xref: /titanic_51/usr/src/uts/common/io/nge/nge_main.c (revision fc3af78a71855c71878866a294572d00e6720533)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 
28 #include "nge.h"
29 
30 /*
31  * Describes the chip's DMA engine
32  */
33 
34 static ddi_dma_attr_t hot_dma_attr = {
35 	DMA_ATTR_V0,			/* dma_attr version	*/
36 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
37 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
38 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
39 	0x0000000000000010ull,		/* dma_attr_align	*/
40 	0x00000FFF,			/* dma_attr_burstsizes	*/
41 	0x00000001,			/* dma_attr_minxfer	*/
42 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
43 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
44 	1,				/* dma_attr_sgllen 	*/
45 	0x00000001,			/* dma_attr_granular 	*/
46 	0
47 };
48 
49 static ddi_dma_attr_t hot_tx_dma_attr = {
50 	DMA_ATTR_V0,			/* dma_attr version	*/
51 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
52 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
53 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
54 	0x0000000000000010ull,		/* dma_attr_align	*/
55 	0x00000FFF,			/* dma_attr_burstsizes	*/
56 	0x00000001,			/* dma_attr_minxfer	*/
57 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
58 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
59 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
60 	1,				/* dma_attr_granular 	*/
61 	0
62 };
63 
64 static ddi_dma_attr_t sum_dma_attr = {
65 	DMA_ATTR_V0,			/* dma_attr version	*/
66 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
67 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
68 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
69 	0x0000000000000010ull,		/* dma_attr_align	*/
70 	0x00000FFF,			/* dma_attr_burstsizes	*/
71 	0x00000001,			/* dma_attr_minxfer	*/
72 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
73 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
74 	1,				/* dma_attr_sgllen 	*/
75 	0x00000001,			/* dma_attr_granular 	*/
76 	0
77 };
78 
79 static ddi_dma_attr_t sum_tx_dma_attr = {
80 	DMA_ATTR_V0,			/* dma_attr version	*/
81 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
82 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
83 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
84 	0x0000000000000010ull,		/* dma_attr_align	*/
85 	0x00000FFF,			/* dma_attr_burstsizes	*/
86 	0x00000001,			/* dma_attr_minxfer	*/
87 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
88 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
89 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
90 	1,				/* dma_attr_granular 	*/
91 	0
92 };
93 
94 /*
95  * DMA access attributes for data.
96  */
97 ddi_device_acc_attr_t nge_data_accattr = {
98 	DDI_DEVICE_ATTR_V0,
99 	DDI_STRUCTURE_LE_ACC,
100 	DDI_STRICTORDER_ACC,
101 	DDI_DEFAULT_ACC
102 };
103 
104 /*
105  * DMA access attributes for descriptors.
106  */
107 static ddi_device_acc_attr_t nge_desc_accattr = {
108 	DDI_DEVICE_ATTR_V0,
109 	DDI_STRUCTURE_LE_ACC,
110 	DDI_STRICTORDER_ACC,
111 	DDI_DEFAULT_ACC
112 };
113 
114 /*
115  * PIO access attributes for registers
116  */
117 static ddi_device_acc_attr_t nge_reg_accattr = {
118 	DDI_DEVICE_ATTR_V0,
119 	DDI_STRUCTURE_LE_ACC,
120 	DDI_STRICTORDER_ACC,
121 	DDI_DEFAULT_ACC
122 };
123 
124 /*
125  * NIC DESC MODE 2
126  */
127 
128 static const nge_desc_attr_t nge_sum_desc = {
129 
130 	sizeof (sum_rx_bd),
131 	sizeof (sum_tx_bd),
132 	&sum_dma_attr,
133 	&sum_tx_dma_attr,
134 	nge_sum_rxd_fill,
135 	nge_sum_rxd_check,
136 	nge_sum_txd_fill,
137 	nge_sum_txd_check,
138 };
139 
140 /*
141  * NIC DESC MODE 3
142  */
143 
144 static const nge_desc_attr_t nge_hot_desc = {
145 
146 	sizeof (hot_rx_bd),
147 	sizeof (hot_tx_bd),
148 	&hot_dma_attr,
149 	&hot_tx_dma_attr,
150 	nge_hot_rxd_fill,
151 	nge_hot_rxd_check,
152 	nge_hot_txd_fill,
153 	nge_hot_txd_check,
154 };
155 
156 static char nge_ident[] = "nVidia 1Gb Ethernet";
157 static char clsize_propname[] = "cache-line-size";
158 static char latency_propname[] = "latency-timer";
159 static char debug_propname[]	= "nge-debug-flags";
160 static char intr_moderation[] = "intr-moderation";
161 static char rx_data_hw[] = "rx-data-hw";
162 static char rx_prd_lw[] = "rx-prd-lw";
163 static char rx_prd_hw[] = "rx-prd-hw";
164 static char sw_intr_intv[] = "sw-intr-intvl";
165 static char nge_desc_mode[] = "desc-mode";
166 static char default_mtu[] = "default_mtu";
167 static char low_memory_mode[] = "minimal-memory-usage";
168 static char mac_addr_reversion[] = "mac-addr-reversion";
169 extern kmutex_t nge_log_mutex[1];
170 
171 static int		nge_m_start(void *);
172 static void		nge_m_stop(void *);
173 static int		nge_m_promisc(void *, boolean_t);
174 static int		nge_m_multicst(void *, boolean_t, const uint8_t *);
175 static int		nge_m_unicst(void *, const uint8_t *);
176 static void		nge_m_ioctl(void *, queue_t *, mblk_t *);
177 static boolean_t	nge_m_getcapab(void *, mac_capab_t, void *);
178 static int		nge_m_setprop(void *, const char *, mac_prop_id_t,
179 	uint_t, const void *);
180 static int		nge_m_getprop(void *, const char *, mac_prop_id_t,
181 	uint_t, uint_t, void *, uint_t *);
182 static int		nge_set_priv_prop(nge_t *, const char *, uint_t,
183 	const void *);
184 static int		nge_get_priv_prop(nge_t *, const char *, uint_t,
185 	uint_t, void *);
186 
187 #define		NGE_M_CALLBACK_FLAGS\
188 		(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
189 
190 static mac_callbacks_t nge_m_callbacks = {
191 	NGE_M_CALLBACK_FLAGS,
192 	nge_m_stat,
193 	nge_m_start,
194 	nge_m_stop,
195 	nge_m_promisc,
196 	nge_m_multicst,
197 	nge_m_unicst,
198 	nge_m_tx,
199 	NULL,
200 	nge_m_ioctl,
201 	nge_m_getcapab,
202 	NULL,
203 	NULL,
204 	nge_m_setprop,
205 	nge_m_getprop
206 };
207 
208 mac_priv_prop_t nge_priv_props[] = {
209 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
210 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
211 	{"_recv_max_packet", MAC_PROP_PERM_RW},
212 	{"_poll_quiet_time", MAC_PROP_PERM_RW},
213 	{"_poll_busy_time", MAC_PROP_PERM_RW},
214 	{"_rx_intr_hwater", MAC_PROP_PERM_RW},
215 	{"_rx_intr_lwater", MAC_PROP_PERM_RW},
216 	{"_adv_pause_cap", MAC_PROP_PERM_RW},
217 	{"_adv_asym_pause_cap", MAC_PROP_PERM_RW},
218 	{"_tx_n_intr", MAC_PROP_PERM_RW}
219 };
220 
221 #define	NGE_MAX_PRIV_PROPS \
222 	(sizeof (nge_priv_props)/sizeof (mac_priv_prop_t))
223 
224 static int nge_add_intrs(nge_t *, int);
225 static void nge_rem_intrs(nge_t *);
226 static int nge_register_intrs_and_init_locks(nge_t *);
227 
228 /*
229  * NGE MSI tunable:
230  */
231 boolean_t nge_enable_msi = B_FALSE;
232 
233 static enum ioc_reply
234 nge_set_loop_mode(nge_t *ngep, uint32_t mode)
235 {
236 	/*
237 	 * If the mode isn't being changed, there's nothing to do ...
238 	 */
239 	if (mode == ngep->param_loop_mode)
240 		return (IOC_ACK);
241 
242 	/*
243 	 * Validate the requested mode and prepare a suitable message
244 	 * to explain the link down/up cycle that the change will
245 	 * probably induce ...
246 	 */
247 	switch (mode) {
248 	default:
249 		return (IOC_INVAL);
250 
251 	case NGE_LOOP_NONE:
252 	case NGE_LOOP_EXTERNAL_100:
253 	case NGE_LOOP_EXTERNAL_10:
254 	case NGE_LOOP_INTERNAL_PHY:
255 		break;
256 	}
257 
258 	/*
259 	 * All OK; tell the caller to reprogram
260 	 * the PHY and/or MAC for the new mode ...
261 	 */
262 	ngep->param_loop_mode = mode;
263 	return (IOC_RESTART_ACK);
264 }
265 
266 #undef	NGE_DBG
267 #define	NGE_DBG		NGE_DBG_INIT
268 
269 /*
270  * Utility routine to carve a slice off a chunk of allocated memory,
271  * updating the chunk descriptor accordingly.  The size of the slice
272  * is given by the product of the <qty> and <size> parameters.
273  */
274 void
275 nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
276     uint32_t qty, uint32_t size)
277 {
278 	size_t totsize;
279 
280 	totsize = qty*size;
281 	ASSERT(size > 0);
282 	ASSERT(totsize <= chunk->alength);
283 
284 	*slice = *chunk;
285 	slice->nslots = qty;
286 	slice->size = size;
287 	slice->alength = totsize;
288 
289 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
290 	chunk->alength -= totsize;
291 	chunk->offset += totsize;
292 	chunk->cookie.dmac_laddress += totsize;
293 	chunk->cookie.dmac_size -= totsize;
294 }
295 
296 /*
297  * Allocate an area of memory and a DMA handle for accessing it
298  */
299 int
300 nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
301     uint_t dma_flags, dma_area_t *dma_p)
302 {
303 	int err;
304 	caddr_t va;
305 
306 	NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
307 	    (void *)ngep, memsize, attr_p, dma_flags, dma_p));
308 	/*
309 	 * Allocate handle
310 	 */
311 	err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
312 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
313 	if (err != DDI_SUCCESS)
314 		goto fail;
315 
316 	/*
317 	 * Allocate memory
318 	 */
319 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
320 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
321 	    DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
322 	if (err != DDI_SUCCESS)
323 		goto fail;
324 
325 	/*
326 	 * Bind the two together
327 	 */
328 	dma_p->mem_va = va;
329 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
330 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
331 	    &dma_p->cookie, &dma_p->ncookies);
332 
333 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
334 		goto fail;
335 
336 	dma_p->nslots = ~0U;
337 	dma_p->size = ~0U;
338 	dma_p->offset = 0;
339 
340 	return (DDI_SUCCESS);
341 
342 fail:
343 	nge_free_dma_mem(dma_p);
344 	NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
345 
346 	return (DDI_FAILURE);
347 }
348 
349 /*
350  * Free one allocated area of DMAable memory
351  */
352 void
353 nge_free_dma_mem(dma_area_t *dma_p)
354 {
355 	if (dma_p->dma_hdl != NULL) {
356 		if (dma_p->ncookies) {
357 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
358 			dma_p->ncookies = 0;
359 		}
360 	}
361 	if (dma_p->acc_hdl != NULL) {
362 		ddi_dma_mem_free(&dma_p->acc_hdl);
363 		dma_p->acc_hdl = NULL;
364 	}
365 	if (dma_p->dma_hdl != NULL) {
366 		ddi_dma_free_handle(&dma_p->dma_hdl);
367 		dma_p->dma_hdl = NULL;
368 	}
369 }
370 
371 #define	ALLOC_TX_BUF	0x1
372 #define	ALLOC_TX_DESC	0x2
373 #define	ALLOC_RX_DESC	0x4
374 
375 int
376 nge_alloc_bufs(nge_t *ngep)
377 {
378 	int err;
379 	int split;
380 	int progress;
381 	size_t txbuffsize;
382 	size_t rxdescsize;
383 	size_t txdescsize;
384 
385 	txbuffsize = ngep->tx_desc * ngep->buf_size;
386 	rxdescsize = ngep->rx_desc;
387 	txdescsize = ngep->tx_desc;
388 	rxdescsize *= ngep->desc_attr.rxd_size;
389 	txdescsize *= ngep->desc_attr.txd_size;
390 	progress = 0;
391 
392 	NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
393 	/*
394 	 * Allocate memory & handles for TX buffers
395 	 */
396 	ASSERT((txbuffsize % ngep->nge_split) == 0);
397 	for (split = 0; split < ngep->nge_split; ++split) {
398 		err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
399 		    &nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
400 		    &ngep->send->buf[split]);
401 		if (err != DDI_SUCCESS)
402 			goto fail;
403 	}
404 
405 	progress |= ALLOC_TX_BUF;
406 
407 	/*
408 	 * Allocate memory & handles for receive return rings and
409 	 * buffer (producer) descriptor rings
410 	 */
411 	err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
412 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
413 	if (err != DDI_SUCCESS)
414 		goto fail;
415 	progress |= ALLOC_RX_DESC;
416 
417 	/*
418 	 * Allocate memory & handles for TX descriptor rings,
419 	 */
420 	err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
421 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
422 	if (err != DDI_SUCCESS)
423 		goto fail;
424 	return (DDI_SUCCESS);
425 
426 fail:
427 	if (progress & ALLOC_RX_DESC)
428 		nge_free_dma_mem(&ngep->recv->desc);
429 	if (progress & ALLOC_TX_BUF) {
430 		for (split = 0; split < ngep->nge_split; ++split)
431 			nge_free_dma_mem(&ngep->send->buf[split]);
432 	}
433 
434 	return (DDI_FAILURE);
435 }
436 
437 /*
438  * This routine frees the transmit and receive buffers and descriptors.
439  * Make sure the chip is stopped before calling it!
440  */
441 void
442 nge_free_bufs(nge_t *ngep)
443 {
444 	int split;
445 
446 	NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
447 
448 	nge_free_dma_mem(&ngep->recv->desc);
449 	nge_free_dma_mem(&ngep->send->desc);
450 
451 	for (split = 0; split < ngep->nge_split; ++split)
452 		nge_free_dma_mem(&ngep->send->buf[split]);
453 }
454 
455 /*
456  * Clean up initialisation done above before the memory is freed
457  */
458 static void
459 nge_fini_send_ring(nge_t *ngep)
460 {
461 	uint32_t slot;
462 	size_t dmah_num;
463 	send_ring_t *srp;
464 	sw_tx_sbd_t *ssbdp;
465 
466 	srp = ngep->send;
467 	ssbdp = srp->sw_sbds;
468 
469 	NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
470 
471 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
472 
473 	for (slot = 0; slot < dmah_num; ++slot) {
474 		if (srp->dmahndl[slot].hndl) {
475 			(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
476 			ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
477 			srp->dmahndl[slot].hndl = NULL;
478 			srp->dmahndl[slot].next = NULL;
479 		}
480 	}
481 
482 	srp->dmah_free.head = NULL;
483 	srp->dmah_free.tail = NULL;
484 
485 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
486 
487 }
488 
489 /*
490  * Initialise the specified Send Ring, using the information in the
491  * <dma_area> descriptors that it contains to set up all the other
492  * fields. This routine should be called only once for each ring.
493  */
494 static int
495 nge_init_send_ring(nge_t *ngep)
496 {
497 	size_t dmah_num;
498 	uint32_t nslots;
499 	uint32_t err;
500 	uint32_t slot;
501 	uint32_t split;
502 	send_ring_t *srp;
503 	sw_tx_sbd_t *ssbdp;
504 	dma_area_t desc;
505 	dma_area_t pbuf;
506 
507 	srp = ngep->send;
508 	srp->desc.nslots = ngep->tx_desc;
509 	nslots = srp->desc.nslots;
510 
511 	NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
512 	/*
513 	 * Other one-off initialisation of per-ring data
514 	 */
515 	srp->ngep = ngep;
516 
517 	/*
518 	 * Allocate the array of s/w Send Buffer Descriptors
519 	 */
520 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
521 	srp->sw_sbds = ssbdp;
522 
523 	/*
524 	 * Now initialise each array element once and for all
525 	 */
526 	desc = srp->desc;
527 	for (split = 0; split < ngep->nge_split; ++split) {
528 		pbuf = srp->buf[split];
529 		for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
530 			nge_slice_chunk(&ssbdp->desc, &desc, 1,
531 			    ngep->desc_attr.txd_size);
532 			nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
533 			    ngep->buf_size);
534 		}
535 		ASSERT(pbuf.alength == 0);
536 	}
537 	ASSERT(desc.alength == 0);
538 
539 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
540 
541 	/* preallocate dma handles for tx buffer */
542 	for (slot = 0; slot < dmah_num; ++slot) {
543 
544 		err = ddi_dma_alloc_handle(ngep->devinfo,
545 		    ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
546 		    NULL, &srp->dmahndl[slot].hndl);
547 
548 		if (err != DDI_SUCCESS) {
549 			nge_fini_send_ring(ngep);
550 			nge_error(ngep,
551 			    "nge_init_send_ring: alloc dma handle fails");
552 			return (DDI_FAILURE);
553 		}
554 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
555 	}
556 
557 	srp->dmah_free.head = srp->dmahndl;
558 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
559 	srp->dmah_free.tail->next = NULL;
560 
561 	return (DDI_SUCCESS);
562 }
563 
564 /*
565  * Intialize the tx recycle pointer and tx sending pointer of tx ring
566  * and set the type of tx's data descriptor by default.
567  */
568 static void
569 nge_reinit_send_ring(nge_t *ngep)
570 {
571 	size_t dmah_num;
572 	uint32_t slot;
573 	send_ring_t *srp;
574 	sw_tx_sbd_t *ssbdp;
575 
576 	srp = ngep->send;
577 
578 	/*
579 	 * Reinitialise control variables ...
580 	 */
581 
582 	srp->tx_hwmark = NGE_DESC_MIN;
583 	srp->tx_lwmark = NGE_DESC_MIN;
584 
585 	srp->tx_next = 0;
586 	srp->tx_free = srp->desc.nslots;
587 	srp->tc_next = 0;
588 
589 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
590 
591 	for (slot = 0; slot - dmah_num != 0; ++slot)
592 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
593 
594 	srp->dmah_free.head = srp->dmahndl;
595 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
596 	srp->dmah_free.tail->next = NULL;
597 
598 	/*
599 	 * Zero and sync all the h/w Send Buffer Descriptors
600 	 */
601 	for (slot = 0; slot < srp->desc.nslots; ++slot) {
602 		ssbdp = &srp->sw_sbds[slot];
603 		ssbdp->flags = HOST_OWN;
604 	}
605 
606 	DMA_ZERO(srp->desc);
607 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
608 }
609 
610 /*
611  * Initialize the slot number of rx's ring
612  */
613 static void
614 nge_init_recv_ring(nge_t *ngep)
615 {
616 	recv_ring_t *rrp;
617 
618 	rrp = ngep->recv;
619 	rrp->desc.nslots = ngep->rx_desc;
620 	rrp->ngep = ngep;
621 }
622 
623 /*
624  * Intialize the rx recycle pointer and rx sending pointer of rx ring
625  */
626 static void
627 nge_reinit_recv_ring(nge_t *ngep)
628 {
629 	recv_ring_t *rrp;
630 
631 	rrp = ngep->recv;
632 
633 	/*
634 	 * Reinitialise control variables ...
635 	 */
636 	rrp->prod_index = 0;
637 	/*
638 	 * Zero and sync all the h/w Send Buffer Descriptors
639 	 */
640 	DMA_ZERO(rrp->desc);
641 	DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
642 }
643 
644 /*
645  * Clean up initialisation done above before the memory is freed
646  */
647 static void
648 nge_fini_buff_ring(nge_t *ngep)
649 {
650 	uint32_t i;
651 	buff_ring_t *brp;
652 	dma_area_t *bufp;
653 	sw_rx_sbd_t *bsbdp;
654 
655 	brp = ngep->buff;
656 	bsbdp = brp->sw_rbds;
657 
658 	NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
659 
660 	mutex_enter(brp->recycle_lock);
661 	brp->buf_sign++;
662 	mutex_exit(brp->recycle_lock);
663 	for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
664 		if (bsbdp->bufp) {
665 			if (bsbdp->bufp->mp)
666 				freemsg(bsbdp->bufp->mp);
667 			nge_free_dma_mem(bsbdp->bufp);
668 			kmem_free(bsbdp->bufp, sizeof (dma_area_t));
669 			bsbdp->bufp = NULL;
670 		}
671 	}
672 	while (brp->free_list != NULL) {
673 		bufp = brp->free_list;
674 		brp->free_list = bufp->next;
675 		bufp->next = NULL;
676 		if (bufp->mp)
677 			freemsg(bufp->mp);
678 		nge_free_dma_mem(bufp);
679 		kmem_free(bufp, sizeof (dma_area_t));
680 	}
681 	while (brp->recycle_list != NULL) {
682 		bufp = brp->recycle_list;
683 		brp->recycle_list = bufp->next;
684 		bufp->next = NULL;
685 		if (bufp->mp)
686 			freemsg(bufp->mp);
687 		nge_free_dma_mem(bufp);
688 		kmem_free(bufp, sizeof (dma_area_t));
689 	}
690 
691 
692 	kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
693 	brp->sw_rbds = NULL;
694 }
695 
696 /*
697  * Intialize the Rx's data ring and free ring
698  */
699 static int
700 nge_init_buff_ring(nge_t *ngep)
701 {
702 	uint32_t err;
703 	uint32_t slot;
704 	uint32_t nslots_buff;
705 	uint32_t nslots_recv;
706 	buff_ring_t *brp;
707 	recv_ring_t *rrp;
708 	dma_area_t desc;
709 	dma_area_t *bufp;
710 	sw_rx_sbd_t *bsbdp;
711 
712 	rrp = ngep->recv;
713 	brp = ngep->buff;
714 	brp->nslots = ngep->rx_buf;
715 	brp->rx_bcopy = B_FALSE;
716 	nslots_recv = rrp->desc.nslots;
717 	nslots_buff = brp->nslots;
718 	brp->ngep = ngep;
719 
720 	NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
721 
722 	/*
723 	 * Allocate the array of s/w Recv Buffer Descriptors
724 	 */
725 	bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
726 	brp->sw_rbds = bsbdp;
727 	brp->free_list = NULL;
728 	brp->recycle_list = NULL;
729 	for (slot = 0; slot < nslots_buff; ++slot) {
730 		bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
731 		err = nge_alloc_dma_mem(ngep, (ngep->buf_size
732 		    + NGE_HEADROOM),
733 		    &nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
734 		if (err != DDI_SUCCESS) {
735 			kmem_free(bufp, sizeof (dma_area_t));
736 			return (DDI_FAILURE);
737 		}
738 
739 		bufp->alength -= NGE_HEADROOM;
740 		bufp->offset += NGE_HEADROOM;
741 		bufp->private = (caddr_t)ngep;
742 		bufp->rx_recycle.free_func = nge_recv_recycle;
743 		bufp->rx_recycle.free_arg = (caddr_t)bufp;
744 		bufp->signature = brp->buf_sign;
745 		bufp->rx_delivered = B_FALSE;
746 		bufp->mp = desballoc(DMA_VPTR(*bufp),
747 		    ngep->buf_size + NGE_HEADROOM,
748 		    0, &bufp->rx_recycle);
749 
750 		if (bufp->mp == NULL) {
751 			return (DDI_FAILURE);
752 		}
753 		bufp->next = brp->free_list;
754 		brp->free_list = bufp;
755 	}
756 
757 	/*
758 	 * Now initialise each array element once and for all
759 	 */
760 	desc = rrp->desc;
761 	for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
762 		nge_slice_chunk(&bsbdp->desc, &desc, 1,
763 		    ngep->desc_attr.rxd_size);
764 		bufp = brp->free_list;
765 		brp->free_list = bufp->next;
766 		bsbdp->bufp = bufp;
767 		bsbdp->flags = CONTROLER_OWN;
768 		bufp->next = NULL;
769 	}
770 
771 	ASSERT(desc.alength == 0);
772 	return (DDI_SUCCESS);
773 }
774 
775 /*
776  * Fill the host address of data in rx' descriptor
777  * and initialize free pointers of rx free ring
778  */
779 static int
780 nge_reinit_buff_ring(nge_t *ngep)
781 {
782 	uint32_t slot;
783 	uint32_t nslots_recv;
784 	buff_ring_t *brp;
785 	recv_ring_t *rrp;
786 	sw_rx_sbd_t *bsbdp;
787 	void *hw_bd_p;
788 
789 	brp = ngep->buff;
790 	rrp = ngep->recv;
791 	bsbdp = brp->sw_rbds;
792 	nslots_recv = rrp->desc.nslots;
793 	for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
794 		hw_bd_p = DMA_VPTR(bsbdp->desc);
795 	/*
796 	 * There is a scenario: When the traffic of small tcp
797 	 * packet is heavy, suspending the tcp traffic will
798 	 * cause the preallocated buffers for rx not to be
799 	 * released in time by tcp taffic and cause rx's buffer
800 	 * pointers not to be refilled in time.
801 	 *
802 	 * At this point, if we reinitialize the driver, the bufp
803 	 * pointer for rx's traffic will be NULL.
804 	 * So the result of the reinitializion fails.
805 	 */
806 		if (bsbdp->bufp == NULL)
807 			return (DDI_FAILURE);
808 
809 		ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
810 		    bsbdp->bufp->alength);
811 	}
812 	return (DDI_SUCCESS);
813 }
814 
815 static void
816 nge_init_ring_param_lock(nge_t *ngep)
817 {
818 	buff_ring_t *brp;
819 	send_ring_t *srp;
820 
821 	srp = ngep->send;
822 	brp = ngep->buff;
823 
824 	/* Init the locks for send ring */
825 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
826 	    DDI_INTR_PRI(ngep->intr_pri));
827 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
828 	    DDI_INTR_PRI(ngep->intr_pri));
829 	mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
830 	    DDI_INTR_PRI(ngep->intr_pri));
831 
832 	/* Init parameters of buffer ring */
833 	brp->free_list = NULL;
834 	brp->recycle_list = NULL;
835 	brp->rx_hold = 0;
836 	brp->buf_sign = 0;
837 
838 	/* Init recycle list lock */
839 	mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
840 	    DDI_INTR_PRI(ngep->intr_pri));
841 }
842 
843 int
844 nge_init_rings(nge_t *ngep)
845 {
846 	uint32_t err;
847 
848 	err = nge_init_send_ring(ngep);
849 	if (err != DDI_SUCCESS) {
850 		return (err);
851 	}
852 	nge_init_recv_ring(ngep);
853 
854 	err = nge_init_buff_ring(ngep);
855 	if (err != DDI_SUCCESS) {
856 		nge_fini_send_ring(ngep);
857 		return (DDI_FAILURE);
858 	}
859 
860 	return (err);
861 }
862 
863 static int
864 nge_reinit_ring(nge_t *ngep)
865 {
866 	int err;
867 
868 	nge_reinit_recv_ring(ngep);
869 	nge_reinit_send_ring(ngep);
870 	err = nge_reinit_buff_ring(ngep);
871 	return (err);
872 }
873 
874 
875 void
876 nge_fini_rings(nge_t *ngep)
877 {
878 	/*
879 	 * For receive ring, nothing need to be finished.
880 	 * So only finish buffer ring and send ring here.
881 	 */
882 	nge_fini_buff_ring(ngep);
883 	nge_fini_send_ring(ngep);
884 }
885 
886 /*
887  * Loopback ioctl code
888  */
889 
890 static lb_property_t loopmodes[] = {
891 	{ normal,	"normal",	NGE_LOOP_NONE		},
892 	{ external,	"100Mbps",	NGE_LOOP_EXTERNAL_100	},
893 	{ external,	"10Mbps",	NGE_LOOP_EXTERNAL_10	},
894 	{ internal,	"PHY",		NGE_LOOP_INTERNAL_PHY	},
895 };
896 
897 enum ioc_reply
898 nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
899 {
900 	int cmd;
901 	uint32_t *lbmp;
902 	lb_info_sz_t *lbsp;
903 	lb_property_t *lbpp;
904 
905 	/*
906 	 * Validate format of ioctl
907 	 */
908 	if (mp->b_cont == NULL)
909 		return (IOC_INVAL);
910 
911 	cmd = iocp->ioc_cmd;
912 
913 	switch (cmd) {
914 	default:
915 		return (IOC_INVAL);
916 
917 	case LB_GET_INFO_SIZE:
918 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
919 			return (IOC_INVAL);
920 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
921 		*lbsp = sizeof (loopmodes);
922 		return (IOC_REPLY);
923 
924 	case LB_GET_INFO:
925 		if (iocp->ioc_count != sizeof (loopmodes))
926 			return (IOC_INVAL);
927 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
928 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
929 		return (IOC_REPLY);
930 
931 	case LB_GET_MODE:
932 		if (iocp->ioc_count != sizeof (uint32_t))
933 			return (IOC_INVAL);
934 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
935 		*lbmp = ngep->param_loop_mode;
936 		return (IOC_REPLY);
937 
938 	case LB_SET_MODE:
939 		if (iocp->ioc_count != sizeof (uint32_t))
940 			return (IOC_INVAL);
941 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
942 		return (nge_set_loop_mode(ngep, *lbmp));
943 	}
944 }
945 
946 #undef	NGE_DBG
947 #define	NGE_DBG	NGE_DBG_NEMO
948 
949 
950 static void
951 nge_check_desc_prop(nge_t *ngep)
952 {
953 	if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
954 		ngep->desc_mode = DESC_HOT;
955 
956 	if (ngep->desc_mode == DESC_OFFLOAD)	{
957 
958 		ngep->desc_attr = nge_sum_desc;
959 
960 	}	else if (ngep->desc_mode == DESC_HOT)	{
961 
962 		ngep->desc_attr = nge_hot_desc;
963 	}
964 }
965 
966 /*
967  * nge_get_props -- get the parameters to tune the driver
968  */
969 static void
970 nge_get_props(nge_t *ngep)
971 {
972 	chip_info_t *infop;
973 	dev_info_t *devinfo;
974 	nge_dev_spec_param_t *dev_param_p;
975 
976 	devinfo = ngep->devinfo;
977 	infop = (chip_info_t *)&ngep->chipinfo;
978 	dev_param_p = &ngep->dev_spec_param;
979 
980 	infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
981 	    DDI_PROP_DONTPASS, clsize_propname, 32);
982 
983 	infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
984 	    DDI_PROP_DONTPASS, latency_propname, 64);
985 	ngep->intr_moderation = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
986 	    DDI_PROP_DONTPASS, intr_moderation, NGE_SET);
987 	ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
988 	    DDI_PROP_DONTPASS, rx_data_hw, 0x20);
989 	ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
990 	    DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
991 	ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
992 	    DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
993 
994 	ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
995 	    DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
996 	ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
997 	    DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
998 	ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
999 	    DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
1000 	ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
1001 	    DDI_PROP_DONTPASS, low_memory_mode, 0);
1002 	ngep->mac_addr_reversion = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
1003 	    DDI_PROP_DONTPASS, mac_addr_reversion, 0);
1004 
1005 	if (dev_param_p->jumbo) {
1006 		ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
1007 		    DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
1008 	} else
1009 		ngep->default_mtu = ETHERMTU;
1010 
1011 	if (ngep->default_mtu > ETHERMTU &&
1012 	    ngep->default_mtu <= NGE_MTU_2500) {
1013 		ngep->buf_size = NGE_JB2500_BUFSZ;
1014 		ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1015 		ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1016 		ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1017 		ngep->nge_split = NGE_SPLIT_256;
1018 	} else if (ngep->default_mtu > NGE_MTU_2500 &&
1019 	    ngep->default_mtu <= NGE_MTU_4500) {
1020 		ngep->buf_size = NGE_JB4500_BUFSZ;
1021 		ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1022 		ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1023 		ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1024 		ngep->nge_split = NGE_SPLIT_256;
1025 	} else if (ngep->default_mtu > NGE_MTU_4500 &&
1026 	    ngep->default_mtu <= NGE_MAX_MTU) {
1027 		ngep->buf_size = NGE_JB9000_BUFSZ;
1028 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1029 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1030 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1031 		ngep->nge_split = NGE_SPLIT_256;
1032 	} else if (ngep->default_mtu > NGE_MAX_MTU) {
1033 		ngep->default_mtu = NGE_MAX_MTU;
1034 		ngep->buf_size = NGE_JB9000_BUFSZ;
1035 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1036 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1037 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1038 		ngep->nge_split = NGE_SPLIT_256;
1039 	} else if (ngep->lowmem_mode != 0) {
1040 		ngep->default_mtu = ETHERMTU;
1041 		ngep->buf_size = NGE_STD_BUFSZ;
1042 		ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1043 		ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1044 		ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1045 		ngep->nge_split = NGE_SPLIT_32;
1046 	} else {
1047 		ngep->default_mtu = ETHERMTU;
1048 		ngep->buf_size = NGE_STD_BUFSZ;
1049 		ngep->tx_desc = dev_param_p->tx_desc_num;
1050 		ngep->rx_desc = dev_param_p->rx_desc_num;
1051 		ngep->rx_buf = dev_param_p->rx_desc_num * 2;
1052 		ngep->nge_split = dev_param_p->nge_split;
1053 	}
1054 
1055 	nge_check_desc_prop(ngep);
1056 }
1057 
1058 
1059 static int
1060 nge_reset_dev(nge_t *ngep)
1061 {
1062 	int err;
1063 	nge_mul_addr1 maddr1;
1064 	nge_sw_statistics_t *sw_stp;
1065 	sw_stp = &ngep->statistics.sw_statistics;
1066 	send_ring_t *srp = ngep->send;
1067 
1068 	ASSERT(mutex_owned(ngep->genlock));
1069 	mutex_enter(srp->tc_lock);
1070 	mutex_enter(srp->tx_lock);
1071 
1072 	nge_tx_recycle_all(ngep);
1073 	err = nge_reinit_ring(ngep);
1074 	if (err == DDI_FAILURE) {
1075 		mutex_exit(srp->tx_lock);
1076 		mutex_exit(srp->tc_lock);
1077 		return (err);
1078 	}
1079 	err = nge_chip_reset(ngep);
1080 	/*
1081 	 * Clear the Multicast mac address table
1082 	 */
1083 	nge_reg_put32(ngep, NGE_MUL_ADDR0, 0);
1084 	maddr1.addr_val = nge_reg_get32(ngep, NGE_MUL_ADDR1);
1085 	maddr1.addr_bits.addr = 0;
1086 	nge_reg_put32(ngep, NGE_MUL_ADDR1, maddr1.addr_val);
1087 
1088 	mutex_exit(srp->tx_lock);
1089 	mutex_exit(srp->tc_lock);
1090 	if (err == DDI_FAILURE)
1091 		return (err);
1092 	ngep->watchdog = 0;
1093 	ngep->resched_needed = B_FALSE;
1094 	ngep->promisc = B_FALSE;
1095 	ngep->param_loop_mode = NGE_LOOP_NONE;
1096 	ngep->factotum_flag = 0;
1097 	ngep->resched_needed = 0;
1098 	ngep->nge_mac_state = NGE_MAC_RESET;
1099 	ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
1100 	ngep->max_sdu += VTAG_SIZE;
1101 	ngep->rx_def = 0x16;
1102 
1103 	/* Clear the software statistics */
1104 	sw_stp->recv_count = 0;
1105 	sw_stp->xmit_count = 0;
1106 	sw_stp->rbytes = 0;
1107 	sw_stp->obytes = 0;
1108 
1109 	return (DDI_SUCCESS);
1110 }
1111 
1112 static void
1113 nge_m_stop(void *arg)
1114 {
1115 	nge_t *ngep = arg;		/* private device info	*/
1116 
1117 	NGE_TRACE(("nge_m_stop($%p)", arg));
1118 
1119 	/*
1120 	 * Just stop processing, then record new MAC state
1121 	 */
1122 	mutex_enter(ngep->genlock);
1123 	/* If suspended, the adapter is already stopped, just return. */
1124 	if (ngep->suspended) {
1125 		ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
1126 		mutex_exit(ngep->genlock);
1127 		return;
1128 	}
1129 	rw_enter(ngep->rwlock, RW_WRITER);
1130 
1131 	(void) nge_chip_stop(ngep, B_FALSE);
1132 	ngep->nge_mac_state = NGE_MAC_STOPPED;
1133 
1134 	/* Recycle all the TX BD */
1135 	nge_tx_recycle_all(ngep);
1136 	nge_fini_rings(ngep);
1137 	nge_free_bufs(ngep);
1138 
1139 	NGE_DEBUG(("nge_m_stop($%p) done", arg));
1140 
1141 	rw_exit(ngep->rwlock);
1142 	mutex_exit(ngep->genlock);
1143 }
1144 
1145 static int
1146 nge_m_start(void *arg)
1147 {
1148 	int err;
1149 	nge_t *ngep = arg;
1150 
1151 	NGE_TRACE(("nge_m_start($%p)", arg));
1152 
1153 	/*
1154 	 * Start processing and record new MAC state
1155 	 */
1156 	mutex_enter(ngep->genlock);
1157 	/*
1158 	 * If suspended, don't start, as the resume processing
1159 	 * will recall this function with the suspended flag off.
1160 	 */
1161 	if (ngep->suspended) {
1162 		mutex_exit(ngep->genlock);
1163 		return (EIO);
1164 	}
1165 	rw_enter(ngep->rwlock, RW_WRITER);
1166 	err = nge_alloc_bufs(ngep);
1167 	if (err != DDI_SUCCESS) {
1168 		nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
1169 		goto finish;
1170 	}
1171 	err = nge_init_rings(ngep);
1172 	if (err != DDI_SUCCESS) {
1173 		nge_free_bufs(ngep);
1174 		nge_problem(ngep, "nge_init_rings() failed,err=%x", err);
1175 		goto finish;
1176 	}
1177 	err = nge_restart(ngep);
1178 
1179 	NGE_DEBUG(("nge_m_start($%p) done", arg));
1180 finish:
1181 	rw_exit(ngep->rwlock);
1182 	mutex_exit(ngep->genlock);
1183 
1184 	return (err == DDI_SUCCESS ? 0 : EIO);
1185 }
1186 
1187 static int
1188 nge_m_unicst(void *arg, const uint8_t *macaddr)
1189 {
1190 	nge_t *ngep = arg;
1191 
1192 	NGE_TRACE(("nge_m_unicst($%p)", arg));
1193 	/*
1194 	 * Remember the new current address in the driver state
1195 	 * Sync the chip's idea of the address too ...
1196 	 */
1197 	mutex_enter(ngep->genlock);
1198 
1199 	ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
1200 	ngep->cur_uni_addr.set = 1;
1201 
1202 	/*
1203 	 * If we are suspended, we want to quit now, and not update
1204 	 * the chip.  Doing so might put it in a bad state, but the
1205 	 * resume will get the unicast address installed.
1206 	 */
1207 	if (ngep->suspended) {
1208 		mutex_exit(ngep->genlock);
1209 		return (DDI_SUCCESS);
1210 	}
1211 	nge_chip_sync(ngep);
1212 
1213 	NGE_DEBUG(("nge_m_unicst($%p) done", arg));
1214 	mutex_exit(ngep->genlock);
1215 
1216 	return (0);
1217 }
1218 
1219 static int
1220 nge_m_promisc(void *arg, boolean_t on)
1221 {
1222 	nge_t *ngep = arg;
1223 
1224 	NGE_TRACE(("nge_m_promisc($%p)", arg));
1225 
1226 	/*
1227 	 * Store specified mode and pass to chip layer to update h/w
1228 	 */
1229 	mutex_enter(ngep->genlock);
1230 	/*
1231 	 * If suspended, there is no need to do anything, even
1232 	 * recording the promiscuious mode is not neccessary, as
1233 	 * it won't be properly set on resume.  Just return failing.
1234 	 */
1235 	if (ngep->suspended) {
1236 		mutex_exit(ngep->genlock);
1237 		return (DDI_FAILURE);
1238 	}
1239 	if (ngep->promisc == on) {
1240 		mutex_exit(ngep->genlock);
1241 		NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1242 		return (0);
1243 	}
1244 	ngep->promisc = on;
1245 	ngep->record_promisc = ngep->promisc;
1246 	nge_chip_sync(ngep);
1247 	NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1248 	mutex_exit(ngep->genlock);
1249 
1250 	return (0);
1251 }
1252 
1253 static void nge_mulparam(nge_t *ngep)
1254 {
1255 	uint8_t number;
1256 	ether_addr_t pand;
1257 	ether_addr_t por;
1258 	mul_item *plist;
1259 
1260 	for (number = 0; number < ETHERADDRL; number++) {
1261 		pand[number] = 0x00;
1262 		por[number] = 0x00;
1263 	}
1264 	for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
1265 		for (number = 0; number < ETHERADDRL; number++) {
1266 			pand[number] &= plist->mul_addr[number];
1267 			por[number] |= plist->mul_addr[number];
1268 		}
1269 	}
1270 	for (number = 0; number < ETHERADDRL; number++) {
1271 		ngep->cur_mul_addr.addr[number]
1272 		    = pand[number] & por[number];
1273 		ngep->cur_mul_mask.addr[number]
1274 		    = pand [number] | (~por[number]);
1275 	}
1276 }
1277 static int
1278 nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1279 {
1280 	boolean_t update;
1281 	boolean_t b_eq;
1282 	nge_t *ngep = arg;
1283 	mul_item *plist;
1284 	mul_item *plist_prev;
1285 	mul_item *pitem;
1286 
1287 	NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
1288 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1289 
1290 	update = B_FALSE;
1291 	plist = plist_prev = NULL;
1292 	mutex_enter(ngep->genlock);
1293 	if (add) {
1294 		if (ngep->pcur_mulist != NULL) {
1295 			for (plist = ngep->pcur_mulist; plist != NULL;
1296 			    plist = plist->next) {
1297 				b_eq = ether_eq(plist->mul_addr, mca);
1298 				if (b_eq) {
1299 					plist->ref_cnt++;
1300 					break;
1301 				}
1302 				plist_prev = plist;
1303 			}
1304 		}
1305 
1306 		if (plist == NULL) {
1307 			pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
1308 			ether_copy(mca, pitem->mul_addr);
1309 			pitem ->ref_cnt++;
1310 			pitem ->next = NULL;
1311 			if (plist_prev == NULL)
1312 				ngep->pcur_mulist = pitem;
1313 			else
1314 				plist_prev->next = pitem;
1315 			update = B_TRUE;
1316 		}
1317 	} else {
1318 		if (ngep->pcur_mulist != NULL) {
1319 			for (plist = ngep->pcur_mulist; plist != NULL;
1320 			    plist = plist->next) {
1321 				b_eq = ether_eq(plist->mul_addr, mca);
1322 				if (b_eq) {
1323 					update = B_TRUE;
1324 					break;
1325 				}
1326 				plist_prev = plist;
1327 			}
1328 
1329 			if (update) {
1330 				if ((plist_prev == NULL) &&
1331 				    (plist->next == NULL))
1332 					ngep->pcur_mulist = NULL;
1333 				else if ((plist_prev == NULL) &&
1334 				    (plist->next != NULL))
1335 					ngep->pcur_mulist = plist->next;
1336 				else
1337 					plist_prev->next = plist->next;
1338 				kmem_free(plist, sizeof (mul_item));
1339 			}
1340 		}
1341 	}
1342 
1343 	if (update && !ngep->suspended) {
1344 		nge_mulparam(ngep);
1345 		nge_chip_sync(ngep);
1346 	}
1347 	NGE_DEBUG(("nge_m_multicst($%p) done", arg));
1348 	mutex_exit(ngep->genlock);
1349 
1350 	return (0);
1351 }
1352 
1353 static void
1354 nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1355 {
1356 	int err;
1357 	int cmd;
1358 	nge_t *ngep = arg;
1359 	struct iocblk *iocp;
1360 	enum ioc_reply status;
1361 	boolean_t need_privilege;
1362 
1363 	/*
1364 	 * If suspended, we might actually be able to do some of
1365 	 * these ioctls, but it is harder to make sure they occur
1366 	 * without actually putting the hardware in an undesireable
1367 	 * state.  So just NAK it.
1368 	 */
1369 	mutex_enter(ngep->genlock);
1370 	if (ngep->suspended) {
1371 		miocnak(wq, mp, 0, EINVAL);
1372 		mutex_exit(ngep->genlock);
1373 		return;
1374 	}
1375 	mutex_exit(ngep->genlock);
1376 
1377 	/*
1378 	 * Validate the command before bothering with the mutex ...
1379 	 */
1380 	iocp = (struct iocblk *)mp->b_rptr;
1381 	iocp->ioc_error = 0;
1382 	need_privilege = B_TRUE;
1383 	cmd = iocp->ioc_cmd;
1384 
1385 	NGE_DEBUG(("nge_m_ioctl:  cmd 0x%x", cmd));
1386 	switch (cmd) {
1387 	default:
1388 		NGE_LDB(NGE_DBG_BADIOC,
1389 		    ("nge_m_ioctl: unknown cmd 0x%x", cmd));
1390 
1391 		miocnak(wq, mp, 0, EINVAL);
1392 		return;
1393 
1394 	case NGE_MII_READ:
1395 	case NGE_MII_WRITE:
1396 	case NGE_SEE_READ:
1397 	case NGE_SEE_WRITE:
1398 	case NGE_DIAG:
1399 	case NGE_PEEK:
1400 	case NGE_POKE:
1401 	case NGE_PHY_RESET:
1402 	case NGE_SOFT_RESET:
1403 	case NGE_HARD_RESET:
1404 		break;
1405 
1406 	case LB_GET_INFO_SIZE:
1407 	case LB_GET_INFO:
1408 	case LB_GET_MODE:
1409 		need_privilege = B_FALSE;
1410 		break;
1411 	case LB_SET_MODE:
1412 		break;
1413 	}
1414 
1415 	if (need_privilege) {
1416 		/*
1417 		 * Check for specific net_config privilege.
1418 		 */
1419 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1420 		if (err != 0) {
1421 			NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
1422 			    cmd, err));
1423 			miocnak(wq, mp, 0, err);
1424 			return;
1425 		}
1426 	}
1427 
1428 	mutex_enter(ngep->genlock);
1429 
1430 	switch (cmd) {
1431 	default:
1432 		_NOTE(NOTREACHED)
1433 		status = IOC_INVAL;
1434 	break;
1435 
1436 	case NGE_MII_READ:
1437 	case NGE_MII_WRITE:
1438 	case NGE_SEE_READ:
1439 	case NGE_SEE_WRITE:
1440 	case NGE_DIAG:
1441 	case NGE_PEEK:
1442 	case NGE_POKE:
1443 	case NGE_PHY_RESET:
1444 	case NGE_SOFT_RESET:
1445 	case NGE_HARD_RESET:
1446 		status = nge_chip_ioctl(ngep, mp, iocp);
1447 	break;
1448 
1449 	case LB_GET_INFO_SIZE:
1450 	case LB_GET_INFO:
1451 	case LB_GET_MODE:
1452 	case LB_SET_MODE:
1453 		status = nge_loop_ioctl(ngep, mp, iocp);
1454 	break;
1455 
1456 	}
1457 
1458 	/*
1459 	 * Do we need to reprogram the PHY and/or the MAC?
1460 	 * Do it now, while we still have the mutex.
1461 	 *
1462 	 * Note: update the PHY first, 'cos it controls the
1463 	 * speed/duplex parameters that the MAC code uses.
1464 	 */
1465 
1466 	NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
1467 
1468 	switch (status) {
1469 	case IOC_RESTART_REPLY:
1470 	case IOC_RESTART_ACK:
1471 		(*ngep->physops->phys_update)(ngep);
1472 		nge_chip_sync(ngep);
1473 		break;
1474 
1475 	default:
1476 	break;
1477 	}
1478 
1479 	mutex_exit(ngep->genlock);
1480 
1481 	/*
1482 	 * Finally, decide how to reply
1483 	 */
1484 	switch (status) {
1485 
1486 	default:
1487 	case IOC_INVAL:
1488 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1489 		    EINVAL : iocp->ioc_error);
1490 		break;
1491 
1492 	case IOC_DONE:
1493 		break;
1494 
1495 	case IOC_RESTART_ACK:
1496 	case IOC_ACK:
1497 		miocack(wq, mp, 0, 0);
1498 		break;
1499 
1500 	case IOC_RESTART_REPLY:
1501 	case IOC_REPLY:
1502 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1503 		    M_IOCACK : M_IOCNAK;
1504 		qreply(wq, mp);
1505 		break;
1506 	}
1507 }
1508 
1509 static boolean_t
1510 nge_param_locked(mac_prop_id_t pr_num)
1511 {
1512 	/*
1513 	 * All adv_* parameters are locked (read-only) while
1514 	 * the device is in any sort of loopback mode ...
1515 	 */
1516 	switch (pr_num) {
1517 		case MAC_PROP_ADV_1000FDX_CAP:
1518 		case MAC_PROP_EN_1000FDX_CAP:
1519 		case MAC_PROP_ADV_1000HDX_CAP:
1520 		case MAC_PROP_EN_1000HDX_CAP:
1521 		case MAC_PROP_ADV_100FDX_CAP:
1522 		case MAC_PROP_EN_100FDX_CAP:
1523 		case MAC_PROP_ADV_100HDX_CAP:
1524 		case MAC_PROP_EN_100HDX_CAP:
1525 		case MAC_PROP_ADV_10FDX_CAP:
1526 		case MAC_PROP_EN_10FDX_CAP:
1527 		case MAC_PROP_ADV_10HDX_CAP:
1528 		case MAC_PROP_EN_10HDX_CAP:
1529 		case MAC_PROP_AUTONEG:
1530 		case MAC_PROP_FLOWCTRL:
1531 			return (B_TRUE);
1532 	}
1533 	return (B_FALSE);
1534 }
1535 
1536 /*
1537  * callback functions for set/get of properties
1538  */
1539 static int
1540 nge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1541     uint_t pr_valsize, const void *pr_val)
1542 {
1543 	nge_t *ngep = barg;
1544 	int err = 0;
1545 	uint32_t cur_mtu, new_mtu;
1546 	link_flowctrl_t fl;
1547 
1548 	mutex_enter(ngep->genlock);
1549 	if (ngep->param_loop_mode != NGE_LOOP_NONE &&
1550 	    nge_param_locked(pr_num)) {
1551 		/*
1552 		 * All adv_* parameters are locked (read-only)
1553 		 * while the device is in any sort of loopback mode.
1554 		 */
1555 		mutex_exit(ngep->genlock);
1556 		return (EBUSY);
1557 	}
1558 	switch (pr_num) {
1559 		case MAC_PROP_EN_1000FDX_CAP:
1560 			ngep->param_en_1000fdx = *(uint8_t *)pr_val;
1561 			ngep->param_adv_1000fdx = *(uint8_t *)pr_val;
1562 			goto reprogram;
1563 		case MAC_PROP_EN_100FDX_CAP:
1564 			ngep->param_en_100fdx = *(uint8_t *)pr_val;
1565 			ngep->param_adv_100fdx = *(uint8_t *)pr_val;
1566 			goto reprogram;
1567 		case MAC_PROP_EN_100HDX_CAP:
1568 			ngep->param_en_100hdx = *(uint8_t *)pr_val;
1569 			ngep->param_adv_100hdx = *(uint8_t *)pr_val;
1570 			goto reprogram;
1571 		case MAC_PROP_EN_10FDX_CAP:
1572 			ngep->param_en_10fdx = *(uint8_t *)pr_val;
1573 			ngep->param_adv_10fdx = *(uint8_t *)pr_val;
1574 			goto reprogram;
1575 		case MAC_PROP_EN_10HDX_CAP:
1576 			ngep->param_en_10hdx = *(uint8_t *)pr_val;
1577 			ngep->param_adv_10hdx = *(uint8_t *)pr_val;
1578 reprogram:
1579 		(*ngep->physops->phys_update)(ngep);
1580 		nge_chip_sync(ngep);
1581 		break;
1582 
1583 		case MAC_PROP_ADV_1000FDX_CAP:
1584 		case MAC_PROP_ADV_1000HDX_CAP:
1585 		case MAC_PROP_ADV_100FDX_CAP:
1586 		case MAC_PROP_ADV_100HDX_CAP:
1587 		case MAC_PROP_ADV_10FDX_CAP:
1588 		case MAC_PROP_ADV_10HDX_CAP:
1589 		case MAC_PROP_STATUS:
1590 		case MAC_PROP_SPEED:
1591 		case MAC_PROP_DUPLEX:
1592 		case MAC_PROP_EN_1000HDX_CAP:
1593 			err = ENOTSUP; /* read-only prop. Can't set this */
1594 			break;
1595 		case MAC_PROP_AUTONEG:
1596 			ngep->param_adv_autoneg = *(uint8_t *)pr_val;
1597 			(*ngep->physops->phys_update)(ngep);
1598 			nge_chip_sync(ngep);
1599 			break;
1600 		case MAC_PROP_MTU:
1601 			cur_mtu = ngep->default_mtu;
1602 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
1603 			if (new_mtu == cur_mtu) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (new_mtu < ETHERMTU ||
1608 			    new_mtu > NGE_MAX_MTU) {
1609 				err = EINVAL;
1610 				break;
1611 			}
1612 			if ((new_mtu > ETHERMTU) &&
1613 			    (!ngep->dev_spec_param.jumbo)) {
1614 				err = EINVAL;
1615 				break;
1616 			}
1617 			if (ngep->nge_mac_state == NGE_MAC_STARTED) {
1618 				err = EBUSY;
1619 				break;
1620 			}
1621 
1622 			ngep->default_mtu = new_mtu;
1623 			if (ngep->default_mtu > ETHERMTU &&
1624 			    ngep->default_mtu <= NGE_MTU_2500) {
1625 				ngep->buf_size = NGE_JB2500_BUFSZ;
1626 				ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1627 				ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1628 				ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1629 				ngep->nge_split = NGE_SPLIT_256;
1630 			} else if (ngep->default_mtu > NGE_MTU_2500 &&
1631 			    ngep->default_mtu <= NGE_MTU_4500) {
1632 				ngep->buf_size = NGE_JB4500_BUFSZ;
1633 				ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1634 				ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1635 				ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1636 				ngep->nge_split = NGE_SPLIT_256;
1637 			} else if (ngep->default_mtu > NGE_MTU_4500 &&
1638 			    ngep->default_mtu <= NGE_MAX_MTU) {
1639 				ngep->buf_size = NGE_JB9000_BUFSZ;
1640 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1641 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1642 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1643 				ngep->nge_split = NGE_SPLIT_256;
1644 			} else if (ngep->default_mtu > NGE_MAX_MTU) {
1645 				ngep->default_mtu = NGE_MAX_MTU;
1646 				ngep->buf_size = NGE_JB9000_BUFSZ;
1647 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1648 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1649 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1650 				ngep->nge_split = NGE_SPLIT_256;
1651 			} else if (ngep->lowmem_mode != 0) {
1652 				ngep->default_mtu = ETHERMTU;
1653 				ngep->buf_size = NGE_STD_BUFSZ;
1654 				ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1655 				ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1656 				ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1657 				ngep->nge_split = NGE_SPLIT_32;
1658 			} else {
1659 				ngep->default_mtu = ETHERMTU;
1660 				ngep->buf_size = NGE_STD_BUFSZ;
1661 				ngep->tx_desc =
1662 				    ngep->dev_spec_param.tx_desc_num;
1663 				ngep->rx_desc =
1664 				    ngep->dev_spec_param.rx_desc_num;
1665 				ngep->rx_buf =
1666 				    ngep->dev_spec_param.rx_desc_num * 2;
1667 				ngep->nge_split =
1668 				    ngep->dev_spec_param.nge_split;
1669 			}
1670 
1671 			err = mac_maxsdu_update(ngep->mh, ngep->default_mtu);
1672 
1673 			break;
1674 		case MAC_PROP_FLOWCTRL:
1675 			bcopy(pr_val, &fl, sizeof (fl));
1676 			switch (fl) {
1677 			default:
1678 				err = ENOTSUP;
1679 				break;
1680 			case LINK_FLOWCTRL_NONE:
1681 				ngep->param_adv_pause = 0;
1682 				ngep->param_adv_asym_pause = 0;
1683 
1684 				ngep->param_link_rx_pause = B_FALSE;
1685 				ngep->param_link_tx_pause = B_FALSE;
1686 				break;
1687 			case LINK_FLOWCTRL_RX:
1688 				if (!((ngep->param_lp_pause == 0) &&
1689 				    (ngep->param_lp_asym_pause == 1))) {
1690 					err = EINVAL;
1691 					break;
1692 				}
1693 				ngep->param_adv_pause = 1;
1694 				ngep->param_adv_asym_pause = 1;
1695 
1696 				ngep->param_link_rx_pause = B_TRUE;
1697 				ngep->param_link_tx_pause = B_FALSE;
1698 				break;
1699 			case LINK_FLOWCTRL_TX:
1700 				if (!((ngep->param_lp_pause == 1) &&
1701 				    (ngep->param_lp_asym_pause == 1))) {
1702 					err = EINVAL;
1703 					break;
1704 				}
1705 				ngep->param_adv_pause = 0;
1706 				ngep->param_adv_asym_pause = 1;
1707 
1708 				ngep->param_link_rx_pause = B_FALSE;
1709 				ngep->param_link_tx_pause = B_TRUE;
1710 				break;
1711 			case LINK_FLOWCTRL_BI:
1712 				if (ngep->param_lp_pause != 1) {
1713 					err = EINVAL;
1714 					break;
1715 				}
1716 				ngep->param_adv_pause = 1;
1717 
1718 				ngep->param_link_rx_pause = B_TRUE;
1719 				ngep->param_link_tx_pause = B_TRUE;
1720 				break;
1721 			}
1722 
1723 			if (err == 0) {
1724 				(*ngep->physops->phys_update)(ngep);
1725 				nge_chip_sync(ngep);
1726 			}
1727 
1728 			break;
1729 		case MAC_PROP_PRIVATE:
1730 			err = nge_set_priv_prop(ngep, pr_name, pr_valsize,
1731 			    pr_val);
1732 			if (err == 0) {
1733 				(*ngep->physops->phys_update)(ngep);
1734 				nge_chip_sync(ngep);
1735 			}
1736 			break;
1737 		default:
1738 			err = ENOTSUP;
1739 	}
1740 	mutex_exit(ngep->genlock);
1741 	return (err);
1742 }
1743 
1744 static int
1745 nge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1746     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
1747 {
1748 	nge_t *ngep = barg;
1749 	int err = 0;
1750 	link_flowctrl_t fl;
1751 	uint64_t speed;
1752 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1753 
1754 	if (pr_valsize == 0)
1755 		return (EINVAL);
1756 
1757 	*perm = MAC_PROP_PERM_RW;
1758 
1759 	bzero(pr_val, pr_valsize);
1760 
1761 	switch (pr_num) {
1762 		case MAC_PROP_DUPLEX:
1763 			*perm = MAC_PROP_PERM_READ;
1764 			if (pr_valsize >= sizeof (link_duplex_t)) {
1765 				bcopy(&ngep->param_link_duplex, pr_val,
1766 				    sizeof (link_duplex_t));
1767 			} else
1768 				err = EINVAL;
1769 			break;
1770 		case MAC_PROP_SPEED:
1771 			*perm = MAC_PROP_PERM_READ;
1772 			if (pr_valsize >= sizeof (uint64_t)) {
1773 				speed = ngep->param_link_speed * 1000000ull;
1774 				bcopy(&speed, pr_val, sizeof (speed));
1775 			} else
1776 				err = EINVAL;
1777 			break;
1778 		case MAC_PROP_AUTONEG:
1779 			if (is_default) {
1780 				*(uint8_t *)pr_val = 1;
1781 			} else {
1782 				*(uint8_t *)pr_val = ngep->param_adv_autoneg;
1783 			}
1784 			break;
1785 		case MAC_PROP_FLOWCTRL:
1786 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
1787 				if (pr_flags & MAC_PROP_DEFAULT) {
1788 					fl = LINK_FLOWCTRL_BI;
1789 					bcopy(&fl, pr_val, sizeof (fl));
1790 					break;
1791 				}
1792 				if (ngep->param_link_rx_pause &&
1793 				    !ngep->param_link_tx_pause)
1794 					fl = LINK_FLOWCTRL_RX;
1795 
1796 				if (!ngep->param_link_rx_pause &&
1797 				    !ngep->param_link_tx_pause)
1798 					fl = LINK_FLOWCTRL_NONE;
1799 
1800 				if (!ngep->param_link_rx_pause &&
1801 				    ngep->param_link_tx_pause)
1802 					fl = LINK_FLOWCTRL_TX;
1803 
1804 				if (ngep->param_link_rx_pause &&
1805 				    ngep->param_link_tx_pause)
1806 					fl = LINK_FLOWCTRL_BI;
1807 				bcopy(&fl, pr_val, sizeof (fl));
1808 			} else
1809 				err = EINVAL;
1810 			break;
1811 		case MAC_PROP_ADV_1000FDX_CAP:
1812 			*perm = MAC_PROP_PERM_READ;
1813 			if (is_default) {
1814 				*(uint8_t *)pr_val = 1;
1815 			} else {
1816 				*(uint8_t *)pr_val = ngep->param_adv_1000fdx;
1817 			}
1818 			break;
1819 		case MAC_PROP_EN_1000FDX_CAP:
1820 			if (is_default) {
1821 				*(uint8_t *)pr_val = 1;
1822 			} else {
1823 				*(uint8_t *)pr_val = ngep->param_en_1000fdx;
1824 			}
1825 			break;
1826 		case MAC_PROP_ADV_1000HDX_CAP:
1827 			*perm = MAC_PROP_PERM_READ;
1828 			if (is_default) {
1829 				*(uint8_t *)pr_val = 0;
1830 			} else {
1831 				*(uint8_t *)pr_val = ngep->param_adv_1000hdx;
1832 			}
1833 			break;
1834 		case MAC_PROP_EN_1000HDX_CAP:
1835 			*perm = MAC_PROP_PERM_READ;
1836 			if (is_default) {
1837 				*(uint8_t *)pr_val = 0;
1838 			} else {
1839 				*(uint8_t *)pr_val = ngep->param_en_1000hdx;
1840 			}
1841 			break;
1842 		case MAC_PROP_ADV_100FDX_CAP:
1843 			*perm = MAC_PROP_PERM_READ;
1844 			if (is_default) {
1845 				*(uint8_t *)pr_val = 1;
1846 			} else {
1847 				*(uint8_t *)pr_val = ngep->param_adv_100fdx;
1848 			}
1849 			break;
1850 		case MAC_PROP_EN_100FDX_CAP:
1851 			if (is_default) {
1852 				*(uint8_t *)pr_val = 1;
1853 			} else {
1854 				*(uint8_t *)pr_val = ngep->param_en_100fdx;
1855 			}
1856 			break;
1857 		case MAC_PROP_ADV_100HDX_CAP:
1858 			*perm = MAC_PROP_PERM_READ;
1859 			if (is_default) {
1860 				*(uint8_t *)pr_val = 1;
1861 			} else {
1862 				*(uint8_t *)pr_val = ngep->param_adv_100hdx;
1863 			}
1864 			break;
1865 		case MAC_PROP_EN_100HDX_CAP:
1866 			if (is_default) {
1867 				*(uint8_t *)pr_val = 1;
1868 			} else {
1869 				*(uint8_t *)pr_val = ngep->param_en_100hdx;
1870 			}
1871 			break;
1872 		case MAC_PROP_ADV_10FDX_CAP:
1873 			*perm = MAC_PROP_PERM_READ;
1874 			if (is_default) {
1875 				*(uint8_t *)pr_val = 1;
1876 			} else {
1877 				*(uint8_t *)pr_val = ngep->param_adv_10fdx;
1878 			}
1879 			break;
1880 		case MAC_PROP_EN_10FDX_CAP:
1881 			if (is_default) {
1882 				*(uint8_t *)pr_val = 1;
1883 			} else {
1884 				*(uint8_t *)pr_val = ngep->param_en_10fdx;
1885 			}
1886 			break;
1887 		case MAC_PROP_ADV_10HDX_CAP:
1888 			*perm = MAC_PROP_PERM_READ;
1889 			if (is_default) {
1890 				*(uint8_t *)pr_val = 1;
1891 			} else {
1892 				*(uint8_t *)pr_val = ngep->param_adv_10hdx;
1893 			}
1894 			break;
1895 		case MAC_PROP_EN_10HDX_CAP:
1896 			if (is_default) {
1897 				*(uint8_t *)pr_val = 1;
1898 			} else {
1899 				*(uint8_t *)pr_val = ngep->param_en_10hdx;
1900 			}
1901 			break;
1902 		case MAC_PROP_ADV_100T4_CAP:
1903 		case MAC_PROP_EN_100T4_CAP:
1904 			*perm = MAC_PROP_PERM_READ;
1905 			*(uint8_t *)pr_val = 0;
1906 			break;
1907 		case MAC_PROP_PRIVATE:
1908 			err = nge_get_priv_prop(ngep, pr_name, pr_flags,
1909 			    pr_valsize, pr_val);
1910 			break;
1911 		default:
1912 			err = ENOTSUP;
1913 	}
1914 	return (err);
1915 }
1916 
1917 /* ARGSUSED */
1918 static int
1919 nge_set_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
1920     const void *pr_val)
1921 {
1922 	int err = 0;
1923 	long result;
1924 
1925 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
1926 		if (pr_val == NULL) {
1927 			err = EINVAL;
1928 			return (err);
1929 		}
1930 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1931 		if (result < 0 || result > NGE_MAX_SDU) {
1932 			err = EINVAL;
1933 		} else {
1934 			ngep->param_txbcopy_threshold = (uint32_t)result;
1935 			goto reprogram;
1936 		}
1937 		return (err);
1938 	}
1939 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
1940 		if (pr_val == NULL) {
1941 			err = EINVAL;
1942 			return (err);
1943 		}
1944 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1945 		if (result < 0 || result > NGE_MAX_SDU) {
1946 			err = EINVAL;
1947 		} else {
1948 			ngep->param_rxbcopy_threshold = (uint32_t)result;
1949 			goto reprogram;
1950 		}
1951 		return (err);
1952 	}
1953 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
1954 		if (pr_val == NULL) {
1955 			err = EINVAL;
1956 			return (err);
1957 		}
1958 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1959 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
1960 			err = EINVAL;
1961 		} else {
1962 			ngep->param_recv_max_packet = (uint32_t)result;
1963 			goto reprogram;
1964 		}
1965 		return (err);
1966 	}
1967 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
1968 		if (pr_val == NULL) {
1969 			err = EINVAL;
1970 			return (err);
1971 		}
1972 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1973 		if (result < 0 || result > 10000) {
1974 			err = EINVAL;
1975 		} else {
1976 			ngep->param_poll_quiet_time = (uint32_t)result;
1977 			goto reprogram;
1978 		}
1979 		return (err);
1980 	}
1981 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
1982 		if (pr_val == NULL) {
1983 			err = EINVAL;
1984 			return (err);
1985 		}
1986 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1987 		if (result < 0 || result > 10000) {
1988 			err = EINVAL;
1989 		} else {
1990 			ngep->param_poll_busy_time = (uint32_t)result;
1991 			goto reprogram;
1992 		}
1993 		return (err);
1994 	}
1995 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
1996 		if (pr_val == NULL) {
1997 			err = EINVAL;
1998 			return (err);
1999 		}
2000 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2001 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
2002 			err = EINVAL;
2003 		} else {
2004 			ngep->param_rx_intr_hwater = (uint32_t)result;
2005 			goto reprogram;
2006 		}
2007 		return (err);
2008 	}
2009 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
2010 		if (pr_val == NULL) {
2011 			err = EINVAL;
2012 			return (err);
2013 		}
2014 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2015 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
2016 			err = EINVAL;
2017 		} else {
2018 			ngep->param_rx_intr_lwater = (uint32_t)result;
2019 			goto reprogram;
2020 		}
2021 		return (err);
2022 	}
2023 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2024 		if (pr_val == NULL) {
2025 			err = EINVAL;
2026 			return (err);
2027 		}
2028 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2029 		if (result < 1 || result > 10000) {
2030 			err = EINVAL;
2031 		} else {
2032 			ngep->param_tx_n_intr = (uint32_t)result;
2033 			goto reprogram;
2034 		}
2035 		return (err);
2036 	}
2037 
2038 	err = ENOTSUP;
2039 	return (err);
2040 
2041 reprogram:
2042 	if (err == 0) {
2043 		(*ngep->physops->phys_update)(ngep);
2044 		nge_chip_sync(ngep);
2045 	}
2046 
2047 	return (err);
2048 }
2049 
2050 static int
2051 nge_get_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_flags,
2052     uint_t pr_valsize, void *pr_val)
2053 {
2054 	int err = ENOTSUP;
2055 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
2056 	int value;
2057 
2058 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
2059 		value = (is_default ? 1 : ngep->param_adv_pause);
2060 		err = 0;
2061 		goto done;
2062 	}
2063 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
2064 		value = (is_default ? 1 : ngep->param_adv_asym_pause);
2065 		err = 0;
2066 		goto done;
2067 	}
2068 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2069 		value = (is_default ? NGE_TX_COPY_SIZE :
2070 		    ngep->param_txbcopy_threshold);
2071 		err = 0;
2072 		goto done;
2073 	}
2074 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2075 		value = (is_default ? NGE_RX_COPY_SIZE :
2076 		    ngep->param_rxbcopy_threshold);
2077 		err = 0;
2078 		goto done;
2079 	}
2080 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
2081 		value = (is_default ? 128 : ngep->param_recv_max_packet);
2082 		err = 0;
2083 		goto done;
2084 	}
2085 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
2086 		value = (is_default ? NGE_POLL_QUIET_TIME :
2087 		    ngep->param_poll_quiet_time);
2088 		err = 0;
2089 		goto done;
2090 	}
2091 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
2092 		value = (is_default ? NGE_POLL_BUSY_TIME :
2093 		    ngep->param_poll_busy_time);
2094 		err = 0;
2095 		goto done;
2096 	}
2097 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
2098 		value = (is_default ? 1 : ngep->param_rx_intr_hwater);
2099 		err = 0;
2100 		goto done;
2101 	}
2102 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
2103 		value = (is_default ? 8 : ngep->param_rx_intr_lwater);
2104 		err = 0;
2105 		goto done;
2106 	}
2107 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2108 		value = (is_default ? NGE_TX_N_INTR :
2109 		    ngep->param_tx_n_intr);
2110 		err = 0;
2111 		goto done;
2112 	}
2113 
2114 done:
2115 	if (err == 0) {
2116 		(void) snprintf(pr_val, pr_valsize, "%d", value);
2117 	}
2118 	return (err);
2119 }
2120 
2121 /* ARGSUSED */
2122 static boolean_t
2123 nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2124 {
2125 	nge_t	*ngep = arg;
2126 	nge_dev_spec_param_t *dev_param_p;
2127 
2128 	dev_param_p = &ngep->dev_spec_param;
2129 
2130 	switch (cap) {
2131 	case MAC_CAPAB_HCKSUM: {
2132 		uint32_t *hcksum_txflags = cap_data;
2133 
2134 		if (dev_param_p->tx_hw_checksum) {
2135 			*hcksum_txflags = dev_param_p->tx_hw_checksum;
2136 		} else
2137 			return (B_FALSE);
2138 		break;
2139 	}
2140 	case MAC_CAPAB_POLL:
2141 		/*
2142 		 * There's nothing for us to fill in, simply returning
2143 		 * B_TRUE, stating that we support polling is sufficient.
2144 		 */
2145 		break;
2146 	default:
2147 		return (B_FALSE);
2148 	}
2149 	return (B_TRUE);
2150 }
2151 
2152 #undef	NGE_DBG
2153 #define	NGE_DBG	NGE_DBG_INIT	/* debug flag for this code	*/
2154 int
2155 nge_restart(nge_t *ngep)
2156 {
2157 	int err = 0;
2158 	err = nge_reset_dev(ngep);
2159 	/* write back the promisc setting */
2160 	ngep->promisc = ngep->record_promisc;
2161 	nge_chip_sync(ngep);
2162 	if (!err)
2163 		err = nge_chip_start(ngep);
2164 
2165 	if (err) {
2166 		ngep->nge_mac_state = NGE_MAC_STOPPED;
2167 		return (DDI_FAILURE);
2168 	} else {
2169 		ngep->nge_mac_state = NGE_MAC_STARTED;
2170 		return (DDI_SUCCESS);
2171 	}
2172 }
2173 
2174 void
2175 nge_wake_factotum(nge_t *ngep)
2176 {
2177 	mutex_enter(ngep->softlock);
2178 	if (ngep->factotum_flag == 0) {
2179 		ngep->factotum_flag = 1;
2180 		(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
2181 	}
2182 	mutex_exit(ngep->softlock);
2183 }
2184 
2185 /*
2186  * High-level cyclic handler
2187  *
2188  * This routine schedules a (low-level) softint callback to the
2189  * factotum.
2190  */
2191 
2192 static void
2193 nge_chip_cyclic(void *arg)
2194 {
2195 	nge_t *ngep;
2196 
2197 	ngep = (nge_t *)arg;
2198 
2199 	switch (ngep->nge_chip_state) {
2200 	default:
2201 		return;
2202 
2203 	case NGE_CHIP_RUNNING:
2204 		break;
2205 
2206 	case NGE_CHIP_FAULT:
2207 	case NGE_CHIP_ERROR:
2208 		break;
2209 	}
2210 
2211 	nge_wake_factotum(ngep);
2212 }
2213 
2214 static void
2215 nge_unattach(nge_t *ngep)
2216 {
2217 	send_ring_t *srp;
2218 	buff_ring_t *brp;
2219 
2220 	srp = ngep->send;
2221 	brp = ngep->buff;
2222 	NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
2223 
2224 	/*
2225 	 * Flag that no more activity may be initiated
2226 	 */
2227 	ngep->progress &= ~PROGRESS_READY;
2228 	ngep->nge_mac_state = NGE_MAC_UNATTACH;
2229 
2230 	/*
2231 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2232 	 * Clean up and free all NGE data structures
2233 	 */
2234 	if (ngep->periodic_id != NULL) {
2235 		ddi_periodic_delete(ngep->periodic_id);
2236 		ngep->periodic_id = NULL;
2237 	}
2238 
2239 	if (ngep->progress & PROGRESS_KSTATS)
2240 		nge_fini_kstats(ngep);
2241 
2242 	if (ngep->progress & PROGRESS_HWINT) {
2243 		mutex_enter(ngep->genlock);
2244 		nge_restore_mac_addr(ngep);
2245 		(void) nge_chip_stop(ngep, B_FALSE);
2246 		mutex_exit(ngep->genlock);
2247 	}
2248 
2249 	if (ngep->progress & PROGRESS_SWINT)
2250 		nge_rem_intrs(ngep);
2251 
2252 	if (ngep->progress & PROGRESS_FACTOTUM)
2253 		(void) ddi_intr_remove_softint(ngep->factotum_hdl);
2254 
2255 	if (ngep->progress & PROGRESS_RESCHED)
2256 		(void) ddi_intr_remove_softint(ngep->resched_hdl);
2257 
2258 	if (ngep->progress & PROGRESS_INTR) {
2259 		mutex_destroy(srp->tx_lock);
2260 		mutex_destroy(srp->tc_lock);
2261 		mutex_destroy(&srp->dmah_lock);
2262 		mutex_destroy(brp->recycle_lock);
2263 
2264 		mutex_destroy(ngep->genlock);
2265 		mutex_destroy(ngep->softlock);
2266 		rw_destroy(ngep->rwlock);
2267 	}
2268 
2269 	if (ngep->progress & PROGRESS_REGS)
2270 		ddi_regs_map_free(&ngep->io_handle);
2271 
2272 	if (ngep->progress & PROGRESS_CFG)
2273 		pci_config_teardown(&ngep->cfg_handle);
2274 
2275 	ddi_remove_minor_node(ngep->devinfo, NULL);
2276 
2277 	kmem_free(ngep, sizeof (*ngep));
2278 }
2279 
2280 static int
2281 nge_resume(dev_info_t *devinfo)
2282 {
2283 	nge_t		*ngep;
2284 	chip_info_t	*infop;
2285 	int 		err;
2286 
2287 	ASSERT(devinfo != NULL);
2288 
2289 	ngep = ddi_get_driver_private(devinfo);
2290 	err = 0;
2291 
2292 	/*
2293 	 * If there are state inconsistancies, this is bad.  Returning
2294 	 * DDI_FAILURE here will eventually cause the machine to panic,
2295 	 * so it is best done here so that there is a possibility of
2296 	 * debugging the problem.
2297 	 */
2298 	if (ngep == NULL)
2299 		cmn_err(CE_PANIC,
2300 		    "nge: ngep returned from ddi_get_driver_private was NULL");
2301 	infop = (chip_info_t *)&ngep->chipinfo;
2302 
2303 	if (ngep->devinfo != devinfo)
2304 		cmn_err(CE_PANIC,
2305 		    "nge: passed devinfo not the same as saved devinfo");
2306 
2307 	mutex_enter(ngep->genlock);
2308 	rw_enter(ngep->rwlock, RW_WRITER);
2309 
2310 	/*
2311 	 * Fetch the config space.  Even though we have most of it cached,
2312 	 * some values *might* change across a suspend/resume.
2313 	 */
2314 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2315 
2316 	/*
2317 	 * Only in one case, this conditional branch can be executed: the port
2318 	 * hasn't been plumbed.
2319 	 */
2320 	if (ngep->suspended == B_FALSE) {
2321 		rw_exit(ngep->rwlock);
2322 		mutex_exit(ngep->genlock);
2323 		return (DDI_SUCCESS);
2324 	}
2325 
2326 	nge_tx_recycle_all(ngep);
2327 	err = nge_reinit_ring(ngep);
2328 	if (!err) {
2329 		err = nge_chip_reset(ngep);
2330 		if (!err)
2331 			err = nge_chip_start(ngep);
2332 	}
2333 
2334 	if (err) {
2335 		/*
2336 		 * We note the failure, but return success, as the
2337 		 * system is still usable without this controller.
2338 		 */
2339 		cmn_err(CE_WARN, "nge: resume: failed to restart controller");
2340 	} else {
2341 		ngep->nge_mac_state = NGE_MAC_STARTED;
2342 	}
2343 	ngep->suspended = B_FALSE;
2344 
2345 	rw_exit(ngep->rwlock);
2346 	mutex_exit(ngep->genlock);
2347 
2348 	return (DDI_SUCCESS);
2349 }
2350 
2351 /*
2352  * attach(9E) -- Attach a device to the system
2353  *
2354  * Called once for each board successfully probed.
2355  */
2356 static int
2357 nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2358 {
2359 	int		err;
2360 	int		i;
2361 	int		instance;
2362 	caddr_t		regs;
2363 	nge_t		*ngep;
2364 	chip_info_t	*infop;
2365 	mac_register_t	*macp;
2366 
2367 	switch (cmd) {
2368 	default:
2369 		return (DDI_FAILURE);
2370 
2371 	case DDI_RESUME:
2372 		return (nge_resume(devinfo));
2373 
2374 	case DDI_ATTACH:
2375 		break;
2376 	}
2377 
2378 	ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
2379 	instance = ddi_get_instance(devinfo);
2380 	ddi_set_driver_private(devinfo, ngep);
2381 	ngep->devinfo = devinfo;
2382 
2383 	(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
2384 	    NGE_DRIVER_NAME, instance);
2385 	err = pci_config_setup(devinfo, &ngep->cfg_handle);
2386 	if (err != DDI_SUCCESS) {
2387 		nge_problem(ngep, "nge_attach: pci_config_setup() failed");
2388 		goto attach_fail;
2389 	}
2390 	/*
2391 	 * param_txbcopy_threshold and param_rxbcopy_threshold are tx/rx bcopy
2392 	 * thresholds. Bounds: min 0, max NGE_MAX_SDU
2393 	 */
2394 	ngep->param_txbcopy_threshold = NGE_TX_COPY_SIZE;
2395 	ngep->param_rxbcopy_threshold = NGE_RX_COPY_SIZE;
2396 
2397 	/*
2398 	 * param_recv_max_packet is max packet received per interupt.
2399 	 * Bounds: min 0, max NGE_RECV_SLOTS_DESC_1024
2400 	 */
2401 	ngep->param_recv_max_packet = 128;
2402 
2403 	/*
2404 	 * param_poll_quiet_time and param_poll_busy_time are quiet/busy time
2405 	 * switch from per packet interrupt to polling interrupt.
2406 	 * Bounds: min 0, max 10000
2407 	 */
2408 	ngep->param_poll_quiet_time = NGE_POLL_QUIET_TIME;
2409 	ngep->param_poll_busy_time = NGE_POLL_BUSY_TIME;
2410 
2411 	/*
2412 	 * param_rx_intr_hwater/param_rx_intr_lwater: ackets received
2413 	 * to trigger the poll_quiet_time/poll_busy_time counter.
2414 	 * Bounds: min 0, max  NGE_RECV_SLOTS_DESC_1024.
2415 	 */
2416 	ngep->param_rx_intr_hwater = 1;
2417 	ngep->param_rx_intr_lwater = 8;
2418 
2419 	/*
2420 	 * param_tx_n_intr: Per N tx packets to do tx recycle in poll mode.
2421 	 * Bounds: min 1, max 10000.
2422 	 */
2423 	ngep->param_tx_n_intr = NGE_TX_N_INTR;
2424 
2425 	infop = (chip_info_t *)&ngep->chipinfo;
2426 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2427 	nge_init_dev_spec_param(ngep);
2428 	nge_get_props(ngep);
2429 	ngep->progress |= PROGRESS_CFG;
2430 
2431 	err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
2432 	    &regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
2433 	if (err != DDI_SUCCESS) {
2434 		nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
2435 		goto attach_fail;
2436 	}
2437 	ngep->io_regs = regs;
2438 	ngep->progress |= PROGRESS_REGS;
2439 
2440 	err = nge_register_intrs_and_init_locks(ngep);
2441 	if (err != DDI_SUCCESS) {
2442 		nge_problem(ngep, "nge_attach:"
2443 		    " register intrs and init locks failed");
2444 		goto attach_fail;
2445 	}
2446 	nge_init_ring_param_lock(ngep);
2447 	ngep->progress |= PROGRESS_INTR;
2448 
2449 	mutex_enter(ngep->genlock);
2450 
2451 	/*
2452 	 * Initialise link state variables
2453 	 * Stop, reset & reinitialise the chip.
2454 	 * Initialise the (internal) PHY.
2455 	 */
2456 	nge_phys_init(ngep);
2457 	ngep->nge_chip_state = NGE_CHIP_INITIAL;
2458 	err = nge_chip_reset(ngep);
2459 	if (err != DDI_SUCCESS) {
2460 		nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
2461 		mutex_exit(ngep->genlock);
2462 		goto attach_fail;
2463 	}
2464 	nge_chip_sync(ngep);
2465 
2466 	/*
2467 	 * Now that mutex locks are initialized, enable interrupts.
2468 	 */
2469 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2470 		/* Call ddi_intr_block_enable() for MSI interrupts */
2471 		(void) ddi_intr_block_enable(ngep->htable,
2472 		    ngep->intr_actual_cnt);
2473 	} else {
2474 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
2475 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2476 			(void) ddi_intr_enable(ngep->htable[i]);
2477 		}
2478 	}
2479 
2480 	ngep->link_state = LINK_STATE_UNKNOWN;
2481 	ngep->progress |= PROGRESS_HWINT;
2482 
2483 	/*
2484 	 * Register NDD-tweakable parameters
2485 	 */
2486 	if (nge_nd_init(ngep)) {
2487 		nge_problem(ngep, "nge_attach: nge_nd_init() failed");
2488 		mutex_exit(ngep->genlock);
2489 		goto attach_fail;
2490 	}
2491 	ngep->progress |= PROGRESS_NDD;
2492 
2493 	/*
2494 	 * Create & initialise named kstats
2495 	 */
2496 	nge_init_kstats(ngep, instance);
2497 	ngep->progress |= PROGRESS_KSTATS;
2498 
2499 	mutex_exit(ngep->genlock);
2500 
2501 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2502 		goto attach_fail;
2503 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2504 	macp->m_driver = ngep;
2505 	macp->m_dip = devinfo;
2506 	macp->m_src_addr = infop->vendor_addr.addr;
2507 	macp->m_callbacks = &nge_m_callbacks;
2508 	macp->m_min_sdu = 0;
2509 	macp->m_max_sdu = ngep->default_mtu;
2510 	macp->m_margin = VTAG_SIZE;
2511 	macp->m_priv_props = nge_priv_props;
2512 	macp->m_priv_prop_count = NGE_MAX_PRIV_PROPS;
2513 	/*
2514 	 * Finally, we're ready to register ourselves with the mac
2515 	 * interface; if this succeeds, we're all ready to start()
2516 	 */
2517 	err = mac_register(macp, &ngep->mh);
2518 	mac_free(macp);
2519 	if (err != 0)
2520 		goto attach_fail;
2521 
2522 	/*
2523 	 * Register a periodical handler.
2524 	 * nge_chip_cyclic() is invoked in kernel context.
2525 	 */
2526 	ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
2527 	    NGE_CYCLIC_PERIOD, DDI_IPL_0);
2528 
2529 	ngep->progress |= PROGRESS_READY;
2530 	return (DDI_SUCCESS);
2531 
2532 attach_fail:
2533 	nge_unattach(ngep);
2534 	return (DDI_FAILURE);
2535 }
2536 
2537 static int
2538 nge_suspend(nge_t *ngep)
2539 {
2540 	mutex_enter(ngep->genlock);
2541 	rw_enter(ngep->rwlock, RW_WRITER);
2542 
2543 	/* if the port hasn't been plumbed, just return */
2544 	if (ngep->nge_mac_state != NGE_MAC_STARTED) {
2545 		rw_exit(ngep->rwlock);
2546 		mutex_exit(ngep->genlock);
2547 		return (DDI_SUCCESS);
2548 	}
2549 	ngep->suspended = B_TRUE;
2550 	(void) nge_chip_stop(ngep, B_FALSE);
2551 	ngep->nge_mac_state = NGE_MAC_STOPPED;
2552 
2553 	rw_exit(ngep->rwlock);
2554 	mutex_exit(ngep->genlock);
2555 	return (DDI_SUCCESS);
2556 }
2557 
2558 /*
2559  * detach(9E) -- Detach a device from the system
2560  */
2561 static int
2562 nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2563 {
2564 	int i;
2565 	nge_t *ngep;
2566 	mul_item *p, *nextp;
2567 	buff_ring_t *brp;
2568 
2569 	NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
2570 
2571 	ngep = ddi_get_driver_private(devinfo);
2572 	brp = ngep->buff;
2573 
2574 	switch (cmd) {
2575 	default:
2576 		return (DDI_FAILURE);
2577 
2578 	case DDI_SUSPEND:
2579 		/*
2580 		 * Stop the NIC
2581 		 * Note: This driver doesn't currently support WOL, but
2582 		 *	should it in the future, it is important to
2583 		 *	make sure the PHY remains powered so that the
2584 		 *	wakeup packet can actually be recieved.
2585 		 */
2586 		return (nge_suspend(ngep));
2587 
2588 	case DDI_DETACH:
2589 		break;
2590 	}
2591 
2592 	/* Try to wait all the buffer post to upper layer be released */
2593 	for (i = 0; i < 1000; i++) {
2594 		if (brp->rx_hold == 0)
2595 			break;
2596 		drv_usecwait(1000);
2597 	}
2598 
2599 	/* If there is any posted buffer, reject to detach */
2600 	if (brp->rx_hold != 0)
2601 		return (DDI_FAILURE);
2602 
2603 	/*
2604 	 * Unregister from the GLD subsystem.  This can fail, in
2605 	 * particular if there are DLPI style-2 streams still open -
2606 	 * in which case we just return failure without shutting
2607 	 * down chip operations.
2608 	 */
2609 	if (mac_unregister(ngep->mh) != DDI_SUCCESS)
2610 		return (DDI_FAILURE);
2611 
2612 	/*
2613 	 * Recycle the multicast table. mac_unregister() should be called
2614 	 * before it to ensure the multicast table can be used even if
2615 	 * mac_unregister() fails.
2616 	 */
2617 	for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
2618 		nextp = p->next;
2619 		kmem_free(p, sizeof (mul_item));
2620 	}
2621 	ngep->pcur_mulist = NULL;
2622 
2623 	/*
2624 	 * All activity stopped, so we can clean up & exit
2625 	 */
2626 	nge_unattach(ngep);
2627 	return (DDI_SUCCESS);
2628 }
2629 
2630 /*
2631  * quiesce(9E) entry point.
2632  *
2633  * This function is called when the system is single-threaded at high
2634  * PIL with preemption disabled. Therefore, this function must not be
2635  * blocked.
2636  *
2637  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
2638  * DDI_FAILURE indicates an error condition and should almost never happen.
2639  */
2640 static int
2641 nge_quiesce(dev_info_t *devinfo)
2642 {
2643 	nge_t *ngep;
2644 
2645 	ngep = ddi_get_driver_private(devinfo);
2646 
2647 	if (ngep == NULL)
2648 		return (DDI_FAILURE);
2649 
2650 	/*
2651 	 * Turn off debug tracing
2652 	 */
2653 	nge_debug = 0;
2654 	ngep->debug = 0;
2655 
2656 	nge_restore_mac_addr(ngep);
2657 	(void) nge_chip_stop(ngep, B_FALSE);
2658 
2659 	return (DDI_SUCCESS);
2660 }
2661 
2662 
2663 
2664 /*
2665  * ========== Module Loading Data & Entry Points ==========
2666  */
2667 
2668 DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
2669     NULL, NULL, D_MP, NULL, nge_quiesce);
2670 
2671 
2672 static struct modldrv nge_modldrv = {
2673 	&mod_driverops,		/* Type of module.  This one is a driver */
2674 	nge_ident,		/* short description */
2675 	&nge_dev_ops		/* driver specific ops */
2676 };
2677 
2678 static struct modlinkage modlinkage = {
2679 	MODREV_1, (void *)&nge_modldrv, NULL
2680 };
2681 
2682 
2683 int
2684 _info(struct modinfo *modinfop)
2685 {
2686 	return (mod_info(&modlinkage, modinfop));
2687 }
2688 
2689 int
2690 _init(void)
2691 {
2692 	int status;
2693 
2694 	mac_init_ops(&nge_dev_ops, "nge");
2695 	status = mod_install(&modlinkage);
2696 	if (status != DDI_SUCCESS)
2697 		mac_fini_ops(&nge_dev_ops);
2698 	else
2699 		mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
2700 
2701 	return (status);
2702 }
2703 
2704 int
2705 _fini(void)
2706 {
2707 	int status;
2708 
2709 	status = mod_remove(&modlinkage);
2710 	if (status == DDI_SUCCESS) {
2711 		mac_fini_ops(&nge_dev_ops);
2712 		mutex_destroy(nge_log_mutex);
2713 	}
2714 
2715 	return (status);
2716 }
2717 
2718 /*
2719  * ============ Init MSI/Fixed/SoftInterrupt routines ==============
2720  */
2721 
2722 /*
2723  * Register interrupts and initialize each mutex and condition variables
2724  */
2725 
2726 static int
2727 nge_register_intrs_and_init_locks(nge_t *ngep)
2728 {
2729 	int		err;
2730 	int		intr_types;
2731 	uint_t		soft_prip;
2732 	nge_msi_mask	msi_mask;
2733 	nge_msi_map0_vec map0_vec;
2734 	nge_msi_map1_vec map1_vec;
2735 
2736 	/*
2737 	 * Add the softint handlers:
2738 	 *
2739 	 * Both of these handlers are used to avoid restrictions on the
2740 	 * context and/or mutexes required for some operations.  In
2741 	 * particular, the hardware interrupt handler and its subfunctions
2742 	 * can detect a number of conditions that we don't want to handle
2743 	 * in that context or with that set of mutexes held.  So, these
2744 	 * softints are triggered instead:
2745 	 *
2746 	 * the <resched> softint is triggered if if we have previously
2747 	 * had to refuse to send a packet because of resource shortage
2748 	 * (we've run out of transmit buffers), but the send completion
2749 	 * interrupt handler has now detected that more buffers have
2750 	 * become available.  Its only purpose is to call gld_sched()
2751 	 * to retry the pending transmits (we're not allowed to hold
2752 	 * driver-defined mutexes across gld_sched()).
2753 	 *
2754 	 * the <factotum> is triggered if the h/w interrupt handler
2755 	 * sees the <link state changed> or <error> bits in the status
2756 	 * block.  It's also triggered periodically to poll the link
2757 	 * state, just in case we aren't getting link status change
2758 	 * interrupts ...
2759 	 */
2760 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
2761 	    DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
2762 	if (err != DDI_SUCCESS) {
2763 		nge_problem(ngep,
2764 		    "nge_attach: add nge_reschedule softintr failed");
2765 
2766 		return (DDI_FAILURE);
2767 	}
2768 	ngep->progress |= PROGRESS_RESCHED;
2769 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
2770 	    DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
2771 	if (err != DDI_SUCCESS) {
2772 		nge_problem(ngep,
2773 		    "nge_attach: add nge_chip_factotum softintr failed!");
2774 
2775 		return (DDI_FAILURE);
2776 	}
2777 	if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
2778 	    != DDI_SUCCESS) {
2779 		nge_problem(ngep, "nge_attach: get softintr priority failed\n");
2780 
2781 		return (DDI_FAILURE);
2782 	}
2783 	ngep->soft_pri = soft_prip;
2784 
2785 	ngep->progress |= PROGRESS_FACTOTUM;
2786 	/* Get supported interrupt types */
2787 	if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
2788 	    != DDI_SUCCESS) {
2789 		nge_error(ngep, "ddi_intr_get_supported_types failed\n");
2790 
2791 		return (DDI_FAILURE);
2792 	}
2793 
2794 	NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
2795 	    intr_types));
2796 
2797 	if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
2798 
2799 		/* MSI Configurations for mcp55 chipset */
2800 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2801 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2802 
2803 
2804 			/* Enable the 8 vectors */
2805 			msi_mask.msi_mask_val =
2806 			    nge_reg_get32(ngep, NGE_MSI_MASK);
2807 			msi_mask.msi_msk_bits.vec0 = NGE_SET;
2808 			msi_mask.msi_msk_bits.vec1 = NGE_SET;
2809 			msi_mask.msi_msk_bits.vec2 = NGE_SET;
2810 			msi_mask.msi_msk_bits.vec3 = NGE_SET;
2811 			msi_mask.msi_msk_bits.vec4 = NGE_SET;
2812 			msi_mask.msi_msk_bits.vec5 = NGE_SET;
2813 			msi_mask.msi_msk_bits.vec6 = NGE_SET;
2814 			msi_mask.msi_msk_bits.vec7 = NGE_SET;
2815 			nge_reg_put32(ngep, NGE_MSI_MASK,
2816 			    msi_mask.msi_mask_val);
2817 
2818 			/*
2819 			 * Remapping the MSI MAP0 and MAP1. MCP55
2820 			 * is default mapping all the interrupt to 0 vector.
2821 			 * Software needs to remapping this.
2822 			 * This mapping is same as CK804.
2823 			 */
2824 			map0_vec.msi_map0_val =
2825 			    nge_reg_get32(ngep, NGE_MSI_MAP0);
2826 			map1_vec.msi_map1_val =
2827 			    nge_reg_get32(ngep, NGE_MSI_MAP1);
2828 			map0_vec.vecs_bits.reint_vec = 0;
2829 			map0_vec.vecs_bits.rcint_vec = 0;
2830 			map0_vec.vecs_bits.miss_vec = 3;
2831 			map0_vec.vecs_bits.teint_vec = 5;
2832 			map0_vec.vecs_bits.tcint_vec = 5;
2833 			map0_vec.vecs_bits.stint_vec = 2;
2834 			map0_vec.vecs_bits.mint_vec = 6;
2835 			map0_vec.vecs_bits.rfint_vec = 0;
2836 			map1_vec.vecs_bits.tfint_vec = 5;
2837 			map1_vec.vecs_bits.feint_vec = 6;
2838 			map1_vec.vecs_bits.resv8_11 = 3;
2839 			map1_vec.vecs_bits.resv12_15 = 1;
2840 			map1_vec.vecs_bits.resv16_19 = 0;
2841 			map1_vec.vecs_bits.resv20_23 = 7;
2842 			map1_vec.vecs_bits.resv24_31 = 0xff;
2843 			nge_reg_put32(ngep, NGE_MSI_MAP0,
2844 			    map0_vec.msi_map0_val);
2845 			nge_reg_put32(ngep, NGE_MSI_MAP1,
2846 			    map1_vec.msi_map1_val);
2847 		}
2848 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2849 			NGE_DEBUG(("MSI registration failed, "
2850 			    "trying FIXED interrupt type\n"));
2851 		} else {
2852 			nge_log(ngep, "Using MSI interrupt type\n");
2853 
2854 			ngep->intr_type = DDI_INTR_TYPE_MSI;
2855 			ngep->progress |= PROGRESS_SWINT;
2856 		}
2857 	}
2858 
2859 	if (!(ngep->progress & PROGRESS_SWINT) &&
2860 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2861 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2862 			nge_error(ngep, "FIXED interrupt "
2863 			    "registration failed\n");
2864 
2865 			return (DDI_FAILURE);
2866 		}
2867 
2868 		nge_log(ngep, "Using FIXED interrupt type\n");
2869 
2870 		ngep->intr_type = DDI_INTR_TYPE_FIXED;
2871 		ngep->progress |= PROGRESS_SWINT;
2872 	}
2873 
2874 
2875 	if (!(ngep->progress & PROGRESS_SWINT)) {
2876 		nge_error(ngep, "No interrupts registered\n");
2877 
2878 		return (DDI_FAILURE);
2879 	}
2880 	mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
2881 	    DDI_INTR_PRI(ngep->intr_pri));
2882 	mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
2883 	    DDI_INTR_PRI(ngep->soft_pri));
2884 	rw_init(ngep->rwlock, NULL, RW_DRIVER,
2885 	    DDI_INTR_PRI(ngep->intr_pri));
2886 
2887 	return (DDI_SUCCESS);
2888 }
2889 
2890 /*
2891  * nge_add_intrs:
2892  *
2893  * Register FIXED or MSI interrupts.
2894  */
2895 static int
2896 nge_add_intrs(nge_t *ngep, int	intr_type)
2897 {
2898 	dev_info_t	*dip = ngep->devinfo;
2899 	int		avail, actual, intr_size, count = 0;
2900 	int		i, flag, ret;
2901 
2902 	NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
2903 
2904 	/* Get number of interrupts */
2905 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2906 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2907 		nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
2908 		    "count: %d", ret, count);
2909 
2910 		return (DDI_FAILURE);
2911 	}
2912 
2913 	/* Get number of available interrupts */
2914 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2915 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2916 		nge_error(ngep, "ddi_intr_get_navail() failure, "
2917 		    "ret: %d, avail: %d\n", ret, avail);
2918 
2919 		return (DDI_FAILURE);
2920 	}
2921 
2922 	if (avail < count) {
2923 		NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
2924 		    count, avail));
2925 	}
2926 	flag = DDI_INTR_ALLOC_NORMAL;
2927 
2928 	/* Allocate an array of interrupt handles */
2929 	intr_size = count * sizeof (ddi_intr_handle_t);
2930 	ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
2931 
2932 	/* Call ddi_intr_alloc() */
2933 	ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
2934 	    count, &actual, flag);
2935 
2936 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2937 		nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
2938 
2939 		kmem_free(ngep->htable, intr_size);
2940 		return (DDI_FAILURE);
2941 	}
2942 
2943 	if (actual < count) {
2944 		NGE_DEBUG(("Requested: %d, Received: %d\n",
2945 		    count, actual));
2946 	}
2947 
2948 	ngep->intr_actual_cnt = actual;
2949 	ngep->intr_req_cnt = count;
2950 
2951 	/*
2952 	 * Get priority for first msi, assume remaining are all the same
2953 	 */
2954 	if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
2955 	    DDI_SUCCESS) {
2956 		nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
2957 
2958 		/* Free already allocated intr */
2959 		for (i = 0; i < actual; i++) {
2960 			(void) ddi_intr_free(ngep->htable[i]);
2961 		}
2962 
2963 		kmem_free(ngep->htable, intr_size);
2964 
2965 		return (DDI_FAILURE);
2966 	}
2967 	/* Test for high level mutex */
2968 	if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
2969 		nge_error(ngep, "nge_add_intrs:"
2970 		    "Hi level interrupt not supported");
2971 
2972 		for (i = 0; i < actual; i++)
2973 			(void) ddi_intr_free(ngep->htable[i]);
2974 
2975 		kmem_free(ngep->htable, intr_size);
2976 
2977 		return (DDI_FAILURE);
2978 	}
2979 
2980 
2981 	/* Call ddi_intr_add_handler() */
2982 	for (i = 0; i < actual; i++) {
2983 		if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
2984 		    (caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
2985 			nge_error(ngep, "ddi_intr_add_handler() "
2986 			    "failed %d\n", ret);
2987 
2988 			/* Free already allocated intr */
2989 			for (i = 0; i < actual; i++) {
2990 				(void) ddi_intr_free(ngep->htable[i]);
2991 			}
2992 
2993 			kmem_free(ngep->htable, intr_size);
2994 
2995 			return (DDI_FAILURE);
2996 		}
2997 	}
2998 
2999 	if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
3000 	    != DDI_SUCCESS) {
3001 		nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
3002 
3003 		for (i = 0; i < actual; i++) {
3004 			(void) ddi_intr_remove_handler(ngep->htable[i]);
3005 			(void) ddi_intr_free(ngep->htable[i]);
3006 		}
3007 
3008 		kmem_free(ngep->htable, intr_size);
3009 
3010 		return (DDI_FAILURE);
3011 	}
3012 
3013 	return (DDI_SUCCESS);
3014 }
3015 
3016 /*
3017  * nge_rem_intrs:
3018  *
3019  * Unregister FIXED or MSI interrupts
3020  */
3021 static void
3022 nge_rem_intrs(nge_t *ngep)
3023 {
3024 	int	i;
3025 
3026 	NGE_DEBUG(("nge_rem_intrs\n"));
3027 
3028 	/* Disable all interrupts */
3029 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3030 		/* Call ddi_intr_block_disable() */
3031 		(void) ddi_intr_block_disable(ngep->htable,
3032 		    ngep->intr_actual_cnt);
3033 	} else {
3034 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
3035 			(void) ddi_intr_disable(ngep->htable[i]);
3036 		}
3037 	}
3038 
3039 	/* Call ddi_intr_remove_handler() */
3040 	for (i = 0; i < ngep->intr_actual_cnt; i++) {
3041 		(void) ddi_intr_remove_handler(ngep->htable[i]);
3042 		(void) ddi_intr_free(ngep->htable[i]);
3043 	}
3044 
3045 	kmem_free(ngep->htable,
3046 	    ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
3047 }
3048