (bind == PBIND_QUERY) { 2417 thread_unlock(tp); 2418 return (0); 2419 } 2420 2421 /* 2422 * If this thread/LWP cannot be bound because of permission 2423 * problems, just note that and return success so that the 2424 * other threads/LWPs will be bound. This is the way 2425 * processor_bind() is defined to work. 2426 * 2427 * Binding will get EPERM if the thread is of system class 2428 * or hasprocperm() fails. 2429 */ 2430 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2431 *error = EPERM; 2432 thread_unlock(tp); 2433 return (0); 2434 } 2435 2436 binding = bind; 2437 if (binding != PBIND_NONE) { 2438 cp = cpu[binding]; 2439 /* 2440 * Make sure binding is in right partition. 2441 */ 2442 if (tp->t_cpupart != cp->cpu_part) { 2443 *error = EINVAL; 2444 thread_unlock(tp); 2445 return (0); 2446 } 2447 } 2448 tp->t_bind_cpu = binding; /* set new binding */ 2449 2450 /* 2451 * If there is no system-set reason for affinity, set 2452 * the t_bound_cpu field to reflect the binding. 2453 */ 2454 if (tp->t_affinitycnt == 0) { 2455 if (binding == PBIND_NONE) { 2456 /* 2457 * We may need to adjust disp_max_unbound_pri 2458 * since we're becoming unbound. 2459 */ 2460 disp_adjust_unbound_pri(tp); 2461 2462 tp->t_bound_cpu = NULL; /* set new binding */ 2463 2464 /* 2465 * Move thread to lgroup with strongest affinity 2466 * after unbinding 2467 */ 2468 if (tp->t_lgrp_affinity) 2469 lgrp_move_thread(tp, 2470 lgrp_choose(tp, tp->t_cpupart), 1); 2471 2472 if (tp->t_state == TS_ONPROC && 2473 tp->t_cpu->cpu_part != tp->t_cpupart) 2474 cpu_surrender(tp); 2475 } else { 2476 lpl_t *lpl; 2477 2478 tp->t_bound_cpu = cp; 2479 ASSERT(cp->cpu_lpl != NULL); 2480 2481 /* 2482 * Set home to lgroup with most affinity containing CPU 2483 * that thread is being bound or minimum bounding 2484 * lgroup if no affinities set 2485 */ 2486 if (tp->t_lgrp_affinity) 2487 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2488 LGRP_NONE, B_FALSE); 2489 else 2490 lpl = cp->cpu_lpl; 2491 2492 if (tp->t_lpl != lpl) { 2493 /* can't grab cpu_lock */ 2494 lgrp_move_thread(tp, lpl, 1); 2495 } 2496 2497 /* 2498 * Make the thread switch to the bound CPU. 2499 * If the thread is runnable, we need to 2500 * requeue it even if t_cpu is already set 2501 * to the right CPU, since it may be on a 2502 * kpreempt queue and need to move to a local 2503 * queue. We could check t_disp_queue to 2504 * avoid unnecessary overhead if it's already 2505 * on the right queue, but since this isn't 2506 * a performance-critical operation it doesn't 2507 * seem worth the extra code and complexity. 2508 * 2509 * If the thread is weakbound to the cpu then it will 2510 * resist the new binding request until the weak 2511 * binding drops. The cpu_surrender or requeueing 2512 * below could be skipped in such cases (since it 2513 * will have no effect), but that would require 2514 * thread_allowmigrate to acquire thread_lock so 2515 * we'll take the very occasional hit here instead. 2516 */ 2517 if (tp->t_state == TS_ONPROC) { 2518 cpu_surrender(tp); 2519 } else if (tp->t_state == TS_RUN) { 2520 cpu_t *ocp = tp->t_cpu; 2521 2522 (void) dispdeq(tp); 2523 setbackdq(tp); 2524 /* 2525 * Either on the bound CPU's disp queue now, 2526 * or swapped out or on the swap queue. 2527 */ 2528 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2529 tp->t_weakbound_cpu == ocp || 2530 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2531 != TS_LOAD); 2532 } 2533 } 2534 } 2535 2536 /* 2537 * Our binding has changed; set TP_CHANGEBIND. 2538 */ 2539 tp->t_proc_flag |= TP_CHANGEBIND; 2540 aston(tp); 2541 2542 thread_unlock(tp); 2543 2544 return (0); 2545 } 2546 2547 #if CPUSET_WORDS > 1 2548 2549 /* 2550 * Functions for implementing cpuset operations when a cpuset is more 2551 * than one word. On platforms where a cpuset is a single word these 2552 * are implemented as macros in cpuvar.h. 2553 */ 2554 2555 void 2556 cpuset_all(cpuset_t *s) 2557 { 2558 int i; 2559 2560 for (i = 0; i < CPUSET_WORDS; i++) 2561 s->cpub[i] = ~0UL; 2562 } 2563 2564 void 2565 cpuset_all_but(cpuset_t *s, uint_t cpu) 2566 { 2567 cpuset_all(s); 2568 CPUSET_DEL(*s, cpu); 2569 } 2570 2571 void 2572 cpuset_only(cpuset_t *s, uint_t cpu) 2573 { 2574 CPUSET_ZERO(*s); 2575 CPUSET_ADD(*s, cpu); 2576 } 2577 2578 int 2579 cpuset_isnull(cpuset_t *s) 2580 { 2581 int i; 2582 2583 for (i = 0; i < CPUSET_WORDS; i++) 2584 if (s->cpub[i] != 0) 2585 return (0); 2586 return (1); 2587 } 2588 2589 int 2590 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2591 { 2592 int i; 2593 2594 for (i = 0; i < CPUSET_WORDS; i++) 2595 if (s1->cpub[i] != s2->cpub[i]) 2596 return (0); 2597 return (1); 2598 } 2599 2600 uint_t 2601 cpuset_find(cpuset_t *s) 2602 { 2603 2604 uint_t i; 2605 uint_t cpu = (uint_t)-1; 2606 2607 /* 2608 * Find a cpu in the cpuset 2609 */ 2610 for (i = 0; i < CPUSET_WORDS; i++) { 2611 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2612 if (cpu != (uint_t)-1) { 2613 cpu += i * BT_NBIPUL; 2614 break; 2615 } 2616 } 2617 return (cpu); 2618 } 2619 2620 void 2621 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2622 { 2623 int i, j; 2624 uint_t bit; 2625 2626 /* 2627 * First, find the smallest cpu id in the set. 2628 */ 2629 for (i = 0; i < CPUSET_WORDS; i++) { 2630 if (s->cpub[i] != 0) { 2631 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2632 ASSERT(bit != (uint_t)-1); 2633 *smallestid = bit + (i * BT_NBIPUL); 2634 2635 /* 2636 * Now find the largest cpu id in 2637 * the set and return immediately. 2638 * Done in an inner loop to avoid 2639 * having to break out of the first 2640 * loop. 2641 */ 2642 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2643 if (s->cpub[j] != 0) { 2644 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2645 ASSERT(bit != (uint_t)-1); 2646 *largestid = bit + (j * BT_NBIPUL); 2647 ASSERT(*largestid >= *smallestid); 2648 return; 2649 } 2650 } 2651 2652 /* 2653 * If this code is reached, a 2654 * smallestid was found, but not a 2655 * largestid. The cpuset must have 2656 * been changed during the course 2657 * of this function call. 2658 */ 2659 ASSERT(0); 2660 } 2661 } 2662 *smallestid = *largestid = CPUSET_NOTINSET; 2663 } 2664 2665 #endif /* CPUSET_WORDS */ 2666 2667 /* 2668 * Unbind all user threads bound to a given CPU. 2669 */ 2670 int 2671 cpu_unbind(processorid_t cpu) 2672 { 2673 processorid_t obind; 2674 kthread_t *tp; 2675 int ret = 0; 2676 proc_t *pp; 2677 int err, berr = 0; 2678 2679 ASSERT(MUTEX_HELD(&cpu_lock)); 2680 2681 mutex_enter(&pidlock); 2682 for (pp = practive; pp != NULL; pp = pp->p_next) { 2683 mutex_enter(&pp->p_lock); 2684 tp = pp->p_tlist; 2685 /* 2686 * Skip zombies, kernel processes, and processes in 2687 * other zones, if called from a non-global zone. 2688 */ 2689 if (tp == NULL || (pp->p_flag & SSYS) || 2690 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2691 mutex_exit(&pp->p_lock); 2692 continue; 2693 } 2694 do { 2695 if (tp->t_bind_cpu != cpu) 2696 continue; 2697 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2698 if (ret == 0) 2699 ret = err; 2700 } while ((tp = tp->t_forw) != pp->p_tlist); 2701 mutex_exit(&pp->p_lock); 2702 } 2703 mutex_exit(&pidlock); 2704 if (ret == 0) 2705 ret = berr; 2706 return (ret); 2707 } 2708 2709 2710 /* 2711 * Destroy all remaining bound threads on a cpu. 2712 */ 2713 void 2714 cpu_destroy_bound_threads(cpu_t *cp) 2715 { 2716 extern id_t syscid; 2717 register kthread_id_t t, tlist, tnext; 2718 2719 /* 2720 * Destroy all remaining bound threads on the cpu. This 2721 * should include both the interrupt threads and the idle thread. 2722 * This requires some care, since we need to traverse the 2723 * thread list with the pidlock mutex locked, but thread_free 2724 * also locks the pidlock mutex. So, we collect the threads 2725 * we're going to reap in a list headed by "tlist", then we 2726 * unlock the pidlock mutex and traverse the tlist list, 2727 * doing thread_free's on the thread's. Simple, n'est pas? 2728 * Also, this depends on thread_free not mucking with the 2729 * t_next and t_prev links of the thread. 2730 */ 2731 2732 if ((t = curthread) != NULL) { 2733 2734 tlist = NULL; 2735 mutex_enter(&pidlock); 2736 do { 2737 tnext = t->t_next; 2738 if (t->t_bound_cpu == cp) { 2739 2740 /* 2741 * We've found a bound thread, carefully unlink 2742 * it out of the thread list, and add it to 2743 * our "tlist". We "know" we don't have to 2744 * worry about unlinking curthread (the thread 2745 * that is executing this code). 2746 */ 2747 t->t_next->t_prev = t->t_prev; 2748 t->t_prev->t_next = t->t_next; 2749 t->t_next = tlist; 2750 tlist = t; 2751 ASSERT(t->t_cid == syscid); 2752 /* wake up anyone blocked in thread_join */ 2753 cv_broadcast(&t->t_joincv); 2754 /* 2755 * t_lwp set by interrupt threads and not 2756 * cleared. 2757 */ 2758 t->t_lwp = NULL; 2759 /* 2760 * Pause and idle threads always have 2761 * t_state set to TS_ONPROC. 2762 */ 2763 t->t_state = TS_FREE; 2764 t->t_prev = NULL; /* Just in case */ 2765 } 2766 2767 } while ((t = tnext) != curthread); 2768 2769 mutex_exit(&pidlock); 2770 2771 2772 for (t = tlist; t != NULL; t = tnext) { 2773 tnext = t->t_next; 2774 thread_free(t); 2775 } 2776 } 2777 } 2778 2779 /* 2780 * Update the cpu_supp_freqs of this cpu. This information is returned 2781 * as part of cpu_info kstats. 2782 */ 2783 void 2784 cpu_set_supp_freqs(cpu_t *cp, const char *freqs) 2785 { 2786 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */ 2787 const char *lfreqs = clkstr; 2788 boolean_t locked = B_FALSE; 2789 2790 /* 2791 * A NULL pointer means we only support one speed. 2792 */ 2793 if (freqs == NULL) 2794 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64, 2795 cp->cpu_curr_clock); 2796 else 2797 lfreqs = freqs; 2798 2799 /* 2800 * Make sure the frequency doesn't change while a snapshot is 2801 * going on. Of course, we only need to worry about this if 2802 * the kstat exists. 2803 */ 2804 if (cp->cpu_info_kstat != NULL) { 2805 mutex_enter(cp->cpu_info_kstat->ks_lock); 2806 locked = B_TRUE; 2807 } 2808 2809 /* 2810 * Free any previously allocated string. 2811 */ 2812 if (cp->cpu_supp_freqs != NULL) 2813 kmem_free(cp->cpu_supp_freqs, strlen(cp->cpu_supp_freqs) + 1); 2814 2815 /* 2816 * Allocate the new string and set the pointer. 2817 */ 2818 cp->cpu_supp_freqs = kmem_alloc(strlen(lfreqs) + 1, KM_SLEEP); 2819 (void) strcpy(cp->cpu_supp_freqs, lfreqs); 2820 2821 /* 2822 * kstat is free to take a snapshot once again. 2823 */ 2824 if (locked) 2825 mutex_exit(cp->cpu_info_kstat->ks_lock); 2826 } 2827 2828 /* 2829 * processor_info(2) and p_online(2) status support functions 2830 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2831 * for use in communicating processor state information to userland. Kernel 2832 * subsystems should only be using the cpu_flags value directly. Subsystems 2833 * modifying cpu_flags should record the state change via a call to the 2834 * cpu_set_state(). 2835 */ 2836 2837 /* 2838 * Update the pi_state of this CPU. This function provides the CPU status for 2839 * the information returned by processor_info(2). 2840 */ 2841 void 2842 cpu_set_state(cpu_t *cpu) 2843 { 2844 ASSERT(MUTEX_HELD(&cpu_lock)); 2845 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2846 cpu->cpu_state_begin = gethrestime_sec(); 2847 pool_cpu_mod = gethrtime(); 2848 } 2849 2850 /* 2851 * Return offline/online/other status for the indicated CPU. Use only for 2852 * communication with user applications; cpu_flags provides the in-kernel 2853 * interface. 2854 */ 2855 int 2856 cpu_get_state(cpu_t *cpu) 2857 { 2858 ASSERT(MUTEX_HELD(&cpu_lock)); 2859 if (cpu->cpu_flags & CPU_POWEROFF) 2860 return (P_POWEROFF); 2861 else if (cpu->cpu_flags & CPU_FAULTED) 2862 return (P_FAULTED); 2863 else if (cpu->cpu_flags & CPU_SPARE) 2864 return (P_SPARE); 2865 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2866 return (P_OFFLINE); 2867 else if (cpu->cpu_flags & CPU_ENABLE) 2868 return (P_ONLINE); 2869 else 2870 return (P_NOINTR); 2871 } 2872 2873 /* 2874 * Return processor_info(2) state as a string. 2875 */ 2876 const char * 2877 cpu_get_state_str(cpu_t *cpu) 2878 { 2879 const char *string; 2880 2881 switch (cpu_get_state(cpu)) { 2882 case P_ONLINE: 2883 string = PS_ONLINE; 2884 break; 2885 case P_POWEROFF: 2886 string = PS_POWEROFF; 2887 break; 2888 case P_NOINTR: 2889 string = PS_NOINTR; 2890 break; 2891 case P_SPARE: 2892 string = PS_SPARE; 2893 break; 2894 case P_FAULTED: 2895 string = PS_FAULTED; 2896 break; 2897 case P_OFFLINE: 2898 string = PS_OFFLINE; 2899 break; 2900 default: 2901 string = "unknown"; 2902 break; 2903 } 2904 return (string); 2905 } 2906 2907 /* 2908 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2909 * kstats, respectively. This is done when a CPU is initialized or placed 2910 * online via p_online(2). 2911 */ 2912 static void 2913 cpu_stats_kstat_create(cpu_t *cp) 2914 { 2915 int instance = cp->cpu_id; 2916 char *module = "cpu"; 2917 char *class = "misc"; 2918 kstat_t *ksp; 2919 zoneid_t zoneid; 2920 2921 ASSERT(MUTEX_HELD(&cpu_lock)); 2922 2923 if (pool_pset_enabled()) 2924 zoneid = GLOBAL_ZONEID; 2925 else 2926 zoneid = ALL_ZONES; 2927 /* 2928 * Create named kstats 2929 */ 2930 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2931 ksp = kstat_create_zone(module, instance, (name), class, \ 2932 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2933 zoneid); \ 2934 if (ksp != NULL) { \ 2935 ksp->ks_private = cp; \ 2936 ksp->ks_update = (update_func); \ 2937 kstat_install(ksp); \ 2938 } else \ 2939 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2940 module, instance, (name)); 2941 2942 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2943 cpu_sys_stats_ks_update); 2944 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2945 cpu_vm_stats_ks_update); 2946 2947 /* 2948 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2949 */ 2950 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2951 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2952 if (ksp != NULL) { 2953 ksp->ks_update = cpu_stat_ks_update; 2954 ksp->ks_private = cp; 2955 kstat_install(ksp); 2956 } 2957 } 2958 2959 static void 2960 cpu_stats_kstat_destroy(cpu_t *cp) 2961 { 2962 char ks_name[KSTAT_STRLEN]; 2963 2964 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 2965 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 2966 2967 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 2968 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 2969 } 2970 2971 static int 2972 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 2973 { 2974 cpu_t *cp = (cpu_t *)ksp->ks_private; 2975 struct cpu_sys_stats_ks_data *csskd; 2976 cpu_sys_stats_t *css; 2977 hrtime_t msnsecs[NCMSTATES]; 2978 int i; 2979 2980 if (rw == KSTAT_WRITE) 2981 return (EACCES); 2982 2983 csskd = ksp->ks_data; 2984 css = &cp->cpu_stats.sys; 2985 2986 /* 2987 * Read CPU mstate, but compare with the last values we 2988 * received to make sure that the returned kstats never 2989 * decrease. 2990 */ 2991 2992 get_cpu_mstate(cp, msnsecs); 2993 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 2994 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 2995 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 2996 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 2997 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 2998 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 2999 3000 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 3001 sizeof (cpu_sys_stats_ks_data_template)); 3002 3003 csskd->cpu_ticks_wait.value.ui64 = 0; 3004 csskd->wait_ticks_io.value.ui64 = 0; 3005 3006 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 3007 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 3008 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 3009 csskd->cpu_ticks_idle.value.ui64 = 3010 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 3011 csskd->cpu_ticks_user.value.ui64 = 3012 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 3013 csskd->cpu_ticks_kernel.value.ui64 = 3014 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 3015 csskd->bread.value.ui64 = css->bread; 3016 csskd->bwrite.value.ui64 = css->bwrite; 3017 csskd->lread.value.ui64 = css->lread; 3018 csskd->lwrite.value.ui64 = css->lwrite; 3019 csskd->phread.value.ui64 = css->phread; 3020 csskd->phwrite.value.ui64 = css->phwrite; 3021 csskd->pswitch.value.ui64 = css->pswitch; 3022 csskd->trap.value.ui64 = css->trap; 3023 csskd->intr.value.ui64 = 0; 3024 for (i = 0; i < PIL_MAX; i++) 3025 csskd->intr.value.ui64 += css->intr[i]; 3026 csskd->syscall.value.ui64 = css->syscall; 3027 csskd->sysread.value.ui64 = css->sysread; 3028 csskd->syswrite.value.ui64 = css->syswrite; 3029 csskd->sysfork.value.ui64 = css->sysfork; 3030 csskd->sysvfork.value.ui64 = css->sysvfork; 3031 csskd->sysexec.value.ui64 = css->sysexec; 3032 csskd->readch.value.ui64 = css->readch; 3033 csskd->writech.value.ui64 = css->writech; 3034 csskd->rcvint.value.ui64 = css->rcvint; 3035 csskd->xmtint.value.ui64 = css->xmtint; 3036 csskd->mdmint.value.ui64 = css->mdmint; 3037 csskd->rawch.value.ui64 = css->rawch; 3038 csskd->canch.value.ui64 = css->canch; 3039 csskd->outch.value.ui64 = css->outch; 3040 csskd->msg.value.ui64 = css->msg; 3041 csskd->sema.value.ui64 = css->sema; 3042 csskd->namei.value.ui64 = css->namei; 3043 csskd->ufsiget.value.ui64 = css->ufsiget; 3044 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 3045 csskd->ufsipage.value.ui64 = css->ufsipage; 3046 csskd->ufsinopage.value.ui64 = css->ufsinopage; 3047 csskd->procovf.value.ui64 = css->procovf; 3048 csskd->intrthread.value.ui64 = 0; 3049 for (i = 0; i < LOCK_LEVEL; i++) 3050 csskd->intrthread.value.ui64 += css->intr[i]; 3051 csskd->intrblk.value.ui64 = css->intrblk; 3052 csskd->intrunpin.value.ui64 = css->intrunpin; 3053 csskd->idlethread.value.ui64 = css->idlethread; 3054 csskd->inv_swtch.value.ui64 = css->inv_swtch; 3055 csskd->nthreads.value.ui64 = css->nthreads; 3056 csskd->cpumigrate.value.ui64 = css->cpumigrate; 3057 csskd->xcalls.value.ui64 = css->xcalls; 3058 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3059 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3060 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3061 csskd->modload.value.ui64 = css->modload; 3062 csskd->modunload.value.ui64 = css->modunload; 3063 csskd->bawrite.value.ui64 = css->bawrite; 3064 csskd->iowait.value.ui64 = css->iowait; 3065 3066 return (0); 3067 } 3068 3069 static int 3070 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3071 { 3072 cpu_t *cp = (cpu_t *)ksp->ks_private; 3073 struct cpu_vm_stats_ks_data *cvskd; 3074 cpu_vm_stats_t *cvs; 3075 3076 if (rw == KSTAT_WRITE) 3077 return (EACCES); 3078 3079 cvs = &cp->cpu_stats.vm; 3080 cvskd = ksp->ks_data; 3081 3082 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3083 sizeof (cpu_vm_stats_ks_data_template)); 3084 cvskd->pgrec.value.ui64 = cvs->pgrec; 3085 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3086 cvskd->pgin.value.ui64 = cvs->pgin; 3087 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3088 cvskd->pgout.value.ui64 = cvs->pgout; 3089 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3090 cvskd->swapin.value.ui64 = cvs->swapin; 3091 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3092 cvskd->swapout.value.ui64 = cvs->swapout; 3093 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3094 cvskd->zfod.value.ui64 = cvs->zfod; 3095 cvskd->dfree.value.ui64 = cvs->dfree; 3096 cvskd->scan.value.ui64 = cvs->scan; 3097 cvskd->rev.value.ui64 = cvs->rev; 3098 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3099 cvskd->as_fault.value.ui64 = cvs->as_fault; 3100 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3101 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3102 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3103 cvskd->softlock.value.ui64 = cvs->softlock; 3104 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3105 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3106 cvskd->execpgin.value.ui64 = cvs->execpgin; 3107 cvskd->execpgout.value.ui64 = cvs->execpgout; 3108 cvskd->execfree.value.ui64 = cvs->execfree; 3109 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3110 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3111 cvskd->anonfree.value.ui64 = cvs->anonfree; 3112 cvskd->fspgin.value.ui64 = cvs->fspgin; 3113 cvskd->fspgout.value.ui64 = cvs->fspgout; 3114 cvskd->fsfree.value.ui64 = cvs->fsfree; 3115 3116 return (0); 3117 } 3118 3119 static int 3120 cpu_stat_ks_update(kstat_t *ksp, int rw) 3121 { 3122 cpu_stat_t *cso; 3123 cpu_t *cp; 3124 int i; 3125 hrtime_t msnsecs[NCMSTATES]; 3126 3127 cso = (cpu_stat_t *)ksp->ks_data; 3128 cp = (cpu_t *)ksp->ks_private; 3129 3130 if (rw == KSTAT_WRITE) 3131 return (EACCES); 3132 3133 /* 3134 * Read CPU mstate, but compare with the last values we 3135 * received to make sure that the returned kstats never 3136 * decrease. 3137 */ 3138 3139 get_cpu_mstate(cp, msnsecs); 3140 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3141 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3142 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3143 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3144 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3145 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3146 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3147 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3148 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3149 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3150 cso->cpu_sysinfo.wait[W_IO] = 0; 3151 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3152 cso->cpu_sysinfo.wait[W_PIO] = 0; 3153 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3154 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3155 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3156 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3157 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3158 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3159 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3160 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3161 cso->cpu_sysinfo.intr = 0; 3162 for (i = 0; i < PIL_MAX; i++) 3163 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3164 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3165 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3166 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3167 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3168 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3169 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3170 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3171 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3172 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3173 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3174 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3175 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3176 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3177 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3178 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3179 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3180 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3181 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3182 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3183 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3184 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3185 cso->cpu_sysinfo.inodeovf = 0; 3186 cso->cpu_sysinfo.fileovf = 0; 3187 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3188 cso->cpu_sysinfo.intrthread = 0; 3189 for (i = 0; i < LOCK_LEVEL; i++) 3190 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3191 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3192 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3193 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3194 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3195 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3196 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3197 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3198 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3199 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3200 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3201 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3202 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3203 cso->cpu_sysinfo.rw_enters = 0; 3204 cso->cpu_sysinfo.win_uo_cnt = 0; 3205 cso->cpu_sysinfo.win_uu_cnt = 0; 3206 cso->cpu_sysinfo.win_so_cnt = 0; 3207 cso->cpu_sysinfo.win_su_cnt = 0; 3208 cso->cpu_sysinfo.win_suo_cnt = 0; 3209 3210 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3211 cso->cpu_syswait.swap = 0; 3212 cso->cpu_syswait.physio = 0; 3213 3214 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3215 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3216 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3217 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3218 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3219 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3220 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3221 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3222 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3223 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3224 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3225 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3226 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3227 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3228 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3229 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3230 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3231 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3232 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3233 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3234 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3235 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3236 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3237 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3238 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3239 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3240 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3241 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3242 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3243 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3244 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3245 3246 return (0); 3247 } 3248