1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 546 /* 547 * Size of acceptor hash list. It has to be a power of 2 for hashing. 548 */ 549 #define TCP_ACCEPTOR_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * If there is a limit set on the number of connections allowed per each 565 * listener, the following struct is used to store that counter. This needs 566 * to be separated from the listener since the listener can go away before 567 * all the connections are gone. When the struct is allocated, tlc_cnt is set 568 * to 1. When the listener goes away, tlc_cnt is decremented by one. And 569 * the last connection (or the listener) which decrements tlc_cnt to zero 570 * frees the struct. 571 * 572 * tlc_max is the threshold value tcps_conn_listen_port. It is set when the 573 * tcp_listen_cnt_t is allocated. 574 * 575 * tlc_report_time stores the time when cmn_err() is called to report that the 576 * max has been exceeeded. Report is done at most once every 577 * TCP_TLC_REPORT_INTERVAL mins for a listener. 578 * 579 * tlc_drop stores the number of connection attempt dropped because the 580 * limit has reached. 581 */ 582 typedef struct tcp_listen_cnt_s { 583 uint32_t tlc_max; 584 uint32_t tlc_cnt; 585 int64_t tlc_report_time; 586 uint32_t tlc_drop; 587 } tcp_listen_cnt_t; 588 589 #define TCP_TLC_REPORT_INTERVAL (1 * MINUTES) 590 591 #define TCP_DECR_LISTEN_CNT(tcp) \ 592 { \ 593 ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ 594 if (atomic_add_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt, -1) == 0) \ 595 kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ 596 (tcp)->tcp_listen_cnt = NULL; \ 597 } 598 599 /* Minimum number of connections per listener. */ 600 uint32_t tcp_min_conn_listener = 2; 601 602 /* 603 * Linked list struct to store listener connection limit configuration per 604 * IP stack. 605 */ 606 typedef struct tcp_listener_s { 607 in_port_t tl_port; 608 uint32_t tl_ratio; 609 list_node_t tl_link; 610 } tcp_listener_t; 611 612 /* 613 * The shift factor applied to tcp_mss to decide if the peer sends us a 614 * valid initial receive window. By default, if the peer receive window 615 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 616 */ 617 uint32_t tcp_init_wnd_shft = 0; 618 619 /* 620 * When the system is under memory pressure, stack variable tcps_reclaim is 621 * true, we shorten the connection timeout abort interval to tcp_early_abort 622 * seconds. 623 */ 624 uint32_t tcp_early_abort = 30; 625 626 /* 627 * TCP options struct returned from tcp_parse_options. 628 */ 629 typedef struct tcp_opt_s { 630 uint32_t tcp_opt_mss; 631 uint32_t tcp_opt_wscale; 632 uint32_t tcp_opt_ts_val; 633 uint32_t tcp_opt_ts_ecr; 634 tcp_t *tcp; 635 } tcp_opt_t; 636 637 /* 638 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 639 */ 640 641 #ifdef _BIG_ENDIAN 642 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 643 (TCPOPT_TSTAMP << 8) | 10) 644 #else 645 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 646 (TCPOPT_NOP << 8) | TCPOPT_NOP) 647 #endif 648 649 /* 650 * Flags returned from tcp_parse_options. 651 */ 652 #define TCP_OPT_MSS_PRESENT 1 653 #define TCP_OPT_WSCALE_PRESENT 2 654 #define TCP_OPT_TSTAMP_PRESENT 4 655 #define TCP_OPT_SACK_OK_PRESENT 8 656 #define TCP_OPT_SACK_PRESENT 16 657 658 /* TCP option length */ 659 #define TCPOPT_NOP_LEN 1 660 #define TCPOPT_MAXSEG_LEN 4 661 #define TCPOPT_WS_LEN 3 662 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 663 #define TCPOPT_TSTAMP_LEN 10 664 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 665 #define TCPOPT_SACK_OK_LEN 2 666 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 667 #define TCPOPT_REAL_SACK_LEN 4 668 #define TCPOPT_MAX_SACK_LEN 36 669 #define TCPOPT_HEADER_LEN 2 670 671 /* TCP cwnd burst factor. */ 672 #define TCP_CWND_INFINITE 65535 673 #define TCP_CWND_SS 3 674 #define TCP_CWND_NORMAL 5 675 676 /* Maximum TCP initial cwin (start/restart). */ 677 #define TCP_MAX_INIT_CWND 8 678 679 /* 680 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 681 * either tcp_slow_start_initial or tcp_slow_start_after idle 682 * depending on the caller. If the upper layer has not used the 683 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 684 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 685 * If the upper layer has changed set the tcp_init_cwnd, just use 686 * it to calculate the tcp_cwnd. 687 */ 688 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 689 { \ 690 if ((tcp)->tcp_init_cwnd == 0) { \ 691 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 692 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 693 } else { \ 694 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 695 } \ 696 tcp->tcp_cwnd_cnt = 0; \ 697 } 698 699 /* TCP Timer control structure */ 700 typedef struct tcpt_s { 701 pfv_t tcpt_pfv; /* The routine we are to call */ 702 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 703 } tcpt_t; 704 705 /* 706 * Functions called directly via squeue having a prototype of edesc_t. 707 */ 708 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 709 ip_recv_attr_t *ira); 710 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 711 ip_recv_attr_t *dummy); 712 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 713 ip_recv_attr_t *dummy); 714 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 715 ip_recv_attr_t *dummy); 716 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 717 ip_recv_attr_t *dummy); 718 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 719 ip_recv_attr_t *ira); 720 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 721 ip_recv_attr_t *dummy); 722 void tcp_output(void *arg, mblk_t *mp, void *arg2, 723 ip_recv_attr_t *dummy); 724 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 725 ip_recv_attr_t *dummy); 726 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 727 ip_recv_attr_t *dummy); 728 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 729 ip_recv_attr_t *dummy); 730 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 731 ip_recv_attr_t *dummy); 732 733 734 /* Prototype for TCP functions */ 735 static void tcp_random_init(void); 736 int tcp_random(void); 737 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 738 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 739 tcp_t *eager); 740 static int tcp_set_destination(tcp_t *tcp); 741 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 742 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 743 boolean_t user_specified); 744 static void tcp_closei_local(tcp_t *tcp); 745 static void tcp_close_detached(tcp_t *tcp); 746 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 747 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 748 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 749 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 750 in_port_t dstport, uint_t srcid); 751 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 752 in_port_t dstport, uint32_t flowinfo, 753 uint_t srcid, uint32_t scope_id); 754 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 755 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 756 static char *tcp_display(tcp_t *tcp, char *, char); 757 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 758 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 759 static void tcp_eager_unlink(tcp_t *tcp); 760 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 761 int unixerr); 762 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 763 int tlierr, int unixerr); 764 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 765 cred_t *cr); 766 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 767 char *value, caddr_t cp, cred_t *cr); 768 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 769 char *value, caddr_t cp, cred_t *cr); 770 static int tcp_tpistate(tcp_t *tcp); 771 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 772 int caller_holds_lock); 773 static void tcp_bind_hash_remove(tcp_t *tcp); 774 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 775 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 776 static void tcp_acceptor_hash_remove(tcp_t *tcp); 777 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 778 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 779 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 780 static void tcp_init_values(tcp_t *tcp); 781 static void tcp_ip_notify(tcp_t *tcp); 782 static void tcp_iss_init(tcp_t *tcp); 783 static void tcp_keepalive_killer(void *arg); 784 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 785 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 786 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 787 int *do_disconnectp, int *t_errorp, int *sys_errorp); 788 static boolean_t tcp_allow_connopt_set(int level, int name); 789 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 790 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 791 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 792 tcp_stack_t *); 793 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 794 caddr_t cp, cred_t *cr); 795 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 796 caddr_t cp, cred_t *cr); 797 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 798 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 799 caddr_t cp, cred_t *cr); 800 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 801 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 802 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 803 static void tcp_reass_timer(void *arg); 804 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 805 static void tcp_reinit(tcp_t *tcp); 806 static void tcp_reinit_values(tcp_t *tcp); 807 808 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 809 static uint_t tcp_rcv_drain(tcp_t *tcp); 810 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 811 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 812 static void tcp_ss_rexmit(tcp_t *tcp); 813 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 814 ip_recv_attr_t *); 815 static void tcp_process_options(tcp_t *, tcpha_t *); 816 static void tcp_rsrv(queue_t *q); 817 static int tcp_snmp_state(tcp_t *tcp); 818 static void tcp_timer(void *arg); 819 static void tcp_timer_callback(void *); 820 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 821 boolean_t random); 822 static in_port_t tcp_get_next_priv_port(const tcp_t *); 823 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 824 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 825 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 826 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 827 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 828 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 829 static int tcp_send(tcp_t *tcp, const int mss, 830 const int total_hdr_len, const int tcp_hdr_len, 831 const int num_sack_blk, int *usable, uint_t *snxt, 832 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 833 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 834 int num_sack_blk); 835 static void tcp_wsrv(queue_t *q); 836 static int tcp_xmit_end(tcp_t *tcp); 837 static void tcp_ack_timer(void *arg); 838 static mblk_t *tcp_ack_mp(tcp_t *tcp); 839 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 840 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 841 ip_stack_t *, conn_t *); 842 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 843 uint32_t ack, int ctl); 844 static void tcp_set_rto(tcp_t *, time_t); 845 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 846 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 847 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 848 ip_recv_attr_t *); 849 static int tcp_build_hdrs(tcp_t *); 850 static void tcp_time_wait_append(tcp_t *tcp); 851 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 852 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 853 ip_recv_attr_t *ira); 854 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 855 static boolean_t tcp_zcopy_check(tcp_t *); 856 static void tcp_zcopy_notify(tcp_t *); 857 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 858 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 859 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 860 static void tcp_update_zcopy(tcp_t *tcp); 861 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 862 ixa_notify_arg_t); 863 static void tcp_rexmit_after_error(tcp_t *tcp); 864 static void tcp_send_data(tcp_t *, mblk_t *); 865 extern mblk_t *tcp_timermp_alloc(int); 866 extern void tcp_timermp_free(tcp_t *); 867 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 868 static void tcp_stop_lingering(tcp_t *tcp); 869 static void tcp_close_linger_timeout(void *arg); 870 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 871 static void tcp_stack_fini(netstackid_t stackid, void *arg); 872 static void *tcp_g_kstat_init(tcp_g_stat_t *); 873 static void tcp_g_kstat_fini(kstat_t *); 874 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 875 static void tcp_kstat_fini(netstackid_t, kstat_t *); 876 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 877 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 878 static int tcp_kstat_update(kstat_t *kp, int rw); 879 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 880 ip_recv_attr_t *ira); 881 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 882 ip_recv_attr_t *ira); 883 static int tcp_squeue_switch(int); 884 885 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 886 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 887 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 888 static int tcp_tpi_close(queue_t *, int); 889 static int tcp_tpi_close_accept(queue_t *); 890 891 static void tcp_squeue_add(squeue_t *); 892 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 893 894 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 895 896 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 897 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 898 ip_recv_attr_t *dummy); 899 900 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 901 sock_upper_handle_t, cred_t *); 902 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 903 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 904 boolean_t); 905 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 906 cred_t *, pid_t); 907 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 908 boolean_t); 909 static int tcp_do_unbind(conn_t *); 910 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 911 boolean_t); 912 913 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 914 915 static uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); 916 static int tcp_listener_conf_get(queue_t *, mblk_t *, caddr_t, cred_t *); 917 static int tcp_listener_conf_add(queue_t *, mblk_t *, char *, caddr_t, 918 cred_t *); 919 static int tcp_listener_conf_del(queue_t *, mblk_t *, char *, caddr_t, 920 cred_t *); 921 static void tcp_listener_conf_cleanup(tcp_stack_t *); 922 923 /* 924 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 925 * 926 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 927 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 928 * (defined in tcp.h) needs to be filled in and passed into the kernel 929 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 930 * structure contains the four-tuple of a TCP connection and a range of TCP 931 * states (specified by ac_start and ac_end). The use of wildcard addresses 932 * and ports is allowed. Connections with a matching four tuple and a state 933 * within the specified range will be aborted. The valid states for the 934 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 935 * inclusive. 936 * 937 * An application which has its connection aborted by this ioctl will receive 938 * an error that is dependent on the connection state at the time of the abort. 939 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 940 * though a RST packet has been received. If the connection state is equal to 941 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 942 * and all resources associated with the connection will be freed. 943 */ 944 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 945 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 946 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 947 ip_recv_attr_t *dummy); 948 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 949 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 950 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 951 boolean_t, tcp_stack_t *); 952 953 static struct module_info tcp_rinfo = { 954 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 955 }; 956 957 static struct module_info tcp_winfo = { 958 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 959 }; 960 961 /* 962 * Entry points for TCP as a device. The normal case which supports 963 * the TCP functionality. 964 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 965 */ 966 struct qinit tcp_rinitv4 = { 967 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 968 }; 969 970 struct qinit tcp_rinitv6 = { 971 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 972 }; 973 974 struct qinit tcp_winit = { 975 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 976 }; 977 978 /* Initial entry point for TCP in socket mode. */ 979 struct qinit tcp_sock_winit = { 980 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 981 }; 982 983 /* TCP entry point during fallback */ 984 struct qinit tcp_fallback_sock_winit = { 985 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 986 }; 987 988 /* 989 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 990 * an accept. Avoid allocating data structures since eager has already 991 * been created. 992 */ 993 struct qinit tcp_acceptor_rinit = { 994 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 995 }; 996 997 struct qinit tcp_acceptor_winit = { 998 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 999 }; 1000 1001 /* For AF_INET aka /dev/tcp */ 1002 struct streamtab tcpinfov4 = { 1003 &tcp_rinitv4, &tcp_winit 1004 }; 1005 1006 /* For AF_INET6 aka /dev/tcp6 */ 1007 struct streamtab tcpinfov6 = { 1008 &tcp_rinitv6, &tcp_winit 1009 }; 1010 1011 sock_downcalls_t sock_tcp_downcalls; 1012 1013 /* Setable only in /etc/system. Move to ndd? */ 1014 boolean_t tcp_icmp_source_quench = B_FALSE; 1015 1016 /* 1017 * Following assumes TPI alignment requirements stay along 32 bit 1018 * boundaries 1019 */ 1020 #define ROUNDUP32(x) \ 1021 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1022 1023 /* Template for response to info request. */ 1024 static struct T_info_ack tcp_g_t_info_ack = { 1025 T_INFO_ACK, /* PRIM_type */ 1026 0, /* TSDU_size */ 1027 T_INFINITE, /* ETSDU_size */ 1028 T_INVALID, /* CDATA_size */ 1029 T_INVALID, /* DDATA_size */ 1030 sizeof (sin_t), /* ADDR_size */ 1031 0, /* OPT_size - not initialized here */ 1032 TIDUSZ, /* TIDU_size */ 1033 T_COTS_ORD, /* SERV_type */ 1034 TCPS_IDLE, /* CURRENT_state */ 1035 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1036 }; 1037 1038 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1039 T_INFO_ACK, /* PRIM_type */ 1040 0, /* TSDU_size */ 1041 T_INFINITE, /* ETSDU_size */ 1042 T_INVALID, /* CDATA_size */ 1043 T_INVALID, /* DDATA_size */ 1044 sizeof (sin6_t), /* ADDR_size */ 1045 0, /* OPT_size - not initialized here */ 1046 TIDUSZ, /* TIDU_size */ 1047 T_COTS_ORD, /* SERV_type */ 1048 TCPS_IDLE, /* CURRENT_state */ 1049 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1050 }; 1051 1052 #define MS 1L 1053 #define SECONDS (1000 * MS) 1054 #define MINUTES (60 * SECONDS) 1055 #define HOURS (60 * MINUTES) 1056 #define DAYS (24 * HOURS) 1057 1058 #define PARAM_MAX (~(uint32_t)0) 1059 1060 /* Max size IP datagram is 64k - 1 */ 1061 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 1062 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 1063 /* Max of the above */ 1064 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1065 1066 /* Largest TCP port number */ 1067 #define TCP_MAX_PORT (64 * 1024 - 1) 1068 1069 /* 1070 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1071 * layer header. It has to be a multiple of 4. 1072 */ 1073 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1074 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1075 1076 #define MB (1024 * 1024) 1077 1078 /* 1079 * All of these are alterable, within the min/max values given, at run time. 1080 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1081 * per the TCP spec. 1082 */ 1083 /* BEGIN CSTYLED */ 1084 static tcpparam_t lcl_tcp_param_arr[] = { 1085 /*min max value name */ 1086 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1087 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1088 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1089 { 1, 1024, 1, "tcp_conn_req_min" }, 1090 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1091 { 128, (1<<30), 1*MB, "tcp_cwnd_max" }, 1092 { 0, 10, 0, "tcp_debug" }, 1093 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1094 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1095 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1096 { 500*MS, PARAM_MAX, 5*MINUTES, "tcp_ip_abort_interval"}, 1097 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1098 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1099 { 1, 255, 64, "tcp_ipv4_ttl"}, 1100 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1101 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1102 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1103 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1104 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1105 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1106 { 1*MS, 20*SECONDS, 1*SECONDS, "tcp_rexmit_interval_initial"}, 1107 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1108 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1109 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1110 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1111 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1112 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1113 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1114 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1115 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1116 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1117 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1118 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1119 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1120 { 8192, (1<<30), 1*MB, "tcp_max_buf"}, 1121 /* 1122 * Question: What default value should I set for tcp_strong_iss? 1123 */ 1124 { 0, 2, 1, "tcp_strong_iss"}, 1125 { 0, 65536, 20, "tcp_rtt_updates"}, 1126 { 0, 1, 1, "tcp_wscale_always"}, 1127 { 0, 1, 0, "tcp_tstamp_always"}, 1128 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1129 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1130 { 0, 16, 2, "tcp_deferred_acks_max"}, 1131 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1132 { 1, 4, 4, "tcp_slow_start_initial"}, 1133 { 0, 2, 2, "tcp_sack_permitted"}, 1134 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1135 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1136 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1137 { 0, 1, 0, "tcp_rev_src_routes"}, 1138 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1139 { 0, 16, 8, "tcp_local_dacks_max"}, 1140 { 0, 2, 1, "tcp_ecn_permitted"}, 1141 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1142 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1143 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1144 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1145 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1146 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1147 { 0, PARAM_MAX, 100*SECONDS, "tcp_reass_timeout"} 1148 }; 1149 /* END CSTYLED */ 1150 1151 /* Round up the value to the nearest mss. */ 1152 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1153 1154 /* 1155 * Set ECN capable transport (ECT) code point in IP header. 1156 * 1157 * Note that there are 2 ECT code points '01' and '10', which are called 1158 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1159 * point ECT(0) for TCP as described in RFC 2481. 1160 */ 1161 #define SET_ECT(tcp, iph) \ 1162 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1163 /* We need to clear the code point first. */ \ 1164 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1165 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1166 } else { \ 1167 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1168 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1169 } 1170 1171 /* 1172 * The format argument to pass to tcp_display(). 1173 * DISP_PORT_ONLY means that the returned string has only port info. 1174 * DISP_ADDR_AND_PORT means that the returned string also contains the 1175 * remote and local IP address. 1176 */ 1177 #define DISP_PORT_ONLY 1 1178 #define DISP_ADDR_AND_PORT 2 1179 1180 #define IS_VMLOANED_MBLK(mp) \ 1181 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1182 1183 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1184 1185 /* 1186 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1187 * tunable settable via NDD. Otherwise, the per-connection behavior is 1188 * determined dynamically during tcp_set_destination(), which is the default. 1189 */ 1190 boolean_t tcp_static_maxpsz = B_FALSE; 1191 1192 /* Setable in /etc/system */ 1193 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1194 uint32_t tcp_random_anon_port = 1; 1195 1196 /* 1197 * To reach to an eager in Q0 which can be dropped due to an incoming 1198 * new SYN request when Q0 is full, a new doubly linked list is 1199 * introduced. This list allows to select an eager from Q0 in O(1) time. 1200 * This is needed to avoid spending too much time walking through the 1201 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1202 * this new list has to be a member of Q0. 1203 * This list is headed by listener's tcp_t. When the list is empty, 1204 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1205 * of listener's tcp_t point to listener's tcp_t itself. 1206 * 1207 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1208 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1209 * These macros do not affect the eager's membership to Q0. 1210 */ 1211 1212 1213 #define MAKE_DROPPABLE(listener, eager) \ 1214 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1215 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1216 = (eager); \ 1217 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1218 (eager)->tcp_eager_next_drop_q0 = \ 1219 (listener)->tcp_eager_next_drop_q0; \ 1220 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1221 } 1222 1223 #define MAKE_UNDROPPABLE(eager) \ 1224 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1225 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1226 = (eager)->tcp_eager_prev_drop_q0; \ 1227 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1228 = (eager)->tcp_eager_next_drop_q0; \ 1229 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1230 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1231 } 1232 1233 /* 1234 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1235 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1236 * data, TCP will not respond with an ACK. RFC 793 requires that 1237 * TCP responds with an ACK for such a bogus ACK. By not following 1238 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1239 * an attacker successfully spoofs an acceptable segment to our 1240 * peer; or when our peer is "confused." 1241 */ 1242 uint32_t tcp_drop_ack_unsent_cnt = 10; 1243 1244 /* 1245 * Hook functions to enable cluster networking 1246 * On non-clustered systems these vectors must always be NULL. 1247 */ 1248 1249 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1250 sa_family_t addr_family, uint8_t *laddrp, 1251 in_port_t lport, void *args) = NULL; 1252 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1253 sa_family_t addr_family, uint8_t *laddrp, 1254 in_port_t lport, void *args) = NULL; 1255 1256 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1257 boolean_t is_outgoing, 1258 sa_family_t addr_family, 1259 uint8_t *laddrp, in_port_t lport, 1260 uint8_t *faddrp, in_port_t fport, 1261 void *args) = NULL; 1262 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1263 sa_family_t addr_family, uint8_t *laddrp, 1264 in_port_t lport, uint8_t *faddrp, 1265 in_port_t fport, void *args) = NULL; 1266 1267 1268 /* 1269 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1270 */ 1271 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1272 (err) = 0; \ 1273 if (cl_inet_connect2 != NULL) { \ 1274 /* \ 1275 * Running in cluster mode - register active connection \ 1276 * information \ 1277 */ \ 1278 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1279 if ((connp)->conn_laddr_v4 != 0) { \ 1280 (err) = (*cl_inet_connect2)( \ 1281 (connp)->conn_netstack->netstack_stackid,\ 1282 IPPROTO_TCP, is_outgoing, AF_INET, \ 1283 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1284 (in_port_t)(connp)->conn_lport, \ 1285 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1286 (in_port_t)(connp)->conn_fport, NULL); \ 1287 } \ 1288 } else { \ 1289 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1290 &(connp)->conn_laddr_v6)) { \ 1291 (err) = (*cl_inet_connect2)( \ 1292 (connp)->conn_netstack->netstack_stackid,\ 1293 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1294 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1295 (in_port_t)(connp)->conn_lport, \ 1296 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1297 (in_port_t)(connp)->conn_fport, NULL); \ 1298 } \ 1299 } \ 1300 } \ 1301 } 1302 1303 #define CL_INET_DISCONNECT(connp) { \ 1304 if (cl_inet_disconnect != NULL) { \ 1305 /* \ 1306 * Running in cluster mode - deregister active \ 1307 * connection information \ 1308 */ \ 1309 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1310 if ((connp)->conn_laddr_v4 != 0) { \ 1311 (*cl_inet_disconnect)( \ 1312 (connp)->conn_netstack->netstack_stackid,\ 1313 IPPROTO_TCP, AF_INET, \ 1314 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1315 (in_port_t)(connp)->conn_lport, \ 1316 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1317 (in_port_t)(connp)->conn_fport, NULL); \ 1318 } \ 1319 } else { \ 1320 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1321 &(connp)->conn_laddr_v6)) { \ 1322 (*cl_inet_disconnect)( \ 1323 (connp)->conn_netstack->netstack_stackid,\ 1324 IPPROTO_TCP, AF_INET6, \ 1325 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1326 (in_port_t)(connp)->conn_lport, \ 1327 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1328 (in_port_t)(connp)->conn_fport, NULL); \ 1329 } \ 1330 } \ 1331 } \ 1332 } 1333 1334 /* 1335 * Steps to do when a tcp_t moves to TIME-WAIT state. 1336 * 1337 * This connection is done, we don't need to account for it. Decrement 1338 * the listener connection counter if needed. 1339 * 1340 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 1341 * connection won't interfere with new ones. 1342 * 1343 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 1344 * the timer is handled within the context of this tcp_t. When the timer 1345 * fires, tcp_clean_death() is called. If upper layer closes the connection 1346 * during this period, tcp_time_wait_append() will be called to add this 1347 * tcp_t to the global TIME-WAIT list. Note that this means that the 1348 * actual wait time in TIME-WAIT state will be longer than the 1349 * tcps_time_wait_interval since the period before upper layer closes the 1350 * connection is not accounted for when tcp_time_wait_append() is called. 1351 * 1352 * If uppser layer has closed the connection, call tcp_time_wait_append() 1353 * directly. 1354 */ 1355 #define SET_TIME_WAIT(tcps, tcp, connp) \ 1356 { \ 1357 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 1358 if ((tcp)->tcp_listen_cnt != NULL) \ 1359 TCP_DECR_LISTEN_CNT(tcp); \ 1360 (connp)->conn_exclbind = 0; \ 1361 if (!TCP_IS_DETACHED(tcp)) { \ 1362 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 1363 } else { \ 1364 tcp_time_wait_append(tcp); \ 1365 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 1366 } \ 1367 } 1368 1369 /* 1370 * Cluster networking hook for traversing current connection list. 1371 * This routine is used to extract the current list of live connections 1372 * which must continue to to be dispatched to this node. 1373 */ 1374 int cl_tcp_walk_list(netstackid_t stack_id, 1375 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1376 1377 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1378 void *arg, tcp_stack_t *tcps); 1379 1380 static void 1381 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1382 { 1383 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1384 1385 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1386 conn_t *connp = tcp->tcp_connp; 1387 struct sock_proto_props sopp; 1388 1389 /* 1390 * only increase rcvthresh upto default_threshold 1391 */ 1392 if (new_rcvthresh > default_threshold) 1393 new_rcvthresh = default_threshold; 1394 1395 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1396 sopp.sopp_rcvthresh = new_rcvthresh; 1397 1398 (*connp->conn_upcalls->su_set_proto_props) 1399 (connp->conn_upper_handle, &sopp); 1400 } 1401 } 1402 /* 1403 * Figure out the value of window scale opton. Note that the rwnd is 1404 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1405 * We cannot find the scale value and then do a round up of tcp_rwnd 1406 * because the scale value may not be correct after that. 1407 * 1408 * Set the compiler flag to make this function inline. 1409 */ 1410 static void 1411 tcp_set_ws_value(tcp_t *tcp) 1412 { 1413 int i; 1414 uint32_t rwnd = tcp->tcp_rwnd; 1415 1416 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1417 i++, rwnd >>= 1) 1418 ; 1419 tcp->tcp_rcv_ws = i; 1420 } 1421 1422 /* 1423 * Remove a connection from the list of detached TIME_WAIT connections. 1424 * It returns B_FALSE if it can't remove the connection from the list 1425 * as the connection has already been removed from the list due to an 1426 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1427 */ 1428 static boolean_t 1429 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1430 { 1431 boolean_t locked = B_FALSE; 1432 1433 if (tcp_time_wait == NULL) { 1434 tcp_time_wait = *((tcp_squeue_priv_t **) 1435 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1436 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1437 locked = B_TRUE; 1438 } else { 1439 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1440 } 1441 1442 if (tcp->tcp_time_wait_expire == 0) { 1443 ASSERT(tcp->tcp_time_wait_next == NULL); 1444 ASSERT(tcp->tcp_time_wait_prev == NULL); 1445 if (locked) 1446 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1447 return (B_FALSE); 1448 } 1449 ASSERT(TCP_IS_DETACHED(tcp)); 1450 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1451 1452 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1453 ASSERT(tcp->tcp_time_wait_prev == NULL); 1454 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1455 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1456 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1457 NULL; 1458 } else { 1459 tcp_time_wait->tcp_time_wait_tail = NULL; 1460 } 1461 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1462 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1463 ASSERT(tcp->tcp_time_wait_next == NULL); 1464 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1465 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1466 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1467 } else { 1468 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1469 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1470 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1471 tcp->tcp_time_wait_next; 1472 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1473 tcp->tcp_time_wait_prev; 1474 } 1475 tcp->tcp_time_wait_next = NULL; 1476 tcp->tcp_time_wait_prev = NULL; 1477 tcp->tcp_time_wait_expire = 0; 1478 1479 if (locked) 1480 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1481 return (B_TRUE); 1482 } 1483 1484 /* 1485 * Add a connection to the list of detached TIME_WAIT connections 1486 * and set its time to expire. 1487 */ 1488 static void 1489 tcp_time_wait_append(tcp_t *tcp) 1490 { 1491 tcp_stack_t *tcps = tcp->tcp_tcps; 1492 tcp_squeue_priv_t *tcp_time_wait = 1493 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1494 SQPRIVATE_TCP)); 1495 1496 tcp_timers_stop(tcp); 1497 1498 /* Freed above */ 1499 ASSERT(tcp->tcp_timer_tid == 0); 1500 ASSERT(tcp->tcp_ack_tid == 0); 1501 1502 /* must have happened at the time of detaching the tcp */ 1503 ASSERT(tcp->tcp_ptpahn == NULL); 1504 ASSERT(tcp->tcp_flow_stopped == 0); 1505 ASSERT(tcp->tcp_time_wait_next == NULL); 1506 ASSERT(tcp->tcp_time_wait_prev == NULL); 1507 ASSERT(tcp->tcp_time_wait_expire == NULL); 1508 ASSERT(tcp->tcp_listener == NULL); 1509 1510 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1511 /* 1512 * The value computed below in tcp->tcp_time_wait_expire may 1513 * appear negative or wrap around. That is ok since our 1514 * interest is only in the difference between the current lbolt 1515 * value and tcp->tcp_time_wait_expire. But the value should not 1516 * be zero, since it means the tcp is not in the TIME_WAIT list. 1517 * The corresponding comparison in tcp_time_wait_collector() uses 1518 * modular arithmetic. 1519 */ 1520 tcp->tcp_time_wait_expire += 1521 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1522 if (tcp->tcp_time_wait_expire == 0) 1523 tcp->tcp_time_wait_expire = 1; 1524 1525 ASSERT(TCP_IS_DETACHED(tcp)); 1526 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1527 ASSERT(tcp->tcp_time_wait_next == NULL); 1528 ASSERT(tcp->tcp_time_wait_prev == NULL); 1529 TCP_DBGSTAT(tcps, tcp_time_wait); 1530 1531 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1532 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1533 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1534 tcp_time_wait->tcp_time_wait_head = tcp; 1535 } else { 1536 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1537 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1538 TCPS_TIME_WAIT); 1539 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1540 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1541 } 1542 tcp_time_wait->tcp_time_wait_tail = tcp; 1543 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1544 } 1545 1546 /* ARGSUSED */ 1547 void 1548 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1549 { 1550 conn_t *connp = (conn_t *)arg; 1551 tcp_t *tcp = connp->conn_tcp; 1552 tcp_stack_t *tcps = tcp->tcp_tcps; 1553 1554 ASSERT(tcp != NULL); 1555 if (tcp->tcp_state == TCPS_CLOSED) { 1556 return; 1557 } 1558 1559 ASSERT((connp->conn_family == AF_INET && 1560 connp->conn_ipversion == IPV4_VERSION) || 1561 (connp->conn_family == AF_INET6 && 1562 (connp->conn_ipversion == IPV4_VERSION || 1563 connp->conn_ipversion == IPV6_VERSION))); 1564 ASSERT(!tcp->tcp_listener); 1565 1566 TCP_STAT(tcps, tcp_time_wait_reap); 1567 ASSERT(TCP_IS_DETACHED(tcp)); 1568 1569 /* 1570 * Because they have no upstream client to rebind or tcp_close() 1571 * them later, we axe the connection here and now. 1572 */ 1573 tcp_close_detached(tcp); 1574 } 1575 1576 /* 1577 * Remove cached/latched IPsec references. 1578 */ 1579 void 1580 tcp_ipsec_cleanup(tcp_t *tcp) 1581 { 1582 conn_t *connp = tcp->tcp_connp; 1583 1584 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1585 1586 if (connp->conn_latch != NULL) { 1587 IPLATCH_REFRELE(connp->conn_latch); 1588 connp->conn_latch = NULL; 1589 } 1590 if (connp->conn_latch_in_policy != NULL) { 1591 IPPOL_REFRELE(connp->conn_latch_in_policy); 1592 connp->conn_latch_in_policy = NULL; 1593 } 1594 if (connp->conn_latch_in_action != NULL) { 1595 IPACT_REFRELE(connp->conn_latch_in_action); 1596 connp->conn_latch_in_action = NULL; 1597 } 1598 if (connp->conn_policy != NULL) { 1599 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1600 connp->conn_policy = NULL; 1601 } 1602 } 1603 1604 /* 1605 * Cleaup before placing on free list. 1606 * Disassociate from the netstack/tcp_stack_t since the freelist 1607 * is per squeue and not per netstack. 1608 */ 1609 void 1610 tcp_cleanup(tcp_t *tcp) 1611 { 1612 mblk_t *mp; 1613 tcp_sack_info_t *tcp_sack_info; 1614 conn_t *connp = tcp->tcp_connp; 1615 tcp_stack_t *tcps = tcp->tcp_tcps; 1616 netstack_t *ns = tcps->tcps_netstack; 1617 mblk_t *tcp_rsrv_mp; 1618 1619 tcp_bind_hash_remove(tcp); 1620 1621 /* Cleanup that which needs the netstack first */ 1622 tcp_ipsec_cleanup(tcp); 1623 ixa_cleanup(connp->conn_ixa); 1624 1625 if (connp->conn_ht_iphc != NULL) { 1626 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1627 connp->conn_ht_iphc = NULL; 1628 connp->conn_ht_iphc_allocated = 0; 1629 connp->conn_ht_iphc_len = 0; 1630 connp->conn_ht_ulp = NULL; 1631 connp->conn_ht_ulp_len = 0; 1632 tcp->tcp_ipha = NULL; 1633 tcp->tcp_ip6h = NULL; 1634 tcp->tcp_tcpha = NULL; 1635 } 1636 1637 /* We clear any IP_OPTIONS and extension headers */ 1638 ip_pkt_free(&connp->conn_xmit_ipp); 1639 1640 tcp_free(tcp); 1641 1642 /* Release any SSL context */ 1643 if (tcp->tcp_kssl_ent != NULL) { 1644 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1645 tcp->tcp_kssl_ent = NULL; 1646 } 1647 1648 if (tcp->tcp_kssl_ctx != NULL) { 1649 kssl_release_ctx(tcp->tcp_kssl_ctx); 1650 tcp->tcp_kssl_ctx = NULL; 1651 } 1652 tcp->tcp_kssl_pending = B_FALSE; 1653 1654 /* 1655 * Since we will bzero the entire structure, we need to 1656 * remove it and reinsert it in global hash list. We 1657 * know the walkers can't get to this conn because we 1658 * had set CONDEMNED flag earlier and checked reference 1659 * under conn_lock so walker won't pick it and when we 1660 * go the ipcl_globalhash_remove() below, no walker 1661 * can get to it. 1662 */ 1663 ipcl_globalhash_remove(connp); 1664 1665 /* Save some state */ 1666 mp = tcp->tcp_timercache; 1667 1668 tcp_sack_info = tcp->tcp_sack_info; 1669 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1670 1671 if (connp->conn_cred != NULL) { 1672 crfree(connp->conn_cred); 1673 connp->conn_cred = NULL; 1674 } 1675 ipcl_conn_cleanup(connp); 1676 connp->conn_flags = IPCL_TCPCONN; 1677 1678 /* 1679 * Now it is safe to decrement the reference counts. 1680 * This might be the last reference on the netstack 1681 * in which case it will cause the freeing of the IP Instance. 1682 */ 1683 connp->conn_netstack = NULL; 1684 connp->conn_ixa->ixa_ipst = NULL; 1685 netstack_rele(ns); 1686 ASSERT(tcps != NULL); 1687 tcp->tcp_tcps = NULL; 1688 1689 bzero(tcp, sizeof (tcp_t)); 1690 1691 /* restore the state */ 1692 tcp->tcp_timercache = mp; 1693 1694 tcp->tcp_sack_info = tcp_sack_info; 1695 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1696 1697 tcp->tcp_connp = connp; 1698 1699 ASSERT(connp->conn_tcp == tcp); 1700 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1701 connp->conn_state_flags = CONN_INCIPIENT; 1702 ASSERT(connp->conn_proto == IPPROTO_TCP); 1703 ASSERT(connp->conn_ref == 1); 1704 } 1705 1706 /* 1707 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1708 * is done forwards from the head. 1709 * This walks all stack instances since 1710 * tcp_time_wait remains global across all stacks. 1711 */ 1712 /* ARGSUSED */ 1713 void 1714 tcp_time_wait_collector(void *arg) 1715 { 1716 tcp_t *tcp; 1717 clock_t now; 1718 mblk_t *mp; 1719 conn_t *connp; 1720 kmutex_t *lock; 1721 boolean_t removed; 1722 1723 squeue_t *sqp = (squeue_t *)arg; 1724 tcp_squeue_priv_t *tcp_time_wait = 1725 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1726 1727 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1728 tcp_time_wait->tcp_time_wait_tid = 0; 1729 1730 if (tcp_time_wait->tcp_free_list != NULL && 1731 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1732 TCP_G_STAT(tcp_freelist_cleanup); 1733 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1734 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1735 tcp->tcp_time_wait_next = NULL; 1736 tcp_time_wait->tcp_free_list_cnt--; 1737 ASSERT(tcp->tcp_tcps == NULL); 1738 CONN_DEC_REF(tcp->tcp_connp); 1739 } 1740 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1741 } 1742 1743 /* 1744 * In order to reap time waits reliably, we should use a 1745 * source of time that is not adjustable by the user -- hence 1746 * the call to ddi_get_lbolt(). 1747 */ 1748 now = ddi_get_lbolt(); 1749 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1750 /* 1751 * Compare times using modular arithmetic, since 1752 * lbolt can wrapover. 1753 */ 1754 if ((now - tcp->tcp_time_wait_expire) < 0) { 1755 break; 1756 } 1757 1758 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1759 ASSERT(removed); 1760 1761 connp = tcp->tcp_connp; 1762 ASSERT(connp->conn_fanout != NULL); 1763 lock = &connp->conn_fanout->connf_lock; 1764 /* 1765 * This is essentially a TW reclaim fast path optimization for 1766 * performance where the timewait collector checks under the 1767 * fanout lock (so that no one else can get access to the 1768 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1769 * the classifier hash list. If ref count is indeed 2, we can 1770 * just remove the conn under the fanout lock and avoid 1771 * cleaning up the conn under the squeue, provided that 1772 * clustering callbacks are not enabled. If clustering is 1773 * enabled, we need to make the clustering callback before 1774 * setting the CONDEMNED flag and after dropping all locks and 1775 * so we forego this optimization and fall back to the slow 1776 * path. Also please see the comments in tcp_closei_local 1777 * regarding the refcnt logic. 1778 * 1779 * Since we are holding the tcp_time_wait_lock, its better 1780 * not to block on the fanout_lock because other connections 1781 * can't add themselves to time_wait list. So we do a 1782 * tryenter instead of mutex_enter. 1783 */ 1784 if (mutex_tryenter(lock)) { 1785 mutex_enter(&connp->conn_lock); 1786 if ((connp->conn_ref == 2) && 1787 (cl_inet_disconnect == NULL)) { 1788 ipcl_hash_remove_locked(connp, 1789 connp->conn_fanout); 1790 /* 1791 * Set the CONDEMNED flag now itself so that 1792 * the refcnt cannot increase due to any 1793 * walker. 1794 */ 1795 connp->conn_state_flags |= CONN_CONDEMNED; 1796 mutex_exit(lock); 1797 mutex_exit(&connp->conn_lock); 1798 if (tcp_time_wait->tcp_free_list_cnt < 1799 tcp_free_list_max_cnt) { 1800 /* Add to head of tcp_free_list */ 1801 mutex_exit( 1802 &tcp_time_wait->tcp_time_wait_lock); 1803 tcp_cleanup(tcp); 1804 ASSERT(connp->conn_latch == NULL); 1805 ASSERT(connp->conn_policy == NULL); 1806 ASSERT(tcp->tcp_tcps == NULL); 1807 ASSERT(connp->conn_netstack == NULL); 1808 1809 mutex_enter( 1810 &tcp_time_wait->tcp_time_wait_lock); 1811 tcp->tcp_time_wait_next = 1812 tcp_time_wait->tcp_free_list; 1813 tcp_time_wait->tcp_free_list = tcp; 1814 tcp_time_wait->tcp_free_list_cnt++; 1815 continue; 1816 } else { 1817 /* Do not add to tcp_free_list */ 1818 mutex_exit( 1819 &tcp_time_wait->tcp_time_wait_lock); 1820 tcp_bind_hash_remove(tcp); 1821 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1822 tcp_ipsec_cleanup(tcp); 1823 CONN_DEC_REF(tcp->tcp_connp); 1824 } 1825 } else { 1826 CONN_INC_REF_LOCKED(connp); 1827 mutex_exit(lock); 1828 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1829 mutex_exit(&connp->conn_lock); 1830 /* 1831 * We can reuse the closemp here since conn has 1832 * detached (otherwise we wouldn't even be in 1833 * time_wait list). tcp_closemp_used can safely 1834 * be changed without taking a lock as no other 1835 * thread can concurrently access it at this 1836 * point in the connection lifecycle. 1837 */ 1838 1839 if (tcp->tcp_closemp.b_prev == NULL) 1840 tcp->tcp_closemp_used = B_TRUE; 1841 else 1842 cmn_err(CE_PANIC, 1843 "tcp_timewait_collector: " 1844 "concurrent use of tcp_closemp: " 1845 "connp %p tcp %p\n", (void *)connp, 1846 (void *)tcp); 1847 1848 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1849 mp = &tcp->tcp_closemp; 1850 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1851 tcp_timewait_output, connp, NULL, 1852 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1853 } 1854 } else { 1855 mutex_enter(&connp->conn_lock); 1856 CONN_INC_REF_LOCKED(connp); 1857 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1858 mutex_exit(&connp->conn_lock); 1859 /* 1860 * We can reuse the closemp here since conn has 1861 * detached (otherwise we wouldn't even be in 1862 * time_wait list). tcp_closemp_used can safely 1863 * be changed without taking a lock as no other 1864 * thread can concurrently access it at this 1865 * point in the connection lifecycle. 1866 */ 1867 1868 if (tcp->tcp_closemp.b_prev == NULL) 1869 tcp->tcp_closemp_used = B_TRUE; 1870 else 1871 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1872 "concurrent use of tcp_closemp: " 1873 "connp %p tcp %p\n", (void *)connp, 1874 (void *)tcp); 1875 1876 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1877 mp = &tcp->tcp_closemp; 1878 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1879 tcp_timewait_output, connp, NULL, 1880 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1881 } 1882 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1883 } 1884 1885 if (tcp_time_wait->tcp_free_list != NULL) 1886 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1887 1888 tcp_time_wait->tcp_time_wait_tid = 1889 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1890 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1891 CALLOUT_FLAG_ROUNDUP); 1892 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1893 } 1894 1895 /* 1896 * Reply to a clients T_CONN_RES TPI message. This function 1897 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1898 * on the acceptor STREAM and processed in tcp_accept_common(). 1899 * Read the block comment on top of tcp_input_listener(). 1900 */ 1901 static void 1902 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1903 { 1904 tcp_t *acceptor; 1905 tcp_t *eager; 1906 tcp_t *tcp; 1907 struct T_conn_res *tcr; 1908 t_uscalar_t acceptor_id; 1909 t_scalar_t seqnum; 1910 mblk_t *discon_mp = NULL; 1911 mblk_t *ok_mp; 1912 mblk_t *mp1; 1913 tcp_stack_t *tcps = listener->tcp_tcps; 1914 conn_t *econnp; 1915 1916 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1917 tcp_err_ack(listener, mp, TPROTO, 0); 1918 return; 1919 } 1920 tcr = (struct T_conn_res *)mp->b_rptr; 1921 1922 /* 1923 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1924 * read side queue of the streams device underneath us i.e. the 1925 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1926 * look it up in the queue_hash. Under LP64 it sends down the 1927 * minor_t of the accepting endpoint. 1928 * 1929 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1930 * fanout hash lock is held. 1931 * This prevents any thread from entering the acceptor queue from 1932 * below (since it has not been hard bound yet i.e. any inbound 1933 * packets will arrive on the listener conn_t and 1934 * go through the classifier). 1935 * The CONN_INC_REF will prevent the acceptor from closing. 1936 * 1937 * XXX It is still possible for a tli application to send down data 1938 * on the accepting stream while another thread calls t_accept. 1939 * This should not be a problem for well-behaved applications since 1940 * the T_OK_ACK is sent after the queue swapping is completed. 1941 * 1942 * If the accepting fd is the same as the listening fd, avoid 1943 * queue hash lookup since that will return an eager listener in a 1944 * already established state. 1945 */ 1946 acceptor_id = tcr->ACCEPTOR_id; 1947 mutex_enter(&listener->tcp_eager_lock); 1948 if (listener->tcp_acceptor_id == acceptor_id) { 1949 eager = listener->tcp_eager_next_q; 1950 /* only count how many T_CONN_INDs so don't count q0 */ 1951 if ((listener->tcp_conn_req_cnt_q != 1) || 1952 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1953 mutex_exit(&listener->tcp_eager_lock); 1954 tcp_err_ack(listener, mp, TBADF, 0); 1955 return; 1956 } 1957 if (listener->tcp_conn_req_cnt_q0 != 0) { 1958 /* Throw away all the eagers on q0. */ 1959 tcp_eager_cleanup(listener, 1); 1960 } 1961 if (listener->tcp_syn_defense) { 1962 listener->tcp_syn_defense = B_FALSE; 1963 if (listener->tcp_ip_addr_cache != NULL) { 1964 kmem_free(listener->tcp_ip_addr_cache, 1965 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1966 listener->tcp_ip_addr_cache = NULL; 1967 } 1968 } 1969 /* 1970 * Transfer tcp_conn_req_max to the eager so that when 1971 * a disconnect occurs we can revert the endpoint to the 1972 * listen state. 1973 */ 1974 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1975 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1976 /* 1977 * Get a reference on the acceptor just like the 1978 * tcp_acceptor_hash_lookup below. 1979 */ 1980 acceptor = listener; 1981 CONN_INC_REF(acceptor->tcp_connp); 1982 } else { 1983 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1984 if (acceptor == NULL) { 1985 if (listener->tcp_connp->conn_debug) { 1986 (void) strlog(TCP_MOD_ID, 0, 1, 1987 SL_ERROR|SL_TRACE, 1988 "tcp_accept: did not find acceptor 0x%x\n", 1989 acceptor_id); 1990 } 1991 mutex_exit(&listener->tcp_eager_lock); 1992 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1993 return; 1994 } 1995 /* 1996 * Verify acceptor state. The acceptable states for an acceptor 1997 * include TCPS_IDLE and TCPS_BOUND. 1998 */ 1999 switch (acceptor->tcp_state) { 2000 case TCPS_IDLE: 2001 /* FALLTHRU */ 2002 case TCPS_BOUND: 2003 break; 2004 default: 2005 CONN_DEC_REF(acceptor->tcp_connp); 2006 mutex_exit(&listener->tcp_eager_lock); 2007 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2008 return; 2009 } 2010 } 2011 2012 /* The listener must be in TCPS_LISTEN */ 2013 if (listener->tcp_state != TCPS_LISTEN) { 2014 CONN_DEC_REF(acceptor->tcp_connp); 2015 mutex_exit(&listener->tcp_eager_lock); 2016 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2017 return; 2018 } 2019 2020 /* 2021 * Rendezvous with an eager connection request packet hanging off 2022 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2023 * tcp structure when the connection packet arrived in 2024 * tcp_input_listener(). 2025 */ 2026 seqnum = tcr->SEQ_number; 2027 eager = listener; 2028 do { 2029 eager = eager->tcp_eager_next_q; 2030 if (eager == NULL) { 2031 CONN_DEC_REF(acceptor->tcp_connp); 2032 mutex_exit(&listener->tcp_eager_lock); 2033 tcp_err_ack(listener, mp, TBADSEQ, 0); 2034 return; 2035 } 2036 } while (eager->tcp_conn_req_seqnum != seqnum); 2037 mutex_exit(&listener->tcp_eager_lock); 2038 2039 /* 2040 * At this point, both acceptor and listener have 2 ref 2041 * that they begin with. Acceptor has one additional ref 2042 * we placed in lookup while listener has 3 additional 2043 * ref for being behind the squeue (tcp_accept() is 2044 * done on listener's squeue); being in classifier hash; 2045 * and eager's ref on listener. 2046 */ 2047 ASSERT(listener->tcp_connp->conn_ref >= 5); 2048 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2049 2050 /* 2051 * The eager at this point is set in its own squeue and 2052 * could easily have been killed (tcp_accept_finish will 2053 * deal with that) because of a TH_RST so we can only 2054 * ASSERT for a single ref. 2055 */ 2056 ASSERT(eager->tcp_connp->conn_ref >= 1); 2057 2058 /* 2059 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 2060 * use it if something failed. 2061 */ 2062 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 2063 sizeof (struct stroptions)), BPRI_HI); 2064 if (discon_mp == NULL) { 2065 CONN_DEC_REF(acceptor->tcp_connp); 2066 CONN_DEC_REF(eager->tcp_connp); 2067 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2068 return; 2069 } 2070 2071 econnp = eager->tcp_connp; 2072 2073 /* Hold a copy of mp, in case reallocb fails */ 2074 if ((mp1 = copymsg(mp)) == NULL) { 2075 CONN_DEC_REF(acceptor->tcp_connp); 2076 CONN_DEC_REF(eager->tcp_connp); 2077 freemsg(discon_mp); 2078 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2079 return; 2080 } 2081 2082 tcr = (struct T_conn_res *)mp1->b_rptr; 2083 2084 /* 2085 * This is an expanded version of mi_tpi_ok_ack_alloc() 2086 * which allocates a larger mblk and appends the new 2087 * local address to the ok_ack. The address is copied by 2088 * soaccept() for getsockname(). 2089 */ 2090 { 2091 int extra; 2092 2093 extra = (econnp->conn_family == AF_INET) ? 2094 sizeof (sin_t) : sizeof (sin6_t); 2095 2096 /* 2097 * Try to re-use mp, if possible. Otherwise, allocate 2098 * an mblk and return it as ok_mp. In any case, mp 2099 * is no longer usable upon return. 2100 */ 2101 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2102 CONN_DEC_REF(acceptor->tcp_connp); 2103 CONN_DEC_REF(eager->tcp_connp); 2104 freemsg(discon_mp); 2105 /* Original mp has been freed by now, so use mp1 */ 2106 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2107 return; 2108 } 2109 2110 mp = NULL; /* We should never use mp after this point */ 2111 2112 switch (extra) { 2113 case sizeof (sin_t): { 2114 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2115 2116 ok_mp->b_wptr += extra; 2117 sin->sin_family = AF_INET; 2118 sin->sin_port = econnp->conn_lport; 2119 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2120 break; 2121 } 2122 case sizeof (sin6_t): { 2123 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2124 2125 ok_mp->b_wptr += extra; 2126 sin6->sin6_family = AF_INET6; 2127 sin6->sin6_port = econnp->conn_lport; 2128 sin6->sin6_addr = econnp->conn_laddr_v6; 2129 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2130 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2131 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2132 sin6->sin6_scope_id = 2133 econnp->conn_ixa->ixa_scopeid; 2134 } else { 2135 sin6->sin6_scope_id = 0; 2136 } 2137 sin6->__sin6_src_id = 0; 2138 break; 2139 } 2140 default: 2141 break; 2142 } 2143 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2144 } 2145 2146 /* 2147 * If there are no options we know that the T_CONN_RES will 2148 * succeed. However, we can't send the T_OK_ACK upstream until 2149 * the tcp_accept_swap is done since it would be dangerous to 2150 * let the application start using the new fd prior to the swap. 2151 */ 2152 tcp_accept_swap(listener, acceptor, eager); 2153 2154 /* 2155 * tcp_accept_swap unlinks eager from listener but does not drop 2156 * the eager's reference on the listener. 2157 */ 2158 ASSERT(eager->tcp_listener == NULL); 2159 ASSERT(listener->tcp_connp->conn_ref >= 5); 2160 2161 /* 2162 * The eager is now associated with its own queue. Insert in 2163 * the hash so that the connection can be reused for a future 2164 * T_CONN_RES. 2165 */ 2166 tcp_acceptor_hash_insert(acceptor_id, eager); 2167 2168 /* 2169 * We now do the processing of options with T_CONN_RES. 2170 * We delay till now since we wanted to have queue to pass to 2171 * option processing routines that points back to the right 2172 * instance structure which does not happen until after 2173 * tcp_accept_swap(). 2174 * 2175 * Note: 2176 * The sanity of the logic here assumes that whatever options 2177 * are appropriate to inherit from listner=>eager are done 2178 * before this point, and whatever were to be overridden (or not) 2179 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2180 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2181 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2182 * This may not be true at this point in time but can be fixed 2183 * independently. This option processing code starts with 2184 * the instantiated acceptor instance and the final queue at 2185 * this point. 2186 */ 2187 2188 if (tcr->OPT_length != 0) { 2189 /* Options to process */ 2190 int t_error = 0; 2191 int sys_error = 0; 2192 int do_disconnect = 0; 2193 2194 if (tcp_conprim_opt_process(eager, mp1, 2195 &do_disconnect, &t_error, &sys_error) < 0) { 2196 eager->tcp_accept_error = 1; 2197 if (do_disconnect) { 2198 /* 2199 * An option failed which does not allow 2200 * connection to be accepted. 2201 * 2202 * We allow T_CONN_RES to succeed and 2203 * put a T_DISCON_IND on the eager queue. 2204 */ 2205 ASSERT(t_error == 0 && sys_error == 0); 2206 eager->tcp_send_discon_ind = 1; 2207 } else { 2208 ASSERT(t_error != 0); 2209 freemsg(ok_mp); 2210 /* 2211 * Original mp was either freed or set 2212 * to ok_mp above, so use mp1 instead. 2213 */ 2214 tcp_err_ack(listener, mp1, t_error, sys_error); 2215 goto finish; 2216 } 2217 } 2218 /* 2219 * Most likely success in setting options (except if 2220 * eager->tcp_send_discon_ind set). 2221 * mp1 option buffer represented by OPT_length/offset 2222 * potentially modified and contains results of setting 2223 * options at this point 2224 */ 2225 } 2226 2227 /* We no longer need mp1, since all options processing has passed */ 2228 freemsg(mp1); 2229 2230 putnext(listener->tcp_connp->conn_rq, ok_mp); 2231 2232 mutex_enter(&listener->tcp_eager_lock); 2233 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2234 tcp_t *tail; 2235 mblk_t *conn_ind; 2236 2237 /* 2238 * This path should not be executed if listener and 2239 * acceptor streams are the same. 2240 */ 2241 ASSERT(listener != acceptor); 2242 2243 tcp = listener->tcp_eager_prev_q0; 2244 /* 2245 * listener->tcp_eager_prev_q0 points to the TAIL of the 2246 * deferred T_conn_ind queue. We need to get to the head of 2247 * the queue in order to send up T_conn_ind the same order as 2248 * how the 3WHS is completed. 2249 */ 2250 while (tcp != listener) { 2251 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2252 break; 2253 else 2254 tcp = tcp->tcp_eager_prev_q0; 2255 } 2256 ASSERT(tcp != listener); 2257 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2258 ASSERT(conn_ind != NULL); 2259 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2260 2261 /* Move from q0 to q */ 2262 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2263 listener->tcp_conn_req_cnt_q0--; 2264 listener->tcp_conn_req_cnt_q++; 2265 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2266 tcp->tcp_eager_prev_q0; 2267 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2268 tcp->tcp_eager_next_q0; 2269 tcp->tcp_eager_prev_q0 = NULL; 2270 tcp->tcp_eager_next_q0 = NULL; 2271 tcp->tcp_conn_def_q0 = B_FALSE; 2272 2273 /* Make sure the tcp isn't in the list of droppables */ 2274 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2275 tcp->tcp_eager_prev_drop_q0 == NULL); 2276 2277 /* 2278 * Insert at end of the queue because sockfs sends 2279 * down T_CONN_RES in chronological order. Leaving 2280 * the older conn indications at front of the queue 2281 * helps reducing search time. 2282 */ 2283 tail = listener->tcp_eager_last_q; 2284 if (tail != NULL) 2285 tail->tcp_eager_next_q = tcp; 2286 else 2287 listener->tcp_eager_next_q = tcp; 2288 listener->tcp_eager_last_q = tcp; 2289 tcp->tcp_eager_next_q = NULL; 2290 mutex_exit(&listener->tcp_eager_lock); 2291 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2292 } else { 2293 mutex_exit(&listener->tcp_eager_lock); 2294 } 2295 2296 /* 2297 * Done with the acceptor - free it 2298 * 2299 * Note: from this point on, no access to listener should be made 2300 * as listener can be equal to acceptor. 2301 */ 2302 finish: 2303 ASSERT(acceptor->tcp_detached); 2304 acceptor->tcp_connp->conn_rq = NULL; 2305 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2306 acceptor->tcp_connp->conn_wq = NULL; 2307 (void) tcp_clean_death(acceptor, 0, 2); 2308 CONN_DEC_REF(acceptor->tcp_connp); 2309 2310 /* 2311 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2312 * 2313 * It will update the setting for sockfs/stream head and also take 2314 * care of any data that arrived before accept() wad called. 2315 * In case we already received a FIN then tcp_accept_finish will send up 2316 * the ordrel. It will also send up a window update if the window 2317 * has opened up. 2318 */ 2319 2320 /* 2321 * XXX: we currently have a problem if XTI application closes the 2322 * acceptor stream in between. This problem exists in on10-gate also 2323 * and is well know but nothing can be done short of major rewrite 2324 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2325 * eager same squeue as listener (we can distinguish non socket 2326 * listeners at the time of handling a SYN in tcp_input_listener) 2327 * and do most of the work that tcp_accept_finish does here itself 2328 * and then get behind the acceptor squeue to access the acceptor 2329 * queue. 2330 */ 2331 /* 2332 * We already have a ref on tcp so no need to do one before squeue_enter 2333 */ 2334 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2335 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2336 SQTAG_TCP_ACCEPT_FINISH); 2337 } 2338 2339 /* 2340 * Swap information between the eager and acceptor for a TLI/XTI client. 2341 * The sockfs accept is done on the acceptor stream and control goes 2342 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2343 * called. In either case, both the eager and listener are in their own 2344 * perimeter (squeue) and the code has to deal with potential race. 2345 * 2346 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2347 */ 2348 static void 2349 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2350 { 2351 conn_t *econnp, *aconnp; 2352 2353 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2354 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2355 ASSERT(!TCP_IS_SOCKET(acceptor)); 2356 ASSERT(!TCP_IS_SOCKET(eager)); 2357 ASSERT(!TCP_IS_SOCKET(listener)); 2358 2359 /* 2360 * Trusted Extensions may need to use a security label that is 2361 * different from the acceptor's label on MLP and MAC-Exempt 2362 * sockets. If this is the case, the required security label 2363 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2364 * acceptor stream refer to econnp we atomatically get that label. 2365 */ 2366 2367 acceptor->tcp_detached = B_TRUE; 2368 /* 2369 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2370 * the acceptor id. 2371 */ 2372 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2373 2374 /* remove eager from listen list... */ 2375 mutex_enter(&listener->tcp_eager_lock); 2376 tcp_eager_unlink(eager); 2377 ASSERT(eager->tcp_eager_next_q == NULL && 2378 eager->tcp_eager_last_q == NULL); 2379 ASSERT(eager->tcp_eager_next_q0 == NULL && 2380 eager->tcp_eager_prev_q0 == NULL); 2381 mutex_exit(&listener->tcp_eager_lock); 2382 2383 econnp = eager->tcp_connp; 2384 aconnp = acceptor->tcp_connp; 2385 econnp->conn_rq = aconnp->conn_rq; 2386 econnp->conn_wq = aconnp->conn_wq; 2387 econnp->conn_rq->q_ptr = econnp; 2388 econnp->conn_wq->q_ptr = econnp; 2389 2390 /* 2391 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2392 * which might be a different squeue from our peer TCP instance. 2393 * For TCP Fusion, the peer expects that whenever tcp_detached is 2394 * clear, our TCP queues point to the acceptor's queues. Thus, use 2395 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2396 * above reach global visibility prior to the clearing of tcp_detached. 2397 */ 2398 membar_producer(); 2399 eager->tcp_detached = B_FALSE; 2400 2401 ASSERT(eager->tcp_ack_tid == 0); 2402 2403 econnp->conn_dev = aconnp->conn_dev; 2404 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2405 2406 ASSERT(econnp->conn_minor_arena != NULL); 2407 if (econnp->conn_cred != NULL) 2408 crfree(econnp->conn_cred); 2409 econnp->conn_cred = aconnp->conn_cred; 2410 aconnp->conn_cred = NULL; 2411 econnp->conn_cpid = aconnp->conn_cpid; 2412 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2413 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2414 2415 econnp->conn_zoneid = aconnp->conn_zoneid; 2416 econnp->conn_allzones = aconnp->conn_allzones; 2417 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2418 2419 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2420 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2421 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2422 2423 /* Do the IPC initialization */ 2424 CONN_INC_REF(econnp); 2425 2426 /* Done with old IPC. Drop its ref on its connp */ 2427 CONN_DEC_REF(aconnp); 2428 } 2429 2430 2431 /* 2432 * Adapt to the information, such as rtt and rtt_sd, provided from the 2433 * DCE and IRE maintained by IP. 2434 * 2435 * Checks for multicast and broadcast destination address. 2436 * Returns zero if ok; an errno on failure. 2437 * 2438 * Note that the MSS calculation here is based on the info given in 2439 * the DCE and IRE. We do not do any calculation based on TCP options. They 2440 * will be handled in tcp_input_data() when TCP knows which options to use. 2441 * 2442 * Note on how TCP gets its parameters for a connection. 2443 * 2444 * When a tcp_t structure is allocated, it gets all the default parameters. 2445 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2446 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2447 * default. 2448 * 2449 * An incoming SYN with a multicast or broadcast destination address is dropped 2450 * in ip_fanout_v4/v6. 2451 * 2452 * An incoming SYN with a multicast or broadcast source address is always 2453 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2454 * conn_connect. 2455 * The same logic in tcp_set_destination also serves to 2456 * reject an attempt to connect to a broadcast or multicast (destination) 2457 * address. 2458 */ 2459 static int 2460 tcp_set_destination(tcp_t *tcp) 2461 { 2462 uint32_t mss_max; 2463 uint32_t mss; 2464 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2465 conn_t *connp = tcp->tcp_connp; 2466 tcp_stack_t *tcps = tcp->tcp_tcps; 2467 iulp_t uinfo; 2468 int error; 2469 uint32_t flags; 2470 2471 flags = IPDF_LSO | IPDF_ZCOPY; 2472 /* 2473 * Make sure we have a dce for the destination to avoid dce_ident 2474 * contention for connected sockets. 2475 */ 2476 flags |= IPDF_UNIQUE_DCE; 2477 2478 if (!tcps->tcps_ignore_path_mtu) 2479 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2480 2481 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2482 mutex_enter(&connp->conn_lock); 2483 error = conn_connect(connp, &uinfo, flags); 2484 mutex_exit(&connp->conn_lock); 2485 if (error != 0) 2486 return (error); 2487 2488 error = tcp_build_hdrs(tcp); 2489 if (error != 0) 2490 return (error); 2491 2492 tcp->tcp_localnet = uinfo.iulp_localnet; 2493 2494 if (uinfo.iulp_rtt != 0) { 2495 clock_t rto; 2496 2497 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2498 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2499 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2500 tcps->tcps_rexmit_interval_extra + 2501 (tcp->tcp_rtt_sa >> 5); 2502 2503 if (rto > tcps->tcps_rexmit_interval_max) { 2504 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2505 } else if (rto < tcps->tcps_rexmit_interval_min) { 2506 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2507 } else { 2508 tcp->tcp_rto = rto; 2509 } 2510 } 2511 if (uinfo.iulp_ssthresh != 0) 2512 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2513 else 2514 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2515 if (uinfo.iulp_spipe > 0) { 2516 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2517 tcps->tcps_max_buf); 2518 if (tcps->tcps_snd_lowat_fraction != 0) { 2519 connp->conn_sndlowat = connp->conn_sndbuf / 2520 tcps->tcps_snd_lowat_fraction; 2521 } 2522 (void) tcp_maxpsz_set(tcp, B_TRUE); 2523 } 2524 /* 2525 * Note that up till now, acceptor always inherits receive 2526 * window from the listener. But if there is a metrics 2527 * associated with a host, we should use that instead of 2528 * inheriting it from listener. Thus we need to pass this 2529 * info back to the caller. 2530 */ 2531 if (uinfo.iulp_rpipe > 0) { 2532 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2533 tcps->tcps_max_buf); 2534 } 2535 2536 if (uinfo.iulp_rtomax > 0) { 2537 tcp->tcp_second_timer_threshold = 2538 uinfo.iulp_rtomax; 2539 } 2540 2541 /* 2542 * Use the metric option settings, iulp_tstamp_ok and 2543 * iulp_wscale_ok, only for active open. What this means 2544 * is that if the other side uses timestamp or window 2545 * scale option, TCP will also use those options. That 2546 * is for passive open. If the application sets a 2547 * large window, window scale is enabled regardless of 2548 * the value in iulp_wscale_ok. This is the behavior 2549 * since 2.6. So we keep it. 2550 * The only case left in passive open processing is the 2551 * check for SACK. 2552 * For ECN, it should probably be like SACK. But the 2553 * current value is binary, so we treat it like the other 2554 * cases. The metric only controls active open.For passive 2555 * open, the ndd param, tcp_ecn_permitted, controls the 2556 * behavior. 2557 */ 2558 if (!tcp_detached) { 2559 /* 2560 * The if check means that the following can only 2561 * be turned on by the metrics only IRE, but not off. 2562 */ 2563 if (uinfo.iulp_tstamp_ok) 2564 tcp->tcp_snd_ts_ok = B_TRUE; 2565 if (uinfo.iulp_wscale_ok) 2566 tcp->tcp_snd_ws_ok = B_TRUE; 2567 if (uinfo.iulp_sack == 2) 2568 tcp->tcp_snd_sack_ok = B_TRUE; 2569 if (uinfo.iulp_ecn_ok) 2570 tcp->tcp_ecn_ok = B_TRUE; 2571 } else { 2572 /* 2573 * Passive open. 2574 * 2575 * As above, the if check means that SACK can only be 2576 * turned on by the metric only IRE. 2577 */ 2578 if (uinfo.iulp_sack > 0) { 2579 tcp->tcp_snd_sack_ok = B_TRUE; 2580 } 2581 } 2582 2583 /* 2584 * XXX Note that currently, iulp_mtu can be as small as 68 2585 * because of PMTUd. So tcp_mss may go to negative if combined 2586 * length of all those options exceeds 28 bytes. But because 2587 * of the tcp_mss_min check below, we may not have a problem if 2588 * tcp_mss_min is of a reasonable value. The default is 1 so 2589 * the negative problem still exists. And the check defeats PMTUd. 2590 * In fact, if PMTUd finds that the MSS should be smaller than 2591 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2592 * value. 2593 * 2594 * We do not deal with that now. All those problems related to 2595 * PMTUd will be fixed later. 2596 */ 2597 ASSERT(uinfo.iulp_mtu != 0); 2598 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2599 2600 /* Sanity check for MSS value. */ 2601 if (connp->conn_ipversion == IPV4_VERSION) 2602 mss_max = tcps->tcps_mss_max_ipv4; 2603 else 2604 mss_max = tcps->tcps_mss_max_ipv6; 2605 2606 if (tcp->tcp_ipsec_overhead == 0) 2607 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2608 2609 mss -= tcp->tcp_ipsec_overhead; 2610 2611 if (mss < tcps->tcps_mss_min) 2612 mss = tcps->tcps_mss_min; 2613 if (mss > mss_max) 2614 mss = mss_max; 2615 2616 /* Note that this is the maximum MSS, excluding all options. */ 2617 tcp->tcp_mss = mss; 2618 2619 /* 2620 * Update the tcp connection with LSO capability. 2621 */ 2622 tcp_update_lso(tcp, connp->conn_ixa); 2623 2624 /* 2625 * Initialize the ISS here now that we have the full connection ID. 2626 * The RFC 1948 method of initial sequence number generation requires 2627 * knowledge of the full connection ID before setting the ISS. 2628 */ 2629 tcp_iss_init(tcp); 2630 2631 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2632 2633 /* 2634 * Make sure that conn is not marked incipient 2635 * for incoming connections. A blind 2636 * removal of incipient flag is cheaper than 2637 * check and removal. 2638 */ 2639 mutex_enter(&connp->conn_lock); 2640 connp->conn_state_flags &= ~CONN_INCIPIENT; 2641 mutex_exit(&connp->conn_lock); 2642 return (0); 2643 } 2644 2645 static void 2646 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2647 { 2648 int error; 2649 conn_t *connp = tcp->tcp_connp; 2650 struct sockaddr *sa; 2651 mblk_t *mp1; 2652 struct T_bind_req *tbr; 2653 int backlog; 2654 socklen_t len; 2655 sin_t *sin; 2656 sin6_t *sin6; 2657 cred_t *cr; 2658 2659 /* 2660 * All Solaris components should pass a db_credp 2661 * for this TPI message, hence we ASSERT. 2662 * But in case there is some other M_PROTO that looks 2663 * like a TPI message sent by some other kernel 2664 * component, we check and return an error. 2665 */ 2666 cr = msg_getcred(mp, NULL); 2667 ASSERT(cr != NULL); 2668 if (cr == NULL) { 2669 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2670 return; 2671 } 2672 2673 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2674 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2675 if (connp->conn_debug) { 2676 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2677 "tcp_tpi_bind: bad req, len %u", 2678 (uint_t)(mp->b_wptr - mp->b_rptr)); 2679 } 2680 tcp_err_ack(tcp, mp, TPROTO, 0); 2681 return; 2682 } 2683 /* Make sure the largest address fits */ 2684 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2685 if (mp1 == NULL) { 2686 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2687 return; 2688 } 2689 mp = mp1; 2690 tbr = (struct T_bind_req *)mp->b_rptr; 2691 2692 backlog = tbr->CONIND_number; 2693 len = tbr->ADDR_length; 2694 2695 switch (len) { 2696 case 0: /* request for a generic port */ 2697 tbr->ADDR_offset = sizeof (struct T_bind_req); 2698 if (connp->conn_family == AF_INET) { 2699 tbr->ADDR_length = sizeof (sin_t); 2700 sin = (sin_t *)&tbr[1]; 2701 *sin = sin_null; 2702 sin->sin_family = AF_INET; 2703 sa = (struct sockaddr *)sin; 2704 len = sizeof (sin_t); 2705 mp->b_wptr = (uchar_t *)&sin[1]; 2706 } else { 2707 ASSERT(connp->conn_family == AF_INET6); 2708 tbr->ADDR_length = sizeof (sin6_t); 2709 sin6 = (sin6_t *)&tbr[1]; 2710 *sin6 = sin6_null; 2711 sin6->sin6_family = AF_INET6; 2712 sa = (struct sockaddr *)sin6; 2713 len = sizeof (sin6_t); 2714 mp->b_wptr = (uchar_t *)&sin6[1]; 2715 } 2716 break; 2717 2718 case sizeof (sin_t): /* Complete IPv4 address */ 2719 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2720 sizeof (sin_t)); 2721 break; 2722 2723 case sizeof (sin6_t): /* Complete IPv6 address */ 2724 sa = (struct sockaddr *)mi_offset_param(mp, 2725 tbr->ADDR_offset, sizeof (sin6_t)); 2726 break; 2727 2728 default: 2729 if (connp->conn_debug) { 2730 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2731 "tcp_tpi_bind: bad address length, %d", 2732 tbr->ADDR_length); 2733 } 2734 tcp_err_ack(tcp, mp, TBADADDR, 0); 2735 return; 2736 } 2737 2738 if (backlog > 0) { 2739 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2740 tbr->PRIM_type != O_T_BIND_REQ); 2741 } else { 2742 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2743 tbr->PRIM_type != O_T_BIND_REQ); 2744 } 2745 done: 2746 if (error > 0) { 2747 tcp_err_ack(tcp, mp, TSYSERR, error); 2748 } else if (error < 0) { 2749 tcp_err_ack(tcp, mp, -error, 0); 2750 } else { 2751 /* 2752 * Update port information as sockfs/tpi needs it for checking 2753 */ 2754 if (connp->conn_family == AF_INET) { 2755 sin = (sin_t *)sa; 2756 sin->sin_port = connp->conn_lport; 2757 } else { 2758 sin6 = (sin6_t *)sa; 2759 sin6->sin6_port = connp->conn_lport; 2760 } 2761 mp->b_datap->db_type = M_PCPROTO; 2762 tbr->PRIM_type = T_BIND_ACK; 2763 putnext(connp->conn_rq, mp); 2764 } 2765 } 2766 2767 /* 2768 * If the "bind_to_req_port_only" parameter is set, if the requested port 2769 * number is available, return it, If not return 0 2770 * 2771 * If "bind_to_req_port_only" parameter is not set and 2772 * If the requested port number is available, return it. If not, return 2773 * the first anonymous port we happen across. If no anonymous ports are 2774 * available, return 0. addr is the requested local address, if any. 2775 * 2776 * In either case, when succeeding update the tcp_t to record the port number 2777 * and insert it in the bind hash table. 2778 * 2779 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2780 * without setting SO_REUSEADDR. This is needed so that they 2781 * can be viewed as two independent transport protocols. 2782 */ 2783 static in_port_t 2784 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2785 int reuseaddr, boolean_t quick_connect, 2786 boolean_t bind_to_req_port_only, boolean_t user_specified) 2787 { 2788 /* number of times we have run around the loop */ 2789 int count = 0; 2790 /* maximum number of times to run around the loop */ 2791 int loopmax; 2792 conn_t *connp = tcp->tcp_connp; 2793 tcp_stack_t *tcps = tcp->tcp_tcps; 2794 2795 /* 2796 * Lookup for free addresses is done in a loop and "loopmax" 2797 * influences how long we spin in the loop 2798 */ 2799 if (bind_to_req_port_only) { 2800 /* 2801 * If the requested port is busy, don't bother to look 2802 * for a new one. Setting loop maximum count to 1 has 2803 * that effect. 2804 */ 2805 loopmax = 1; 2806 } else { 2807 /* 2808 * If the requested port is busy, look for a free one 2809 * in the anonymous port range. 2810 * Set loopmax appropriately so that one does not look 2811 * forever in the case all of the anonymous ports are in use. 2812 */ 2813 if (connp->conn_anon_priv_bind) { 2814 /* 2815 * loopmax = 2816 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2817 */ 2818 loopmax = IPPORT_RESERVED - 2819 tcps->tcps_min_anonpriv_port; 2820 } else { 2821 loopmax = (tcps->tcps_largest_anon_port - 2822 tcps->tcps_smallest_anon_port + 1); 2823 } 2824 } 2825 do { 2826 uint16_t lport; 2827 tf_t *tbf; 2828 tcp_t *ltcp; 2829 conn_t *lconnp; 2830 2831 lport = htons(port); 2832 2833 /* 2834 * Ensure that the tcp_t is not currently in the bind hash. 2835 * Hold the lock on the hash bucket to ensure that 2836 * the duplicate check plus the insertion is an atomic 2837 * operation. 2838 * 2839 * This function does an inline lookup on the bind hash list 2840 * Make sure that we access only members of tcp_t 2841 * and that we don't look at tcp_tcp, since we are not 2842 * doing a CONN_INC_REF. 2843 */ 2844 tcp_bind_hash_remove(tcp); 2845 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2846 mutex_enter(&tbf->tf_lock); 2847 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2848 ltcp = ltcp->tcp_bind_hash) { 2849 if (lport == ltcp->tcp_connp->conn_lport) 2850 break; 2851 } 2852 2853 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2854 boolean_t not_socket; 2855 boolean_t exclbind; 2856 2857 lconnp = ltcp->tcp_connp; 2858 2859 /* 2860 * On a labeled system, we must treat bindings to ports 2861 * on shared IP addresses by sockets with MAC exemption 2862 * privilege as being in all zones, as there's 2863 * otherwise no way to identify the right receiver. 2864 */ 2865 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2866 continue; 2867 2868 /* 2869 * If TCP_EXCLBIND is set for either the bound or 2870 * binding endpoint, the semantics of bind 2871 * is changed according to the following. 2872 * 2873 * spec = specified address (v4 or v6) 2874 * unspec = unspecified address (v4 or v6) 2875 * A = specified addresses are different for endpoints 2876 * 2877 * bound bind to allowed 2878 * ------------------------------------- 2879 * unspec unspec no 2880 * unspec spec no 2881 * spec unspec no 2882 * spec spec yes if A 2883 * 2884 * For labeled systems, SO_MAC_EXEMPT behaves the same 2885 * as TCP_EXCLBIND, except that zoneid is ignored. 2886 * 2887 * Note: 2888 * 2889 * 1. Because of TLI semantics, an endpoint can go 2890 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2891 * TCPS_BOUND, depending on whether it is originally 2892 * a listener or not. That is why we need to check 2893 * for states greater than or equal to TCPS_BOUND 2894 * here. 2895 * 2896 * 2. Ideally, we should only check for state equals 2897 * to TCPS_LISTEN. And the following check should be 2898 * added. 2899 * 2900 * if (ltcp->tcp_state == TCPS_LISTEN || 2901 * !reuseaddr || !lconnp->conn_reuseaddr) { 2902 * ... 2903 * } 2904 * 2905 * The semantics will be changed to this. If the 2906 * endpoint on the list is in state not equal to 2907 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2908 * set, let the bind succeed. 2909 * 2910 * Because of (1), we cannot do that for TLI 2911 * endpoints. But we can do that for socket endpoints. 2912 * If in future, we can change this going back 2913 * semantics, we can use the above check for TLI also. 2914 */ 2915 not_socket = !(TCP_IS_SOCKET(ltcp) && 2916 TCP_IS_SOCKET(tcp)); 2917 exclbind = lconnp->conn_exclbind || 2918 connp->conn_exclbind; 2919 2920 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2921 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2922 (exclbind && (not_socket || 2923 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2924 if (V6_OR_V4_INADDR_ANY( 2925 lconnp->conn_bound_addr_v6) || 2926 V6_OR_V4_INADDR_ANY(*laddr) || 2927 IN6_ARE_ADDR_EQUAL(laddr, 2928 &lconnp->conn_bound_addr_v6)) { 2929 break; 2930 } 2931 continue; 2932 } 2933 2934 /* 2935 * Check ipversion to allow IPv4 and IPv6 sockets to 2936 * have disjoint port number spaces, if *_EXCLBIND 2937 * is not set and only if the application binds to a 2938 * specific port. We use the same autoassigned port 2939 * number space for IPv4 and IPv6 sockets. 2940 */ 2941 if (connp->conn_ipversion != lconnp->conn_ipversion && 2942 bind_to_req_port_only) 2943 continue; 2944 2945 /* 2946 * Ideally, we should make sure that the source 2947 * address, remote address, and remote port in the 2948 * four tuple for this tcp-connection is unique. 2949 * However, trying to find out the local source 2950 * address would require too much code duplication 2951 * with IP, since IP needs needs to have that code 2952 * to support userland TCP implementations. 2953 */ 2954 if (quick_connect && 2955 (ltcp->tcp_state > TCPS_LISTEN) && 2956 ((connp->conn_fport != lconnp->conn_fport) || 2957 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2958 &lconnp->conn_faddr_v6))) 2959 continue; 2960 2961 if (!reuseaddr) { 2962 /* 2963 * No socket option SO_REUSEADDR. 2964 * If existing port is bound to 2965 * a non-wildcard IP address 2966 * and the requesting stream is 2967 * bound to a distinct 2968 * different IP addresses 2969 * (non-wildcard, also), keep 2970 * going. 2971 */ 2972 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2973 !V6_OR_V4_INADDR_ANY( 2974 lconnp->conn_bound_addr_v6) && 2975 !IN6_ARE_ADDR_EQUAL(laddr, 2976 &lconnp->conn_bound_addr_v6)) 2977 continue; 2978 if (ltcp->tcp_state >= TCPS_BOUND) { 2979 /* 2980 * This port is being used and 2981 * its state is >= TCPS_BOUND, 2982 * so we can't bind to it. 2983 */ 2984 break; 2985 } 2986 } else { 2987 /* 2988 * socket option SO_REUSEADDR is set on the 2989 * binding tcp_t. 2990 * 2991 * If two streams are bound to 2992 * same IP address or both addr 2993 * and bound source are wildcards 2994 * (INADDR_ANY), we want to stop 2995 * searching. 2996 * We have found a match of IP source 2997 * address and source port, which is 2998 * refused regardless of the 2999 * SO_REUSEADDR setting, so we break. 3000 */ 3001 if (IN6_ARE_ADDR_EQUAL(laddr, 3002 &lconnp->conn_bound_addr_v6) && 3003 (ltcp->tcp_state == TCPS_LISTEN || 3004 ltcp->tcp_state == TCPS_BOUND)) 3005 break; 3006 } 3007 } 3008 if (ltcp != NULL) { 3009 /* The port number is busy */ 3010 mutex_exit(&tbf->tf_lock); 3011 } else { 3012 /* 3013 * This port is ours. Insert in fanout and mark as 3014 * bound to prevent others from getting the port 3015 * number. 3016 */ 3017 tcp->tcp_state = TCPS_BOUND; 3018 connp->conn_lport = htons(port); 3019 3020 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3021 connp->conn_lport)] == tbf); 3022 tcp_bind_hash_insert(tbf, tcp, 1); 3023 3024 mutex_exit(&tbf->tf_lock); 3025 3026 /* 3027 * We don't want tcp_next_port_to_try to "inherit" 3028 * a port number supplied by the user in a bind. 3029 */ 3030 if (user_specified) 3031 return (port); 3032 3033 /* 3034 * This is the only place where tcp_next_port_to_try 3035 * is updated. After the update, it may or may not 3036 * be in the valid range. 3037 */ 3038 if (!connp->conn_anon_priv_bind) 3039 tcps->tcps_next_port_to_try = port + 1; 3040 return (port); 3041 } 3042 3043 if (connp->conn_anon_priv_bind) { 3044 port = tcp_get_next_priv_port(tcp); 3045 } else { 3046 if (count == 0 && user_specified) { 3047 /* 3048 * We may have to return an anonymous port. So 3049 * get one to start with. 3050 */ 3051 port = 3052 tcp_update_next_port( 3053 tcps->tcps_next_port_to_try, 3054 tcp, B_TRUE); 3055 user_specified = B_FALSE; 3056 } else { 3057 port = tcp_update_next_port(port + 1, tcp, 3058 B_FALSE); 3059 } 3060 } 3061 if (port == 0) 3062 break; 3063 3064 /* 3065 * Don't let this loop run forever in the case where 3066 * all of the anonymous ports are in use. 3067 */ 3068 } while (++count < loopmax); 3069 return (0); 3070 } 3071 3072 /* 3073 * tcp_clean_death / tcp_close_detached must not be called more than once 3074 * on a tcp. Thus every function that potentially calls tcp_clean_death 3075 * must check for the tcp state before calling tcp_clean_death. 3076 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 3077 * tcp_timer_handler, all check for the tcp state. 3078 */ 3079 /* ARGSUSED */ 3080 void 3081 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 3082 ip_recv_attr_t *dummy) 3083 { 3084 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3085 3086 freemsg(mp); 3087 if (tcp->tcp_state > TCPS_BOUND) 3088 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3089 ETIMEDOUT, 5); 3090 } 3091 3092 /* 3093 * We are dying for some reason. Try to do it gracefully. (May be called 3094 * as writer.) 3095 * 3096 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3097 * done by a service procedure). 3098 * TBD - Should the return value distinguish between the tcp_t being 3099 * freed and it being reinitialized? 3100 */ 3101 static int 3102 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3103 { 3104 mblk_t *mp; 3105 queue_t *q; 3106 conn_t *connp = tcp->tcp_connp; 3107 tcp_stack_t *tcps = tcp->tcp_tcps; 3108 3109 TCP_CLD_STAT(tag); 3110 3111 #if TCP_TAG_CLEAN_DEATH 3112 tcp->tcp_cleandeathtag = tag; 3113 #endif 3114 3115 if (tcp->tcp_fused) 3116 tcp_unfuse(tcp); 3117 3118 if (tcp->tcp_linger_tid != 0 && 3119 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3120 tcp_stop_lingering(tcp); 3121 } 3122 3123 ASSERT(tcp != NULL); 3124 ASSERT((connp->conn_family == AF_INET && 3125 connp->conn_ipversion == IPV4_VERSION) || 3126 (connp->conn_family == AF_INET6 && 3127 (connp->conn_ipversion == IPV4_VERSION || 3128 connp->conn_ipversion == IPV6_VERSION))); 3129 3130 if (TCP_IS_DETACHED(tcp)) { 3131 if (tcp->tcp_hard_binding) { 3132 /* 3133 * Its an eager that we are dealing with. We close the 3134 * eager but in case a conn_ind has already gone to the 3135 * listener, let tcp_accept_finish() send a discon_ind 3136 * to the listener and drop the last reference. If the 3137 * listener doesn't even know about the eager i.e. the 3138 * conn_ind hasn't gone up, blow away the eager and drop 3139 * the last reference as well. If the conn_ind has gone 3140 * up, state should be BOUND. tcp_accept_finish 3141 * will figure out that the connection has received a 3142 * RST and will send a DISCON_IND to the application. 3143 */ 3144 tcp_closei_local(tcp); 3145 if (!tcp->tcp_tconnind_started) { 3146 CONN_DEC_REF(connp); 3147 } else { 3148 tcp->tcp_state = TCPS_BOUND; 3149 } 3150 } else { 3151 tcp_close_detached(tcp); 3152 } 3153 return (0); 3154 } 3155 3156 TCP_STAT(tcps, tcp_clean_death_nondetached); 3157 3158 /* 3159 * The connection is dead. Decrement listener connection counter if 3160 * necessary. 3161 */ 3162 if (tcp->tcp_listen_cnt != NULL) 3163 TCP_DECR_LISTEN_CNT(tcp); 3164 3165 q = connp->conn_rq; 3166 3167 /* Trash all inbound data */ 3168 if (!IPCL_IS_NONSTR(connp)) { 3169 ASSERT(q != NULL); 3170 flushq(q, FLUSHALL); 3171 } 3172 3173 /* 3174 * If we are at least part way open and there is error 3175 * (err==0 implies no error) 3176 * notify our client by a T_DISCON_IND. 3177 */ 3178 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3179 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3180 !TCP_IS_SOCKET(tcp)) { 3181 /* 3182 * Send M_FLUSH according to TPI. Because sockets will 3183 * (and must) ignore FLUSHR we do that only for TPI 3184 * endpoints and sockets in STREAMS mode. 3185 */ 3186 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3187 } 3188 if (connp->conn_debug) { 3189 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3190 "tcp_clean_death: discon err %d", err); 3191 } 3192 if (IPCL_IS_NONSTR(connp)) { 3193 /* Direct socket, use upcall */ 3194 (*connp->conn_upcalls->su_disconnected)( 3195 connp->conn_upper_handle, tcp->tcp_connid, err); 3196 } else { 3197 mp = mi_tpi_discon_ind(NULL, err, 0); 3198 if (mp != NULL) { 3199 putnext(q, mp); 3200 } else { 3201 if (connp->conn_debug) { 3202 (void) strlog(TCP_MOD_ID, 0, 1, 3203 SL_ERROR|SL_TRACE, 3204 "tcp_clean_death, sending M_ERROR"); 3205 } 3206 (void) putnextctl1(q, M_ERROR, EPROTO); 3207 } 3208 } 3209 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3210 /* SYN_SENT or SYN_RCVD */ 3211 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3212 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3213 /* ESTABLISHED or CLOSE_WAIT */ 3214 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3215 } 3216 } 3217 3218 tcp_reinit(tcp); 3219 if (IPCL_IS_NONSTR(connp)) 3220 (void) tcp_do_unbind(connp); 3221 3222 return (-1); 3223 } 3224 3225 /* 3226 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3227 * to expire, stop the wait and finish the close. 3228 */ 3229 static void 3230 tcp_stop_lingering(tcp_t *tcp) 3231 { 3232 clock_t delta = 0; 3233 tcp_stack_t *tcps = tcp->tcp_tcps; 3234 conn_t *connp = tcp->tcp_connp; 3235 3236 tcp->tcp_linger_tid = 0; 3237 if (tcp->tcp_state > TCPS_LISTEN) { 3238 tcp_acceptor_hash_remove(tcp); 3239 mutex_enter(&tcp->tcp_non_sq_lock); 3240 if (tcp->tcp_flow_stopped) { 3241 tcp_clrqfull(tcp); 3242 } 3243 mutex_exit(&tcp->tcp_non_sq_lock); 3244 3245 if (tcp->tcp_timer_tid != 0) { 3246 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3247 tcp->tcp_timer_tid = 0; 3248 } 3249 /* 3250 * Need to cancel those timers which will not be used when 3251 * TCP is detached. This has to be done before the conn_wq 3252 * is cleared. 3253 */ 3254 tcp_timers_stop(tcp); 3255 3256 tcp->tcp_detached = B_TRUE; 3257 connp->conn_rq = NULL; 3258 connp->conn_wq = NULL; 3259 3260 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3261 tcp_time_wait_append(tcp); 3262 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3263 goto finish; 3264 } 3265 3266 /* 3267 * If delta is zero the timer event wasn't executed and was 3268 * successfully canceled. In this case we need to restart it 3269 * with the minimal delta possible. 3270 */ 3271 if (delta >= 0) { 3272 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3273 delta ? delta : 1); 3274 } 3275 } else { 3276 tcp_closei_local(tcp); 3277 CONN_DEC_REF(connp); 3278 } 3279 finish: 3280 /* Signal closing thread that it can complete close */ 3281 mutex_enter(&tcp->tcp_closelock); 3282 tcp->tcp_detached = B_TRUE; 3283 connp->conn_rq = NULL; 3284 connp->conn_wq = NULL; 3285 3286 tcp->tcp_closed = 1; 3287 cv_signal(&tcp->tcp_closecv); 3288 mutex_exit(&tcp->tcp_closelock); 3289 } 3290 3291 /* 3292 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3293 * expires. 3294 */ 3295 static void 3296 tcp_close_linger_timeout(void *arg) 3297 { 3298 conn_t *connp = (conn_t *)arg; 3299 tcp_t *tcp = connp->conn_tcp; 3300 3301 tcp->tcp_client_errno = ETIMEDOUT; 3302 tcp_stop_lingering(tcp); 3303 } 3304 3305 static void 3306 tcp_close_common(conn_t *connp, int flags) 3307 { 3308 tcp_t *tcp = connp->conn_tcp; 3309 mblk_t *mp = &tcp->tcp_closemp; 3310 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3311 mblk_t *bp; 3312 3313 ASSERT(connp->conn_ref >= 2); 3314 3315 /* 3316 * Mark the conn as closing. ipsq_pending_mp_add will not 3317 * add any mp to the pending mp list, after this conn has 3318 * started closing. 3319 */ 3320 mutex_enter(&connp->conn_lock); 3321 connp->conn_state_flags |= CONN_CLOSING; 3322 if (connp->conn_oper_pending_ill != NULL) 3323 conn_ioctl_cleanup_reqd = B_TRUE; 3324 CONN_INC_REF_LOCKED(connp); 3325 mutex_exit(&connp->conn_lock); 3326 tcp->tcp_closeflags = (uint8_t)flags; 3327 ASSERT(connp->conn_ref >= 3); 3328 3329 /* 3330 * tcp_closemp_used is used below without any protection of a lock 3331 * as we don't expect any one else to use it concurrently at this 3332 * point otherwise it would be a major defect. 3333 */ 3334 3335 if (mp->b_prev == NULL) 3336 tcp->tcp_closemp_used = B_TRUE; 3337 else 3338 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3339 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3340 3341 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3342 3343 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3344 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3345 3346 mutex_enter(&tcp->tcp_closelock); 3347 while (!tcp->tcp_closed) { 3348 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3349 /* 3350 * The cv_wait_sig() was interrupted. We now do the 3351 * following: 3352 * 3353 * 1) If the endpoint was lingering, we allow this 3354 * to be interrupted by cancelling the linger timeout 3355 * and closing normally. 3356 * 3357 * 2) Revert to calling cv_wait() 3358 * 3359 * We revert to using cv_wait() to avoid an 3360 * infinite loop which can occur if the calling 3361 * thread is higher priority than the squeue worker 3362 * thread and is bound to the same cpu. 3363 */ 3364 if (connp->conn_linger && connp->conn_lingertime > 0) { 3365 mutex_exit(&tcp->tcp_closelock); 3366 /* Entering squeue, bump ref count. */ 3367 CONN_INC_REF(connp); 3368 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3369 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3370 tcp_linger_interrupted, connp, NULL, 3371 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3372 mutex_enter(&tcp->tcp_closelock); 3373 } 3374 break; 3375 } 3376 } 3377 while (!tcp->tcp_closed) 3378 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3379 mutex_exit(&tcp->tcp_closelock); 3380 3381 /* 3382 * In the case of listener streams that have eagers in the q or q0 3383 * we wait for the eagers to drop their reference to us. conn_rq and 3384 * conn_wq of the eagers point to our queues. By waiting for the 3385 * refcnt to drop to 1, we are sure that the eagers have cleaned 3386 * up their queue pointers and also dropped their references to us. 3387 */ 3388 if (tcp->tcp_wait_for_eagers) { 3389 mutex_enter(&connp->conn_lock); 3390 while (connp->conn_ref != 1) { 3391 cv_wait(&connp->conn_cv, &connp->conn_lock); 3392 } 3393 mutex_exit(&connp->conn_lock); 3394 } 3395 /* 3396 * ioctl cleanup. The mp is queued in the ipx_pending_mp. 3397 */ 3398 if (conn_ioctl_cleanup_reqd) 3399 conn_ioctl_cleanup(connp); 3400 3401 connp->conn_cpid = NOPID; 3402 } 3403 3404 static int 3405 tcp_tpi_close(queue_t *q, int flags) 3406 { 3407 conn_t *connp; 3408 3409 ASSERT(WR(q)->q_next == NULL); 3410 3411 if (flags & SO_FALLBACK) { 3412 /* 3413 * stream is being closed while in fallback 3414 * simply free the resources that were allocated 3415 */ 3416 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3417 qprocsoff(q); 3418 goto done; 3419 } 3420 3421 connp = Q_TO_CONN(q); 3422 /* 3423 * We are being closed as /dev/tcp or /dev/tcp6. 3424 */ 3425 tcp_close_common(connp, flags); 3426 3427 qprocsoff(q); 3428 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3429 3430 /* 3431 * Drop IP's reference on the conn. This is the last reference 3432 * on the connp if the state was less than established. If the 3433 * connection has gone into timewait state, then we will have 3434 * one ref for the TCP and one more ref (total of two) for the 3435 * classifier connected hash list (a timewait connections stays 3436 * in connected hash till closed). 3437 * 3438 * We can't assert the references because there might be other 3439 * transient reference places because of some walkers or queued 3440 * packets in squeue for the timewait state. 3441 */ 3442 CONN_DEC_REF(connp); 3443 done: 3444 q->q_ptr = WR(q)->q_ptr = NULL; 3445 return (0); 3446 } 3447 3448 static int 3449 tcp_tpi_close_accept(queue_t *q) 3450 { 3451 vmem_t *minor_arena; 3452 dev_t conn_dev; 3453 3454 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3455 3456 /* 3457 * We had opened an acceptor STREAM for sockfs which is 3458 * now being closed due to some error. 3459 */ 3460 qprocsoff(q); 3461 3462 minor_arena = (vmem_t *)WR(q)->q_ptr; 3463 conn_dev = (dev_t)RD(q)->q_ptr; 3464 ASSERT(minor_arena != NULL); 3465 ASSERT(conn_dev != 0); 3466 inet_minor_free(minor_arena, conn_dev); 3467 q->q_ptr = WR(q)->q_ptr = NULL; 3468 return (0); 3469 } 3470 3471 /* 3472 * Called by tcp_close() routine via squeue when lingering is 3473 * interrupted by a signal. 3474 */ 3475 3476 /* ARGSUSED */ 3477 static void 3478 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3479 { 3480 conn_t *connp = (conn_t *)arg; 3481 tcp_t *tcp = connp->conn_tcp; 3482 3483 freeb(mp); 3484 if (tcp->tcp_linger_tid != 0 && 3485 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3486 tcp_stop_lingering(tcp); 3487 tcp->tcp_client_errno = EINTR; 3488 } 3489 } 3490 3491 /* 3492 * Called by streams close routine via squeues when our client blows off her 3493 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3494 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3495 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3496 * acked. 3497 * 3498 * NOTE: tcp_close potentially returns error when lingering. 3499 * However, the stream head currently does not pass these errors 3500 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3501 * errors to the application (from tsleep()) and not errors 3502 * like ECONNRESET caused by receiving a reset packet. 3503 */ 3504 3505 /* ARGSUSED */ 3506 static void 3507 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3508 { 3509 char *msg; 3510 conn_t *connp = (conn_t *)arg; 3511 tcp_t *tcp = connp->conn_tcp; 3512 clock_t delta = 0; 3513 tcp_stack_t *tcps = tcp->tcp_tcps; 3514 3515 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3516 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3517 3518 mutex_enter(&tcp->tcp_eager_lock); 3519 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3520 /* Cleanup for listener */ 3521 tcp_eager_cleanup(tcp, 0); 3522 tcp->tcp_wait_for_eagers = 1; 3523 } 3524 mutex_exit(&tcp->tcp_eager_lock); 3525 3526 tcp->tcp_lso = B_FALSE; 3527 3528 msg = NULL; 3529 switch (tcp->tcp_state) { 3530 case TCPS_CLOSED: 3531 case TCPS_IDLE: 3532 case TCPS_BOUND: 3533 case TCPS_LISTEN: 3534 break; 3535 case TCPS_SYN_SENT: 3536 msg = "tcp_close, during connect"; 3537 break; 3538 case TCPS_SYN_RCVD: 3539 /* 3540 * Close during the connect 3-way handshake 3541 * but here there may or may not be pending data 3542 * already on queue. Process almost same as in 3543 * the ESTABLISHED state. 3544 */ 3545 /* FALLTHRU */ 3546 default: 3547 if (tcp->tcp_fused) 3548 tcp_unfuse(tcp); 3549 3550 /* 3551 * If SO_LINGER has set a zero linger time, abort the 3552 * connection with a reset. 3553 */ 3554 if (connp->conn_linger && connp->conn_lingertime == 0) { 3555 msg = "tcp_close, zero lingertime"; 3556 break; 3557 } 3558 3559 /* 3560 * Abort connection if there is unread data queued. 3561 */ 3562 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3563 msg = "tcp_close, unread data"; 3564 break; 3565 } 3566 /* 3567 * We have done a qwait() above which could have possibly 3568 * drained more messages in turn causing transition to a 3569 * different state. Check whether we have to do the rest 3570 * of the processing or not. 3571 */ 3572 if (tcp->tcp_state <= TCPS_LISTEN) 3573 break; 3574 3575 /* 3576 * Transmit the FIN before detaching the tcp_t. 3577 * After tcp_detach returns this queue/perimeter 3578 * no longer owns the tcp_t thus others can modify it. 3579 */ 3580 (void) tcp_xmit_end(tcp); 3581 3582 /* 3583 * If lingering on close then wait until the fin is acked, 3584 * the SO_LINGER time passes, or a reset is sent/received. 3585 */ 3586 if (connp->conn_linger && connp->conn_lingertime > 0 && 3587 !(tcp->tcp_fin_acked) && 3588 tcp->tcp_state >= TCPS_ESTABLISHED) { 3589 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3590 tcp->tcp_client_errno = EWOULDBLOCK; 3591 } else if (tcp->tcp_client_errno == 0) { 3592 3593 ASSERT(tcp->tcp_linger_tid == 0); 3594 3595 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3596 tcp_close_linger_timeout, 3597 connp->conn_lingertime * hz); 3598 3599 /* tcp_close_linger_timeout will finish close */ 3600 if (tcp->tcp_linger_tid == 0) 3601 tcp->tcp_client_errno = ENOSR; 3602 else 3603 return; 3604 } 3605 3606 /* 3607 * Check if we need to detach or just close 3608 * the instance. 3609 */ 3610 if (tcp->tcp_state <= TCPS_LISTEN) 3611 break; 3612 } 3613 3614 /* 3615 * Make sure that no other thread will access the conn_rq of 3616 * this instance (through lookups etc.) as conn_rq will go 3617 * away shortly. 3618 */ 3619 tcp_acceptor_hash_remove(tcp); 3620 3621 mutex_enter(&tcp->tcp_non_sq_lock); 3622 if (tcp->tcp_flow_stopped) { 3623 tcp_clrqfull(tcp); 3624 } 3625 mutex_exit(&tcp->tcp_non_sq_lock); 3626 3627 if (tcp->tcp_timer_tid != 0) { 3628 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3629 tcp->tcp_timer_tid = 0; 3630 } 3631 /* 3632 * Need to cancel those timers which will not be used when 3633 * TCP is detached. This has to be done before the conn_wq 3634 * is set to NULL. 3635 */ 3636 tcp_timers_stop(tcp); 3637 3638 tcp->tcp_detached = B_TRUE; 3639 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3640 tcp_time_wait_append(tcp); 3641 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3642 ASSERT(connp->conn_ref >= 3); 3643 goto finish; 3644 } 3645 3646 /* 3647 * If delta is zero the timer event wasn't executed and was 3648 * successfully canceled. In this case we need to restart it 3649 * with the minimal delta possible. 3650 */ 3651 if (delta >= 0) 3652 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3653 delta ? delta : 1); 3654 3655 ASSERT(connp->conn_ref >= 3); 3656 goto finish; 3657 } 3658 3659 /* Detach did not complete. Still need to remove q from stream. */ 3660 if (msg) { 3661 if (tcp->tcp_state == TCPS_ESTABLISHED || 3662 tcp->tcp_state == TCPS_CLOSE_WAIT) 3663 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3664 if (tcp->tcp_state == TCPS_SYN_SENT || 3665 tcp->tcp_state == TCPS_SYN_RCVD) 3666 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3667 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3668 } 3669 3670 tcp_closei_local(tcp); 3671 CONN_DEC_REF(connp); 3672 ASSERT(connp->conn_ref >= 2); 3673 3674 finish: 3675 mutex_enter(&tcp->tcp_closelock); 3676 /* 3677 * Don't change the queues in the case of a listener that has 3678 * eagers in its q or q0. It could surprise the eagers. 3679 * Instead wait for the eagers outside the squeue. 3680 */ 3681 if (!tcp->tcp_wait_for_eagers) { 3682 tcp->tcp_detached = B_TRUE; 3683 connp->conn_rq = NULL; 3684 connp->conn_wq = NULL; 3685 } 3686 3687 /* Signal tcp_close() to finish closing. */ 3688 tcp->tcp_closed = 1; 3689 cv_signal(&tcp->tcp_closecv); 3690 mutex_exit(&tcp->tcp_closelock); 3691 } 3692 3693 /* 3694 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3695 * Some stream heads get upset if they see these later on as anything but NULL. 3696 */ 3697 static void 3698 tcp_close_mpp(mblk_t **mpp) 3699 { 3700 mblk_t *mp; 3701 3702 if ((mp = *mpp) != NULL) { 3703 do { 3704 mp->b_next = NULL; 3705 mp->b_prev = NULL; 3706 } while ((mp = mp->b_cont) != NULL); 3707 3708 mp = *mpp; 3709 *mpp = NULL; 3710 freemsg(mp); 3711 } 3712 } 3713 3714 /* Do detached close. */ 3715 static void 3716 tcp_close_detached(tcp_t *tcp) 3717 { 3718 if (tcp->tcp_fused) 3719 tcp_unfuse(tcp); 3720 3721 /* 3722 * Clustering code serializes TCP disconnect callbacks and 3723 * cluster tcp list walks by blocking a TCP disconnect callback 3724 * if a cluster tcp list walk is in progress. This ensures 3725 * accurate accounting of TCPs in the cluster code even though 3726 * the TCP list walk itself is not atomic. 3727 */ 3728 tcp_closei_local(tcp); 3729 CONN_DEC_REF(tcp->tcp_connp); 3730 } 3731 3732 /* 3733 * Stop all TCP timers, and free the timer mblks if requested. 3734 */ 3735 void 3736 tcp_timers_stop(tcp_t *tcp) 3737 { 3738 if (tcp->tcp_timer_tid != 0) { 3739 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3740 tcp->tcp_timer_tid = 0; 3741 } 3742 if (tcp->tcp_ka_tid != 0) { 3743 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3744 tcp->tcp_ka_tid = 0; 3745 } 3746 if (tcp->tcp_ack_tid != 0) { 3747 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3748 tcp->tcp_ack_tid = 0; 3749 } 3750 if (tcp->tcp_push_tid != 0) { 3751 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3752 tcp->tcp_push_tid = 0; 3753 } 3754 if (tcp->tcp_reass_tid != 0) { 3755 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 3756 tcp->tcp_reass_tid = 0; 3757 } 3758 } 3759 3760 /* 3761 * The tcp_t is going away. Remove it from all lists and set it 3762 * to TCPS_CLOSED. The freeing up of memory is deferred until 3763 * tcp_inactive. This is needed since a thread in tcp_rput might have 3764 * done a CONN_INC_REF on this structure before it was removed from the 3765 * hashes. 3766 */ 3767 static void 3768 tcp_closei_local(tcp_t *tcp) 3769 { 3770 conn_t *connp = tcp->tcp_connp; 3771 tcp_stack_t *tcps = tcp->tcp_tcps; 3772 3773 if (!TCP_IS_SOCKET(tcp)) 3774 tcp_acceptor_hash_remove(tcp); 3775 3776 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3777 tcp->tcp_ibsegs = 0; 3778 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3779 tcp->tcp_obsegs = 0; 3780 3781 /* 3782 * If we are an eager connection hanging off a listener that 3783 * hasn't formally accepted the connection yet, get off his 3784 * list and blow off any data that we have accumulated. 3785 */ 3786 if (tcp->tcp_listener != NULL) { 3787 tcp_t *listener = tcp->tcp_listener; 3788 mutex_enter(&listener->tcp_eager_lock); 3789 /* 3790 * tcp_tconnind_started == B_TRUE means that the 3791 * conn_ind has already gone to listener. At 3792 * this point, eager will be closed but we 3793 * leave it in listeners eager list so that 3794 * if listener decides to close without doing 3795 * accept, we can clean this up. In tcp_tli_accept 3796 * we take care of the case of accept on closed 3797 * eager. 3798 */ 3799 if (!tcp->tcp_tconnind_started) { 3800 tcp_eager_unlink(tcp); 3801 mutex_exit(&listener->tcp_eager_lock); 3802 /* 3803 * We don't want to have any pointers to the 3804 * listener queue, after we have released our 3805 * reference on the listener 3806 */ 3807 ASSERT(tcp->tcp_detached); 3808 connp->conn_rq = NULL; 3809 connp->conn_wq = NULL; 3810 CONN_DEC_REF(listener->tcp_connp); 3811 } else { 3812 mutex_exit(&listener->tcp_eager_lock); 3813 } 3814 } 3815 3816 /* Stop all the timers */ 3817 tcp_timers_stop(tcp); 3818 3819 if (tcp->tcp_state == TCPS_LISTEN) { 3820 if (tcp->tcp_ip_addr_cache) { 3821 kmem_free((void *)tcp->tcp_ip_addr_cache, 3822 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3823 tcp->tcp_ip_addr_cache = NULL; 3824 } 3825 } 3826 3827 /* Decrement listerner connection counter if necessary. */ 3828 if (tcp->tcp_listen_cnt != NULL) 3829 TCP_DECR_LISTEN_CNT(tcp); 3830 3831 mutex_enter(&tcp->tcp_non_sq_lock); 3832 if (tcp->tcp_flow_stopped) 3833 tcp_clrqfull(tcp); 3834 mutex_exit(&tcp->tcp_non_sq_lock); 3835 3836 tcp_bind_hash_remove(tcp); 3837 /* 3838 * If the tcp_time_wait_collector (which runs outside the squeue) 3839 * is trying to remove this tcp from the time wait list, we will 3840 * block in tcp_time_wait_remove while trying to acquire the 3841 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3842 * requires the ipcl_hash_remove to be ordered after the 3843 * tcp_time_wait_remove for the refcnt checks to work correctly. 3844 */ 3845 if (tcp->tcp_state == TCPS_TIME_WAIT) 3846 (void) tcp_time_wait_remove(tcp, NULL); 3847 CL_INET_DISCONNECT(connp); 3848 ipcl_hash_remove(connp); 3849 ixa_cleanup(connp->conn_ixa); 3850 3851 /* 3852 * Mark the conn as CONDEMNED 3853 */ 3854 mutex_enter(&connp->conn_lock); 3855 connp->conn_state_flags |= CONN_CONDEMNED; 3856 mutex_exit(&connp->conn_lock); 3857 3858 /* Need to cleanup any pending ioctls */ 3859 ASSERT(tcp->tcp_time_wait_next == NULL); 3860 ASSERT(tcp->tcp_time_wait_prev == NULL); 3861 ASSERT(tcp->tcp_time_wait_expire == 0); 3862 tcp->tcp_state = TCPS_CLOSED; 3863 3864 /* Release any SSL context */ 3865 if (tcp->tcp_kssl_ent != NULL) { 3866 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3867 tcp->tcp_kssl_ent = NULL; 3868 } 3869 if (tcp->tcp_kssl_ctx != NULL) { 3870 kssl_release_ctx(tcp->tcp_kssl_ctx); 3871 tcp->tcp_kssl_ctx = NULL; 3872 } 3873 tcp->tcp_kssl_pending = B_FALSE; 3874 3875 tcp_ipsec_cleanup(tcp); 3876 } 3877 3878 /* 3879 * tcp is dying (called from ipcl_conn_destroy and error cases). 3880 * Free the tcp_t in either case. 3881 */ 3882 void 3883 tcp_free(tcp_t *tcp) 3884 { 3885 mblk_t *mp; 3886 conn_t *connp = tcp->tcp_connp; 3887 3888 ASSERT(tcp != NULL); 3889 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3890 3891 connp->conn_rq = NULL; 3892 connp->conn_wq = NULL; 3893 3894 tcp_close_mpp(&tcp->tcp_xmit_head); 3895 tcp_close_mpp(&tcp->tcp_reass_head); 3896 if (tcp->tcp_rcv_list != NULL) { 3897 /* Free b_next chain */ 3898 tcp_close_mpp(&tcp->tcp_rcv_list); 3899 } 3900 if ((mp = tcp->tcp_urp_mp) != NULL) { 3901 freemsg(mp); 3902 } 3903 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3904 freemsg(mp); 3905 } 3906 3907 if (tcp->tcp_fused_sigurg_mp != NULL) { 3908 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3909 freeb(tcp->tcp_fused_sigurg_mp); 3910 tcp->tcp_fused_sigurg_mp = NULL; 3911 } 3912 3913 if (tcp->tcp_ordrel_mp != NULL) { 3914 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3915 freeb(tcp->tcp_ordrel_mp); 3916 tcp->tcp_ordrel_mp = NULL; 3917 } 3918 3919 if (tcp->tcp_sack_info != NULL) { 3920 if (tcp->tcp_notsack_list != NULL) { 3921 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3922 tcp); 3923 } 3924 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3925 } 3926 3927 if (tcp->tcp_hopopts != NULL) { 3928 mi_free(tcp->tcp_hopopts); 3929 tcp->tcp_hopopts = NULL; 3930 tcp->tcp_hopoptslen = 0; 3931 } 3932 ASSERT(tcp->tcp_hopoptslen == 0); 3933 if (tcp->tcp_dstopts != NULL) { 3934 mi_free(tcp->tcp_dstopts); 3935 tcp->tcp_dstopts = NULL; 3936 tcp->tcp_dstoptslen = 0; 3937 } 3938 ASSERT(tcp->tcp_dstoptslen == 0); 3939 if (tcp->tcp_rthdrdstopts != NULL) { 3940 mi_free(tcp->tcp_rthdrdstopts); 3941 tcp->tcp_rthdrdstopts = NULL; 3942 tcp->tcp_rthdrdstoptslen = 0; 3943 } 3944 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3945 if (tcp->tcp_rthdr != NULL) { 3946 mi_free(tcp->tcp_rthdr); 3947 tcp->tcp_rthdr = NULL; 3948 tcp->tcp_rthdrlen = 0; 3949 } 3950 ASSERT(tcp->tcp_rthdrlen == 0); 3951 3952 /* 3953 * Following is really a blowing away a union. 3954 * It happens to have exactly two members of identical size 3955 * the following code is enough. 3956 */ 3957 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3958 } 3959 3960 3961 /* 3962 * Put a connection confirmation message upstream built from the 3963 * address/flowid information with the conn and iph. Report our success or 3964 * failure. 3965 */ 3966 static boolean_t 3967 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3968 mblk_t **defermp, ip_recv_attr_t *ira) 3969 { 3970 sin_t sin; 3971 sin6_t sin6; 3972 mblk_t *mp; 3973 char *optp = NULL; 3974 int optlen = 0; 3975 conn_t *connp = tcp->tcp_connp; 3976 3977 if (defermp != NULL) 3978 *defermp = NULL; 3979 3980 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3981 /* 3982 * Return in T_CONN_CON results of option negotiation through 3983 * the T_CONN_REQ. Note: If there is an real end-to-end option 3984 * negotiation, then what is received from remote end needs 3985 * to be taken into account but there is no such thing (yet?) 3986 * in our TCP/IP. 3987 * Note: We do not use mi_offset_param() here as 3988 * tcp_opts_conn_req contents do not directly come from 3989 * an application and are either generated in kernel or 3990 * from user input that was already verified. 3991 */ 3992 mp = tcp->tcp_conn.tcp_opts_conn_req; 3993 optp = (char *)(mp->b_rptr + 3994 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 3995 optlen = (int) 3996 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 3997 } 3998 3999 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4000 4001 /* packet is IPv4 */ 4002 if (connp->conn_family == AF_INET) { 4003 sin = sin_null; 4004 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4005 sin.sin_port = connp->conn_fport; 4006 sin.sin_family = AF_INET; 4007 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4008 (int)sizeof (sin_t), optp, optlen); 4009 } else { 4010 sin6 = sin6_null; 4011 sin6.sin6_addr = connp->conn_faddr_v6; 4012 sin6.sin6_port = connp->conn_fport; 4013 sin6.sin6_family = AF_INET6; 4014 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4015 (int)sizeof (sin6_t), optp, optlen); 4016 4017 } 4018 } else { 4019 ip6_t *ip6h = (ip6_t *)iphdr; 4020 4021 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4022 ASSERT(connp->conn_family == AF_INET6); 4023 sin6 = sin6_null; 4024 sin6.sin6_addr = connp->conn_faddr_v6; 4025 sin6.sin6_port = connp->conn_fport; 4026 sin6.sin6_family = AF_INET6; 4027 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4028 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4029 (int)sizeof (sin6_t), optp, optlen); 4030 } 4031 4032 if (!mp) 4033 return (B_FALSE); 4034 4035 mblk_copycred(mp, idmp); 4036 4037 if (defermp == NULL) { 4038 conn_t *connp = tcp->tcp_connp; 4039 if (IPCL_IS_NONSTR(connp)) { 4040 (*connp->conn_upcalls->su_connected) 4041 (connp->conn_upper_handle, tcp->tcp_connid, 4042 ira->ira_cred, ira->ira_cpid); 4043 freemsg(mp); 4044 } else { 4045 if (ira->ira_cred != NULL) { 4046 /* So that getpeerucred works for TPI sockfs */ 4047 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 4048 } 4049 putnext(connp->conn_rq, mp); 4050 } 4051 } else { 4052 *defermp = mp; 4053 } 4054 4055 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4056 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4057 return (B_TRUE); 4058 } 4059 4060 /* 4061 * Defense for the SYN attack - 4062 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4063 * one from the list of droppable eagers. This list is a subset of q0. 4064 * see comments before the definition of MAKE_DROPPABLE(). 4065 * 2. Don't drop a SYN request before its first timeout. This gives every 4066 * request at least til the first timeout to complete its 3-way handshake. 4067 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4068 * requests currently on the queue that has timed out. This will be used 4069 * as an indicator of whether an attack is under way, so that appropriate 4070 * actions can be taken. (It's incremented in tcp_timer() and decremented 4071 * either when eager goes into ESTABLISHED, or gets freed up.) 4072 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4073 * # of timeout drops back to <= q0len/32 => SYN alert off 4074 */ 4075 static boolean_t 4076 tcp_drop_q0(tcp_t *tcp) 4077 { 4078 tcp_t *eager; 4079 mblk_t *mp; 4080 tcp_stack_t *tcps = tcp->tcp_tcps; 4081 4082 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4083 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4084 4085 /* Pick oldest eager from the list of droppable eagers */ 4086 eager = tcp->tcp_eager_prev_drop_q0; 4087 4088 /* If list is empty. return B_FALSE */ 4089 if (eager == tcp) { 4090 return (B_FALSE); 4091 } 4092 4093 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4094 if ((mp = allocb(0, BPRI_HI)) == NULL) 4095 return (B_FALSE); 4096 4097 /* 4098 * Take this eager out from the list of droppable eagers since we are 4099 * going to drop it. 4100 */ 4101 MAKE_UNDROPPABLE(eager); 4102 4103 if (tcp->tcp_connp->conn_debug) { 4104 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4105 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4106 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4107 tcp->tcp_conn_req_cnt_q0, 4108 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4109 } 4110 4111 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4112 4113 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4114 CONN_INC_REF(eager->tcp_connp); 4115 4116 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4117 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 4118 SQ_FILL, SQTAG_TCP_DROP_Q0); 4119 4120 return (B_TRUE); 4121 } 4122 4123 /* 4124 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4125 */ 4126 static mblk_t * 4127 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4128 ip_recv_attr_t *ira) 4129 { 4130 tcp_t *ltcp = lconnp->conn_tcp; 4131 tcp_t *tcp = connp->conn_tcp; 4132 mblk_t *tpi_mp; 4133 ipha_t *ipha; 4134 ip6_t *ip6h; 4135 sin6_t sin6; 4136 uint_t ifindex = ira->ira_ruifindex; 4137 tcp_stack_t *tcps = tcp->tcp_tcps; 4138 4139 if (ira->ira_flags & IRAF_IS_IPV4) { 4140 ipha = (ipha_t *)mp->b_rptr; 4141 4142 connp->conn_ipversion = IPV4_VERSION; 4143 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4144 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4145 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4146 4147 sin6 = sin6_null; 4148 sin6.sin6_addr = connp->conn_faddr_v6; 4149 sin6.sin6_port = connp->conn_fport; 4150 sin6.sin6_family = AF_INET6; 4151 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4152 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4153 4154 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4155 sin6_t sin6d; 4156 4157 sin6d = sin6_null; 4158 sin6d.sin6_addr = connp->conn_laddr_v6; 4159 sin6d.sin6_port = connp->conn_lport; 4160 sin6d.sin6_family = AF_INET; 4161 tpi_mp = mi_tpi_extconn_ind(NULL, 4162 (char *)&sin6d, sizeof (sin6_t), 4163 (char *)&tcp, 4164 (t_scalar_t)sizeof (intptr_t), 4165 (char *)&sin6d, sizeof (sin6_t), 4166 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4167 } else { 4168 tpi_mp = mi_tpi_conn_ind(NULL, 4169 (char *)&sin6, sizeof (sin6_t), 4170 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4171 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4172 } 4173 } else { 4174 ip6h = (ip6_t *)mp->b_rptr; 4175 4176 connp->conn_ipversion = IPV6_VERSION; 4177 connp->conn_laddr_v6 = ip6h->ip6_dst; 4178 connp->conn_faddr_v6 = ip6h->ip6_src; 4179 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4180 4181 sin6 = sin6_null; 4182 sin6.sin6_addr = connp->conn_faddr_v6; 4183 sin6.sin6_port = connp->conn_fport; 4184 sin6.sin6_family = AF_INET6; 4185 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4186 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4187 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4188 4189 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4190 /* Pass up the scope_id of remote addr */ 4191 sin6.sin6_scope_id = ifindex; 4192 } else { 4193 sin6.sin6_scope_id = 0; 4194 } 4195 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4196 sin6_t sin6d; 4197 4198 sin6d = sin6_null; 4199 sin6.sin6_addr = connp->conn_laddr_v6; 4200 sin6d.sin6_port = connp->conn_lport; 4201 sin6d.sin6_family = AF_INET6; 4202 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4203 sin6d.sin6_scope_id = ifindex; 4204 4205 tpi_mp = mi_tpi_extconn_ind(NULL, 4206 (char *)&sin6d, sizeof (sin6_t), 4207 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4208 (char *)&sin6d, sizeof (sin6_t), 4209 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4210 } else { 4211 tpi_mp = mi_tpi_conn_ind(NULL, 4212 (char *)&sin6, sizeof (sin6_t), 4213 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4214 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4215 } 4216 } 4217 4218 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4219 return (tpi_mp); 4220 } 4221 4222 /* Handle a SYN on an AF_INET socket */ 4223 mblk_t * 4224 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4225 ip_recv_attr_t *ira) 4226 { 4227 tcp_t *ltcp = lconnp->conn_tcp; 4228 tcp_t *tcp = connp->conn_tcp; 4229 sin_t sin; 4230 mblk_t *tpi_mp = NULL; 4231 tcp_stack_t *tcps = tcp->tcp_tcps; 4232 ipha_t *ipha; 4233 4234 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4235 ipha = (ipha_t *)mp->b_rptr; 4236 4237 connp->conn_ipversion = IPV4_VERSION; 4238 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4239 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4240 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4241 4242 sin = sin_null; 4243 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4244 sin.sin_port = connp->conn_fport; 4245 sin.sin_family = AF_INET; 4246 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4247 sin_t sind; 4248 4249 sind = sin_null; 4250 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4251 sind.sin_port = connp->conn_lport; 4252 sind.sin_family = AF_INET; 4253 tpi_mp = mi_tpi_extconn_ind(NULL, 4254 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4255 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4256 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4257 } else { 4258 tpi_mp = mi_tpi_conn_ind(NULL, 4259 (char *)&sin, sizeof (sin_t), 4260 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4261 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4262 } 4263 4264 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4265 return (tpi_mp); 4266 } 4267 4268 /* 4269 * tcp_get_conn/tcp_free_conn 4270 * 4271 * tcp_get_conn is used to get a clean tcp connection structure. 4272 * It tries to reuse the connections put on the freelist by the 4273 * time_wait_collector failing which it goes to kmem_cache. This 4274 * way has two benefits compared to just allocating from and 4275 * freeing to kmem_cache. 4276 * 1) The time_wait_collector can free (which includes the cleanup) 4277 * outside the squeue. So when the interrupt comes, we have a clean 4278 * connection sitting in the freelist. Obviously, this buys us 4279 * performance. 4280 * 4281 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4282 * has multiple disadvantages - tying up the squeue during alloc. 4283 * But allocating the conn/tcp in IP land is also not the best since 4284 * we can't check the 'q' and 'q0' which are protected by squeue and 4285 * blindly allocate memory which might have to be freed here if we are 4286 * not allowed to accept the connection. By using the freelist and 4287 * putting the conn/tcp back in freelist, we don't pay a penalty for 4288 * allocating memory without checking 'q/q0' and freeing it if we can't 4289 * accept the connection. 4290 * 4291 * Care should be taken to put the conn back in the same squeue's freelist 4292 * from which it was allocated. Best results are obtained if conn is 4293 * allocated from listener's squeue and freed to the same. Time wait 4294 * collector will free up the freelist is the connection ends up sitting 4295 * there for too long. 4296 */ 4297 void * 4298 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4299 { 4300 tcp_t *tcp = NULL; 4301 conn_t *connp = NULL; 4302 squeue_t *sqp = (squeue_t *)arg; 4303 tcp_squeue_priv_t *tcp_time_wait; 4304 netstack_t *ns; 4305 mblk_t *tcp_rsrv_mp = NULL; 4306 4307 tcp_time_wait = 4308 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4309 4310 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4311 tcp = tcp_time_wait->tcp_free_list; 4312 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4313 if (tcp != NULL) { 4314 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4315 tcp_time_wait->tcp_free_list_cnt--; 4316 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4317 tcp->tcp_time_wait_next = NULL; 4318 connp = tcp->tcp_connp; 4319 connp->conn_flags |= IPCL_REUSED; 4320 4321 ASSERT(tcp->tcp_tcps == NULL); 4322 ASSERT(connp->conn_netstack == NULL); 4323 ASSERT(tcp->tcp_rsrv_mp != NULL); 4324 ns = tcps->tcps_netstack; 4325 netstack_hold(ns); 4326 connp->conn_netstack = ns; 4327 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4328 tcp->tcp_tcps = tcps; 4329 ipcl_globalhash_insert(connp); 4330 4331 connp->conn_ixa->ixa_notify_cookie = tcp; 4332 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4333 connp->conn_recv = tcp_input_data; 4334 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4335 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4336 return ((void *)connp); 4337 } 4338 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4339 /* 4340 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4341 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4342 */ 4343 tcp_rsrv_mp = allocb(0, BPRI_HI); 4344 if (tcp_rsrv_mp == NULL) 4345 return (NULL); 4346 4347 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4348 tcps->tcps_netstack)) == NULL) { 4349 freeb(tcp_rsrv_mp); 4350 return (NULL); 4351 } 4352 4353 tcp = connp->conn_tcp; 4354 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4355 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4356 4357 tcp->tcp_tcps = tcps; 4358 4359 connp->conn_recv = tcp_input_data; 4360 connp->conn_recvicmp = tcp_icmp_input; 4361 connp->conn_verifyicmp = tcp_verifyicmp; 4362 4363 /* 4364 * Register tcp_notify to listen to capability changes detected by IP. 4365 * This upcall is made in the context of the call to conn_ip_output 4366 * thus it is inside the squeue. 4367 */ 4368 connp->conn_ixa->ixa_notify = tcp_notify; 4369 connp->conn_ixa->ixa_notify_cookie = tcp; 4370 4371 return ((void *)connp); 4372 } 4373 4374 /* BEGIN CSTYLED */ 4375 /* 4376 * 4377 * The sockfs ACCEPT path: 4378 * ======================= 4379 * 4380 * The eager is now established in its own perimeter as soon as SYN is 4381 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4382 * completes the accept processing on the acceptor STREAM. The sending 4383 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4384 * listener but a TLI/XTI listener completes the accept processing 4385 * on the listener perimeter. 4386 * 4387 * Common control flow for 3 way handshake: 4388 * ---------------------------------------- 4389 * 4390 * incoming SYN (listener perimeter) -> tcp_input_listener() 4391 * 4392 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4393 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4394 * 4395 * Sockfs ACCEPT Path: 4396 * ------------------- 4397 * 4398 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4399 * as STREAM entry point) 4400 * 4401 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4402 * 4403 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4404 * association (we are not behind eager's squeue but sockfs is protecting us 4405 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4406 * is changed to point at tcp_wput(). 4407 * 4408 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4409 * listener (done on listener's perimeter). 4410 * 4411 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4412 * accept. 4413 * 4414 * TLI/XTI client ACCEPT path: 4415 * --------------------------- 4416 * 4417 * soaccept() sends T_CONN_RES on the listener STREAM. 4418 * 4419 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4420 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4421 * 4422 * Locks: 4423 * ====== 4424 * 4425 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4426 * and listeners->tcp_eager_next_q. 4427 * 4428 * Referencing: 4429 * ============ 4430 * 4431 * 1) We start out in tcp_input_listener by eager placing a ref on 4432 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4433 * 4434 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4435 * doing so we place a ref on the eager. This ref is finally dropped at the 4436 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4437 * reference is dropped by the squeue framework. 4438 * 4439 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4440 * 4441 * The reference must be released by the same entity that added the reference 4442 * In the above scheme, the eager is the entity that adds and releases the 4443 * references. Note that tcp_accept_finish executes in the squeue of the eager 4444 * (albeit after it is attached to the acceptor stream). Though 1. executes 4445 * in the listener's squeue, the eager is nascent at this point and the 4446 * reference can be considered to have been added on behalf of the eager. 4447 * 4448 * Eager getting a Reset or listener closing: 4449 * ========================================== 4450 * 4451 * Once the listener and eager are linked, the listener never does the unlink. 4452 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4453 * a message on all eager perimeter. The eager then does the unlink, clears 4454 * any pointers to the listener's queue and drops the reference to the 4455 * listener. The listener waits in tcp_close outside the squeue until its 4456 * refcount has dropped to 1. This ensures that the listener has waited for 4457 * all eagers to clear their association with the listener. 4458 * 4459 * Similarly, if eager decides to go away, it can unlink itself and close. 4460 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4461 * the reference to eager is still valid because of the extra ref we put 4462 * in tcp_send_conn_ind. 4463 * 4464 * Listener can always locate the eager under the protection 4465 * of the listener->tcp_eager_lock, and then do a refhold 4466 * on the eager during the accept processing. 4467 * 4468 * The acceptor stream accesses the eager in the accept processing 4469 * based on the ref placed on eager before sending T_conn_ind. 4470 * The only entity that can negate this refhold is a listener close 4471 * which is mutually exclusive with an active acceptor stream. 4472 * 4473 * Eager's reference on the listener 4474 * =================================== 4475 * 4476 * If the accept happens (even on a closed eager) the eager drops its 4477 * reference on the listener at the start of tcp_accept_finish. If the 4478 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4479 * the reference is dropped in tcp_closei_local. If the listener closes, 4480 * the reference is dropped in tcp_eager_kill. In all cases the reference 4481 * is dropped while executing in the eager's context (squeue). 4482 */ 4483 /* END CSTYLED */ 4484 4485 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4486 4487 /* 4488 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4489 * tcp_input_data will not see any packets for listeners since the listener 4490 * has conn_recv set to tcp_input_listener. 4491 */ 4492 /* ARGSUSED */ 4493 void 4494 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4495 { 4496 tcpha_t *tcpha; 4497 uint32_t seg_seq; 4498 tcp_t *eager; 4499 int err; 4500 conn_t *econnp = NULL; 4501 squeue_t *new_sqp; 4502 mblk_t *mp1; 4503 uint_t ip_hdr_len; 4504 conn_t *lconnp = (conn_t *)arg; 4505 tcp_t *listener = lconnp->conn_tcp; 4506 tcp_stack_t *tcps = listener->tcp_tcps; 4507 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4508 uint_t flags; 4509 mblk_t *tpi_mp; 4510 uint_t ifindex = ira->ira_ruifindex; 4511 boolean_t tlc_set = B_FALSE; 4512 4513 ip_hdr_len = ira->ira_ip_hdr_length; 4514 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4515 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4516 4517 if (!(flags & TH_SYN)) { 4518 if ((flags & TH_RST) || (flags & TH_URG)) { 4519 freemsg(mp); 4520 return; 4521 } 4522 if (flags & TH_ACK) { 4523 /* Note this executes in listener's squeue */ 4524 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4525 return; 4526 } 4527 4528 freemsg(mp); 4529 return; 4530 } 4531 4532 if (listener->tcp_state != TCPS_LISTEN) 4533 goto error2; 4534 4535 ASSERT(IPCL_IS_BOUND(lconnp)); 4536 4537 mutex_enter(&listener->tcp_eager_lock); 4538 4539 /* 4540 * The system is under memory pressure, so we need to do our part 4541 * to relieve the pressure. So we only accept new request if there 4542 * is nothing waiting to be accepted or waiting to complete the 3-way 4543 * handshake. This means that busy listener will not get too many 4544 * new requests which they cannot handle in time while non-busy 4545 * listener is still functioning properly. 4546 */ 4547 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 4548 listener->tcp_conn_req_cnt_q0 > 0)) { 4549 mutex_exit(&listener->tcp_eager_lock); 4550 TCP_STAT(tcps, tcp_listen_mem_drop); 4551 goto error2; 4552 } 4553 4554 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4555 mutex_exit(&listener->tcp_eager_lock); 4556 TCP_STAT(tcps, tcp_listendrop); 4557 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4558 if (lconnp->conn_debug) { 4559 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4560 "tcp_input_listener: listen backlog (max=%d) " 4561 "overflow (%d pending) on %s", 4562 listener->tcp_conn_req_max, 4563 listener->tcp_conn_req_cnt_q, 4564 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4565 } 4566 goto error2; 4567 } 4568 4569 if (listener->tcp_conn_req_cnt_q0 >= 4570 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4571 /* 4572 * Q0 is full. Drop a pending half-open req from the queue 4573 * to make room for the new SYN req. Also mark the time we 4574 * drop a SYN. 4575 * 4576 * A more aggressive defense against SYN attack will 4577 * be to set the "tcp_syn_defense" flag now. 4578 */ 4579 TCP_STAT(tcps, tcp_listendropq0); 4580 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4581 if (!tcp_drop_q0(listener)) { 4582 mutex_exit(&listener->tcp_eager_lock); 4583 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4584 if (lconnp->conn_debug) { 4585 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4586 "tcp_input_listener: listen half-open " 4587 "queue (max=%d) full (%d pending) on %s", 4588 tcps->tcps_conn_req_max_q0, 4589 listener->tcp_conn_req_cnt_q0, 4590 tcp_display(listener, NULL, 4591 DISP_PORT_ONLY)); 4592 } 4593 goto error2; 4594 } 4595 } 4596 4597 /* 4598 * Enforce the limit set on the number of connections per listener. 4599 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 4600 * for comparison. 4601 */ 4602 if (listener->tcp_listen_cnt != NULL) { 4603 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 4604 int64_t now; 4605 4606 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 4607 mutex_exit(&listener->tcp_eager_lock); 4608 now = ddi_get_lbolt64(); 4609 atomic_add_32(&tlc->tlc_cnt, -1); 4610 TCP_STAT(tcps, tcp_listen_cnt_drop); 4611 tlc->tlc_drop++; 4612 if (now - tlc->tlc_report_time > 4613 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 4614 zcmn_err(lconnp->conn_zoneid, CE_WARN, 4615 "Listener (port %d) connection max (%u) " 4616 "reached: %u attempts dropped total\n", 4617 ntohs(listener->tcp_connp->conn_lport), 4618 tlc->tlc_max, tlc->tlc_drop); 4619 tlc->tlc_report_time = now; 4620 } 4621 goto error2; 4622 } 4623 tlc_set = B_TRUE; 4624 } 4625 4626 mutex_exit(&listener->tcp_eager_lock); 4627 4628 /* 4629 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4630 * or based on the ring (for packets from GLD). Otherwise it is 4631 * set based on lbolt i.e., a somewhat random number. 4632 */ 4633 ASSERT(ira->ira_sqp != NULL); 4634 new_sqp = ira->ira_sqp; 4635 4636 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4637 if (econnp == NULL) 4638 goto error2; 4639 4640 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4641 econnp->conn_sqp = new_sqp; 4642 econnp->conn_initial_sqp = new_sqp; 4643 econnp->conn_ixa->ixa_sqp = new_sqp; 4644 4645 econnp->conn_fport = tcpha->tha_lport; 4646 econnp->conn_lport = tcpha->tha_fport; 4647 4648 err = conn_inherit_parent(lconnp, econnp); 4649 if (err != 0) 4650 goto error3; 4651 4652 ASSERT(OK_32PTR(mp->b_rptr)); 4653 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4654 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4655 4656 if (lconnp->conn_family == AF_INET) { 4657 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4658 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4659 } else { 4660 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4661 } 4662 4663 if (tpi_mp == NULL) 4664 goto error3; 4665 4666 eager = econnp->conn_tcp; 4667 eager->tcp_detached = B_TRUE; 4668 SOCK_CONNID_INIT(eager->tcp_connid); 4669 4670 tcp_init_values(eager); 4671 4672 ASSERT((econnp->conn_ixa->ixa_flags & 4673 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4674 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4675 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4676 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4677 4678 if (!tcps->tcps_dev_flow_ctl) 4679 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4680 4681 /* Prepare for diffing against previous packets */ 4682 eager->tcp_recvifindex = 0; 4683 eager->tcp_recvhops = 0xffffffffU; 4684 4685 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4686 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4687 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4688 econnp->conn_incoming_ifindex = ifindex; 4689 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4690 econnp->conn_ixa->ixa_scopeid = ifindex; 4691 } 4692 } 4693 4694 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4695 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4696 tcps->tcps_rev_src_routes) { 4697 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4698 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4699 4700 /* Source routing option copyover (reverse it) */ 4701 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4702 if (err != 0) { 4703 freemsg(tpi_mp); 4704 goto error3; 4705 } 4706 ip_pkt_source_route_reverse_v4(ipp); 4707 } 4708 4709 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4710 ASSERT(!eager->tcp_tconnind_started); 4711 /* 4712 * If the SYN came with a credential, it's a loopback packet or a 4713 * labeled packet; attach the credential to the TPI message. 4714 */ 4715 if (ira->ira_cred != NULL) 4716 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4717 4718 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4719 4720 /* Inherit the listener's SSL protection state */ 4721 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4722 kssl_hold_ent(eager->tcp_kssl_ent); 4723 eager->tcp_kssl_pending = B_TRUE; 4724 } 4725 4726 /* Inherit the listener's non-STREAMS flag */ 4727 if (IPCL_IS_NONSTR(lconnp)) { 4728 econnp->conn_flags |= IPCL_NONSTR; 4729 } 4730 4731 ASSERT(eager->tcp_ordrel_mp == NULL); 4732 4733 if (!IPCL_IS_NONSTR(econnp)) { 4734 /* 4735 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4736 * at close time, we will always have that to send up. 4737 * Otherwise, we need to do special handling in case the 4738 * allocation fails at that time. 4739 */ 4740 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4741 goto error3; 4742 } 4743 /* 4744 * Now that the IP addresses and ports are setup in econnp we 4745 * can do the IPsec policy work. 4746 */ 4747 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4748 if (lconnp->conn_policy != NULL) { 4749 /* 4750 * Inherit the policy from the listener; use 4751 * actions from ira 4752 */ 4753 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4754 CONN_DEC_REF(econnp); 4755 freemsg(mp); 4756 goto error3; 4757 } 4758 } 4759 } 4760 4761 /* Inherit various TCP parameters from the listener */ 4762 eager->tcp_naglim = listener->tcp_naglim; 4763 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4764 eager->tcp_second_timer_threshold = 4765 listener->tcp_second_timer_threshold; 4766 eager->tcp_first_ctimer_threshold = 4767 listener->tcp_first_ctimer_threshold; 4768 eager->tcp_second_ctimer_threshold = 4769 listener->tcp_second_ctimer_threshold; 4770 4771 /* 4772 * tcp_set_destination() may set tcp_rwnd according to the route 4773 * metrics. If it does not, the eager's receive window will be set 4774 * to the listener's receive window later in this function. 4775 */ 4776 eager->tcp_rwnd = 0; 4777 4778 /* 4779 * Inherit listener's tcp_init_cwnd. Need to do this before 4780 * calling tcp_process_options() which set the initial cwnd. 4781 */ 4782 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4783 4784 if (is_system_labeled()) { 4785 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4786 4787 ASSERT(ira->ira_tsl != NULL); 4788 /* Discard any old label */ 4789 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4790 ASSERT(ixa->ixa_tsl != NULL); 4791 label_rele(ixa->ixa_tsl); 4792 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4793 ixa->ixa_tsl = NULL; 4794 } 4795 if ((lconnp->conn_mlp_type != mlptSingle || 4796 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4797 ira->ira_tsl != NULL) { 4798 /* 4799 * If this is an MLP connection or a MAC-Exempt 4800 * connection with an unlabeled node, packets are to be 4801 * exchanged using the security label of the received 4802 * SYN packet instead of the server application's label. 4803 * tsol_check_dest called from ip_set_destination 4804 * might later update TSF_UNLABELED by replacing 4805 * ixa_tsl with a new label. 4806 */ 4807 label_hold(ira->ira_tsl); 4808 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4809 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4810 econnp, ts_label_t *, ixa->ixa_tsl) 4811 } else { 4812 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4813 DTRACE_PROBE2(syn_accept, conn_t *, 4814 econnp, ts_label_t *, ixa->ixa_tsl) 4815 } 4816 /* 4817 * conn_connect() called from tcp_set_destination will verify 4818 * the destination is allowed to receive packets at the 4819 * security label of the SYN-ACK we are generating. As part of 4820 * that, tsol_check_dest() may create a new effective label for 4821 * this connection. 4822 * Finally conn_connect() will call conn_update_label. 4823 * All that remains for TCP to do is to call 4824 * conn_build_hdr_template which is done as part of 4825 * tcp_set_destination. 4826 */ 4827 } 4828 4829 /* 4830 * Since we will clear tcp_listener before we clear tcp_detached 4831 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4832 * so we can tell a TCP_DETACHED_NONEAGER apart. 4833 */ 4834 eager->tcp_hard_binding = B_TRUE; 4835 4836 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4837 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4838 4839 CL_INET_CONNECT(econnp, B_FALSE, err); 4840 if (err != 0) { 4841 tcp_bind_hash_remove(eager); 4842 goto error3; 4843 } 4844 4845 /* 4846 * No need to check for multicast destination since ip will only pass 4847 * up multicasts to those that have expressed interest 4848 * TODO: what about rejecting broadcasts? 4849 * Also check that source is not a multicast or broadcast address. 4850 */ 4851 eager->tcp_state = TCPS_SYN_RCVD; 4852 SOCK_CONNID_BUMP(eager->tcp_connid); 4853 4854 /* 4855 * Adapt our mss, ttl, ... based on the remote address. 4856 */ 4857 4858 if (tcp_set_destination(eager) != 0) { 4859 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4860 /* Undo the bind_hash_insert */ 4861 tcp_bind_hash_remove(eager); 4862 goto error3; 4863 } 4864 4865 /* Process all TCP options. */ 4866 tcp_process_options(eager, tcpha); 4867 4868 /* Is the other end ECN capable? */ 4869 if (tcps->tcps_ecn_permitted >= 1 && 4870 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4871 eager->tcp_ecn_ok = B_TRUE; 4872 } 4873 4874 /* 4875 * The listener's conn_rcvbuf should be the default window size or a 4876 * window size changed via SO_RCVBUF option. First round up the 4877 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4878 * scale option value if needed. Call tcp_rwnd_set() to finish the 4879 * setting. 4880 * 4881 * Note if there is a rpipe metric associated with the remote host, 4882 * we should not inherit receive window size from listener. 4883 */ 4884 eager->tcp_rwnd = MSS_ROUNDUP( 4885 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4886 eager->tcp_rwnd), eager->tcp_mss); 4887 if (eager->tcp_snd_ws_ok) 4888 tcp_set_ws_value(eager); 4889 /* 4890 * Note that this is the only place tcp_rwnd_set() is called for 4891 * accepting a connection. We need to call it here instead of 4892 * after the 3-way handshake because we need to tell the other 4893 * side our rwnd in the SYN-ACK segment. 4894 */ 4895 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4896 4897 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4898 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4899 4900 ASSERT(econnp->conn_rcvbuf != 0 && 4901 econnp->conn_rcvbuf == eager->tcp_rwnd); 4902 4903 /* Put a ref on the listener for the eager. */ 4904 CONN_INC_REF(lconnp); 4905 mutex_enter(&listener->tcp_eager_lock); 4906 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4907 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4908 listener->tcp_eager_next_q0 = eager; 4909 eager->tcp_eager_prev_q0 = listener; 4910 4911 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4912 eager->tcp_listener = listener; 4913 eager->tcp_saved_listener = listener; 4914 4915 /* 4916 * Set tcp_listen_cnt so that when the connection is done, the counter 4917 * is decremented. 4918 */ 4919 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 4920 4921 /* 4922 * Tag this detached tcp vector for later retrieval 4923 * by our listener client in tcp_accept(). 4924 */ 4925 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4926 listener->tcp_conn_req_cnt_q0++; 4927 if (++listener->tcp_conn_req_seqnum == -1) { 4928 /* 4929 * -1 is "special" and defined in TPI as something 4930 * that should never be used in T_CONN_IND 4931 */ 4932 ++listener->tcp_conn_req_seqnum; 4933 } 4934 mutex_exit(&listener->tcp_eager_lock); 4935 4936 if (listener->tcp_syn_defense) { 4937 /* Don't drop the SYN that comes from a good IP source */ 4938 ipaddr_t *addr_cache; 4939 4940 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4941 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4942 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4943 eager->tcp_dontdrop = B_TRUE; 4944 } 4945 } 4946 4947 /* 4948 * We need to insert the eager in its own perimeter but as soon 4949 * as we do that, we expose the eager to the classifier and 4950 * should not touch any field outside the eager's perimeter. 4951 * So do all the work necessary before inserting the eager 4952 * in its own perimeter. Be optimistic that conn_connect() 4953 * will succeed but undo everything if it fails. 4954 */ 4955 seg_seq = ntohl(tcpha->tha_seq); 4956 eager->tcp_irs = seg_seq; 4957 eager->tcp_rack = seg_seq; 4958 eager->tcp_rnxt = seg_seq + 1; 4959 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4960 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4961 eager->tcp_state = TCPS_SYN_RCVD; 4962 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4963 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4964 if (mp1 == NULL) { 4965 /* 4966 * Increment the ref count as we are going to 4967 * enqueueing an mp in squeue 4968 */ 4969 CONN_INC_REF(econnp); 4970 goto error; 4971 } 4972 4973 /* 4974 * We need to start the rto timer. In normal case, we start 4975 * the timer after sending the packet on the wire (or at 4976 * least believing that packet was sent by waiting for 4977 * conn_ip_output() to return). Since this is the first packet 4978 * being sent on the wire for the eager, our initial tcp_rto 4979 * is at least tcp_rexmit_interval_min which is a fairly 4980 * large value to allow the algorithm to adjust slowly to large 4981 * fluctuations of RTT during first few transmissions. 4982 * 4983 * Starting the timer first and then sending the packet in this 4984 * case shouldn't make much difference since tcp_rexmit_interval_min 4985 * is of the order of several 100ms and starting the timer 4986 * first and then sending the packet will result in difference 4987 * of few micro seconds. 4988 * 4989 * Without this optimization, we are forced to hold the fanout 4990 * lock across the ipcl_bind_insert() and sending the packet 4991 * so that we don't race against an incoming packet (maybe RST) 4992 * for this eager. 4993 * 4994 * It is necessary to acquire an extra reference on the eager 4995 * at this point and hold it until after tcp_send_data() to 4996 * ensure against an eager close race. 4997 */ 4998 4999 CONN_INC_REF(econnp); 5000 5001 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5002 5003 /* 5004 * Insert the eager in its own perimeter now. We are ready to deal 5005 * with any packets on eager. 5006 */ 5007 if (ipcl_conn_insert(econnp) != 0) 5008 goto error; 5009 5010 /* 5011 * Send the SYN-ACK. Can't use tcp_send_data since we can't update 5012 * pmtu etc; we are not on the eager's squeue 5013 */ 5014 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 5015 (void) conn_ip_output(mp1, econnp->conn_ixa); 5016 CONN_DEC_REF(econnp); 5017 freemsg(mp); 5018 5019 return; 5020 error: 5021 freemsg(mp1); 5022 eager->tcp_closemp_used = B_TRUE; 5023 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5024 mp1 = &eager->tcp_closemp; 5025 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5026 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5027 5028 /* 5029 * If a connection already exists, send the mp to that connections so 5030 * that it can be appropriately dealt with. 5031 */ 5032 ipst = tcps->tcps_netstack->netstack_ip; 5033 5034 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 5035 if (!IPCL_IS_CONNECTED(econnp)) { 5036 /* 5037 * Something bad happened. ipcl_conn_insert() 5038 * failed because a connection already existed 5039 * in connected hash but we can't find it 5040 * anymore (someone blew it away). Just 5041 * free this message and hopefully remote 5042 * will retransmit at which time the SYN can be 5043 * treated as a new connection or dealth with 5044 * a TH_RST if a connection already exists. 5045 */ 5046 CONN_DEC_REF(econnp); 5047 freemsg(mp); 5048 } else { 5049 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 5050 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5051 } 5052 } else { 5053 /* Nobody wants this packet */ 5054 freemsg(mp); 5055 } 5056 return; 5057 error3: 5058 CONN_DEC_REF(econnp); 5059 error2: 5060 freemsg(mp); 5061 if (tlc_set) 5062 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 5063 } 5064 5065 /* 5066 * In an ideal case of vertical partition in NUMA architecture, its 5067 * beneficial to have the listener and all the incoming connections 5068 * tied to the same squeue. The other constraint is that incoming 5069 * connections should be tied to the squeue attached to interrupted 5070 * CPU for obvious locality reason so this leaves the listener to 5071 * be tied to the same squeue. Our only problem is that when listener 5072 * is binding, the CPU that will get interrupted by the NIC whose 5073 * IP address the listener is binding to is not even known. So 5074 * the code below allows us to change that binding at the time the 5075 * CPU is interrupted by virtue of incoming connection's squeue. 5076 * 5077 * This is usefull only in case of a listener bound to a specific IP 5078 * address. For other kind of listeners, they get bound the 5079 * very first time and there is no attempt to rebind them. 5080 */ 5081 void 5082 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 5083 ip_recv_attr_t *ira) 5084 { 5085 conn_t *connp = (conn_t *)arg; 5086 squeue_t *sqp = (squeue_t *)arg2; 5087 squeue_t *new_sqp; 5088 uint32_t conn_flags; 5089 5090 /* 5091 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 5092 * or based on the ring (for packets from GLD). Otherwise it is 5093 * set based on lbolt i.e., a somewhat random number. 5094 */ 5095 ASSERT(ira->ira_sqp != NULL); 5096 new_sqp = ira->ira_sqp; 5097 5098 if (connp->conn_fanout == NULL) 5099 goto done; 5100 5101 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5102 mutex_enter(&connp->conn_fanout->connf_lock); 5103 mutex_enter(&connp->conn_lock); 5104 /* 5105 * No one from read or write side can access us now 5106 * except for already queued packets on this squeue. 5107 * But since we haven't changed the squeue yet, they 5108 * can't execute. If they are processed after we have 5109 * changed the squeue, they are sent back to the 5110 * correct squeue down below. 5111 * But a listner close can race with processing of 5112 * incoming SYN. If incoming SYN processing changes 5113 * the squeue then the listener close which is waiting 5114 * to enter the squeue would operate on the wrong 5115 * squeue. Hence we don't change the squeue here unless 5116 * the refcount is exactly the minimum refcount. The 5117 * minimum refcount of 4 is counted as - 1 each for 5118 * TCP and IP, 1 for being in the classifier hash, and 5119 * 1 for the mblk being processed. 5120 */ 5121 5122 if (connp->conn_ref != 4 || 5123 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5124 mutex_exit(&connp->conn_lock); 5125 mutex_exit(&connp->conn_fanout->connf_lock); 5126 goto done; 5127 } 5128 if (connp->conn_sqp != new_sqp) { 5129 while (connp->conn_sqp != new_sqp) 5130 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5131 /* No special MT issues for outbound ixa_sqp hint */ 5132 connp->conn_ixa->ixa_sqp = new_sqp; 5133 } 5134 5135 do { 5136 conn_flags = connp->conn_flags; 5137 conn_flags |= IPCL_FULLY_BOUND; 5138 (void) cas32(&connp->conn_flags, connp->conn_flags, 5139 conn_flags); 5140 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5141 5142 mutex_exit(&connp->conn_fanout->connf_lock); 5143 mutex_exit(&connp->conn_lock); 5144 5145 /* 5146 * Assume we have picked a good squeue for the listener. Make 5147 * subsequent SYNs not try to change the squeue. 5148 */ 5149 connp->conn_recv = tcp_input_listener; 5150 } 5151 5152 done: 5153 if (connp->conn_sqp != sqp) { 5154 CONN_INC_REF(connp); 5155 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5156 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5157 } else { 5158 tcp_input_listener(connp, mp, sqp, ira); 5159 } 5160 } 5161 5162 /* 5163 * Successful connect request processing begins when our client passes 5164 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 5165 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 5166 * 5167 * After various error checks are completed, tcp_tpi_connect() lays 5168 * the target address and port into the composite header template. 5169 * Then we ask IP for information, including a source address if we didn't 5170 * already have one. Finally we prepare to send the SYN packet, and then 5171 * send up the T_OK_ACK reply message. 5172 */ 5173 static void 5174 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5175 { 5176 sin_t *sin; 5177 struct T_conn_req *tcr; 5178 struct sockaddr *sa; 5179 socklen_t len; 5180 int error; 5181 cred_t *cr; 5182 pid_t cpid; 5183 conn_t *connp = tcp->tcp_connp; 5184 queue_t *q = connp->conn_wq; 5185 5186 /* 5187 * All Solaris components should pass a db_credp 5188 * for this TPI message, hence we ASSERT. 5189 * But in case there is some other M_PROTO that looks 5190 * like a TPI message sent by some other kernel 5191 * component, we check and return an error. 5192 */ 5193 cr = msg_getcred(mp, &cpid); 5194 ASSERT(cr != NULL); 5195 if (cr == NULL) { 5196 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5197 return; 5198 } 5199 5200 tcr = (struct T_conn_req *)mp->b_rptr; 5201 5202 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5203 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5204 tcp_err_ack(tcp, mp, TPROTO, 0); 5205 return; 5206 } 5207 5208 /* 5209 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5210 * will always have that to send up. Otherwise, we need to do 5211 * special handling in case the allocation fails at that time. 5212 * If the end point is TPI, the tcp_t can be reused and the 5213 * tcp_ordrel_mp may be allocated already. 5214 */ 5215 if (tcp->tcp_ordrel_mp == NULL) { 5216 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5217 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5218 return; 5219 } 5220 } 5221 5222 /* 5223 * Determine packet type based on type of address passed in 5224 * the request should contain an IPv4 or IPv6 address. 5225 * Make sure that address family matches the type of 5226 * family of the address passed down. 5227 */ 5228 switch (tcr->DEST_length) { 5229 default: 5230 tcp_err_ack(tcp, mp, TBADADDR, 0); 5231 return; 5232 5233 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5234 /* 5235 * XXX: The check for valid DEST_length was not there 5236 * in earlier releases and some buggy 5237 * TLI apps (e.g Sybase) got away with not feeding 5238 * in sin_zero part of address. 5239 * We allow that bug to keep those buggy apps humming. 5240 * Test suites require the check on DEST_length. 5241 * We construct a new mblk with valid DEST_length 5242 * free the original so the rest of the code does 5243 * not have to keep track of this special shorter 5244 * length address case. 5245 */ 5246 mblk_t *nmp; 5247 struct T_conn_req *ntcr; 5248 sin_t *nsin; 5249 5250 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5251 tcr->OPT_length, BPRI_HI); 5252 if (nmp == NULL) { 5253 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5254 return; 5255 } 5256 ntcr = (struct T_conn_req *)nmp->b_rptr; 5257 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5258 ntcr->PRIM_type = T_CONN_REQ; 5259 ntcr->DEST_length = sizeof (sin_t); 5260 ntcr->DEST_offset = sizeof (struct T_conn_req); 5261 5262 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5263 *nsin = sin_null; 5264 /* Get pointer to shorter address to copy from original mp */ 5265 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5266 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5267 if (sin == NULL || !OK_32PTR((char *)sin)) { 5268 freemsg(nmp); 5269 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5270 return; 5271 } 5272 nsin->sin_family = sin->sin_family; 5273 nsin->sin_port = sin->sin_port; 5274 nsin->sin_addr = sin->sin_addr; 5275 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5276 nmp->b_wptr = (uchar_t *)&nsin[1]; 5277 if (tcr->OPT_length != 0) { 5278 ntcr->OPT_length = tcr->OPT_length; 5279 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5280 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5281 (uchar_t *)ntcr + ntcr->OPT_offset, 5282 tcr->OPT_length); 5283 nmp->b_wptr += tcr->OPT_length; 5284 } 5285 freemsg(mp); /* original mp freed */ 5286 mp = nmp; /* re-initialize original variables */ 5287 tcr = ntcr; 5288 } 5289 /* FALLTHRU */ 5290 5291 case sizeof (sin_t): 5292 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5293 sizeof (sin_t)); 5294 len = sizeof (sin_t); 5295 break; 5296 5297 case sizeof (sin6_t): 5298 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5299 sizeof (sin6_t)); 5300 len = sizeof (sin6_t); 5301 break; 5302 } 5303 5304 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5305 if (error != 0) { 5306 tcp_err_ack(tcp, mp, TSYSERR, error); 5307 return; 5308 } 5309 5310 /* 5311 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5312 * should key on their sequence number and cut them loose. 5313 */ 5314 5315 /* 5316 * If options passed in, feed it for verification and handling 5317 */ 5318 if (tcr->OPT_length != 0) { 5319 mblk_t *ok_mp; 5320 mblk_t *discon_mp; 5321 mblk_t *conn_opts_mp; 5322 int t_error, sys_error, do_disconnect; 5323 5324 conn_opts_mp = NULL; 5325 5326 if (tcp_conprim_opt_process(tcp, mp, 5327 &do_disconnect, &t_error, &sys_error) < 0) { 5328 if (do_disconnect) { 5329 ASSERT(t_error == 0 && sys_error == 0); 5330 discon_mp = mi_tpi_discon_ind(NULL, 5331 ECONNREFUSED, 0); 5332 if (!discon_mp) { 5333 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5334 TSYSERR, ENOMEM); 5335 return; 5336 } 5337 ok_mp = mi_tpi_ok_ack_alloc(mp); 5338 if (!ok_mp) { 5339 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5340 TSYSERR, ENOMEM); 5341 return; 5342 } 5343 qreply(q, ok_mp); 5344 qreply(q, discon_mp); /* no flush! */ 5345 } else { 5346 ASSERT(t_error != 0); 5347 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5348 sys_error); 5349 } 5350 return; 5351 } 5352 /* 5353 * Success in setting options, the mp option buffer represented 5354 * by OPT_length/offset has been potentially modified and 5355 * contains results of option processing. We copy it in 5356 * another mp to save it for potentially influencing returning 5357 * it in T_CONN_CONN. 5358 */ 5359 if (tcr->OPT_length != 0) { /* there are resulting options */ 5360 conn_opts_mp = copyb(mp); 5361 if (!conn_opts_mp) { 5362 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5363 TSYSERR, ENOMEM); 5364 return; 5365 } 5366 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5367 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5368 /* 5369 * Note: 5370 * These resulting option negotiation can include any 5371 * end-to-end negotiation options but there no such 5372 * thing (yet?) in our TCP/IP. 5373 */ 5374 } 5375 } 5376 5377 /* call the non-TPI version */ 5378 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5379 if (error < 0) { 5380 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5381 } else if (error > 0) { 5382 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5383 } else { 5384 mp = mi_tpi_ok_ack_alloc(mp); 5385 } 5386 5387 /* 5388 * Note: Code below is the "failure" case 5389 */ 5390 /* return error ack and blow away saved option results if any */ 5391 connect_failed: 5392 if (mp != NULL) 5393 putnext(connp->conn_rq, mp); 5394 else { 5395 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5396 TSYSERR, ENOMEM); 5397 } 5398 } 5399 5400 /* 5401 * Handle connect to IPv4 destinations, including connections for AF_INET6 5402 * sockets connecting to IPv4 mapped IPv6 destinations. 5403 * Returns zero if OK, a positive errno, or a negative TLI error. 5404 */ 5405 static int 5406 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5407 uint_t srcid) 5408 { 5409 ipaddr_t dstaddr = *dstaddrp; 5410 uint16_t lport; 5411 conn_t *connp = tcp->tcp_connp; 5412 tcp_stack_t *tcps = tcp->tcp_tcps; 5413 int error; 5414 5415 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5416 5417 /* Check for attempt to connect to INADDR_ANY */ 5418 if (dstaddr == INADDR_ANY) { 5419 /* 5420 * SunOS 4.x and 4.3 BSD allow an application 5421 * to connect a TCP socket to INADDR_ANY. 5422 * When they do this, the kernel picks the 5423 * address of one interface and uses it 5424 * instead. The kernel usually ends up 5425 * picking the address of the loopback 5426 * interface. This is an undocumented feature. 5427 * However, we provide the same thing here 5428 * in order to have source and binary 5429 * compatibility with SunOS 4.x. 5430 * Update the T_CONN_REQ (sin/sin6) since it is used to 5431 * generate the T_CONN_CON. 5432 */ 5433 dstaddr = htonl(INADDR_LOOPBACK); 5434 *dstaddrp = dstaddr; 5435 } 5436 5437 /* Handle __sin6_src_id if socket not bound to an IP address */ 5438 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5439 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5440 IPCL_ZONEID(connp), tcps->tcps_netstack); 5441 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5442 } 5443 5444 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5445 connp->conn_fport = dstport; 5446 5447 /* 5448 * At this point the remote destination address and remote port fields 5449 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5450 * have to see which state tcp was in so we can take appropriate action. 5451 */ 5452 if (tcp->tcp_state == TCPS_IDLE) { 5453 /* 5454 * We support a quick connect capability here, allowing 5455 * clients to transition directly from IDLE to SYN_SENT 5456 * tcp_bindi will pick an unused port, insert the connection 5457 * in the bind hash and transition to BOUND state. 5458 */ 5459 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5460 tcp, B_TRUE); 5461 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5462 B_FALSE, B_FALSE); 5463 if (lport == 0) 5464 return (-TNOADDR); 5465 } 5466 5467 /* 5468 * Lookup the route to determine a source address and the uinfo. 5469 * Setup TCP parameters based on the metrics/DCE. 5470 */ 5471 error = tcp_set_destination(tcp); 5472 if (error != 0) 5473 return (error); 5474 5475 /* 5476 * Don't let an endpoint connect to itself. 5477 */ 5478 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5479 connp->conn_fport == connp->conn_lport) 5480 return (-TBADADDR); 5481 5482 tcp->tcp_state = TCPS_SYN_SENT; 5483 5484 return (ipcl_conn_insert_v4(connp)); 5485 } 5486 5487 /* 5488 * Handle connect to IPv6 destinations. 5489 * Returns zero if OK, a positive errno, or a negative TLI error. 5490 */ 5491 static int 5492 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5493 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5494 { 5495 uint16_t lport; 5496 conn_t *connp = tcp->tcp_connp; 5497 tcp_stack_t *tcps = tcp->tcp_tcps; 5498 int error; 5499 5500 ASSERT(connp->conn_family == AF_INET6); 5501 5502 /* 5503 * If we're here, it means that the destination address is a native 5504 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5505 * reason why it might not be IPv6 is if the socket was bound to an 5506 * IPv4-mapped IPv6 address. 5507 */ 5508 if (connp->conn_ipversion != IPV6_VERSION) 5509 return (-TBADADDR); 5510 5511 /* 5512 * Interpret a zero destination to mean loopback. 5513 * Update the T_CONN_REQ (sin/sin6) since it is used to 5514 * generate the T_CONN_CON. 5515 */ 5516 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5517 *dstaddrp = ipv6_loopback; 5518 5519 /* Handle __sin6_src_id if socket not bound to an IP address */ 5520 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5521 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5522 IPCL_ZONEID(connp), tcps->tcps_netstack); 5523 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5524 } 5525 5526 /* 5527 * Take care of the scope_id now. 5528 */ 5529 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5530 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5531 connp->conn_ixa->ixa_scopeid = scope_id; 5532 } else { 5533 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5534 } 5535 5536 connp->conn_flowinfo = flowinfo; 5537 connp->conn_faddr_v6 = *dstaddrp; 5538 connp->conn_fport = dstport; 5539 5540 /* 5541 * At this point the remote destination address and remote port fields 5542 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5543 * have to see which state tcp was in so we can take appropriate action. 5544 */ 5545 if (tcp->tcp_state == TCPS_IDLE) { 5546 /* 5547 * We support a quick connect capability here, allowing 5548 * clients to transition directly from IDLE to SYN_SENT 5549 * tcp_bindi will pick an unused port, insert the connection 5550 * in the bind hash and transition to BOUND state. 5551 */ 5552 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5553 tcp, B_TRUE); 5554 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5555 B_FALSE, B_FALSE); 5556 if (lport == 0) 5557 return (-TNOADDR); 5558 } 5559 5560 /* 5561 * Lookup the route to determine a source address and the uinfo. 5562 * Setup TCP parameters based on the metrics/DCE. 5563 */ 5564 error = tcp_set_destination(tcp); 5565 if (error != 0) 5566 return (error); 5567 5568 /* 5569 * Don't let an endpoint connect to itself. 5570 */ 5571 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5572 connp->conn_fport == connp->conn_lport) 5573 return (-TBADADDR); 5574 5575 tcp->tcp_state = TCPS_SYN_SENT; 5576 5577 return (ipcl_conn_insert_v6(connp)); 5578 } 5579 5580 /* 5581 * Disconnect 5582 * Note that unlike other functions this returns a positive tli error 5583 * when it fails; it never returns an errno. 5584 */ 5585 static int 5586 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5587 { 5588 conn_t *lconnp; 5589 tcp_stack_t *tcps = tcp->tcp_tcps; 5590 conn_t *connp = tcp->tcp_connp; 5591 5592 /* 5593 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5594 * when the stream is in BOUND state. Do not send a reset, 5595 * since the destination IP address is not valid, and it can 5596 * be the initialized value of all zeros (broadcast address). 5597 */ 5598 if (tcp->tcp_state <= TCPS_BOUND) { 5599 if (connp->conn_debug) { 5600 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5601 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5602 } 5603 return (TOUTSTATE); 5604 } 5605 5606 5607 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5608 5609 /* 5610 * According to TPI, for non-listeners, ignore seqnum 5611 * and disconnect. 5612 * Following interpretation of -1 seqnum is historical 5613 * and implied TPI ? (TPI only states that for T_CONN_IND, 5614 * a valid seqnum should not be -1). 5615 * 5616 * -1 means disconnect everything 5617 * regardless even on a listener. 5618 */ 5619 5620 int old_state = tcp->tcp_state; 5621 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5622 5623 /* 5624 * The connection can't be on the tcp_time_wait_head list 5625 * since it is not detached. 5626 */ 5627 ASSERT(tcp->tcp_time_wait_next == NULL); 5628 ASSERT(tcp->tcp_time_wait_prev == NULL); 5629 ASSERT(tcp->tcp_time_wait_expire == 0); 5630 /* 5631 * If it used to be a listener, check to make sure no one else 5632 * has taken the port before switching back to LISTEN state. 5633 */ 5634 if (connp->conn_ipversion == IPV4_VERSION) { 5635 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5636 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5637 } else { 5638 uint_t ifindex = 0; 5639 5640 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5641 ifindex = connp->conn_ixa->ixa_scopeid; 5642 5643 /* Allow conn_bound_if listeners? */ 5644 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5645 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5646 ipst); 5647 } 5648 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5649 tcp->tcp_state = TCPS_LISTEN; 5650 } else if (old_state > TCPS_BOUND) { 5651 tcp->tcp_conn_req_max = 0; 5652 tcp->tcp_state = TCPS_BOUND; 5653 5654 /* 5655 * If this end point is not going to become a listener, 5656 * decrement the listener connection count if 5657 * necessary. Note that we do not do this if it is 5658 * going to be a listner (the above if case) since 5659 * then it may remove the counter struct. 5660 */ 5661 if (tcp->tcp_listen_cnt != NULL) 5662 TCP_DECR_LISTEN_CNT(tcp); 5663 } 5664 if (lconnp != NULL) 5665 CONN_DEC_REF(lconnp); 5666 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5667 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5668 } else if (old_state == TCPS_ESTABLISHED || 5669 old_state == TCPS_CLOSE_WAIT) { 5670 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5671 } 5672 5673 if (tcp->tcp_fused) 5674 tcp_unfuse(tcp); 5675 5676 mutex_enter(&tcp->tcp_eager_lock); 5677 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5678 (tcp->tcp_conn_req_cnt_q != 0)) { 5679 tcp_eager_cleanup(tcp, 0); 5680 } 5681 mutex_exit(&tcp->tcp_eager_lock); 5682 5683 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5684 tcp->tcp_rnxt, TH_RST | TH_ACK); 5685 5686 tcp_reinit(tcp); 5687 5688 return (0); 5689 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5690 return (TBADSEQ); 5691 } 5692 return (0); 5693 } 5694 5695 /* 5696 * Our client hereby directs us to reject the connection request 5697 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5698 * of sending the appropriate RST, not an ICMP error. 5699 */ 5700 static void 5701 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5702 { 5703 t_scalar_t seqnum; 5704 int error; 5705 conn_t *connp = tcp->tcp_connp; 5706 5707 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5708 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5709 tcp_err_ack(tcp, mp, TPROTO, 0); 5710 return; 5711 } 5712 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5713 error = tcp_disconnect_common(tcp, seqnum); 5714 if (error != 0) 5715 tcp_err_ack(tcp, mp, error, 0); 5716 else { 5717 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5718 /* Send M_FLUSH according to TPI */ 5719 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5720 } 5721 mp = mi_tpi_ok_ack_alloc(mp); 5722 if (mp != NULL) 5723 putnext(connp->conn_rq, mp); 5724 } 5725 } 5726 5727 /* 5728 * Diagnostic routine used to return a string associated with the tcp state. 5729 * Note that if the caller does not supply a buffer, it will use an internal 5730 * static string. This means that if multiple threads call this function at 5731 * the same time, output can be corrupted... Note also that this function 5732 * does not check the size of the supplied buffer. The caller has to make 5733 * sure that it is big enough. 5734 */ 5735 static char * 5736 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5737 { 5738 char buf1[30]; 5739 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5740 char *buf; 5741 char *cp; 5742 in6_addr_t local, remote; 5743 char local_addrbuf[INET6_ADDRSTRLEN]; 5744 char remote_addrbuf[INET6_ADDRSTRLEN]; 5745 conn_t *connp; 5746 5747 if (sup_buf != NULL) 5748 buf = sup_buf; 5749 else 5750 buf = priv_buf; 5751 5752 if (tcp == NULL) 5753 return ("NULL_TCP"); 5754 5755 connp = tcp->tcp_connp; 5756 switch (tcp->tcp_state) { 5757 case TCPS_CLOSED: 5758 cp = "TCP_CLOSED"; 5759 break; 5760 case TCPS_IDLE: 5761 cp = "TCP_IDLE"; 5762 break; 5763 case TCPS_BOUND: 5764 cp = "TCP_BOUND"; 5765 break; 5766 case TCPS_LISTEN: 5767 cp = "TCP_LISTEN"; 5768 break; 5769 case TCPS_SYN_SENT: 5770 cp = "TCP_SYN_SENT"; 5771 break; 5772 case TCPS_SYN_RCVD: 5773 cp = "TCP_SYN_RCVD"; 5774 break; 5775 case TCPS_ESTABLISHED: 5776 cp = "TCP_ESTABLISHED"; 5777 break; 5778 case TCPS_CLOSE_WAIT: 5779 cp = "TCP_CLOSE_WAIT"; 5780 break; 5781 case TCPS_FIN_WAIT_1: 5782 cp = "TCP_FIN_WAIT_1"; 5783 break; 5784 case TCPS_CLOSING: 5785 cp = "TCP_CLOSING"; 5786 break; 5787 case TCPS_LAST_ACK: 5788 cp = "TCP_LAST_ACK"; 5789 break; 5790 case TCPS_FIN_WAIT_2: 5791 cp = "TCP_FIN_WAIT_2"; 5792 break; 5793 case TCPS_TIME_WAIT: 5794 cp = "TCP_TIME_WAIT"; 5795 break; 5796 default: 5797 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5798 cp = buf1; 5799 break; 5800 } 5801 switch (format) { 5802 case DISP_ADDR_AND_PORT: 5803 if (connp->conn_ipversion == IPV4_VERSION) { 5804 /* 5805 * Note that we use the remote address in the tcp_b 5806 * structure. This means that it will print out 5807 * the real destination address, not the next hop's 5808 * address if source routing is used. 5809 */ 5810 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5811 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5812 5813 } else { 5814 local = connp->conn_laddr_v6; 5815 remote = connp->conn_faddr_v6; 5816 } 5817 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5818 sizeof (local_addrbuf)); 5819 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5820 sizeof (remote_addrbuf)); 5821 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5822 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5823 ntohs(connp->conn_fport), cp); 5824 break; 5825 case DISP_PORT_ONLY: 5826 default: 5827 (void) mi_sprintf(buf, "[%u, %u] %s", 5828 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5829 break; 5830 } 5831 5832 return (buf); 5833 } 5834 5835 /* 5836 * Called via squeue to get on to eager's perimeter. It sends a 5837 * TH_RST if eager is in the fanout table. The listener wants the 5838 * eager to disappear either by means of tcp_eager_blowoff() or 5839 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5840 * called (via squeue) if the eager cannot be inserted in the 5841 * fanout table in tcp_input_listener(). 5842 */ 5843 /* ARGSUSED */ 5844 void 5845 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5846 { 5847 conn_t *econnp = (conn_t *)arg; 5848 tcp_t *eager = econnp->conn_tcp; 5849 tcp_t *listener = eager->tcp_listener; 5850 5851 /* 5852 * We could be called because listener is closing. Since 5853 * the eager was using listener's queue's, we avoid 5854 * using the listeners queues from now on. 5855 */ 5856 ASSERT(eager->tcp_detached); 5857 econnp->conn_rq = NULL; 5858 econnp->conn_wq = NULL; 5859 5860 /* 5861 * An eager's conn_fanout will be NULL if it's a duplicate 5862 * for an existing 4-tuples in the conn fanout table. 5863 * We don't want to send an RST out in such case. 5864 */ 5865 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5866 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5867 eager, eager->tcp_snxt, 0, TH_RST); 5868 } 5869 5870 /* We are here because listener wants this eager gone */ 5871 if (listener != NULL) { 5872 mutex_enter(&listener->tcp_eager_lock); 5873 tcp_eager_unlink(eager); 5874 if (eager->tcp_tconnind_started) { 5875 /* 5876 * The eager has sent a conn_ind up to the 5877 * listener but listener decides to close 5878 * instead. We need to drop the extra ref 5879 * placed on eager in tcp_input_data() before 5880 * sending the conn_ind to listener. 5881 */ 5882 CONN_DEC_REF(econnp); 5883 } 5884 mutex_exit(&listener->tcp_eager_lock); 5885 CONN_DEC_REF(listener->tcp_connp); 5886 } 5887 5888 if (eager->tcp_state != TCPS_CLOSED) 5889 tcp_close_detached(eager); 5890 } 5891 5892 /* 5893 * Reset any eager connection hanging off this listener marked 5894 * with 'seqnum' and then reclaim it's resources. 5895 */ 5896 static boolean_t 5897 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5898 { 5899 tcp_t *eager; 5900 mblk_t *mp; 5901 tcp_stack_t *tcps = listener->tcp_tcps; 5902 5903 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5904 eager = listener; 5905 mutex_enter(&listener->tcp_eager_lock); 5906 do { 5907 eager = eager->tcp_eager_next_q; 5908 if (eager == NULL) { 5909 mutex_exit(&listener->tcp_eager_lock); 5910 return (B_FALSE); 5911 } 5912 } while (eager->tcp_conn_req_seqnum != seqnum); 5913 5914 if (eager->tcp_closemp_used) { 5915 mutex_exit(&listener->tcp_eager_lock); 5916 return (B_TRUE); 5917 } 5918 eager->tcp_closemp_used = B_TRUE; 5919 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5920 CONN_INC_REF(eager->tcp_connp); 5921 mutex_exit(&listener->tcp_eager_lock); 5922 mp = &eager->tcp_closemp; 5923 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5924 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5925 return (B_TRUE); 5926 } 5927 5928 /* 5929 * Reset any eager connection hanging off this listener 5930 * and then reclaim it's resources. 5931 */ 5932 static void 5933 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5934 { 5935 tcp_t *eager; 5936 mblk_t *mp; 5937 tcp_stack_t *tcps = listener->tcp_tcps; 5938 5939 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5940 5941 if (!q0_only) { 5942 /* First cleanup q */ 5943 TCP_STAT(tcps, tcp_eager_blowoff_q); 5944 eager = listener->tcp_eager_next_q; 5945 while (eager != NULL) { 5946 if (!eager->tcp_closemp_used) { 5947 eager->tcp_closemp_used = B_TRUE; 5948 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5949 CONN_INC_REF(eager->tcp_connp); 5950 mp = &eager->tcp_closemp; 5951 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5952 tcp_eager_kill, eager->tcp_connp, NULL, 5953 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5954 } 5955 eager = eager->tcp_eager_next_q; 5956 } 5957 } 5958 /* Then cleanup q0 */ 5959 TCP_STAT(tcps, tcp_eager_blowoff_q0); 5960 eager = listener->tcp_eager_next_q0; 5961 while (eager != listener) { 5962 if (!eager->tcp_closemp_used) { 5963 eager->tcp_closemp_used = B_TRUE; 5964 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5965 CONN_INC_REF(eager->tcp_connp); 5966 mp = &eager->tcp_closemp; 5967 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5968 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 5969 SQTAG_TCP_EAGER_CLEANUP_Q0); 5970 } 5971 eager = eager->tcp_eager_next_q0; 5972 } 5973 } 5974 5975 /* 5976 * If we are an eager connection hanging off a listener that hasn't 5977 * formally accepted the connection yet, get off his list and blow off 5978 * any data that we have accumulated. 5979 */ 5980 static void 5981 tcp_eager_unlink(tcp_t *tcp) 5982 { 5983 tcp_t *listener = tcp->tcp_listener; 5984 5985 ASSERT(listener != NULL); 5986 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5987 if (tcp->tcp_eager_next_q0 != NULL) { 5988 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 5989 5990 /* Remove the eager tcp from q0 */ 5991 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 5992 tcp->tcp_eager_prev_q0; 5993 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 5994 tcp->tcp_eager_next_q0; 5995 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 5996 listener->tcp_conn_req_cnt_q0--; 5997 5998 tcp->tcp_eager_next_q0 = NULL; 5999 tcp->tcp_eager_prev_q0 = NULL; 6000 6001 /* 6002 * Take the eager out, if it is in the list of droppable 6003 * eagers. 6004 */ 6005 MAKE_UNDROPPABLE(tcp); 6006 6007 if (tcp->tcp_syn_rcvd_timeout != 0) { 6008 /* we have timed out before */ 6009 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6010 listener->tcp_syn_rcvd_timeout--; 6011 } 6012 } else { 6013 tcp_t **tcpp = &listener->tcp_eager_next_q; 6014 tcp_t *prev = NULL; 6015 6016 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6017 if (tcpp[0] == tcp) { 6018 if (listener->tcp_eager_last_q == tcp) { 6019 /* 6020 * If we are unlinking the last 6021 * element on the list, adjust 6022 * tail pointer. Set tail pointer 6023 * to nil when list is empty. 6024 */ 6025 ASSERT(tcp->tcp_eager_next_q == NULL); 6026 if (listener->tcp_eager_last_q == 6027 listener->tcp_eager_next_q) { 6028 listener->tcp_eager_last_q = 6029 NULL; 6030 } else { 6031 /* 6032 * We won't get here if there 6033 * is only one eager in the 6034 * list. 6035 */ 6036 ASSERT(prev != NULL); 6037 listener->tcp_eager_last_q = 6038 prev; 6039 } 6040 } 6041 tcpp[0] = tcp->tcp_eager_next_q; 6042 tcp->tcp_eager_next_q = NULL; 6043 tcp->tcp_eager_last_q = NULL; 6044 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6045 listener->tcp_conn_req_cnt_q--; 6046 break; 6047 } 6048 prev = tcpp[0]; 6049 } 6050 } 6051 tcp->tcp_listener = NULL; 6052 } 6053 6054 /* Shorthand to generate and send TPI error acks to our client */ 6055 static void 6056 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6057 { 6058 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6059 putnext(tcp->tcp_connp->conn_rq, mp); 6060 } 6061 6062 /* Shorthand to generate and send TPI error acks to our client */ 6063 static void 6064 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6065 int t_error, int sys_error) 6066 { 6067 struct T_error_ack *teackp; 6068 6069 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6070 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6071 teackp = (struct T_error_ack *)mp->b_rptr; 6072 teackp->ERROR_prim = primitive; 6073 teackp->TLI_error = t_error; 6074 teackp->UNIX_error = sys_error; 6075 putnext(tcp->tcp_connp->conn_rq, mp); 6076 } 6077 } 6078 6079 /* 6080 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6081 * but instead the code relies on: 6082 * - the fact that the address of the array and its size never changes 6083 * - the atomic assignment of the elements of the array 6084 */ 6085 /* ARGSUSED */ 6086 static int 6087 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6088 { 6089 int i; 6090 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6091 6092 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6093 if (tcps->tcps_g_epriv_ports[i] != 0) 6094 (void) mi_mpprintf(mp, "%d ", 6095 tcps->tcps_g_epriv_ports[i]); 6096 } 6097 return (0); 6098 } 6099 6100 /* 6101 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6102 * threads from changing it at the same time. 6103 */ 6104 /* ARGSUSED */ 6105 static int 6106 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6107 cred_t *cr) 6108 { 6109 long new_value; 6110 int i; 6111 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6112 6113 /* 6114 * Fail the request if the new value does not lie within the 6115 * port number limits. 6116 */ 6117 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6118 new_value <= 0 || new_value >= 65536) { 6119 return (EINVAL); 6120 } 6121 6122 mutex_enter(&tcps->tcps_epriv_port_lock); 6123 /* Check if the value is already in the list */ 6124 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6125 if (new_value == tcps->tcps_g_epriv_ports[i]) { 6126 mutex_exit(&tcps->tcps_epriv_port_lock); 6127 return (EEXIST); 6128 } 6129 } 6130 /* Find an empty slot */ 6131 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6132 if (tcps->tcps_g_epriv_ports[i] == 0) 6133 break; 6134 } 6135 if (i == tcps->tcps_g_num_epriv_ports) { 6136 mutex_exit(&tcps->tcps_epriv_port_lock); 6137 return (EOVERFLOW); 6138 } 6139 /* Set the new value */ 6140 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 6141 mutex_exit(&tcps->tcps_epriv_port_lock); 6142 return (0); 6143 } 6144 6145 /* 6146 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6147 * threads from changing it at the same time. 6148 */ 6149 /* ARGSUSED */ 6150 static int 6151 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6152 cred_t *cr) 6153 { 6154 long new_value; 6155 int i; 6156 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6157 6158 /* 6159 * Fail the request if the new value does not lie within the 6160 * port number limits. 6161 */ 6162 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6163 new_value >= 65536) { 6164 return (EINVAL); 6165 } 6166 6167 mutex_enter(&tcps->tcps_epriv_port_lock); 6168 /* Check that the value is already in the list */ 6169 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6170 if (tcps->tcps_g_epriv_ports[i] == new_value) 6171 break; 6172 } 6173 if (i == tcps->tcps_g_num_epriv_ports) { 6174 mutex_exit(&tcps->tcps_epriv_port_lock); 6175 return (ESRCH); 6176 } 6177 /* Clear the value */ 6178 tcps->tcps_g_epriv_ports[i] = 0; 6179 mutex_exit(&tcps->tcps_epriv_port_lock); 6180 return (0); 6181 } 6182 6183 /* Return the TPI/TLI equivalent of our current tcp_state */ 6184 static int 6185 tcp_tpistate(tcp_t *tcp) 6186 { 6187 switch (tcp->tcp_state) { 6188 case TCPS_IDLE: 6189 return (TS_UNBND); 6190 case TCPS_LISTEN: 6191 /* 6192 * Return whether there are outstanding T_CONN_IND waiting 6193 * for the matching T_CONN_RES. Therefore don't count q0. 6194 */ 6195 if (tcp->tcp_conn_req_cnt_q > 0) 6196 return (TS_WRES_CIND); 6197 else 6198 return (TS_IDLE); 6199 case TCPS_BOUND: 6200 return (TS_IDLE); 6201 case TCPS_SYN_SENT: 6202 return (TS_WCON_CREQ); 6203 case TCPS_SYN_RCVD: 6204 /* 6205 * Note: assumption: this has to the active open SYN_RCVD. 6206 * The passive instance is detached in SYN_RCVD stage of 6207 * incoming connection processing so we cannot get request 6208 * for T_info_ack on it. 6209 */ 6210 return (TS_WACK_CRES); 6211 case TCPS_ESTABLISHED: 6212 return (TS_DATA_XFER); 6213 case TCPS_CLOSE_WAIT: 6214 return (TS_WREQ_ORDREL); 6215 case TCPS_FIN_WAIT_1: 6216 return (TS_WIND_ORDREL); 6217 case TCPS_FIN_WAIT_2: 6218 return (TS_WIND_ORDREL); 6219 6220 case TCPS_CLOSING: 6221 case TCPS_LAST_ACK: 6222 case TCPS_TIME_WAIT: 6223 case TCPS_CLOSED: 6224 /* 6225 * Following TS_WACK_DREQ7 is a rendition of "not 6226 * yet TS_IDLE" TPI state. There is no best match to any 6227 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6228 * choose a value chosen that will map to TLI/XTI level 6229 * state of TSTATECHNG (state is process of changing) which 6230 * captures what this dummy state represents. 6231 */ 6232 return (TS_WACK_DREQ7); 6233 default: 6234 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6235 tcp->tcp_state, tcp_display(tcp, NULL, 6236 DISP_PORT_ONLY)); 6237 return (TS_UNBND); 6238 } 6239 } 6240 6241 static void 6242 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6243 { 6244 tcp_stack_t *tcps = tcp->tcp_tcps; 6245 conn_t *connp = tcp->tcp_connp; 6246 6247 if (connp->conn_family == AF_INET6) 6248 *tia = tcp_g_t_info_ack_v6; 6249 else 6250 *tia = tcp_g_t_info_ack; 6251 tia->CURRENT_state = tcp_tpistate(tcp); 6252 tia->OPT_size = tcp_max_optsize; 6253 if (tcp->tcp_mss == 0) { 6254 /* Not yet set - tcp_open does not set mss */ 6255 if (connp->conn_ipversion == IPV4_VERSION) 6256 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6257 else 6258 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6259 } else { 6260 tia->TIDU_size = tcp->tcp_mss; 6261 } 6262 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6263 } 6264 6265 static void 6266 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6267 t_uscalar_t cap_bits1) 6268 { 6269 tcap->CAP_bits1 = 0; 6270 6271 if (cap_bits1 & TC1_INFO) { 6272 tcp_copy_info(&tcap->INFO_ack, tcp); 6273 tcap->CAP_bits1 |= TC1_INFO; 6274 } 6275 6276 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6277 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6278 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6279 } 6280 6281 } 6282 6283 /* 6284 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6285 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6286 * tcp_g_t_info_ack. The current state of the stream is copied from 6287 * tcp_state. 6288 */ 6289 static void 6290 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6291 { 6292 t_uscalar_t cap_bits1; 6293 struct T_capability_ack *tcap; 6294 6295 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6296 freemsg(mp); 6297 return; 6298 } 6299 6300 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6301 6302 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6303 mp->b_datap->db_type, T_CAPABILITY_ACK); 6304 if (mp == NULL) 6305 return; 6306 6307 tcap = (struct T_capability_ack *)mp->b_rptr; 6308 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6309 6310 putnext(tcp->tcp_connp->conn_rq, mp); 6311 } 6312 6313 /* 6314 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6315 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6316 * The current state of the stream is copied from tcp_state. 6317 */ 6318 static void 6319 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6320 { 6321 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6322 T_INFO_ACK); 6323 if (!mp) { 6324 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6325 return; 6326 } 6327 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6328 putnext(tcp->tcp_connp->conn_rq, mp); 6329 } 6330 6331 /* Respond to the TPI addr request */ 6332 static void 6333 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6334 { 6335 struct sockaddr *sa; 6336 mblk_t *ackmp; 6337 struct T_addr_ack *taa; 6338 conn_t *connp = tcp->tcp_connp; 6339 uint_t addrlen; 6340 6341 /* Make it large enough for worst case */ 6342 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6343 2 * sizeof (sin6_t), 1); 6344 if (ackmp == NULL) { 6345 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6346 return; 6347 } 6348 6349 taa = (struct T_addr_ack *)ackmp->b_rptr; 6350 6351 bzero(taa, sizeof (struct T_addr_ack)); 6352 ackmp->b_wptr = (uchar_t *)&taa[1]; 6353 6354 taa->PRIM_type = T_ADDR_ACK; 6355 ackmp->b_datap->db_type = M_PCPROTO; 6356 6357 if (connp->conn_family == AF_INET) 6358 addrlen = sizeof (sin_t); 6359 else 6360 addrlen = sizeof (sin6_t); 6361 6362 /* 6363 * Note: Following code assumes 32 bit alignment of basic 6364 * data structures like sin_t and struct T_addr_ack. 6365 */ 6366 if (tcp->tcp_state >= TCPS_BOUND) { 6367 /* 6368 * Fill in local address first 6369 */ 6370 taa->LOCADDR_offset = sizeof (*taa); 6371 taa->LOCADDR_length = addrlen; 6372 sa = (struct sockaddr *)&taa[1]; 6373 (void) conn_getsockname(connp, sa, &addrlen); 6374 ackmp->b_wptr += addrlen; 6375 } 6376 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6377 /* 6378 * Fill in Remote address 6379 */ 6380 taa->REMADDR_length = addrlen; 6381 /* assumed 32-bit alignment */ 6382 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6383 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6384 (void) conn_getpeername(connp, sa, &addrlen); 6385 ackmp->b_wptr += addrlen; 6386 } 6387 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6388 putnext(tcp->tcp_connp->conn_rq, ackmp); 6389 } 6390 6391 /* 6392 * Handle reinitialization of a tcp structure. 6393 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6394 */ 6395 static void 6396 tcp_reinit(tcp_t *tcp) 6397 { 6398 mblk_t *mp; 6399 tcp_stack_t *tcps = tcp->tcp_tcps; 6400 conn_t *connp = tcp->tcp_connp; 6401 6402 TCP_STAT(tcps, tcp_reinit_calls); 6403 6404 /* tcp_reinit should never be called for detached tcp_t's */ 6405 ASSERT(tcp->tcp_listener == NULL); 6406 ASSERT((connp->conn_family == AF_INET && 6407 connp->conn_ipversion == IPV4_VERSION) || 6408 (connp->conn_family == AF_INET6 && 6409 (connp->conn_ipversion == IPV4_VERSION || 6410 connp->conn_ipversion == IPV6_VERSION))); 6411 6412 /* Cancel outstanding timers */ 6413 tcp_timers_stop(tcp); 6414 6415 /* 6416 * Reset everything in the state vector, after updating global 6417 * MIB data from instance counters. 6418 */ 6419 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6420 tcp->tcp_ibsegs = 0; 6421 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6422 tcp->tcp_obsegs = 0; 6423 6424 tcp_close_mpp(&tcp->tcp_xmit_head); 6425 if (tcp->tcp_snd_zcopy_aware) 6426 tcp_zcopy_notify(tcp); 6427 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6428 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6429 mutex_enter(&tcp->tcp_non_sq_lock); 6430 if (tcp->tcp_flow_stopped && 6431 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6432 tcp_clrqfull(tcp); 6433 } 6434 mutex_exit(&tcp->tcp_non_sq_lock); 6435 tcp_close_mpp(&tcp->tcp_reass_head); 6436 tcp->tcp_reass_tail = NULL; 6437 if (tcp->tcp_rcv_list != NULL) { 6438 /* Free b_next chain */ 6439 tcp_close_mpp(&tcp->tcp_rcv_list); 6440 tcp->tcp_rcv_last_head = NULL; 6441 tcp->tcp_rcv_last_tail = NULL; 6442 tcp->tcp_rcv_cnt = 0; 6443 } 6444 tcp->tcp_rcv_last_tail = NULL; 6445 6446 if ((mp = tcp->tcp_urp_mp) != NULL) { 6447 freemsg(mp); 6448 tcp->tcp_urp_mp = NULL; 6449 } 6450 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6451 freemsg(mp); 6452 tcp->tcp_urp_mark_mp = NULL; 6453 } 6454 if (tcp->tcp_fused_sigurg_mp != NULL) { 6455 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6456 freeb(tcp->tcp_fused_sigurg_mp); 6457 tcp->tcp_fused_sigurg_mp = NULL; 6458 } 6459 if (tcp->tcp_ordrel_mp != NULL) { 6460 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6461 freeb(tcp->tcp_ordrel_mp); 6462 tcp->tcp_ordrel_mp = NULL; 6463 } 6464 6465 /* 6466 * Following is a union with two members which are 6467 * identical types and size so the following cleanup 6468 * is enough. 6469 */ 6470 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6471 6472 CL_INET_DISCONNECT(connp); 6473 6474 /* 6475 * The connection can't be on the tcp_time_wait_head list 6476 * since it is not detached. 6477 */ 6478 ASSERT(tcp->tcp_time_wait_next == NULL); 6479 ASSERT(tcp->tcp_time_wait_prev == NULL); 6480 ASSERT(tcp->tcp_time_wait_expire == 0); 6481 6482 if (tcp->tcp_kssl_pending) { 6483 tcp->tcp_kssl_pending = B_FALSE; 6484 6485 /* Don't reset if the initialized by bind. */ 6486 if (tcp->tcp_kssl_ent != NULL) { 6487 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6488 KSSL_NO_PROXY); 6489 } 6490 } 6491 if (tcp->tcp_kssl_ctx != NULL) { 6492 kssl_release_ctx(tcp->tcp_kssl_ctx); 6493 tcp->tcp_kssl_ctx = NULL; 6494 } 6495 6496 /* 6497 * Reset/preserve other values 6498 */ 6499 tcp_reinit_values(tcp); 6500 ipcl_hash_remove(connp); 6501 ixa_cleanup(connp->conn_ixa); 6502 tcp_ipsec_cleanup(tcp); 6503 6504 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6505 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6506 6507 if (tcp->tcp_conn_req_max != 0) { 6508 /* 6509 * This is the case when a TLI program uses the same 6510 * transport end point to accept a connection. This 6511 * makes the TCP both a listener and acceptor. When 6512 * this connection is closed, we need to set the state 6513 * back to TCPS_LISTEN. Make sure that the eager list 6514 * is reinitialized. 6515 * 6516 * Note that this stream is still bound to the four 6517 * tuples of the previous connection in IP. If a new 6518 * SYN with different foreign address comes in, IP will 6519 * not find it and will send it to the global queue. In 6520 * the global queue, TCP will do a tcp_lookup_listener() 6521 * to find this stream. This works because this stream 6522 * is only removed from connected hash. 6523 * 6524 */ 6525 tcp->tcp_state = TCPS_LISTEN; 6526 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6527 tcp->tcp_eager_next_drop_q0 = tcp; 6528 tcp->tcp_eager_prev_drop_q0 = tcp; 6529 /* 6530 * Initially set conn_recv to tcp_input_listener_unbound to try 6531 * to pick a good squeue for the listener when the first SYN 6532 * arrives. tcp_input_listener_unbound sets it to 6533 * tcp_input_listener on that first SYN. 6534 */ 6535 connp->conn_recv = tcp_input_listener_unbound; 6536 6537 connp->conn_proto = IPPROTO_TCP; 6538 connp->conn_faddr_v6 = ipv6_all_zeros; 6539 connp->conn_fport = 0; 6540 6541 (void) ipcl_bind_insert(connp); 6542 } else { 6543 tcp->tcp_state = TCPS_BOUND; 6544 } 6545 6546 /* 6547 * Initialize to default values 6548 */ 6549 tcp_init_values(tcp); 6550 6551 ASSERT(tcp->tcp_ptpbhn != NULL); 6552 tcp->tcp_rwnd = connp->conn_rcvbuf; 6553 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6554 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6555 } 6556 6557 /* 6558 * Force values to zero that need be zero. 6559 * Do not touch values asociated with the BOUND or LISTEN state 6560 * since the connection will end up in that state after the reinit. 6561 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6562 * structure! 6563 */ 6564 static void 6565 tcp_reinit_values(tcp) 6566 tcp_t *tcp; 6567 { 6568 tcp_stack_t *tcps = tcp->tcp_tcps; 6569 conn_t *connp = tcp->tcp_connp; 6570 6571 #ifndef lint 6572 #define DONTCARE(x) 6573 #define PRESERVE(x) 6574 #else 6575 #define DONTCARE(x) ((x) = (x)) 6576 #define PRESERVE(x) ((x) = (x)) 6577 #endif /* lint */ 6578 6579 PRESERVE(tcp->tcp_bind_hash_port); 6580 PRESERVE(tcp->tcp_bind_hash); 6581 PRESERVE(tcp->tcp_ptpbhn); 6582 PRESERVE(tcp->tcp_acceptor_hash); 6583 PRESERVE(tcp->tcp_ptpahn); 6584 6585 /* Should be ASSERT NULL on these with new code! */ 6586 ASSERT(tcp->tcp_time_wait_next == NULL); 6587 ASSERT(tcp->tcp_time_wait_prev == NULL); 6588 ASSERT(tcp->tcp_time_wait_expire == 0); 6589 PRESERVE(tcp->tcp_state); 6590 PRESERVE(connp->conn_rq); 6591 PRESERVE(connp->conn_wq); 6592 6593 ASSERT(tcp->tcp_xmit_head == NULL); 6594 ASSERT(tcp->tcp_xmit_last == NULL); 6595 ASSERT(tcp->tcp_unsent == 0); 6596 ASSERT(tcp->tcp_xmit_tail == NULL); 6597 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6598 6599 tcp->tcp_snxt = 0; /* Displayed in mib */ 6600 tcp->tcp_suna = 0; /* Displayed in mib */ 6601 tcp->tcp_swnd = 0; 6602 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6603 6604 ASSERT(tcp->tcp_ibsegs == 0); 6605 ASSERT(tcp->tcp_obsegs == 0); 6606 6607 if (connp->conn_ht_iphc != NULL) { 6608 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6609 connp->conn_ht_iphc = NULL; 6610 connp->conn_ht_iphc_allocated = 0; 6611 connp->conn_ht_iphc_len = 0; 6612 connp->conn_ht_ulp = NULL; 6613 connp->conn_ht_ulp_len = 0; 6614 tcp->tcp_ipha = NULL; 6615 tcp->tcp_ip6h = NULL; 6616 tcp->tcp_tcpha = NULL; 6617 } 6618 6619 /* We clear any IP_OPTIONS and extension headers */ 6620 ip_pkt_free(&connp->conn_xmit_ipp); 6621 6622 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6623 DONTCARE(tcp->tcp_ipha); 6624 DONTCARE(tcp->tcp_ip6h); 6625 DONTCARE(tcp->tcp_tcpha); 6626 tcp->tcp_valid_bits = 0; 6627 6628 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6629 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6630 tcp->tcp_last_rcv_lbolt = 0; 6631 6632 tcp->tcp_init_cwnd = 0; 6633 6634 tcp->tcp_urp_last_valid = 0; 6635 tcp->tcp_hard_binding = 0; 6636 6637 tcp->tcp_fin_acked = 0; 6638 tcp->tcp_fin_rcvd = 0; 6639 tcp->tcp_fin_sent = 0; 6640 tcp->tcp_ordrel_done = 0; 6641 6642 tcp->tcp_detached = 0; 6643 6644 tcp->tcp_snd_ws_ok = B_FALSE; 6645 tcp->tcp_snd_ts_ok = B_FALSE; 6646 tcp->tcp_zero_win_probe = 0; 6647 6648 tcp->tcp_loopback = 0; 6649 tcp->tcp_localnet = 0; 6650 tcp->tcp_syn_defense = 0; 6651 tcp->tcp_set_timer = 0; 6652 6653 tcp->tcp_active_open = 0; 6654 tcp->tcp_rexmit = B_FALSE; 6655 tcp->tcp_xmit_zc_clean = B_FALSE; 6656 6657 tcp->tcp_snd_sack_ok = B_FALSE; 6658 tcp->tcp_hwcksum = B_FALSE; 6659 6660 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6661 6662 tcp->tcp_conn_def_q0 = 0; 6663 tcp->tcp_ip_forward_progress = B_FALSE; 6664 tcp->tcp_ecn_ok = B_FALSE; 6665 6666 tcp->tcp_cwr = B_FALSE; 6667 tcp->tcp_ecn_echo_on = B_FALSE; 6668 tcp->tcp_is_wnd_shrnk = B_FALSE; 6669 6670 if (tcp->tcp_sack_info != NULL) { 6671 if (tcp->tcp_notsack_list != NULL) { 6672 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6673 tcp); 6674 } 6675 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6676 tcp->tcp_sack_info = NULL; 6677 } 6678 6679 tcp->tcp_rcv_ws = 0; 6680 tcp->tcp_snd_ws = 0; 6681 tcp->tcp_ts_recent = 0; 6682 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6683 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6684 tcp->tcp_initial_pmtu = 0; 6685 6686 ASSERT(tcp->tcp_reass_head == NULL); 6687 ASSERT(tcp->tcp_reass_tail == NULL); 6688 6689 tcp->tcp_cwnd_cnt = 0; 6690 6691 ASSERT(tcp->tcp_rcv_list == NULL); 6692 ASSERT(tcp->tcp_rcv_last_head == NULL); 6693 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6694 ASSERT(tcp->tcp_rcv_cnt == 0); 6695 6696 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6697 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6698 tcp->tcp_csuna = 0; 6699 6700 tcp->tcp_rto = 0; /* Displayed in MIB */ 6701 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6702 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6703 tcp->tcp_rtt_update = 0; 6704 6705 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6706 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6707 6708 tcp->tcp_rack = 0; /* Displayed in mib */ 6709 tcp->tcp_rack_cnt = 0; 6710 tcp->tcp_rack_cur_max = 0; 6711 tcp->tcp_rack_abs_max = 0; 6712 6713 tcp->tcp_max_swnd = 0; 6714 6715 ASSERT(tcp->tcp_listener == NULL); 6716 6717 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6718 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6719 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6720 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6721 6722 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6723 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6724 PRESERVE(tcp->tcp_conn_req_max); 6725 PRESERVE(tcp->tcp_conn_req_seqnum); 6726 6727 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6728 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6729 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6730 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6731 6732 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6733 ASSERT(tcp->tcp_urp_mp == NULL); 6734 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6735 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6736 6737 ASSERT(tcp->tcp_eager_next_q == NULL); 6738 ASSERT(tcp->tcp_eager_last_q == NULL); 6739 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6740 tcp->tcp_eager_prev_q0 == NULL) || 6741 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6742 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6743 6744 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6745 tcp->tcp_eager_prev_drop_q0 == NULL) || 6746 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6747 6748 tcp->tcp_client_errno = 0; 6749 6750 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6751 6752 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6753 6754 PRESERVE(connp->conn_bound_addr_v6); 6755 tcp->tcp_last_sent_len = 0; 6756 tcp->tcp_dupack_cnt = 0; 6757 6758 connp->conn_fport = 0; /* Displayed in MIB */ 6759 PRESERVE(connp->conn_lport); 6760 6761 PRESERVE(tcp->tcp_acceptor_lockp); 6762 6763 ASSERT(tcp->tcp_ordrel_mp == NULL); 6764 PRESERVE(tcp->tcp_acceptor_id); 6765 DONTCARE(tcp->tcp_ipsec_overhead); 6766 6767 PRESERVE(connp->conn_family); 6768 /* Remove any remnants of mapped address binding */ 6769 if (connp->conn_family == AF_INET6) { 6770 connp->conn_ipversion = IPV6_VERSION; 6771 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6772 } else { 6773 connp->conn_ipversion = IPV4_VERSION; 6774 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6775 } 6776 6777 connp->conn_bound_if = 0; 6778 connp->conn_recv_ancillary.crb_all = 0; 6779 tcp->tcp_recvifindex = 0; 6780 tcp->tcp_recvhops = 0; 6781 tcp->tcp_closed = 0; 6782 tcp->tcp_cleandeathtag = 0; 6783 if (tcp->tcp_hopopts != NULL) { 6784 mi_free(tcp->tcp_hopopts); 6785 tcp->tcp_hopopts = NULL; 6786 tcp->tcp_hopoptslen = 0; 6787 } 6788 ASSERT(tcp->tcp_hopoptslen == 0); 6789 if (tcp->tcp_dstopts != NULL) { 6790 mi_free(tcp->tcp_dstopts); 6791 tcp->tcp_dstopts = NULL; 6792 tcp->tcp_dstoptslen = 0; 6793 } 6794 ASSERT(tcp->tcp_dstoptslen == 0); 6795 if (tcp->tcp_rthdrdstopts != NULL) { 6796 mi_free(tcp->tcp_rthdrdstopts); 6797 tcp->tcp_rthdrdstopts = NULL; 6798 tcp->tcp_rthdrdstoptslen = 0; 6799 } 6800 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6801 if (tcp->tcp_rthdr != NULL) { 6802 mi_free(tcp->tcp_rthdr); 6803 tcp->tcp_rthdr = NULL; 6804 tcp->tcp_rthdrlen = 0; 6805 } 6806 ASSERT(tcp->tcp_rthdrlen == 0); 6807 6808 /* Reset fusion-related fields */ 6809 tcp->tcp_fused = B_FALSE; 6810 tcp->tcp_unfusable = B_FALSE; 6811 tcp->tcp_fused_sigurg = B_FALSE; 6812 tcp->tcp_loopback_peer = NULL; 6813 6814 tcp->tcp_lso = B_FALSE; 6815 6816 tcp->tcp_in_ack_unsent = 0; 6817 tcp->tcp_cork = B_FALSE; 6818 tcp->tcp_tconnind_started = B_FALSE; 6819 6820 PRESERVE(tcp->tcp_squeue_bytes); 6821 6822 ASSERT(tcp->tcp_kssl_ctx == NULL); 6823 ASSERT(!tcp->tcp_kssl_pending); 6824 PRESERVE(tcp->tcp_kssl_ent); 6825 6826 tcp->tcp_closemp_used = B_FALSE; 6827 6828 PRESERVE(tcp->tcp_rsrv_mp); 6829 PRESERVE(tcp->tcp_rsrv_mp_lock); 6830 6831 #ifdef DEBUG 6832 DONTCARE(tcp->tcmp_stk[0]); 6833 #endif 6834 6835 PRESERVE(tcp->tcp_connid); 6836 6837 ASSERT(tcp->tcp_listen_cnt == NULL); 6838 ASSERT(tcp->tcp_reass_tid == 0); 6839 6840 #undef DONTCARE 6841 #undef PRESERVE 6842 } 6843 6844 static void 6845 tcp_init_values(tcp_t *tcp) 6846 { 6847 tcp_stack_t *tcps = tcp->tcp_tcps; 6848 conn_t *connp = tcp->tcp_connp; 6849 6850 ASSERT((connp->conn_family == AF_INET && 6851 connp->conn_ipversion == IPV4_VERSION) || 6852 (connp->conn_family == AF_INET6 && 6853 (connp->conn_ipversion == IPV4_VERSION || 6854 connp->conn_ipversion == IPV6_VERSION))); 6855 6856 /* 6857 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6858 * will be close to tcp_rexmit_interval_initial. By doing this, we 6859 * allow the algorithm to adjust slowly to large fluctuations of RTT 6860 * during first few transmissions of a connection as seen in slow 6861 * links. 6862 */ 6863 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6864 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6865 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6866 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6867 tcps->tcps_conn_grace_period; 6868 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6869 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6870 tcp->tcp_timer_backoff = 0; 6871 tcp->tcp_ms_we_have_waited = 0; 6872 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6873 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6874 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6875 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6876 6877 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6878 6879 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6880 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6881 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6882 /* 6883 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6884 * passive open. 6885 */ 6886 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6887 6888 tcp->tcp_naglim = tcps->tcps_naglim_def; 6889 6890 /* NOTE: ISS is now set in tcp_set_destination(). */ 6891 6892 /* Reset fusion-related fields */ 6893 tcp->tcp_fused = B_FALSE; 6894 tcp->tcp_unfusable = B_FALSE; 6895 tcp->tcp_fused_sigurg = B_FALSE; 6896 tcp->tcp_loopback_peer = NULL; 6897 6898 /* We rebuild the header template on the next connect/conn_request */ 6899 6900 connp->conn_mlp_type = mlptSingle; 6901 6902 /* 6903 * Init the window scale to the max so tcp_rwnd_set() won't pare 6904 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6905 */ 6906 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6907 tcp->tcp_rwnd = connp->conn_rcvbuf; 6908 6909 tcp->tcp_cork = B_FALSE; 6910 /* 6911 * Init the tcp_debug option if it wasn't already set. This value 6912 * determines whether TCP 6913 * calls strlog() to print out debug messages. Doing this 6914 * initialization here means that this value is not inherited thru 6915 * tcp_reinit(). 6916 */ 6917 if (!connp->conn_debug) 6918 connp->conn_debug = tcps->tcps_dbg; 6919 6920 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6921 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6922 } 6923 6924 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6925 #define ICMP_MIN_TCP_HDR 8 6926 6927 /* 6928 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6929 * passed up by IP. The message is always received on the correct tcp_t. 6930 * Assumes that IP has pulled up everything up to and including the ICMP header. 6931 */ 6932 /* ARGSUSED2 */ 6933 static void 6934 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6935 { 6936 conn_t *connp = (conn_t *)arg1; 6937 icmph_t *icmph; 6938 ipha_t *ipha; 6939 int iph_hdr_length; 6940 tcpha_t *tcpha; 6941 uint32_t seg_seq; 6942 tcp_t *tcp = connp->conn_tcp; 6943 6944 /* Assume IP provides aligned packets */ 6945 ASSERT(OK_32PTR(mp->b_rptr)); 6946 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6947 6948 /* 6949 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6950 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6951 */ 6952 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6953 tcp_icmp_error_ipv6(tcp, mp, ira); 6954 return; 6955 } 6956 6957 /* Skip past the outer IP and ICMP headers */ 6958 iph_hdr_length = ira->ira_ip_hdr_length; 6959 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 6960 /* 6961 * If we don't have the correct outer IP header length 6962 * or if we don't have a complete inner IP header 6963 * drop it. 6964 */ 6965 if (iph_hdr_length < sizeof (ipha_t) || 6966 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 6967 noticmpv4: 6968 freemsg(mp); 6969 return; 6970 } 6971 ipha = (ipha_t *)&icmph[1]; 6972 6973 /* Skip past the inner IP and find the ULP header */ 6974 iph_hdr_length = IPH_HDR_LENGTH(ipha); 6975 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 6976 /* 6977 * If we don't have the correct inner IP header length or if the ULP 6978 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 6979 * bytes of TCP header, drop it. 6980 */ 6981 if (iph_hdr_length < sizeof (ipha_t) || 6982 ipha->ipha_protocol != IPPROTO_TCP || 6983 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 6984 goto noticmpv4; 6985 } 6986 6987 seg_seq = ntohl(tcpha->tha_seq); 6988 switch (icmph->icmph_type) { 6989 case ICMP_DEST_UNREACHABLE: 6990 switch (icmph->icmph_code) { 6991 case ICMP_FRAGMENTATION_NEEDED: 6992 /* 6993 * Update Path MTU, then try to send something out. 6994 */ 6995 tcp_update_pmtu(tcp, B_TRUE); 6996 tcp_rexmit_after_error(tcp); 6997 break; 6998 case ICMP_PORT_UNREACHABLE: 6999 case ICMP_PROTOCOL_UNREACHABLE: 7000 switch (tcp->tcp_state) { 7001 case TCPS_SYN_SENT: 7002 case TCPS_SYN_RCVD: 7003 /* 7004 * ICMP can snipe away incipient 7005 * TCP connections as long as 7006 * seq number is same as initial 7007 * send seq number. 7008 */ 7009 if (seg_seq == tcp->tcp_iss) { 7010 (void) tcp_clean_death(tcp, 7011 ECONNREFUSED, 6); 7012 } 7013 break; 7014 } 7015 break; 7016 case ICMP_HOST_UNREACHABLE: 7017 case ICMP_NET_UNREACHABLE: 7018 /* Record the error in case we finally time out. */ 7019 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 7020 tcp->tcp_client_errno = EHOSTUNREACH; 7021 else 7022 tcp->tcp_client_errno = ENETUNREACH; 7023 if (tcp->tcp_state == TCPS_SYN_RCVD) { 7024 if (tcp->tcp_listener != NULL && 7025 tcp->tcp_listener->tcp_syn_defense) { 7026 /* 7027 * Ditch the half-open connection if we 7028 * suspect a SYN attack is under way. 7029 */ 7030 (void) tcp_clean_death(tcp, 7031 tcp->tcp_client_errno, 7); 7032 } 7033 } 7034 break; 7035 default: 7036 break; 7037 } 7038 break; 7039 case ICMP_SOURCE_QUENCH: { 7040 /* 7041 * use a global boolean to control 7042 * whether TCP should respond to ICMP_SOURCE_QUENCH. 7043 * The default is false. 7044 */ 7045 if (tcp_icmp_source_quench) { 7046 /* 7047 * Reduce the sending rate as if we got a 7048 * retransmit timeout 7049 */ 7050 uint32_t npkt; 7051 7052 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 7053 tcp->tcp_mss; 7054 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 7055 tcp->tcp_cwnd = tcp->tcp_mss; 7056 tcp->tcp_cwnd_cnt = 0; 7057 } 7058 break; 7059 } 7060 } 7061 freemsg(mp); 7062 } 7063 7064 /* 7065 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 7066 * change. But it can refer to fields like tcp_suna and tcp_snxt. 7067 * 7068 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 7069 * error messages received by IP. The message is always received on the correct 7070 * tcp_t. 7071 */ 7072 /* ARGSUSED */ 7073 static boolean_t 7074 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 7075 ip_recv_attr_t *ira) 7076 { 7077 tcpha_t *tcpha = (tcpha_t *)arg2; 7078 uint32_t seq = ntohl(tcpha->tha_seq); 7079 tcp_t *tcp = connp->conn_tcp; 7080 7081 /* 7082 * TCP sequence number contained in payload of the ICMP error message 7083 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 7084 * the message is either a stale ICMP error, or an attack from the 7085 * network. Fail the verification. 7086 */ 7087 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 7088 return (B_FALSE); 7089 7090 /* For "too big" we also check the ignore flag */ 7091 if (ira->ira_flags & IRAF_IS_IPV4) { 7092 ASSERT(icmph != NULL); 7093 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 7094 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 7095 tcp->tcp_tcps->tcps_ignore_path_mtu) 7096 return (B_FALSE); 7097 } else { 7098 ASSERT(icmp6 != NULL); 7099 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 7100 tcp->tcp_tcps->tcps_ignore_path_mtu) 7101 return (B_FALSE); 7102 } 7103 return (B_TRUE); 7104 } 7105 7106 /* 7107 * Update the TCP connection according to change of PMTU. 7108 * 7109 * Path MTU might have changed by either increase or decrease, so need to 7110 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 7111 * or negative MSS, since tcp_mss_set() will do it. 7112 */ 7113 static void 7114 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 7115 { 7116 uint32_t pmtu; 7117 int32_t mss; 7118 conn_t *connp = tcp->tcp_connp; 7119 ip_xmit_attr_t *ixa = connp->conn_ixa; 7120 iaflags_t ixaflags; 7121 7122 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 7123 return; 7124 7125 if (tcp->tcp_state < TCPS_ESTABLISHED) 7126 return; 7127 7128 /* 7129 * Always call ip_get_pmtu() to make sure that IP has updated 7130 * ixa_flags properly. 7131 */ 7132 pmtu = ip_get_pmtu(ixa); 7133 ixaflags = ixa->ixa_flags; 7134 7135 /* 7136 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 7137 * IPsec overhead if applied. Make sure to use the most recent 7138 * IPsec information. 7139 */ 7140 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 7141 7142 /* 7143 * Nothing to change, so just return. 7144 */ 7145 if (mss == tcp->tcp_mss) 7146 return; 7147 7148 /* 7149 * Currently, for ICMP errors, only PMTU decrease is handled. 7150 */ 7151 if (mss > tcp->tcp_mss && decrease_only) 7152 return; 7153 7154 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 7155 7156 /* 7157 * Update ixa_fragsize and ixa_pmtu. 7158 */ 7159 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 7160 7161 /* 7162 * Adjust MSS and all relevant variables. 7163 */ 7164 tcp_mss_set(tcp, mss); 7165 7166 /* 7167 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 7168 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 7169 * has a (potentially different) min size we do the same. Make sure to 7170 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 7171 * fragment the packet. 7172 * 7173 * LSO over IPv6 can not be fragmented. So need to disable LSO 7174 * when IPv6 fragmentation is needed. 7175 */ 7176 if (mss < tcp->tcp_tcps->tcps_mss_min) 7177 ixaflags |= IXAF_PMTU_TOO_SMALL; 7178 7179 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7180 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7181 7182 if ((connp->conn_ipversion == IPV4_VERSION) && 7183 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7184 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7185 } 7186 ixa->ixa_flags = ixaflags; 7187 } 7188 7189 /* 7190 * Do slow start retransmission after ICMP errors of PMTU changes. 7191 */ 7192 static void 7193 tcp_rexmit_after_error(tcp_t *tcp) 7194 { 7195 /* 7196 * All sent data has been acknowledged or no data left to send, just 7197 * to return. 7198 */ 7199 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7200 (tcp->tcp_xmit_head == NULL)) 7201 return; 7202 7203 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7204 tcp->tcp_rexmit_max = tcp->tcp_fss; 7205 else 7206 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7207 7208 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7209 tcp->tcp_rexmit = B_TRUE; 7210 tcp->tcp_dupack_cnt = 0; 7211 tcp->tcp_snd_burst = TCP_CWND_SS; 7212 tcp_ss_rexmit(tcp); 7213 } 7214 7215 /* 7216 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7217 * error messages passed up by IP. 7218 * Assumes that IP has pulled up all the extension headers as well 7219 * as the ICMPv6 header. 7220 */ 7221 static void 7222 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7223 { 7224 icmp6_t *icmp6; 7225 ip6_t *ip6h; 7226 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7227 tcpha_t *tcpha; 7228 uint8_t *nexthdrp; 7229 uint32_t seg_seq; 7230 7231 /* 7232 * Verify that we have a complete IP header. 7233 */ 7234 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7235 7236 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7237 ip6h = (ip6_t *)&icmp6[1]; 7238 /* 7239 * Verify if we have a complete ICMP and inner IP header. 7240 */ 7241 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7242 noticmpv6: 7243 freemsg(mp); 7244 return; 7245 } 7246 7247 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7248 goto noticmpv6; 7249 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7250 /* 7251 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7252 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7253 * packet. 7254 */ 7255 if ((*nexthdrp != IPPROTO_TCP) || 7256 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7257 goto noticmpv6; 7258 } 7259 7260 seg_seq = ntohl(tcpha->tha_seq); 7261 switch (icmp6->icmp6_type) { 7262 case ICMP6_PACKET_TOO_BIG: 7263 /* 7264 * Update Path MTU, then try to send something out. 7265 */ 7266 tcp_update_pmtu(tcp, B_TRUE); 7267 tcp_rexmit_after_error(tcp); 7268 break; 7269 case ICMP6_DST_UNREACH: 7270 switch (icmp6->icmp6_code) { 7271 case ICMP6_DST_UNREACH_NOPORT: 7272 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7273 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7274 (seg_seq == tcp->tcp_iss)) { 7275 (void) tcp_clean_death(tcp, 7276 ECONNREFUSED, 8); 7277 } 7278 break; 7279 case ICMP6_DST_UNREACH_ADMIN: 7280 case ICMP6_DST_UNREACH_NOROUTE: 7281 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7282 case ICMP6_DST_UNREACH_ADDR: 7283 /* Record the error in case we finally time out. */ 7284 tcp->tcp_client_errno = EHOSTUNREACH; 7285 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7286 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7287 (seg_seq == tcp->tcp_iss)) { 7288 if (tcp->tcp_listener != NULL && 7289 tcp->tcp_listener->tcp_syn_defense) { 7290 /* 7291 * Ditch the half-open connection if we 7292 * suspect a SYN attack is under way. 7293 */ 7294 (void) tcp_clean_death(tcp, 7295 tcp->tcp_client_errno, 9); 7296 } 7297 } 7298 7299 7300 break; 7301 default: 7302 break; 7303 } 7304 break; 7305 case ICMP6_PARAM_PROB: 7306 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7307 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7308 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7309 (uchar_t *)nexthdrp) { 7310 if (tcp->tcp_state == TCPS_SYN_SENT || 7311 tcp->tcp_state == TCPS_SYN_RCVD) { 7312 (void) tcp_clean_death(tcp, 7313 ECONNREFUSED, 10); 7314 } 7315 break; 7316 } 7317 break; 7318 7319 case ICMP6_TIME_EXCEEDED: 7320 default: 7321 break; 7322 } 7323 freemsg(mp); 7324 } 7325 7326 /* 7327 * Notify IP that we are having trouble with this connection. IP should 7328 * make note so it can potentially use a different IRE. 7329 */ 7330 static void 7331 tcp_ip_notify(tcp_t *tcp) 7332 { 7333 conn_t *connp = tcp->tcp_connp; 7334 ire_t *ire; 7335 7336 /* 7337 * Note: in the case of source routing we want to blow away the 7338 * route to the first source route hop. 7339 */ 7340 ire = connp->conn_ixa->ixa_ire; 7341 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7342 if (ire->ire_ipversion == IPV4_VERSION) { 7343 /* 7344 * As per RFC 1122, we send an RTM_LOSING to inform 7345 * routing protocols. 7346 */ 7347 ip_rts_change(RTM_LOSING, ire->ire_addr, 7348 ire->ire_gateway_addr, ire->ire_mask, 7349 connp->conn_laddr_v4, 0, 0, 0, 7350 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7351 ire->ire_ipst); 7352 } 7353 (void) ire_no_good(ire); 7354 } 7355 } 7356 7357 #pragma inline(tcp_send_data) 7358 7359 /* 7360 * Timer callback routine for keepalive probe. We do a fake resend of 7361 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7362 * check to see if we have heard anything from the other end for the last 7363 * RTO period. If we have, set the timer to expire for another 7364 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7365 * RTO << 1 and check again when it expires. Keep exponentially increasing 7366 * the timeout if we have not heard from the other side. If for more than 7367 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7368 * kill the connection unless the keepalive abort threshold is 0. In 7369 * that case, we will probe "forever." 7370 */ 7371 static void 7372 tcp_keepalive_killer(void *arg) 7373 { 7374 mblk_t *mp; 7375 conn_t *connp = (conn_t *)arg; 7376 tcp_t *tcp = connp->conn_tcp; 7377 int32_t firetime; 7378 int32_t idletime; 7379 int32_t ka_intrvl; 7380 tcp_stack_t *tcps = tcp->tcp_tcps; 7381 7382 tcp->tcp_ka_tid = 0; 7383 7384 if (tcp->tcp_fused) 7385 return; 7386 7387 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7388 ka_intrvl = tcp->tcp_ka_interval; 7389 7390 /* 7391 * Keepalive probe should only be sent if the application has not 7392 * done a close on the connection. 7393 */ 7394 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7395 return; 7396 } 7397 /* Timer fired too early, restart it. */ 7398 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7399 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7400 MSEC_TO_TICK(ka_intrvl)); 7401 return; 7402 } 7403 7404 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7405 /* 7406 * If we have not heard from the other side for a long 7407 * time, kill the connection unless the keepalive abort 7408 * threshold is 0. In that case, we will probe "forever." 7409 */ 7410 if (tcp->tcp_ka_abort_thres != 0 && 7411 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7412 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7413 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7414 tcp->tcp_client_errno : ETIMEDOUT, 11); 7415 return; 7416 } 7417 7418 if (tcp->tcp_snxt == tcp->tcp_suna && 7419 idletime >= ka_intrvl) { 7420 /* Fake resend of last ACKed byte. */ 7421 mblk_t *mp1 = allocb(1, BPRI_LO); 7422 7423 if (mp1 != NULL) { 7424 *mp1->b_wptr++ = '\0'; 7425 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7426 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7427 freeb(mp1); 7428 /* 7429 * if allocation failed, fall through to start the 7430 * timer back. 7431 */ 7432 if (mp != NULL) { 7433 tcp_send_data(tcp, mp); 7434 BUMP_MIB(&tcps->tcps_mib, 7435 tcpTimKeepaliveProbe); 7436 if (tcp->tcp_ka_last_intrvl != 0) { 7437 int max; 7438 /* 7439 * We should probe again at least 7440 * in ka_intrvl, but not more than 7441 * tcp_rexmit_interval_max. 7442 */ 7443 max = tcps->tcps_rexmit_interval_max; 7444 firetime = MIN(ka_intrvl - 1, 7445 tcp->tcp_ka_last_intrvl << 1); 7446 if (firetime > max) 7447 firetime = max; 7448 } else { 7449 firetime = tcp->tcp_rto; 7450 } 7451 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7452 tcp_keepalive_killer, 7453 MSEC_TO_TICK(firetime)); 7454 tcp->tcp_ka_last_intrvl = firetime; 7455 return; 7456 } 7457 } 7458 } else { 7459 tcp->tcp_ka_last_intrvl = 0; 7460 } 7461 7462 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7463 if ((firetime = ka_intrvl - idletime) < 0) { 7464 firetime = ka_intrvl; 7465 } 7466 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7467 MSEC_TO_TICK(firetime)); 7468 } 7469 7470 int 7471 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7472 { 7473 conn_t *connp = tcp->tcp_connp; 7474 queue_t *q = connp->conn_rq; 7475 int32_t mss = tcp->tcp_mss; 7476 int maxpsz; 7477 7478 if (TCP_IS_DETACHED(tcp)) 7479 return (mss); 7480 if (tcp->tcp_fused) { 7481 maxpsz = tcp_fuse_maxpsz(tcp); 7482 mss = INFPSZ; 7483 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7484 /* 7485 * Set the sd_qn_maxpsz according to the socket send buffer 7486 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7487 * instruct the stream head to copyin user data into contiguous 7488 * kernel-allocated buffers without breaking it up into smaller 7489 * chunks. We round up the buffer size to the nearest SMSS. 7490 */ 7491 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7492 if (tcp->tcp_kssl_ctx == NULL) 7493 mss = INFPSZ; 7494 else 7495 mss = SSL3_MAX_RECORD_LEN; 7496 } else { 7497 /* 7498 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7499 * (and a multiple of the mss). This instructs the stream 7500 * head to break down larger than SMSS writes into SMSS- 7501 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7502 */ 7503 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7504 if (maxpsz > connp->conn_sndbuf / 2) { 7505 maxpsz = connp->conn_sndbuf / 2; 7506 /* Round up to nearest mss */ 7507 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7508 } 7509 } 7510 7511 (void) proto_set_maxpsz(q, connp, maxpsz); 7512 if (!(IPCL_IS_NONSTR(connp))) 7513 connp->conn_wq->q_maxpsz = maxpsz; 7514 if (set_maxblk) 7515 (void) proto_set_tx_maxblk(q, connp, mss); 7516 return (mss); 7517 } 7518 7519 /* 7520 * Extract option values from a tcp header. We put any found values into the 7521 * tcpopt struct and return a bitmask saying which options were found. 7522 */ 7523 static int 7524 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7525 { 7526 uchar_t *endp; 7527 int len; 7528 uint32_t mss; 7529 uchar_t *up = (uchar_t *)tcpha; 7530 int found = 0; 7531 int32_t sack_len; 7532 tcp_seq sack_begin, sack_end; 7533 tcp_t *tcp; 7534 7535 endp = up + TCP_HDR_LENGTH(tcpha); 7536 up += TCP_MIN_HEADER_LENGTH; 7537 while (up < endp) { 7538 len = endp - up; 7539 switch (*up) { 7540 case TCPOPT_EOL: 7541 break; 7542 7543 case TCPOPT_NOP: 7544 up++; 7545 continue; 7546 7547 case TCPOPT_MAXSEG: 7548 if (len < TCPOPT_MAXSEG_LEN || 7549 up[1] != TCPOPT_MAXSEG_LEN) 7550 break; 7551 7552 mss = BE16_TO_U16(up+2); 7553 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7554 tcpopt->tcp_opt_mss = mss; 7555 found |= TCP_OPT_MSS_PRESENT; 7556 7557 up += TCPOPT_MAXSEG_LEN; 7558 continue; 7559 7560 case TCPOPT_WSCALE: 7561 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7562 break; 7563 7564 if (up[2] > TCP_MAX_WINSHIFT) 7565 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7566 else 7567 tcpopt->tcp_opt_wscale = up[2]; 7568 found |= TCP_OPT_WSCALE_PRESENT; 7569 7570 up += TCPOPT_WS_LEN; 7571 continue; 7572 7573 case TCPOPT_SACK_PERMITTED: 7574 if (len < TCPOPT_SACK_OK_LEN || 7575 up[1] != TCPOPT_SACK_OK_LEN) 7576 break; 7577 found |= TCP_OPT_SACK_OK_PRESENT; 7578 up += TCPOPT_SACK_OK_LEN; 7579 continue; 7580 7581 case TCPOPT_SACK: 7582 if (len <= 2 || up[1] <= 2 || len < up[1]) 7583 break; 7584 7585 /* If TCP is not interested in SACK blks... */ 7586 if ((tcp = tcpopt->tcp) == NULL) { 7587 up += up[1]; 7588 continue; 7589 } 7590 sack_len = up[1] - TCPOPT_HEADER_LEN; 7591 up += TCPOPT_HEADER_LEN; 7592 7593 /* 7594 * If the list is empty, allocate one and assume 7595 * nothing is sack'ed. 7596 */ 7597 ASSERT(tcp->tcp_sack_info != NULL); 7598 if (tcp->tcp_notsack_list == NULL) { 7599 tcp_notsack_update(&(tcp->tcp_notsack_list), 7600 tcp->tcp_suna, tcp->tcp_snxt, 7601 &(tcp->tcp_num_notsack_blk), 7602 &(tcp->tcp_cnt_notsack_list)); 7603 7604 /* 7605 * Make sure tcp_notsack_list is not NULL. 7606 * This happens when kmem_alloc(KM_NOSLEEP) 7607 * returns NULL. 7608 */ 7609 if (tcp->tcp_notsack_list == NULL) { 7610 up += sack_len; 7611 continue; 7612 } 7613 tcp->tcp_fack = tcp->tcp_suna; 7614 } 7615 7616 while (sack_len > 0) { 7617 if (up + 8 > endp) { 7618 up = endp; 7619 break; 7620 } 7621 sack_begin = BE32_TO_U32(up); 7622 up += 4; 7623 sack_end = BE32_TO_U32(up); 7624 up += 4; 7625 sack_len -= 8; 7626 /* 7627 * Bounds checking. Make sure the SACK 7628 * info is within tcp_suna and tcp_snxt. 7629 * If this SACK blk is out of bound, ignore 7630 * it but continue to parse the following 7631 * blks. 7632 */ 7633 if (SEQ_LEQ(sack_end, sack_begin) || 7634 SEQ_LT(sack_begin, tcp->tcp_suna) || 7635 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7636 continue; 7637 } 7638 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7639 sack_begin, sack_end, 7640 &(tcp->tcp_num_notsack_blk), 7641 &(tcp->tcp_cnt_notsack_list)); 7642 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7643 tcp->tcp_fack = sack_end; 7644 } 7645 } 7646 found |= TCP_OPT_SACK_PRESENT; 7647 continue; 7648 7649 case TCPOPT_TSTAMP: 7650 if (len < TCPOPT_TSTAMP_LEN || 7651 up[1] != TCPOPT_TSTAMP_LEN) 7652 break; 7653 7654 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7655 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7656 7657 found |= TCP_OPT_TSTAMP_PRESENT; 7658 7659 up += TCPOPT_TSTAMP_LEN; 7660 continue; 7661 7662 default: 7663 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7664 break; 7665 up += up[1]; 7666 continue; 7667 } 7668 break; 7669 } 7670 return (found); 7671 } 7672 7673 /* 7674 * Set the MSS associated with a particular tcp based on its current value, 7675 * and a new one passed in. Observe minimums and maximums, and reset other 7676 * state variables that we want to view as multiples of MSS. 7677 * 7678 * The value of MSS could be either increased or descreased. 7679 */ 7680 static void 7681 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7682 { 7683 uint32_t mss_max; 7684 tcp_stack_t *tcps = tcp->tcp_tcps; 7685 conn_t *connp = tcp->tcp_connp; 7686 7687 if (connp->conn_ipversion == IPV4_VERSION) 7688 mss_max = tcps->tcps_mss_max_ipv4; 7689 else 7690 mss_max = tcps->tcps_mss_max_ipv6; 7691 7692 if (mss < tcps->tcps_mss_min) 7693 mss = tcps->tcps_mss_min; 7694 if (mss > mss_max) 7695 mss = mss_max; 7696 /* 7697 * Unless naglim has been set by our client to 7698 * a non-mss value, force naglim to track mss. 7699 * This can help to aggregate small writes. 7700 */ 7701 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7702 tcp->tcp_naglim = mss; 7703 /* 7704 * TCP should be able to buffer at least 4 MSS data for obvious 7705 * performance reason. 7706 */ 7707 if ((mss << 2) > connp->conn_sndbuf) 7708 connp->conn_sndbuf = mss << 2; 7709 7710 /* 7711 * Set the send lowater to at least twice of MSS. 7712 */ 7713 if ((mss << 1) > connp->conn_sndlowat) 7714 connp->conn_sndlowat = mss << 1; 7715 7716 /* 7717 * Update tcp_cwnd according to the new value of MSS. Keep the 7718 * previous ratio to preserve the transmit rate. 7719 */ 7720 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7721 tcp->tcp_cwnd_cnt = 0; 7722 7723 tcp->tcp_mss = mss; 7724 (void) tcp_maxpsz_set(tcp, B_TRUE); 7725 } 7726 7727 /* For /dev/tcp aka AF_INET open */ 7728 static int 7729 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7730 { 7731 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7732 } 7733 7734 /* For /dev/tcp6 aka AF_INET6 open */ 7735 static int 7736 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7737 { 7738 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7739 } 7740 7741 static conn_t * 7742 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7743 int *errorp) 7744 { 7745 tcp_t *tcp = NULL; 7746 conn_t *connp; 7747 zoneid_t zoneid; 7748 tcp_stack_t *tcps; 7749 squeue_t *sqp; 7750 7751 ASSERT(errorp != NULL); 7752 /* 7753 * Find the proper zoneid and netstack. 7754 */ 7755 /* 7756 * Special case for install: miniroot needs to be able to 7757 * access files via NFS as though it were always in the 7758 * global zone. 7759 */ 7760 if (credp == kcred && nfs_global_client_only != 0) { 7761 zoneid = GLOBAL_ZONEID; 7762 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7763 netstack_tcp; 7764 ASSERT(tcps != NULL); 7765 } else { 7766 netstack_t *ns; 7767 7768 ns = netstack_find_by_cred(credp); 7769 ASSERT(ns != NULL); 7770 tcps = ns->netstack_tcp; 7771 ASSERT(tcps != NULL); 7772 7773 /* 7774 * For exclusive stacks we set the zoneid to zero 7775 * to make TCP operate as if in the global zone. 7776 */ 7777 if (tcps->tcps_netstack->netstack_stackid != 7778 GLOBAL_NETSTACKID) 7779 zoneid = GLOBAL_ZONEID; 7780 else 7781 zoneid = crgetzoneid(credp); 7782 } 7783 7784 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7785 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7786 /* 7787 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7788 * so we drop it by one. 7789 */ 7790 netstack_rele(tcps->tcps_netstack); 7791 if (connp == NULL) { 7792 *errorp = ENOSR; 7793 return (NULL); 7794 } 7795 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7796 7797 connp->conn_sqp = sqp; 7798 connp->conn_initial_sqp = connp->conn_sqp; 7799 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7800 tcp = connp->conn_tcp; 7801 7802 /* 7803 * Besides asking IP to set the checksum for us, have conn_ip_output 7804 * to do the following checks when necessary: 7805 * 7806 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7807 * IXAF_VERIFY_PMTU: verify PMTU changes 7808 * IXAF_VERIFY_LSO: verify LSO capability changes 7809 */ 7810 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7811 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7812 7813 if (!tcps->tcps_dev_flow_ctl) 7814 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7815 7816 if (isv6) { 7817 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7818 connp->conn_ipversion = IPV6_VERSION; 7819 connp->conn_family = AF_INET6; 7820 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7821 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7822 } else { 7823 connp->conn_ipversion = IPV4_VERSION; 7824 connp->conn_family = AF_INET; 7825 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7826 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7827 } 7828 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7829 7830 crhold(credp); 7831 connp->conn_cred = credp; 7832 connp->conn_cpid = curproc->p_pid; 7833 connp->conn_open_time = ddi_get_lbolt64(); 7834 7835 connp->conn_zoneid = zoneid; 7836 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7837 connp->conn_ixa->ixa_zoneid = zoneid; 7838 connp->conn_mlp_type = mlptSingle; 7839 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7840 ASSERT(tcp->tcp_tcps == tcps); 7841 7842 /* 7843 * If the caller has the process-wide flag set, then default to MAC 7844 * exempt mode. This allows read-down to unlabeled hosts. 7845 */ 7846 if (getpflags(NET_MAC_AWARE, credp) != 0) 7847 connp->conn_mac_mode = CONN_MAC_AWARE; 7848 7849 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7850 7851 if (issocket) { 7852 tcp->tcp_issocket = 1; 7853 } 7854 7855 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7856 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7857 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7858 connp->conn_so_type = SOCK_STREAM; 7859 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7860 tcps->tcps_wroff_xtra; 7861 7862 SOCK_CONNID_INIT(tcp->tcp_connid); 7863 tcp->tcp_state = TCPS_IDLE; 7864 tcp_init_values(tcp); 7865 return (connp); 7866 } 7867 7868 static int 7869 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7870 boolean_t isv6) 7871 { 7872 tcp_t *tcp = NULL; 7873 conn_t *connp = NULL; 7874 int err; 7875 vmem_t *minor_arena = NULL; 7876 dev_t conn_dev; 7877 boolean_t issocket; 7878 7879 if (q->q_ptr != NULL) 7880 return (0); 7881 7882 if (sflag == MODOPEN) 7883 return (EINVAL); 7884 7885 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7886 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7887 minor_arena = ip_minor_arena_la; 7888 } else { 7889 /* 7890 * Either minor numbers in the large arena were exhausted 7891 * or a non socket application is doing the open. 7892 * Try to allocate from the small arena. 7893 */ 7894 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7895 return (EBUSY); 7896 } 7897 minor_arena = ip_minor_arena_sa; 7898 } 7899 7900 ASSERT(minor_arena != NULL); 7901 7902 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7903 7904 if (flag & SO_FALLBACK) { 7905 /* 7906 * Non streams socket needs a stream to fallback to 7907 */ 7908 RD(q)->q_ptr = (void *)conn_dev; 7909 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7910 WR(q)->q_ptr = (void *)minor_arena; 7911 qprocson(q); 7912 return (0); 7913 } else if (flag & SO_ACCEPTOR) { 7914 q->q_qinfo = &tcp_acceptor_rinit; 7915 /* 7916 * the conn_dev and minor_arena will be subsequently used by 7917 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7918 * the minor device number for this connection from the q_ptr. 7919 */ 7920 RD(q)->q_ptr = (void *)conn_dev; 7921 WR(q)->q_qinfo = &tcp_acceptor_winit; 7922 WR(q)->q_ptr = (void *)minor_arena; 7923 qprocson(q); 7924 return (0); 7925 } 7926 7927 issocket = flag & SO_SOCKSTR; 7928 connp = tcp_create_common(credp, isv6, issocket, &err); 7929 7930 if (connp == NULL) { 7931 inet_minor_free(minor_arena, conn_dev); 7932 q->q_ptr = WR(q)->q_ptr = NULL; 7933 return (err); 7934 } 7935 7936 connp->conn_rq = q; 7937 connp->conn_wq = WR(q); 7938 q->q_ptr = WR(q)->q_ptr = connp; 7939 7940 connp->conn_dev = conn_dev; 7941 connp->conn_minor_arena = minor_arena; 7942 7943 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7944 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7945 7946 tcp = connp->conn_tcp; 7947 7948 if (issocket) { 7949 WR(q)->q_qinfo = &tcp_sock_winit; 7950 } else { 7951 #ifdef _ILP32 7952 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 7953 #else 7954 tcp->tcp_acceptor_id = conn_dev; 7955 #endif /* _ILP32 */ 7956 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 7957 } 7958 7959 /* 7960 * Put the ref for TCP. Ref for IP was already put 7961 * by ipcl_conn_create. Also Make the conn_t globally 7962 * visible to walkers 7963 */ 7964 mutex_enter(&connp->conn_lock); 7965 CONN_INC_REF_LOCKED(connp); 7966 ASSERT(connp->conn_ref == 2); 7967 connp->conn_state_flags &= ~CONN_INCIPIENT; 7968 mutex_exit(&connp->conn_lock); 7969 7970 qprocson(q); 7971 return (0); 7972 } 7973 7974 /* 7975 * Some TCP options can be "set" by requesting them in the option 7976 * buffer. This is needed for XTI feature test though we do not 7977 * allow it in general. We interpret that this mechanism is more 7978 * applicable to OSI protocols and need not be allowed in general. 7979 * This routine filters out options for which it is not allowed (most) 7980 * and lets through those (few) for which it is. [ The XTI interface 7981 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 7982 * ever implemented will have to be allowed here ]. 7983 */ 7984 static boolean_t 7985 tcp_allow_connopt_set(int level, int name) 7986 { 7987 7988 switch (level) { 7989 case IPPROTO_TCP: 7990 switch (name) { 7991 case TCP_NODELAY: 7992 return (B_TRUE); 7993 default: 7994 return (B_FALSE); 7995 } 7996 /*NOTREACHED*/ 7997 default: 7998 return (B_FALSE); 7999 } 8000 /*NOTREACHED*/ 8001 } 8002 8003 /* 8004 * This routine gets default values of certain options whose default 8005 * values are maintained by protocol specific code 8006 */ 8007 /* ARGSUSED */ 8008 int 8009 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 8010 { 8011 int32_t *i1 = (int32_t *)ptr; 8012 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 8013 8014 switch (level) { 8015 case IPPROTO_TCP: 8016 switch (name) { 8017 case TCP_NOTIFY_THRESHOLD: 8018 *i1 = tcps->tcps_ip_notify_interval; 8019 break; 8020 case TCP_ABORT_THRESHOLD: 8021 *i1 = tcps->tcps_ip_abort_interval; 8022 break; 8023 case TCP_CONN_NOTIFY_THRESHOLD: 8024 *i1 = tcps->tcps_ip_notify_cinterval; 8025 break; 8026 case TCP_CONN_ABORT_THRESHOLD: 8027 *i1 = tcps->tcps_ip_abort_cinterval; 8028 break; 8029 default: 8030 return (-1); 8031 } 8032 break; 8033 case IPPROTO_IP: 8034 switch (name) { 8035 case IP_TTL: 8036 *i1 = tcps->tcps_ipv4_ttl; 8037 break; 8038 default: 8039 return (-1); 8040 } 8041 break; 8042 case IPPROTO_IPV6: 8043 switch (name) { 8044 case IPV6_UNICAST_HOPS: 8045 *i1 = tcps->tcps_ipv6_hoplimit; 8046 break; 8047 default: 8048 return (-1); 8049 } 8050 break; 8051 default: 8052 return (-1); 8053 } 8054 return (sizeof (int)); 8055 } 8056 8057 /* 8058 * TCP routine to get the values of options. 8059 */ 8060 static int 8061 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 8062 { 8063 int *i1 = (int *)ptr; 8064 tcp_t *tcp = connp->conn_tcp; 8065 conn_opt_arg_t coas; 8066 int retval; 8067 8068 coas.coa_connp = connp; 8069 coas.coa_ixa = connp->conn_ixa; 8070 coas.coa_ipp = &connp->conn_xmit_ipp; 8071 coas.coa_ancillary = B_FALSE; 8072 coas.coa_changed = 0; 8073 8074 switch (level) { 8075 case SOL_SOCKET: 8076 switch (name) { 8077 case SO_SND_COPYAVOID: 8078 *i1 = tcp->tcp_snd_zcopy_on ? 8079 SO_SND_COPYAVOID : 0; 8080 return (sizeof (int)); 8081 case SO_ACCEPTCONN: 8082 *i1 = (tcp->tcp_state == TCPS_LISTEN); 8083 return (sizeof (int)); 8084 } 8085 break; 8086 case IPPROTO_TCP: 8087 switch (name) { 8088 case TCP_NODELAY: 8089 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 8090 return (sizeof (int)); 8091 case TCP_MAXSEG: 8092 *i1 = tcp->tcp_mss; 8093 return (sizeof (int)); 8094 case TCP_NOTIFY_THRESHOLD: 8095 *i1 = (int)tcp->tcp_first_timer_threshold; 8096 return (sizeof (int)); 8097 case TCP_ABORT_THRESHOLD: 8098 *i1 = tcp->tcp_second_timer_threshold; 8099 return (sizeof (int)); 8100 case TCP_CONN_NOTIFY_THRESHOLD: 8101 *i1 = tcp->tcp_first_ctimer_threshold; 8102 return (sizeof (int)); 8103 case TCP_CONN_ABORT_THRESHOLD: 8104 *i1 = tcp->tcp_second_ctimer_threshold; 8105 return (sizeof (int)); 8106 case TCP_INIT_CWND: 8107 *i1 = tcp->tcp_init_cwnd; 8108 return (sizeof (int)); 8109 case TCP_KEEPALIVE_THRESHOLD: 8110 *i1 = tcp->tcp_ka_interval; 8111 return (sizeof (int)); 8112 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8113 *i1 = tcp->tcp_ka_abort_thres; 8114 return (sizeof (int)); 8115 case TCP_CORK: 8116 *i1 = tcp->tcp_cork; 8117 return (sizeof (int)); 8118 } 8119 break; 8120 case IPPROTO_IP: 8121 if (connp->conn_family != AF_INET) 8122 return (-1); 8123 switch (name) { 8124 case IP_OPTIONS: 8125 case T_IP_OPTIONS: 8126 /* Caller ensures enough space */ 8127 return (ip_opt_get_user(connp, ptr)); 8128 default: 8129 break; 8130 } 8131 break; 8132 8133 case IPPROTO_IPV6: 8134 /* 8135 * IPPROTO_IPV6 options are only supported for sockets 8136 * that are using IPv6 on the wire. 8137 */ 8138 if (connp->conn_ipversion != IPV6_VERSION) { 8139 return (-1); 8140 } 8141 switch (name) { 8142 case IPV6_PATHMTU: 8143 if (tcp->tcp_state < TCPS_ESTABLISHED) 8144 return (-1); 8145 break; 8146 } 8147 break; 8148 } 8149 mutex_enter(&connp->conn_lock); 8150 retval = conn_opt_get(&coas, level, name, ptr); 8151 mutex_exit(&connp->conn_lock); 8152 return (retval); 8153 } 8154 8155 /* 8156 * TCP routine to get the values of options. 8157 */ 8158 int 8159 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 8160 { 8161 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 8162 } 8163 8164 /* returns UNIX error, the optlen is a value-result arg */ 8165 int 8166 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8167 void *optvalp, socklen_t *optlen, cred_t *cr) 8168 { 8169 conn_t *connp = (conn_t *)proto_handle; 8170 squeue_t *sqp = connp->conn_sqp; 8171 int error; 8172 t_uscalar_t max_optbuf_len; 8173 void *optvalp_buf; 8174 int len; 8175 8176 ASSERT(connp->conn_upper_handle != NULL); 8177 8178 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 8179 tcp_opt_obj.odb_opt_des_arr, 8180 tcp_opt_obj.odb_opt_arr_cnt, 8181 B_FALSE, B_TRUE, cr); 8182 if (error != 0) { 8183 if (error < 0) { 8184 error = proto_tlitosyserr(-error); 8185 } 8186 return (error); 8187 } 8188 8189 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8190 8191 error = squeue_synch_enter(sqp, connp, NULL); 8192 if (error == ENOMEM) { 8193 kmem_free(optvalp_buf, max_optbuf_len); 8194 return (ENOMEM); 8195 } 8196 8197 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8198 squeue_synch_exit(sqp, connp); 8199 8200 if (len == -1) { 8201 kmem_free(optvalp_buf, max_optbuf_len); 8202 return (EINVAL); 8203 } 8204 8205 /* 8206 * update optlen and copy option value 8207 */ 8208 t_uscalar_t size = MIN(len, *optlen); 8209 8210 bcopy(optvalp_buf, optvalp, size); 8211 bcopy(&size, optlen, sizeof (size)); 8212 8213 kmem_free(optvalp_buf, max_optbuf_len); 8214 return (0); 8215 } 8216 8217 /* 8218 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8219 * Parameters are assumed to be verified by the caller. 8220 */ 8221 /* ARGSUSED */ 8222 int 8223 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8224 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8225 void *thisdg_attrs, cred_t *cr) 8226 { 8227 tcp_t *tcp = connp->conn_tcp; 8228 int *i1 = (int *)invalp; 8229 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8230 boolean_t checkonly; 8231 int reterr; 8232 tcp_stack_t *tcps = tcp->tcp_tcps; 8233 conn_opt_arg_t coas; 8234 8235 coas.coa_connp = connp; 8236 coas.coa_ixa = connp->conn_ixa; 8237 coas.coa_ipp = &connp->conn_xmit_ipp; 8238 coas.coa_ancillary = B_FALSE; 8239 coas.coa_changed = 0; 8240 8241 switch (optset_context) { 8242 case SETFN_OPTCOM_CHECKONLY: 8243 checkonly = B_TRUE; 8244 /* 8245 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8246 * inlen != 0 implies value supplied and 8247 * we have to "pretend" to set it. 8248 * inlen == 0 implies that there is no 8249 * value part in T_CHECK request and just validation 8250 * done elsewhere should be enough, we just return here. 8251 */ 8252 if (inlen == 0) { 8253 *outlenp = 0; 8254 return (0); 8255 } 8256 break; 8257 case SETFN_OPTCOM_NEGOTIATE: 8258 checkonly = B_FALSE; 8259 break; 8260 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8261 case SETFN_CONN_NEGOTIATE: 8262 checkonly = B_FALSE; 8263 /* 8264 * Negotiating local and "association-related" options 8265 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8266 * primitives is allowed by XTI, but we choose 8267 * to not implement this style negotiation for Internet 8268 * protocols (We interpret it is a must for OSI world but 8269 * optional for Internet protocols) for all options. 8270 * [ Will do only for the few options that enable test 8271 * suites that our XTI implementation of this feature 8272 * works for transports that do allow it ] 8273 */ 8274 if (!tcp_allow_connopt_set(level, name)) { 8275 *outlenp = 0; 8276 return (EINVAL); 8277 } 8278 break; 8279 default: 8280 /* 8281 * We should never get here 8282 */ 8283 *outlenp = 0; 8284 return (EINVAL); 8285 } 8286 8287 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8288 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8289 8290 /* 8291 * For TCP, we should have no ancillary data sent down 8292 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8293 * has to be zero. 8294 */ 8295 ASSERT(thisdg_attrs == NULL); 8296 8297 /* 8298 * For fixed length options, no sanity check 8299 * of passed in length is done. It is assumed *_optcom_req() 8300 * routines do the right thing. 8301 */ 8302 switch (level) { 8303 case SOL_SOCKET: 8304 switch (name) { 8305 case SO_KEEPALIVE: 8306 if (checkonly) { 8307 /* check only case */ 8308 break; 8309 } 8310 8311 if (!onoff) { 8312 if (connp->conn_keepalive) { 8313 if (tcp->tcp_ka_tid != 0) { 8314 (void) TCP_TIMER_CANCEL(tcp, 8315 tcp->tcp_ka_tid); 8316 tcp->tcp_ka_tid = 0; 8317 } 8318 connp->conn_keepalive = 0; 8319 } 8320 break; 8321 } 8322 if (!connp->conn_keepalive) { 8323 /* Crank up the keepalive timer */ 8324 tcp->tcp_ka_last_intrvl = 0; 8325 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8326 tcp_keepalive_killer, 8327 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8328 connp->conn_keepalive = 1; 8329 } 8330 break; 8331 case SO_SNDBUF: { 8332 if (*i1 > tcps->tcps_max_buf) { 8333 *outlenp = 0; 8334 return (ENOBUFS); 8335 } 8336 if (checkonly) 8337 break; 8338 8339 connp->conn_sndbuf = *i1; 8340 if (tcps->tcps_snd_lowat_fraction != 0) { 8341 connp->conn_sndlowat = connp->conn_sndbuf / 8342 tcps->tcps_snd_lowat_fraction; 8343 } 8344 (void) tcp_maxpsz_set(tcp, B_TRUE); 8345 /* 8346 * If we are flow-controlled, recheck the condition. 8347 * There are apps that increase SO_SNDBUF size when 8348 * flow-controlled (EWOULDBLOCK), and expect the flow 8349 * control condition to be lifted right away. 8350 */ 8351 mutex_enter(&tcp->tcp_non_sq_lock); 8352 if (tcp->tcp_flow_stopped && 8353 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8354 tcp_clrqfull(tcp); 8355 } 8356 mutex_exit(&tcp->tcp_non_sq_lock); 8357 *outlenp = inlen; 8358 return (0); 8359 } 8360 case SO_RCVBUF: 8361 if (*i1 > tcps->tcps_max_buf) { 8362 *outlenp = 0; 8363 return (ENOBUFS); 8364 } 8365 /* Silently ignore zero */ 8366 if (!checkonly && *i1 != 0) { 8367 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8368 (void) tcp_rwnd_set(tcp, *i1); 8369 } 8370 /* 8371 * XXX should we return the rwnd here 8372 * and tcp_opt_get ? 8373 */ 8374 *outlenp = inlen; 8375 return (0); 8376 case SO_SND_COPYAVOID: 8377 if (!checkonly) { 8378 if (tcp->tcp_loopback || 8379 (tcp->tcp_kssl_ctx != NULL) || 8380 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8381 *outlenp = 0; 8382 return (EOPNOTSUPP); 8383 } 8384 tcp->tcp_snd_zcopy_aware = 1; 8385 } 8386 *outlenp = inlen; 8387 return (0); 8388 } 8389 break; 8390 case IPPROTO_TCP: 8391 switch (name) { 8392 case TCP_NODELAY: 8393 if (!checkonly) 8394 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8395 break; 8396 case TCP_NOTIFY_THRESHOLD: 8397 if (!checkonly) 8398 tcp->tcp_first_timer_threshold = *i1; 8399 break; 8400 case TCP_ABORT_THRESHOLD: 8401 if (!checkonly) 8402 tcp->tcp_second_timer_threshold = *i1; 8403 break; 8404 case TCP_CONN_NOTIFY_THRESHOLD: 8405 if (!checkonly) 8406 tcp->tcp_first_ctimer_threshold = *i1; 8407 break; 8408 case TCP_CONN_ABORT_THRESHOLD: 8409 if (!checkonly) 8410 tcp->tcp_second_ctimer_threshold = *i1; 8411 break; 8412 case TCP_RECVDSTADDR: 8413 if (tcp->tcp_state > TCPS_LISTEN) { 8414 *outlenp = 0; 8415 return (EOPNOTSUPP); 8416 } 8417 /* Setting done in conn_opt_set */ 8418 break; 8419 case TCP_INIT_CWND: { 8420 uint32_t init_cwnd = *((uint32_t *)invalp); 8421 8422 if (checkonly) 8423 break; 8424 8425 /* 8426 * Only allow socket with network configuration 8427 * privilege to set the initial cwnd to be larger 8428 * than allowed by RFC 3390. 8429 */ 8430 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8431 tcp->tcp_init_cwnd = init_cwnd; 8432 break; 8433 } 8434 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8435 *outlenp = 0; 8436 return (reterr); 8437 } 8438 if (init_cwnd > TCP_MAX_INIT_CWND) { 8439 *outlenp = 0; 8440 return (EINVAL); 8441 } 8442 tcp->tcp_init_cwnd = init_cwnd; 8443 break; 8444 } 8445 case TCP_KEEPALIVE_THRESHOLD: 8446 if (checkonly) 8447 break; 8448 8449 if (*i1 < tcps->tcps_keepalive_interval_low || 8450 *i1 > tcps->tcps_keepalive_interval_high) { 8451 *outlenp = 0; 8452 return (EINVAL); 8453 } 8454 if (*i1 != tcp->tcp_ka_interval) { 8455 tcp->tcp_ka_interval = *i1; 8456 /* 8457 * Check if we need to restart the 8458 * keepalive timer. 8459 */ 8460 if (tcp->tcp_ka_tid != 0) { 8461 ASSERT(connp->conn_keepalive); 8462 (void) TCP_TIMER_CANCEL(tcp, 8463 tcp->tcp_ka_tid); 8464 tcp->tcp_ka_last_intrvl = 0; 8465 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8466 tcp_keepalive_killer, 8467 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8468 } 8469 } 8470 break; 8471 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8472 if (!checkonly) { 8473 if (*i1 < 8474 tcps->tcps_keepalive_abort_interval_low || 8475 *i1 > 8476 tcps->tcps_keepalive_abort_interval_high) { 8477 *outlenp = 0; 8478 return (EINVAL); 8479 } 8480 tcp->tcp_ka_abort_thres = *i1; 8481 } 8482 break; 8483 case TCP_CORK: 8484 if (!checkonly) { 8485 /* 8486 * if tcp->tcp_cork was set and is now 8487 * being unset, we have to make sure that 8488 * the remaining data gets sent out. Also 8489 * unset tcp->tcp_cork so that tcp_wput_data() 8490 * can send data even if it is less than mss 8491 */ 8492 if (tcp->tcp_cork && onoff == 0 && 8493 tcp->tcp_unsent > 0) { 8494 tcp->tcp_cork = B_FALSE; 8495 tcp_wput_data(tcp, NULL, B_FALSE); 8496 } 8497 tcp->tcp_cork = onoff; 8498 } 8499 break; 8500 default: 8501 break; 8502 } 8503 break; 8504 case IPPROTO_IP: 8505 if (connp->conn_family != AF_INET) { 8506 *outlenp = 0; 8507 return (EINVAL); 8508 } 8509 switch (name) { 8510 case IP_SEC_OPT: 8511 /* 8512 * We should not allow policy setting after 8513 * we start listening for connections. 8514 */ 8515 if (tcp->tcp_state == TCPS_LISTEN) { 8516 return (EINVAL); 8517 } 8518 break; 8519 } 8520 break; 8521 case IPPROTO_IPV6: 8522 /* 8523 * IPPROTO_IPV6 options are only supported for sockets 8524 * that are using IPv6 on the wire. 8525 */ 8526 if (connp->conn_ipversion != IPV6_VERSION) { 8527 *outlenp = 0; 8528 return (EINVAL); 8529 } 8530 8531 switch (name) { 8532 case IPV6_RECVPKTINFO: 8533 if (!checkonly) { 8534 /* Force it to be sent up with the next msg */ 8535 tcp->tcp_recvifindex = 0; 8536 } 8537 break; 8538 case IPV6_RECVTCLASS: 8539 if (!checkonly) { 8540 /* Force it to be sent up with the next msg */ 8541 tcp->tcp_recvtclass = 0xffffffffU; 8542 } 8543 break; 8544 case IPV6_RECVHOPLIMIT: 8545 if (!checkonly) { 8546 /* Force it to be sent up with the next msg */ 8547 tcp->tcp_recvhops = 0xffffffffU; 8548 } 8549 break; 8550 case IPV6_PKTINFO: 8551 /* This is an extra check for TCP */ 8552 if (inlen == sizeof (struct in6_pktinfo)) { 8553 struct in6_pktinfo *pkti; 8554 8555 pkti = (struct in6_pktinfo *)invalp; 8556 /* 8557 * RFC 3542 states that ipi6_addr must be 8558 * the unspecified address when setting the 8559 * IPV6_PKTINFO sticky socket option on a 8560 * TCP socket. 8561 */ 8562 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8563 return (EINVAL); 8564 } 8565 break; 8566 case IPV6_SEC_OPT: 8567 /* 8568 * We should not allow policy setting after 8569 * we start listening for connections. 8570 */ 8571 if (tcp->tcp_state == TCPS_LISTEN) { 8572 return (EINVAL); 8573 } 8574 break; 8575 } 8576 break; 8577 } 8578 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8579 checkonly, cr); 8580 if (reterr != 0) { 8581 *outlenp = 0; 8582 return (reterr); 8583 } 8584 8585 /* 8586 * Common case of OK return with outval same as inval 8587 */ 8588 if (invalp != outvalp) { 8589 /* don't trust bcopy for identical src/dst */ 8590 (void) bcopy(invalp, outvalp, inlen); 8591 } 8592 *outlenp = inlen; 8593 8594 if (coas.coa_changed & COA_HEADER_CHANGED) { 8595 reterr = tcp_build_hdrs(tcp); 8596 if (reterr != 0) 8597 return (reterr); 8598 } 8599 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8600 in6_addr_t nexthop; 8601 8602 /* 8603 * If we are connected we re-cache the information. 8604 * We ignore errors to preserve BSD behavior. 8605 * Note that we don't redo IPsec policy lookup here 8606 * since the final destination (or source) didn't change. 8607 */ 8608 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8609 &connp->conn_faddr_v6, &nexthop); 8610 8611 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8612 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8613 (void) ip_attr_connect(connp, connp->conn_ixa, 8614 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8615 &nexthop, connp->conn_fport, NULL, NULL, 8616 IPDF_VERIFY_DST); 8617 } 8618 } 8619 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8620 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8621 } 8622 if (coas.coa_changed & COA_WROFF_CHANGED) { 8623 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8624 tcps->tcps_wroff_xtra; 8625 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8626 connp->conn_wroff); 8627 } 8628 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8629 if (IPCL_IS_NONSTR(connp)) 8630 proto_set_rx_oob_opt(connp, onoff); 8631 } 8632 return (0); 8633 } 8634 8635 /* ARGSUSED */ 8636 int 8637 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8638 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8639 void *thisdg_attrs, cred_t *cr) 8640 { 8641 conn_t *connp = Q_TO_CONN(q); 8642 8643 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8644 outlenp, outvalp, thisdg_attrs, cr)); 8645 } 8646 8647 int 8648 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8649 const void *optvalp, socklen_t optlen, cred_t *cr) 8650 { 8651 conn_t *connp = (conn_t *)proto_handle; 8652 squeue_t *sqp = connp->conn_sqp; 8653 int error; 8654 8655 ASSERT(connp->conn_upper_handle != NULL); 8656 /* 8657 * Entering the squeue synchronously can result in a context switch, 8658 * which can cause a rather sever performance degradation. So we try to 8659 * handle whatever options we can without entering the squeue. 8660 */ 8661 if (level == IPPROTO_TCP) { 8662 switch (option_name) { 8663 case TCP_NODELAY: 8664 if (optlen != sizeof (int32_t)) 8665 return (EINVAL); 8666 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8667 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8668 connp->conn_tcp->tcp_mss; 8669 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8670 return (0); 8671 default: 8672 break; 8673 } 8674 } 8675 8676 error = squeue_synch_enter(sqp, connp, NULL); 8677 if (error == ENOMEM) { 8678 return (ENOMEM); 8679 } 8680 8681 error = proto_opt_check(level, option_name, optlen, NULL, 8682 tcp_opt_obj.odb_opt_des_arr, 8683 tcp_opt_obj.odb_opt_arr_cnt, 8684 B_TRUE, B_FALSE, cr); 8685 8686 if (error != 0) { 8687 if (error < 0) { 8688 error = proto_tlitosyserr(-error); 8689 } 8690 squeue_synch_exit(sqp, connp); 8691 return (error); 8692 } 8693 8694 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8695 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8696 NULL, cr); 8697 squeue_synch_exit(sqp, connp); 8698 8699 ASSERT(error >= 0); 8700 8701 return (error); 8702 } 8703 8704 /* 8705 * Build/update the tcp header template (in conn_ht_iphc) based on 8706 * conn_xmit_ipp. The headers include ip6_t, any extension 8707 * headers, and the maximum size tcp header (to avoid reallocation 8708 * on the fly for additional tcp options). 8709 * 8710 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8711 * Returns failure if can't allocate memory. 8712 */ 8713 static int 8714 tcp_build_hdrs(tcp_t *tcp) 8715 { 8716 tcp_stack_t *tcps = tcp->tcp_tcps; 8717 conn_t *connp = tcp->tcp_connp; 8718 char buf[TCP_MAX_HDR_LENGTH]; 8719 uint_t buflen; 8720 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8721 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8722 tcpha_t *tcpha; 8723 uint32_t cksum; 8724 int error; 8725 8726 /* 8727 * We might be called after the connection is set up, and we might 8728 * have TS options already in the TCP header. Thus we save any 8729 * existing tcp header. 8730 */ 8731 buflen = connp->conn_ht_ulp_len; 8732 if (buflen != 0) { 8733 bcopy(connp->conn_ht_ulp, buf, buflen); 8734 extralen -= buflen - ulplen; 8735 ulplen = buflen; 8736 } 8737 8738 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8739 mutex_enter(&connp->conn_lock); 8740 error = conn_build_hdr_template(connp, ulplen, extralen, 8741 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8742 mutex_exit(&connp->conn_lock); 8743 if (error != 0) 8744 return (error); 8745 8746 /* 8747 * Any routing header/option has been massaged. The checksum difference 8748 * is stored in conn_sum for later use. 8749 */ 8750 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8751 tcp->tcp_tcpha = tcpha; 8752 8753 /* restore any old tcp header */ 8754 if (buflen != 0) { 8755 bcopy(buf, connp->conn_ht_ulp, buflen); 8756 } else { 8757 tcpha->tha_sum = 0; 8758 tcpha->tha_offset_and_reserved = (5 << 4); 8759 } 8760 tcpha->tha_lport = connp->conn_lport; 8761 tcpha->tha_fport = connp->conn_fport; 8762 8763 /* 8764 * IP wants our header length in the checksum field to 8765 * allow it to perform a single pseudo-header+checksum 8766 * calculation on behalf of TCP. 8767 * Include the adjustment for a source route once IP_OPTIONS is set. 8768 */ 8769 cksum = sizeof (tcpha_t) + connp->conn_sum; 8770 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8771 ASSERT(cksum < 0x10000); 8772 tcpha->tha_sum = htons(cksum); 8773 8774 if (connp->conn_ipversion == IPV4_VERSION) 8775 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8776 else 8777 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8778 8779 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8780 connp->conn_wroff) { 8781 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8782 tcps->tcps_wroff_xtra; 8783 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8784 connp->conn_wroff); 8785 } 8786 return (0); 8787 } 8788 8789 /* Get callback routine passed to nd_load by tcp_param_register */ 8790 /* ARGSUSED */ 8791 static int 8792 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8793 { 8794 tcpparam_t *tcppa = (tcpparam_t *)cp; 8795 8796 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8797 return (0); 8798 } 8799 8800 /* 8801 * Walk through the param array specified registering each element with the 8802 * named dispatch handler. 8803 */ 8804 static boolean_t 8805 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8806 { 8807 for (; cnt-- > 0; tcppa++) { 8808 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8809 if (!nd_load(ndp, tcppa->tcp_param_name, 8810 tcp_param_get, tcp_param_set, 8811 (caddr_t)tcppa)) { 8812 nd_free(ndp); 8813 return (B_FALSE); 8814 } 8815 } 8816 } 8817 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8818 KM_SLEEP); 8819 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8820 sizeof (tcpparam_t)); 8821 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8822 tcp_param_get, tcp_param_set_aligned, 8823 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8824 nd_free(ndp); 8825 return (B_FALSE); 8826 } 8827 if (!nd_load(ndp, "tcp_extra_priv_ports", 8828 tcp_extra_priv_ports_get, NULL, NULL)) { 8829 nd_free(ndp); 8830 return (B_FALSE); 8831 } 8832 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8833 NULL, tcp_extra_priv_ports_add, NULL)) { 8834 nd_free(ndp); 8835 return (B_FALSE); 8836 } 8837 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8838 NULL, tcp_extra_priv_ports_del, NULL)) { 8839 nd_free(ndp); 8840 return (B_FALSE); 8841 } 8842 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8843 tcp_1948_phrase_set, NULL)) { 8844 nd_free(ndp); 8845 return (B_FALSE); 8846 } 8847 8848 8849 if (!nd_load(ndp, "tcp_listener_limit_conf", 8850 tcp_listener_conf_get, NULL, NULL)) { 8851 nd_free(ndp); 8852 return (B_FALSE); 8853 } 8854 if (!nd_load(ndp, "tcp_listener_limit_conf_add", 8855 NULL, tcp_listener_conf_add, NULL)) { 8856 nd_free(ndp); 8857 return (B_FALSE); 8858 } 8859 if (!nd_load(ndp, "tcp_listener_limit_conf_del", 8860 NULL, tcp_listener_conf_del, NULL)) { 8861 nd_free(ndp); 8862 return (B_FALSE); 8863 } 8864 8865 /* 8866 * Dummy ndd variables - only to convey obsolescence information 8867 * through printing of their name (no get or set routines) 8868 * XXX Remove in future releases ? 8869 */ 8870 if (!nd_load(ndp, 8871 "tcp_close_wait_interval(obsoleted - " 8872 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8873 nd_free(ndp); 8874 return (B_FALSE); 8875 } 8876 return (B_TRUE); 8877 } 8878 8879 /* ndd set routine for tcp_wroff_xtra. */ 8880 /* ARGSUSED */ 8881 static int 8882 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8883 cred_t *cr) 8884 { 8885 long new_value; 8886 tcpparam_t *tcppa = (tcpparam_t *)cp; 8887 8888 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8889 new_value < tcppa->tcp_param_min || 8890 new_value > tcppa->tcp_param_max) { 8891 return (EINVAL); 8892 } 8893 /* 8894 * Need to make sure new_value is a multiple of 4. If it is not, 8895 * round it up. For future 64 bit requirement, we actually make it 8896 * a multiple of 8. 8897 */ 8898 if (new_value & 0x7) { 8899 new_value = (new_value & ~0x7) + 0x8; 8900 } 8901 tcppa->tcp_param_val = new_value; 8902 return (0); 8903 } 8904 8905 /* Set callback routine passed to nd_load by tcp_param_register */ 8906 /* ARGSUSED */ 8907 static int 8908 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8909 { 8910 long new_value; 8911 tcpparam_t *tcppa = (tcpparam_t *)cp; 8912 8913 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8914 new_value < tcppa->tcp_param_min || 8915 new_value > tcppa->tcp_param_max) { 8916 return (EINVAL); 8917 } 8918 tcppa->tcp_param_val = new_value; 8919 return (0); 8920 } 8921 8922 static void 8923 tcp_reass_timer(void *arg) 8924 { 8925 conn_t *connp = (conn_t *)arg; 8926 tcp_t *tcp = connp->conn_tcp; 8927 8928 tcp->tcp_reass_tid = 0; 8929 if (tcp->tcp_reass_head == NULL) 8930 return; 8931 ASSERT(tcp->tcp_reass_tail != NULL); 8932 tcp_sack_remove(tcp->tcp_sack_list, TCP_REASS_END(tcp->tcp_reass_tail), 8933 &tcp->tcp_num_sack_blk); 8934 tcp_close_mpp(&tcp->tcp_reass_head); 8935 tcp->tcp_reass_tail = NULL; 8936 } 8937 8938 /* 8939 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8940 * is filled, return as much as we can. The message passed in may be 8941 * multi-part, chained using b_cont. "start" is the starting sequence 8942 * number for this piece. 8943 */ 8944 static mblk_t * 8945 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8946 { 8947 uint32_t end; 8948 mblk_t *mp1; 8949 mblk_t *mp2; 8950 mblk_t *next_mp; 8951 uint32_t u1; 8952 tcp_stack_t *tcps = tcp->tcp_tcps; 8953 8954 8955 /* Walk through all the new pieces. */ 8956 do { 8957 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 8958 (uintptr_t)INT_MAX); 8959 end = start + (int)(mp->b_wptr - mp->b_rptr); 8960 next_mp = mp->b_cont; 8961 if (start == end) { 8962 /* Empty. Blast it. */ 8963 freeb(mp); 8964 continue; 8965 } 8966 mp->b_cont = NULL; 8967 TCP_REASS_SET_SEQ(mp, start); 8968 TCP_REASS_SET_END(mp, end); 8969 mp1 = tcp->tcp_reass_tail; 8970 if (!mp1) { 8971 tcp->tcp_reass_tail = mp; 8972 tcp->tcp_reass_head = mp; 8973 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8974 UPDATE_MIB(&tcps->tcps_mib, 8975 tcpInDataUnorderBytes, end - start); 8976 continue; 8977 } 8978 /* New stuff completely beyond tail? */ 8979 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 8980 /* Link it on end. */ 8981 mp1->b_cont = mp; 8982 tcp->tcp_reass_tail = mp; 8983 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8984 UPDATE_MIB(&tcps->tcps_mib, 8985 tcpInDataUnorderBytes, end - start); 8986 continue; 8987 } 8988 mp1 = tcp->tcp_reass_head; 8989 u1 = TCP_REASS_SEQ(mp1); 8990 /* New stuff at the front? */ 8991 if (SEQ_LT(start, u1)) { 8992 /* Yes... Check for overlap. */ 8993 mp->b_cont = mp1; 8994 tcp->tcp_reass_head = mp; 8995 tcp_reass_elim_overlap(tcp, mp); 8996 continue; 8997 } 8998 /* 8999 * The new piece fits somewhere between the head and tail. 9000 * We find our slot, where mp1 precedes us and mp2 trails. 9001 */ 9002 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 9003 u1 = TCP_REASS_SEQ(mp2); 9004 if (SEQ_LEQ(start, u1)) 9005 break; 9006 } 9007 /* Link ourselves in */ 9008 mp->b_cont = mp2; 9009 mp1->b_cont = mp; 9010 9011 /* Trim overlap with following mblk(s) first */ 9012 tcp_reass_elim_overlap(tcp, mp); 9013 9014 /* Trim overlap with preceding mblk */ 9015 tcp_reass_elim_overlap(tcp, mp1); 9016 9017 } while (start = end, mp = next_mp); 9018 mp1 = tcp->tcp_reass_head; 9019 /* Anything ready to go? */ 9020 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 9021 return (NULL); 9022 /* Eat what we can off the queue */ 9023 for (;;) { 9024 mp = mp1->b_cont; 9025 end = TCP_REASS_END(mp1); 9026 TCP_REASS_SET_SEQ(mp1, 0); 9027 TCP_REASS_SET_END(mp1, 0); 9028 if (!mp) { 9029 tcp->tcp_reass_tail = NULL; 9030 break; 9031 } 9032 if (end != TCP_REASS_SEQ(mp)) { 9033 mp1->b_cont = NULL; 9034 break; 9035 } 9036 mp1 = mp; 9037 } 9038 mp1 = tcp->tcp_reass_head; 9039 tcp->tcp_reass_head = mp; 9040 return (mp1); 9041 } 9042 9043 /* Eliminate any overlap that mp may have over later mblks */ 9044 static void 9045 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 9046 { 9047 uint32_t end; 9048 mblk_t *mp1; 9049 uint32_t u1; 9050 tcp_stack_t *tcps = tcp->tcp_tcps; 9051 9052 end = TCP_REASS_END(mp); 9053 while ((mp1 = mp->b_cont) != NULL) { 9054 u1 = TCP_REASS_SEQ(mp1); 9055 if (!SEQ_GT(end, u1)) 9056 break; 9057 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 9058 mp->b_wptr -= end - u1; 9059 TCP_REASS_SET_END(mp, u1); 9060 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 9061 UPDATE_MIB(&tcps->tcps_mib, 9062 tcpInDataPartDupBytes, end - u1); 9063 break; 9064 } 9065 mp->b_cont = mp1->b_cont; 9066 TCP_REASS_SET_SEQ(mp1, 0); 9067 TCP_REASS_SET_END(mp1, 0); 9068 freeb(mp1); 9069 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 9070 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 9071 } 9072 if (!mp1) 9073 tcp->tcp_reass_tail = mp; 9074 } 9075 9076 static uint_t 9077 tcp_rwnd_reopen(tcp_t *tcp) 9078 { 9079 uint_t ret = 0; 9080 uint_t thwin; 9081 conn_t *connp = tcp->tcp_connp; 9082 9083 /* Learn the latest rwnd information that we sent to the other side. */ 9084 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 9085 << tcp->tcp_rcv_ws; 9086 /* This is peer's calculated send window (our receive window). */ 9087 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 9088 /* 9089 * Increase the receive window to max. But we need to do receiver 9090 * SWS avoidance. This means that we need to check the increase of 9091 * of receive window is at least 1 MSS. 9092 */ 9093 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 9094 /* 9095 * If the window that the other side knows is less than max 9096 * deferred acks segments, send an update immediately. 9097 */ 9098 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 9099 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 9100 ret = TH_ACK_NEEDED; 9101 } 9102 tcp->tcp_rwnd = connp->conn_rcvbuf; 9103 } 9104 return (ret); 9105 } 9106 9107 /* 9108 * Send up all messages queued on tcp_rcv_list. 9109 */ 9110 static uint_t 9111 tcp_rcv_drain(tcp_t *tcp) 9112 { 9113 mblk_t *mp; 9114 uint_t ret = 0; 9115 #ifdef DEBUG 9116 uint_t cnt = 0; 9117 #endif 9118 queue_t *q = tcp->tcp_connp->conn_rq; 9119 9120 /* Can't drain on an eager connection */ 9121 if (tcp->tcp_listener != NULL) 9122 return (ret); 9123 9124 /* Can't be a non-STREAMS connection */ 9125 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 9126 9127 /* No need for the push timer now. */ 9128 if (tcp->tcp_push_tid != 0) { 9129 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 9130 tcp->tcp_push_tid = 0; 9131 } 9132 9133 /* 9134 * Handle two cases here: we are currently fused or we were 9135 * previously fused and have some urgent data to be delivered 9136 * upstream. The latter happens because we either ran out of 9137 * memory or were detached and therefore sending the SIGURG was 9138 * deferred until this point. In either case we pass control 9139 * over to tcp_fuse_rcv_drain() since it may need to complete 9140 * some work. 9141 */ 9142 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 9143 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 9144 tcp->tcp_fused_sigurg_mp != NULL); 9145 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 9146 &tcp->tcp_fused_sigurg_mp)) 9147 return (ret); 9148 } 9149 9150 while ((mp = tcp->tcp_rcv_list) != NULL) { 9151 tcp->tcp_rcv_list = mp->b_next; 9152 mp->b_next = NULL; 9153 #ifdef DEBUG 9154 cnt += msgdsize(mp); 9155 #endif 9156 /* Does this need SSL processing first? */ 9157 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 9158 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 9159 mblk_t *, mp); 9160 tcp_kssl_input(tcp, mp, NULL); 9161 continue; 9162 } 9163 putnext(q, mp); 9164 } 9165 #ifdef DEBUG 9166 ASSERT(cnt == tcp->tcp_rcv_cnt); 9167 #endif 9168 tcp->tcp_rcv_last_head = NULL; 9169 tcp->tcp_rcv_last_tail = NULL; 9170 tcp->tcp_rcv_cnt = 0; 9171 9172 if (canputnext(q)) 9173 return (tcp_rwnd_reopen(tcp)); 9174 9175 return (ret); 9176 } 9177 9178 /* 9179 * Queue data on tcp_rcv_list which is a b_next chain. 9180 * tcp_rcv_last_head/tail is the last element of this chain. 9181 * Each element of the chain is a b_cont chain. 9182 * 9183 * M_DATA messages are added to the current element. 9184 * Other messages are added as new (b_next) elements. 9185 */ 9186 void 9187 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 9188 { 9189 ASSERT(seg_len == msgdsize(mp)); 9190 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 9191 9192 if (is_system_labeled()) { 9193 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 9194 /* 9195 * Provide for protocols above TCP such as RPC. NOPID leaves 9196 * db_cpid unchanged. 9197 * The cred could have already been set. 9198 */ 9199 if (cr != NULL) 9200 mblk_setcred(mp, cr, NOPID); 9201 } 9202 9203 if (tcp->tcp_rcv_list == NULL) { 9204 ASSERT(tcp->tcp_rcv_last_head == NULL); 9205 tcp->tcp_rcv_list = mp; 9206 tcp->tcp_rcv_last_head = mp; 9207 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 9208 tcp->tcp_rcv_last_tail->b_cont = mp; 9209 } else { 9210 tcp->tcp_rcv_last_head->b_next = mp; 9211 tcp->tcp_rcv_last_head = mp; 9212 } 9213 9214 while (mp->b_cont) 9215 mp = mp->b_cont; 9216 9217 tcp->tcp_rcv_last_tail = mp; 9218 tcp->tcp_rcv_cnt += seg_len; 9219 tcp->tcp_rwnd -= seg_len; 9220 } 9221 9222 /* The minimum of smoothed mean deviation in RTO calculation. */ 9223 #define TCP_SD_MIN 400 9224 9225 /* 9226 * Set RTO for this connection. The formula is from Jacobson and Karels' 9227 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9228 * are the same as those in Appendix A.2 of that paper. 9229 * 9230 * m = new measurement 9231 * sa = smoothed RTT average (8 * average estimates). 9232 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9233 */ 9234 static void 9235 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9236 { 9237 long m = TICK_TO_MSEC(rtt); 9238 clock_t sa = tcp->tcp_rtt_sa; 9239 clock_t sv = tcp->tcp_rtt_sd; 9240 clock_t rto; 9241 tcp_stack_t *tcps = tcp->tcp_tcps; 9242 9243 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9244 tcp->tcp_rtt_update++; 9245 9246 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9247 if (sa != 0) { 9248 /* 9249 * Update average estimator: 9250 * new rtt = 7/8 old rtt + 1/8 Error 9251 */ 9252 9253 /* m is now Error in estimate. */ 9254 m -= sa >> 3; 9255 if ((sa += m) <= 0) { 9256 /* 9257 * Don't allow the smoothed average to be negative. 9258 * We use 0 to denote reinitialization of the 9259 * variables. 9260 */ 9261 sa = 1; 9262 } 9263 9264 /* 9265 * Update deviation estimator: 9266 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9267 */ 9268 if (m < 0) 9269 m = -m; 9270 m -= sv >> 2; 9271 sv += m; 9272 } else { 9273 /* 9274 * This follows BSD's implementation. So the reinitialized 9275 * RTO is 3 * m. We cannot go less than 2 because if the 9276 * link is bandwidth dominated, doubling the window size 9277 * during slow start means doubling the RTT. We want to be 9278 * more conservative when we reinitialize our estimates. 3 9279 * is just a convenient number. 9280 */ 9281 sa = m << 3; 9282 sv = m << 1; 9283 } 9284 if (sv < TCP_SD_MIN) { 9285 /* 9286 * We do not know that if sa captures the delay ACK 9287 * effect as in a long train of segments, a receiver 9288 * does not delay its ACKs. So set the minimum of sv 9289 * to be TCP_SD_MIN, which is default to 400 ms, twice 9290 * of BSD DATO. That means the minimum of mean 9291 * deviation is 100 ms. 9292 * 9293 */ 9294 sv = TCP_SD_MIN; 9295 } 9296 tcp->tcp_rtt_sa = sa; 9297 tcp->tcp_rtt_sd = sv; 9298 /* 9299 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9300 * 9301 * Add tcp_rexmit_interval extra in case of extreme environment 9302 * where the algorithm fails to work. The default value of 9303 * tcp_rexmit_interval_extra should be 0. 9304 * 9305 * As we use a finer grained clock than BSD and update 9306 * RTO for every ACKs, add in another .25 of RTT to the 9307 * deviation of RTO to accomodate burstiness of 1/4 of 9308 * window size. 9309 */ 9310 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9311 9312 if (rto > tcps->tcps_rexmit_interval_max) { 9313 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9314 } else if (rto < tcps->tcps_rexmit_interval_min) { 9315 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9316 } else { 9317 tcp->tcp_rto = rto; 9318 } 9319 9320 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9321 tcp->tcp_timer_backoff = 0; 9322 } 9323 9324 /* 9325 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9326 * send queue which starts at the given sequence number. If the given 9327 * sequence number is equal to last valid sequence number (tcp_snxt), the 9328 * returned mblk is the last valid mblk, and off is set to the length of 9329 * that mblk. 9330 * 9331 * send queue which starts at the given seq. no. 9332 * 9333 * Parameters: 9334 * tcp_t *tcp: the tcp instance pointer. 9335 * uint32_t seq: the starting seq. no of the requested segment. 9336 * int32_t *off: after the execution, *off will be the offset to 9337 * the returned mblk which points to the requested seq no. 9338 * It is the caller's responsibility to send in a non-null off. 9339 * 9340 * Return: 9341 * A mblk_t pointer pointing to the requested segment in send queue. 9342 */ 9343 static mblk_t * 9344 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9345 { 9346 int32_t cnt; 9347 mblk_t *mp; 9348 9349 /* Defensive coding. Make sure we don't send incorrect data. */ 9350 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9351 return (NULL); 9352 9353 cnt = seq - tcp->tcp_suna; 9354 mp = tcp->tcp_xmit_head; 9355 while (cnt > 0 && mp != NULL) { 9356 cnt -= mp->b_wptr - mp->b_rptr; 9357 if (cnt <= 0) { 9358 cnt += mp->b_wptr - mp->b_rptr; 9359 break; 9360 } 9361 mp = mp->b_cont; 9362 } 9363 ASSERT(mp != NULL); 9364 *off = cnt; 9365 return (mp); 9366 } 9367 9368 /* 9369 * This function handles all retransmissions if SACK is enabled for this 9370 * connection. First it calculates how many segments can be retransmitted 9371 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9372 * segments. A segment is eligible if sack_cnt for that segment is greater 9373 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9374 * all eligible segments, it checks to see if TCP can send some new segments 9375 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9376 * 9377 * Parameters: 9378 * tcp_t *tcp: the tcp structure of the connection. 9379 * uint_t *flags: in return, appropriate value will be set for 9380 * tcp_input_data(). 9381 */ 9382 static void 9383 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9384 { 9385 notsack_blk_t *notsack_blk; 9386 int32_t usable_swnd; 9387 int32_t mss; 9388 uint32_t seg_len; 9389 mblk_t *xmit_mp; 9390 tcp_stack_t *tcps = tcp->tcp_tcps; 9391 9392 ASSERT(tcp->tcp_sack_info != NULL); 9393 ASSERT(tcp->tcp_notsack_list != NULL); 9394 ASSERT(tcp->tcp_rexmit == B_FALSE); 9395 9396 /* Defensive coding in case there is a bug... */ 9397 if (tcp->tcp_notsack_list == NULL) { 9398 return; 9399 } 9400 notsack_blk = tcp->tcp_notsack_list; 9401 mss = tcp->tcp_mss; 9402 9403 /* 9404 * Limit the num of outstanding data in the network to be 9405 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9406 */ 9407 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9408 9409 /* At least retransmit 1 MSS of data. */ 9410 if (usable_swnd <= 0) { 9411 usable_swnd = mss; 9412 } 9413 9414 /* Make sure no new RTT samples will be taken. */ 9415 tcp->tcp_csuna = tcp->tcp_snxt; 9416 9417 notsack_blk = tcp->tcp_notsack_list; 9418 while (usable_swnd > 0) { 9419 mblk_t *snxt_mp, *tmp_mp; 9420 tcp_seq begin = tcp->tcp_sack_snxt; 9421 tcp_seq end; 9422 int32_t off; 9423 9424 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9425 if (SEQ_GT(notsack_blk->end, begin) && 9426 (notsack_blk->sack_cnt >= 9427 tcps->tcps_dupack_fast_retransmit)) { 9428 end = notsack_blk->end; 9429 if (SEQ_LT(begin, notsack_blk->begin)) { 9430 begin = notsack_blk->begin; 9431 } 9432 break; 9433 } 9434 } 9435 /* 9436 * All holes are filled. Manipulate tcp_cwnd to send more 9437 * if we can. Note that after the SACK recovery, tcp_cwnd is 9438 * set to tcp_cwnd_ssthresh. 9439 */ 9440 if (notsack_blk == NULL) { 9441 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9442 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9443 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9444 ASSERT(tcp->tcp_cwnd > 0); 9445 return; 9446 } else { 9447 usable_swnd = usable_swnd / mss; 9448 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9449 MAX(usable_swnd * mss, mss); 9450 *flags |= TH_XMIT_NEEDED; 9451 return; 9452 } 9453 } 9454 9455 /* 9456 * Note that we may send more than usable_swnd allows here 9457 * because of round off, but no more than 1 MSS of data. 9458 */ 9459 seg_len = end - begin; 9460 if (seg_len > mss) 9461 seg_len = mss; 9462 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9463 ASSERT(snxt_mp != NULL); 9464 /* This should not happen. Defensive coding again... */ 9465 if (snxt_mp == NULL) { 9466 return; 9467 } 9468 9469 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9470 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9471 if (xmit_mp == NULL) 9472 return; 9473 9474 usable_swnd -= seg_len; 9475 tcp->tcp_pipe += seg_len; 9476 tcp->tcp_sack_snxt = begin + seg_len; 9477 9478 tcp_send_data(tcp, xmit_mp); 9479 9480 /* 9481 * Update the send timestamp to avoid false retransmission. 9482 */ 9483 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9484 9485 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9486 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9487 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9488 /* 9489 * Update tcp_rexmit_max to extend this SACK recovery phase. 9490 * This happens when new data sent during fast recovery is 9491 * also lost. If TCP retransmits those new data, it needs 9492 * to extend SACK recover phase to avoid starting another 9493 * fast retransmit/recovery unnecessarily. 9494 */ 9495 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9496 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9497 } 9498 } 9499 } 9500 9501 /* 9502 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9503 * or ICMP errors. 9504 * 9505 * To limit the number of duplicate segments, we limit the number of segment 9506 * to be sent in one time to tcp_snd_burst, the burst variable. 9507 */ 9508 static void 9509 tcp_ss_rexmit(tcp_t *tcp) 9510 { 9511 uint32_t snxt; 9512 uint32_t smax; 9513 int32_t win; 9514 int32_t mss; 9515 int32_t off; 9516 int32_t burst = tcp->tcp_snd_burst; 9517 mblk_t *snxt_mp; 9518 tcp_stack_t *tcps = tcp->tcp_tcps; 9519 9520 /* 9521 * Note that tcp_rexmit can be set even though TCP has retransmitted 9522 * all unack'ed segments. 9523 */ 9524 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9525 smax = tcp->tcp_rexmit_max; 9526 snxt = tcp->tcp_rexmit_nxt; 9527 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9528 snxt = tcp->tcp_suna; 9529 } 9530 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9531 win -= snxt - tcp->tcp_suna; 9532 mss = tcp->tcp_mss; 9533 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9534 9535 while (SEQ_LT(snxt, smax) && (win > 0) && 9536 (burst > 0) && (snxt_mp != NULL)) { 9537 mblk_t *xmit_mp; 9538 mblk_t *old_snxt_mp = snxt_mp; 9539 uint32_t cnt = mss; 9540 9541 if (win < cnt) { 9542 cnt = win; 9543 } 9544 if (SEQ_GT(snxt + cnt, smax)) { 9545 cnt = smax - snxt; 9546 } 9547 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9548 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9549 if (xmit_mp == NULL) 9550 return; 9551 9552 tcp_send_data(tcp, xmit_mp); 9553 9554 snxt += cnt; 9555 win -= cnt; 9556 /* 9557 * Update the send timestamp to avoid false 9558 * retransmission. 9559 */ 9560 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9561 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9562 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9563 9564 tcp->tcp_rexmit_nxt = snxt; 9565 burst--; 9566 } 9567 /* 9568 * If we have transmitted all we have at the time 9569 * we started the retranmission, we can leave 9570 * the rest of the job to tcp_wput_data(). But we 9571 * need to check the send window first. If the 9572 * win is not 0, go on with tcp_wput_data(). 9573 */ 9574 if (SEQ_LT(snxt, smax) || win == 0) { 9575 return; 9576 } 9577 } 9578 /* Only call tcp_wput_data() if there is data to be sent. */ 9579 if (tcp->tcp_unsent) { 9580 tcp_wput_data(tcp, NULL, B_FALSE); 9581 } 9582 } 9583 9584 /* 9585 * Process all TCP option in SYN segment. Note that this function should 9586 * be called after tcp_set_destination() is called so that the necessary info 9587 * from IRE is already set in the tcp structure. 9588 * 9589 * This function sets up the correct tcp_mss value according to the 9590 * MSS option value and our header size. It also sets up the window scale 9591 * and timestamp values, and initialize SACK info blocks. But it does not 9592 * change receive window size after setting the tcp_mss value. The caller 9593 * should do the appropriate change. 9594 */ 9595 void 9596 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9597 { 9598 int options; 9599 tcp_opt_t tcpopt; 9600 uint32_t mss_max; 9601 char *tmp_tcph; 9602 tcp_stack_t *tcps = tcp->tcp_tcps; 9603 conn_t *connp = tcp->tcp_connp; 9604 9605 tcpopt.tcp = NULL; 9606 options = tcp_parse_options(tcpha, &tcpopt); 9607 9608 /* 9609 * Process MSS option. Note that MSS option value does not account 9610 * for IP or TCP options. This means that it is equal to MTU - minimum 9611 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9612 * IPv6. 9613 */ 9614 if (!(options & TCP_OPT_MSS_PRESENT)) { 9615 if (connp->conn_ipversion == IPV4_VERSION) 9616 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9617 else 9618 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9619 } else { 9620 if (connp->conn_ipversion == IPV4_VERSION) 9621 mss_max = tcps->tcps_mss_max_ipv4; 9622 else 9623 mss_max = tcps->tcps_mss_max_ipv6; 9624 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9625 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9626 else if (tcpopt.tcp_opt_mss > mss_max) 9627 tcpopt.tcp_opt_mss = mss_max; 9628 } 9629 9630 /* Process Window Scale option. */ 9631 if (options & TCP_OPT_WSCALE_PRESENT) { 9632 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9633 tcp->tcp_snd_ws_ok = B_TRUE; 9634 } else { 9635 tcp->tcp_snd_ws = B_FALSE; 9636 tcp->tcp_snd_ws_ok = B_FALSE; 9637 tcp->tcp_rcv_ws = B_FALSE; 9638 } 9639 9640 /* Process Timestamp option. */ 9641 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9642 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9643 tmp_tcph = (char *)tcp->tcp_tcpha; 9644 9645 tcp->tcp_snd_ts_ok = B_TRUE; 9646 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9647 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9648 ASSERT(OK_32PTR(tmp_tcph)); 9649 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9650 9651 /* Fill in our template header with basic timestamp option. */ 9652 tmp_tcph += connp->conn_ht_ulp_len; 9653 tmp_tcph[0] = TCPOPT_NOP; 9654 tmp_tcph[1] = TCPOPT_NOP; 9655 tmp_tcph[2] = TCPOPT_TSTAMP; 9656 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9657 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9658 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9659 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9660 } else { 9661 tcp->tcp_snd_ts_ok = B_FALSE; 9662 } 9663 9664 /* 9665 * Process SACK options. If SACK is enabled for this connection, 9666 * then allocate the SACK info structure. Note the following ways 9667 * when tcp_snd_sack_ok is set to true. 9668 * 9669 * For active connection: in tcp_set_destination() called in 9670 * tcp_connect(). 9671 * 9672 * For passive connection: in tcp_set_destination() called in 9673 * tcp_input_listener(). 9674 * 9675 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9676 * That check makes sure that if we did not send a SACK OK option, 9677 * we will not enable SACK for this connection even though the other 9678 * side sends us SACK OK option. For active connection, the SACK 9679 * info structure has already been allocated. So we need to free 9680 * it if SACK is disabled. 9681 */ 9682 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9683 (tcp->tcp_snd_sack_ok || 9684 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9685 /* This should be true only in the passive case. */ 9686 if (tcp->tcp_sack_info == NULL) { 9687 ASSERT(TCP_IS_DETACHED(tcp)); 9688 tcp->tcp_sack_info = 9689 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9690 } 9691 if (tcp->tcp_sack_info == NULL) { 9692 tcp->tcp_snd_sack_ok = B_FALSE; 9693 } else { 9694 tcp->tcp_snd_sack_ok = B_TRUE; 9695 if (tcp->tcp_snd_ts_ok) { 9696 tcp->tcp_max_sack_blk = 3; 9697 } else { 9698 tcp->tcp_max_sack_blk = 4; 9699 } 9700 } 9701 } else { 9702 /* 9703 * Resetting tcp_snd_sack_ok to B_FALSE so that 9704 * no SACK info will be used for this 9705 * connection. This assumes that SACK usage 9706 * permission is negotiated. This may need 9707 * to be changed once this is clarified. 9708 */ 9709 if (tcp->tcp_sack_info != NULL) { 9710 ASSERT(tcp->tcp_notsack_list == NULL); 9711 kmem_cache_free(tcp_sack_info_cache, 9712 tcp->tcp_sack_info); 9713 tcp->tcp_sack_info = NULL; 9714 } 9715 tcp->tcp_snd_sack_ok = B_FALSE; 9716 } 9717 9718 /* 9719 * Now we know the exact TCP/IP header length, subtract 9720 * that from tcp_mss to get our side's MSS. 9721 */ 9722 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9723 9724 /* 9725 * Here we assume that the other side's header size will be equal to 9726 * our header size. We calculate the real MSS accordingly. Need to 9727 * take into additional stuffs IPsec puts in. 9728 * 9729 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9730 */ 9731 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9732 tcp->tcp_ipsec_overhead - 9733 ((connp->conn_ipversion == IPV4_VERSION ? 9734 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9735 9736 /* 9737 * Set MSS to the smaller one of both ends of the connection. 9738 * We should not have called tcp_mss_set() before, but our 9739 * side of the MSS should have been set to a proper value 9740 * by tcp_set_destination(). tcp_mss_set() will also set up the 9741 * STREAM head parameters properly. 9742 * 9743 * If we have a larger-than-16-bit window but the other side 9744 * didn't want to do window scale, tcp_rwnd_set() will take 9745 * care of that. 9746 */ 9747 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9748 9749 /* 9750 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9751 * updated properly. 9752 */ 9753 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9754 } 9755 9756 /* 9757 * Sends the T_CONN_IND to the listener. The caller calls this 9758 * functions via squeue to get inside the listener's perimeter 9759 * once the 3 way hand shake is done a T_CONN_IND needs to be 9760 * sent. As an optimization, the caller can call this directly 9761 * if listener's perimeter is same as eager's. 9762 */ 9763 /* ARGSUSED */ 9764 void 9765 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9766 { 9767 conn_t *lconnp = (conn_t *)arg; 9768 tcp_t *listener = lconnp->conn_tcp; 9769 tcp_t *tcp; 9770 struct T_conn_ind *conn_ind; 9771 ipaddr_t *addr_cache; 9772 boolean_t need_send_conn_ind = B_FALSE; 9773 tcp_stack_t *tcps = listener->tcp_tcps; 9774 9775 /* retrieve the eager */ 9776 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9777 ASSERT(conn_ind->OPT_offset != 0 && 9778 conn_ind->OPT_length == sizeof (intptr_t)); 9779 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9780 conn_ind->OPT_length); 9781 9782 /* 9783 * TLI/XTI applications will get confused by 9784 * sending eager as an option since it violates 9785 * the option semantics. So remove the eager as 9786 * option since TLI/XTI app doesn't need it anyway. 9787 */ 9788 if (!TCP_IS_SOCKET(listener)) { 9789 conn_ind->OPT_length = 0; 9790 conn_ind->OPT_offset = 0; 9791 } 9792 if (listener->tcp_state != TCPS_LISTEN) { 9793 /* 9794 * If listener has closed, it would have caused a 9795 * a cleanup/blowoff to happen for the eager. We 9796 * just need to return. 9797 */ 9798 freemsg(mp); 9799 return; 9800 } 9801 9802 9803 /* 9804 * if the conn_req_q is full defer passing up the 9805 * T_CONN_IND until space is availabe after t_accept() 9806 * processing 9807 */ 9808 mutex_enter(&listener->tcp_eager_lock); 9809 9810 /* 9811 * Take the eager out, if it is in the list of droppable eagers 9812 * as we are here because the 3W handshake is over. 9813 */ 9814 MAKE_UNDROPPABLE(tcp); 9815 9816 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9817 tcp_t *tail; 9818 9819 /* 9820 * The eager already has an extra ref put in tcp_input_data 9821 * so that it stays till accept comes back even though it 9822 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9823 */ 9824 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9825 listener->tcp_conn_req_cnt_q0--; 9826 listener->tcp_conn_req_cnt_q++; 9827 9828 /* Move from SYN_RCVD to ESTABLISHED list */ 9829 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9830 tcp->tcp_eager_prev_q0; 9831 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9832 tcp->tcp_eager_next_q0; 9833 tcp->tcp_eager_prev_q0 = NULL; 9834 tcp->tcp_eager_next_q0 = NULL; 9835 9836 /* 9837 * Insert at end of the queue because sockfs 9838 * sends down T_CONN_RES in chronological 9839 * order. Leaving the older conn indications 9840 * at front of the queue helps reducing search 9841 * time. 9842 */ 9843 tail = listener->tcp_eager_last_q; 9844 if (tail != NULL) 9845 tail->tcp_eager_next_q = tcp; 9846 else 9847 listener->tcp_eager_next_q = tcp; 9848 listener->tcp_eager_last_q = tcp; 9849 tcp->tcp_eager_next_q = NULL; 9850 /* 9851 * Delay sending up the T_conn_ind until we are 9852 * done with the eager. Once we have have sent up 9853 * the T_conn_ind, the accept can potentially complete 9854 * any time and release the refhold we have on the eager. 9855 */ 9856 need_send_conn_ind = B_TRUE; 9857 } else { 9858 /* 9859 * Defer connection on q0 and set deferred 9860 * connection bit true 9861 */ 9862 tcp->tcp_conn_def_q0 = B_TRUE; 9863 9864 /* take tcp out of q0 ... */ 9865 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9866 tcp->tcp_eager_next_q0; 9867 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9868 tcp->tcp_eager_prev_q0; 9869 9870 /* ... and place it at the end of q0 */ 9871 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9872 tcp->tcp_eager_next_q0 = listener; 9873 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9874 listener->tcp_eager_prev_q0 = tcp; 9875 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9876 } 9877 9878 /* we have timed out before */ 9879 if (tcp->tcp_syn_rcvd_timeout != 0) { 9880 tcp->tcp_syn_rcvd_timeout = 0; 9881 listener->tcp_syn_rcvd_timeout--; 9882 if (listener->tcp_syn_defense && 9883 listener->tcp_syn_rcvd_timeout <= 9884 (tcps->tcps_conn_req_max_q0 >> 5) && 9885 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9886 listener->tcp_last_rcv_lbolt)) { 9887 /* 9888 * Turn off the defense mode if we 9889 * believe the SYN attack is over. 9890 */ 9891 listener->tcp_syn_defense = B_FALSE; 9892 if (listener->tcp_ip_addr_cache) { 9893 kmem_free((void *)listener->tcp_ip_addr_cache, 9894 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9895 listener->tcp_ip_addr_cache = NULL; 9896 } 9897 } 9898 } 9899 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9900 if (addr_cache != NULL) { 9901 /* 9902 * We have finished a 3-way handshake with this 9903 * remote host. This proves the IP addr is good. 9904 * Cache it! 9905 */ 9906 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9907 tcp->tcp_connp->conn_faddr_v4; 9908 } 9909 mutex_exit(&listener->tcp_eager_lock); 9910 if (need_send_conn_ind) 9911 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9912 } 9913 9914 /* 9915 * Send the newconn notification to ulp. The eager is blown off if the 9916 * notification fails. 9917 */ 9918 static void 9919 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9920 { 9921 if (IPCL_IS_NONSTR(lconnp)) { 9922 cred_t *cr; 9923 pid_t cpid = NOPID; 9924 9925 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9926 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9927 lconnp->conn_tcp); 9928 9929 cr = msg_getcred(mp, &cpid); 9930 9931 /* Keep the message around in case of a fallback to TPI */ 9932 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9933 /* 9934 * Notify the ULP about the newconn. It is guaranteed that no 9935 * tcp_accept() call will be made for the eager if the 9936 * notification fails, so it's safe to blow it off in that 9937 * case. 9938 * 9939 * The upper handle will be assigned when tcp_accept() is 9940 * called. 9941 */ 9942 if ((*lconnp->conn_upcalls->su_newconn) 9943 (lconnp->conn_upper_handle, 9944 (sock_lower_handle_t)econnp, 9945 &sock_tcp_downcalls, cr, cpid, 9946 &econnp->conn_upcalls) == NULL) { 9947 /* Failed to allocate a socket */ 9948 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 9949 tcpEstabResets); 9950 (void) tcp_eager_blowoff(lconnp->conn_tcp, 9951 econnp->conn_tcp->tcp_conn_req_seqnum); 9952 } 9953 } else { 9954 putnext(lconnp->conn_rq, mp); 9955 } 9956 } 9957 9958 /* 9959 * Handle a packet that has been reclassified by TCP. 9960 * This function drops the ref on connp that the caller had. 9961 */ 9962 static void 9963 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 9964 { 9965 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 9966 9967 if (connp->conn_incoming_ifindex != 0 && 9968 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 9969 freemsg(mp); 9970 CONN_DEC_REF(connp); 9971 return; 9972 } 9973 9974 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 9975 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 9976 ip6_t *ip6h; 9977 ipha_t *ipha; 9978 9979 if (ira->ira_flags & IRAF_IS_IPV4) { 9980 ipha = (ipha_t *)mp->b_rptr; 9981 ip6h = NULL; 9982 } else { 9983 ipha = NULL; 9984 ip6h = (ip6_t *)mp->b_rptr; 9985 } 9986 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 9987 if (mp == NULL) { 9988 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9989 /* Note that mp is NULL */ 9990 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 9991 CONN_DEC_REF(connp); 9992 return; 9993 } 9994 } 9995 9996 if (IPCL_IS_TCP(connp)) { 9997 /* 9998 * do not drain, certain use cases can blow 9999 * the stack 10000 */ 10001 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10002 connp->conn_recv, connp, ira, 10003 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 10004 } else { 10005 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 10006 (connp->conn_recv)(connp, mp, NULL, 10007 ira); 10008 CONN_DEC_REF(connp); 10009 } 10010 10011 } 10012 10013 boolean_t tcp_outbound_squeue_switch = B_FALSE; 10014 10015 /* 10016 * Handle M_DATA messages from IP. Its called directly from IP via 10017 * squeue for received IP packets. 10018 * 10019 * The first argument is always the connp/tcp to which the mp belongs. 10020 * There are no exceptions to this rule. The caller has already put 10021 * a reference on this connp/tcp and once tcp_input_data() returns, 10022 * the squeue will do the refrele. 10023 * 10024 * The TH_SYN for the listener directly go to tcp_input_listener via 10025 * squeue. ICMP errors go directly to tcp_icmp_input(). 10026 * 10027 * sqp: NULL = recursive, sqp != NULL means called from squeue 10028 */ 10029 void 10030 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 10031 { 10032 int32_t bytes_acked; 10033 int32_t gap; 10034 mblk_t *mp1; 10035 uint_t flags; 10036 uint32_t new_swnd = 0; 10037 uchar_t *iphdr; 10038 uchar_t *rptr; 10039 int32_t rgap; 10040 uint32_t seg_ack; 10041 int seg_len; 10042 uint_t ip_hdr_len; 10043 uint32_t seg_seq; 10044 tcpha_t *tcpha; 10045 int urp; 10046 tcp_opt_t tcpopt; 10047 ip_pkt_t ipp; 10048 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 10049 uint32_t cwnd; 10050 uint32_t add; 10051 int npkt; 10052 int mss; 10053 conn_t *connp = (conn_t *)arg; 10054 squeue_t *sqp = (squeue_t *)arg2; 10055 tcp_t *tcp = connp->conn_tcp; 10056 tcp_stack_t *tcps = tcp->tcp_tcps; 10057 10058 /* 10059 * RST from fused tcp loopback peer should trigger an unfuse. 10060 */ 10061 if (tcp->tcp_fused) { 10062 TCP_STAT(tcps, tcp_fusion_aborted); 10063 tcp_unfuse(tcp); 10064 } 10065 10066 iphdr = mp->b_rptr; 10067 rptr = mp->b_rptr; 10068 ASSERT(OK_32PTR(rptr)); 10069 10070 ip_hdr_len = ira->ira_ip_hdr_length; 10071 if (connp->conn_recv_ancillary.crb_all != 0) { 10072 /* 10073 * Record packet information in the ip_pkt_t 10074 */ 10075 ipp.ipp_fields = 0; 10076 if (ira->ira_flags & IRAF_IS_IPV4) { 10077 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 10078 B_FALSE); 10079 } else { 10080 uint8_t nexthdrp; 10081 10082 /* 10083 * IPv6 packets can only be received by applications 10084 * that are prepared to receive IPv6 addresses. 10085 * The IP fanout must ensure this. 10086 */ 10087 ASSERT(connp->conn_family == AF_INET6); 10088 10089 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 10090 &nexthdrp); 10091 ASSERT(nexthdrp == IPPROTO_TCP); 10092 10093 /* Could have caused a pullup? */ 10094 iphdr = mp->b_rptr; 10095 rptr = mp->b_rptr; 10096 } 10097 } 10098 ASSERT(DB_TYPE(mp) == M_DATA); 10099 ASSERT(mp->b_next == NULL); 10100 10101 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10102 seg_seq = ntohl(tcpha->tha_seq); 10103 seg_ack = ntohl(tcpha->tha_ack); 10104 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 10105 seg_len = (int)(mp->b_wptr - rptr) - 10106 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 10107 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 10108 do { 10109 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 10110 (uintptr_t)INT_MAX); 10111 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 10112 } while ((mp1 = mp1->b_cont) != NULL && 10113 mp1->b_datap->db_type == M_DATA); 10114 } 10115 10116 if (tcp->tcp_state == TCPS_TIME_WAIT) { 10117 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 10118 seg_len, tcpha, ira); 10119 return; 10120 } 10121 10122 if (sqp != NULL) { 10123 /* 10124 * This is the correct place to update tcp_last_recv_time. Note 10125 * that it is also updated for tcp structure that belongs to 10126 * global and listener queues which do not really need updating. 10127 * But that should not cause any harm. And it is updated for 10128 * all kinds of incoming segments, not only for data segments. 10129 */ 10130 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 10131 } 10132 10133 flags = (unsigned int)tcpha->tha_flags & 0xFF; 10134 10135 BUMP_LOCAL(tcp->tcp_ibsegs); 10136 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10137 10138 if ((flags & TH_URG) && sqp != NULL) { 10139 /* 10140 * TCP can't handle urgent pointers that arrive before 10141 * the connection has been accept()ed since it can't 10142 * buffer OOB data. Discard segment if this happens. 10143 * 10144 * We can't just rely on a non-null tcp_listener to indicate 10145 * that the accept() has completed since unlinking of the 10146 * eager and completion of the accept are not atomic. 10147 * tcp_detached, when it is not set (B_FALSE) indicates 10148 * that the accept() has completed. 10149 * 10150 * Nor can it reassemble urgent pointers, so discard 10151 * if it's not the next segment expected. 10152 * 10153 * Otherwise, collapse chain into one mblk (discard if 10154 * that fails). This makes sure the headers, retransmitted 10155 * data, and new data all are in the same mblk. 10156 */ 10157 ASSERT(mp != NULL); 10158 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 10159 freemsg(mp); 10160 return; 10161 } 10162 /* Update pointers into message */ 10163 iphdr = rptr = mp->b_rptr; 10164 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10165 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 10166 /* 10167 * Since we can't handle any data with this urgent 10168 * pointer that is out of sequence, we expunge 10169 * the data. This allows us to still register 10170 * the urgent mark and generate the M_PCSIG, 10171 * which we can do. 10172 */ 10173 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10174 seg_len = 0; 10175 } 10176 } 10177 10178 switch (tcp->tcp_state) { 10179 case TCPS_SYN_SENT: 10180 if (connp->conn_final_sqp == NULL && 10181 tcp_outbound_squeue_switch && sqp != NULL) { 10182 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 10183 connp->conn_final_sqp = sqp; 10184 if (connp->conn_final_sqp != connp->conn_sqp) { 10185 DTRACE_PROBE1(conn__final__sqp__switch, 10186 conn_t *, connp); 10187 CONN_INC_REF(connp); 10188 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 10189 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10190 tcp_input_data, connp, ira, ip_squeue_flag, 10191 SQTAG_CONNECT_FINISH); 10192 return; 10193 } 10194 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 10195 } 10196 if (flags & TH_ACK) { 10197 /* 10198 * Note that our stack cannot send data before a 10199 * connection is established, therefore the 10200 * following check is valid. Otherwise, it has 10201 * to be changed. 10202 */ 10203 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 10204 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10205 freemsg(mp); 10206 if (flags & TH_RST) 10207 return; 10208 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 10209 tcp, seg_ack, 0, TH_RST); 10210 return; 10211 } 10212 ASSERT(tcp->tcp_suna + 1 == seg_ack); 10213 } 10214 if (flags & TH_RST) { 10215 freemsg(mp); 10216 if (flags & TH_ACK) 10217 (void) tcp_clean_death(tcp, 10218 ECONNREFUSED, 13); 10219 return; 10220 } 10221 if (!(flags & TH_SYN)) { 10222 freemsg(mp); 10223 return; 10224 } 10225 10226 /* Process all TCP options. */ 10227 tcp_process_options(tcp, tcpha); 10228 /* 10229 * The following changes our rwnd to be a multiple of the 10230 * MIN(peer MSS, our MSS) for performance reason. 10231 */ 10232 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10233 tcp->tcp_mss)); 10234 10235 /* Is the other end ECN capable? */ 10236 if (tcp->tcp_ecn_ok) { 10237 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10238 tcp->tcp_ecn_ok = B_FALSE; 10239 } 10240 } 10241 /* 10242 * Clear ECN flags because it may interfere with later 10243 * processing. 10244 */ 10245 flags &= ~(TH_ECE|TH_CWR); 10246 10247 tcp->tcp_irs = seg_seq; 10248 tcp->tcp_rack = seg_seq; 10249 tcp->tcp_rnxt = seg_seq + 1; 10250 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10251 if (!TCP_IS_DETACHED(tcp)) { 10252 /* Allocate room for SACK options if needed. */ 10253 connp->conn_wroff = connp->conn_ht_iphc_len; 10254 if (tcp->tcp_snd_sack_ok) 10255 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10256 if (!tcp->tcp_loopback) 10257 connp->conn_wroff += tcps->tcps_wroff_xtra; 10258 10259 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10260 connp->conn_wroff); 10261 } 10262 if (flags & TH_ACK) { 10263 /* 10264 * If we can't get the confirmation upstream, pretend 10265 * we didn't even see this one. 10266 * 10267 * XXX: how can we pretend we didn't see it if we 10268 * have updated rnxt et. al. 10269 * 10270 * For loopback we defer sending up the T_CONN_CON 10271 * until after some checks below. 10272 */ 10273 mp1 = NULL; 10274 /* 10275 * tcp_sendmsg() checks tcp_state without entering 10276 * the squeue so tcp_state should be updated before 10277 * sending up connection confirmation 10278 */ 10279 tcp->tcp_state = TCPS_ESTABLISHED; 10280 if (!tcp_conn_con(tcp, iphdr, mp, 10281 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10282 tcp->tcp_state = TCPS_SYN_SENT; 10283 freemsg(mp); 10284 return; 10285 } 10286 /* SYN was acked - making progress */ 10287 tcp->tcp_ip_forward_progress = B_TRUE; 10288 10289 /* One for the SYN */ 10290 tcp->tcp_suna = tcp->tcp_iss + 1; 10291 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10292 10293 /* 10294 * If SYN was retransmitted, need to reset all 10295 * retransmission info. This is because this 10296 * segment will be treated as a dup ACK. 10297 */ 10298 if (tcp->tcp_rexmit) { 10299 tcp->tcp_rexmit = B_FALSE; 10300 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10301 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10302 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10303 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10304 tcp->tcp_ms_we_have_waited = 0; 10305 10306 /* 10307 * Set tcp_cwnd back to 1 MSS, per 10308 * recommendation from 10309 * draft-floyd-incr-init-win-01.txt, 10310 * Increasing TCP's Initial Window. 10311 */ 10312 tcp->tcp_cwnd = tcp->tcp_mss; 10313 } 10314 10315 tcp->tcp_swl1 = seg_seq; 10316 tcp->tcp_swl2 = seg_ack; 10317 10318 new_swnd = ntohs(tcpha->tha_win); 10319 tcp->tcp_swnd = new_swnd; 10320 if (new_swnd > tcp->tcp_max_swnd) 10321 tcp->tcp_max_swnd = new_swnd; 10322 10323 /* 10324 * Always send the three-way handshake ack immediately 10325 * in order to make the connection complete as soon as 10326 * possible on the accepting host. 10327 */ 10328 flags |= TH_ACK_NEEDED; 10329 10330 /* 10331 * Special case for loopback. At this point we have 10332 * received SYN-ACK from the remote endpoint. In 10333 * order to ensure that both endpoints reach the 10334 * fused state prior to any data exchange, the final 10335 * ACK needs to be sent before we indicate T_CONN_CON 10336 * to the module upstream. 10337 */ 10338 if (tcp->tcp_loopback) { 10339 mblk_t *ack_mp; 10340 10341 ASSERT(!tcp->tcp_unfusable); 10342 ASSERT(mp1 != NULL); 10343 /* 10344 * For loopback, we always get a pure SYN-ACK 10345 * and only need to send back the final ACK 10346 * with no data (this is because the other 10347 * tcp is ours and we don't do T/TCP). This 10348 * final ACK triggers the passive side to 10349 * perform fusion in ESTABLISHED state. 10350 */ 10351 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10352 if (tcp->tcp_ack_tid != 0) { 10353 (void) TCP_TIMER_CANCEL(tcp, 10354 tcp->tcp_ack_tid); 10355 tcp->tcp_ack_tid = 0; 10356 } 10357 tcp_send_data(tcp, ack_mp); 10358 BUMP_LOCAL(tcp->tcp_obsegs); 10359 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10360 10361 if (!IPCL_IS_NONSTR(connp)) { 10362 /* Send up T_CONN_CON */ 10363 if (ira->ira_cred != NULL) { 10364 mblk_setcred(mp1, 10365 ira->ira_cred, 10366 ira->ira_cpid); 10367 } 10368 putnext(connp->conn_rq, mp1); 10369 } else { 10370 (*connp->conn_upcalls-> 10371 su_connected) 10372 (connp->conn_upper_handle, 10373 tcp->tcp_connid, 10374 ira->ira_cred, 10375 ira->ira_cpid); 10376 freemsg(mp1); 10377 } 10378 10379 freemsg(mp); 10380 return; 10381 } 10382 /* 10383 * Forget fusion; we need to handle more 10384 * complex cases below. Send the deferred 10385 * T_CONN_CON message upstream and proceed 10386 * as usual. Mark this tcp as not capable 10387 * of fusion. 10388 */ 10389 TCP_STAT(tcps, tcp_fusion_unfusable); 10390 tcp->tcp_unfusable = B_TRUE; 10391 if (!IPCL_IS_NONSTR(connp)) { 10392 if (ira->ira_cred != NULL) { 10393 mblk_setcred(mp1, ira->ira_cred, 10394 ira->ira_cpid); 10395 } 10396 putnext(connp->conn_rq, mp1); 10397 } else { 10398 (*connp->conn_upcalls->su_connected) 10399 (connp->conn_upper_handle, 10400 tcp->tcp_connid, ira->ira_cred, 10401 ira->ira_cpid); 10402 freemsg(mp1); 10403 } 10404 } 10405 10406 /* 10407 * Check to see if there is data to be sent. If 10408 * yes, set the transmit flag. Then check to see 10409 * if received data processing needs to be done. 10410 * If not, go straight to xmit_check. This short 10411 * cut is OK as we don't support T/TCP. 10412 */ 10413 if (tcp->tcp_unsent) 10414 flags |= TH_XMIT_NEEDED; 10415 10416 if (seg_len == 0 && !(flags & TH_URG)) { 10417 freemsg(mp); 10418 goto xmit_check; 10419 } 10420 10421 flags &= ~TH_SYN; 10422 seg_seq++; 10423 break; 10424 } 10425 tcp->tcp_state = TCPS_SYN_RCVD; 10426 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10427 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10428 if (mp1 != NULL) { 10429 tcp_send_data(tcp, mp1); 10430 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10431 } 10432 freemsg(mp); 10433 return; 10434 case TCPS_SYN_RCVD: 10435 if (flags & TH_ACK) { 10436 /* 10437 * In this state, a SYN|ACK packet is either bogus 10438 * because the other side must be ACKing our SYN which 10439 * indicates it has seen the ACK for their SYN and 10440 * shouldn't retransmit it or we're crossing SYNs 10441 * on active open. 10442 */ 10443 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10444 freemsg(mp); 10445 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10446 tcp, seg_ack, 0, TH_RST); 10447 return; 10448 } 10449 /* 10450 * NOTE: RFC 793 pg. 72 says this should be 10451 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10452 * but that would mean we have an ack that ignored 10453 * our SYN. 10454 */ 10455 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10456 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10457 freemsg(mp); 10458 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10459 tcp, seg_ack, 0, TH_RST); 10460 return; 10461 } 10462 /* 10463 * No sane TCP stack will send such a small window 10464 * without receiving any data. Just drop this invalid 10465 * ACK. We also shorten the abort timeout in case 10466 * this is an attack. 10467 */ 10468 if (ntohs(tcpha->tha_win) < 10469 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 10470 freemsg(mp); 10471 TCP_STAT(tcps, tcp_zwin_ack_syn); 10472 tcp->tcp_second_ctimer_threshold = 10473 tcp_early_abort * SECONDS; 10474 return; 10475 } 10476 } 10477 break; 10478 case TCPS_LISTEN: 10479 /* 10480 * Only a TLI listener can come through this path when a 10481 * acceptor is going back to be a listener and a packet 10482 * for the acceptor hits the classifier. For a socket 10483 * listener, this can never happen because a listener 10484 * can never accept connection on itself and hence a 10485 * socket acceptor can not go back to being a listener. 10486 */ 10487 ASSERT(!TCP_IS_SOCKET(tcp)); 10488 /*FALLTHRU*/ 10489 case TCPS_CLOSED: 10490 case TCPS_BOUND: { 10491 conn_t *new_connp; 10492 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10493 10494 /* 10495 * Don't accept any input on a closed tcp as this TCP logically 10496 * does not exist on the system. Don't proceed further with 10497 * this TCP. For instance, this packet could trigger another 10498 * close of this tcp which would be disastrous for tcp_refcnt. 10499 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10500 * be called at most once on a TCP. In this case we need to 10501 * refeed the packet into the classifier and figure out where 10502 * the packet should go. 10503 */ 10504 new_connp = ipcl_classify(mp, ira, ipst); 10505 if (new_connp != NULL) { 10506 /* Drops ref on new_connp */ 10507 tcp_reinput(new_connp, mp, ira, ipst); 10508 return; 10509 } 10510 /* We failed to classify. For now just drop the packet */ 10511 freemsg(mp); 10512 return; 10513 } 10514 case TCPS_IDLE: 10515 /* 10516 * Handle the case where the tcp_clean_death() has happened 10517 * on a connection (application hasn't closed yet) but a packet 10518 * was already queued on squeue before tcp_clean_death() 10519 * was processed. Calling tcp_clean_death() twice on same 10520 * connection can result in weird behaviour. 10521 */ 10522 freemsg(mp); 10523 return; 10524 default: 10525 break; 10526 } 10527 10528 /* 10529 * Already on the correct queue/perimeter. 10530 * If this is a detached connection and not an eager 10531 * connection hanging off a listener then new data 10532 * (past the FIN) will cause a reset. 10533 * We do a special check here where it 10534 * is out of the main line, rather than check 10535 * if we are detached every time we see new 10536 * data down below. 10537 */ 10538 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10539 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10540 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10541 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10542 10543 freemsg(mp); 10544 /* 10545 * This could be an SSL closure alert. We're detached so just 10546 * acknowledge it this last time. 10547 */ 10548 if (tcp->tcp_kssl_ctx != NULL) { 10549 kssl_release_ctx(tcp->tcp_kssl_ctx); 10550 tcp->tcp_kssl_ctx = NULL; 10551 10552 tcp->tcp_rnxt += seg_len; 10553 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10554 flags |= TH_ACK_NEEDED; 10555 goto ack_check; 10556 } 10557 10558 tcp_xmit_ctl("new data when detached", tcp, 10559 tcp->tcp_snxt, 0, TH_RST); 10560 (void) tcp_clean_death(tcp, EPROTO, 12); 10561 return; 10562 } 10563 10564 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10565 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10566 new_swnd = ntohs(tcpha->tha_win) << 10567 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10568 10569 if (tcp->tcp_snd_ts_ok) { 10570 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10571 /* 10572 * This segment is not acceptable. 10573 * Drop it and send back an ACK. 10574 */ 10575 freemsg(mp); 10576 flags |= TH_ACK_NEEDED; 10577 goto ack_check; 10578 } 10579 } else if (tcp->tcp_snd_sack_ok) { 10580 ASSERT(tcp->tcp_sack_info != NULL); 10581 tcpopt.tcp = tcp; 10582 /* 10583 * SACK info in already updated in tcp_parse_options. Ignore 10584 * all other TCP options... 10585 */ 10586 (void) tcp_parse_options(tcpha, &tcpopt); 10587 } 10588 try_again:; 10589 mss = tcp->tcp_mss; 10590 gap = seg_seq - tcp->tcp_rnxt; 10591 rgap = tcp->tcp_rwnd - (gap + seg_len); 10592 /* 10593 * gap is the amount of sequence space between what we expect to see 10594 * and what we got for seg_seq. A positive value for gap means 10595 * something got lost. A negative value means we got some old stuff. 10596 */ 10597 if (gap < 0) { 10598 /* Old stuff present. Is the SYN in there? */ 10599 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10600 (seg_len != 0)) { 10601 flags &= ~TH_SYN; 10602 seg_seq++; 10603 urp--; 10604 /* Recompute the gaps after noting the SYN. */ 10605 goto try_again; 10606 } 10607 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10608 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10609 (seg_len > -gap ? -gap : seg_len)); 10610 /* Remove the old stuff from seg_len. */ 10611 seg_len += gap; 10612 /* 10613 * Anything left? 10614 * Make sure to check for unack'd FIN when rest of data 10615 * has been previously ack'd. 10616 */ 10617 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10618 /* 10619 * Resets are only valid if they lie within our offered 10620 * window. If the RST bit is set, we just ignore this 10621 * segment. 10622 */ 10623 if (flags & TH_RST) { 10624 freemsg(mp); 10625 return; 10626 } 10627 10628 /* 10629 * The arriving of dup data packets indicate that we 10630 * may have postponed an ack for too long, or the other 10631 * side's RTT estimate is out of shape. Start acking 10632 * more often. 10633 */ 10634 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10635 tcp->tcp_rack_cnt >= 1 && 10636 tcp->tcp_rack_abs_max > 2) { 10637 tcp->tcp_rack_abs_max--; 10638 } 10639 tcp->tcp_rack_cur_max = 1; 10640 10641 /* 10642 * This segment is "unacceptable". None of its 10643 * sequence space lies within our advertized window. 10644 * 10645 * Adjust seg_len to the original value for tracing. 10646 */ 10647 seg_len -= gap; 10648 if (connp->conn_debug) { 10649 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10650 "tcp_rput: unacceptable, gap %d, rgap %d, " 10651 "flags 0x%x, seg_seq %u, seg_ack %u, " 10652 "seg_len %d, rnxt %u, snxt %u, %s", 10653 gap, rgap, flags, seg_seq, seg_ack, 10654 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10655 tcp_display(tcp, NULL, 10656 DISP_ADDR_AND_PORT)); 10657 } 10658 10659 /* 10660 * Arrange to send an ACK in response to the 10661 * unacceptable segment per RFC 793 page 69. There 10662 * is only one small difference between ours and the 10663 * acceptability test in the RFC - we accept ACK-only 10664 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10665 * will be generated. 10666 * 10667 * Note that we have to ACK an ACK-only packet at least 10668 * for stacks that send 0-length keep-alives with 10669 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10670 * section 4.2.3.6. As long as we don't ever generate 10671 * an unacceptable packet in response to an incoming 10672 * packet that is unacceptable, it should not cause 10673 * "ACK wars". 10674 */ 10675 flags |= TH_ACK_NEEDED; 10676 10677 /* 10678 * Continue processing this segment in order to use the 10679 * ACK information it contains, but skip all other 10680 * sequence-number processing. Processing the ACK 10681 * information is necessary in order to 10682 * re-synchronize connections that may have lost 10683 * synchronization. 10684 * 10685 * We clear seg_len and flag fields related to 10686 * sequence number processing as they are not 10687 * to be trusted for an unacceptable segment. 10688 */ 10689 seg_len = 0; 10690 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10691 goto process_ack; 10692 } 10693 10694 /* Fix seg_seq, and chew the gap off the front. */ 10695 seg_seq = tcp->tcp_rnxt; 10696 urp += gap; 10697 do { 10698 mblk_t *mp2; 10699 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10700 (uintptr_t)UINT_MAX); 10701 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10702 if (gap > 0) { 10703 mp->b_rptr = mp->b_wptr - gap; 10704 break; 10705 } 10706 mp2 = mp; 10707 mp = mp->b_cont; 10708 freeb(mp2); 10709 } while (gap < 0); 10710 /* 10711 * If the urgent data has already been acknowledged, we 10712 * should ignore TH_URG below 10713 */ 10714 if (urp < 0) 10715 flags &= ~TH_URG; 10716 } 10717 /* 10718 * rgap is the amount of stuff received out of window. A negative 10719 * value is the amount out of window. 10720 */ 10721 if (rgap < 0) { 10722 mblk_t *mp2; 10723 10724 if (tcp->tcp_rwnd == 0) { 10725 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10726 } else { 10727 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10728 UPDATE_MIB(&tcps->tcps_mib, 10729 tcpInDataPastWinBytes, -rgap); 10730 } 10731 10732 /* 10733 * seg_len does not include the FIN, so if more than 10734 * just the FIN is out of window, we act like we don't 10735 * see it. (If just the FIN is out of window, rgap 10736 * will be zero and we will go ahead and acknowledge 10737 * the FIN.) 10738 */ 10739 flags &= ~TH_FIN; 10740 10741 /* Fix seg_len and make sure there is something left. */ 10742 seg_len += rgap; 10743 if (seg_len <= 0) { 10744 /* 10745 * Resets are only valid if they lie within our offered 10746 * window. If the RST bit is set, we just ignore this 10747 * segment. 10748 */ 10749 if (flags & TH_RST) { 10750 freemsg(mp); 10751 return; 10752 } 10753 10754 /* Per RFC 793, we need to send back an ACK. */ 10755 flags |= TH_ACK_NEEDED; 10756 10757 /* 10758 * Send SIGURG as soon as possible i.e. even 10759 * if the TH_URG was delivered in a window probe 10760 * packet (which will be unacceptable). 10761 * 10762 * We generate a signal if none has been generated 10763 * for this connection or if this is a new urgent 10764 * byte. Also send a zero-length "unmarked" message 10765 * to inform SIOCATMARK that this is not the mark. 10766 * 10767 * tcp_urp_last_valid is cleared when the T_exdata_ind 10768 * is sent up. This plus the check for old data 10769 * (gap >= 0) handles the wraparound of the sequence 10770 * number space without having to always track the 10771 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10772 * this max in its rcv_up variable). 10773 * 10774 * This prevents duplicate SIGURGS due to a "late" 10775 * zero-window probe when the T_EXDATA_IND has already 10776 * been sent up. 10777 */ 10778 if ((flags & TH_URG) && 10779 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10780 tcp->tcp_urp_last))) { 10781 if (IPCL_IS_NONSTR(connp)) { 10782 if (!TCP_IS_DETACHED(tcp)) { 10783 (*connp->conn_upcalls-> 10784 su_signal_oob) 10785 (connp->conn_upper_handle, 10786 urp); 10787 } 10788 } else { 10789 mp1 = allocb(0, BPRI_MED); 10790 if (mp1 == NULL) { 10791 freemsg(mp); 10792 return; 10793 } 10794 if (!TCP_IS_DETACHED(tcp) && 10795 !putnextctl1(connp->conn_rq, 10796 M_PCSIG, SIGURG)) { 10797 /* Try again on the rexmit. */ 10798 freemsg(mp1); 10799 freemsg(mp); 10800 return; 10801 } 10802 /* 10803 * If the next byte would be the mark 10804 * then mark with MARKNEXT else mark 10805 * with NOTMARKNEXT. 10806 */ 10807 if (gap == 0 && urp == 0) 10808 mp1->b_flag |= MSGMARKNEXT; 10809 else 10810 mp1->b_flag |= MSGNOTMARKNEXT; 10811 freemsg(tcp->tcp_urp_mark_mp); 10812 tcp->tcp_urp_mark_mp = mp1; 10813 flags |= TH_SEND_URP_MARK; 10814 } 10815 tcp->tcp_urp_last_valid = B_TRUE; 10816 tcp->tcp_urp_last = urp + seg_seq; 10817 } 10818 /* 10819 * If this is a zero window probe, continue to 10820 * process the ACK part. But we need to set seg_len 10821 * to 0 to avoid data processing. Otherwise just 10822 * drop the segment and send back an ACK. 10823 */ 10824 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10825 flags &= ~(TH_SYN | TH_URG); 10826 seg_len = 0; 10827 goto process_ack; 10828 } else { 10829 freemsg(mp); 10830 goto ack_check; 10831 } 10832 } 10833 /* Pitch out of window stuff off the end. */ 10834 rgap = seg_len; 10835 mp2 = mp; 10836 do { 10837 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10838 (uintptr_t)INT_MAX); 10839 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10840 if (rgap < 0) { 10841 mp2->b_wptr += rgap; 10842 if ((mp1 = mp2->b_cont) != NULL) { 10843 mp2->b_cont = NULL; 10844 freemsg(mp1); 10845 } 10846 break; 10847 } 10848 } while ((mp2 = mp2->b_cont) != NULL); 10849 } 10850 ok:; 10851 /* 10852 * TCP should check ECN info for segments inside the window only. 10853 * Therefore the check should be done here. 10854 */ 10855 if (tcp->tcp_ecn_ok) { 10856 if (flags & TH_CWR) { 10857 tcp->tcp_ecn_echo_on = B_FALSE; 10858 } 10859 /* 10860 * Note that both ECN_CE and CWR can be set in the 10861 * same segment. In this case, we once again turn 10862 * on ECN_ECHO. 10863 */ 10864 if (connp->conn_ipversion == IPV4_VERSION) { 10865 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10866 10867 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10868 tcp->tcp_ecn_echo_on = B_TRUE; 10869 } 10870 } else { 10871 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10872 10873 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10874 htonl(IPH_ECN_CE << 20)) { 10875 tcp->tcp_ecn_echo_on = B_TRUE; 10876 } 10877 } 10878 } 10879 10880 /* 10881 * Check whether we can update tcp_ts_recent. This test is 10882 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10883 * Extensions for High Performance: An Update", Internet Draft. 10884 */ 10885 if (tcp->tcp_snd_ts_ok && 10886 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10887 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10888 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10889 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10890 } 10891 10892 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10893 /* 10894 * FIN in an out of order segment. We record this in 10895 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10896 * Clear the FIN so that any check on FIN flag will fail. 10897 * Remember that FIN also counts in the sequence number 10898 * space. So we need to ack out of order FIN only segments. 10899 */ 10900 if (flags & TH_FIN) { 10901 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10902 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10903 flags &= ~TH_FIN; 10904 flags |= TH_ACK_NEEDED; 10905 } 10906 if (seg_len > 0) { 10907 /* Fill in the SACK blk list. */ 10908 if (tcp->tcp_snd_sack_ok) { 10909 ASSERT(tcp->tcp_sack_info != NULL); 10910 tcp_sack_insert(tcp->tcp_sack_list, 10911 seg_seq, seg_seq + seg_len, 10912 &(tcp->tcp_num_sack_blk)); 10913 } 10914 10915 /* 10916 * Attempt reassembly and see if we have something 10917 * ready to go. 10918 */ 10919 mp = tcp_reass(tcp, mp, seg_seq); 10920 /* Always ack out of order packets */ 10921 flags |= TH_ACK_NEEDED | TH_PUSH; 10922 if (mp) { 10923 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10924 (uintptr_t)INT_MAX); 10925 seg_len = mp->b_cont ? msgdsize(mp) : 10926 (int)(mp->b_wptr - mp->b_rptr); 10927 seg_seq = tcp->tcp_rnxt; 10928 /* 10929 * A gap is filled and the seq num and len 10930 * of the gap match that of a previously 10931 * received FIN, put the FIN flag back in. 10932 */ 10933 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10934 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10935 flags |= TH_FIN; 10936 tcp->tcp_valid_bits &= 10937 ~TCP_OFO_FIN_VALID; 10938 } 10939 if (tcp->tcp_reass_tid != 0) { 10940 (void) TCP_TIMER_CANCEL(tcp, 10941 tcp->tcp_reass_tid); 10942 /* 10943 * Restart the timer if there is still 10944 * data in the reassembly queue. 10945 */ 10946 if (tcp->tcp_reass_head != NULL) { 10947 tcp->tcp_reass_tid = TCP_TIMER( 10948 tcp, tcp_reass_timer, 10949 MSEC_TO_TICK( 10950 tcps->tcps_reass_timeout)); 10951 } else { 10952 tcp->tcp_reass_tid = 0; 10953 } 10954 } 10955 } else { 10956 /* 10957 * Keep going even with NULL mp. 10958 * There may be a useful ACK or something else 10959 * we don't want to miss. 10960 * 10961 * But TCP should not perform fast retransmit 10962 * because of the ack number. TCP uses 10963 * seg_len == 0 to determine if it is a pure 10964 * ACK. And this is not a pure ACK. 10965 */ 10966 seg_len = 0; 10967 ofo_seg = B_TRUE; 10968 10969 if (tcps->tcps_reass_timeout != 0 && 10970 tcp->tcp_reass_tid == 0) { 10971 tcp->tcp_reass_tid = TCP_TIMER(tcp, 10972 tcp_reass_timer, MSEC_TO_TICK( 10973 tcps->tcps_reass_timeout)); 10974 } 10975 } 10976 } 10977 } else if (seg_len > 0) { 10978 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 10979 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 10980 /* 10981 * If an out of order FIN was received before, and the seq 10982 * num and len of the new segment match that of the FIN, 10983 * put the FIN flag back in. 10984 */ 10985 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10986 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10987 flags |= TH_FIN; 10988 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 10989 } 10990 } 10991 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 10992 if (flags & TH_RST) { 10993 freemsg(mp); 10994 switch (tcp->tcp_state) { 10995 case TCPS_SYN_RCVD: 10996 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 10997 break; 10998 case TCPS_ESTABLISHED: 10999 case TCPS_FIN_WAIT_1: 11000 case TCPS_FIN_WAIT_2: 11001 case TCPS_CLOSE_WAIT: 11002 (void) tcp_clean_death(tcp, ECONNRESET, 15); 11003 break; 11004 case TCPS_CLOSING: 11005 case TCPS_LAST_ACK: 11006 (void) tcp_clean_death(tcp, 0, 16); 11007 break; 11008 default: 11009 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11010 (void) tcp_clean_death(tcp, ENXIO, 17); 11011 break; 11012 } 11013 return; 11014 } 11015 if (flags & TH_SYN) { 11016 /* 11017 * See RFC 793, Page 71 11018 * 11019 * The seq number must be in the window as it should 11020 * be "fixed" above. If it is outside window, it should 11021 * be already rejected. Note that we allow seg_seq to be 11022 * rnxt + rwnd because we want to accept 0 window probe. 11023 */ 11024 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 11025 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 11026 freemsg(mp); 11027 /* 11028 * If the ACK flag is not set, just use our snxt as the 11029 * seq number of the RST segment. 11030 */ 11031 if (!(flags & TH_ACK)) { 11032 seg_ack = tcp->tcp_snxt; 11033 } 11034 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 11035 TH_RST|TH_ACK); 11036 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11037 (void) tcp_clean_death(tcp, ECONNRESET, 18); 11038 return; 11039 } 11040 /* 11041 * urp could be -1 when the urp field in the packet is 0 11042 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 11043 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 11044 */ 11045 if (flags & TH_URG && urp >= 0) { 11046 if (!tcp->tcp_urp_last_valid || 11047 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 11048 /* 11049 * Non-STREAMS sockets handle the urgent data a litte 11050 * differently from STREAMS based sockets. There is no 11051 * need to mark any mblks with the MSG{NOT,}MARKNEXT 11052 * flags to keep SIOCATMARK happy. Instead a 11053 * su_signal_oob upcall is made to update the mark. 11054 * Neither is a T_EXDATA_IND mblk needed to be 11055 * prepended to the urgent data. The urgent data is 11056 * delivered using the su_recv upcall, where we set 11057 * the MSG_OOB flag to indicate that it is urg data. 11058 * 11059 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 11060 * are used by non-STREAMS sockets. 11061 */ 11062 if (IPCL_IS_NONSTR(connp)) { 11063 if (!TCP_IS_DETACHED(tcp)) { 11064 (*connp->conn_upcalls->su_signal_oob) 11065 (connp->conn_upper_handle, urp); 11066 } 11067 } else { 11068 /* 11069 * If we haven't generated the signal yet for 11070 * this urgent pointer value, do it now. Also, 11071 * send up a zero-length M_DATA indicating 11072 * whether or not this is the mark. The latter 11073 * is not needed when a T_EXDATA_IND is sent up. 11074 * However, if there are allocation failures 11075 * this code relies on the sender retransmitting 11076 * and the socket code for determining the mark 11077 * should not block waiting for the peer to 11078 * transmit. Thus, for simplicity we always 11079 * send up the mark indication. 11080 */ 11081 mp1 = allocb(0, BPRI_MED); 11082 if (mp1 == NULL) { 11083 freemsg(mp); 11084 return; 11085 } 11086 if (!TCP_IS_DETACHED(tcp) && 11087 !putnextctl1(connp->conn_rq, M_PCSIG, 11088 SIGURG)) { 11089 /* Try again on the rexmit. */ 11090 freemsg(mp1); 11091 freemsg(mp); 11092 return; 11093 } 11094 /* 11095 * Mark with NOTMARKNEXT for now. 11096 * The code below will change this to MARKNEXT 11097 * if we are at the mark. 11098 * 11099 * If there are allocation failures (e.g. in 11100 * dupmsg below) the next time tcp_input_data 11101 * sees the urgent segment it will send up the 11102 * MSGMARKNEXT message. 11103 */ 11104 mp1->b_flag |= MSGNOTMARKNEXT; 11105 freemsg(tcp->tcp_urp_mark_mp); 11106 tcp->tcp_urp_mark_mp = mp1; 11107 flags |= TH_SEND_URP_MARK; 11108 #ifdef DEBUG 11109 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11110 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 11111 "last %x, %s", 11112 seg_seq, urp, tcp->tcp_urp_last, 11113 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11114 #endif /* DEBUG */ 11115 } 11116 tcp->tcp_urp_last_valid = B_TRUE; 11117 tcp->tcp_urp_last = urp + seg_seq; 11118 } else if (tcp->tcp_urp_mark_mp != NULL) { 11119 /* 11120 * An allocation failure prevented the previous 11121 * tcp_input_data from sending up the allocated 11122 * MSG*MARKNEXT message - send it up this time 11123 * around. 11124 */ 11125 flags |= TH_SEND_URP_MARK; 11126 } 11127 11128 /* 11129 * If the urgent byte is in this segment, make sure that it is 11130 * all by itself. This makes it much easier to deal with the 11131 * possibility of an allocation failure on the T_exdata_ind. 11132 * Note that seg_len is the number of bytes in the segment, and 11133 * urp is the offset into the segment of the urgent byte. 11134 * urp < seg_len means that the urgent byte is in this segment. 11135 */ 11136 if (urp < seg_len) { 11137 if (seg_len != 1) { 11138 uint32_t tmp_rnxt; 11139 /* 11140 * Break it up and feed it back in. 11141 * Re-attach the IP header. 11142 */ 11143 mp->b_rptr = iphdr; 11144 if (urp > 0) { 11145 /* 11146 * There is stuff before the urgent 11147 * byte. 11148 */ 11149 mp1 = dupmsg(mp); 11150 if (!mp1) { 11151 /* 11152 * Trim from urgent byte on. 11153 * The rest will come back. 11154 */ 11155 (void) adjmsg(mp, 11156 urp - seg_len); 11157 tcp_input_data(connp, 11158 mp, NULL, ira); 11159 return; 11160 } 11161 (void) adjmsg(mp1, urp - seg_len); 11162 /* Feed this piece back in. */ 11163 tmp_rnxt = tcp->tcp_rnxt; 11164 tcp_input_data(connp, mp1, NULL, ira); 11165 /* 11166 * If the data passed back in was not 11167 * processed (ie: bad ACK) sending 11168 * the remainder back in will cause a 11169 * loop. In this case, drop the 11170 * packet and let the sender try 11171 * sending a good packet. 11172 */ 11173 if (tmp_rnxt == tcp->tcp_rnxt) { 11174 freemsg(mp); 11175 return; 11176 } 11177 } 11178 if (urp != seg_len - 1) { 11179 uint32_t tmp_rnxt; 11180 /* 11181 * There is stuff after the urgent 11182 * byte. 11183 */ 11184 mp1 = dupmsg(mp); 11185 if (!mp1) { 11186 /* 11187 * Trim everything beyond the 11188 * urgent byte. The rest will 11189 * come back. 11190 */ 11191 (void) adjmsg(mp, 11192 urp + 1 - seg_len); 11193 tcp_input_data(connp, 11194 mp, NULL, ira); 11195 return; 11196 } 11197 (void) adjmsg(mp1, urp + 1 - seg_len); 11198 tmp_rnxt = tcp->tcp_rnxt; 11199 tcp_input_data(connp, mp1, NULL, ira); 11200 /* 11201 * If the data passed back in was not 11202 * processed (ie: bad ACK) sending 11203 * the remainder back in will cause a 11204 * loop. In this case, drop the 11205 * packet and let the sender try 11206 * sending a good packet. 11207 */ 11208 if (tmp_rnxt == tcp->tcp_rnxt) { 11209 freemsg(mp); 11210 return; 11211 } 11212 } 11213 tcp_input_data(connp, mp, NULL, ira); 11214 return; 11215 } 11216 /* 11217 * This segment contains only the urgent byte. We 11218 * have to allocate the T_exdata_ind, if we can. 11219 */ 11220 if (IPCL_IS_NONSTR(connp)) { 11221 int error; 11222 11223 (*connp->conn_upcalls->su_recv) 11224 (connp->conn_upper_handle, mp, seg_len, 11225 MSG_OOB, &error, NULL); 11226 /* 11227 * We should never be in middle of a 11228 * fallback, the squeue guarantees that. 11229 */ 11230 ASSERT(error != EOPNOTSUPP); 11231 mp = NULL; 11232 goto update_ack; 11233 } else if (!tcp->tcp_urp_mp) { 11234 struct T_exdata_ind *tei; 11235 mp1 = allocb(sizeof (struct T_exdata_ind), 11236 BPRI_MED); 11237 if (!mp1) { 11238 /* 11239 * Sigh... It'll be back. 11240 * Generate any MSG*MARK message now. 11241 */ 11242 freemsg(mp); 11243 seg_len = 0; 11244 if (flags & TH_SEND_URP_MARK) { 11245 11246 11247 ASSERT(tcp->tcp_urp_mark_mp); 11248 tcp->tcp_urp_mark_mp->b_flag &= 11249 ~MSGNOTMARKNEXT; 11250 tcp->tcp_urp_mark_mp->b_flag |= 11251 MSGMARKNEXT; 11252 } 11253 goto ack_check; 11254 } 11255 mp1->b_datap->db_type = M_PROTO; 11256 tei = (struct T_exdata_ind *)mp1->b_rptr; 11257 tei->PRIM_type = T_EXDATA_IND; 11258 tei->MORE_flag = 0; 11259 mp1->b_wptr = (uchar_t *)&tei[1]; 11260 tcp->tcp_urp_mp = mp1; 11261 #ifdef DEBUG 11262 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11263 "tcp_rput: allocated exdata_ind %s", 11264 tcp_display(tcp, NULL, 11265 DISP_PORT_ONLY)); 11266 #endif /* DEBUG */ 11267 /* 11268 * There is no need to send a separate MSG*MARK 11269 * message since the T_EXDATA_IND will be sent 11270 * now. 11271 */ 11272 flags &= ~TH_SEND_URP_MARK; 11273 freemsg(tcp->tcp_urp_mark_mp); 11274 tcp->tcp_urp_mark_mp = NULL; 11275 } 11276 /* 11277 * Now we are all set. On the next putnext upstream, 11278 * tcp_urp_mp will be non-NULL and will get prepended 11279 * to what has to be this piece containing the urgent 11280 * byte. If for any reason we abort this segment below, 11281 * if it comes back, we will have this ready, or it 11282 * will get blown off in close. 11283 */ 11284 } else if (urp == seg_len) { 11285 /* 11286 * The urgent byte is the next byte after this sequence 11287 * number. If this endpoint is non-STREAMS, then there 11288 * is nothing to do here since the socket has already 11289 * been notified about the urg pointer by the 11290 * su_signal_oob call above. 11291 * 11292 * In case of STREAMS, some more work might be needed. 11293 * If there is data it is marked with MSGMARKNEXT and 11294 * and any tcp_urp_mark_mp is discarded since it is not 11295 * needed. Otherwise, if the code above just allocated 11296 * a zero-length tcp_urp_mark_mp message, that message 11297 * is tagged with MSGMARKNEXT. Sending up these 11298 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11299 * even though the T_EXDATA_IND will not be sent up 11300 * until the urgent byte arrives. 11301 */ 11302 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11303 if (seg_len != 0) { 11304 flags |= TH_MARKNEXT_NEEDED; 11305 freemsg(tcp->tcp_urp_mark_mp); 11306 tcp->tcp_urp_mark_mp = NULL; 11307 flags &= ~TH_SEND_URP_MARK; 11308 } else if (tcp->tcp_urp_mark_mp != NULL) { 11309 flags |= TH_SEND_URP_MARK; 11310 tcp->tcp_urp_mark_mp->b_flag &= 11311 ~MSGNOTMARKNEXT; 11312 tcp->tcp_urp_mark_mp->b_flag |= 11313 MSGMARKNEXT; 11314 } 11315 } 11316 #ifdef DEBUG 11317 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11318 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11319 seg_len, flags, 11320 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11321 #endif /* DEBUG */ 11322 } 11323 #ifdef DEBUG 11324 else { 11325 /* Data left until we hit mark */ 11326 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11327 "tcp_rput: URP %d bytes left, %s", 11328 urp - seg_len, tcp_display(tcp, NULL, 11329 DISP_PORT_ONLY)); 11330 } 11331 #endif /* DEBUG */ 11332 } 11333 11334 process_ack: 11335 if (!(flags & TH_ACK)) { 11336 freemsg(mp); 11337 goto xmit_check; 11338 } 11339 } 11340 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11341 11342 if (bytes_acked > 0) 11343 tcp->tcp_ip_forward_progress = B_TRUE; 11344 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11345 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11346 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11347 /* 3-way handshake complete - pass up the T_CONN_IND */ 11348 tcp_t *listener = tcp->tcp_listener; 11349 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11350 11351 tcp->tcp_tconnind_started = B_TRUE; 11352 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11353 /* 11354 * We are here means eager is fine but it can 11355 * get a TH_RST at any point between now and till 11356 * accept completes and disappear. We need to 11357 * ensure that reference to eager is valid after 11358 * we get out of eager's perimeter. So we do 11359 * an extra refhold. 11360 */ 11361 CONN_INC_REF(connp); 11362 11363 /* 11364 * The listener also exists because of the refhold 11365 * done in tcp_input_listener. Its possible that it 11366 * might have closed. We will check that once we 11367 * get inside listeners context. 11368 */ 11369 CONN_INC_REF(listener->tcp_connp); 11370 if (listener->tcp_connp->conn_sqp == 11371 connp->conn_sqp) { 11372 /* 11373 * We optimize by not calling an SQUEUE_ENTER 11374 * on the listener since we know that the 11375 * listener and eager squeues are the same. 11376 * We are able to make this check safely only 11377 * because neither the eager nor the listener 11378 * can change its squeue. Only an active connect 11379 * can change its squeue 11380 */ 11381 tcp_send_conn_ind(listener->tcp_connp, mp, 11382 listener->tcp_connp->conn_sqp); 11383 CONN_DEC_REF(listener->tcp_connp); 11384 } else if (!tcp->tcp_loopback) { 11385 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11386 mp, tcp_send_conn_ind, 11387 listener->tcp_connp, NULL, SQ_FILL, 11388 SQTAG_TCP_CONN_IND); 11389 } else { 11390 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11391 mp, tcp_send_conn_ind, 11392 listener->tcp_connp, NULL, SQ_PROCESS, 11393 SQTAG_TCP_CONN_IND); 11394 } 11395 } 11396 11397 /* 11398 * We are seeing the final ack in the three way 11399 * hand shake of a active open'ed connection 11400 * so we must send up a T_CONN_CON 11401 * 11402 * tcp_sendmsg() checks tcp_state without entering 11403 * the squeue so tcp_state should be updated before 11404 * sending up connection confirmation. 11405 */ 11406 tcp->tcp_state = TCPS_ESTABLISHED; 11407 if (tcp->tcp_active_open) { 11408 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11409 freemsg(mp); 11410 tcp->tcp_state = TCPS_SYN_RCVD; 11411 return; 11412 } 11413 /* 11414 * Don't fuse the loopback endpoints for 11415 * simultaneous active opens. 11416 */ 11417 if (tcp->tcp_loopback) { 11418 TCP_STAT(tcps, tcp_fusion_unfusable); 11419 tcp->tcp_unfusable = B_TRUE; 11420 } 11421 } 11422 11423 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11424 bytes_acked--; 11425 /* SYN was acked - making progress */ 11426 tcp->tcp_ip_forward_progress = B_TRUE; 11427 11428 /* 11429 * If SYN was retransmitted, need to reset all 11430 * retransmission info as this segment will be 11431 * treated as a dup ACK. 11432 */ 11433 if (tcp->tcp_rexmit) { 11434 tcp->tcp_rexmit = B_FALSE; 11435 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11436 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11437 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11438 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11439 tcp->tcp_ms_we_have_waited = 0; 11440 tcp->tcp_cwnd = mss; 11441 } 11442 11443 /* 11444 * We set the send window to zero here. 11445 * This is needed if there is data to be 11446 * processed already on the queue. 11447 * Later (at swnd_update label), the 11448 * "new_swnd > tcp_swnd" condition is satisfied 11449 * the XMIT_NEEDED flag is set in the current 11450 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11451 * called if there is already data on queue in 11452 * this state. 11453 */ 11454 tcp->tcp_swnd = 0; 11455 11456 if (new_swnd > tcp->tcp_max_swnd) 11457 tcp->tcp_max_swnd = new_swnd; 11458 tcp->tcp_swl1 = seg_seq; 11459 tcp->tcp_swl2 = seg_ack; 11460 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11461 11462 /* Fuse when both sides are in ESTABLISHED state */ 11463 if (tcp->tcp_loopback && do_tcp_fusion) 11464 tcp_fuse(tcp, iphdr, tcpha); 11465 11466 } 11467 /* This code follows 4.4BSD-Lite2 mostly. */ 11468 if (bytes_acked < 0) 11469 goto est; 11470 11471 /* 11472 * If TCP is ECN capable and the congestion experience bit is 11473 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11474 * done once per window (or more loosely, per RTT). 11475 */ 11476 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11477 tcp->tcp_cwr = B_FALSE; 11478 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11479 if (!tcp->tcp_cwr) { 11480 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11481 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11482 tcp->tcp_cwnd = npkt * mss; 11483 /* 11484 * If the cwnd is 0, use the timer to clock out 11485 * new segments. This is required by the ECN spec. 11486 */ 11487 if (npkt == 0) { 11488 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11489 /* 11490 * This makes sure that when the ACK comes 11491 * back, we will increase tcp_cwnd by 1 MSS. 11492 */ 11493 tcp->tcp_cwnd_cnt = 0; 11494 } 11495 tcp->tcp_cwr = B_TRUE; 11496 /* 11497 * This marks the end of the current window of in 11498 * flight data. That is why we don't use 11499 * tcp_suna + tcp_swnd. Only data in flight can 11500 * provide ECN info. 11501 */ 11502 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11503 tcp->tcp_ecn_cwr_sent = B_FALSE; 11504 } 11505 } 11506 11507 mp1 = tcp->tcp_xmit_head; 11508 if (bytes_acked == 0) { 11509 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11510 int dupack_cnt; 11511 11512 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11513 /* 11514 * Fast retransmit. When we have seen exactly three 11515 * identical ACKs while we have unacked data 11516 * outstanding we take it as a hint that our peer 11517 * dropped something. 11518 * 11519 * If TCP is retransmitting, don't do fast retransmit. 11520 */ 11521 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11522 ! tcp->tcp_rexmit) { 11523 /* Do Limited Transmit */ 11524 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11525 tcps->tcps_dupack_fast_retransmit) { 11526 /* 11527 * RFC 3042 11528 * 11529 * What we need to do is temporarily 11530 * increase tcp_cwnd so that new 11531 * data can be sent if it is allowed 11532 * by the receive window (tcp_rwnd). 11533 * tcp_wput_data() will take care of 11534 * the rest. 11535 * 11536 * If the connection is SACK capable, 11537 * only do limited xmit when there 11538 * is SACK info. 11539 * 11540 * Note how tcp_cwnd is incremented. 11541 * The first dup ACK will increase 11542 * it by 1 MSS. The second dup ACK 11543 * will increase it by 2 MSS. This 11544 * means that only 1 new segment will 11545 * be sent for each dup ACK. 11546 */ 11547 if (tcp->tcp_unsent > 0 && 11548 (!tcp->tcp_snd_sack_ok || 11549 (tcp->tcp_snd_sack_ok && 11550 tcp->tcp_notsack_list != NULL))) { 11551 tcp->tcp_cwnd += mss << 11552 (tcp->tcp_dupack_cnt - 1); 11553 flags |= TH_LIMIT_XMIT; 11554 } 11555 } else if (dupack_cnt == 11556 tcps->tcps_dupack_fast_retransmit) { 11557 11558 /* 11559 * If we have reduced tcp_ssthresh 11560 * because of ECN, do not reduce it again 11561 * unless it is already one window of data 11562 * away. After one window of data, tcp_cwr 11563 * should then be cleared. Note that 11564 * for non ECN capable connection, tcp_cwr 11565 * should always be false. 11566 * 11567 * Adjust cwnd since the duplicate 11568 * ack indicates that a packet was 11569 * dropped (due to congestion.) 11570 */ 11571 if (!tcp->tcp_cwr) { 11572 npkt = ((tcp->tcp_snxt - 11573 tcp->tcp_suna) >> 1) / mss; 11574 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11575 mss; 11576 tcp->tcp_cwnd = (npkt + 11577 tcp->tcp_dupack_cnt) * mss; 11578 } 11579 if (tcp->tcp_ecn_ok) { 11580 tcp->tcp_cwr = B_TRUE; 11581 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11582 tcp->tcp_ecn_cwr_sent = B_FALSE; 11583 } 11584 11585 /* 11586 * We do Hoe's algorithm. Refer to her 11587 * paper "Improving the Start-up Behavior 11588 * of a Congestion Control Scheme for TCP," 11589 * appeared in SIGCOMM'96. 11590 * 11591 * Save highest seq no we have sent so far. 11592 * Be careful about the invisible FIN byte. 11593 */ 11594 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11595 (tcp->tcp_unsent == 0)) { 11596 tcp->tcp_rexmit_max = tcp->tcp_fss; 11597 } else { 11598 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11599 } 11600 11601 /* 11602 * Do not allow bursty traffic during. 11603 * fast recovery. Refer to Fall and Floyd's 11604 * paper "Simulation-based Comparisons of 11605 * Tahoe, Reno and SACK TCP" (in CCR?) 11606 * This is a best current practise. 11607 */ 11608 tcp->tcp_snd_burst = TCP_CWND_SS; 11609 11610 /* 11611 * For SACK: 11612 * Calculate tcp_pipe, which is the 11613 * estimated number of bytes in 11614 * network. 11615 * 11616 * tcp_fack is the highest sack'ed seq num 11617 * TCP has received. 11618 * 11619 * tcp_pipe is explained in the above quoted 11620 * Fall and Floyd's paper. tcp_fack is 11621 * explained in Mathis and Mahdavi's 11622 * "Forward Acknowledgment: Refining TCP 11623 * Congestion Control" in SIGCOMM '96. 11624 */ 11625 if (tcp->tcp_snd_sack_ok) { 11626 ASSERT(tcp->tcp_sack_info != NULL); 11627 if (tcp->tcp_notsack_list != NULL) { 11628 tcp->tcp_pipe = tcp->tcp_snxt - 11629 tcp->tcp_fack; 11630 tcp->tcp_sack_snxt = seg_ack; 11631 flags |= TH_NEED_SACK_REXMIT; 11632 } else { 11633 /* 11634 * Always initialize tcp_pipe 11635 * even though we don't have 11636 * any SACK info. If later 11637 * we get SACK info and 11638 * tcp_pipe is not initialized, 11639 * funny things will happen. 11640 */ 11641 tcp->tcp_pipe = 11642 tcp->tcp_cwnd_ssthresh; 11643 } 11644 } else { 11645 flags |= TH_REXMIT_NEEDED; 11646 } /* tcp_snd_sack_ok */ 11647 11648 } else { 11649 /* 11650 * Here we perform congestion 11651 * avoidance, but NOT slow start. 11652 * This is known as the Fast 11653 * Recovery Algorithm. 11654 */ 11655 if (tcp->tcp_snd_sack_ok && 11656 tcp->tcp_notsack_list != NULL) { 11657 flags |= TH_NEED_SACK_REXMIT; 11658 tcp->tcp_pipe -= mss; 11659 if (tcp->tcp_pipe < 0) 11660 tcp->tcp_pipe = 0; 11661 } else { 11662 /* 11663 * We know that one more packet has 11664 * left the pipe thus we can update 11665 * cwnd. 11666 */ 11667 cwnd = tcp->tcp_cwnd + mss; 11668 if (cwnd > tcp->tcp_cwnd_max) 11669 cwnd = tcp->tcp_cwnd_max; 11670 tcp->tcp_cwnd = cwnd; 11671 if (tcp->tcp_unsent > 0) 11672 flags |= TH_XMIT_NEEDED; 11673 } 11674 } 11675 } 11676 } else if (tcp->tcp_zero_win_probe) { 11677 /* 11678 * If the window has opened, need to arrange 11679 * to send additional data. 11680 */ 11681 if (new_swnd != 0) { 11682 /* tcp_suna != tcp_snxt */ 11683 /* Packet contains a window update */ 11684 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11685 tcp->tcp_zero_win_probe = 0; 11686 tcp->tcp_timer_backoff = 0; 11687 tcp->tcp_ms_we_have_waited = 0; 11688 11689 /* 11690 * Transmit starting with tcp_suna since 11691 * the one byte probe is not ack'ed. 11692 * If TCP has sent more than one identical 11693 * probe, tcp_rexmit will be set. That means 11694 * tcp_ss_rexmit() will send out the one 11695 * byte along with new data. Otherwise, 11696 * fake the retransmission. 11697 */ 11698 flags |= TH_XMIT_NEEDED; 11699 if (!tcp->tcp_rexmit) { 11700 tcp->tcp_rexmit = B_TRUE; 11701 tcp->tcp_dupack_cnt = 0; 11702 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11703 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11704 } 11705 } 11706 } 11707 goto swnd_update; 11708 } 11709 11710 /* 11711 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11712 * If the ACK value acks something that we have not yet sent, it might 11713 * be an old duplicate segment. Send an ACK to re-synchronize the 11714 * other side. 11715 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11716 * state is handled above, so we can always just drop the segment and 11717 * send an ACK here. 11718 * 11719 * In the case where the peer shrinks the window, we see the new window 11720 * update, but all the data sent previously is queued up by the peer. 11721 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11722 * number, which was already sent, and within window, is recorded. 11723 * tcp_snxt is then updated. 11724 * 11725 * If the window has previously shrunk, and an ACK for data not yet 11726 * sent, according to tcp_snxt is recieved, it may still be valid. If 11727 * the ACK is for data within the window at the time the window was 11728 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11729 * the sequence number ACK'ed. 11730 * 11731 * If the ACK covers all the data sent at the time the window was 11732 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11733 * 11734 * Should we send ACKs in response to ACK only segments? 11735 */ 11736 11737 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11738 if ((tcp->tcp_is_wnd_shrnk) && 11739 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11740 uint32_t data_acked_ahead_snxt; 11741 11742 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11743 tcp_update_xmit_tail(tcp, seg_ack); 11744 tcp->tcp_unsent -= data_acked_ahead_snxt; 11745 } else { 11746 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11747 /* drop the received segment */ 11748 freemsg(mp); 11749 11750 /* 11751 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11752 * greater than 0, check if the number of such 11753 * bogus ACks is greater than that count. If yes, 11754 * don't send back any ACK. This prevents TCP from 11755 * getting into an ACK storm if somehow an attacker 11756 * successfully spoofs an acceptable segment to our 11757 * peer. If this continues (count > 2 X threshold), 11758 * we should abort this connection. 11759 */ 11760 if (tcp_drop_ack_unsent_cnt > 0 && 11761 ++tcp->tcp_in_ack_unsent > 11762 tcp_drop_ack_unsent_cnt) { 11763 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11764 if (tcp->tcp_in_ack_unsent > 2 * 11765 tcp_drop_ack_unsent_cnt) { 11766 (void) tcp_clean_death(tcp, EPROTO, 20); 11767 } 11768 return; 11769 } 11770 mp = tcp_ack_mp(tcp); 11771 if (mp != NULL) { 11772 BUMP_LOCAL(tcp->tcp_obsegs); 11773 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11774 tcp_send_data(tcp, mp); 11775 } 11776 return; 11777 } 11778 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11779 tcp->tcp_snxt_shrunk)) { 11780 tcp->tcp_is_wnd_shrnk = B_FALSE; 11781 } 11782 11783 /* 11784 * TCP gets a new ACK, update the notsack'ed list to delete those 11785 * blocks that are covered by this ACK. 11786 */ 11787 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11788 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11789 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11790 } 11791 11792 /* 11793 * If we got an ACK after fast retransmit, check to see 11794 * if it is a partial ACK. If it is not and the congestion 11795 * window was inflated to account for the other side's 11796 * cached packets, retract it. If it is, do Hoe's algorithm. 11797 */ 11798 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11799 ASSERT(tcp->tcp_rexmit == B_FALSE); 11800 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11801 tcp->tcp_dupack_cnt = 0; 11802 /* 11803 * Restore the orig tcp_cwnd_ssthresh after 11804 * fast retransmit phase. 11805 */ 11806 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11807 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11808 } 11809 tcp->tcp_rexmit_max = seg_ack; 11810 tcp->tcp_cwnd_cnt = 0; 11811 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11812 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11813 11814 /* 11815 * Remove all notsack info to avoid confusion with 11816 * the next fast retrasnmit/recovery phase. 11817 */ 11818 if (tcp->tcp_snd_sack_ok && 11819 tcp->tcp_notsack_list != NULL) { 11820 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11821 tcp); 11822 } 11823 } else { 11824 if (tcp->tcp_snd_sack_ok && 11825 tcp->tcp_notsack_list != NULL) { 11826 flags |= TH_NEED_SACK_REXMIT; 11827 tcp->tcp_pipe -= mss; 11828 if (tcp->tcp_pipe < 0) 11829 tcp->tcp_pipe = 0; 11830 } else { 11831 /* 11832 * Hoe's algorithm: 11833 * 11834 * Retransmit the unack'ed segment and 11835 * restart fast recovery. Note that we 11836 * need to scale back tcp_cwnd to the 11837 * original value when we started fast 11838 * recovery. This is to prevent overly 11839 * aggressive behaviour in sending new 11840 * segments. 11841 */ 11842 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11843 tcps->tcps_dupack_fast_retransmit * mss; 11844 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11845 flags |= TH_REXMIT_NEEDED; 11846 } 11847 } 11848 } else { 11849 tcp->tcp_dupack_cnt = 0; 11850 if (tcp->tcp_rexmit) { 11851 /* 11852 * TCP is retranmitting. If the ACK ack's all 11853 * outstanding data, update tcp_rexmit_max and 11854 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11855 * to the correct value. 11856 * 11857 * Note that SEQ_LEQ() is used. This is to avoid 11858 * unnecessary fast retransmit caused by dup ACKs 11859 * received when TCP does slow start retransmission 11860 * after a time out. During this phase, TCP may 11861 * send out segments which are already received. 11862 * This causes dup ACKs to be sent back. 11863 */ 11864 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11865 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11866 tcp->tcp_rexmit_nxt = seg_ack; 11867 } 11868 if (seg_ack != tcp->tcp_rexmit_max) { 11869 flags |= TH_XMIT_NEEDED; 11870 } 11871 } else { 11872 tcp->tcp_rexmit = B_FALSE; 11873 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11874 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11875 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11876 } 11877 tcp->tcp_ms_we_have_waited = 0; 11878 } 11879 } 11880 11881 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11882 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11883 tcp->tcp_suna = seg_ack; 11884 if (tcp->tcp_zero_win_probe != 0) { 11885 tcp->tcp_zero_win_probe = 0; 11886 tcp->tcp_timer_backoff = 0; 11887 } 11888 11889 /* 11890 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11891 * Note that it cannot be the SYN being ack'ed. The code flow 11892 * will not reach here. 11893 */ 11894 if (mp1 == NULL) { 11895 goto fin_acked; 11896 } 11897 11898 /* 11899 * Update the congestion window. 11900 * 11901 * If TCP is not ECN capable or TCP is ECN capable but the 11902 * congestion experience bit is not set, increase the tcp_cwnd as 11903 * usual. 11904 */ 11905 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11906 cwnd = tcp->tcp_cwnd; 11907 add = mss; 11908 11909 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11910 /* 11911 * This is to prevent an increase of less than 1 MSS of 11912 * tcp_cwnd. With partial increase, tcp_wput_data() 11913 * may send out tinygrams in order to preserve mblk 11914 * boundaries. 11915 * 11916 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11917 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11918 * increased by 1 MSS for every RTTs. 11919 */ 11920 if (tcp->tcp_cwnd_cnt <= 0) { 11921 tcp->tcp_cwnd_cnt = cwnd + add; 11922 } else { 11923 tcp->tcp_cwnd_cnt -= add; 11924 add = 0; 11925 } 11926 } 11927 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11928 } 11929 11930 /* See if the latest urgent data has been acknowledged */ 11931 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11932 SEQ_GT(seg_ack, tcp->tcp_urg)) 11933 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11934 11935 /* Can we update the RTT estimates? */ 11936 if (tcp->tcp_snd_ts_ok) { 11937 /* Ignore zero timestamp echo-reply. */ 11938 if (tcpopt.tcp_opt_ts_ecr != 0) { 11939 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11940 (int32_t)tcpopt.tcp_opt_ts_ecr); 11941 } 11942 11943 /* If needed, restart the timer. */ 11944 if (tcp->tcp_set_timer == 1) { 11945 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11946 tcp->tcp_set_timer = 0; 11947 } 11948 /* 11949 * Update tcp_csuna in case the other side stops sending 11950 * us timestamps. 11951 */ 11952 tcp->tcp_csuna = tcp->tcp_snxt; 11953 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 11954 /* 11955 * An ACK sequence we haven't seen before, so get the RTT 11956 * and update the RTO. But first check if the timestamp is 11957 * valid to use. 11958 */ 11959 if ((mp1->b_next != NULL) && 11960 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 11961 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11962 (int32_t)(intptr_t)mp1->b_prev); 11963 else 11964 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11965 11966 /* Remeber the last sequence to be ACKed */ 11967 tcp->tcp_csuna = seg_ack; 11968 if (tcp->tcp_set_timer == 1) { 11969 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11970 tcp->tcp_set_timer = 0; 11971 } 11972 } else { 11973 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11974 } 11975 11976 /* Eat acknowledged bytes off the xmit queue. */ 11977 for (;;) { 11978 mblk_t *mp2; 11979 uchar_t *wptr; 11980 11981 wptr = mp1->b_wptr; 11982 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 11983 bytes_acked -= (int)(wptr - mp1->b_rptr); 11984 if (bytes_acked < 0) { 11985 mp1->b_rptr = wptr + bytes_acked; 11986 /* 11987 * Set a new timestamp if all the bytes timed by the 11988 * old timestamp have been ack'ed. 11989 */ 11990 if (SEQ_GT(seg_ack, 11991 (uint32_t)(uintptr_t)(mp1->b_next))) { 11992 mp1->b_prev = 11993 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 11994 mp1->b_next = NULL; 11995 } 11996 break; 11997 } 11998 mp1->b_next = NULL; 11999 mp1->b_prev = NULL; 12000 mp2 = mp1; 12001 mp1 = mp1->b_cont; 12002 12003 /* 12004 * This notification is required for some zero-copy 12005 * clients to maintain a copy semantic. After the data 12006 * is ack'ed, client is safe to modify or reuse the buffer. 12007 */ 12008 if (tcp->tcp_snd_zcopy_aware && 12009 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 12010 tcp_zcopy_notify(tcp); 12011 freeb(mp2); 12012 if (bytes_acked == 0) { 12013 if (mp1 == NULL) { 12014 /* Everything is ack'ed, clear the tail. */ 12015 tcp->tcp_xmit_tail = NULL; 12016 /* 12017 * Cancel the timer unless we are still 12018 * waiting for an ACK for the FIN packet. 12019 */ 12020 if (tcp->tcp_timer_tid != 0 && 12021 tcp->tcp_snxt == tcp->tcp_suna) { 12022 (void) TCP_TIMER_CANCEL(tcp, 12023 tcp->tcp_timer_tid); 12024 tcp->tcp_timer_tid = 0; 12025 } 12026 goto pre_swnd_update; 12027 } 12028 if (mp2 != tcp->tcp_xmit_tail) 12029 break; 12030 tcp->tcp_xmit_tail = mp1; 12031 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12032 (uintptr_t)INT_MAX); 12033 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 12034 mp1->b_rptr); 12035 break; 12036 } 12037 if (mp1 == NULL) { 12038 /* 12039 * More was acked but there is nothing more 12040 * outstanding. This means that the FIN was 12041 * just acked or that we're talking to a clown. 12042 */ 12043 fin_acked: 12044 ASSERT(tcp->tcp_fin_sent); 12045 tcp->tcp_xmit_tail = NULL; 12046 if (tcp->tcp_fin_sent) { 12047 /* FIN was acked - making progress */ 12048 if (!tcp->tcp_fin_acked) 12049 tcp->tcp_ip_forward_progress = B_TRUE; 12050 tcp->tcp_fin_acked = B_TRUE; 12051 if (tcp->tcp_linger_tid != 0 && 12052 TCP_TIMER_CANCEL(tcp, 12053 tcp->tcp_linger_tid) >= 0) { 12054 tcp_stop_lingering(tcp); 12055 freemsg(mp); 12056 mp = NULL; 12057 } 12058 } else { 12059 /* 12060 * We should never get here because 12061 * we have already checked that the 12062 * number of bytes ack'ed should be 12063 * smaller than or equal to what we 12064 * have sent so far (it is the 12065 * acceptability check of the ACK). 12066 * We can only get here if the send 12067 * queue is corrupted. 12068 * 12069 * Terminate the connection and 12070 * panic the system. It is better 12071 * for us to panic instead of 12072 * continuing to avoid other disaster. 12073 */ 12074 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 12075 tcp->tcp_rnxt, TH_RST|TH_ACK); 12076 panic("Memory corruption " 12077 "detected for connection %s.", 12078 tcp_display(tcp, NULL, 12079 DISP_ADDR_AND_PORT)); 12080 /*NOTREACHED*/ 12081 } 12082 goto pre_swnd_update; 12083 } 12084 ASSERT(mp2 != tcp->tcp_xmit_tail); 12085 } 12086 if (tcp->tcp_unsent) { 12087 flags |= TH_XMIT_NEEDED; 12088 } 12089 pre_swnd_update: 12090 tcp->tcp_xmit_head = mp1; 12091 swnd_update: 12092 /* 12093 * The following check is different from most other implementations. 12094 * For bi-directional transfer, when segments are dropped, the 12095 * "normal" check will not accept a window update in those 12096 * retransmitted segemnts. Failing to do that, TCP may send out 12097 * segments which are outside receiver's window. As TCP accepts 12098 * the ack in those retransmitted segments, if the window update in 12099 * the same segment is not accepted, TCP will incorrectly calculates 12100 * that it can send more segments. This can create a deadlock 12101 * with the receiver if its window becomes zero. 12102 */ 12103 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 12104 SEQ_LT(tcp->tcp_swl1, seg_seq) || 12105 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 12106 /* 12107 * The criteria for update is: 12108 * 12109 * 1. the segment acknowledges some data. Or 12110 * 2. the segment is new, i.e. it has a higher seq num. Or 12111 * 3. the segment is not old and the advertised window is 12112 * larger than the previous advertised window. 12113 */ 12114 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 12115 flags |= TH_XMIT_NEEDED; 12116 tcp->tcp_swnd = new_swnd; 12117 if (new_swnd > tcp->tcp_max_swnd) 12118 tcp->tcp_max_swnd = new_swnd; 12119 tcp->tcp_swl1 = seg_seq; 12120 tcp->tcp_swl2 = seg_ack; 12121 } 12122 est: 12123 if (tcp->tcp_state > TCPS_ESTABLISHED) { 12124 12125 switch (tcp->tcp_state) { 12126 case TCPS_FIN_WAIT_1: 12127 if (tcp->tcp_fin_acked) { 12128 tcp->tcp_state = TCPS_FIN_WAIT_2; 12129 /* 12130 * We implement the non-standard BSD/SunOS 12131 * FIN_WAIT_2 flushing algorithm. 12132 * If there is no user attached to this 12133 * TCP endpoint, then this TCP struct 12134 * could hang around forever in FIN_WAIT_2 12135 * state if the peer forgets to send us 12136 * a FIN. To prevent this, we wait only 12137 * 2*MSL (a convenient time value) for 12138 * the FIN to arrive. If it doesn't show up, 12139 * we flush the TCP endpoint. This algorithm, 12140 * though a violation of RFC-793, has worked 12141 * for over 10 years in BSD systems. 12142 * Note: SunOS 4.x waits 675 seconds before 12143 * flushing the FIN_WAIT_2 connection. 12144 */ 12145 TCP_TIMER_RESTART(tcp, 12146 tcps->tcps_fin_wait_2_flush_interval); 12147 } 12148 break; 12149 case TCPS_FIN_WAIT_2: 12150 break; /* Shutdown hook? */ 12151 case TCPS_LAST_ACK: 12152 freemsg(mp); 12153 if (tcp->tcp_fin_acked) { 12154 (void) tcp_clean_death(tcp, 0, 19); 12155 return; 12156 } 12157 goto xmit_check; 12158 case TCPS_CLOSING: 12159 if (tcp->tcp_fin_acked) 12160 SET_TIME_WAIT(tcps, tcp, connp); 12161 /*FALLTHRU*/ 12162 case TCPS_CLOSE_WAIT: 12163 freemsg(mp); 12164 goto xmit_check; 12165 default: 12166 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12167 break; 12168 } 12169 } 12170 if (flags & TH_FIN) { 12171 /* Make sure we ack the fin */ 12172 flags |= TH_ACK_NEEDED; 12173 if (!tcp->tcp_fin_rcvd) { 12174 tcp->tcp_fin_rcvd = B_TRUE; 12175 tcp->tcp_rnxt++; 12176 tcpha = tcp->tcp_tcpha; 12177 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12178 12179 /* 12180 * Generate the ordrel_ind at the end unless we 12181 * are an eager guy. 12182 * In the eager case tcp_rsrv will do this when run 12183 * after tcp_accept is done. 12184 */ 12185 if (tcp->tcp_listener == NULL && 12186 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 12187 flags |= TH_ORDREL_NEEDED; 12188 switch (tcp->tcp_state) { 12189 case TCPS_SYN_RCVD: 12190 case TCPS_ESTABLISHED: 12191 tcp->tcp_state = TCPS_CLOSE_WAIT; 12192 /* Keepalive? */ 12193 break; 12194 case TCPS_FIN_WAIT_1: 12195 if (!tcp->tcp_fin_acked) { 12196 tcp->tcp_state = TCPS_CLOSING; 12197 break; 12198 } 12199 /* FALLTHRU */ 12200 case TCPS_FIN_WAIT_2: 12201 SET_TIME_WAIT(tcps, tcp, connp); 12202 if (seg_len) { 12203 /* 12204 * implies data piggybacked on FIN. 12205 * break to handle data. 12206 */ 12207 break; 12208 } 12209 freemsg(mp); 12210 goto ack_check; 12211 } 12212 } 12213 } 12214 if (mp == NULL) 12215 goto xmit_check; 12216 if (seg_len == 0) { 12217 freemsg(mp); 12218 goto xmit_check; 12219 } 12220 if (mp->b_rptr == mp->b_wptr) { 12221 /* 12222 * The header has been consumed, so we remove the 12223 * zero-length mblk here. 12224 */ 12225 mp1 = mp; 12226 mp = mp->b_cont; 12227 freeb(mp1); 12228 } 12229 update_ack: 12230 tcpha = tcp->tcp_tcpha; 12231 tcp->tcp_rack_cnt++; 12232 { 12233 uint32_t cur_max; 12234 12235 cur_max = tcp->tcp_rack_cur_max; 12236 if (tcp->tcp_rack_cnt >= cur_max) { 12237 /* 12238 * We have more unacked data than we should - send 12239 * an ACK now. 12240 */ 12241 flags |= TH_ACK_NEEDED; 12242 cur_max++; 12243 if (cur_max > tcp->tcp_rack_abs_max) 12244 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12245 else 12246 tcp->tcp_rack_cur_max = cur_max; 12247 } else if (TCP_IS_DETACHED(tcp)) { 12248 /* We don't have an ACK timer for detached TCP. */ 12249 flags |= TH_ACK_NEEDED; 12250 } else if (seg_len < mss) { 12251 /* 12252 * If we get a segment that is less than an mss, and we 12253 * already have unacknowledged data, and the amount 12254 * unacknowledged is not a multiple of mss, then we 12255 * better generate an ACK now. Otherwise, this may be 12256 * the tail piece of a transaction, and we would rather 12257 * wait for the response. 12258 */ 12259 uint32_t udif; 12260 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12261 (uintptr_t)INT_MAX); 12262 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12263 if (udif && (udif % mss)) 12264 flags |= TH_ACK_NEEDED; 12265 else 12266 flags |= TH_ACK_TIMER_NEEDED; 12267 } else { 12268 /* Start delayed ack timer */ 12269 flags |= TH_ACK_TIMER_NEEDED; 12270 } 12271 } 12272 tcp->tcp_rnxt += seg_len; 12273 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12274 12275 if (mp == NULL) 12276 goto xmit_check; 12277 12278 /* Update SACK list */ 12279 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12280 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12281 &(tcp->tcp_num_sack_blk)); 12282 } 12283 12284 if (tcp->tcp_urp_mp) { 12285 tcp->tcp_urp_mp->b_cont = mp; 12286 mp = tcp->tcp_urp_mp; 12287 tcp->tcp_urp_mp = NULL; 12288 /* Ready for a new signal. */ 12289 tcp->tcp_urp_last_valid = B_FALSE; 12290 #ifdef DEBUG 12291 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12292 "tcp_rput: sending exdata_ind %s", 12293 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12294 #endif /* DEBUG */ 12295 } 12296 12297 /* 12298 * Check for ancillary data changes compared to last segment. 12299 */ 12300 if (connp->conn_recv_ancillary.crb_all != 0) { 12301 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12302 if (mp == NULL) 12303 return; 12304 } 12305 12306 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12307 /* 12308 * Side queue inbound data until the accept happens. 12309 * tcp_accept/tcp_rput drains this when the accept happens. 12310 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12311 * T_EXDATA_IND) it is queued on b_next. 12312 * XXX Make urgent data use this. Requires: 12313 * Removing tcp_listener check for TH_URG 12314 * Making M_PCPROTO and MARK messages skip the eager case 12315 */ 12316 12317 if (tcp->tcp_kssl_pending) { 12318 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12319 mblk_t *, mp); 12320 tcp_kssl_input(tcp, mp, ira->ira_cred); 12321 } else { 12322 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12323 } 12324 } else if (IPCL_IS_NONSTR(connp)) { 12325 /* 12326 * Non-STREAMS socket 12327 * 12328 * Note that no KSSL processing is done here, because 12329 * KSSL is not supported for non-STREAMS sockets. 12330 */ 12331 boolean_t push = flags & (TH_PUSH|TH_FIN); 12332 int error; 12333 12334 if ((*connp->conn_upcalls->su_recv)( 12335 connp->conn_upper_handle, 12336 mp, seg_len, 0, &error, &push) <= 0) { 12337 /* 12338 * We should never be in middle of a 12339 * fallback, the squeue guarantees that. 12340 */ 12341 ASSERT(error != EOPNOTSUPP); 12342 if (error == ENOSPC) 12343 tcp->tcp_rwnd -= seg_len; 12344 } else if (push) { 12345 /* PUSH bit set and sockfs is not flow controlled */ 12346 flags |= tcp_rwnd_reopen(tcp); 12347 } 12348 } else { 12349 /* STREAMS socket */ 12350 if (mp->b_datap->db_type != M_DATA || 12351 (flags & TH_MARKNEXT_NEEDED)) { 12352 if (tcp->tcp_rcv_list != NULL) { 12353 flags |= tcp_rcv_drain(tcp); 12354 } 12355 ASSERT(tcp->tcp_rcv_list == NULL || 12356 tcp->tcp_fused_sigurg); 12357 12358 if (flags & TH_MARKNEXT_NEEDED) { 12359 #ifdef DEBUG 12360 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12361 "tcp_rput: sending MSGMARKNEXT %s", 12362 tcp_display(tcp, NULL, 12363 DISP_PORT_ONLY)); 12364 #endif /* DEBUG */ 12365 mp->b_flag |= MSGMARKNEXT; 12366 flags &= ~TH_MARKNEXT_NEEDED; 12367 } 12368 12369 /* Does this need SSL processing first? */ 12370 if ((tcp->tcp_kssl_ctx != NULL) && 12371 (DB_TYPE(mp) == M_DATA)) { 12372 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12373 mblk_t *, mp); 12374 tcp_kssl_input(tcp, mp, ira->ira_cred); 12375 } else { 12376 if (is_system_labeled()) 12377 tcp_setcred_data(mp, ira); 12378 12379 putnext(connp->conn_rq, mp); 12380 if (!canputnext(connp->conn_rq)) 12381 tcp->tcp_rwnd -= seg_len; 12382 } 12383 } else if ((tcp->tcp_kssl_ctx != NULL) && 12384 (DB_TYPE(mp) == M_DATA)) { 12385 /* Does this need SSL processing first? */ 12386 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12387 tcp_kssl_input(tcp, mp, ira->ira_cred); 12388 } else if ((flags & (TH_PUSH|TH_FIN)) || 12389 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12390 if (tcp->tcp_rcv_list != NULL) { 12391 /* 12392 * Enqueue the new segment first and then 12393 * call tcp_rcv_drain() to send all data 12394 * up. The other way to do this is to 12395 * send all queued data up and then call 12396 * putnext() to send the new segment up. 12397 * This way can remove the else part later 12398 * on. 12399 * 12400 * We don't do this to avoid one more call to 12401 * canputnext() as tcp_rcv_drain() needs to 12402 * call canputnext(). 12403 */ 12404 tcp_rcv_enqueue(tcp, mp, seg_len, 12405 ira->ira_cred); 12406 flags |= tcp_rcv_drain(tcp); 12407 } else { 12408 if (is_system_labeled()) 12409 tcp_setcred_data(mp, ira); 12410 12411 putnext(connp->conn_rq, mp); 12412 if (!canputnext(connp->conn_rq)) 12413 tcp->tcp_rwnd -= seg_len; 12414 } 12415 } else { 12416 /* 12417 * Enqueue all packets when processing an mblk 12418 * from the co queue and also enqueue normal packets. 12419 */ 12420 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12421 } 12422 /* 12423 * Make sure the timer is running if we have data waiting 12424 * for a push bit. This provides resiliency against 12425 * implementations that do not correctly generate push bits. 12426 */ 12427 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12428 /* 12429 * The connection may be closed at this point, so don't 12430 * do anything for a detached tcp. 12431 */ 12432 if (!TCP_IS_DETACHED(tcp)) 12433 tcp->tcp_push_tid = TCP_TIMER(tcp, 12434 tcp_push_timer, 12435 MSEC_TO_TICK( 12436 tcps->tcps_push_timer_interval)); 12437 } 12438 } 12439 12440 xmit_check: 12441 /* Is there anything left to do? */ 12442 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12443 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12444 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12445 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12446 goto done; 12447 12448 /* Any transmit work to do and a non-zero window? */ 12449 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12450 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12451 if (flags & TH_REXMIT_NEEDED) { 12452 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12453 12454 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12455 if (snd_size > mss) 12456 snd_size = mss; 12457 if (snd_size > tcp->tcp_swnd) 12458 snd_size = tcp->tcp_swnd; 12459 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12460 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12461 B_TRUE); 12462 12463 if (mp1 != NULL) { 12464 tcp->tcp_xmit_head->b_prev = 12465 (mblk_t *)LBOLT_FASTPATH; 12466 tcp->tcp_csuna = tcp->tcp_snxt; 12467 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12468 UPDATE_MIB(&tcps->tcps_mib, 12469 tcpRetransBytes, snd_size); 12470 tcp_send_data(tcp, mp1); 12471 } 12472 } 12473 if (flags & TH_NEED_SACK_REXMIT) { 12474 tcp_sack_rxmit(tcp, &flags); 12475 } 12476 /* 12477 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12478 * out new segment. Note that tcp_rexmit should not be 12479 * set, otherwise TH_LIMIT_XMIT should not be set. 12480 */ 12481 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12482 if (!tcp->tcp_rexmit) { 12483 tcp_wput_data(tcp, NULL, B_FALSE); 12484 } else { 12485 tcp_ss_rexmit(tcp); 12486 } 12487 } 12488 /* 12489 * Adjust tcp_cwnd back to normal value after sending 12490 * new data segments. 12491 */ 12492 if (flags & TH_LIMIT_XMIT) { 12493 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12494 /* 12495 * This will restart the timer. Restarting the 12496 * timer is used to avoid a timeout before the 12497 * limited transmitted segment's ACK gets back. 12498 */ 12499 if (tcp->tcp_xmit_head != NULL) 12500 tcp->tcp_xmit_head->b_prev = 12501 (mblk_t *)LBOLT_FASTPATH; 12502 } 12503 12504 /* Anything more to do? */ 12505 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12506 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12507 goto done; 12508 } 12509 ack_check: 12510 if (flags & TH_SEND_URP_MARK) { 12511 ASSERT(tcp->tcp_urp_mark_mp); 12512 ASSERT(!IPCL_IS_NONSTR(connp)); 12513 /* 12514 * Send up any queued data and then send the mark message 12515 */ 12516 if (tcp->tcp_rcv_list != NULL) { 12517 flags |= tcp_rcv_drain(tcp); 12518 12519 } 12520 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12521 mp1 = tcp->tcp_urp_mark_mp; 12522 tcp->tcp_urp_mark_mp = NULL; 12523 if (is_system_labeled()) 12524 tcp_setcred_data(mp1, ira); 12525 12526 putnext(connp->conn_rq, mp1); 12527 #ifdef DEBUG 12528 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12529 "tcp_rput: sending zero-length %s %s", 12530 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12531 "MSGNOTMARKNEXT"), 12532 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12533 #endif /* DEBUG */ 12534 flags &= ~TH_SEND_URP_MARK; 12535 } 12536 if (flags & TH_ACK_NEEDED) { 12537 /* 12538 * Time to send an ack for some reason. 12539 */ 12540 mp1 = tcp_ack_mp(tcp); 12541 12542 if (mp1 != NULL) { 12543 tcp_send_data(tcp, mp1); 12544 BUMP_LOCAL(tcp->tcp_obsegs); 12545 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12546 } 12547 if (tcp->tcp_ack_tid != 0) { 12548 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12549 tcp->tcp_ack_tid = 0; 12550 } 12551 } 12552 if (flags & TH_ACK_TIMER_NEEDED) { 12553 /* 12554 * Arrange for deferred ACK or push wait timeout. 12555 * Start timer if it is not already running. 12556 */ 12557 if (tcp->tcp_ack_tid == 0) { 12558 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12559 MSEC_TO_TICK(tcp->tcp_localnet ? 12560 (clock_t)tcps->tcps_local_dack_interval : 12561 (clock_t)tcps->tcps_deferred_ack_interval)); 12562 } 12563 } 12564 if (flags & TH_ORDREL_NEEDED) { 12565 /* 12566 * Send up the ordrel_ind unless we are an eager guy. 12567 * In the eager case tcp_rsrv will do this when run 12568 * after tcp_accept is done. 12569 */ 12570 ASSERT(tcp->tcp_listener == NULL); 12571 ASSERT(!tcp->tcp_detached); 12572 12573 if (IPCL_IS_NONSTR(connp)) { 12574 ASSERT(tcp->tcp_ordrel_mp == NULL); 12575 tcp->tcp_ordrel_done = B_TRUE; 12576 (*connp->conn_upcalls->su_opctl) 12577 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12578 goto done; 12579 } 12580 12581 if (tcp->tcp_rcv_list != NULL) { 12582 /* 12583 * Push any mblk(s) enqueued from co processing. 12584 */ 12585 flags |= tcp_rcv_drain(tcp); 12586 } 12587 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12588 12589 mp1 = tcp->tcp_ordrel_mp; 12590 tcp->tcp_ordrel_mp = NULL; 12591 tcp->tcp_ordrel_done = B_TRUE; 12592 putnext(connp->conn_rq, mp1); 12593 } 12594 done: 12595 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12596 } 12597 12598 /* 12599 * This routine adjusts next-to-send sequence number variables, in the 12600 * case where the reciever has shrunk it's window. 12601 */ 12602 static void 12603 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12604 { 12605 mblk_t *xmit_tail; 12606 int32_t offset; 12607 12608 tcp->tcp_snxt = snxt; 12609 12610 /* Get the mblk, and the offset in it, as per the shrunk window */ 12611 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12612 ASSERT(xmit_tail != NULL); 12613 tcp->tcp_xmit_tail = xmit_tail; 12614 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12615 xmit_tail->b_rptr - offset; 12616 } 12617 12618 /* 12619 * This function does PAWS protection check. Returns B_TRUE if the 12620 * segment passes the PAWS test, else returns B_FALSE. 12621 */ 12622 boolean_t 12623 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12624 { 12625 uint8_t flags; 12626 int options; 12627 uint8_t *up; 12628 conn_t *connp = tcp->tcp_connp; 12629 12630 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12631 /* 12632 * If timestamp option is aligned nicely, get values inline, 12633 * otherwise call general routine to parse. Only do that 12634 * if timestamp is the only option. 12635 */ 12636 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12637 TCPOPT_REAL_TS_LEN && 12638 OK_32PTR((up = ((uint8_t *)tcpha) + 12639 TCP_MIN_HEADER_LENGTH)) && 12640 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12641 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12642 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12643 12644 options = TCP_OPT_TSTAMP_PRESENT; 12645 } else { 12646 if (tcp->tcp_snd_sack_ok) { 12647 tcpoptp->tcp = tcp; 12648 } else { 12649 tcpoptp->tcp = NULL; 12650 } 12651 options = tcp_parse_options(tcpha, tcpoptp); 12652 } 12653 12654 if (options & TCP_OPT_TSTAMP_PRESENT) { 12655 /* 12656 * Do PAWS per RFC 1323 section 4.2. Accept RST 12657 * regardless of the timestamp, page 18 RFC 1323.bis. 12658 */ 12659 if ((flags & TH_RST) == 0 && 12660 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12661 tcp->tcp_ts_recent)) { 12662 if (TSTMP_LT(LBOLT_FASTPATH64, 12663 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12664 /* This segment is not acceptable. */ 12665 return (B_FALSE); 12666 } else { 12667 /* 12668 * Connection has been idle for 12669 * too long. Reset the timestamp 12670 * and assume the segment is valid. 12671 */ 12672 tcp->tcp_ts_recent = 12673 tcpoptp->tcp_opt_ts_val; 12674 } 12675 } 12676 } else { 12677 /* 12678 * If we don't get a timestamp on every packet, we 12679 * figure we can't really trust 'em, so we stop sending 12680 * and parsing them. 12681 */ 12682 tcp->tcp_snd_ts_ok = B_FALSE; 12683 12684 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12685 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12686 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12687 /* 12688 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12689 * doing a slow start here so as to not to lose on the 12690 * transfer rate built up so far. 12691 */ 12692 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12693 if (tcp->tcp_snd_sack_ok) { 12694 ASSERT(tcp->tcp_sack_info != NULL); 12695 tcp->tcp_max_sack_blk = 4; 12696 } 12697 } 12698 return (B_TRUE); 12699 } 12700 12701 /* 12702 * Attach ancillary data to a received TCP segments for the 12703 * ancillary pieces requested by the application that are 12704 * different than they were in the previous data segment. 12705 * 12706 * Save the "current" values once memory allocation is ok so that 12707 * when memory allocation fails we can just wait for the next data segment. 12708 */ 12709 static mblk_t * 12710 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12711 ip_recv_attr_t *ira) 12712 { 12713 struct T_optdata_ind *todi; 12714 int optlen; 12715 uchar_t *optptr; 12716 struct T_opthdr *toh; 12717 crb_t addflag; /* Which pieces to add */ 12718 mblk_t *mp1; 12719 conn_t *connp = tcp->tcp_connp; 12720 12721 optlen = 0; 12722 addflag.crb_all = 0; 12723 /* If app asked for pktinfo and the index has changed ... */ 12724 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12725 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12726 optlen += sizeof (struct T_opthdr) + 12727 sizeof (struct in6_pktinfo); 12728 addflag.crb_ip_recvpktinfo = 1; 12729 } 12730 /* If app asked for hoplimit and it has changed ... */ 12731 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12732 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12733 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12734 addflag.crb_ipv6_recvhoplimit = 1; 12735 } 12736 /* If app asked for tclass and it has changed ... */ 12737 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12738 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12739 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12740 addflag.crb_ipv6_recvtclass = 1; 12741 } 12742 /* 12743 * If app asked for hopbyhop headers and it has changed ... 12744 * For security labels, note that (1) security labels can't change on 12745 * a connected socket at all, (2) we're connected to at most one peer, 12746 * (3) if anything changes, then it must be some other extra option. 12747 */ 12748 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12749 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12750 (ipp->ipp_fields & IPPF_HOPOPTS), 12751 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12752 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12753 addflag.crb_ipv6_recvhopopts = 1; 12754 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12755 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12756 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12757 return (mp); 12758 } 12759 /* If app asked for dst headers before routing headers ... */ 12760 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12761 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12762 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12763 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12764 optlen += sizeof (struct T_opthdr) + 12765 ipp->ipp_rthdrdstoptslen; 12766 addflag.crb_ipv6_recvrthdrdstopts = 1; 12767 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12768 &tcp->tcp_rthdrdstoptslen, 12769 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12770 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12771 return (mp); 12772 } 12773 /* If app asked for routing headers and it has changed ... */ 12774 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12775 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12776 (ipp->ipp_fields & IPPF_RTHDR), 12777 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12778 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12779 addflag.crb_ipv6_recvrthdr = 1; 12780 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12781 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12782 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12783 return (mp); 12784 } 12785 /* If app asked for dest headers and it has changed ... */ 12786 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12787 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12788 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12789 (ipp->ipp_fields & IPPF_DSTOPTS), 12790 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12791 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12792 addflag.crb_ipv6_recvdstopts = 1; 12793 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12794 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12795 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12796 return (mp); 12797 } 12798 12799 if (optlen == 0) { 12800 /* Nothing to add */ 12801 return (mp); 12802 } 12803 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12804 if (mp1 == NULL) { 12805 /* 12806 * Defer sending ancillary data until the next TCP segment 12807 * arrives. 12808 */ 12809 return (mp); 12810 } 12811 mp1->b_cont = mp; 12812 mp = mp1; 12813 mp->b_wptr += sizeof (*todi) + optlen; 12814 mp->b_datap->db_type = M_PROTO; 12815 todi = (struct T_optdata_ind *)mp->b_rptr; 12816 todi->PRIM_type = T_OPTDATA_IND; 12817 todi->DATA_flag = 1; /* MORE data */ 12818 todi->OPT_length = optlen; 12819 todi->OPT_offset = sizeof (*todi); 12820 optptr = (uchar_t *)&todi[1]; 12821 /* 12822 * If app asked for pktinfo and the index has changed ... 12823 * Note that the local address never changes for the connection. 12824 */ 12825 if (addflag.crb_ip_recvpktinfo) { 12826 struct in6_pktinfo *pkti; 12827 uint_t ifindex; 12828 12829 ifindex = ira->ira_ruifindex; 12830 toh = (struct T_opthdr *)optptr; 12831 toh->level = IPPROTO_IPV6; 12832 toh->name = IPV6_PKTINFO; 12833 toh->len = sizeof (*toh) + sizeof (*pkti); 12834 toh->status = 0; 12835 optptr += sizeof (*toh); 12836 pkti = (struct in6_pktinfo *)optptr; 12837 pkti->ipi6_addr = connp->conn_laddr_v6; 12838 pkti->ipi6_ifindex = ifindex; 12839 optptr += sizeof (*pkti); 12840 ASSERT(OK_32PTR(optptr)); 12841 /* Save as "last" value */ 12842 tcp->tcp_recvifindex = ifindex; 12843 } 12844 /* If app asked for hoplimit and it has changed ... */ 12845 if (addflag.crb_ipv6_recvhoplimit) { 12846 toh = (struct T_opthdr *)optptr; 12847 toh->level = IPPROTO_IPV6; 12848 toh->name = IPV6_HOPLIMIT; 12849 toh->len = sizeof (*toh) + sizeof (uint_t); 12850 toh->status = 0; 12851 optptr += sizeof (*toh); 12852 *(uint_t *)optptr = ipp->ipp_hoplimit; 12853 optptr += sizeof (uint_t); 12854 ASSERT(OK_32PTR(optptr)); 12855 /* Save as "last" value */ 12856 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12857 } 12858 /* If app asked for tclass and it has changed ... */ 12859 if (addflag.crb_ipv6_recvtclass) { 12860 toh = (struct T_opthdr *)optptr; 12861 toh->level = IPPROTO_IPV6; 12862 toh->name = IPV6_TCLASS; 12863 toh->len = sizeof (*toh) + sizeof (uint_t); 12864 toh->status = 0; 12865 optptr += sizeof (*toh); 12866 *(uint_t *)optptr = ipp->ipp_tclass; 12867 optptr += sizeof (uint_t); 12868 ASSERT(OK_32PTR(optptr)); 12869 /* Save as "last" value */ 12870 tcp->tcp_recvtclass = ipp->ipp_tclass; 12871 } 12872 if (addflag.crb_ipv6_recvhopopts) { 12873 toh = (struct T_opthdr *)optptr; 12874 toh->level = IPPROTO_IPV6; 12875 toh->name = IPV6_HOPOPTS; 12876 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12877 toh->status = 0; 12878 optptr += sizeof (*toh); 12879 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12880 optptr += ipp->ipp_hopoptslen; 12881 ASSERT(OK_32PTR(optptr)); 12882 /* Save as last value */ 12883 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12884 (ipp->ipp_fields & IPPF_HOPOPTS), 12885 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12886 } 12887 if (addflag.crb_ipv6_recvrthdrdstopts) { 12888 toh = (struct T_opthdr *)optptr; 12889 toh->level = IPPROTO_IPV6; 12890 toh->name = IPV6_RTHDRDSTOPTS; 12891 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12892 toh->status = 0; 12893 optptr += sizeof (*toh); 12894 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12895 optptr += ipp->ipp_rthdrdstoptslen; 12896 ASSERT(OK_32PTR(optptr)); 12897 /* Save as last value */ 12898 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12899 &tcp->tcp_rthdrdstoptslen, 12900 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12901 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12902 } 12903 if (addflag.crb_ipv6_recvrthdr) { 12904 toh = (struct T_opthdr *)optptr; 12905 toh->level = IPPROTO_IPV6; 12906 toh->name = IPV6_RTHDR; 12907 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12908 toh->status = 0; 12909 optptr += sizeof (*toh); 12910 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12911 optptr += ipp->ipp_rthdrlen; 12912 ASSERT(OK_32PTR(optptr)); 12913 /* Save as last value */ 12914 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12915 (ipp->ipp_fields & IPPF_RTHDR), 12916 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12917 } 12918 if (addflag.crb_ipv6_recvdstopts) { 12919 toh = (struct T_opthdr *)optptr; 12920 toh->level = IPPROTO_IPV6; 12921 toh->name = IPV6_DSTOPTS; 12922 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12923 toh->status = 0; 12924 optptr += sizeof (*toh); 12925 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12926 optptr += ipp->ipp_dstoptslen; 12927 ASSERT(OK_32PTR(optptr)); 12928 /* Save as last value */ 12929 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12930 (ipp->ipp_fields & IPPF_DSTOPTS), 12931 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12932 } 12933 ASSERT(optptr == mp->b_wptr); 12934 return (mp); 12935 } 12936 12937 /* ARGSUSED */ 12938 static void 12939 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12940 { 12941 conn_t *connp = (conn_t *)arg; 12942 tcp_t *tcp = connp->conn_tcp; 12943 queue_t *q = connp->conn_rq; 12944 tcp_stack_t *tcps = tcp->tcp_tcps; 12945 12946 ASSERT(!IPCL_IS_NONSTR(connp)); 12947 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12948 tcp->tcp_rsrv_mp = mp; 12949 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12950 12951 TCP_STAT(tcps, tcp_rsrv_calls); 12952 12953 if (TCP_IS_DETACHED(tcp) || q == NULL) { 12954 return; 12955 } 12956 12957 if (tcp->tcp_fused) { 12958 tcp_fuse_backenable(tcp); 12959 return; 12960 } 12961 12962 if (canputnext(q)) { 12963 /* Not flow-controlled, open rwnd */ 12964 tcp->tcp_rwnd = connp->conn_rcvbuf; 12965 12966 /* 12967 * Send back a window update immediately if TCP is above 12968 * ESTABLISHED state and the increase of the rcv window 12969 * that the other side knows is at least 1 MSS after flow 12970 * control is lifted. 12971 */ 12972 if (tcp->tcp_state >= TCPS_ESTABLISHED && 12973 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 12974 tcp_xmit_ctl(NULL, tcp, 12975 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 12976 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 12977 } 12978 } 12979 } 12980 12981 /* 12982 * The read side service routine is called mostly when we get back-enabled as a 12983 * result of flow control relief. Since we don't actually queue anything in 12984 * TCP, we have no data to send out of here. What we do is clear the receive 12985 * window, and send out a window update. 12986 */ 12987 static void 12988 tcp_rsrv(queue_t *q) 12989 { 12990 conn_t *connp = Q_TO_CONN(q); 12991 tcp_t *tcp = connp->conn_tcp; 12992 mblk_t *mp; 12993 12994 /* No code does a putq on the read side */ 12995 ASSERT(q->q_first == NULL); 12996 12997 /* 12998 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 12999 * been run. So just return. 13000 */ 13001 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13002 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 13003 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13004 return; 13005 } 13006 tcp->tcp_rsrv_mp = NULL; 13007 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13008 13009 CONN_INC_REF(connp); 13010 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 13011 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 13012 } 13013 13014 /* 13015 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 13016 * We do not allow the receive window to shrink. After setting rwnd, 13017 * set the flow control hiwat of the stream. 13018 * 13019 * This function is called in 2 cases: 13020 * 13021 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 13022 * connection (passive open) and in tcp_input_data() for active connect. 13023 * This is called after tcp_mss_set() when the desired MSS value is known. 13024 * This makes sure that our window size is a mutiple of the other side's 13025 * MSS. 13026 * 2) Handling SO_RCVBUF option. 13027 * 13028 * It is ASSUMED that the requested size is a multiple of the current MSS. 13029 * 13030 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 13031 * user requests so. 13032 */ 13033 int 13034 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 13035 { 13036 uint32_t mss = tcp->tcp_mss; 13037 uint32_t old_max_rwnd; 13038 uint32_t max_transmittable_rwnd; 13039 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 13040 tcp_stack_t *tcps = tcp->tcp_tcps; 13041 conn_t *connp = tcp->tcp_connp; 13042 13043 /* 13044 * Insist on a receive window that is at least 13045 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 13046 * funny TCP interactions of Nagle algorithm, SWS avoidance 13047 * and delayed acknowledgement. 13048 */ 13049 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 13050 13051 if (tcp->tcp_fused) { 13052 size_t sth_hiwat; 13053 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 13054 13055 ASSERT(peer_tcp != NULL); 13056 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 13057 if (!tcp_detached) { 13058 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 13059 sth_hiwat); 13060 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 13061 } 13062 13063 /* 13064 * In the fusion case, the maxpsz stream head value of 13065 * our peer is set according to its send buffer size 13066 * and our receive buffer size; since the latter may 13067 * have changed we need to update the peer's maxpsz. 13068 */ 13069 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 13070 return (sth_hiwat); 13071 } 13072 13073 if (tcp_detached) 13074 old_max_rwnd = tcp->tcp_rwnd; 13075 else 13076 old_max_rwnd = connp->conn_rcvbuf; 13077 13078 13079 /* 13080 * If window size info has already been exchanged, TCP should not 13081 * shrink the window. Shrinking window is doable if done carefully. 13082 * We may add that support later. But so far there is not a real 13083 * need to do that. 13084 */ 13085 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 13086 /* MSS may have changed, do a round up again. */ 13087 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 13088 } 13089 13090 /* 13091 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 13092 * can be applied even before the window scale option is decided. 13093 */ 13094 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 13095 if (rwnd > max_transmittable_rwnd) { 13096 rwnd = max_transmittable_rwnd - 13097 (max_transmittable_rwnd % mss); 13098 if (rwnd < mss) 13099 rwnd = max_transmittable_rwnd; 13100 /* 13101 * If we're over the limit we may have to back down tcp_rwnd. 13102 * The increment below won't work for us. So we set all three 13103 * here and the increment below will have no effect. 13104 */ 13105 tcp->tcp_rwnd = old_max_rwnd = rwnd; 13106 } 13107 if (tcp->tcp_localnet) { 13108 tcp->tcp_rack_abs_max = 13109 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 13110 } else { 13111 /* 13112 * For a remote host on a different subnet (through a router), 13113 * we ack every other packet to be conforming to RFC1122. 13114 * tcp_deferred_acks_max is default to 2. 13115 */ 13116 tcp->tcp_rack_abs_max = 13117 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 13118 } 13119 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 13120 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 13121 else 13122 tcp->tcp_rack_cur_max = 0; 13123 /* 13124 * Increment the current rwnd by the amount the maximum grew (we 13125 * can not overwrite it since we might be in the middle of a 13126 * connection.) 13127 */ 13128 tcp->tcp_rwnd += rwnd - old_max_rwnd; 13129 connp->conn_rcvbuf = rwnd; 13130 13131 /* Are we already connected? */ 13132 if (tcp->tcp_tcpha != NULL) { 13133 tcp->tcp_tcpha->tha_win = 13134 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13135 } 13136 13137 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13138 tcp->tcp_cwnd_max = rwnd; 13139 13140 if (tcp_detached) 13141 return (rwnd); 13142 13143 tcp_set_recv_threshold(tcp, rwnd >> 3); 13144 13145 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 13146 return (rwnd); 13147 } 13148 13149 /* 13150 * Return SNMP stuff in buffer in mpdata. 13151 */ 13152 mblk_t * 13153 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 13154 { 13155 mblk_t *mpdata; 13156 mblk_t *mp_conn_ctl = NULL; 13157 mblk_t *mp_conn_tail; 13158 mblk_t *mp_attr_ctl = NULL; 13159 mblk_t *mp_attr_tail; 13160 mblk_t *mp6_conn_ctl = NULL; 13161 mblk_t *mp6_conn_tail; 13162 mblk_t *mp6_attr_ctl = NULL; 13163 mblk_t *mp6_attr_tail; 13164 struct opthdr *optp; 13165 mib2_tcpConnEntry_t tce; 13166 mib2_tcp6ConnEntry_t tce6; 13167 mib2_transportMLPEntry_t mlp; 13168 connf_t *connfp; 13169 int i; 13170 boolean_t ispriv; 13171 zoneid_t zoneid; 13172 int v4_conn_idx; 13173 int v6_conn_idx; 13174 conn_t *connp = Q_TO_CONN(q); 13175 tcp_stack_t *tcps; 13176 ip_stack_t *ipst; 13177 mblk_t *mp2ctl; 13178 13179 /* 13180 * make a copy of the original message 13181 */ 13182 mp2ctl = copymsg(mpctl); 13183 13184 if (mpctl == NULL || 13185 (mpdata = mpctl->b_cont) == NULL || 13186 (mp_conn_ctl = copymsg(mpctl)) == NULL || 13187 (mp_attr_ctl = copymsg(mpctl)) == NULL || 13188 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 13189 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 13190 freemsg(mp_conn_ctl); 13191 freemsg(mp_attr_ctl); 13192 freemsg(mp6_conn_ctl); 13193 freemsg(mp6_attr_ctl); 13194 freemsg(mpctl); 13195 freemsg(mp2ctl); 13196 return (NULL); 13197 } 13198 13199 ipst = connp->conn_netstack->netstack_ip; 13200 tcps = connp->conn_netstack->netstack_tcp; 13201 13202 /* build table of connections -- need count in fixed part */ 13203 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 13204 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 13205 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 13206 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 13207 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 13208 13209 ispriv = 13210 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 13211 zoneid = Q_TO_CONN(q)->conn_zoneid; 13212 13213 v4_conn_idx = v6_conn_idx = 0; 13214 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 13215 13216 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 13217 ipst = tcps->tcps_netstack->netstack_ip; 13218 13219 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 13220 13221 connp = NULL; 13222 13223 while ((connp = 13224 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 13225 tcp_t *tcp; 13226 boolean_t needattr; 13227 13228 if (connp->conn_zoneid != zoneid) 13229 continue; /* not in this zone */ 13230 13231 tcp = connp->conn_tcp; 13232 UPDATE_MIB(&tcps->tcps_mib, 13233 tcpHCInSegs, tcp->tcp_ibsegs); 13234 tcp->tcp_ibsegs = 0; 13235 UPDATE_MIB(&tcps->tcps_mib, 13236 tcpHCOutSegs, tcp->tcp_obsegs); 13237 tcp->tcp_obsegs = 0; 13238 13239 tce6.tcp6ConnState = tce.tcpConnState = 13240 tcp_snmp_state(tcp); 13241 if (tce.tcpConnState == MIB2_TCP_established || 13242 tce.tcpConnState == MIB2_TCP_closeWait) 13243 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13244 13245 needattr = B_FALSE; 13246 bzero(&mlp, sizeof (mlp)); 13247 if (connp->conn_mlp_type != mlptSingle) { 13248 if (connp->conn_mlp_type == mlptShared || 13249 connp->conn_mlp_type == mlptBoth) 13250 mlp.tme_flags |= MIB2_TMEF_SHARED; 13251 if (connp->conn_mlp_type == mlptPrivate || 13252 connp->conn_mlp_type == mlptBoth) 13253 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13254 needattr = B_TRUE; 13255 } 13256 if (connp->conn_anon_mlp) { 13257 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13258 needattr = B_TRUE; 13259 } 13260 switch (connp->conn_mac_mode) { 13261 case CONN_MAC_DEFAULT: 13262 break; 13263 case CONN_MAC_AWARE: 13264 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13265 needattr = B_TRUE; 13266 break; 13267 case CONN_MAC_IMPLICIT: 13268 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13269 needattr = B_TRUE; 13270 break; 13271 } 13272 if (connp->conn_ixa->ixa_tsl != NULL) { 13273 ts_label_t *tsl; 13274 13275 tsl = connp->conn_ixa->ixa_tsl; 13276 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13277 mlp.tme_doi = label2doi(tsl); 13278 mlp.tme_label = *label2bslabel(tsl); 13279 needattr = B_TRUE; 13280 } 13281 13282 /* Create a message to report on IPv6 entries */ 13283 if (connp->conn_ipversion == IPV6_VERSION) { 13284 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13285 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13286 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13287 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13288 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13289 tce6.tcp6ConnIfIndex = 13290 connp->conn_ixa->ixa_scopeid; 13291 } else { 13292 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13293 } 13294 /* Don't want just anybody seeing these... */ 13295 if (ispriv) { 13296 tce6.tcp6ConnEntryInfo.ce_snxt = 13297 tcp->tcp_snxt; 13298 tce6.tcp6ConnEntryInfo.ce_suna = 13299 tcp->tcp_suna; 13300 tce6.tcp6ConnEntryInfo.ce_rnxt = 13301 tcp->tcp_rnxt; 13302 tce6.tcp6ConnEntryInfo.ce_rack = 13303 tcp->tcp_rack; 13304 } else { 13305 /* 13306 * Netstat, unfortunately, uses this to 13307 * get send/receive queue sizes. How to fix? 13308 * Why not compute the difference only? 13309 */ 13310 tce6.tcp6ConnEntryInfo.ce_snxt = 13311 tcp->tcp_snxt - tcp->tcp_suna; 13312 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13313 tce6.tcp6ConnEntryInfo.ce_rnxt = 13314 tcp->tcp_rnxt - tcp->tcp_rack; 13315 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13316 } 13317 13318 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13319 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13320 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13321 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13322 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13323 13324 tce6.tcp6ConnCreationProcess = 13325 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13326 connp->conn_cpid; 13327 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13328 13329 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13330 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13331 13332 mlp.tme_connidx = v6_conn_idx++; 13333 if (needattr) 13334 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13335 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13336 } 13337 /* 13338 * Create an IPv4 table entry for IPv4 entries and also 13339 * for IPv6 entries which are bound to in6addr_any 13340 * but don't have IPV6_V6ONLY set. 13341 * (i.e. anything an IPv4 peer could connect to) 13342 */ 13343 if (connp->conn_ipversion == IPV4_VERSION || 13344 (tcp->tcp_state <= TCPS_LISTEN && 13345 !connp->conn_ipv6_v6only && 13346 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13347 if (connp->conn_ipversion == IPV6_VERSION) { 13348 tce.tcpConnRemAddress = INADDR_ANY; 13349 tce.tcpConnLocalAddress = INADDR_ANY; 13350 } else { 13351 tce.tcpConnRemAddress = 13352 connp->conn_faddr_v4; 13353 tce.tcpConnLocalAddress = 13354 connp->conn_laddr_v4; 13355 } 13356 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13357 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13358 /* Don't want just anybody seeing these... */ 13359 if (ispriv) { 13360 tce.tcpConnEntryInfo.ce_snxt = 13361 tcp->tcp_snxt; 13362 tce.tcpConnEntryInfo.ce_suna = 13363 tcp->tcp_suna; 13364 tce.tcpConnEntryInfo.ce_rnxt = 13365 tcp->tcp_rnxt; 13366 tce.tcpConnEntryInfo.ce_rack = 13367 tcp->tcp_rack; 13368 } else { 13369 /* 13370 * Netstat, unfortunately, uses this to 13371 * get send/receive queue sizes. How 13372 * to fix? 13373 * Why not compute the difference only? 13374 */ 13375 tce.tcpConnEntryInfo.ce_snxt = 13376 tcp->tcp_snxt - tcp->tcp_suna; 13377 tce.tcpConnEntryInfo.ce_suna = 0; 13378 tce.tcpConnEntryInfo.ce_rnxt = 13379 tcp->tcp_rnxt - tcp->tcp_rack; 13380 tce.tcpConnEntryInfo.ce_rack = 0; 13381 } 13382 13383 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13384 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13385 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13386 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13387 tce.tcpConnEntryInfo.ce_state = 13388 tcp->tcp_state; 13389 13390 tce.tcpConnCreationProcess = 13391 (connp->conn_cpid < 0) ? 13392 MIB2_UNKNOWN_PROCESS : 13393 connp->conn_cpid; 13394 tce.tcpConnCreationTime = connp->conn_open_time; 13395 13396 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13397 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13398 13399 mlp.tme_connidx = v4_conn_idx++; 13400 if (needattr) 13401 (void) snmp_append_data2( 13402 mp_attr_ctl->b_cont, 13403 &mp_attr_tail, (char *)&mlp, 13404 sizeof (mlp)); 13405 } 13406 } 13407 } 13408 13409 /* fixed length structure for IPv4 and IPv6 counters */ 13410 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13411 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13412 sizeof (mib2_tcp6ConnEntry_t)); 13413 /* synchronize 32- and 64-bit counters */ 13414 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13415 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13416 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13417 optp->level = MIB2_TCP; 13418 optp->name = 0; 13419 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13420 sizeof (tcps->tcps_mib)); 13421 optp->len = msgdsize(mpdata); 13422 qreply(q, mpctl); 13423 13424 /* table of connections... */ 13425 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13426 sizeof (struct T_optmgmt_ack)]; 13427 optp->level = MIB2_TCP; 13428 optp->name = MIB2_TCP_CONN; 13429 optp->len = msgdsize(mp_conn_ctl->b_cont); 13430 qreply(q, mp_conn_ctl); 13431 13432 /* table of MLP attributes... */ 13433 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13434 sizeof (struct T_optmgmt_ack)]; 13435 optp->level = MIB2_TCP; 13436 optp->name = EXPER_XPORT_MLP; 13437 optp->len = msgdsize(mp_attr_ctl->b_cont); 13438 if (optp->len == 0) 13439 freemsg(mp_attr_ctl); 13440 else 13441 qreply(q, mp_attr_ctl); 13442 13443 /* table of IPv6 connections... */ 13444 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13445 sizeof (struct T_optmgmt_ack)]; 13446 optp->level = MIB2_TCP6; 13447 optp->name = MIB2_TCP6_CONN; 13448 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13449 qreply(q, mp6_conn_ctl); 13450 13451 /* table of IPv6 MLP attributes... */ 13452 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13453 sizeof (struct T_optmgmt_ack)]; 13454 optp->level = MIB2_TCP6; 13455 optp->name = EXPER_XPORT_MLP; 13456 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13457 if (optp->len == 0) 13458 freemsg(mp6_attr_ctl); 13459 else 13460 qreply(q, mp6_attr_ctl); 13461 return (mp2ctl); 13462 } 13463 13464 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13465 /* ARGSUSED */ 13466 int 13467 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13468 { 13469 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13470 13471 switch (level) { 13472 case MIB2_TCP: 13473 switch (name) { 13474 case 13: 13475 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13476 return (0); 13477 /* TODO: delete entry defined by tce */ 13478 return (1); 13479 default: 13480 return (0); 13481 } 13482 default: 13483 return (1); 13484 } 13485 } 13486 13487 /* Translate TCP state to MIB2 TCP state. */ 13488 static int 13489 tcp_snmp_state(tcp_t *tcp) 13490 { 13491 if (tcp == NULL) 13492 return (0); 13493 13494 switch (tcp->tcp_state) { 13495 case TCPS_CLOSED: 13496 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13497 case TCPS_BOUND: 13498 return (MIB2_TCP_closed); 13499 case TCPS_LISTEN: 13500 return (MIB2_TCP_listen); 13501 case TCPS_SYN_SENT: 13502 return (MIB2_TCP_synSent); 13503 case TCPS_SYN_RCVD: 13504 return (MIB2_TCP_synReceived); 13505 case TCPS_ESTABLISHED: 13506 return (MIB2_TCP_established); 13507 case TCPS_CLOSE_WAIT: 13508 return (MIB2_TCP_closeWait); 13509 case TCPS_FIN_WAIT_1: 13510 return (MIB2_TCP_finWait1); 13511 case TCPS_CLOSING: 13512 return (MIB2_TCP_closing); 13513 case TCPS_LAST_ACK: 13514 return (MIB2_TCP_lastAck); 13515 case TCPS_FIN_WAIT_2: 13516 return (MIB2_TCP_finWait2); 13517 case TCPS_TIME_WAIT: 13518 return (MIB2_TCP_timeWait); 13519 default: 13520 return (0); 13521 } 13522 } 13523 13524 /* 13525 * tcp_timer is the timer service routine. It handles the retransmission, 13526 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13527 * from the state of the tcp instance what kind of action needs to be done 13528 * at the time it is called. 13529 */ 13530 static void 13531 tcp_timer(void *arg) 13532 { 13533 mblk_t *mp; 13534 clock_t first_threshold; 13535 clock_t second_threshold; 13536 clock_t ms; 13537 uint32_t mss; 13538 conn_t *connp = (conn_t *)arg; 13539 tcp_t *tcp = connp->conn_tcp; 13540 tcp_stack_t *tcps = tcp->tcp_tcps; 13541 13542 tcp->tcp_timer_tid = 0; 13543 13544 if (tcp->tcp_fused) 13545 return; 13546 13547 first_threshold = tcp->tcp_first_timer_threshold; 13548 second_threshold = tcp->tcp_second_timer_threshold; 13549 switch (tcp->tcp_state) { 13550 case TCPS_IDLE: 13551 case TCPS_BOUND: 13552 case TCPS_LISTEN: 13553 return; 13554 case TCPS_SYN_RCVD: { 13555 tcp_t *listener = tcp->tcp_listener; 13556 13557 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13558 /* it's our first timeout */ 13559 tcp->tcp_syn_rcvd_timeout = 1; 13560 mutex_enter(&listener->tcp_eager_lock); 13561 listener->tcp_syn_rcvd_timeout++; 13562 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13563 /* 13564 * Make this eager available for drop if we 13565 * need to drop one to accomodate a new 13566 * incoming SYN request. 13567 */ 13568 MAKE_DROPPABLE(listener, tcp); 13569 } 13570 if (!listener->tcp_syn_defense && 13571 (listener->tcp_syn_rcvd_timeout > 13572 (tcps->tcps_conn_req_max_q0 >> 2)) && 13573 (tcps->tcps_conn_req_max_q0 > 200)) { 13574 /* We may be under attack. Put on a defense. */ 13575 listener->tcp_syn_defense = B_TRUE; 13576 cmn_err(CE_WARN, "High TCP connect timeout " 13577 "rate! System (port %d) may be under a " 13578 "SYN flood attack!", 13579 ntohs(listener->tcp_connp->conn_lport)); 13580 13581 listener->tcp_ip_addr_cache = kmem_zalloc( 13582 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13583 KM_NOSLEEP); 13584 } 13585 mutex_exit(&listener->tcp_eager_lock); 13586 } else if (listener != NULL) { 13587 mutex_enter(&listener->tcp_eager_lock); 13588 tcp->tcp_syn_rcvd_timeout++; 13589 if (tcp->tcp_syn_rcvd_timeout > 1 && 13590 !tcp->tcp_closemp_used) { 13591 /* 13592 * This is our second timeout. Put the tcp in 13593 * the list of droppable eagers to allow it to 13594 * be dropped, if needed. We don't check 13595 * whether tcp_dontdrop is set or not to 13596 * protect ourselve from a SYN attack where a 13597 * remote host can spoof itself as one of the 13598 * good IP source and continue to hold 13599 * resources too long. 13600 */ 13601 MAKE_DROPPABLE(listener, tcp); 13602 } 13603 mutex_exit(&listener->tcp_eager_lock); 13604 } 13605 } 13606 /* FALLTHRU */ 13607 case TCPS_SYN_SENT: 13608 first_threshold = tcp->tcp_first_ctimer_threshold; 13609 second_threshold = tcp->tcp_second_ctimer_threshold; 13610 break; 13611 case TCPS_ESTABLISHED: 13612 case TCPS_FIN_WAIT_1: 13613 case TCPS_CLOSING: 13614 case TCPS_CLOSE_WAIT: 13615 case TCPS_LAST_ACK: 13616 /* If we have data to rexmit */ 13617 if (tcp->tcp_suna != tcp->tcp_snxt) { 13618 clock_t time_to_wait; 13619 13620 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13621 if (!tcp->tcp_xmit_head) 13622 break; 13623 time_to_wait = ddi_get_lbolt() - 13624 (clock_t)tcp->tcp_xmit_head->b_prev; 13625 time_to_wait = tcp->tcp_rto - 13626 TICK_TO_MSEC(time_to_wait); 13627 /* 13628 * If the timer fires too early, 1 clock tick earlier, 13629 * restart the timer. 13630 */ 13631 if (time_to_wait > msec_per_tick) { 13632 TCP_STAT(tcps, tcp_timer_fire_early); 13633 TCP_TIMER_RESTART(tcp, time_to_wait); 13634 return; 13635 } 13636 /* 13637 * When we probe zero windows, we force the swnd open. 13638 * If our peer acks with a closed window swnd will be 13639 * set to zero by tcp_rput(). As long as we are 13640 * receiving acks tcp_rput will 13641 * reset 'tcp_ms_we_have_waited' so as not to trip the 13642 * first and second interval actions. NOTE: the timer 13643 * interval is allowed to continue its exponential 13644 * backoff. 13645 */ 13646 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13647 if (connp->conn_debug) { 13648 (void) strlog(TCP_MOD_ID, 0, 1, 13649 SL_TRACE, "tcp_timer: zero win"); 13650 } 13651 } else { 13652 /* 13653 * After retransmission, we need to do 13654 * slow start. Set the ssthresh to one 13655 * half of current effective window and 13656 * cwnd to one MSS. Also reset 13657 * tcp_cwnd_cnt. 13658 * 13659 * Note that if tcp_ssthresh is reduced because 13660 * of ECN, do not reduce it again unless it is 13661 * already one window of data away (tcp_cwr 13662 * should then be cleared) or this is a 13663 * timeout for a retransmitted segment. 13664 */ 13665 uint32_t npkt; 13666 13667 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13668 npkt = ((tcp->tcp_timer_backoff ? 13669 tcp->tcp_cwnd_ssthresh : 13670 tcp->tcp_snxt - 13671 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13672 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13673 tcp->tcp_mss; 13674 } 13675 tcp->tcp_cwnd = tcp->tcp_mss; 13676 tcp->tcp_cwnd_cnt = 0; 13677 if (tcp->tcp_ecn_ok) { 13678 tcp->tcp_cwr = B_TRUE; 13679 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13680 tcp->tcp_ecn_cwr_sent = B_FALSE; 13681 } 13682 } 13683 break; 13684 } 13685 /* 13686 * We have something to send yet we cannot send. The 13687 * reason can be: 13688 * 13689 * 1. Zero send window: we need to do zero window probe. 13690 * 2. Zero cwnd: because of ECN, we need to "clock out 13691 * segments. 13692 * 3. SWS avoidance: receiver may have shrunk window, 13693 * reset our knowledge. 13694 * 13695 * Note that condition 2 can happen with either 1 or 13696 * 3. But 1 and 3 are exclusive. 13697 */ 13698 if (tcp->tcp_unsent != 0) { 13699 /* 13700 * Should not hold the zero-copy messages for too long. 13701 */ 13702 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13703 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13704 tcp->tcp_xmit_head, B_TRUE); 13705 13706 if (tcp->tcp_cwnd == 0) { 13707 /* 13708 * Set tcp_cwnd to 1 MSS so that a 13709 * new segment can be sent out. We 13710 * are "clocking out" new data when 13711 * the network is really congested. 13712 */ 13713 ASSERT(tcp->tcp_ecn_ok); 13714 tcp->tcp_cwnd = tcp->tcp_mss; 13715 } 13716 if (tcp->tcp_swnd == 0) { 13717 /* Extend window for zero window probe */ 13718 tcp->tcp_swnd++; 13719 tcp->tcp_zero_win_probe = B_TRUE; 13720 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13721 } else { 13722 /* 13723 * Handle timeout from sender SWS avoidance. 13724 * Reset our knowledge of the max send window 13725 * since the receiver might have reduced its 13726 * receive buffer. Avoid setting tcp_max_swnd 13727 * to one since that will essentially disable 13728 * the SWS checks. 13729 * 13730 * Note that since we don't have a SWS 13731 * state variable, if the timeout is set 13732 * for ECN but not for SWS, this 13733 * code will also be executed. This is 13734 * fine as tcp_max_swnd is updated 13735 * constantly and it will not affect 13736 * anything. 13737 */ 13738 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13739 } 13740 tcp_wput_data(tcp, NULL, B_FALSE); 13741 return; 13742 } 13743 /* Is there a FIN that needs to be to re retransmitted? */ 13744 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13745 !tcp->tcp_fin_acked) 13746 break; 13747 /* Nothing to do, return without restarting timer. */ 13748 TCP_STAT(tcps, tcp_timer_fire_miss); 13749 return; 13750 case TCPS_FIN_WAIT_2: 13751 /* 13752 * User closed the TCP endpoint and peer ACK'ed our FIN. 13753 * We waited some time for for peer's FIN, but it hasn't 13754 * arrived. We flush the connection now to avoid 13755 * case where the peer has rebooted. 13756 */ 13757 if (TCP_IS_DETACHED(tcp)) { 13758 (void) tcp_clean_death(tcp, 0, 23); 13759 } else { 13760 TCP_TIMER_RESTART(tcp, 13761 tcps->tcps_fin_wait_2_flush_interval); 13762 } 13763 return; 13764 case TCPS_TIME_WAIT: 13765 (void) tcp_clean_death(tcp, 0, 24); 13766 return; 13767 default: 13768 if (connp->conn_debug) { 13769 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13770 "tcp_timer: strange state (%d) %s", 13771 tcp->tcp_state, tcp_display(tcp, NULL, 13772 DISP_PORT_ONLY)); 13773 } 13774 return; 13775 } 13776 13777 /* 13778 * If the system is under memory pressure or the max number of 13779 * connections have been established for the listener, be more 13780 * aggressive in aborting connections. 13781 */ 13782 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 13783 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 13784 second_threshold = tcp_early_abort * SECONDS; 13785 } 13786 13787 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13788 /* 13789 * Should not hold the zero-copy messages for too long. 13790 */ 13791 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13792 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13793 tcp->tcp_xmit_head, B_TRUE); 13794 13795 /* 13796 * For zero window probe, we need to send indefinitely, 13797 * unless we have not heard from the other side for some 13798 * time... 13799 */ 13800 if ((tcp->tcp_zero_win_probe == 0) || 13801 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13802 second_threshold)) { 13803 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13804 /* 13805 * If TCP is in SYN_RCVD state, send back a 13806 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13807 * should be zero in TCPS_SYN_RCVD state. 13808 */ 13809 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13810 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13811 "in SYN_RCVD", 13812 tcp, tcp->tcp_snxt, 13813 tcp->tcp_rnxt, TH_RST | TH_ACK); 13814 } 13815 (void) tcp_clean_death(tcp, 13816 tcp->tcp_client_errno ? 13817 tcp->tcp_client_errno : ETIMEDOUT, 25); 13818 return; 13819 } else { 13820 /* 13821 * If the system is under memory pressure, we also 13822 * abort connection in zero window probing. 13823 */ 13824 if (tcps->tcps_reclaim) { 13825 (void) tcp_clean_death(tcp, 13826 tcp->tcp_client_errno ? 13827 tcp->tcp_client_errno : ETIMEDOUT, 25); 13828 return; 13829 } 13830 /* 13831 * Set tcp_ms_we_have_waited to second_threshold 13832 * so that in next timeout, we will do the above 13833 * check (ddi_get_lbolt() - tcp_last_recv_time). 13834 * This is also to avoid overflow. 13835 * 13836 * We don't need to decrement tcp_timer_backoff 13837 * to avoid overflow because it will be decremented 13838 * later if new timeout value is greater than 13839 * tcp_rexmit_interval_max. In the case when 13840 * tcp_rexmit_interval_max is greater than 13841 * second_threshold, it means that we will wait 13842 * longer than second_threshold to send the next 13843 * window probe. 13844 */ 13845 tcp->tcp_ms_we_have_waited = second_threshold; 13846 } 13847 } else if (ms > first_threshold) { 13848 /* 13849 * Should not hold the zero-copy messages for too long. 13850 */ 13851 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13852 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13853 tcp->tcp_xmit_head, B_TRUE); 13854 13855 /* 13856 * We have been retransmitting for too long... The RTT 13857 * we calculated is probably incorrect. Reinitialize it. 13858 * Need to compensate for 0 tcp_rtt_sa. Reset 13859 * tcp_rtt_update so that we won't accidentally cache a 13860 * bad value. But only do this if this is not a zero 13861 * window probe. 13862 */ 13863 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13864 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13865 (tcp->tcp_rtt_sa >> 5); 13866 tcp->tcp_rtt_sa = 0; 13867 tcp_ip_notify(tcp); 13868 tcp->tcp_rtt_update = 0; 13869 } 13870 } 13871 tcp->tcp_timer_backoff++; 13872 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13873 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13874 tcps->tcps_rexmit_interval_min) { 13875 /* 13876 * This means the original RTO is tcp_rexmit_interval_min. 13877 * So we will use tcp_rexmit_interval_min as the RTO value 13878 * and do the backoff. 13879 */ 13880 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13881 } else { 13882 ms <<= tcp->tcp_timer_backoff; 13883 } 13884 if (ms > tcps->tcps_rexmit_interval_max) { 13885 ms = tcps->tcps_rexmit_interval_max; 13886 /* 13887 * ms is at max, decrement tcp_timer_backoff to avoid 13888 * overflow. 13889 */ 13890 tcp->tcp_timer_backoff--; 13891 } 13892 tcp->tcp_ms_we_have_waited += ms; 13893 if (tcp->tcp_zero_win_probe == 0) { 13894 tcp->tcp_rto = ms; 13895 } 13896 TCP_TIMER_RESTART(tcp, ms); 13897 /* 13898 * This is after a timeout and tcp_rto is backed off. Set 13899 * tcp_set_timer to 1 so that next time RTO is updated, we will 13900 * restart the timer with a correct value. 13901 */ 13902 tcp->tcp_set_timer = 1; 13903 mss = tcp->tcp_snxt - tcp->tcp_suna; 13904 if (mss > tcp->tcp_mss) 13905 mss = tcp->tcp_mss; 13906 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13907 mss = tcp->tcp_swnd; 13908 13909 if ((mp = tcp->tcp_xmit_head) != NULL) 13910 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13911 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13912 B_TRUE); 13913 13914 /* 13915 * When slow start after retransmission begins, start with 13916 * this seq no. tcp_rexmit_max marks the end of special slow 13917 * start phase. tcp_snd_burst controls how many segments 13918 * can be sent because of an ack. 13919 */ 13920 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13921 tcp->tcp_snd_burst = TCP_CWND_SS; 13922 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13923 (tcp->tcp_unsent == 0)) { 13924 tcp->tcp_rexmit_max = tcp->tcp_fss; 13925 } else { 13926 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13927 } 13928 tcp->tcp_rexmit = B_TRUE; 13929 tcp->tcp_dupack_cnt = 0; 13930 13931 /* 13932 * Remove all rexmit SACK blk to start from fresh. 13933 */ 13934 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13935 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13936 if (mp == NULL) { 13937 return; 13938 } 13939 13940 tcp->tcp_csuna = tcp->tcp_snxt; 13941 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 13942 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 13943 tcp_send_data(tcp, mp); 13944 13945 } 13946 13947 static int 13948 tcp_do_unbind(conn_t *connp) 13949 { 13950 tcp_t *tcp = connp->conn_tcp; 13951 13952 switch (tcp->tcp_state) { 13953 case TCPS_BOUND: 13954 case TCPS_LISTEN: 13955 break; 13956 default: 13957 return (-TOUTSTATE); 13958 } 13959 13960 /* 13961 * Need to clean up all the eagers since after the unbind, segments 13962 * will no longer be delivered to this listener stream. 13963 */ 13964 mutex_enter(&tcp->tcp_eager_lock); 13965 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 13966 tcp_eager_cleanup(tcp, 0); 13967 } 13968 mutex_exit(&tcp->tcp_eager_lock); 13969 13970 /* Clean up the listener connection counter if necessary. */ 13971 if (tcp->tcp_listen_cnt != NULL) 13972 TCP_DECR_LISTEN_CNT(tcp); 13973 connp->conn_laddr_v6 = ipv6_all_zeros; 13974 connp->conn_saddr_v6 = ipv6_all_zeros; 13975 tcp_bind_hash_remove(tcp); 13976 tcp->tcp_state = TCPS_IDLE; 13977 13978 ip_unbind(connp); 13979 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 13980 13981 return (0); 13982 } 13983 13984 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 13985 static void 13986 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 13987 { 13988 conn_t *connp = tcp->tcp_connp; 13989 int error; 13990 13991 error = tcp_do_unbind(connp); 13992 if (error > 0) { 13993 tcp_err_ack(tcp, mp, TSYSERR, error); 13994 } else if (error < 0) { 13995 tcp_err_ack(tcp, mp, -error, 0); 13996 } else { 13997 /* Send M_FLUSH according to TPI */ 13998 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 13999 14000 mp = mi_tpi_ok_ack_alloc(mp); 14001 if (mp != NULL) 14002 putnext(connp->conn_rq, mp); 14003 } 14004 } 14005 14006 /* 14007 * Don't let port fall into the privileged range. 14008 * Since the extra privileged ports can be arbitrary we also 14009 * ensure that we exclude those from consideration. 14010 * tcp_g_epriv_ports is not sorted thus we loop over it until 14011 * there are no changes. 14012 * 14013 * Note: No locks are held when inspecting tcp_g_*epriv_ports 14014 * but instead the code relies on: 14015 * - the fact that the address of the array and its size never changes 14016 * - the atomic assignment of the elements of the array 14017 * 14018 * Returns 0 if there are no more ports available. 14019 * 14020 * TS note: skip multilevel ports. 14021 */ 14022 static in_port_t 14023 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 14024 { 14025 int i; 14026 boolean_t restart = B_FALSE; 14027 tcp_stack_t *tcps = tcp->tcp_tcps; 14028 14029 if (random && tcp_random_anon_port != 0) { 14030 (void) random_get_pseudo_bytes((uint8_t *)&port, 14031 sizeof (in_port_t)); 14032 /* 14033 * Unless changed by a sys admin, the smallest anon port 14034 * is 32768 and the largest anon port is 65535. It is 14035 * very likely (50%) for the random port to be smaller 14036 * than the smallest anon port. When that happens, 14037 * add port % (anon port range) to the smallest anon 14038 * port to get the random port. It should fall into the 14039 * valid anon port range. 14040 */ 14041 if (port < tcps->tcps_smallest_anon_port) { 14042 port = tcps->tcps_smallest_anon_port + 14043 port % (tcps->tcps_largest_anon_port - 14044 tcps->tcps_smallest_anon_port); 14045 } 14046 } 14047 14048 retry: 14049 if (port < tcps->tcps_smallest_anon_port) 14050 port = (in_port_t)tcps->tcps_smallest_anon_port; 14051 14052 if (port > tcps->tcps_largest_anon_port) { 14053 if (restart) 14054 return (0); 14055 restart = B_TRUE; 14056 port = (in_port_t)tcps->tcps_smallest_anon_port; 14057 } 14058 14059 if (port < tcps->tcps_smallest_nonpriv_port) 14060 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 14061 14062 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 14063 if (port == tcps->tcps_g_epriv_ports[i]) { 14064 port++; 14065 /* 14066 * Make sure whether the port is in the 14067 * valid range. 14068 */ 14069 goto retry; 14070 } 14071 } 14072 if (is_system_labeled() && 14073 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 14074 IPPROTO_TCP, B_TRUE)) != 0) { 14075 port = i; 14076 goto retry; 14077 } 14078 return (port); 14079 } 14080 14081 /* 14082 * Return the next anonymous port in the privileged port range for 14083 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 14084 * downwards. This is the same behavior as documented in the userland 14085 * library call rresvport(3N). 14086 * 14087 * TS note: skip multilevel ports. 14088 */ 14089 static in_port_t 14090 tcp_get_next_priv_port(const tcp_t *tcp) 14091 { 14092 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 14093 in_port_t nextport; 14094 boolean_t restart = B_FALSE; 14095 tcp_stack_t *tcps = tcp->tcp_tcps; 14096 retry: 14097 if (next_priv_port < tcps->tcps_min_anonpriv_port || 14098 next_priv_port >= IPPORT_RESERVED) { 14099 next_priv_port = IPPORT_RESERVED - 1; 14100 if (restart) 14101 return (0); 14102 restart = B_TRUE; 14103 } 14104 if (is_system_labeled() && 14105 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 14106 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 14107 next_priv_port = nextport; 14108 goto retry; 14109 } 14110 return (next_priv_port--); 14111 } 14112 14113 /* The write side r/w procedure. */ 14114 14115 #if CCS_STATS 14116 struct { 14117 struct { 14118 int64_t count, bytes; 14119 } tot, hit; 14120 } wrw_stats; 14121 #endif 14122 14123 /* 14124 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 14125 * messages. 14126 */ 14127 /* ARGSUSED */ 14128 static void 14129 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14130 { 14131 conn_t *connp = (conn_t *)arg; 14132 tcp_t *tcp = connp->conn_tcp; 14133 14134 ASSERT(DB_TYPE(mp) != M_IOCTL); 14135 /* 14136 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 14137 * Once the close starts, streamhead and sockfs will not let any data 14138 * packets come down (close ensures that there are no threads using the 14139 * queue and no new threads will come down) but since qprocsoff() 14140 * hasn't happened yet, a M_FLUSH or some non data message might 14141 * get reflected back (in response to our own FLUSHRW) and get 14142 * processed after tcp_close() is done. The conn would still be valid 14143 * because a ref would have added but we need to check the state 14144 * before actually processing the packet. 14145 */ 14146 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 14147 freemsg(mp); 14148 return; 14149 } 14150 14151 switch (DB_TYPE(mp)) { 14152 case M_IOCDATA: 14153 tcp_wput_iocdata(tcp, mp); 14154 break; 14155 case M_FLUSH: 14156 tcp_wput_flush(tcp, mp); 14157 break; 14158 default: 14159 ip_wput_nondata(connp->conn_wq, mp); 14160 break; 14161 } 14162 } 14163 14164 /* 14165 * The TCP fast path write put procedure. 14166 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 14167 */ 14168 /* ARGSUSED */ 14169 void 14170 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14171 { 14172 int len; 14173 int hdrlen; 14174 int plen; 14175 mblk_t *mp1; 14176 uchar_t *rptr; 14177 uint32_t snxt; 14178 tcpha_t *tcpha; 14179 struct datab *db; 14180 uint32_t suna; 14181 uint32_t mss; 14182 ipaddr_t *dst; 14183 ipaddr_t *src; 14184 uint32_t sum; 14185 int usable; 14186 conn_t *connp = (conn_t *)arg; 14187 tcp_t *tcp = connp->conn_tcp; 14188 uint32_t msize; 14189 tcp_stack_t *tcps = tcp->tcp_tcps; 14190 ip_xmit_attr_t *ixa; 14191 clock_t now; 14192 14193 /* 14194 * Try and ASSERT the minimum possible references on the 14195 * conn early enough. Since we are executing on write side, 14196 * the connection is obviously not detached and that means 14197 * there is a ref each for TCP and IP. Since we are behind 14198 * the squeue, the minimum references needed are 3. If the 14199 * conn is in classifier hash list, there should be an 14200 * extra ref for that (we check both the possibilities). 14201 */ 14202 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14203 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14204 14205 ASSERT(DB_TYPE(mp) == M_DATA); 14206 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 14207 14208 mutex_enter(&tcp->tcp_non_sq_lock); 14209 tcp->tcp_squeue_bytes -= msize; 14210 mutex_exit(&tcp->tcp_non_sq_lock); 14211 14212 /* Bypass tcp protocol for fused tcp loopback */ 14213 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 14214 return; 14215 14216 mss = tcp->tcp_mss; 14217 /* 14218 * If ZEROCOPY has turned off, try not to send any zero-copy message 14219 * down. Do backoff, now. 14220 */ 14221 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 14222 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 14223 14224 14225 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14226 len = (int)(mp->b_wptr - mp->b_rptr); 14227 14228 /* 14229 * Criteria for fast path: 14230 * 14231 * 1. no unsent data 14232 * 2. single mblk in request 14233 * 3. connection established 14234 * 4. data in mblk 14235 * 5. len <= mss 14236 * 6. no tcp_valid bits 14237 */ 14238 if ((tcp->tcp_unsent != 0) || 14239 (tcp->tcp_cork) || 14240 (mp->b_cont != NULL) || 14241 (tcp->tcp_state != TCPS_ESTABLISHED) || 14242 (len == 0) || 14243 (len > mss) || 14244 (tcp->tcp_valid_bits != 0)) { 14245 tcp_wput_data(tcp, mp, B_FALSE); 14246 return; 14247 } 14248 14249 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 14250 ASSERT(tcp->tcp_fin_sent == 0); 14251 14252 /* queue new packet onto retransmission queue */ 14253 if (tcp->tcp_xmit_head == NULL) { 14254 tcp->tcp_xmit_head = mp; 14255 } else { 14256 tcp->tcp_xmit_last->b_cont = mp; 14257 } 14258 tcp->tcp_xmit_last = mp; 14259 tcp->tcp_xmit_tail = mp; 14260 14261 /* find out how much we can send */ 14262 /* BEGIN CSTYLED */ 14263 /* 14264 * un-acked usable 14265 * |--------------|-----------------| 14266 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14267 */ 14268 /* END CSTYLED */ 14269 14270 /* start sending from tcp_snxt */ 14271 snxt = tcp->tcp_snxt; 14272 14273 /* 14274 * Check to see if this connection has been idled for some 14275 * time and no ACK is expected. If it is, we need to slow 14276 * start again to get back the connection's "self-clock" as 14277 * described in VJ's paper. 14278 * 14279 * Reinitialize tcp_cwnd after idle. 14280 */ 14281 now = LBOLT_FASTPATH; 14282 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14283 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14284 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14285 } 14286 14287 usable = tcp->tcp_swnd; /* tcp window size */ 14288 if (usable > tcp->tcp_cwnd) 14289 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14290 usable -= snxt; /* subtract stuff already sent */ 14291 suna = tcp->tcp_suna; 14292 usable += suna; 14293 /* usable can be < 0 if the congestion window is smaller */ 14294 if (len > usable) { 14295 /* Can't send complete M_DATA in one shot */ 14296 goto slow; 14297 } 14298 14299 mutex_enter(&tcp->tcp_non_sq_lock); 14300 if (tcp->tcp_flow_stopped && 14301 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14302 tcp_clrqfull(tcp); 14303 } 14304 mutex_exit(&tcp->tcp_non_sq_lock); 14305 14306 /* 14307 * determine if anything to send (Nagle). 14308 * 14309 * 1. len < tcp_mss (i.e. small) 14310 * 2. unacknowledged data present 14311 * 3. len < nagle limit 14312 * 4. last packet sent < nagle limit (previous packet sent) 14313 */ 14314 if ((len < mss) && (snxt != suna) && 14315 (len < (int)tcp->tcp_naglim) && 14316 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14317 /* 14318 * This was the first unsent packet and normally 14319 * mss < xmit_hiwater so there is no need to worry 14320 * about flow control. The next packet will go 14321 * through the flow control check in tcp_wput_data(). 14322 */ 14323 /* leftover work from above */ 14324 tcp->tcp_unsent = len; 14325 tcp->tcp_xmit_tail_unsent = len; 14326 14327 return; 14328 } 14329 14330 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14331 14332 if (snxt == suna) { 14333 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14334 } 14335 14336 /* we have always sent something */ 14337 tcp->tcp_rack_cnt = 0; 14338 14339 tcp->tcp_snxt = snxt + len; 14340 tcp->tcp_rack = tcp->tcp_rnxt; 14341 14342 if ((mp1 = dupb(mp)) == 0) 14343 goto no_memory; 14344 mp->b_prev = (mblk_t *)(uintptr_t)now; 14345 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14346 14347 /* adjust tcp header information */ 14348 tcpha = tcp->tcp_tcpha; 14349 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14350 14351 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14352 sum = (sum >> 16) + (sum & 0xFFFF); 14353 tcpha->tha_sum = htons(sum); 14354 14355 tcpha->tha_seq = htonl(snxt); 14356 14357 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14358 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14359 BUMP_LOCAL(tcp->tcp_obsegs); 14360 14361 /* Update the latest receive window size in TCP header. */ 14362 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14363 14364 tcp->tcp_last_sent_len = (ushort_t)len; 14365 14366 plen = len + connp->conn_ht_iphc_len; 14367 14368 ixa = connp->conn_ixa; 14369 ixa->ixa_pktlen = plen; 14370 14371 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14372 tcp->tcp_ipha->ipha_length = htons(plen); 14373 } else { 14374 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14375 } 14376 14377 /* see if we need to allocate a mblk for the headers */ 14378 hdrlen = connp->conn_ht_iphc_len; 14379 rptr = mp1->b_rptr - hdrlen; 14380 db = mp1->b_datap; 14381 if ((db->db_ref != 2) || rptr < db->db_base || 14382 (!OK_32PTR(rptr))) { 14383 /* NOTE: we assume allocb returns an OK_32PTR */ 14384 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14385 if (!mp) { 14386 freemsg(mp1); 14387 goto no_memory; 14388 } 14389 mp->b_cont = mp1; 14390 mp1 = mp; 14391 /* Leave room for Link Level header */ 14392 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14393 mp1->b_wptr = &rptr[hdrlen]; 14394 } 14395 mp1->b_rptr = rptr; 14396 14397 /* Fill in the timestamp option. */ 14398 if (tcp->tcp_snd_ts_ok) { 14399 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14400 14401 U32_TO_BE32(llbolt, 14402 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14403 U32_TO_BE32(tcp->tcp_ts_recent, 14404 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14405 } else { 14406 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14407 } 14408 14409 /* copy header into outgoing packet */ 14410 dst = (ipaddr_t *)rptr; 14411 src = (ipaddr_t *)connp->conn_ht_iphc; 14412 dst[0] = src[0]; 14413 dst[1] = src[1]; 14414 dst[2] = src[2]; 14415 dst[3] = src[3]; 14416 dst[4] = src[4]; 14417 dst[5] = src[5]; 14418 dst[6] = src[6]; 14419 dst[7] = src[7]; 14420 dst[8] = src[8]; 14421 dst[9] = src[9]; 14422 if (hdrlen -= 40) { 14423 hdrlen >>= 2; 14424 dst += 10; 14425 src += 10; 14426 do { 14427 *dst++ = *src++; 14428 } while (--hdrlen); 14429 } 14430 14431 /* 14432 * Set the ECN info in the TCP header. Note that this 14433 * is not the template header. 14434 */ 14435 if (tcp->tcp_ecn_ok) { 14436 SET_ECT(tcp, rptr); 14437 14438 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14439 if (tcp->tcp_ecn_echo_on) 14440 tcpha->tha_flags |= TH_ECE; 14441 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14442 tcpha->tha_flags |= TH_CWR; 14443 tcp->tcp_ecn_cwr_sent = B_TRUE; 14444 } 14445 } 14446 14447 if (tcp->tcp_ip_forward_progress) { 14448 tcp->tcp_ip_forward_progress = B_FALSE; 14449 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14450 } else { 14451 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14452 } 14453 tcp_send_data(tcp, mp1); 14454 return; 14455 14456 /* 14457 * If we ran out of memory, we pretend to have sent the packet 14458 * and that it was lost on the wire. 14459 */ 14460 no_memory: 14461 return; 14462 14463 slow: 14464 /* leftover work from above */ 14465 tcp->tcp_unsent = len; 14466 tcp->tcp_xmit_tail_unsent = len; 14467 tcp_wput_data(tcp, NULL, B_FALSE); 14468 } 14469 14470 /* 14471 * This runs at the tail end of accept processing on the squeue of the 14472 * new connection. 14473 */ 14474 /* ARGSUSED */ 14475 void 14476 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14477 { 14478 conn_t *connp = (conn_t *)arg; 14479 tcp_t *tcp = connp->conn_tcp; 14480 queue_t *q = connp->conn_rq; 14481 tcp_stack_t *tcps = tcp->tcp_tcps; 14482 /* socket options */ 14483 struct sock_proto_props sopp; 14484 14485 /* We should just receive a single mblk that fits a T_discon_ind */ 14486 ASSERT(mp->b_cont == NULL); 14487 14488 /* 14489 * Drop the eager's ref on the listener, that was placed when 14490 * this eager began life in tcp_input_listener. 14491 */ 14492 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14493 if (IPCL_IS_NONSTR(connp)) { 14494 /* Safe to free conn_ind message */ 14495 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14496 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14497 } 14498 14499 tcp->tcp_detached = B_FALSE; 14500 14501 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14502 /* 14503 * Someone blewoff the eager before we could finish 14504 * the accept. 14505 * 14506 * The only reason eager exists it because we put in 14507 * a ref on it when conn ind went up. We need to send 14508 * a disconnect indication up while the last reference 14509 * on the eager will be dropped by the squeue when we 14510 * return. 14511 */ 14512 ASSERT(tcp->tcp_listener == NULL); 14513 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14514 if (IPCL_IS_NONSTR(connp)) { 14515 ASSERT(tcp->tcp_issocket); 14516 (*connp->conn_upcalls->su_disconnected)( 14517 connp->conn_upper_handle, tcp->tcp_connid, 14518 ECONNREFUSED); 14519 freemsg(mp); 14520 } else { 14521 struct T_discon_ind *tdi; 14522 14523 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14524 /* 14525 * Let us reuse the incoming mblk to avoid 14526 * memory allocation failure problems. We know 14527 * that the size of the incoming mblk i.e. 14528 * stroptions is greater than sizeof 14529 * T_discon_ind. 14530 */ 14531 ASSERT(DB_REF(mp) == 1); 14532 ASSERT(MBLKSIZE(mp) >= 14533 sizeof (struct T_discon_ind)); 14534 14535 DB_TYPE(mp) = M_PROTO; 14536 ((union T_primitives *)mp->b_rptr)->type = 14537 T_DISCON_IND; 14538 tdi = (struct T_discon_ind *)mp->b_rptr; 14539 if (tcp->tcp_issocket) { 14540 tdi->DISCON_reason = ECONNREFUSED; 14541 tdi->SEQ_number = 0; 14542 } else { 14543 tdi->DISCON_reason = ENOPROTOOPT; 14544 tdi->SEQ_number = 14545 tcp->tcp_conn_req_seqnum; 14546 } 14547 mp->b_wptr = mp->b_rptr + 14548 sizeof (struct T_discon_ind); 14549 putnext(q, mp); 14550 } 14551 } 14552 tcp->tcp_hard_binding = B_FALSE; 14553 return; 14554 } 14555 14556 /* 14557 * This is the first time we run on the correct 14558 * queue after tcp_accept. So fix all the q parameters 14559 * here. 14560 */ 14561 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14562 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14563 14564 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14565 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14566 connp->conn_rcvbuf; 14567 14568 /* 14569 * Determine what write offset value to use depending on SACK and 14570 * whether the endpoint is fused or not. 14571 */ 14572 if (tcp->tcp_fused) { 14573 ASSERT(tcp->tcp_loopback); 14574 ASSERT(tcp->tcp_loopback_peer != NULL); 14575 /* 14576 * For fused tcp loopback, set the stream head's write 14577 * offset value to zero since we won't be needing any room 14578 * for TCP/IP headers. This would also improve performance 14579 * since it would reduce the amount of work done by kmem. 14580 * Non-fused tcp loopback case is handled separately below. 14581 */ 14582 sopp.sopp_wroff = 0; 14583 /* 14584 * Update the peer's transmit parameters according to 14585 * our recently calculated high water mark value. 14586 */ 14587 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14588 } else if (tcp->tcp_snd_sack_ok) { 14589 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14590 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14591 } else { 14592 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14593 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14594 } 14595 14596 /* 14597 * If this is endpoint is handling SSL, then reserve extra 14598 * offset and space at the end. 14599 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14600 * overriding the previous setting. The extra cost of signing and 14601 * encrypting multiple MSS-size records (12 of them with Ethernet), 14602 * instead of a single contiguous one by the stream head 14603 * largely outweighs the statistical reduction of ACKs, when 14604 * applicable. The peer will also save on decryption and verification 14605 * costs. 14606 */ 14607 if (tcp->tcp_kssl_ctx != NULL) { 14608 sopp.sopp_wroff += SSL3_WROFFSET; 14609 14610 sopp.sopp_flags |= SOCKOPT_TAIL; 14611 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14612 14613 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14614 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14615 14616 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14617 } 14618 14619 /* Send the options up */ 14620 if (IPCL_IS_NONSTR(connp)) { 14621 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14622 ASSERT(tcp->tcp_kssl_ctx != NULL); 14623 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14624 } 14625 if (tcp->tcp_loopback) { 14626 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14627 sopp.sopp_loopback = B_TRUE; 14628 } 14629 (*connp->conn_upcalls->su_set_proto_props) 14630 (connp->conn_upper_handle, &sopp); 14631 freemsg(mp); 14632 } else { 14633 /* 14634 * Let us reuse the incoming mblk to avoid 14635 * memory allocation failure problems. We know 14636 * that the size of the incoming mblk is at least 14637 * stroptions 14638 */ 14639 struct stroptions *stropt; 14640 14641 ASSERT(DB_REF(mp) == 1); 14642 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14643 14644 DB_TYPE(mp) = M_SETOPTS; 14645 stropt = (struct stroptions *)mp->b_rptr; 14646 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14647 stropt = (struct stroptions *)mp->b_rptr; 14648 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14649 stropt->so_hiwat = sopp.sopp_rxhiwat; 14650 stropt->so_wroff = sopp.sopp_wroff; 14651 stropt->so_maxblk = sopp.sopp_maxblk; 14652 14653 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14654 ASSERT(tcp->tcp_kssl_ctx != NULL); 14655 14656 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14657 stropt->so_tail = sopp.sopp_tail; 14658 stropt->so_copyopt = sopp.sopp_zcopyflag; 14659 } 14660 14661 /* Send the options up */ 14662 putnext(q, mp); 14663 } 14664 14665 /* 14666 * Pass up any data and/or a fin that has been received. 14667 * 14668 * Adjust receive window in case it had decreased 14669 * (because there is data <=> tcp_rcv_list != NULL) 14670 * while the connection was detached. Note that 14671 * in case the eager was flow-controlled, w/o this 14672 * code, the rwnd may never open up again! 14673 */ 14674 if (tcp->tcp_rcv_list != NULL) { 14675 if (IPCL_IS_NONSTR(connp)) { 14676 mblk_t *mp; 14677 int space_left; 14678 int error; 14679 boolean_t push = B_TRUE; 14680 14681 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14682 (connp->conn_upper_handle, NULL, 0, 0, &error, 14683 &push) >= 0) { 14684 tcp->tcp_rwnd = connp->conn_rcvbuf; 14685 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14686 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14687 tcp_xmit_ctl(NULL, 14688 tcp, (tcp->tcp_swnd == 0) ? 14689 tcp->tcp_suna : tcp->tcp_snxt, 14690 tcp->tcp_rnxt, TH_ACK); 14691 } 14692 } 14693 while ((mp = tcp->tcp_rcv_list) != NULL) { 14694 push = B_TRUE; 14695 tcp->tcp_rcv_list = mp->b_next; 14696 mp->b_next = NULL; 14697 space_left = (*connp->conn_upcalls->su_recv) 14698 (connp->conn_upper_handle, mp, msgdsize(mp), 14699 0, &error, &push); 14700 if (space_left < 0) { 14701 /* 14702 * We should never be in middle of a 14703 * fallback, the squeue guarantees that. 14704 */ 14705 ASSERT(error != EOPNOTSUPP); 14706 } 14707 } 14708 tcp->tcp_rcv_last_head = NULL; 14709 tcp->tcp_rcv_last_tail = NULL; 14710 tcp->tcp_rcv_cnt = 0; 14711 } else { 14712 /* We drain directly in case of fused tcp loopback */ 14713 14714 if (!tcp->tcp_fused && canputnext(q)) { 14715 tcp->tcp_rwnd = connp->conn_rcvbuf; 14716 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14717 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14718 tcp_xmit_ctl(NULL, 14719 tcp, (tcp->tcp_swnd == 0) ? 14720 tcp->tcp_suna : tcp->tcp_snxt, 14721 tcp->tcp_rnxt, TH_ACK); 14722 } 14723 } 14724 14725 (void) tcp_rcv_drain(tcp); 14726 } 14727 14728 /* 14729 * For fused tcp loopback, back-enable peer endpoint 14730 * if it's currently flow-controlled. 14731 */ 14732 if (tcp->tcp_fused) { 14733 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14734 14735 ASSERT(peer_tcp != NULL); 14736 ASSERT(peer_tcp->tcp_fused); 14737 14738 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14739 if (peer_tcp->tcp_flow_stopped) { 14740 tcp_clrqfull(peer_tcp); 14741 TCP_STAT(tcps, tcp_fusion_backenabled); 14742 } 14743 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14744 } 14745 } 14746 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14747 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14748 tcp->tcp_ordrel_done = B_TRUE; 14749 if (IPCL_IS_NONSTR(connp)) { 14750 ASSERT(tcp->tcp_ordrel_mp == NULL); 14751 (*connp->conn_upcalls->su_opctl)( 14752 connp->conn_upper_handle, 14753 SOCK_OPCTL_SHUT_RECV, 0); 14754 } else { 14755 mp = tcp->tcp_ordrel_mp; 14756 tcp->tcp_ordrel_mp = NULL; 14757 putnext(q, mp); 14758 } 14759 } 14760 tcp->tcp_hard_binding = B_FALSE; 14761 14762 if (connp->conn_keepalive) { 14763 tcp->tcp_ka_last_intrvl = 0; 14764 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14765 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14766 } 14767 14768 /* 14769 * At this point, eager is fully established and will 14770 * have the following references - 14771 * 14772 * 2 references for connection to exist (1 for TCP and 1 for IP). 14773 * 1 reference for the squeue which will be dropped by the squeue as 14774 * soon as this function returns. 14775 * There will be 1 additonal reference for being in classifier 14776 * hash list provided something bad hasn't happened. 14777 */ 14778 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14779 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14780 } 14781 14782 /* 14783 * The function called through squeue to get behind listener's perimeter to 14784 * send a deferred conn_ind. 14785 */ 14786 /* ARGSUSED */ 14787 void 14788 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14789 { 14790 conn_t *lconnp = (conn_t *)arg; 14791 tcp_t *listener = lconnp->conn_tcp; 14792 struct T_conn_ind *conn_ind; 14793 tcp_t *tcp; 14794 14795 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14796 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14797 conn_ind->OPT_length); 14798 14799 if (listener->tcp_state != TCPS_LISTEN) { 14800 /* 14801 * If listener has closed, it would have caused a 14802 * a cleanup/blowoff to happen for the eager, so 14803 * we don't need to do anything more. 14804 */ 14805 freemsg(mp); 14806 return; 14807 } 14808 14809 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14810 } 14811 14812 /* 14813 * Common to TPI and sockfs accept code. 14814 */ 14815 /* ARGSUSED2 */ 14816 static int 14817 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14818 { 14819 tcp_t *listener, *eager; 14820 mblk_t *discon_mp; 14821 14822 listener = lconnp->conn_tcp; 14823 ASSERT(listener->tcp_state == TCPS_LISTEN); 14824 eager = econnp->conn_tcp; 14825 ASSERT(eager->tcp_listener != NULL); 14826 14827 /* 14828 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14829 * use it if something failed. 14830 */ 14831 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14832 sizeof (struct stroptions)), BPRI_HI); 14833 14834 if (discon_mp == NULL) { 14835 return (-TPROTO); 14836 } 14837 eager->tcp_issocket = B_TRUE; 14838 14839 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14840 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14841 ASSERT(econnp->conn_netstack == 14842 listener->tcp_connp->conn_netstack); 14843 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14844 14845 /* Put the ref for IP */ 14846 CONN_INC_REF(econnp); 14847 14848 /* 14849 * We should have minimum of 3 references on the conn 14850 * at this point. One each for TCP and IP and one for 14851 * the T_conn_ind that was sent up when the 3-way handshake 14852 * completed. In the normal case we would also have another 14853 * reference (making a total of 4) for the conn being in the 14854 * classifier hash list. However the eager could have received 14855 * an RST subsequently and tcp_closei_local could have removed 14856 * the eager from the classifier hash list, hence we can't 14857 * assert that reference. 14858 */ 14859 ASSERT(econnp->conn_ref >= 3); 14860 14861 mutex_enter(&listener->tcp_eager_lock); 14862 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14863 14864 tcp_t *tail; 14865 tcp_t *tcp; 14866 mblk_t *mp1; 14867 14868 tcp = listener->tcp_eager_prev_q0; 14869 /* 14870 * listener->tcp_eager_prev_q0 points to the TAIL of the 14871 * deferred T_conn_ind queue. We need to get to the head 14872 * of the queue in order to send up T_conn_ind the same 14873 * order as how the 3WHS is completed. 14874 */ 14875 while (tcp != listener) { 14876 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14877 !tcp->tcp_kssl_pending) 14878 break; 14879 else 14880 tcp = tcp->tcp_eager_prev_q0; 14881 } 14882 /* None of the pending eagers can be sent up now */ 14883 if (tcp == listener) 14884 goto no_more_eagers; 14885 14886 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14887 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14888 /* Move from q0 to q */ 14889 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14890 listener->tcp_conn_req_cnt_q0--; 14891 listener->tcp_conn_req_cnt_q++; 14892 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14893 tcp->tcp_eager_prev_q0; 14894 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14895 tcp->tcp_eager_next_q0; 14896 tcp->tcp_eager_prev_q0 = NULL; 14897 tcp->tcp_eager_next_q0 = NULL; 14898 tcp->tcp_conn_def_q0 = B_FALSE; 14899 14900 /* Make sure the tcp isn't in the list of droppables */ 14901 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14902 tcp->tcp_eager_prev_drop_q0 == NULL); 14903 14904 /* 14905 * Insert at end of the queue because sockfs sends 14906 * down T_CONN_RES in chronological order. Leaving 14907 * the older conn indications at front of the queue 14908 * helps reducing search time. 14909 */ 14910 tail = listener->tcp_eager_last_q; 14911 if (tail != NULL) { 14912 tail->tcp_eager_next_q = tcp; 14913 } else { 14914 listener->tcp_eager_next_q = tcp; 14915 } 14916 listener->tcp_eager_last_q = tcp; 14917 tcp->tcp_eager_next_q = NULL; 14918 14919 /* Need to get inside the listener perimeter */ 14920 CONN_INC_REF(listener->tcp_connp); 14921 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14922 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14923 SQTAG_TCP_SEND_PENDING); 14924 } 14925 no_more_eagers: 14926 tcp_eager_unlink(eager); 14927 mutex_exit(&listener->tcp_eager_lock); 14928 14929 /* 14930 * At this point, the eager is detached from the listener 14931 * but we still have an extra refs on eager (apart from the 14932 * usual tcp references). The ref was placed in tcp_input_data 14933 * before sending the conn_ind in tcp_send_conn_ind. 14934 * The ref will be dropped in tcp_accept_finish(). 14935 */ 14936 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14937 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14938 return (0); 14939 } 14940 14941 int 14942 tcp_accept(sock_lower_handle_t lproto_handle, 14943 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 14944 cred_t *cr) 14945 { 14946 conn_t *lconnp, *econnp; 14947 tcp_t *listener, *eager; 14948 14949 lconnp = (conn_t *)lproto_handle; 14950 listener = lconnp->conn_tcp; 14951 ASSERT(listener->tcp_state == TCPS_LISTEN); 14952 econnp = (conn_t *)eproto_handle; 14953 eager = econnp->conn_tcp; 14954 ASSERT(eager->tcp_listener != NULL); 14955 14956 /* 14957 * It is OK to manipulate these fields outside the eager's squeue 14958 * because they will not start being used until tcp_accept_finish 14959 * has been called. 14960 */ 14961 ASSERT(lconnp->conn_upper_handle != NULL); 14962 ASSERT(econnp->conn_upper_handle == NULL); 14963 econnp->conn_upper_handle = sock_handle; 14964 econnp->conn_upcalls = lconnp->conn_upcalls; 14965 ASSERT(IPCL_IS_NONSTR(econnp)); 14966 return (tcp_accept_common(lconnp, econnp, cr)); 14967 } 14968 14969 14970 /* 14971 * This is the STREAMS entry point for T_CONN_RES coming down on 14972 * Acceptor STREAM when sockfs listener does accept processing. 14973 * Read the block comment on top of tcp_input_listener(). 14974 */ 14975 void 14976 tcp_tpi_accept(queue_t *q, mblk_t *mp) 14977 { 14978 queue_t *rq = RD(q); 14979 struct T_conn_res *conn_res; 14980 tcp_t *eager; 14981 tcp_t *listener; 14982 struct T_ok_ack *ok; 14983 t_scalar_t PRIM_type; 14984 conn_t *econnp; 14985 cred_t *cr; 14986 14987 ASSERT(DB_TYPE(mp) == M_PROTO); 14988 14989 /* 14990 * All Solaris components should pass a db_credp 14991 * for this TPI message, hence we ASSERT. 14992 * But in case there is some other M_PROTO that looks 14993 * like a TPI message sent by some other kernel 14994 * component, we check and return an error. 14995 */ 14996 cr = msg_getcred(mp, NULL); 14997 ASSERT(cr != NULL); 14998 if (cr == NULL) { 14999 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 15000 if (mp != NULL) 15001 putnext(rq, mp); 15002 return; 15003 } 15004 conn_res = (struct T_conn_res *)mp->b_rptr; 15005 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 15006 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 15007 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15008 if (mp != NULL) 15009 putnext(rq, mp); 15010 return; 15011 } 15012 switch (conn_res->PRIM_type) { 15013 case O_T_CONN_RES: 15014 case T_CONN_RES: 15015 /* 15016 * We pass up an err ack if allocb fails. This will 15017 * cause sockfs to issue a T_DISCON_REQ which will cause 15018 * tcp_eager_blowoff to be called. sockfs will then call 15019 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 15020 * we need to do the allocb up here because we have to 15021 * make sure rq->q_qinfo->qi_qclose still points to the 15022 * correct function (tcp_tpi_close_accept) in case allocb 15023 * fails. 15024 */ 15025 bcopy(mp->b_rptr + conn_res->OPT_offset, 15026 &eager, conn_res->OPT_length); 15027 PRIM_type = conn_res->PRIM_type; 15028 mp->b_datap->db_type = M_PCPROTO; 15029 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 15030 ok = (struct T_ok_ack *)mp->b_rptr; 15031 ok->PRIM_type = T_OK_ACK; 15032 ok->CORRECT_prim = PRIM_type; 15033 econnp = eager->tcp_connp; 15034 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 15035 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 15036 econnp->conn_rq = rq; 15037 econnp->conn_wq = q; 15038 rq->q_ptr = econnp; 15039 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 15040 q->q_ptr = econnp; 15041 q->q_qinfo = &tcp_winit; 15042 listener = eager->tcp_listener; 15043 15044 if (tcp_accept_common(listener->tcp_connp, 15045 econnp, cr) < 0) { 15046 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15047 if (mp != NULL) 15048 putnext(rq, mp); 15049 return; 15050 } 15051 15052 /* 15053 * Send the new local address also up to sockfs. There 15054 * should already be enough space in the mp that came 15055 * down from soaccept(). 15056 */ 15057 if (econnp->conn_family == AF_INET) { 15058 sin_t *sin; 15059 15060 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15061 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 15062 sin = (sin_t *)mp->b_wptr; 15063 mp->b_wptr += sizeof (sin_t); 15064 sin->sin_family = AF_INET; 15065 sin->sin_port = econnp->conn_lport; 15066 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 15067 } else { 15068 sin6_t *sin6; 15069 15070 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15071 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 15072 sin6 = (sin6_t *)mp->b_wptr; 15073 mp->b_wptr += sizeof (sin6_t); 15074 sin6->sin6_family = AF_INET6; 15075 sin6->sin6_port = econnp->conn_lport; 15076 sin6->sin6_addr = econnp->conn_laddr_v6; 15077 if (econnp->conn_ipversion == IPV4_VERSION) { 15078 sin6->sin6_flowinfo = 0; 15079 } else { 15080 ASSERT(eager->tcp_ip6h != NULL); 15081 sin6->sin6_flowinfo = 15082 eager->tcp_ip6h->ip6_vcf & 15083 ~IPV6_VERS_AND_FLOW_MASK; 15084 } 15085 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 15086 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 15087 sin6->sin6_scope_id = 15088 econnp->conn_ixa->ixa_scopeid; 15089 } else { 15090 sin6->sin6_scope_id = 0; 15091 } 15092 sin6->__sin6_src_id = 0; 15093 } 15094 15095 putnext(rq, mp); 15096 return; 15097 default: 15098 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 15099 if (mp != NULL) 15100 putnext(rq, mp); 15101 return; 15102 } 15103 } 15104 15105 /* 15106 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 15107 */ 15108 static void 15109 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 15110 { 15111 void *data; 15112 mblk_t *datamp = mp->b_cont; 15113 conn_t *connp = Q_TO_CONN(q); 15114 tcp_t *tcp = connp->conn_tcp; 15115 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 15116 15117 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 15118 cmdp->cb_error = EPROTO; 15119 qreply(q, mp); 15120 return; 15121 } 15122 15123 data = datamp->b_rptr; 15124 15125 switch (cmdp->cb_cmd) { 15126 case TI_GETPEERNAME: 15127 if (tcp->tcp_state < TCPS_SYN_RCVD) 15128 cmdp->cb_error = ENOTCONN; 15129 else 15130 cmdp->cb_error = conn_getpeername(connp, data, 15131 &cmdp->cb_len); 15132 break; 15133 case TI_GETMYNAME: 15134 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 15135 break; 15136 default: 15137 cmdp->cb_error = EINVAL; 15138 break; 15139 } 15140 15141 qreply(q, mp); 15142 } 15143 15144 void 15145 tcp_wput(queue_t *q, mblk_t *mp) 15146 { 15147 conn_t *connp = Q_TO_CONN(q); 15148 tcp_t *tcp; 15149 void (*output_proc)(); 15150 t_scalar_t type; 15151 uchar_t *rptr; 15152 struct iocblk *iocp; 15153 size_t size; 15154 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 15155 15156 ASSERT(connp->conn_ref >= 2); 15157 15158 switch (DB_TYPE(mp)) { 15159 case M_DATA: 15160 tcp = connp->conn_tcp; 15161 ASSERT(tcp != NULL); 15162 15163 size = msgdsize(mp); 15164 15165 mutex_enter(&tcp->tcp_non_sq_lock); 15166 tcp->tcp_squeue_bytes += size; 15167 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 15168 tcp_setqfull(tcp); 15169 } 15170 mutex_exit(&tcp->tcp_non_sq_lock); 15171 15172 CONN_INC_REF(connp); 15173 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 15174 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 15175 return; 15176 15177 case M_CMD: 15178 tcp_wput_cmdblk(q, mp); 15179 return; 15180 15181 case M_PROTO: 15182 case M_PCPROTO: 15183 /* 15184 * if it is a snmp message, don't get behind the squeue 15185 */ 15186 tcp = connp->conn_tcp; 15187 rptr = mp->b_rptr; 15188 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 15189 type = ((union T_primitives *)rptr)->type; 15190 } else { 15191 if (connp->conn_debug) { 15192 (void) strlog(TCP_MOD_ID, 0, 1, 15193 SL_ERROR|SL_TRACE, 15194 "tcp_wput_proto, dropping one..."); 15195 } 15196 freemsg(mp); 15197 return; 15198 } 15199 if (type == T_SVR4_OPTMGMT_REQ) { 15200 /* 15201 * All Solaris components should pass a db_credp 15202 * for this TPI message, hence we ASSERT. 15203 * But in case there is some other M_PROTO that looks 15204 * like a TPI message sent by some other kernel 15205 * component, we check and return an error. 15206 */ 15207 cred_t *cr = msg_getcred(mp, NULL); 15208 15209 ASSERT(cr != NULL); 15210 if (cr == NULL) { 15211 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 15212 return; 15213 } 15214 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 15215 cr)) { 15216 /* 15217 * This was a SNMP request 15218 */ 15219 return; 15220 } else { 15221 output_proc = tcp_wput_proto; 15222 } 15223 } else { 15224 output_proc = tcp_wput_proto; 15225 } 15226 break; 15227 case M_IOCTL: 15228 /* 15229 * Most ioctls can be processed right away without going via 15230 * squeues - process them right here. Those that do require 15231 * squeue (currently _SIOCSOCKFALLBACK) 15232 * are processed by tcp_wput_ioctl(). 15233 */ 15234 iocp = (struct iocblk *)mp->b_rptr; 15235 tcp = connp->conn_tcp; 15236 15237 switch (iocp->ioc_cmd) { 15238 case TCP_IOC_ABORT_CONN: 15239 tcp_ioctl_abort_conn(q, mp); 15240 return; 15241 case TI_GETPEERNAME: 15242 case TI_GETMYNAME: 15243 mi_copyin(q, mp, NULL, 15244 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15245 return; 15246 case ND_SET: 15247 /* nd_getset does the necessary checks */ 15248 case ND_GET: 15249 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15250 qreply(q, mp); 15251 return; 15252 } 15253 ip_wput_nondata(q, mp); 15254 return; 15255 15256 default: 15257 output_proc = tcp_wput_ioctl; 15258 break; 15259 } 15260 break; 15261 default: 15262 output_proc = tcp_wput_nondata; 15263 break; 15264 } 15265 15266 CONN_INC_REF(connp); 15267 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15268 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15269 } 15270 15271 /* 15272 * Initial STREAMS write side put() procedure for sockets. It tries to 15273 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15274 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15275 * are handled by tcp_wput() as usual. 15276 * 15277 * All further messages will also be handled by tcp_wput() because we cannot 15278 * be sure that the above short cut is safe later. 15279 */ 15280 static void 15281 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15282 { 15283 conn_t *connp = Q_TO_CONN(wq); 15284 tcp_t *tcp = connp->conn_tcp; 15285 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15286 15287 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15288 wq->q_qinfo = &tcp_winit; 15289 15290 ASSERT(IPCL_IS_TCP(connp)); 15291 ASSERT(TCP_IS_SOCKET(tcp)); 15292 15293 if (DB_TYPE(mp) == M_PCPROTO && 15294 MBLKL(mp) == sizeof (struct T_capability_req) && 15295 car->PRIM_type == T_CAPABILITY_REQ) { 15296 tcp_capability_req(tcp, mp); 15297 return; 15298 } 15299 15300 tcp_wput(wq, mp); 15301 } 15302 15303 /* ARGSUSED */ 15304 static void 15305 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15306 { 15307 #ifdef DEBUG 15308 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15309 #endif 15310 freemsg(mp); 15311 } 15312 15313 /* 15314 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15315 */ 15316 static boolean_t 15317 tcp_zcopy_check(tcp_t *tcp) 15318 { 15319 conn_t *connp = tcp->tcp_connp; 15320 ip_xmit_attr_t *ixa = connp->conn_ixa; 15321 boolean_t zc_enabled = B_FALSE; 15322 tcp_stack_t *tcps = tcp->tcp_tcps; 15323 15324 if (do_tcpzcopy == 2) 15325 zc_enabled = B_TRUE; 15326 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15327 zc_enabled = B_TRUE; 15328 15329 tcp->tcp_snd_zcopy_on = zc_enabled; 15330 if (!TCP_IS_DETACHED(tcp)) { 15331 if (zc_enabled) { 15332 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15333 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15334 ZCVMSAFE); 15335 TCP_STAT(tcps, tcp_zcopy_on); 15336 } else { 15337 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15338 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15339 ZCVMUNSAFE); 15340 TCP_STAT(tcps, tcp_zcopy_off); 15341 } 15342 } 15343 return (zc_enabled); 15344 } 15345 15346 /* 15347 * Backoff from a zero-copy message by copying data to a new allocated 15348 * message and freeing the original desballoca'ed segmapped message. 15349 * 15350 * This function is called by following two callers: 15351 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15352 * the origial desballoca'ed message and notify sockfs. This is in re- 15353 * transmit state. 15354 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15355 * to be copied to new message. 15356 */ 15357 static mblk_t * 15358 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15359 { 15360 mblk_t *nbp; 15361 mblk_t *head = NULL; 15362 mblk_t *tail = NULL; 15363 tcp_stack_t *tcps = tcp->tcp_tcps; 15364 15365 ASSERT(bp != NULL); 15366 while (bp != NULL) { 15367 if (IS_VMLOANED_MBLK(bp)) { 15368 TCP_STAT(tcps, tcp_zcopy_backoff); 15369 if ((nbp = copyb(bp)) == NULL) { 15370 tcp->tcp_xmit_zc_clean = B_FALSE; 15371 if (tail != NULL) 15372 tail->b_cont = bp; 15373 return ((head == NULL) ? bp : head); 15374 } 15375 15376 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15377 if (fix_xmitlist) 15378 tcp_zcopy_notify(tcp); 15379 else 15380 nbp->b_datap->db_struioflag |= 15381 STRUIO_ZCNOTIFY; 15382 } 15383 nbp->b_cont = bp->b_cont; 15384 15385 /* 15386 * Copy saved information and adjust tcp_xmit_tail 15387 * if needed. 15388 */ 15389 if (fix_xmitlist) { 15390 nbp->b_prev = bp->b_prev; 15391 nbp->b_next = bp->b_next; 15392 15393 if (tcp->tcp_xmit_tail == bp) 15394 tcp->tcp_xmit_tail = nbp; 15395 } 15396 15397 /* Free the original message. */ 15398 bp->b_prev = NULL; 15399 bp->b_next = NULL; 15400 freeb(bp); 15401 15402 bp = nbp; 15403 } 15404 15405 if (head == NULL) { 15406 head = bp; 15407 } 15408 if (tail == NULL) { 15409 tail = bp; 15410 } else { 15411 tail->b_cont = bp; 15412 tail = bp; 15413 } 15414 15415 /* Move forward. */ 15416 bp = bp->b_cont; 15417 } 15418 15419 if (fix_xmitlist) { 15420 tcp->tcp_xmit_last = tail; 15421 tcp->tcp_xmit_zc_clean = B_TRUE; 15422 } 15423 15424 return (head); 15425 } 15426 15427 static void 15428 tcp_zcopy_notify(tcp_t *tcp) 15429 { 15430 struct stdata *stp; 15431 conn_t *connp; 15432 15433 if (tcp->tcp_detached) 15434 return; 15435 connp = tcp->tcp_connp; 15436 if (IPCL_IS_NONSTR(connp)) { 15437 (*connp->conn_upcalls->su_zcopy_notify) 15438 (connp->conn_upper_handle); 15439 return; 15440 } 15441 stp = STREAM(connp->conn_rq); 15442 mutex_enter(&stp->sd_lock); 15443 stp->sd_flag |= STZCNOTIFY; 15444 cv_broadcast(&stp->sd_zcopy_wait); 15445 mutex_exit(&stp->sd_lock); 15446 } 15447 15448 /* 15449 * Update the TCP connection according to change of LSO capability. 15450 */ 15451 static void 15452 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15453 { 15454 /* 15455 * We check against IPv4 header length to preserve the old behavior 15456 * of only enabling LSO when there are no IP options. 15457 * But this restriction might not be necessary at all. Before removing 15458 * it, need to verify how LSO is handled for source routing case, with 15459 * which IP does software checksum. 15460 * 15461 * For IPv6, whenever any extension header is needed, LSO is supressed. 15462 */ 15463 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15464 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15465 return; 15466 15467 /* 15468 * Either the LSO capability newly became usable, or it has changed. 15469 */ 15470 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15471 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15472 15473 ASSERT(lsoc->ill_lso_max > 0); 15474 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15475 15476 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15477 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15478 15479 /* 15480 * If LSO to be enabled, notify the STREAM header with larger 15481 * data block. 15482 */ 15483 if (!tcp->tcp_lso) 15484 tcp->tcp_maxpsz_multiplier = 0; 15485 15486 tcp->tcp_lso = B_TRUE; 15487 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15488 } else { /* LSO capability is not usable any more. */ 15489 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15490 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15491 15492 /* 15493 * If LSO to be disabled, notify the STREAM header with smaller 15494 * data block. And need to restore fragsize to PMTU. 15495 */ 15496 if (tcp->tcp_lso) { 15497 tcp->tcp_maxpsz_multiplier = 15498 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15499 ixa->ixa_fragsize = ixa->ixa_pmtu; 15500 tcp->tcp_lso = B_FALSE; 15501 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15502 } 15503 } 15504 15505 (void) tcp_maxpsz_set(tcp, B_TRUE); 15506 } 15507 15508 /* 15509 * Update the TCP connection according to change of ZEROCOPY capability. 15510 */ 15511 static void 15512 tcp_update_zcopy(tcp_t *tcp) 15513 { 15514 conn_t *connp = tcp->tcp_connp; 15515 tcp_stack_t *tcps = tcp->tcp_tcps; 15516 15517 if (tcp->tcp_snd_zcopy_on) { 15518 tcp->tcp_snd_zcopy_on = B_FALSE; 15519 if (!TCP_IS_DETACHED(tcp)) { 15520 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15521 ZCVMUNSAFE); 15522 TCP_STAT(tcps, tcp_zcopy_off); 15523 } 15524 } else { 15525 tcp->tcp_snd_zcopy_on = B_TRUE; 15526 if (!TCP_IS_DETACHED(tcp)) { 15527 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15528 ZCVMSAFE); 15529 TCP_STAT(tcps, tcp_zcopy_on); 15530 } 15531 } 15532 } 15533 15534 /* 15535 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15536 * so it's safe to update the TCP connection. 15537 */ 15538 /* ARGSUSED1 */ 15539 static void 15540 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15541 ixa_notify_arg_t narg) 15542 { 15543 tcp_t *tcp = (tcp_t *)arg; 15544 conn_t *connp = tcp->tcp_connp; 15545 15546 switch (ntype) { 15547 case IXAN_LSO: 15548 tcp_update_lso(tcp, connp->conn_ixa); 15549 break; 15550 case IXAN_PMTU: 15551 tcp_update_pmtu(tcp, B_FALSE); 15552 break; 15553 case IXAN_ZCOPY: 15554 tcp_update_zcopy(tcp); 15555 break; 15556 default: 15557 break; 15558 } 15559 } 15560 15561 static void 15562 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15563 { 15564 conn_t *connp = tcp->tcp_connp; 15565 15566 /* 15567 * Check here to avoid sending zero-copy message down to IP when 15568 * ZEROCOPY capability has turned off. We only need to deal with 15569 * the race condition between sockfs and the notification here. 15570 * Since we have tried to backoff the tcp_xmit_head when turning 15571 * zero-copy off and new messages in tcp_output(), we simply drop 15572 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15573 * is not true. 15574 */ 15575 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15576 !tcp->tcp_xmit_zc_clean) { 15577 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15578 freemsg(mp); 15579 return; 15580 } 15581 15582 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15583 (void) conn_ip_output(mp, connp->conn_ixa); 15584 } 15585 15586 /* 15587 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15588 * if the receiver shrinks the window, i.e. moves the right window to the 15589 * left, the we should not send new data, but should retransmit normally the 15590 * old unacked data between suna and suna + swnd. We might has sent data 15591 * that is now outside the new window, pretend that we didn't send it. 15592 */ 15593 static void 15594 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15595 { 15596 uint32_t snxt = tcp->tcp_snxt; 15597 15598 ASSERT(shrunk_count > 0); 15599 15600 if (!tcp->tcp_is_wnd_shrnk) { 15601 tcp->tcp_snxt_shrunk = snxt; 15602 tcp->tcp_is_wnd_shrnk = B_TRUE; 15603 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15604 tcp->tcp_snxt_shrunk = snxt; 15605 } 15606 15607 /* Pretend we didn't send the data outside the window */ 15608 snxt -= shrunk_count; 15609 15610 /* Reset all the values per the now shrunk window */ 15611 tcp_update_xmit_tail(tcp, snxt); 15612 tcp->tcp_unsent += shrunk_count; 15613 15614 /* 15615 * If the SACK option is set, delete the entire list of 15616 * notsack'ed blocks. 15617 */ 15618 if (tcp->tcp_sack_info != NULL) { 15619 if (tcp->tcp_notsack_list != NULL) 15620 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15621 } 15622 15623 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15624 /* 15625 * Make sure the timer is running so that we will probe a zero 15626 * window. 15627 */ 15628 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15629 } 15630 15631 15632 /* 15633 * The TCP normal data output path. 15634 * NOTE: the logic of the fast path is duplicated from this function. 15635 */ 15636 static void 15637 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15638 { 15639 int len; 15640 mblk_t *local_time; 15641 mblk_t *mp1; 15642 uint32_t snxt; 15643 int tail_unsent; 15644 int tcpstate; 15645 int usable = 0; 15646 mblk_t *xmit_tail; 15647 int32_t mss; 15648 int32_t num_sack_blk = 0; 15649 int32_t total_hdr_len; 15650 int32_t tcp_hdr_len; 15651 int rc; 15652 tcp_stack_t *tcps = tcp->tcp_tcps; 15653 conn_t *connp = tcp->tcp_connp; 15654 clock_t now = LBOLT_FASTPATH; 15655 15656 tcpstate = tcp->tcp_state; 15657 if (mp == NULL) { 15658 /* 15659 * tcp_wput_data() with NULL mp should only be called when 15660 * there is unsent data. 15661 */ 15662 ASSERT(tcp->tcp_unsent > 0); 15663 /* Really tacky... but we need this for detached closes. */ 15664 len = tcp->tcp_unsent; 15665 goto data_null; 15666 } 15667 15668 #if CCS_STATS 15669 wrw_stats.tot.count++; 15670 wrw_stats.tot.bytes += msgdsize(mp); 15671 #endif 15672 ASSERT(mp->b_datap->db_type == M_DATA); 15673 /* 15674 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15675 * or before a connection attempt has begun. 15676 */ 15677 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15678 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15679 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15680 #ifdef DEBUG 15681 cmn_err(CE_WARN, 15682 "tcp_wput_data: data after ordrel, %s", 15683 tcp_display(tcp, NULL, 15684 DISP_ADDR_AND_PORT)); 15685 #else 15686 if (connp->conn_debug) { 15687 (void) strlog(TCP_MOD_ID, 0, 1, 15688 SL_TRACE|SL_ERROR, 15689 "tcp_wput_data: data after ordrel, %s\n", 15690 tcp_display(tcp, NULL, 15691 DISP_ADDR_AND_PORT)); 15692 } 15693 #endif /* DEBUG */ 15694 } 15695 if (tcp->tcp_snd_zcopy_aware && 15696 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15697 tcp_zcopy_notify(tcp); 15698 freemsg(mp); 15699 mutex_enter(&tcp->tcp_non_sq_lock); 15700 if (tcp->tcp_flow_stopped && 15701 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15702 tcp_clrqfull(tcp); 15703 } 15704 mutex_exit(&tcp->tcp_non_sq_lock); 15705 return; 15706 } 15707 15708 /* Strip empties */ 15709 for (;;) { 15710 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15711 (uintptr_t)INT_MAX); 15712 len = (int)(mp->b_wptr - mp->b_rptr); 15713 if (len > 0) 15714 break; 15715 mp1 = mp; 15716 mp = mp->b_cont; 15717 freeb(mp1); 15718 if (!mp) { 15719 return; 15720 } 15721 } 15722 15723 /* If we are the first on the list ... */ 15724 if (tcp->tcp_xmit_head == NULL) { 15725 tcp->tcp_xmit_head = mp; 15726 tcp->tcp_xmit_tail = mp; 15727 tcp->tcp_xmit_tail_unsent = len; 15728 } else { 15729 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15730 struct datab *dp; 15731 15732 mp1 = tcp->tcp_xmit_last; 15733 if (len < tcp_tx_pull_len && 15734 (dp = mp1->b_datap)->db_ref == 1 && 15735 dp->db_lim - mp1->b_wptr >= len) { 15736 ASSERT(len > 0); 15737 ASSERT(!mp1->b_cont); 15738 if (len == 1) { 15739 *mp1->b_wptr++ = *mp->b_rptr; 15740 } else { 15741 bcopy(mp->b_rptr, mp1->b_wptr, len); 15742 mp1->b_wptr += len; 15743 } 15744 if (mp1 == tcp->tcp_xmit_tail) 15745 tcp->tcp_xmit_tail_unsent += len; 15746 mp1->b_cont = mp->b_cont; 15747 if (tcp->tcp_snd_zcopy_aware && 15748 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15749 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15750 freeb(mp); 15751 mp = mp1; 15752 } else { 15753 tcp->tcp_xmit_last->b_cont = mp; 15754 } 15755 len += tcp->tcp_unsent; 15756 } 15757 15758 /* Tack on however many more positive length mblks we have */ 15759 if ((mp1 = mp->b_cont) != NULL) { 15760 do { 15761 int tlen; 15762 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15763 (uintptr_t)INT_MAX); 15764 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15765 if (tlen <= 0) { 15766 mp->b_cont = mp1->b_cont; 15767 freeb(mp1); 15768 } else { 15769 len += tlen; 15770 mp = mp1; 15771 } 15772 } while ((mp1 = mp->b_cont) != NULL); 15773 } 15774 tcp->tcp_xmit_last = mp; 15775 tcp->tcp_unsent = len; 15776 15777 if (urgent) 15778 usable = 1; 15779 15780 data_null: 15781 snxt = tcp->tcp_snxt; 15782 xmit_tail = tcp->tcp_xmit_tail; 15783 tail_unsent = tcp->tcp_xmit_tail_unsent; 15784 15785 /* 15786 * Note that tcp_mss has been adjusted to take into account the 15787 * timestamp option if applicable. Because SACK options do not 15788 * appear in every TCP segments and they are of variable lengths, 15789 * they cannot be included in tcp_mss. Thus we need to calculate 15790 * the actual segment length when we need to send a segment which 15791 * includes SACK options. 15792 */ 15793 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15794 int32_t opt_len; 15795 15796 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15797 tcp->tcp_num_sack_blk); 15798 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15799 2 + TCPOPT_HEADER_LEN; 15800 mss = tcp->tcp_mss - opt_len; 15801 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15802 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15803 } else { 15804 mss = tcp->tcp_mss; 15805 total_hdr_len = connp->conn_ht_iphc_len; 15806 tcp_hdr_len = connp->conn_ht_ulp_len; 15807 } 15808 15809 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15810 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15811 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15812 } 15813 if (tcpstate == TCPS_SYN_RCVD) { 15814 /* 15815 * The three-way connection establishment handshake is not 15816 * complete yet. We want to queue the data for transmission 15817 * after entering ESTABLISHED state (RFC793). A jump to 15818 * "done" label effectively leaves data on the queue. 15819 */ 15820 goto done; 15821 } else { 15822 int usable_r; 15823 15824 /* 15825 * In the special case when cwnd is zero, which can only 15826 * happen if the connection is ECN capable, return now. 15827 * New segments is sent using tcp_timer(). The timer 15828 * is set in tcp_input_data(). 15829 */ 15830 if (tcp->tcp_cwnd == 0) { 15831 /* 15832 * Note that tcp_cwnd is 0 before 3-way handshake is 15833 * finished. 15834 */ 15835 ASSERT(tcp->tcp_ecn_ok || 15836 tcp->tcp_state < TCPS_ESTABLISHED); 15837 return; 15838 } 15839 15840 /* NOTE: trouble if xmitting while SYN not acked? */ 15841 usable_r = snxt - tcp->tcp_suna; 15842 usable_r = tcp->tcp_swnd - usable_r; 15843 15844 /* 15845 * Check if the receiver has shrunk the window. If 15846 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15847 * cannot be set as there is unsent data, so FIN cannot 15848 * be sent out. Otherwise, we need to take into account 15849 * of FIN as it consumes an "invisible" sequence number. 15850 */ 15851 ASSERT(tcp->tcp_fin_sent == 0); 15852 if (usable_r < 0) { 15853 /* 15854 * The receiver has shrunk the window and we have sent 15855 * -usable_r date beyond the window, re-adjust. 15856 * 15857 * If TCP window scaling is enabled, there can be 15858 * round down error as the advertised receive window 15859 * is actually right shifted n bits. This means that 15860 * the lower n bits info is wiped out. It will look 15861 * like the window is shrunk. Do a check here to 15862 * see if the shrunk amount is actually within the 15863 * error in window calculation. If it is, just 15864 * return. Note that this check is inside the 15865 * shrunk window check. This makes sure that even 15866 * though tcp_process_shrunk_swnd() is not called, 15867 * we will stop further processing. 15868 */ 15869 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15870 tcp_process_shrunk_swnd(tcp, -usable_r); 15871 } 15872 return; 15873 } 15874 15875 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15876 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15877 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15878 15879 /* usable = MIN(usable, unsent) */ 15880 if (usable_r > len) 15881 usable_r = len; 15882 15883 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15884 if (usable_r > 0) { 15885 usable = usable_r; 15886 } else { 15887 /* Bypass all other unnecessary processing. */ 15888 goto done; 15889 } 15890 } 15891 15892 local_time = (mblk_t *)now; 15893 15894 /* 15895 * "Our" Nagle Algorithm. This is not the same as in the old 15896 * BSD. This is more in line with the true intent of Nagle. 15897 * 15898 * The conditions are: 15899 * 1. The amount of unsent data (or amount of data which can be 15900 * sent, whichever is smaller) is less than Nagle limit. 15901 * 2. The last sent size is also less than Nagle limit. 15902 * 3. There is unack'ed data. 15903 * 4. Urgent pointer is not set. Send urgent data ignoring the 15904 * Nagle algorithm. This reduces the probability that urgent 15905 * bytes get "merged" together. 15906 * 5. The app has not closed the connection. This eliminates the 15907 * wait time of the receiving side waiting for the last piece of 15908 * (small) data. 15909 * 15910 * If all are satisified, exit without sending anything. Note 15911 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15912 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15913 * 4095). 15914 */ 15915 if (usable < (int)tcp->tcp_naglim && 15916 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15917 snxt != tcp->tcp_suna && 15918 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15919 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15920 goto done; 15921 } 15922 15923 /* 15924 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15925 * is set, then we have to force TCP not to send partial segment 15926 * (smaller than MSS bytes). We are calculating the usable now 15927 * based on full mss and will save the rest of remaining data for 15928 * later. When tcp_zero_win_probe is set, TCP needs to send out 15929 * something to do zero window probe. 15930 */ 15931 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15932 if (usable < mss) 15933 goto done; 15934 usable = (usable / mss) * mss; 15935 } 15936 15937 /* Update the latest receive window size in TCP header. */ 15938 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15939 15940 /* Send the packet. */ 15941 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 15942 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 15943 local_time); 15944 15945 /* Pretend that all we were trying to send really got sent */ 15946 if (rc < 0 && tail_unsent < 0) { 15947 do { 15948 xmit_tail = xmit_tail->b_cont; 15949 xmit_tail->b_prev = local_time; 15950 ASSERT((uintptr_t)(xmit_tail->b_wptr - 15951 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 15952 tail_unsent += (int)(xmit_tail->b_wptr - 15953 xmit_tail->b_rptr); 15954 } while (tail_unsent < 0); 15955 } 15956 done:; 15957 tcp->tcp_xmit_tail = xmit_tail; 15958 tcp->tcp_xmit_tail_unsent = tail_unsent; 15959 len = tcp->tcp_snxt - snxt; 15960 if (len) { 15961 /* 15962 * If new data was sent, need to update the notsack 15963 * list, which is, afterall, data blocks that have 15964 * not been sack'ed by the receiver. New data is 15965 * not sack'ed. 15966 */ 15967 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 15968 /* len is a negative value. */ 15969 tcp->tcp_pipe -= len; 15970 tcp_notsack_update(&(tcp->tcp_notsack_list), 15971 tcp->tcp_snxt, snxt, 15972 &(tcp->tcp_num_notsack_blk), 15973 &(tcp->tcp_cnt_notsack_list)); 15974 } 15975 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 15976 tcp->tcp_rack = tcp->tcp_rnxt; 15977 tcp->tcp_rack_cnt = 0; 15978 if ((snxt + len) == tcp->tcp_suna) { 15979 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15980 } 15981 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 15982 /* 15983 * Didn't send anything. Make sure the timer is running 15984 * so that we will probe a zero window. 15985 */ 15986 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15987 } 15988 /* Note that len is the amount we just sent but with a negative sign */ 15989 tcp->tcp_unsent += len; 15990 mutex_enter(&tcp->tcp_non_sq_lock); 15991 if (tcp->tcp_flow_stopped) { 15992 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15993 tcp_clrqfull(tcp); 15994 } 15995 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 15996 if (!(tcp->tcp_detached)) 15997 tcp_setqfull(tcp); 15998 } 15999 mutex_exit(&tcp->tcp_non_sq_lock); 16000 } 16001 16002 /* 16003 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 16004 * with the template header, as well as other options such as time-stamp, 16005 * ECN and/or SACK. 16006 */ 16007 static void 16008 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 16009 { 16010 tcpha_t *tcp_tmpl, *tcpha; 16011 uint32_t *dst, *src; 16012 int hdrlen; 16013 conn_t *connp = tcp->tcp_connp; 16014 16015 ASSERT(OK_32PTR(rptr)); 16016 16017 /* Template header */ 16018 tcp_tmpl = tcp->tcp_tcpha; 16019 16020 /* Header of outgoing packet */ 16021 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 16022 16023 /* dst and src are opaque 32-bit fields, used for copying */ 16024 dst = (uint32_t *)rptr; 16025 src = (uint32_t *)connp->conn_ht_iphc; 16026 hdrlen = connp->conn_ht_iphc_len; 16027 16028 /* Fill time-stamp option if needed */ 16029 if (tcp->tcp_snd_ts_ok) { 16030 U32_TO_BE32((uint32_t)now, 16031 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 16032 U32_TO_BE32(tcp->tcp_ts_recent, 16033 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 16034 } else { 16035 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 16036 } 16037 16038 /* 16039 * Copy the template header; is this really more efficient than 16040 * calling bcopy()? For simple IPv4/TCP, it may be the case, 16041 * but perhaps not for other scenarios. 16042 */ 16043 dst[0] = src[0]; 16044 dst[1] = src[1]; 16045 dst[2] = src[2]; 16046 dst[3] = src[3]; 16047 dst[4] = src[4]; 16048 dst[5] = src[5]; 16049 dst[6] = src[6]; 16050 dst[7] = src[7]; 16051 dst[8] = src[8]; 16052 dst[9] = src[9]; 16053 if (hdrlen -= 40) { 16054 hdrlen >>= 2; 16055 dst += 10; 16056 src += 10; 16057 do { 16058 *dst++ = *src++; 16059 } while (--hdrlen); 16060 } 16061 16062 /* 16063 * Set the ECN info in the TCP header if it is not a zero 16064 * window probe. Zero window probe is only sent in 16065 * tcp_wput_data() and tcp_timer(). 16066 */ 16067 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 16068 SET_ECT(tcp, rptr); 16069 16070 if (tcp->tcp_ecn_echo_on) 16071 tcpha->tha_flags |= TH_ECE; 16072 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16073 tcpha->tha_flags |= TH_CWR; 16074 tcp->tcp_ecn_cwr_sent = B_TRUE; 16075 } 16076 } 16077 16078 /* Fill in SACK options */ 16079 if (num_sack_blk > 0) { 16080 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 16081 sack_blk_t *tmp; 16082 int32_t i; 16083 16084 wptr[0] = TCPOPT_NOP; 16085 wptr[1] = TCPOPT_NOP; 16086 wptr[2] = TCPOPT_SACK; 16087 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 16088 sizeof (sack_blk_t); 16089 wptr += TCPOPT_REAL_SACK_LEN; 16090 16091 tmp = tcp->tcp_sack_list; 16092 for (i = 0; i < num_sack_blk; i++) { 16093 U32_TO_BE32(tmp[i].begin, wptr); 16094 wptr += sizeof (tcp_seq); 16095 U32_TO_BE32(tmp[i].end, wptr); 16096 wptr += sizeof (tcp_seq); 16097 } 16098 tcpha->tha_offset_and_reserved += 16099 ((num_sack_blk * 2 + 1) << 4); 16100 } 16101 } 16102 16103 /* 16104 * tcp_send() is called by tcp_wput_data() and returns one of the following: 16105 * 16106 * -1 = failed allocation. 16107 * 0 = success; burst count reached, or usable send window is too small, 16108 * and that we'd rather wait until later before sending again. 16109 */ 16110 static int 16111 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 16112 const int tcp_hdr_len, const int num_sack_blk, int *usable, 16113 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 16114 { 16115 int num_burst_seg = tcp->tcp_snd_burst; 16116 int num_lso_seg = 1; 16117 uint_t lso_usable; 16118 boolean_t do_lso_send = B_FALSE; 16119 tcp_stack_t *tcps = tcp->tcp_tcps; 16120 conn_t *connp = tcp->tcp_connp; 16121 ip_xmit_attr_t *ixa = connp->conn_ixa; 16122 16123 /* 16124 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 16125 * the underlying connection is LSO capable. Will check whether having 16126 * enough available data to initiate LSO transmission in the for(){} 16127 * loops. 16128 */ 16129 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 16130 do_lso_send = B_TRUE; 16131 16132 for (;;) { 16133 struct datab *db; 16134 tcpha_t *tcpha; 16135 uint32_t sum; 16136 mblk_t *mp, *mp1; 16137 uchar_t *rptr; 16138 int len; 16139 16140 /* 16141 * Burst count reached, return successfully. 16142 */ 16143 if (num_burst_seg == 0) 16144 break; 16145 16146 /* 16147 * Calculate the maximum payload length we can send at one 16148 * time. 16149 */ 16150 if (do_lso_send) { 16151 /* 16152 * Check whether be able to to do LSO for the current 16153 * available data. 16154 */ 16155 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 16156 lso_usable = MIN(tcp->tcp_lso_max, *usable); 16157 lso_usable = MIN(lso_usable, 16158 num_burst_seg * mss); 16159 16160 num_lso_seg = lso_usable / mss; 16161 if (lso_usable % mss) { 16162 num_lso_seg++; 16163 tcp->tcp_last_sent_len = (ushort_t) 16164 (lso_usable % mss); 16165 } else { 16166 tcp->tcp_last_sent_len = (ushort_t)mss; 16167 } 16168 } else { 16169 do_lso_send = B_FALSE; 16170 num_lso_seg = 1; 16171 lso_usable = mss; 16172 } 16173 } 16174 16175 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 16176 #ifdef DEBUG 16177 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 16178 do_lso_send); 16179 #endif 16180 /* 16181 * Adjust num_burst_seg here. 16182 */ 16183 num_burst_seg -= num_lso_seg; 16184 16185 len = mss; 16186 if (len > *usable) { 16187 ASSERT(do_lso_send == B_FALSE); 16188 16189 len = *usable; 16190 if (len <= 0) { 16191 /* Terminate the loop */ 16192 break; /* success; too small */ 16193 } 16194 /* 16195 * Sender silly-window avoidance. 16196 * Ignore this if we are going to send a 16197 * zero window probe out. 16198 * 16199 * TODO: force data into microscopic window? 16200 * ==> (!pushed || (unsent > usable)) 16201 */ 16202 if (len < (tcp->tcp_max_swnd >> 1) && 16203 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 16204 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 16205 len == 1) && (! tcp->tcp_zero_win_probe)) { 16206 /* 16207 * If the retransmit timer is not running 16208 * we start it so that we will retransmit 16209 * in the case when the receiver has 16210 * decremented the window. 16211 */ 16212 if (*snxt == tcp->tcp_snxt && 16213 *snxt == tcp->tcp_suna) { 16214 /* 16215 * We are not supposed to send 16216 * anything. So let's wait a little 16217 * bit longer before breaking SWS 16218 * avoidance. 16219 * 16220 * What should the value be? 16221 * Suggestion: MAX(init rexmit time, 16222 * tcp->tcp_rto) 16223 */ 16224 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16225 } 16226 break; /* success; too small */ 16227 } 16228 } 16229 16230 tcpha = tcp->tcp_tcpha; 16231 16232 /* 16233 * The reason to adjust len here is that we need to set flags 16234 * and calculate checksum. 16235 */ 16236 if (do_lso_send) 16237 len = lso_usable; 16238 16239 *usable -= len; /* Approximate - can be adjusted later */ 16240 if (*usable > 0) 16241 tcpha->tha_flags = TH_ACK; 16242 else 16243 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16244 16245 /* 16246 * Prime pump for IP's checksumming on our behalf. 16247 * Include the adjustment for a source route if any. 16248 * In case of LSO, the partial pseudo-header checksum should 16249 * exclusive TCP length, so zero tha_sum before IP calculate 16250 * pseudo-header checksum for partial checksum offload. 16251 */ 16252 if (do_lso_send) { 16253 sum = 0; 16254 } else { 16255 sum = len + tcp_hdr_len + connp->conn_sum; 16256 sum = (sum >> 16) + (sum & 0xFFFF); 16257 } 16258 tcpha->tha_sum = htons(sum); 16259 tcpha->tha_seq = htonl(*snxt); 16260 16261 /* 16262 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16263 * set. For the case when TCP_FSS_VALID is the only valid 16264 * bit (normal active close), branch off only when we think 16265 * that the FIN flag needs to be set. Note for this case, 16266 * that (snxt + len) may not reflect the actual seg_len, 16267 * as len may be further reduced in tcp_xmit_mp(). If len 16268 * gets modified, we will end up here again. 16269 */ 16270 if (tcp->tcp_valid_bits != 0 && 16271 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16272 ((*snxt + len) == tcp->tcp_fss))) { 16273 uchar_t *prev_rptr; 16274 uint32_t prev_snxt = tcp->tcp_snxt; 16275 16276 if (*tail_unsent == 0) { 16277 ASSERT((*xmit_tail)->b_cont != NULL); 16278 *xmit_tail = (*xmit_tail)->b_cont; 16279 prev_rptr = (*xmit_tail)->b_rptr; 16280 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16281 (*xmit_tail)->b_rptr); 16282 } else { 16283 prev_rptr = (*xmit_tail)->b_rptr; 16284 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16285 *tail_unsent; 16286 } 16287 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16288 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16289 /* Restore tcp_snxt so we get amount sent right. */ 16290 tcp->tcp_snxt = prev_snxt; 16291 if (prev_rptr == (*xmit_tail)->b_rptr) { 16292 /* 16293 * If the previous timestamp is still in use, 16294 * don't stomp on it. 16295 */ 16296 if ((*xmit_tail)->b_next == NULL) { 16297 (*xmit_tail)->b_prev = local_time; 16298 (*xmit_tail)->b_next = 16299 (mblk_t *)(uintptr_t)(*snxt); 16300 } 16301 } else 16302 (*xmit_tail)->b_rptr = prev_rptr; 16303 16304 if (mp == NULL) { 16305 return (-1); 16306 } 16307 mp1 = mp->b_cont; 16308 16309 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16310 tcp->tcp_last_sent_len = (ushort_t)len; 16311 while (mp1->b_cont) { 16312 *xmit_tail = (*xmit_tail)->b_cont; 16313 (*xmit_tail)->b_prev = local_time; 16314 (*xmit_tail)->b_next = 16315 (mblk_t *)(uintptr_t)(*snxt); 16316 mp1 = mp1->b_cont; 16317 } 16318 *snxt += len; 16319 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16320 BUMP_LOCAL(tcp->tcp_obsegs); 16321 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16322 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16323 tcp_send_data(tcp, mp); 16324 continue; 16325 } 16326 16327 *snxt += len; /* Adjust later if we don't send all of len */ 16328 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16329 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16330 16331 if (*tail_unsent) { 16332 /* Are the bytes above us in flight? */ 16333 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16334 if (rptr != (*xmit_tail)->b_rptr) { 16335 *tail_unsent -= len; 16336 if (len <= mss) /* LSO is unusable */ 16337 tcp->tcp_last_sent_len = (ushort_t)len; 16338 len += total_hdr_len; 16339 ixa->ixa_pktlen = len; 16340 16341 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16342 tcp->tcp_ipha->ipha_length = htons(len); 16343 } else { 16344 tcp->tcp_ip6h->ip6_plen = 16345 htons(len - IPV6_HDR_LEN); 16346 } 16347 16348 mp = dupb(*xmit_tail); 16349 if (mp == NULL) { 16350 return (-1); /* out_of_mem */ 16351 } 16352 mp->b_rptr = rptr; 16353 /* 16354 * If the old timestamp is no longer in use, 16355 * sample a new timestamp now. 16356 */ 16357 if ((*xmit_tail)->b_next == NULL) { 16358 (*xmit_tail)->b_prev = local_time; 16359 (*xmit_tail)->b_next = 16360 (mblk_t *)(uintptr_t)(*snxt-len); 16361 } 16362 goto must_alloc; 16363 } 16364 } else { 16365 *xmit_tail = (*xmit_tail)->b_cont; 16366 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16367 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16368 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16369 (*xmit_tail)->b_rptr); 16370 } 16371 16372 (*xmit_tail)->b_prev = local_time; 16373 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16374 16375 *tail_unsent -= len; 16376 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16377 tcp->tcp_last_sent_len = (ushort_t)len; 16378 16379 len += total_hdr_len; 16380 ixa->ixa_pktlen = len; 16381 16382 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16383 tcp->tcp_ipha->ipha_length = htons(len); 16384 } else { 16385 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16386 } 16387 16388 mp = dupb(*xmit_tail); 16389 if (mp == NULL) { 16390 return (-1); /* out_of_mem */ 16391 } 16392 16393 len = total_hdr_len; 16394 /* 16395 * There are four reasons to allocate a new hdr mblk: 16396 * 1) The bytes above us are in use by another packet 16397 * 2) We don't have good alignment 16398 * 3) The mblk is being shared 16399 * 4) We don't have enough room for a header 16400 */ 16401 rptr = mp->b_rptr - len; 16402 if (!OK_32PTR(rptr) || 16403 ((db = mp->b_datap), db->db_ref != 2) || 16404 rptr < db->db_base) { 16405 /* NOTE: we assume allocb returns an OK_32PTR */ 16406 16407 must_alloc:; 16408 mp1 = allocb(connp->conn_ht_iphc_allocated + 16409 tcps->tcps_wroff_xtra, BPRI_MED); 16410 if (mp1 == NULL) { 16411 freemsg(mp); 16412 return (-1); /* out_of_mem */ 16413 } 16414 mp1->b_cont = mp; 16415 mp = mp1; 16416 /* Leave room for Link Level header */ 16417 len = total_hdr_len; 16418 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16419 mp->b_wptr = &rptr[len]; 16420 } 16421 16422 /* 16423 * Fill in the header using the template header, and add 16424 * options such as time-stamp, ECN and/or SACK, as needed. 16425 */ 16426 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16427 16428 mp->b_rptr = rptr; 16429 16430 if (*tail_unsent) { 16431 int spill = *tail_unsent; 16432 16433 mp1 = mp->b_cont; 16434 if (mp1 == NULL) 16435 mp1 = mp; 16436 16437 /* 16438 * If we're a little short, tack on more mblks until 16439 * there is no more spillover. 16440 */ 16441 while (spill < 0) { 16442 mblk_t *nmp; 16443 int nmpsz; 16444 16445 nmp = (*xmit_tail)->b_cont; 16446 nmpsz = MBLKL(nmp); 16447 16448 /* 16449 * Excess data in mblk; can we split it? 16450 * If LSO is enabled for the connection, 16451 * keep on splitting as this is a transient 16452 * send path. 16453 */ 16454 if (!do_lso_send && (spill + nmpsz > 0)) { 16455 /* 16456 * Don't split if stream head was 16457 * told to break up larger writes 16458 * into smaller ones. 16459 */ 16460 if (tcp->tcp_maxpsz_multiplier > 0) 16461 break; 16462 16463 /* 16464 * Next mblk is less than SMSS/2 16465 * rounded up to nearest 64-byte; 16466 * let it get sent as part of the 16467 * next segment. 16468 */ 16469 if (tcp->tcp_localnet && 16470 !tcp->tcp_cork && 16471 (nmpsz < roundup((mss >> 1), 64))) 16472 break; 16473 } 16474 16475 *xmit_tail = nmp; 16476 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16477 /* Stash for rtt use later */ 16478 (*xmit_tail)->b_prev = local_time; 16479 (*xmit_tail)->b_next = 16480 (mblk_t *)(uintptr_t)(*snxt - len); 16481 mp1->b_cont = dupb(*xmit_tail); 16482 mp1 = mp1->b_cont; 16483 16484 spill += nmpsz; 16485 if (mp1 == NULL) { 16486 *tail_unsent = spill; 16487 freemsg(mp); 16488 return (-1); /* out_of_mem */ 16489 } 16490 } 16491 16492 /* Trim back any surplus on the last mblk */ 16493 if (spill >= 0) { 16494 mp1->b_wptr -= spill; 16495 *tail_unsent = spill; 16496 } else { 16497 /* 16498 * We did not send everything we could in 16499 * order to remain within the b_cont limit. 16500 */ 16501 *usable -= spill; 16502 *snxt += spill; 16503 tcp->tcp_last_sent_len += spill; 16504 UPDATE_MIB(&tcps->tcps_mib, 16505 tcpOutDataBytes, spill); 16506 /* 16507 * Adjust the checksum 16508 */ 16509 tcpha = (tcpha_t *)(rptr + 16510 ixa->ixa_ip_hdr_length); 16511 sum += spill; 16512 sum = (sum >> 16) + (sum & 0xFFFF); 16513 tcpha->tha_sum = htons(sum); 16514 if (connp->conn_ipversion == IPV4_VERSION) { 16515 sum = ntohs( 16516 ((ipha_t *)rptr)->ipha_length) + 16517 spill; 16518 ((ipha_t *)rptr)->ipha_length = 16519 htons(sum); 16520 } else { 16521 sum = ntohs( 16522 ((ip6_t *)rptr)->ip6_plen) + 16523 spill; 16524 ((ip6_t *)rptr)->ip6_plen = 16525 htons(sum); 16526 } 16527 ixa->ixa_pktlen += spill; 16528 *tail_unsent = 0; 16529 } 16530 } 16531 if (tcp->tcp_ip_forward_progress) { 16532 tcp->tcp_ip_forward_progress = B_FALSE; 16533 ixa->ixa_flags |= IXAF_REACH_CONF; 16534 } else { 16535 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16536 } 16537 16538 /* 16539 * Append LSO information, both flags and mss, to the mp. 16540 */ 16541 if (do_lso_send) { 16542 lso_info_set(mp, mss, HW_LSO); 16543 ixa->ixa_fragsize = IP_MAXPACKET; 16544 ixa->ixa_extra_ident = num_lso_seg - 1; 16545 16546 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16547 boolean_t, B_TRUE); 16548 16549 tcp_send_data(tcp, mp); 16550 16551 /* 16552 * Restore values of ixa_fragsize and ixa_extra_ident. 16553 */ 16554 ixa->ixa_fragsize = ixa->ixa_pmtu; 16555 ixa->ixa_extra_ident = 0; 16556 tcp->tcp_obsegs += num_lso_seg; 16557 TCP_STAT(tcps, tcp_lso_times); 16558 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16559 } else { 16560 tcp_send_data(tcp, mp); 16561 BUMP_LOCAL(tcp->tcp_obsegs); 16562 } 16563 } 16564 16565 return (0); 16566 } 16567 16568 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16569 static void 16570 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16571 { 16572 uchar_t fval = *mp->b_rptr; 16573 mblk_t *tail; 16574 conn_t *connp = tcp->tcp_connp; 16575 queue_t *q = connp->conn_wq; 16576 16577 /* TODO: How should flush interact with urgent data? */ 16578 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16579 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16580 /* 16581 * Flush only data that has not yet been put on the wire. If 16582 * we flush data that we have already transmitted, life, as we 16583 * know it, may come to an end. 16584 */ 16585 tail = tcp->tcp_xmit_tail; 16586 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16587 tcp->tcp_xmit_tail_unsent = 0; 16588 tcp->tcp_unsent = 0; 16589 if (tail->b_wptr != tail->b_rptr) 16590 tail = tail->b_cont; 16591 if (tail) { 16592 mblk_t **excess = &tcp->tcp_xmit_head; 16593 for (;;) { 16594 mblk_t *mp1 = *excess; 16595 if (mp1 == tail) 16596 break; 16597 tcp->tcp_xmit_tail = mp1; 16598 tcp->tcp_xmit_last = mp1; 16599 excess = &mp1->b_cont; 16600 } 16601 *excess = NULL; 16602 tcp_close_mpp(&tail); 16603 if (tcp->tcp_snd_zcopy_aware) 16604 tcp_zcopy_notify(tcp); 16605 } 16606 /* 16607 * We have no unsent data, so unsent must be less than 16608 * conn_sndlowat, so re-enable flow. 16609 */ 16610 mutex_enter(&tcp->tcp_non_sq_lock); 16611 if (tcp->tcp_flow_stopped) { 16612 tcp_clrqfull(tcp); 16613 } 16614 mutex_exit(&tcp->tcp_non_sq_lock); 16615 } 16616 /* 16617 * TODO: you can't just flush these, you have to increase rwnd for one 16618 * thing. For another, how should urgent data interact? 16619 */ 16620 if (fval & FLUSHR) { 16621 *mp->b_rptr = fval & ~FLUSHW; 16622 /* XXX */ 16623 qreply(q, mp); 16624 return; 16625 } 16626 freemsg(mp); 16627 } 16628 16629 /* 16630 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16631 * messages. 16632 */ 16633 static void 16634 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16635 { 16636 mblk_t *mp1; 16637 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16638 STRUCT_HANDLE(strbuf, sb); 16639 uint_t addrlen; 16640 conn_t *connp = tcp->tcp_connp; 16641 queue_t *q = connp->conn_wq; 16642 16643 /* Make sure it is one of ours. */ 16644 switch (iocp->ioc_cmd) { 16645 case TI_GETMYNAME: 16646 case TI_GETPEERNAME: 16647 break; 16648 default: 16649 ip_wput_nondata(q, mp); 16650 return; 16651 } 16652 switch (mi_copy_state(q, mp, &mp1)) { 16653 case -1: 16654 return; 16655 case MI_COPY_CASE(MI_COPY_IN, 1): 16656 break; 16657 case MI_COPY_CASE(MI_COPY_OUT, 1): 16658 /* Copy out the strbuf. */ 16659 mi_copyout(q, mp); 16660 return; 16661 case MI_COPY_CASE(MI_COPY_OUT, 2): 16662 /* All done. */ 16663 mi_copy_done(q, mp, 0); 16664 return; 16665 default: 16666 mi_copy_done(q, mp, EPROTO); 16667 return; 16668 } 16669 /* Check alignment of the strbuf */ 16670 if (!OK_32PTR(mp1->b_rptr)) { 16671 mi_copy_done(q, mp, EINVAL); 16672 return; 16673 } 16674 16675 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16676 16677 if (connp->conn_family == AF_INET) 16678 addrlen = sizeof (sin_t); 16679 else 16680 addrlen = sizeof (sin6_t); 16681 16682 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16683 mi_copy_done(q, mp, EINVAL); 16684 return; 16685 } 16686 16687 switch (iocp->ioc_cmd) { 16688 case TI_GETMYNAME: 16689 break; 16690 case TI_GETPEERNAME: 16691 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16692 mi_copy_done(q, mp, ENOTCONN); 16693 return; 16694 } 16695 break; 16696 } 16697 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16698 if (!mp1) 16699 return; 16700 16701 STRUCT_FSET(sb, len, addrlen); 16702 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16703 case TI_GETMYNAME: 16704 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16705 &addrlen); 16706 break; 16707 case TI_GETPEERNAME: 16708 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16709 &addrlen); 16710 break; 16711 } 16712 mp1->b_wptr += addrlen; 16713 /* Copy out the address */ 16714 mi_copyout(q, mp); 16715 } 16716 16717 static void 16718 tcp_use_pure_tpi(tcp_t *tcp) 16719 { 16720 conn_t *connp = tcp->tcp_connp; 16721 16722 #ifdef _ILP32 16723 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16724 #else 16725 tcp->tcp_acceptor_id = connp->conn_dev; 16726 #endif 16727 /* 16728 * Insert this socket into the acceptor hash. 16729 * We might need it for T_CONN_RES message 16730 */ 16731 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16732 16733 tcp->tcp_issocket = B_FALSE; 16734 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16735 } 16736 16737 /* 16738 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16739 * messages. 16740 */ 16741 /* ARGSUSED */ 16742 static void 16743 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16744 { 16745 conn_t *connp = (conn_t *)arg; 16746 tcp_t *tcp = connp->conn_tcp; 16747 queue_t *q = connp->conn_wq; 16748 struct iocblk *iocp; 16749 16750 ASSERT(DB_TYPE(mp) == M_IOCTL); 16751 /* 16752 * Try and ASSERT the minimum possible references on the 16753 * conn early enough. Since we are executing on write side, 16754 * the connection is obviously not detached and that means 16755 * there is a ref each for TCP and IP. Since we are behind 16756 * the squeue, the minimum references needed are 3. If the 16757 * conn is in classifier hash list, there should be an 16758 * extra ref for that (we check both the possibilities). 16759 */ 16760 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16761 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16762 16763 iocp = (struct iocblk *)mp->b_rptr; 16764 switch (iocp->ioc_cmd) { 16765 case _SIOCSOCKFALLBACK: 16766 /* 16767 * Either sockmod is about to be popped and the socket 16768 * would now be treated as a plain stream, or a module 16769 * is about to be pushed so we could no longer use read- 16770 * side synchronous streams for fused loopback tcp. 16771 * Drain any queued data and disable direct sockfs 16772 * interface from now on. 16773 */ 16774 if (!tcp->tcp_issocket) { 16775 DB_TYPE(mp) = M_IOCNAK; 16776 iocp->ioc_error = EINVAL; 16777 } else { 16778 tcp_use_pure_tpi(tcp); 16779 DB_TYPE(mp) = M_IOCACK; 16780 iocp->ioc_error = 0; 16781 } 16782 iocp->ioc_count = 0; 16783 iocp->ioc_rval = 0; 16784 qreply(q, mp); 16785 return; 16786 } 16787 ip_wput_nondata(q, mp); 16788 } 16789 16790 /* 16791 * This routine is called by tcp_wput() to handle all TPI requests. 16792 */ 16793 /* ARGSUSED */ 16794 static void 16795 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16796 { 16797 conn_t *connp = (conn_t *)arg; 16798 tcp_t *tcp = connp->conn_tcp; 16799 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16800 uchar_t *rptr; 16801 t_scalar_t type; 16802 cred_t *cr; 16803 16804 /* 16805 * Try and ASSERT the minimum possible references on the 16806 * conn early enough. Since we are executing on write side, 16807 * the connection is obviously not detached and that means 16808 * there is a ref each for TCP and IP. Since we are behind 16809 * the squeue, the minimum references needed are 3. If the 16810 * conn is in classifier hash list, there should be an 16811 * extra ref for that (we check both the possibilities). 16812 */ 16813 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16814 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16815 16816 rptr = mp->b_rptr; 16817 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16818 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16819 type = ((union T_primitives *)rptr)->type; 16820 if (type == T_EXDATA_REQ) { 16821 tcp_output_urgent(connp, mp, arg2, NULL); 16822 } else if (type != T_DATA_REQ) { 16823 goto non_urgent_data; 16824 } else { 16825 /* TODO: options, flags, ... from user */ 16826 /* Set length to zero for reclamation below */ 16827 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16828 freeb(mp); 16829 } 16830 return; 16831 } else { 16832 if (connp->conn_debug) { 16833 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16834 "tcp_wput_proto, dropping one..."); 16835 } 16836 freemsg(mp); 16837 return; 16838 } 16839 16840 non_urgent_data: 16841 16842 switch ((int)tprim->type) { 16843 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16844 /* 16845 * save the kssl_ent_t from the next block, and convert this 16846 * back to a normal bind_req. 16847 */ 16848 if (mp->b_cont != NULL) { 16849 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16850 16851 if (tcp->tcp_kssl_ent != NULL) { 16852 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16853 KSSL_NO_PROXY); 16854 tcp->tcp_kssl_ent = NULL; 16855 } 16856 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16857 sizeof (kssl_ent_t)); 16858 kssl_hold_ent(tcp->tcp_kssl_ent); 16859 freemsg(mp->b_cont); 16860 mp->b_cont = NULL; 16861 } 16862 tprim->type = T_BIND_REQ; 16863 16864 /* FALLTHROUGH */ 16865 case O_T_BIND_REQ: /* bind request */ 16866 case T_BIND_REQ: /* new semantics bind request */ 16867 tcp_tpi_bind(tcp, mp); 16868 break; 16869 case T_UNBIND_REQ: /* unbind request */ 16870 tcp_tpi_unbind(tcp, mp); 16871 break; 16872 case O_T_CONN_RES: /* old connection response XXX */ 16873 case T_CONN_RES: /* connection response */ 16874 tcp_tli_accept(tcp, mp); 16875 break; 16876 case T_CONN_REQ: /* connection request */ 16877 tcp_tpi_connect(tcp, mp); 16878 break; 16879 case T_DISCON_REQ: /* disconnect request */ 16880 tcp_disconnect(tcp, mp); 16881 break; 16882 case T_CAPABILITY_REQ: 16883 tcp_capability_req(tcp, mp); /* capability request */ 16884 break; 16885 case T_INFO_REQ: /* information request */ 16886 tcp_info_req(tcp, mp); 16887 break; 16888 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16889 case T_OPTMGMT_REQ: 16890 /* 16891 * Note: no support for snmpcom_req() through new 16892 * T_OPTMGMT_REQ. See comments in ip.c 16893 */ 16894 16895 /* 16896 * All Solaris components should pass a db_credp 16897 * for this TPI message, hence we ASSERT. 16898 * But in case there is some other M_PROTO that looks 16899 * like a TPI message sent by some other kernel 16900 * component, we check and return an error. 16901 */ 16902 cr = msg_getcred(mp, NULL); 16903 ASSERT(cr != NULL); 16904 if (cr == NULL) { 16905 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 16906 return; 16907 } 16908 /* 16909 * If EINPROGRESS is returned, the request has been queued 16910 * for subsequent processing by ip_restart_optmgmt(), which 16911 * will do the CONN_DEC_REF(). 16912 */ 16913 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 16914 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16915 } else { 16916 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16917 } 16918 break; 16919 16920 case T_UNITDATA_REQ: /* unitdata request */ 16921 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16922 break; 16923 case T_ORDREL_REQ: /* orderly release req */ 16924 freemsg(mp); 16925 16926 if (tcp->tcp_fused) 16927 tcp_unfuse(tcp); 16928 16929 if (tcp_xmit_end(tcp) != 0) { 16930 /* 16931 * We were crossing FINs and got a reset from 16932 * the other side. Just ignore it. 16933 */ 16934 if (connp->conn_debug) { 16935 (void) strlog(TCP_MOD_ID, 0, 1, 16936 SL_ERROR|SL_TRACE, 16937 "tcp_wput_proto, T_ORDREL_REQ out of " 16938 "state %s", 16939 tcp_display(tcp, NULL, 16940 DISP_ADDR_AND_PORT)); 16941 } 16942 } 16943 break; 16944 case T_ADDR_REQ: 16945 tcp_addr_req(tcp, mp); 16946 break; 16947 default: 16948 if (connp->conn_debug) { 16949 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16950 "tcp_wput_proto, bogus TPI msg, type %d", 16951 tprim->type); 16952 } 16953 /* 16954 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 16955 * to recover. 16956 */ 16957 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16958 break; 16959 } 16960 } 16961 16962 /* 16963 * The TCP write service routine should never be called... 16964 */ 16965 /* ARGSUSED */ 16966 static void 16967 tcp_wsrv(queue_t *q) 16968 { 16969 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16970 16971 TCP_STAT(tcps, tcp_wsrv_called); 16972 } 16973 16974 /* 16975 * Send out a control packet on the tcp connection specified. This routine 16976 * is typically called where we need a simple ACK or RST generated. 16977 */ 16978 static void 16979 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 16980 { 16981 uchar_t *rptr; 16982 tcpha_t *tcpha; 16983 ipha_t *ipha = NULL; 16984 ip6_t *ip6h = NULL; 16985 uint32_t sum; 16986 int total_hdr_len; 16987 int ip_hdr_len; 16988 mblk_t *mp; 16989 tcp_stack_t *tcps = tcp->tcp_tcps; 16990 conn_t *connp = tcp->tcp_connp; 16991 ip_xmit_attr_t *ixa = connp->conn_ixa; 16992 16993 /* 16994 * Save sum for use in source route later. 16995 */ 16996 sum = connp->conn_ht_ulp_len + connp->conn_sum; 16997 total_hdr_len = connp->conn_ht_iphc_len; 16998 ip_hdr_len = ixa->ixa_ip_hdr_length; 16999 17000 /* If a text string is passed in with the request, pass it to strlog. */ 17001 if (str != NULL && connp->conn_debug) { 17002 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17003 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 17004 str, seq, ack, ctl); 17005 } 17006 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17007 BPRI_MED); 17008 if (mp == NULL) { 17009 return; 17010 } 17011 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 17012 mp->b_rptr = rptr; 17013 mp->b_wptr = &rptr[total_hdr_len]; 17014 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 17015 17016 ixa->ixa_pktlen = total_hdr_len; 17017 17018 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17019 ipha = (ipha_t *)rptr; 17020 ipha->ipha_length = htons(total_hdr_len); 17021 } else { 17022 ip6h = (ip6_t *)rptr; 17023 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17024 } 17025 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17026 tcpha->tha_flags = (uint8_t)ctl; 17027 if (ctl & TH_RST) { 17028 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17029 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17030 /* 17031 * Don't send TSopt w/ TH_RST packets per RFC 1323. 17032 */ 17033 if (tcp->tcp_snd_ts_ok && 17034 tcp->tcp_state > TCPS_SYN_SENT) { 17035 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 17036 *(mp->b_wptr) = TCPOPT_EOL; 17037 17038 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 17039 17040 if (connp->conn_ipversion == IPV4_VERSION) { 17041 ipha->ipha_length = htons(total_hdr_len - 17042 TCPOPT_REAL_TS_LEN); 17043 } else { 17044 ip6h->ip6_plen = htons(total_hdr_len - 17045 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 17046 } 17047 tcpha->tha_offset_and_reserved -= (3 << 4); 17048 sum -= TCPOPT_REAL_TS_LEN; 17049 } 17050 } 17051 if (ctl & TH_ACK) { 17052 if (tcp->tcp_snd_ts_ok) { 17053 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17054 17055 U32_TO_BE32(llbolt, 17056 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17057 U32_TO_BE32(tcp->tcp_ts_recent, 17058 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17059 } 17060 17061 /* Update the latest receive window size in TCP header. */ 17062 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17063 tcp->tcp_rack = ack; 17064 tcp->tcp_rack_cnt = 0; 17065 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17066 } 17067 BUMP_LOCAL(tcp->tcp_obsegs); 17068 tcpha->tha_seq = htonl(seq); 17069 tcpha->tha_ack = htonl(ack); 17070 /* 17071 * Include the adjustment for a source route if any. 17072 */ 17073 sum = (sum >> 16) + (sum & 0xFFFF); 17074 tcpha->tha_sum = htons(sum); 17075 tcp_send_data(tcp, mp); 17076 } 17077 17078 /* 17079 * If this routine returns B_TRUE, TCP can generate a RST in response 17080 * to a segment. If it returns B_FALSE, TCP should not respond. 17081 */ 17082 static boolean_t 17083 tcp_send_rst_chk(tcp_stack_t *tcps) 17084 { 17085 int64_t now; 17086 17087 /* 17088 * TCP needs to protect itself from generating too many RSTs. 17089 * This can be a DoS attack by sending us random segments 17090 * soliciting RSTs. 17091 * 17092 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 17093 * in each 1 second interval. In this way, TCP still generate 17094 * RSTs in normal cases but when under attack, the impact is 17095 * limited. 17096 */ 17097 if (tcps->tcps_rst_sent_rate_enabled != 0) { 17098 now = ddi_get_lbolt64(); 17099 if (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 17100 1*SECONDS) { 17101 tcps->tcps_last_rst_intrvl = now; 17102 tcps->tcps_rst_cnt = 1; 17103 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 17104 return (B_FALSE); 17105 } 17106 } 17107 return (B_TRUE); 17108 } 17109 17110 /* 17111 * Generate a reset based on an inbound packet, connp is set by caller 17112 * when RST is in response to an unexpected inbound packet for which 17113 * there is active tcp state in the system. 17114 * 17115 * IPSEC NOTE : Try to send the reply with the same protection as it came 17116 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 17117 * That way the packet will go out at the same level of protection as it 17118 * came in with. 17119 */ 17120 static void 17121 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 17122 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 17123 { 17124 ipha_t *ipha = NULL; 17125 ip6_t *ip6h = NULL; 17126 ushort_t len; 17127 tcpha_t *tcpha; 17128 int i; 17129 ipaddr_t v4addr; 17130 in6_addr_t v6addr; 17131 netstack_t *ns = ipst->ips_netstack; 17132 tcp_stack_t *tcps = ns->netstack_tcp; 17133 ip_xmit_attr_t ixas, *ixa; 17134 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17135 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 17136 ushort_t port; 17137 17138 if (!tcp_send_rst_chk(tcps)) { 17139 TCP_STAT(tcps, tcp_rst_unsent); 17140 freemsg(mp); 17141 return; 17142 } 17143 17144 /* 17145 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 17146 * options from the listener. In that case the caller must ensure that 17147 * we are running on the listener = connp squeue. 17148 * 17149 * We get a safe copy of conn_ixa so we don't need to restore anything 17150 * we or ip_output_simple might change in the ixa. 17151 */ 17152 if (connp != NULL) { 17153 ASSERT(connp->conn_on_sqp); 17154 17155 ixa = conn_get_ixa_exclusive(connp); 17156 if (ixa == NULL) { 17157 TCP_STAT(tcps, tcp_rst_unsent); 17158 freemsg(mp); 17159 return; 17160 } 17161 need_refrele = B_TRUE; 17162 } else { 17163 bzero(&ixas, sizeof (ixas)); 17164 ixa = &ixas; 17165 /* 17166 * IXAF_VERIFY_SOURCE is overkill since we know the 17167 * packet was for us. 17168 */ 17169 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 17170 ixa->ixa_protocol = IPPROTO_TCP; 17171 ixa->ixa_zoneid = ira->ira_zoneid; 17172 ixa->ixa_ifindex = 0; 17173 ixa->ixa_ipst = ipst; 17174 ixa->ixa_cred = kcred; 17175 ixa->ixa_cpid = NOPID; 17176 } 17177 17178 if (str && tcps->tcps_dbg) { 17179 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17180 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 17181 "flags 0x%x", 17182 str, seq, ack, ctl); 17183 } 17184 if (mp->b_datap->db_ref != 1) { 17185 mblk_t *mp1 = copyb(mp); 17186 freemsg(mp); 17187 mp = mp1; 17188 if (mp == NULL) 17189 goto done; 17190 } else if (mp->b_cont) { 17191 freemsg(mp->b_cont); 17192 mp->b_cont = NULL; 17193 DB_CKSUMFLAGS(mp) = 0; 17194 } 17195 /* 17196 * We skip reversing source route here. 17197 * (for now we replace all IP options with EOL) 17198 */ 17199 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17200 ipha = (ipha_t *)mp->b_rptr; 17201 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 17202 mp->b_rptr[i] = IPOPT_EOL; 17203 /* 17204 * Make sure that src address isn't flagrantly invalid. 17205 * Not all broadcast address checking for the src address 17206 * is possible, since we don't know the netmask of the src 17207 * addr. No check for destination address is done, since 17208 * IP will not pass up a packet with a broadcast dest 17209 * address to TCP. Similar checks are done below for IPv6. 17210 */ 17211 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 17212 CLASSD(ipha->ipha_src)) { 17213 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 17214 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17215 freemsg(mp); 17216 goto done; 17217 } 17218 } else { 17219 ip6h = (ip6_t *)mp->b_rptr; 17220 17221 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 17222 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 17223 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 17224 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17225 freemsg(mp); 17226 goto done; 17227 } 17228 17229 /* Remove any extension headers assuming partial overlay */ 17230 if (ip_hdr_len > IPV6_HDR_LEN) { 17231 uint8_t *to; 17232 17233 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 17234 ovbcopy(ip6h, to, IPV6_HDR_LEN); 17235 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17236 ip_hdr_len = IPV6_HDR_LEN; 17237 ip6h = (ip6_t *)mp->b_rptr; 17238 ip6h->ip6_nxt = IPPROTO_TCP; 17239 } 17240 } 17241 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17242 if (tcpha->tha_flags & TH_RST) { 17243 freemsg(mp); 17244 goto done; 17245 } 17246 tcpha->tha_offset_and_reserved = (5 << 4); 17247 len = ip_hdr_len + sizeof (tcpha_t); 17248 mp->b_wptr = &mp->b_rptr[len]; 17249 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17250 ipha->ipha_length = htons(len); 17251 /* Swap addresses */ 17252 v4addr = ipha->ipha_src; 17253 ipha->ipha_src = ipha->ipha_dst; 17254 ipha->ipha_dst = v4addr; 17255 ipha->ipha_ident = 0; 17256 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17257 ixa->ixa_flags |= IXAF_IS_IPV4; 17258 ixa->ixa_ip_hdr_length = ip_hdr_len; 17259 } else { 17260 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17261 /* Swap addresses */ 17262 v6addr = ip6h->ip6_src; 17263 ip6h->ip6_src = ip6h->ip6_dst; 17264 ip6h->ip6_dst = v6addr; 17265 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17266 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17267 17268 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17269 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17270 ixa->ixa_scopeid = ira->ira_ruifindex; 17271 } 17272 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17273 } 17274 ixa->ixa_pktlen = len; 17275 17276 /* Swap the ports */ 17277 port = tcpha->tha_fport; 17278 tcpha->tha_fport = tcpha->tha_lport; 17279 tcpha->tha_lport = port; 17280 17281 tcpha->tha_ack = htonl(ack); 17282 tcpha->tha_seq = htonl(seq); 17283 tcpha->tha_win = 0; 17284 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17285 tcpha->tha_flags = (uint8_t)ctl; 17286 if (ctl & TH_RST) { 17287 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17288 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17289 } 17290 17291 /* Discard any old label */ 17292 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17293 ASSERT(ixa->ixa_tsl != NULL); 17294 label_rele(ixa->ixa_tsl); 17295 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17296 } 17297 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17298 17299 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17300 /* 17301 * Apply IPsec based on how IPsec was applied to 17302 * the packet that caused the RST. 17303 */ 17304 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17305 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17306 /* Note: mp already consumed and ip_drop_packet done */ 17307 goto done; 17308 } 17309 } else { 17310 /* 17311 * This is in clear. The RST message we are building 17312 * here should go out in clear, independent of our policy. 17313 */ 17314 ixa->ixa_flags |= IXAF_NO_IPSEC; 17315 } 17316 17317 /* 17318 * NOTE: one might consider tracing a TCP packet here, but 17319 * this function has no active TCP state and no tcp structure 17320 * that has a trace buffer. If we traced here, we would have 17321 * to keep a local trace buffer in tcp_record_trace(). 17322 */ 17323 17324 (void) ip_output_simple(mp, ixa); 17325 done: 17326 ixa_cleanup(ixa); 17327 if (need_refrele) { 17328 ASSERT(ixa != &ixas); 17329 ixa_refrele(ixa); 17330 } 17331 } 17332 17333 /* 17334 * Initiate closedown sequence on an active connection. (May be called as 17335 * writer.) Return value zero for OK return, non-zero for error return. 17336 */ 17337 static int 17338 tcp_xmit_end(tcp_t *tcp) 17339 { 17340 mblk_t *mp; 17341 tcp_stack_t *tcps = tcp->tcp_tcps; 17342 iulp_t uinfo; 17343 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17344 conn_t *connp = tcp->tcp_connp; 17345 17346 if (tcp->tcp_state < TCPS_SYN_RCVD || 17347 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17348 /* 17349 * Invalid state, only states TCPS_SYN_RCVD, 17350 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17351 */ 17352 return (-1); 17353 } 17354 17355 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17356 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17357 /* 17358 * If there is nothing more unsent, send the FIN now. 17359 * Otherwise, it will go out with the last segment. 17360 */ 17361 if (tcp->tcp_unsent == 0) { 17362 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17363 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17364 17365 if (mp) { 17366 tcp_send_data(tcp, mp); 17367 } else { 17368 /* 17369 * Couldn't allocate msg. Pretend we got it out. 17370 * Wait for rexmit timeout. 17371 */ 17372 tcp->tcp_snxt = tcp->tcp_fss + 1; 17373 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17374 } 17375 17376 /* 17377 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17378 * changed. 17379 */ 17380 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17381 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17382 } 17383 } else { 17384 /* 17385 * If tcp->tcp_cork is set, then the data will not get sent, 17386 * so we have to check that and unset it first. 17387 */ 17388 if (tcp->tcp_cork) 17389 tcp->tcp_cork = B_FALSE; 17390 tcp_wput_data(tcp, NULL, B_FALSE); 17391 } 17392 17393 /* 17394 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17395 * is 0, don't update the cache. 17396 */ 17397 if (tcps->tcps_rtt_updates == 0 || 17398 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17399 return (0); 17400 17401 /* 17402 * We do not have a good algorithm to update ssthresh at this time. 17403 * So don't do any update. 17404 */ 17405 bzero(&uinfo, sizeof (uinfo)); 17406 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17407 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17408 17409 /* 17410 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17411 * if source routed but we don't. 17412 */ 17413 if (connp->conn_ipversion == IPV4_VERSION) { 17414 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17415 return (0); 17416 } 17417 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17418 } else { 17419 uint_t ifindex; 17420 17421 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17422 &tcp->tcp_ip6h->ip6_dst))) { 17423 return (0); 17424 } 17425 ifindex = 0; 17426 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17427 ip_xmit_attr_t *ixa = connp->conn_ixa; 17428 17429 /* 17430 * If we are going to create a DCE we'd better have 17431 * an ifindex 17432 */ 17433 if (ixa->ixa_nce != NULL) { 17434 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17435 ill_phyint->phyint_ifindex; 17436 } else { 17437 return (0); 17438 } 17439 } 17440 17441 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17442 ipst); 17443 } 17444 return (0); 17445 } 17446 17447 /* 17448 * Generate a "no listener here" RST in response to an "unknown" segment. 17449 * connp is set by caller when RST is in response to an unexpected 17450 * inbound packet for which there is active tcp state in the system. 17451 * Note that we are reusing the incoming mp to construct the outgoing RST. 17452 */ 17453 void 17454 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17455 conn_t *connp) 17456 { 17457 uchar_t *rptr; 17458 uint32_t seg_len; 17459 tcpha_t *tcpha; 17460 uint32_t seg_seq; 17461 uint32_t seg_ack; 17462 uint_t flags; 17463 ipha_t *ipha; 17464 ip6_t *ip6h; 17465 boolean_t policy_present; 17466 netstack_t *ns = ipst->ips_netstack; 17467 tcp_stack_t *tcps = ns->netstack_tcp; 17468 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17469 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17470 17471 TCP_STAT(tcps, tcp_no_listener); 17472 17473 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17474 policy_present = ipss->ipsec_inbound_v4_policy_present; 17475 ipha = (ipha_t *)mp->b_rptr; 17476 ip6h = NULL; 17477 } else { 17478 policy_present = ipss->ipsec_inbound_v6_policy_present; 17479 ipha = NULL; 17480 ip6h = (ip6_t *)mp->b_rptr; 17481 } 17482 17483 if (policy_present) { 17484 /* 17485 * The conn_t parameter is NULL because we already know 17486 * nobody's home. 17487 */ 17488 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17489 ira, ns); 17490 if (mp == NULL) 17491 return; 17492 } 17493 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17494 DTRACE_PROBE2( 17495 tx__ip__log__error__nolistener__tcp, 17496 char *, "Could not reply with RST to mp(1)", 17497 mblk_t *, mp); 17498 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17499 freemsg(mp); 17500 return; 17501 } 17502 17503 rptr = mp->b_rptr; 17504 17505 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17506 seg_seq = ntohl(tcpha->tha_seq); 17507 seg_ack = ntohl(tcpha->tha_ack); 17508 flags = tcpha->tha_flags; 17509 17510 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17511 if (flags & TH_RST) { 17512 freemsg(mp); 17513 } else if (flags & TH_ACK) { 17514 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17515 ira, ipst, connp); 17516 } else { 17517 if (flags & TH_SYN) { 17518 seg_len++; 17519 } else { 17520 /* 17521 * Here we violate the RFC. Note that a normal 17522 * TCP will never send a segment without the ACK 17523 * flag, except for RST or SYN segment. This 17524 * segment is neither. Just drop it on the 17525 * floor. 17526 */ 17527 freemsg(mp); 17528 TCP_STAT(tcps, tcp_rst_unsent); 17529 return; 17530 } 17531 17532 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17533 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17534 } 17535 } 17536 17537 /* 17538 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17539 * ip and tcp header ready to pass down to IP. If the mp passed in is 17540 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17541 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17542 * otherwise it will dup partial mblks.) 17543 * Otherwise, an appropriate ACK packet will be generated. This 17544 * routine is not usually called to send new data for the first time. It 17545 * is mostly called out of the timer for retransmits, and to generate ACKs. 17546 * 17547 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17548 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17549 * of the original mblk chain will be returned in *offset and *end_mp. 17550 */ 17551 mblk_t * 17552 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17553 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17554 boolean_t rexmit) 17555 { 17556 int data_length; 17557 int32_t off = 0; 17558 uint_t flags; 17559 mblk_t *mp1; 17560 mblk_t *mp2; 17561 uchar_t *rptr; 17562 tcpha_t *tcpha; 17563 int32_t num_sack_blk = 0; 17564 int32_t sack_opt_len = 0; 17565 tcp_stack_t *tcps = tcp->tcp_tcps; 17566 conn_t *connp = tcp->tcp_connp; 17567 ip_xmit_attr_t *ixa = connp->conn_ixa; 17568 17569 /* Allocate for our maximum TCP header + link-level */ 17570 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17571 BPRI_MED); 17572 if (!mp1) 17573 return (NULL); 17574 data_length = 0; 17575 17576 /* 17577 * Note that tcp_mss has been adjusted to take into account the 17578 * timestamp option if applicable. Because SACK options do not 17579 * appear in every TCP segments and they are of variable lengths, 17580 * they cannot be included in tcp_mss. Thus we need to calculate 17581 * the actual segment length when we need to send a segment which 17582 * includes SACK options. 17583 */ 17584 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17585 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17586 tcp->tcp_num_sack_blk); 17587 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17588 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17589 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17590 max_to_send -= sack_opt_len; 17591 } 17592 17593 if (offset != NULL) { 17594 off = *offset; 17595 /* We use offset as an indicator that end_mp is not NULL. */ 17596 *end_mp = NULL; 17597 } 17598 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17599 /* This could be faster with cooperation from downstream */ 17600 if (mp2 != mp1 && !sendall && 17601 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17602 max_to_send) 17603 /* 17604 * Don't send the next mblk since the whole mblk 17605 * does not fit. 17606 */ 17607 break; 17608 mp2->b_cont = dupb(mp); 17609 mp2 = mp2->b_cont; 17610 if (!mp2) { 17611 freemsg(mp1); 17612 return (NULL); 17613 } 17614 mp2->b_rptr += off; 17615 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17616 (uintptr_t)INT_MAX); 17617 17618 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17619 if (data_length > max_to_send) { 17620 mp2->b_wptr -= data_length - max_to_send; 17621 data_length = max_to_send; 17622 off = mp2->b_wptr - mp->b_rptr; 17623 break; 17624 } else { 17625 off = 0; 17626 } 17627 } 17628 if (offset != NULL) { 17629 *offset = off; 17630 *end_mp = mp; 17631 } 17632 if (seg_len != NULL) { 17633 *seg_len = data_length; 17634 } 17635 17636 /* Update the latest receive window size in TCP header. */ 17637 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17638 17639 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17640 mp1->b_rptr = rptr; 17641 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17642 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17643 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17644 tcpha->tha_seq = htonl(seq); 17645 17646 /* 17647 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17648 * that this function was called from tcp_wput_data. Thus, when called 17649 * to retransmit data the setting of the PUSH bit may appear some 17650 * what random in that it might get set when it should not. This 17651 * should not pose any performance issues. 17652 */ 17653 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17654 tcp->tcp_unsent == data_length)) { 17655 flags = TH_ACK | TH_PUSH; 17656 } else { 17657 flags = TH_ACK; 17658 } 17659 17660 if (tcp->tcp_ecn_ok) { 17661 if (tcp->tcp_ecn_echo_on) 17662 flags |= TH_ECE; 17663 17664 /* 17665 * Only set ECT bit and ECN_CWR if a segment contains new data. 17666 * There is no TCP flow control for non-data segments, and 17667 * only data segment is transmitted reliably. 17668 */ 17669 if (data_length > 0 && !rexmit) { 17670 SET_ECT(tcp, rptr); 17671 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17672 flags |= TH_CWR; 17673 tcp->tcp_ecn_cwr_sent = B_TRUE; 17674 } 17675 } 17676 } 17677 17678 if (tcp->tcp_valid_bits) { 17679 uint32_t u1; 17680 17681 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17682 seq == tcp->tcp_iss) { 17683 uchar_t *wptr; 17684 17685 /* 17686 * If TCP_ISS_VALID and the seq number is tcp_iss, 17687 * TCP can only be in SYN-SENT, SYN-RCVD or 17688 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17689 * our SYN is not ack'ed but the app closes this 17690 * TCP connection. 17691 */ 17692 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17693 tcp->tcp_state == TCPS_SYN_RCVD || 17694 tcp->tcp_state == TCPS_FIN_WAIT_1); 17695 17696 /* 17697 * Tack on the MSS option. It is always needed 17698 * for both active and passive open. 17699 * 17700 * MSS option value should be interface MTU - MIN 17701 * TCP/IP header according to RFC 793 as it means 17702 * the maximum segment size TCP can receive. But 17703 * to get around some broken middle boxes/end hosts 17704 * out there, we allow the option value to be the 17705 * same as the MSS option size on the peer side. 17706 * In this way, the other side will not send 17707 * anything larger than they can receive. 17708 * 17709 * Note that for SYN_SENT state, the ndd param 17710 * tcp_use_smss_as_mss_opt has no effect as we 17711 * don't know the peer's MSS option value. So 17712 * the only case we need to take care of is in 17713 * SYN_RCVD state, which is done later. 17714 */ 17715 wptr = mp1->b_wptr; 17716 wptr[0] = TCPOPT_MAXSEG; 17717 wptr[1] = TCPOPT_MAXSEG_LEN; 17718 wptr += 2; 17719 u1 = tcp->tcp_initial_pmtu - 17720 (connp->conn_ipversion == IPV4_VERSION ? 17721 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17722 TCP_MIN_HEADER_LENGTH; 17723 U16_TO_BE16(u1, wptr); 17724 mp1->b_wptr = wptr + 2; 17725 /* Update the offset to cover the additional word */ 17726 tcpha->tha_offset_and_reserved += (1 << 4); 17727 17728 /* 17729 * Note that the following way of filling in 17730 * TCP options are not optimal. Some NOPs can 17731 * be saved. But there is no need at this time 17732 * to optimize it. When it is needed, we will 17733 * do it. 17734 */ 17735 switch (tcp->tcp_state) { 17736 case TCPS_SYN_SENT: 17737 flags = TH_SYN; 17738 17739 if (tcp->tcp_snd_ts_ok) { 17740 uint32_t llbolt = 17741 (uint32_t)LBOLT_FASTPATH; 17742 17743 wptr = mp1->b_wptr; 17744 wptr[0] = TCPOPT_NOP; 17745 wptr[1] = TCPOPT_NOP; 17746 wptr[2] = TCPOPT_TSTAMP; 17747 wptr[3] = TCPOPT_TSTAMP_LEN; 17748 wptr += 4; 17749 U32_TO_BE32(llbolt, wptr); 17750 wptr += 4; 17751 ASSERT(tcp->tcp_ts_recent == 0); 17752 U32_TO_BE32(0L, wptr); 17753 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17754 tcpha->tha_offset_and_reserved += 17755 (3 << 4); 17756 } 17757 17758 /* 17759 * Set up all the bits to tell other side 17760 * we are ECN capable. 17761 */ 17762 if (tcp->tcp_ecn_ok) { 17763 flags |= (TH_ECE | TH_CWR); 17764 } 17765 break; 17766 case TCPS_SYN_RCVD: 17767 flags |= TH_SYN; 17768 17769 /* 17770 * Reset the MSS option value to be SMSS 17771 * We should probably add back the bytes 17772 * for timestamp option and IPsec. We 17773 * don't do that as this is a workaround 17774 * for broken middle boxes/end hosts, it 17775 * is better for us to be more cautious. 17776 * They may not take these things into 17777 * account in their SMSS calculation. Thus 17778 * the peer's calculated SMSS may be smaller 17779 * than what it can be. This should be OK. 17780 */ 17781 if (tcps->tcps_use_smss_as_mss_opt) { 17782 u1 = tcp->tcp_mss; 17783 U16_TO_BE16(u1, wptr); 17784 } 17785 17786 /* 17787 * If the other side is ECN capable, reply 17788 * that we are also ECN capable. 17789 */ 17790 if (tcp->tcp_ecn_ok) 17791 flags |= TH_ECE; 17792 break; 17793 default: 17794 /* 17795 * The above ASSERT() makes sure that this 17796 * must be FIN-WAIT-1 state. Our SYN has 17797 * not been ack'ed so retransmit it. 17798 */ 17799 flags |= TH_SYN; 17800 break; 17801 } 17802 17803 if (tcp->tcp_snd_ws_ok) { 17804 wptr = mp1->b_wptr; 17805 wptr[0] = TCPOPT_NOP; 17806 wptr[1] = TCPOPT_WSCALE; 17807 wptr[2] = TCPOPT_WS_LEN; 17808 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17809 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17810 tcpha->tha_offset_and_reserved += (1 << 4); 17811 } 17812 17813 if (tcp->tcp_snd_sack_ok) { 17814 wptr = mp1->b_wptr; 17815 wptr[0] = TCPOPT_NOP; 17816 wptr[1] = TCPOPT_NOP; 17817 wptr[2] = TCPOPT_SACK_PERMITTED; 17818 wptr[3] = TCPOPT_SACK_OK_LEN; 17819 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17820 tcpha->tha_offset_and_reserved += (1 << 4); 17821 } 17822 17823 /* allocb() of adequate mblk assures space */ 17824 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17825 (uintptr_t)INT_MAX); 17826 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17827 /* 17828 * Get IP set to checksum on our behalf 17829 * Include the adjustment for a source route if any. 17830 */ 17831 u1 += connp->conn_sum; 17832 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17833 tcpha->tha_sum = htons(u1); 17834 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17835 } 17836 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17837 (seq + data_length) == tcp->tcp_fss) { 17838 if (!tcp->tcp_fin_acked) { 17839 flags |= TH_FIN; 17840 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17841 } 17842 if (!tcp->tcp_fin_sent) { 17843 tcp->tcp_fin_sent = B_TRUE; 17844 switch (tcp->tcp_state) { 17845 case TCPS_SYN_RCVD: 17846 case TCPS_ESTABLISHED: 17847 tcp->tcp_state = TCPS_FIN_WAIT_1; 17848 break; 17849 case TCPS_CLOSE_WAIT: 17850 tcp->tcp_state = TCPS_LAST_ACK; 17851 break; 17852 } 17853 if (tcp->tcp_suna == tcp->tcp_snxt) 17854 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17855 tcp->tcp_snxt = tcp->tcp_fss + 1; 17856 } 17857 } 17858 /* 17859 * Note the trick here. u1 is unsigned. When tcp_urg 17860 * is smaller than seq, u1 will become a very huge value. 17861 * So the comparison will fail. Also note that tcp_urp 17862 * should be positive, see RFC 793 page 17. 17863 */ 17864 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17865 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17866 u1 < (uint32_t)(64 * 1024)) { 17867 flags |= TH_URG; 17868 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17869 tcpha->tha_urp = htons(u1); 17870 } 17871 } 17872 tcpha->tha_flags = (uchar_t)flags; 17873 tcp->tcp_rack = tcp->tcp_rnxt; 17874 tcp->tcp_rack_cnt = 0; 17875 17876 if (tcp->tcp_snd_ts_ok) { 17877 if (tcp->tcp_state != TCPS_SYN_SENT) { 17878 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17879 17880 U32_TO_BE32(llbolt, 17881 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17882 U32_TO_BE32(tcp->tcp_ts_recent, 17883 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17884 } 17885 } 17886 17887 if (num_sack_blk > 0) { 17888 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17889 sack_blk_t *tmp; 17890 int32_t i; 17891 17892 wptr[0] = TCPOPT_NOP; 17893 wptr[1] = TCPOPT_NOP; 17894 wptr[2] = TCPOPT_SACK; 17895 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17896 sizeof (sack_blk_t); 17897 wptr += TCPOPT_REAL_SACK_LEN; 17898 17899 tmp = tcp->tcp_sack_list; 17900 for (i = 0; i < num_sack_blk; i++) { 17901 U32_TO_BE32(tmp[i].begin, wptr); 17902 wptr += sizeof (tcp_seq); 17903 U32_TO_BE32(tmp[i].end, wptr); 17904 wptr += sizeof (tcp_seq); 17905 } 17906 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 17907 } 17908 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 17909 data_length += (int)(mp1->b_wptr - rptr); 17910 17911 ixa->ixa_pktlen = data_length; 17912 17913 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17914 ((ipha_t *)rptr)->ipha_length = htons(data_length); 17915 } else { 17916 ip6_t *ip6 = (ip6_t *)rptr; 17917 17918 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 17919 } 17920 17921 /* 17922 * Prime pump for IP 17923 * Include the adjustment for a source route if any. 17924 */ 17925 data_length -= ixa->ixa_ip_hdr_length; 17926 data_length += connp->conn_sum; 17927 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17928 tcpha->tha_sum = htons(data_length); 17929 if (tcp->tcp_ip_forward_progress) { 17930 tcp->tcp_ip_forward_progress = B_FALSE; 17931 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17932 } else { 17933 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17934 } 17935 return (mp1); 17936 } 17937 17938 /* This function handles the push timeout. */ 17939 void 17940 tcp_push_timer(void *arg) 17941 { 17942 conn_t *connp = (conn_t *)arg; 17943 tcp_t *tcp = connp->conn_tcp; 17944 17945 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 17946 17947 ASSERT(tcp->tcp_listener == NULL); 17948 17949 ASSERT(!IPCL_IS_NONSTR(connp)); 17950 17951 tcp->tcp_push_tid = 0; 17952 17953 if (tcp->tcp_rcv_list != NULL && 17954 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 17955 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 17956 } 17957 17958 /* 17959 * This function handles delayed ACK timeout. 17960 */ 17961 static void 17962 tcp_ack_timer(void *arg) 17963 { 17964 conn_t *connp = (conn_t *)arg; 17965 tcp_t *tcp = connp->conn_tcp; 17966 mblk_t *mp; 17967 tcp_stack_t *tcps = tcp->tcp_tcps; 17968 17969 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 17970 17971 tcp->tcp_ack_tid = 0; 17972 17973 if (tcp->tcp_fused) 17974 return; 17975 17976 /* 17977 * Do not send ACK if there is no outstanding unack'ed data. 17978 */ 17979 if (tcp->tcp_rnxt == tcp->tcp_rack) { 17980 return; 17981 } 17982 17983 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 17984 /* 17985 * Make sure we don't allow deferred ACKs to result in 17986 * timer-based ACKing. If we have held off an ACK 17987 * when there was more than an mss here, and the timer 17988 * goes off, we have to worry about the possibility 17989 * that the sender isn't doing slow-start, or is out 17990 * of step with us for some other reason. We fall 17991 * permanently back in the direction of 17992 * ACK-every-other-packet as suggested in RFC 1122. 17993 */ 17994 if (tcp->tcp_rack_abs_max > 2) 17995 tcp->tcp_rack_abs_max--; 17996 tcp->tcp_rack_cur_max = 2; 17997 } 17998 mp = tcp_ack_mp(tcp); 17999 18000 if (mp != NULL) { 18001 BUMP_LOCAL(tcp->tcp_obsegs); 18002 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 18003 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 18004 tcp_send_data(tcp, mp); 18005 } 18006 } 18007 18008 18009 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 18010 static mblk_t * 18011 tcp_ack_mp(tcp_t *tcp) 18012 { 18013 uint32_t seq_no; 18014 tcp_stack_t *tcps = tcp->tcp_tcps; 18015 conn_t *connp = tcp->tcp_connp; 18016 18017 /* 18018 * There are a few cases to be considered while setting the sequence no. 18019 * Essentially, we can come here while processing an unacceptable pkt 18020 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 18021 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 18022 * If we are here for a zero window probe, stick with suna. In all 18023 * other cases, we check if suna + swnd encompasses snxt and set 18024 * the sequence number to snxt, if so. If snxt falls outside the 18025 * window (the receiver probably shrunk its window), we will go with 18026 * suna + swnd, otherwise the sequence no will be unacceptable to the 18027 * receiver. 18028 */ 18029 if (tcp->tcp_zero_win_probe) { 18030 seq_no = tcp->tcp_suna; 18031 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 18032 ASSERT(tcp->tcp_swnd == 0); 18033 seq_no = tcp->tcp_snxt; 18034 } else { 18035 seq_no = SEQ_GT(tcp->tcp_snxt, 18036 (tcp->tcp_suna + tcp->tcp_swnd)) ? 18037 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 18038 } 18039 18040 if (tcp->tcp_valid_bits) { 18041 /* 18042 * For the complex case where we have to send some 18043 * controls (FIN or SYN), let tcp_xmit_mp do it. 18044 */ 18045 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 18046 NULL, B_FALSE)); 18047 } else { 18048 /* Generate a simple ACK */ 18049 int data_length; 18050 uchar_t *rptr; 18051 tcpha_t *tcpha; 18052 mblk_t *mp1; 18053 int32_t total_hdr_len; 18054 int32_t tcp_hdr_len; 18055 int32_t num_sack_blk = 0; 18056 int32_t sack_opt_len; 18057 ip_xmit_attr_t *ixa = connp->conn_ixa; 18058 18059 /* 18060 * Allocate space for TCP + IP headers 18061 * and link-level header 18062 */ 18063 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18064 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18065 tcp->tcp_num_sack_blk); 18066 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 18067 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 18068 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 18069 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 18070 } else { 18071 total_hdr_len = connp->conn_ht_iphc_len; 18072 tcp_hdr_len = connp->conn_ht_ulp_len; 18073 } 18074 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 18075 if (!mp1) 18076 return (NULL); 18077 18078 /* Update the latest receive window size in TCP header. */ 18079 tcp->tcp_tcpha->tha_win = 18080 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 18081 /* copy in prototype TCP + IP header */ 18082 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 18083 mp1->b_rptr = rptr; 18084 mp1->b_wptr = rptr + total_hdr_len; 18085 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 18086 18087 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 18088 18089 /* Set the TCP sequence number. */ 18090 tcpha->tha_seq = htonl(seq_no); 18091 18092 /* Set up the TCP flag field. */ 18093 tcpha->tha_flags = (uchar_t)TH_ACK; 18094 if (tcp->tcp_ecn_echo_on) 18095 tcpha->tha_flags |= TH_ECE; 18096 18097 tcp->tcp_rack = tcp->tcp_rnxt; 18098 tcp->tcp_rack_cnt = 0; 18099 18100 /* fill in timestamp option if in use */ 18101 if (tcp->tcp_snd_ts_ok) { 18102 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 18103 18104 U32_TO_BE32(llbolt, 18105 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 18106 U32_TO_BE32(tcp->tcp_ts_recent, 18107 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 18108 } 18109 18110 /* Fill in SACK options */ 18111 if (num_sack_blk > 0) { 18112 uchar_t *wptr = (uchar_t *)tcpha + 18113 connp->conn_ht_ulp_len; 18114 sack_blk_t *tmp; 18115 int32_t i; 18116 18117 wptr[0] = TCPOPT_NOP; 18118 wptr[1] = TCPOPT_NOP; 18119 wptr[2] = TCPOPT_SACK; 18120 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18121 sizeof (sack_blk_t); 18122 wptr += TCPOPT_REAL_SACK_LEN; 18123 18124 tmp = tcp->tcp_sack_list; 18125 for (i = 0; i < num_sack_blk; i++) { 18126 U32_TO_BE32(tmp[i].begin, wptr); 18127 wptr += sizeof (tcp_seq); 18128 U32_TO_BE32(tmp[i].end, wptr); 18129 wptr += sizeof (tcp_seq); 18130 } 18131 tcpha->tha_offset_and_reserved += 18132 ((num_sack_blk * 2 + 1) << 4); 18133 } 18134 18135 ixa->ixa_pktlen = total_hdr_len; 18136 18137 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18138 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 18139 } else { 18140 ip6_t *ip6 = (ip6_t *)rptr; 18141 18142 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 18143 } 18144 18145 /* 18146 * Prime pump for checksum calculation in IP. Include the 18147 * adjustment for a source route if any. 18148 */ 18149 data_length = tcp_hdr_len + connp->conn_sum; 18150 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18151 tcpha->tha_sum = htons(data_length); 18152 18153 if (tcp->tcp_ip_forward_progress) { 18154 tcp->tcp_ip_forward_progress = B_FALSE; 18155 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18156 } else { 18157 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18158 } 18159 return (mp1); 18160 } 18161 } 18162 18163 /* 18164 * Hash list insertion routine for tcp_t structures. Each hash bucket 18165 * contains a list of tcp_t entries, and each entry is bound to a unique 18166 * port. If there are multiple tcp_t's that are bound to the same port, then 18167 * one of them will be linked into the hash bucket list, and the rest will 18168 * hang off of that one entry. For each port, entries bound to a specific IP 18169 * address will be inserted before those those bound to INADDR_ANY. 18170 */ 18171 static void 18172 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 18173 { 18174 tcp_t **tcpp; 18175 tcp_t *tcpnext; 18176 tcp_t *tcphash; 18177 conn_t *connp = tcp->tcp_connp; 18178 conn_t *connext; 18179 18180 if (tcp->tcp_ptpbhn != NULL) { 18181 ASSERT(!caller_holds_lock); 18182 tcp_bind_hash_remove(tcp); 18183 } 18184 tcpp = &tbf->tf_tcp; 18185 if (!caller_holds_lock) { 18186 mutex_enter(&tbf->tf_lock); 18187 } else { 18188 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 18189 } 18190 tcphash = tcpp[0]; 18191 tcpnext = NULL; 18192 if (tcphash != NULL) { 18193 /* Look for an entry using the same port */ 18194 while ((tcphash = tcpp[0]) != NULL && 18195 connp->conn_lport != tcphash->tcp_connp->conn_lport) 18196 tcpp = &(tcphash->tcp_bind_hash); 18197 18198 /* The port was not found, just add to the end */ 18199 if (tcphash == NULL) 18200 goto insert; 18201 18202 /* 18203 * OK, there already exists an entry bound to the 18204 * same port. 18205 * 18206 * If the new tcp bound to the INADDR_ANY address 18207 * and the first one in the list is not bound to 18208 * INADDR_ANY we skip all entries until we find the 18209 * first one bound to INADDR_ANY. 18210 * This makes sure that applications binding to a 18211 * specific address get preference over those binding to 18212 * INADDR_ANY. 18213 */ 18214 tcpnext = tcphash; 18215 connext = tcpnext->tcp_connp; 18216 tcphash = NULL; 18217 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 18218 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 18219 while ((tcpnext = tcpp[0]) != NULL) { 18220 connext = tcpnext->tcp_connp; 18221 if (!V6_OR_V4_INADDR_ANY( 18222 connext->conn_bound_addr_v6)) 18223 tcpp = &(tcpnext->tcp_bind_hash_port); 18224 else 18225 break; 18226 } 18227 if (tcpnext != NULL) { 18228 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18229 tcphash = tcpnext->tcp_bind_hash; 18230 if (tcphash != NULL) { 18231 tcphash->tcp_ptpbhn = 18232 &(tcp->tcp_bind_hash); 18233 tcpnext->tcp_bind_hash = NULL; 18234 } 18235 } 18236 } else { 18237 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18238 tcphash = tcpnext->tcp_bind_hash; 18239 if (tcphash != NULL) { 18240 tcphash->tcp_ptpbhn = 18241 &(tcp->tcp_bind_hash); 18242 tcpnext->tcp_bind_hash = NULL; 18243 } 18244 } 18245 } 18246 insert: 18247 tcp->tcp_bind_hash_port = tcpnext; 18248 tcp->tcp_bind_hash = tcphash; 18249 tcp->tcp_ptpbhn = tcpp; 18250 tcpp[0] = tcp; 18251 if (!caller_holds_lock) 18252 mutex_exit(&tbf->tf_lock); 18253 } 18254 18255 /* 18256 * Hash list removal routine for tcp_t structures. 18257 */ 18258 static void 18259 tcp_bind_hash_remove(tcp_t *tcp) 18260 { 18261 tcp_t *tcpnext; 18262 kmutex_t *lockp; 18263 tcp_stack_t *tcps = tcp->tcp_tcps; 18264 conn_t *connp = tcp->tcp_connp; 18265 18266 if (tcp->tcp_ptpbhn == NULL) 18267 return; 18268 18269 /* 18270 * Extract the lock pointer in case there are concurrent 18271 * hash_remove's for this instance. 18272 */ 18273 ASSERT(connp->conn_lport != 0); 18274 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18275 connp->conn_lport)].tf_lock; 18276 18277 ASSERT(lockp != NULL); 18278 mutex_enter(lockp); 18279 if (tcp->tcp_ptpbhn) { 18280 tcpnext = tcp->tcp_bind_hash_port; 18281 if (tcpnext != NULL) { 18282 tcp->tcp_bind_hash_port = NULL; 18283 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18284 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18285 if (tcpnext->tcp_bind_hash != NULL) { 18286 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18287 &(tcpnext->tcp_bind_hash); 18288 tcp->tcp_bind_hash = NULL; 18289 } 18290 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18291 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18292 tcp->tcp_bind_hash = NULL; 18293 } 18294 *tcp->tcp_ptpbhn = tcpnext; 18295 tcp->tcp_ptpbhn = NULL; 18296 } 18297 mutex_exit(lockp); 18298 } 18299 18300 18301 /* 18302 * Hash list lookup routine for tcp_t structures. 18303 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18304 */ 18305 static tcp_t * 18306 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18307 { 18308 tf_t *tf; 18309 tcp_t *tcp; 18310 18311 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18312 mutex_enter(&tf->tf_lock); 18313 for (tcp = tf->tf_tcp; tcp != NULL; 18314 tcp = tcp->tcp_acceptor_hash) { 18315 if (tcp->tcp_acceptor_id == id) { 18316 CONN_INC_REF(tcp->tcp_connp); 18317 mutex_exit(&tf->tf_lock); 18318 return (tcp); 18319 } 18320 } 18321 mutex_exit(&tf->tf_lock); 18322 return (NULL); 18323 } 18324 18325 18326 /* 18327 * Hash list insertion routine for tcp_t structures. 18328 */ 18329 void 18330 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18331 { 18332 tf_t *tf; 18333 tcp_t **tcpp; 18334 tcp_t *tcpnext; 18335 tcp_stack_t *tcps = tcp->tcp_tcps; 18336 18337 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18338 18339 if (tcp->tcp_ptpahn != NULL) 18340 tcp_acceptor_hash_remove(tcp); 18341 tcpp = &tf->tf_tcp; 18342 mutex_enter(&tf->tf_lock); 18343 tcpnext = tcpp[0]; 18344 if (tcpnext) 18345 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18346 tcp->tcp_acceptor_hash = tcpnext; 18347 tcp->tcp_ptpahn = tcpp; 18348 tcpp[0] = tcp; 18349 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18350 mutex_exit(&tf->tf_lock); 18351 } 18352 18353 /* 18354 * Hash list removal routine for tcp_t structures. 18355 */ 18356 static void 18357 tcp_acceptor_hash_remove(tcp_t *tcp) 18358 { 18359 tcp_t *tcpnext; 18360 kmutex_t *lockp; 18361 18362 /* 18363 * Extract the lock pointer in case there are concurrent 18364 * hash_remove's for this instance. 18365 */ 18366 lockp = tcp->tcp_acceptor_lockp; 18367 18368 if (tcp->tcp_ptpahn == NULL) 18369 return; 18370 18371 ASSERT(lockp != NULL); 18372 mutex_enter(lockp); 18373 if (tcp->tcp_ptpahn) { 18374 tcpnext = tcp->tcp_acceptor_hash; 18375 if (tcpnext) { 18376 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18377 tcp->tcp_acceptor_hash = NULL; 18378 } 18379 *tcp->tcp_ptpahn = tcpnext; 18380 tcp->tcp_ptpahn = NULL; 18381 } 18382 mutex_exit(lockp); 18383 tcp->tcp_acceptor_lockp = NULL; 18384 } 18385 18386 /* 18387 * Type three generator adapted from the random() function in 4.4 BSD: 18388 */ 18389 18390 /* 18391 * Copyright (c) 1983, 1993 18392 * The Regents of the University of California. All rights reserved. 18393 * 18394 * Redistribution and use in source and binary forms, with or without 18395 * modification, are permitted provided that the following conditions 18396 * are met: 18397 * 1. Redistributions of source code must retain the above copyright 18398 * notice, this list of conditions and the following disclaimer. 18399 * 2. Redistributions in binary form must reproduce the above copyright 18400 * notice, this list of conditions and the following disclaimer in the 18401 * documentation and/or other materials provided with the distribution. 18402 * 3. All advertising materials mentioning features or use of this software 18403 * must display the following acknowledgement: 18404 * This product includes software developed by the University of 18405 * California, Berkeley and its contributors. 18406 * 4. Neither the name of the University nor the names of its contributors 18407 * may be used to endorse or promote products derived from this software 18408 * without specific prior written permission. 18409 * 18410 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18411 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18412 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18413 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18414 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18415 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18416 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18417 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18418 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18419 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18420 * SUCH DAMAGE. 18421 */ 18422 18423 /* Type 3 -- x**31 + x**3 + 1 */ 18424 #define DEG_3 31 18425 #define SEP_3 3 18426 18427 18428 /* Protected by tcp_random_lock */ 18429 static int tcp_randtbl[DEG_3 + 1]; 18430 18431 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18432 static int *tcp_random_rptr = &tcp_randtbl[1]; 18433 18434 static int *tcp_random_state = &tcp_randtbl[1]; 18435 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18436 18437 kmutex_t tcp_random_lock; 18438 18439 void 18440 tcp_random_init(void) 18441 { 18442 int i; 18443 hrtime_t hrt; 18444 time_t wallclock; 18445 uint64_t result; 18446 18447 /* 18448 * Use high-res timer and current time for seed. Gethrtime() returns 18449 * a longlong, which may contain resolution down to nanoseconds. 18450 * The current time will either be a 32-bit or a 64-bit quantity. 18451 * XOR the two together in a 64-bit result variable. 18452 * Convert the result to a 32-bit value by multiplying the high-order 18453 * 32-bits by the low-order 32-bits. 18454 */ 18455 18456 hrt = gethrtime(); 18457 (void) drv_getparm(TIME, &wallclock); 18458 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18459 mutex_enter(&tcp_random_lock); 18460 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18461 (result & 0xffffffff); 18462 18463 for (i = 1; i < DEG_3; i++) 18464 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18465 + 12345; 18466 tcp_random_fptr = &tcp_random_state[SEP_3]; 18467 tcp_random_rptr = &tcp_random_state[0]; 18468 mutex_exit(&tcp_random_lock); 18469 for (i = 0; i < 10 * DEG_3; i++) 18470 (void) tcp_random(); 18471 } 18472 18473 /* 18474 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18475 * This range is selected to be approximately centered on TCP_ISS / 2, 18476 * and easy to compute. We get this value by generating a 32-bit random 18477 * number, selecting out the high-order 17 bits, and then adding one so 18478 * that we never return zero. 18479 */ 18480 int 18481 tcp_random(void) 18482 { 18483 int i; 18484 18485 mutex_enter(&tcp_random_lock); 18486 *tcp_random_fptr += *tcp_random_rptr; 18487 18488 /* 18489 * The high-order bits are more random than the low-order bits, 18490 * so we select out the high-order 17 bits and add one so that 18491 * we never return zero. 18492 */ 18493 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18494 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18495 tcp_random_fptr = tcp_random_state; 18496 ++tcp_random_rptr; 18497 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18498 tcp_random_rptr = tcp_random_state; 18499 18500 mutex_exit(&tcp_random_lock); 18501 return (i); 18502 } 18503 18504 static int 18505 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18506 int *t_errorp, int *sys_errorp) 18507 { 18508 int error; 18509 int is_absreq_failure; 18510 t_scalar_t *opt_lenp; 18511 t_scalar_t opt_offset; 18512 int prim_type; 18513 struct T_conn_req *tcreqp; 18514 struct T_conn_res *tcresp; 18515 cred_t *cr; 18516 18517 /* 18518 * All Solaris components should pass a db_credp 18519 * for this TPI message, hence we ASSERT. 18520 * But in case there is some other M_PROTO that looks 18521 * like a TPI message sent by some other kernel 18522 * component, we check and return an error. 18523 */ 18524 cr = msg_getcred(mp, NULL); 18525 ASSERT(cr != NULL); 18526 if (cr == NULL) 18527 return (-1); 18528 18529 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18530 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18531 prim_type == T_CONN_RES); 18532 18533 switch (prim_type) { 18534 case T_CONN_REQ: 18535 tcreqp = (struct T_conn_req *)mp->b_rptr; 18536 opt_offset = tcreqp->OPT_offset; 18537 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18538 break; 18539 case O_T_CONN_RES: 18540 case T_CONN_RES: 18541 tcresp = (struct T_conn_res *)mp->b_rptr; 18542 opt_offset = tcresp->OPT_offset; 18543 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18544 break; 18545 } 18546 18547 *t_errorp = 0; 18548 *sys_errorp = 0; 18549 *do_disconnectp = 0; 18550 18551 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18552 opt_offset, cr, &tcp_opt_obj, 18553 NULL, &is_absreq_failure); 18554 18555 switch (error) { 18556 case 0: /* no error */ 18557 ASSERT(is_absreq_failure == 0); 18558 return (0); 18559 case ENOPROTOOPT: 18560 *t_errorp = TBADOPT; 18561 break; 18562 case EACCES: 18563 *t_errorp = TACCES; 18564 break; 18565 default: 18566 *t_errorp = TSYSERR; *sys_errorp = error; 18567 break; 18568 } 18569 if (is_absreq_failure != 0) { 18570 /* 18571 * The connection request should get the local ack 18572 * T_OK_ACK and then a T_DISCON_IND. 18573 */ 18574 *do_disconnectp = 1; 18575 } 18576 return (-1); 18577 } 18578 18579 /* 18580 * Split this function out so that if the secret changes, I'm okay. 18581 * 18582 * Initialize the tcp_iss_cookie and tcp_iss_key. 18583 */ 18584 18585 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18586 18587 static void 18588 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18589 { 18590 struct { 18591 int32_t current_time; 18592 uint32_t randnum; 18593 uint16_t pad; 18594 uint8_t ether[6]; 18595 uint8_t passwd[PASSWD_SIZE]; 18596 } tcp_iss_cookie; 18597 time_t t; 18598 18599 /* 18600 * Start with the current absolute time. 18601 */ 18602 (void) drv_getparm(TIME, &t); 18603 tcp_iss_cookie.current_time = t; 18604 18605 /* 18606 * XXX - Need a more random number per RFC 1750, not this crap. 18607 * OTOH, if what follows is pretty random, then I'm in better shape. 18608 */ 18609 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18610 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18611 18612 /* 18613 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18614 * as a good template. 18615 */ 18616 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18617 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18618 18619 /* 18620 * The pass-phrase. Normally this is supplied by user-called NDD. 18621 */ 18622 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18623 18624 /* 18625 * See 4010593 if this section becomes a problem again, 18626 * but the local ethernet address is useful here. 18627 */ 18628 (void) localetheraddr(NULL, 18629 (struct ether_addr *)&tcp_iss_cookie.ether); 18630 18631 /* 18632 * Hash 'em all together. The MD5Final is called per-connection. 18633 */ 18634 mutex_enter(&tcps->tcps_iss_key_lock); 18635 MD5Init(&tcps->tcps_iss_key); 18636 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18637 sizeof (tcp_iss_cookie)); 18638 mutex_exit(&tcps->tcps_iss_key_lock); 18639 } 18640 18641 /* 18642 * Set the RFC 1948 pass phrase 18643 */ 18644 /* ARGSUSED */ 18645 static int 18646 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18647 cred_t *cr) 18648 { 18649 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18650 18651 /* 18652 * Basically, value contains a new pass phrase. Pass it along! 18653 */ 18654 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18655 return (0); 18656 } 18657 18658 /* ARGSUSED */ 18659 static int 18660 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18661 { 18662 bzero(buf, sizeof (tcp_sack_info_t)); 18663 return (0); 18664 } 18665 18666 /* 18667 * Called by IP when IP is loaded into the kernel 18668 */ 18669 void 18670 tcp_ddi_g_init(void) 18671 { 18672 tcp_timercache = kmem_cache_create("tcp_timercache", 18673 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18674 NULL, NULL, NULL, NULL, NULL, 0); 18675 18676 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18677 sizeof (tcp_sack_info_t), 0, 18678 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18679 18680 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18681 18682 /* Initialize the random number generator */ 18683 tcp_random_init(); 18684 18685 /* A single callback independently of how many netstacks we have */ 18686 ip_squeue_init(tcp_squeue_add); 18687 18688 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18689 18690 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18691 18692 /* 18693 * We want to be informed each time a stack is created or 18694 * destroyed in the kernel, so we can maintain the 18695 * set of tcp_stack_t's. 18696 */ 18697 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18698 } 18699 18700 18701 #define INET_NAME "ip" 18702 18703 /* 18704 * Initialize the TCP stack instance. 18705 */ 18706 static void * 18707 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18708 { 18709 tcp_stack_t *tcps; 18710 tcpparam_t *pa; 18711 int i; 18712 int error = 0; 18713 major_t major; 18714 18715 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18716 tcps->tcps_netstack = ns; 18717 18718 /* Initialize locks */ 18719 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18720 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18721 18722 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18723 tcps->tcps_g_epriv_ports[0] = 2049; 18724 tcps->tcps_g_epriv_ports[1] = 4045; 18725 tcps->tcps_min_anonpriv_port = 512; 18726 18727 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18728 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18729 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18730 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 18731 18732 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18733 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18734 MUTEX_DEFAULT, NULL); 18735 } 18736 18737 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18738 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18739 MUTEX_DEFAULT, NULL); 18740 } 18741 18742 /* TCP's IPsec code calls the packet dropper. */ 18743 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18744 18745 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18746 tcps->tcps_params = pa; 18747 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18748 18749 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18750 A_CNT(lcl_tcp_param_arr), tcps); 18751 18752 /* 18753 * Note: To really walk the device tree you need the devinfo 18754 * pointer to your device which is only available after probe/attach. 18755 * The following is safe only because it uses ddi_root_node() 18756 */ 18757 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18758 tcp_opt_obj.odb_opt_arr_cnt); 18759 18760 /* 18761 * Initialize RFC 1948 secret values. This will probably be reset once 18762 * by the boot scripts. 18763 * 18764 * Use NULL name, as the name is caught by the new lockstats. 18765 * 18766 * Initialize with some random, non-guessable string, like the global 18767 * T_INFO_ACK. 18768 */ 18769 18770 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18771 sizeof (tcp_g_t_info_ack), tcps); 18772 18773 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18774 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18775 18776 major = mod_name_to_major(INET_NAME); 18777 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18778 ASSERT(error == 0); 18779 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18780 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18781 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18782 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18783 18784 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 18785 tcps->tcps_reclaim = B_FALSE; 18786 tcps->tcps_reclaim_tid = 0; 18787 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max * 3; 18788 18789 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 18790 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 18791 offsetof(tcp_listener_t, tl_link)); 18792 18793 return (tcps); 18794 } 18795 18796 /* 18797 * Called when the IP module is about to be unloaded. 18798 */ 18799 void 18800 tcp_ddi_g_destroy(void) 18801 { 18802 tcp_g_kstat_fini(tcp_g_kstat); 18803 tcp_g_kstat = NULL; 18804 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18805 18806 mutex_destroy(&tcp_random_lock); 18807 18808 kmem_cache_destroy(tcp_timercache); 18809 kmem_cache_destroy(tcp_sack_info_cache); 18810 18811 netstack_unregister(NS_TCP); 18812 } 18813 18814 /* 18815 * Free the TCP stack instance. 18816 */ 18817 static void 18818 tcp_stack_fini(netstackid_t stackid, void *arg) 18819 { 18820 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18821 int i; 18822 18823 freeb(tcps->tcps_ixa_cleanup_mp); 18824 tcps->tcps_ixa_cleanup_mp = NULL; 18825 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18826 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18827 18828 if (tcps->tcps_reclaim_tid != 0) 18829 (void) untimeout(tcps->tcps_reclaim_tid); 18830 mutex_destroy(&tcps->tcps_reclaim_lock); 18831 18832 tcp_listener_conf_cleanup(tcps); 18833 18834 nd_free(&tcps->tcps_g_nd); 18835 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18836 tcps->tcps_params = NULL; 18837 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18838 tcps->tcps_wroff_xtra_param = NULL; 18839 18840 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18841 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18842 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18843 } 18844 18845 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18846 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18847 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18848 } 18849 18850 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18851 tcps->tcps_bind_fanout = NULL; 18852 18853 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 18854 TCP_ACCEPTOR_FANOUT_SIZE); 18855 tcps->tcps_acceptor_fanout = NULL; 18856 18857 mutex_destroy(&tcps->tcps_iss_key_lock); 18858 mutex_destroy(&tcps->tcps_epriv_port_lock); 18859 18860 ip_drop_unregister(&tcps->tcps_dropper); 18861 18862 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18863 tcps->tcps_kstat = NULL; 18864 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18865 18866 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18867 tcps->tcps_mibkp = NULL; 18868 18869 ldi_ident_release(tcps->tcps_ldi_ident); 18870 kmem_free(tcps, sizeof (*tcps)); 18871 } 18872 18873 /* 18874 * Generate ISS, taking into account NDD changes may happen halfway through. 18875 * (If the iss is not zero, set it.) 18876 */ 18877 18878 static void 18879 tcp_iss_init(tcp_t *tcp) 18880 { 18881 MD5_CTX context; 18882 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18883 uint32_t answer[4]; 18884 tcp_stack_t *tcps = tcp->tcp_tcps; 18885 conn_t *connp = tcp->tcp_connp; 18886 18887 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18888 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18889 switch (tcps->tcps_strong_iss) { 18890 case 2: 18891 mutex_enter(&tcps->tcps_iss_key_lock); 18892 context = tcps->tcps_iss_key; 18893 mutex_exit(&tcps->tcps_iss_key_lock); 18894 arg.ports = connp->conn_ports; 18895 arg.src = connp->conn_laddr_v6; 18896 arg.dst = connp->conn_faddr_v6; 18897 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18898 MD5Final((uchar_t *)answer, &context); 18899 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18900 /* 18901 * Now that we've hashed into a unique per-connection sequence 18902 * space, add a random increment per strong_iss == 1. So I 18903 * guess we'll have to... 18904 */ 18905 /* FALLTHRU */ 18906 case 1: 18907 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 18908 break; 18909 default: 18910 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 18911 break; 18912 } 18913 tcp->tcp_valid_bits = TCP_ISS_VALID; 18914 tcp->tcp_fss = tcp->tcp_iss - 1; 18915 tcp->tcp_suna = tcp->tcp_iss; 18916 tcp->tcp_snxt = tcp->tcp_iss + 1; 18917 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 18918 tcp->tcp_csuna = tcp->tcp_snxt; 18919 } 18920 18921 /* 18922 * Exported routine for extracting active tcp connection status. 18923 * 18924 * This is used by the Solaris Cluster Networking software to 18925 * gather a list of connections that need to be forwarded to 18926 * specific nodes in the cluster when configuration changes occur. 18927 * 18928 * The callback is invoked for each tcp_t structure from all netstacks, 18929 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 18930 * from the netstack with the specified stack_id. Returning 18931 * non-zero from the callback routine terminates the search. 18932 */ 18933 int 18934 cl_tcp_walk_list(netstackid_t stack_id, 18935 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 18936 { 18937 netstack_handle_t nh; 18938 netstack_t *ns; 18939 int ret = 0; 18940 18941 if (stack_id >= 0) { 18942 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 18943 return (EINVAL); 18944 18945 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18946 ns->netstack_tcp); 18947 netstack_rele(ns); 18948 return (ret); 18949 } 18950 18951 netstack_next_init(&nh); 18952 while ((ns = netstack_next(&nh)) != NULL) { 18953 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18954 ns->netstack_tcp); 18955 netstack_rele(ns); 18956 } 18957 netstack_next_fini(&nh); 18958 return (ret); 18959 } 18960 18961 static int 18962 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 18963 tcp_stack_t *tcps) 18964 { 18965 tcp_t *tcp; 18966 cl_tcp_info_t cl_tcpi; 18967 connf_t *connfp; 18968 conn_t *connp; 18969 int i; 18970 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18971 18972 ASSERT(callback != NULL); 18973 18974 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 18975 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 18976 connp = NULL; 18977 18978 while ((connp = 18979 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 18980 18981 tcp = connp->conn_tcp; 18982 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 18983 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 18984 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 18985 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 18986 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 18987 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 18988 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 18989 18990 /* 18991 * If the callback returns non-zero 18992 * we terminate the traversal. 18993 */ 18994 if ((*callback)(&cl_tcpi, arg) != 0) { 18995 CONN_DEC_REF(tcp->tcp_connp); 18996 return (1); 18997 } 18998 } 18999 } 19000 19001 return (0); 19002 } 19003 19004 /* 19005 * Macros used for accessing the different types of sockaddr 19006 * structures inside a tcp_ioc_abort_conn_t. 19007 */ 19008 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 19009 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 19010 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 19011 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 19012 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 19013 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 19014 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 19015 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 19016 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 19017 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 19018 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 19019 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 19020 19021 /* 19022 * Return the correct error code to mimic the behavior 19023 * of a connection reset. 19024 */ 19025 #define TCP_AC_GET_ERRCODE(state, err) { \ 19026 switch ((state)) { \ 19027 case TCPS_SYN_SENT: \ 19028 case TCPS_SYN_RCVD: \ 19029 (err) = ECONNREFUSED; \ 19030 break; \ 19031 case TCPS_ESTABLISHED: \ 19032 case TCPS_FIN_WAIT_1: \ 19033 case TCPS_FIN_WAIT_2: \ 19034 case TCPS_CLOSE_WAIT: \ 19035 (err) = ECONNRESET; \ 19036 break; \ 19037 case TCPS_CLOSING: \ 19038 case TCPS_LAST_ACK: \ 19039 case TCPS_TIME_WAIT: \ 19040 (err) = 0; \ 19041 break; \ 19042 default: \ 19043 (err) = ENXIO; \ 19044 } \ 19045 } 19046 19047 /* 19048 * Check if a tcp structure matches the info in acp. 19049 */ 19050 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 19051 (((acp)->ac_local.ss_family == AF_INET) ? \ 19052 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 19053 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 19054 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 19055 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 19056 (TCP_AC_V4LPORT((acp)) == 0 || \ 19057 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 19058 (TCP_AC_V4RPORT((acp)) == 0 || \ 19059 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 19060 (acp)->ac_start <= (tcp)->tcp_state && \ 19061 (acp)->ac_end >= (tcp)->tcp_state) : \ 19062 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 19063 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 19064 &(connp)->conn_laddr_v6)) && \ 19065 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 19066 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 19067 &(connp)->conn_faddr_v6)) && \ 19068 (TCP_AC_V6LPORT((acp)) == 0 || \ 19069 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 19070 (TCP_AC_V6RPORT((acp)) == 0 || \ 19071 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 19072 (acp)->ac_start <= (tcp)->tcp_state && \ 19073 (acp)->ac_end >= (tcp)->tcp_state)) 19074 19075 #define TCP_AC_MATCH(acp, connp, tcp) \ 19076 (((acp)->ac_zoneid == ALL_ZONES || \ 19077 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 19078 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 19079 19080 /* 19081 * Build a message containing a tcp_ioc_abort_conn_t structure 19082 * which is filled in with information from acp and tp. 19083 */ 19084 static mblk_t * 19085 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 19086 { 19087 mblk_t *mp; 19088 tcp_ioc_abort_conn_t *tacp; 19089 19090 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 19091 if (mp == NULL) 19092 return (NULL); 19093 19094 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 19095 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 19096 sizeof (uint32_t)); 19097 19098 tacp->ac_start = acp->ac_start; 19099 tacp->ac_end = acp->ac_end; 19100 tacp->ac_zoneid = acp->ac_zoneid; 19101 19102 if (acp->ac_local.ss_family == AF_INET) { 19103 tacp->ac_local.ss_family = AF_INET; 19104 tacp->ac_remote.ss_family = AF_INET; 19105 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 19106 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 19107 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 19108 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 19109 } else { 19110 tacp->ac_local.ss_family = AF_INET6; 19111 tacp->ac_remote.ss_family = AF_INET6; 19112 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 19113 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 19114 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 19115 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 19116 } 19117 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 19118 return (mp); 19119 } 19120 19121 /* 19122 * Print a tcp_ioc_abort_conn_t structure. 19123 */ 19124 static void 19125 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 19126 { 19127 char lbuf[128]; 19128 char rbuf[128]; 19129 sa_family_t af; 19130 in_port_t lport, rport; 19131 ushort_t logflags; 19132 19133 af = acp->ac_local.ss_family; 19134 19135 if (af == AF_INET) { 19136 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 19137 lbuf, 128); 19138 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 19139 rbuf, 128); 19140 lport = ntohs(TCP_AC_V4LPORT(acp)); 19141 rport = ntohs(TCP_AC_V4RPORT(acp)); 19142 } else { 19143 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 19144 lbuf, 128); 19145 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 19146 rbuf, 128); 19147 lport = ntohs(TCP_AC_V6LPORT(acp)); 19148 rport = ntohs(TCP_AC_V6RPORT(acp)); 19149 } 19150 19151 logflags = SL_TRACE | SL_NOTE; 19152 /* 19153 * Don't print this message to the console if the operation was done 19154 * to a non-global zone. 19155 */ 19156 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19157 logflags |= SL_CONSOLE; 19158 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 19159 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 19160 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 19161 acp->ac_start, acp->ac_end); 19162 } 19163 19164 /* 19165 * Called using SQ_FILL when a message built using 19166 * tcp_ioctl_abort_build_msg is put into a queue. 19167 * Note that when we get here there is no wildcard in acp any more. 19168 */ 19169 /* ARGSUSED2 */ 19170 static void 19171 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 19172 ip_recv_attr_t *dummy) 19173 { 19174 conn_t *connp = (conn_t *)arg; 19175 tcp_t *tcp = connp->conn_tcp; 19176 tcp_ioc_abort_conn_t *acp; 19177 19178 /* 19179 * Don't accept any input on a closed tcp as this TCP logically does 19180 * not exist on the system. Don't proceed further with this TCP. 19181 * For eg. this packet could trigger another close of this tcp 19182 * which would be disastrous for tcp_refcnt. tcp_close_detached / 19183 * tcp_clean_death / tcp_closei_local must be called at most once 19184 * on a TCP. 19185 */ 19186 if (tcp->tcp_state == TCPS_CLOSED || 19187 tcp->tcp_state == TCPS_BOUND) { 19188 freemsg(mp); 19189 return; 19190 } 19191 19192 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 19193 if (tcp->tcp_state <= acp->ac_end) { 19194 /* 19195 * If we get here, we are already on the correct 19196 * squeue. This ioctl follows the following path 19197 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 19198 * ->tcp_ioctl_abort->squeue_enter (if on a 19199 * different squeue) 19200 */ 19201 int errcode; 19202 19203 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 19204 (void) tcp_clean_death(tcp, errcode, 26); 19205 } 19206 freemsg(mp); 19207 } 19208 19209 /* 19210 * Abort all matching connections on a hash chain. 19211 */ 19212 static int 19213 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 19214 boolean_t exact, tcp_stack_t *tcps) 19215 { 19216 int nmatch, err = 0; 19217 tcp_t *tcp; 19218 MBLKP mp, last, listhead = NULL; 19219 conn_t *tconnp; 19220 connf_t *connfp; 19221 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19222 19223 connfp = &ipst->ips_ipcl_conn_fanout[index]; 19224 19225 startover: 19226 nmatch = 0; 19227 19228 mutex_enter(&connfp->connf_lock); 19229 for (tconnp = connfp->connf_head; tconnp != NULL; 19230 tconnp = tconnp->conn_next) { 19231 tcp = tconnp->conn_tcp; 19232 /* 19233 * We are missing a check on sin6_scope_id for linklocals here, 19234 * but current usage is just for aborting based on zoneid 19235 * for shared-IP zones. 19236 */ 19237 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 19238 CONN_INC_REF(tconnp); 19239 mp = tcp_ioctl_abort_build_msg(acp, tcp); 19240 if (mp == NULL) { 19241 err = ENOMEM; 19242 CONN_DEC_REF(tconnp); 19243 break; 19244 } 19245 mp->b_prev = (mblk_t *)tcp; 19246 19247 if (listhead == NULL) { 19248 listhead = mp; 19249 last = mp; 19250 } else { 19251 last->b_next = mp; 19252 last = mp; 19253 } 19254 nmatch++; 19255 if (exact) 19256 break; 19257 } 19258 19259 /* Avoid holding lock for too long. */ 19260 if (nmatch >= 500) 19261 break; 19262 } 19263 mutex_exit(&connfp->connf_lock); 19264 19265 /* Pass mp into the correct tcp */ 19266 while ((mp = listhead) != NULL) { 19267 listhead = listhead->b_next; 19268 tcp = (tcp_t *)mp->b_prev; 19269 mp->b_next = mp->b_prev = NULL; 19270 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19271 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19272 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19273 } 19274 19275 *count += nmatch; 19276 if (nmatch >= 500 && err == 0) 19277 goto startover; 19278 return (err); 19279 } 19280 19281 /* 19282 * Abort all connections that matches the attributes specified in acp. 19283 */ 19284 static int 19285 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19286 { 19287 sa_family_t af; 19288 uint32_t ports; 19289 uint16_t *pports; 19290 int err = 0, count = 0; 19291 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19292 int index = -1; 19293 ushort_t logflags; 19294 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19295 19296 af = acp->ac_local.ss_family; 19297 19298 if (af == AF_INET) { 19299 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19300 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19301 pports = (uint16_t *)&ports; 19302 pports[1] = TCP_AC_V4LPORT(acp); 19303 pports[0] = TCP_AC_V4RPORT(acp); 19304 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19305 } 19306 } else { 19307 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19308 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19309 pports = (uint16_t *)&ports; 19310 pports[1] = TCP_AC_V6LPORT(acp); 19311 pports[0] = TCP_AC_V6RPORT(acp); 19312 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19313 } 19314 } 19315 19316 /* 19317 * For cases where remote addr, local port, and remote port are non- 19318 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19319 */ 19320 if (index != -1) { 19321 err = tcp_ioctl_abort_bucket(acp, index, 19322 &count, exact, tcps); 19323 } else { 19324 /* 19325 * loop through all entries for wildcard case 19326 */ 19327 for (index = 0; 19328 index < ipst->ips_ipcl_conn_fanout_size; 19329 index++) { 19330 err = tcp_ioctl_abort_bucket(acp, index, 19331 &count, exact, tcps); 19332 if (err != 0) 19333 break; 19334 } 19335 } 19336 19337 logflags = SL_TRACE | SL_NOTE; 19338 /* 19339 * Don't print this message to the console if the operation was done 19340 * to a non-global zone. 19341 */ 19342 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19343 logflags |= SL_CONSOLE; 19344 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19345 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19346 if (err == 0 && count == 0) 19347 err = ENOENT; 19348 return (err); 19349 } 19350 19351 /* 19352 * Process the TCP_IOC_ABORT_CONN ioctl request. 19353 */ 19354 static void 19355 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19356 { 19357 int err; 19358 IOCP iocp; 19359 MBLKP mp1; 19360 sa_family_t laf, raf; 19361 tcp_ioc_abort_conn_t *acp; 19362 zone_t *zptr; 19363 conn_t *connp = Q_TO_CONN(q); 19364 zoneid_t zoneid = connp->conn_zoneid; 19365 tcp_t *tcp = connp->conn_tcp; 19366 tcp_stack_t *tcps = tcp->tcp_tcps; 19367 19368 iocp = (IOCP)mp->b_rptr; 19369 19370 if ((mp1 = mp->b_cont) == NULL || 19371 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19372 err = EINVAL; 19373 goto out; 19374 } 19375 19376 /* check permissions */ 19377 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19378 err = EPERM; 19379 goto out; 19380 } 19381 19382 if (mp1->b_cont != NULL) { 19383 freemsg(mp1->b_cont); 19384 mp1->b_cont = NULL; 19385 } 19386 19387 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19388 laf = acp->ac_local.ss_family; 19389 raf = acp->ac_remote.ss_family; 19390 19391 /* check that a zone with the supplied zoneid exists */ 19392 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19393 zptr = zone_find_by_id(zoneid); 19394 if (zptr != NULL) { 19395 zone_rele(zptr); 19396 } else { 19397 err = EINVAL; 19398 goto out; 19399 } 19400 } 19401 19402 /* 19403 * For exclusive stacks we set the zoneid to zero 19404 * to make TCP operate as if in the global zone. 19405 */ 19406 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19407 acp->ac_zoneid = GLOBAL_ZONEID; 19408 19409 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19410 acp->ac_start > acp->ac_end || laf != raf || 19411 (laf != AF_INET && laf != AF_INET6)) { 19412 err = EINVAL; 19413 goto out; 19414 } 19415 19416 tcp_ioctl_abort_dump(acp); 19417 err = tcp_ioctl_abort(acp, tcps); 19418 19419 out: 19420 if (mp1 != NULL) { 19421 freemsg(mp1); 19422 mp->b_cont = NULL; 19423 } 19424 19425 if (err != 0) 19426 miocnak(q, mp, 0, err); 19427 else 19428 miocack(q, mp, 0, 0); 19429 } 19430 19431 /* 19432 * tcp_time_wait_processing() handles processing of incoming packets when 19433 * the tcp is in the TIME_WAIT state. 19434 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19435 * on the time wait list. 19436 */ 19437 void 19438 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19439 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19440 { 19441 int32_t bytes_acked; 19442 int32_t gap; 19443 int32_t rgap; 19444 tcp_opt_t tcpopt; 19445 uint_t flags; 19446 uint32_t new_swnd = 0; 19447 conn_t *nconnp; 19448 conn_t *connp = tcp->tcp_connp; 19449 tcp_stack_t *tcps = tcp->tcp_tcps; 19450 19451 BUMP_LOCAL(tcp->tcp_ibsegs); 19452 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19453 19454 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19455 new_swnd = ntohs(tcpha->tha_win) << 19456 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19457 if (tcp->tcp_snd_ts_ok) { 19458 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19459 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19460 tcp->tcp_rnxt, TH_ACK); 19461 goto done; 19462 } 19463 } 19464 gap = seg_seq - tcp->tcp_rnxt; 19465 rgap = tcp->tcp_rwnd - (gap + seg_len); 19466 if (gap < 0) { 19467 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19468 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19469 (seg_len > -gap ? -gap : seg_len)); 19470 seg_len += gap; 19471 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19472 if (flags & TH_RST) { 19473 goto done; 19474 } 19475 if ((flags & TH_FIN) && seg_len == -1) { 19476 /* 19477 * When TCP receives a duplicate FIN in 19478 * TIME_WAIT state, restart the 2 MSL timer. 19479 * See page 73 in RFC 793. Make sure this TCP 19480 * is already on the TIME_WAIT list. If not, 19481 * just restart the timer. 19482 */ 19483 if (TCP_IS_DETACHED(tcp)) { 19484 if (tcp_time_wait_remove(tcp, NULL) == 19485 B_TRUE) { 19486 tcp_time_wait_append(tcp); 19487 TCP_DBGSTAT(tcps, 19488 tcp_rput_time_wait); 19489 } 19490 } else { 19491 ASSERT(tcp != NULL); 19492 TCP_TIMER_RESTART(tcp, 19493 tcps->tcps_time_wait_interval); 19494 } 19495 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19496 tcp->tcp_rnxt, TH_ACK); 19497 goto done; 19498 } 19499 flags |= TH_ACK_NEEDED; 19500 seg_len = 0; 19501 goto process_ack; 19502 } 19503 19504 /* Fix seg_seq, and chew the gap off the front. */ 19505 seg_seq = tcp->tcp_rnxt; 19506 } 19507 19508 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19509 /* 19510 * Make sure that when we accept the connection, pick 19511 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19512 * old connection. 19513 * 19514 * The next ISS generated is equal to tcp_iss_incr_extra 19515 * + ISS_INCR/2 + other components depending on the 19516 * value of tcp_strong_iss. We pre-calculate the new 19517 * ISS here and compare with tcp_snxt to determine if 19518 * we need to make adjustment to tcp_iss_incr_extra. 19519 * 19520 * The above calculation is ugly and is a 19521 * waste of CPU cycles... 19522 */ 19523 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19524 int32_t adj; 19525 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19526 19527 switch (tcps->tcps_strong_iss) { 19528 case 2: { 19529 /* Add time and MD5 components. */ 19530 uint32_t answer[4]; 19531 struct { 19532 uint32_t ports; 19533 in6_addr_t src; 19534 in6_addr_t dst; 19535 } arg; 19536 MD5_CTX context; 19537 19538 mutex_enter(&tcps->tcps_iss_key_lock); 19539 context = tcps->tcps_iss_key; 19540 mutex_exit(&tcps->tcps_iss_key_lock); 19541 arg.ports = connp->conn_ports; 19542 /* We use MAPPED addresses in tcp_iss_init */ 19543 arg.src = connp->conn_laddr_v6; 19544 arg.dst = connp->conn_faddr_v6; 19545 MD5Update(&context, (uchar_t *)&arg, 19546 sizeof (arg)); 19547 MD5Final((uchar_t *)answer, &context); 19548 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19549 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19550 break; 19551 } 19552 case 1: 19553 /* Add time component and min random (i.e. 1). */ 19554 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19555 break; 19556 default: 19557 /* Add only time component. */ 19558 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19559 break; 19560 } 19561 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19562 /* 19563 * New ISS not guaranteed to be ISS_INCR/2 19564 * ahead of the current tcp_snxt, so add the 19565 * difference to tcp_iss_incr_extra. 19566 */ 19567 tcps->tcps_iss_incr_extra += adj; 19568 } 19569 /* 19570 * If tcp_clean_death() can not perform the task now, 19571 * drop the SYN packet and let the other side re-xmit. 19572 * Otherwise pass the SYN packet back in, since the 19573 * old tcp state has been cleaned up or freed. 19574 */ 19575 if (tcp_clean_death(tcp, 0, 27) == -1) 19576 goto done; 19577 nconnp = ipcl_classify(mp, ira, ipst); 19578 if (nconnp != NULL) { 19579 TCP_STAT(tcps, tcp_time_wait_syn_success); 19580 /* Drops ref on nconnp */ 19581 tcp_reinput(nconnp, mp, ira, ipst); 19582 return; 19583 } 19584 goto done; 19585 } 19586 19587 /* 19588 * rgap is the amount of stuff received out of window. A negative 19589 * value is the amount out of window. 19590 */ 19591 if (rgap < 0) { 19592 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19593 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19594 /* Fix seg_len and make sure there is something left. */ 19595 seg_len += rgap; 19596 if (seg_len <= 0) { 19597 if (flags & TH_RST) { 19598 goto done; 19599 } 19600 flags |= TH_ACK_NEEDED; 19601 seg_len = 0; 19602 goto process_ack; 19603 } 19604 } 19605 /* 19606 * Check whether we can update tcp_ts_recent. This test is 19607 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19608 * Extensions for High Performance: An Update", Internet Draft. 19609 */ 19610 if (tcp->tcp_snd_ts_ok && 19611 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19612 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19613 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19614 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19615 } 19616 19617 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19618 /* Always ack out of order packets */ 19619 flags |= TH_ACK_NEEDED; 19620 seg_len = 0; 19621 } else if (seg_len > 0) { 19622 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19623 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19624 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19625 } 19626 if (flags & TH_RST) { 19627 (void) tcp_clean_death(tcp, 0, 28); 19628 goto done; 19629 } 19630 if (flags & TH_SYN) { 19631 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19632 TH_RST|TH_ACK); 19633 /* 19634 * Do not delete the TCP structure if it is in 19635 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19636 */ 19637 goto done; 19638 } 19639 process_ack: 19640 if (flags & TH_ACK) { 19641 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19642 if (bytes_acked <= 0) { 19643 if (bytes_acked == 0 && seg_len == 0 && 19644 new_swnd == tcp->tcp_swnd) 19645 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19646 } else { 19647 /* Acks something not sent */ 19648 flags |= TH_ACK_NEEDED; 19649 } 19650 } 19651 if (flags & TH_ACK_NEEDED) { 19652 /* 19653 * Time to send an ack for some reason. 19654 */ 19655 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19656 tcp->tcp_rnxt, TH_ACK); 19657 } 19658 done: 19659 freemsg(mp); 19660 } 19661 19662 /* 19663 * TCP Timers Implementation. 19664 */ 19665 timeout_id_t 19666 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19667 { 19668 mblk_t *mp; 19669 tcp_timer_t *tcpt; 19670 tcp_t *tcp = connp->conn_tcp; 19671 19672 ASSERT(connp->conn_sqp != NULL); 19673 19674 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19675 19676 if (tcp->tcp_timercache == NULL) { 19677 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19678 } else { 19679 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19680 mp = tcp->tcp_timercache; 19681 tcp->tcp_timercache = mp->b_next; 19682 mp->b_next = NULL; 19683 ASSERT(mp->b_wptr == NULL); 19684 } 19685 19686 CONN_INC_REF(connp); 19687 tcpt = (tcp_timer_t *)mp->b_rptr; 19688 tcpt->connp = connp; 19689 tcpt->tcpt_proc = f; 19690 /* 19691 * TCP timers are normal timeouts. Plus, they do not require more than 19692 * a 10 millisecond resolution. By choosing a coarser resolution and by 19693 * rounding up the expiration to the next resolution boundary, we can 19694 * batch timers in the callout subsystem to make TCP timers more 19695 * efficient. The roundup also protects short timers from expiring too 19696 * early before they have a chance to be cancelled. 19697 */ 19698 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19699 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19700 19701 return ((timeout_id_t)mp); 19702 } 19703 19704 static void 19705 tcp_timer_callback(void *arg) 19706 { 19707 mblk_t *mp = (mblk_t *)arg; 19708 tcp_timer_t *tcpt; 19709 conn_t *connp; 19710 19711 tcpt = (tcp_timer_t *)mp->b_rptr; 19712 connp = tcpt->connp; 19713 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19714 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19715 } 19716 19717 /* ARGSUSED */ 19718 static void 19719 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19720 { 19721 tcp_timer_t *tcpt; 19722 conn_t *connp = (conn_t *)arg; 19723 tcp_t *tcp = connp->conn_tcp; 19724 19725 tcpt = (tcp_timer_t *)mp->b_rptr; 19726 ASSERT(connp == tcpt->connp); 19727 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19728 19729 /* 19730 * If the TCP has reached the closed state, don't proceed any 19731 * further. This TCP logically does not exist on the system. 19732 * tcpt_proc could for example access queues, that have already 19733 * been qprocoff'ed off. 19734 */ 19735 if (tcp->tcp_state != TCPS_CLOSED) { 19736 (*tcpt->tcpt_proc)(connp); 19737 } else { 19738 tcp->tcp_timer_tid = 0; 19739 } 19740 tcp_timer_free(connp->conn_tcp, mp); 19741 } 19742 19743 /* 19744 * There is potential race with untimeout and the handler firing at the same 19745 * time. The mblock may be freed by the handler while we are trying to use 19746 * it. But since both should execute on the same squeue, this race should not 19747 * occur. 19748 */ 19749 clock_t 19750 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19751 { 19752 mblk_t *mp = (mblk_t *)id; 19753 tcp_timer_t *tcpt; 19754 clock_t delta; 19755 19756 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19757 19758 if (mp == NULL) 19759 return (-1); 19760 19761 tcpt = (tcp_timer_t *)mp->b_rptr; 19762 ASSERT(tcpt->connp == connp); 19763 19764 delta = untimeout_default(tcpt->tcpt_tid, 0); 19765 19766 if (delta >= 0) { 19767 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19768 tcp_timer_free(connp->conn_tcp, mp); 19769 CONN_DEC_REF(connp); 19770 } 19771 19772 return (delta); 19773 } 19774 19775 /* 19776 * Allocate space for the timer event. The allocation looks like mblk, but it is 19777 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19778 * 19779 * Dealing with failures: If we can't allocate from the timer cache we try 19780 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19781 * points to b_rptr. 19782 * If we can't allocate anything using allocb_tryhard(), we perform a last 19783 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19784 * save the actual allocation size in b_datap. 19785 */ 19786 mblk_t * 19787 tcp_timermp_alloc(int kmflags) 19788 { 19789 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19790 kmflags & ~KM_PANIC); 19791 19792 if (mp != NULL) { 19793 mp->b_next = mp->b_prev = NULL; 19794 mp->b_rptr = (uchar_t *)(&mp[1]); 19795 mp->b_wptr = NULL; 19796 mp->b_datap = NULL; 19797 mp->b_queue = NULL; 19798 mp->b_cont = NULL; 19799 } else if (kmflags & KM_PANIC) { 19800 /* 19801 * Failed to allocate memory for the timer. Try allocating from 19802 * dblock caches. 19803 */ 19804 /* ipclassifier calls this from a constructor - hence no tcps */ 19805 TCP_G_STAT(tcp_timermp_allocfail); 19806 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19807 if (mp == NULL) { 19808 size_t size = 0; 19809 /* 19810 * Memory is really low. Try tryhard allocation. 19811 * 19812 * ipclassifier calls this from a constructor - 19813 * hence no tcps 19814 */ 19815 TCP_G_STAT(tcp_timermp_allocdblfail); 19816 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19817 sizeof (tcp_timer_t), &size, kmflags); 19818 mp->b_rptr = (uchar_t *)(&mp[1]); 19819 mp->b_next = mp->b_prev = NULL; 19820 mp->b_wptr = (uchar_t *)-1; 19821 mp->b_datap = (dblk_t *)size; 19822 mp->b_queue = NULL; 19823 mp->b_cont = NULL; 19824 } 19825 ASSERT(mp->b_wptr != NULL); 19826 } 19827 /* ipclassifier calls this from a constructor - hence no tcps */ 19828 TCP_G_DBGSTAT(tcp_timermp_alloced); 19829 19830 return (mp); 19831 } 19832 19833 /* 19834 * Free per-tcp timer cache. 19835 * It can only contain entries from tcp_timercache. 19836 */ 19837 void 19838 tcp_timermp_free(tcp_t *tcp) 19839 { 19840 mblk_t *mp; 19841 19842 while ((mp = tcp->tcp_timercache) != NULL) { 19843 ASSERT(mp->b_wptr == NULL); 19844 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19845 kmem_cache_free(tcp_timercache, mp); 19846 } 19847 } 19848 19849 /* 19850 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19851 * events there already (currently at most two events are cached). 19852 * If the event is not allocated from the timer cache, free it right away. 19853 */ 19854 static void 19855 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19856 { 19857 mblk_t *mp1 = tcp->tcp_timercache; 19858 19859 if (mp->b_wptr != NULL) { 19860 /* 19861 * This allocation is not from a timer cache, free it right 19862 * away. 19863 */ 19864 if (mp->b_wptr != (uchar_t *)-1) 19865 freeb(mp); 19866 else 19867 kmem_free(mp, (size_t)mp->b_datap); 19868 } else if (mp1 == NULL || mp1->b_next == NULL) { 19869 /* Cache this timer block for future allocations */ 19870 mp->b_rptr = (uchar_t *)(&mp[1]); 19871 mp->b_next = mp1; 19872 tcp->tcp_timercache = mp; 19873 } else { 19874 kmem_cache_free(tcp_timercache, mp); 19875 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19876 } 19877 } 19878 19879 /* 19880 * End of TCP Timers implementation. 19881 */ 19882 19883 /* 19884 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19885 * on the specified backing STREAMS q. Note, the caller may make the 19886 * decision to call based on the tcp_t.tcp_flow_stopped value which 19887 * when check outside the q's lock is only an advisory check ... 19888 */ 19889 void 19890 tcp_setqfull(tcp_t *tcp) 19891 { 19892 tcp_stack_t *tcps = tcp->tcp_tcps; 19893 conn_t *connp = tcp->tcp_connp; 19894 19895 if (tcp->tcp_closed) 19896 return; 19897 19898 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19899 if (tcp->tcp_flow_stopped) 19900 TCP_STAT(tcps, tcp_flwctl_on); 19901 } 19902 19903 void 19904 tcp_clrqfull(tcp_t *tcp) 19905 { 19906 conn_t *connp = tcp->tcp_connp; 19907 19908 if (tcp->tcp_closed) 19909 return; 19910 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 19911 } 19912 19913 /* 19914 * kstats related to squeues i.e. not per IP instance 19915 */ 19916 static void * 19917 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 19918 { 19919 kstat_t *ksp; 19920 19921 tcp_g_stat_t template = { 19922 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 19923 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 19924 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 19925 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 19926 }; 19927 19928 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 19929 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19930 KSTAT_FLAG_VIRTUAL); 19931 19932 if (ksp == NULL) 19933 return (NULL); 19934 19935 bcopy(&template, tcp_g_statp, sizeof (template)); 19936 ksp->ks_data = (void *)tcp_g_statp; 19937 19938 kstat_install(ksp); 19939 return (ksp); 19940 } 19941 19942 static void 19943 tcp_g_kstat_fini(kstat_t *ksp) 19944 { 19945 if (ksp != NULL) { 19946 kstat_delete(ksp); 19947 } 19948 } 19949 19950 19951 static void * 19952 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 19953 { 19954 kstat_t *ksp; 19955 19956 tcp_stat_t template = { 19957 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 19958 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 19959 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 19960 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 19961 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 19962 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 19963 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 19964 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 19965 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 19966 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 19967 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 19968 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 19969 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 19970 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 19971 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 19972 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 19973 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 19974 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 19975 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 19976 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 19977 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 19978 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 19979 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 19980 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 19981 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 19982 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 19983 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 19984 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 19985 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 19986 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 19987 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 19988 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 19989 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 19990 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 19991 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 19992 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 19993 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 19994 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 19995 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 19996 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 19997 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 19998 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 19999 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 20000 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 20001 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 20002 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 20003 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 20004 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 20005 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 20006 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 20007 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 20008 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 20009 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 20010 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 20011 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 20012 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 20013 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 20014 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 20015 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 20016 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 20017 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 20018 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 20019 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 20020 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 20021 { "tcp_listen_cnt_drop", KSTAT_DATA_UINT64 }, 20022 { "tcp_listen_mem_drop", KSTAT_DATA_UINT64 }, 20023 { "tcp_zwin_ack_syn", KSTAT_DATA_UINT64 }, 20024 { "tcp_rst_unsent", KSTAT_DATA_UINT64 } 20025 }; 20026 20027 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 20028 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20029 KSTAT_FLAG_VIRTUAL, stackid); 20030 20031 if (ksp == NULL) 20032 return (NULL); 20033 20034 bcopy(&template, tcps_statisticsp, sizeof (template)); 20035 ksp->ks_data = (void *)tcps_statisticsp; 20036 ksp->ks_private = (void *)(uintptr_t)stackid; 20037 20038 kstat_install(ksp); 20039 return (ksp); 20040 } 20041 20042 static void 20043 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 20044 { 20045 if (ksp != NULL) { 20046 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20047 kstat_delete_netstack(ksp, stackid); 20048 } 20049 } 20050 20051 /* 20052 * TCP Kstats implementation 20053 */ 20054 static void * 20055 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 20056 { 20057 kstat_t *ksp; 20058 20059 tcp_named_kstat_t template = { 20060 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 20061 { "rtoMin", KSTAT_DATA_INT32, 0 }, 20062 { "rtoMax", KSTAT_DATA_INT32, 0 }, 20063 { "maxConn", KSTAT_DATA_INT32, 0 }, 20064 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 20065 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 20066 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 20067 { "estabResets", KSTAT_DATA_UINT32, 0 }, 20068 { "currEstab", KSTAT_DATA_UINT32, 0 }, 20069 { "inSegs", KSTAT_DATA_UINT64, 0 }, 20070 { "outSegs", KSTAT_DATA_UINT64, 0 }, 20071 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 20072 { "connTableSize", KSTAT_DATA_INT32, 0 }, 20073 { "outRsts", KSTAT_DATA_UINT32, 0 }, 20074 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 20075 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 20076 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 20077 { "outAck", KSTAT_DATA_UINT32, 0 }, 20078 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 20079 { "outUrg", KSTAT_DATA_UINT32, 0 }, 20080 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 20081 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 20082 { "outControl", KSTAT_DATA_UINT32, 0 }, 20083 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 20084 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 20085 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 20086 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 20087 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 20088 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 20089 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 20090 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 20091 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 20092 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 20093 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 20094 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 20095 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 20096 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 20097 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 20098 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 20099 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 20100 { "inClosed", KSTAT_DATA_UINT32, 0 }, 20101 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 20102 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 20103 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 20104 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 20105 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 20106 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 20107 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 20108 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 20109 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 20110 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 20111 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 20112 { "connTableSize6", KSTAT_DATA_INT32, 0 } 20113 }; 20114 20115 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 20116 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 20117 20118 if (ksp == NULL) 20119 return (NULL); 20120 20121 template.rtoAlgorithm.value.ui32 = 4; 20122 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 20123 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 20124 template.maxConn.value.i32 = -1; 20125 20126 bcopy(&template, ksp->ks_data, sizeof (template)); 20127 ksp->ks_update = tcp_kstat_update; 20128 ksp->ks_private = (void *)(uintptr_t)stackid; 20129 20130 kstat_install(ksp); 20131 return (ksp); 20132 } 20133 20134 static void 20135 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 20136 { 20137 if (ksp != NULL) { 20138 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20139 kstat_delete_netstack(ksp, stackid); 20140 } 20141 } 20142 20143 static int 20144 tcp_kstat_update(kstat_t *kp, int rw) 20145 { 20146 tcp_named_kstat_t *tcpkp; 20147 tcp_t *tcp; 20148 connf_t *connfp; 20149 conn_t *connp; 20150 int i; 20151 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 20152 netstack_t *ns; 20153 tcp_stack_t *tcps; 20154 ip_stack_t *ipst; 20155 20156 if ((kp == NULL) || (kp->ks_data == NULL)) 20157 return (EIO); 20158 20159 if (rw == KSTAT_WRITE) 20160 return (EACCES); 20161 20162 ns = netstack_find_by_stackid(stackid); 20163 if (ns == NULL) 20164 return (-1); 20165 tcps = ns->netstack_tcp; 20166 if (tcps == NULL) { 20167 netstack_rele(ns); 20168 return (-1); 20169 } 20170 20171 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 20172 20173 tcpkp->currEstab.value.ui32 = 0; 20174 20175 ipst = ns->netstack_ip; 20176 20177 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 20178 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 20179 connp = NULL; 20180 while ((connp = 20181 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 20182 tcp = connp->conn_tcp; 20183 switch (tcp_snmp_state(tcp)) { 20184 case MIB2_TCP_established: 20185 case MIB2_TCP_closeWait: 20186 tcpkp->currEstab.value.ui32++; 20187 break; 20188 } 20189 } 20190 } 20191 20192 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 20193 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 20194 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 20195 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 20196 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 20197 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 20198 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 20199 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 20200 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 20201 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 20202 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 20203 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 20204 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 20205 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 20206 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 20207 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 20208 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 20209 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 20210 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 20211 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 20212 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 20213 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 20214 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 20215 tcpkp->inDataInorderSegs.value.ui32 = 20216 tcps->tcps_mib.tcpInDataInorderSegs; 20217 tcpkp->inDataInorderBytes.value.ui32 = 20218 tcps->tcps_mib.tcpInDataInorderBytes; 20219 tcpkp->inDataUnorderSegs.value.ui32 = 20220 tcps->tcps_mib.tcpInDataUnorderSegs; 20221 tcpkp->inDataUnorderBytes.value.ui32 = 20222 tcps->tcps_mib.tcpInDataUnorderBytes; 20223 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 20224 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 20225 tcpkp->inDataPartDupSegs.value.ui32 = 20226 tcps->tcps_mib.tcpInDataPartDupSegs; 20227 tcpkp->inDataPartDupBytes.value.ui32 = 20228 tcps->tcps_mib.tcpInDataPartDupBytes; 20229 tcpkp->inDataPastWinSegs.value.ui32 = 20230 tcps->tcps_mib.tcpInDataPastWinSegs; 20231 tcpkp->inDataPastWinBytes.value.ui32 = 20232 tcps->tcps_mib.tcpInDataPastWinBytes; 20233 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 20234 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 20235 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 20236 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 20237 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 20238 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 20239 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 20240 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 20241 tcpkp->timKeepaliveProbe.value.ui32 = 20242 tcps->tcps_mib.tcpTimKeepaliveProbe; 20243 tcpkp->timKeepaliveDrop.value.ui32 = 20244 tcps->tcps_mib.tcpTimKeepaliveDrop; 20245 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 20246 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 20247 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 20248 tcpkp->outSackRetransSegs.value.ui32 = 20249 tcps->tcps_mib.tcpOutSackRetransSegs; 20250 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 20251 20252 netstack_rele(ns); 20253 return (0); 20254 } 20255 20256 static int 20257 tcp_squeue_switch(int val) 20258 { 20259 int rval = SQ_FILL; 20260 20261 switch (val) { 20262 case 1: 20263 rval = SQ_NODRAIN; 20264 break; 20265 case 2: 20266 rval = SQ_PROCESS; 20267 break; 20268 default: 20269 break; 20270 } 20271 return (rval); 20272 } 20273 20274 /* 20275 * This is called once for each squeue - globally for all stack 20276 * instances. 20277 */ 20278 static void 20279 tcp_squeue_add(squeue_t *sqp) 20280 { 20281 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20282 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20283 20284 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20285 tcp_time_wait->tcp_time_wait_tid = 20286 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20287 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20288 CALLOUT_FLAG_ROUNDUP); 20289 if (tcp_free_list_max_cnt == 0) { 20290 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20291 max_ncpus : boot_max_ncpus); 20292 20293 /* 20294 * Limit number of entries to 1% of availble memory / tcp_ncpus 20295 */ 20296 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20297 (tcp_ncpus * sizeof (tcp_t) * 100); 20298 } 20299 tcp_time_wait->tcp_free_list_cnt = 0; 20300 } 20301 20302 /* 20303 * On a labeled system we have some protocols above TCP, such as RPC, which 20304 * appear to assume that every mblk in a chain has a db_credp. 20305 */ 20306 static void 20307 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20308 { 20309 ASSERT(is_system_labeled()); 20310 ASSERT(ira->ira_cred != NULL); 20311 20312 while (mp != NULL) { 20313 mblk_setcred(mp, ira->ira_cred, NOPID); 20314 mp = mp->b_cont; 20315 } 20316 } 20317 20318 static int 20319 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20320 boolean_t bind_to_req_port_only, cred_t *cr) 20321 { 20322 in_port_t mlp_port; 20323 mlp_type_t addrtype, mlptype; 20324 boolean_t user_specified; 20325 in_port_t allocated_port; 20326 in_port_t requested_port = *requested_port_ptr; 20327 conn_t *connp = tcp->tcp_connp; 20328 zone_t *zone; 20329 tcp_stack_t *tcps = tcp->tcp_tcps; 20330 in6_addr_t v6addr = connp->conn_laddr_v6; 20331 20332 /* 20333 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20334 */ 20335 ASSERT(cr != NULL); 20336 20337 /* 20338 * Get a valid port (within the anonymous range and should not 20339 * be a privileged one) to use if the user has not given a port. 20340 * If multiple threads are here, they may all start with 20341 * with the same initial port. But, it should be fine as long as 20342 * tcp_bindi will ensure that no two threads will be assigned 20343 * the same port. 20344 * 20345 * NOTE: XXX If a privileged process asks for an anonymous port, we 20346 * still check for ports only in the range > tcp_smallest_non_priv_port, 20347 * unless TCP_ANONPRIVBIND option is set. 20348 */ 20349 mlptype = mlptSingle; 20350 mlp_port = requested_port; 20351 if (requested_port == 0) { 20352 requested_port = connp->conn_anon_priv_bind ? 20353 tcp_get_next_priv_port(tcp) : 20354 tcp_update_next_port(tcps->tcps_next_port_to_try, 20355 tcp, B_TRUE); 20356 if (requested_port == 0) { 20357 return (-TNOADDR); 20358 } 20359 user_specified = B_FALSE; 20360 20361 /* 20362 * If the user went through one of the RPC interfaces to create 20363 * this socket and RPC is MLP in this zone, then give him an 20364 * anonymous MLP. 20365 */ 20366 if (connp->conn_anon_mlp && is_system_labeled()) { 20367 zone = crgetzone(cr); 20368 addrtype = tsol_mlp_addr_type( 20369 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20370 IPV6_VERSION, &v6addr, 20371 tcps->tcps_netstack->netstack_ip); 20372 if (addrtype == mlptSingle) { 20373 return (-TNOADDR); 20374 } 20375 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20376 PMAPPORT, addrtype); 20377 mlp_port = PMAPPORT; 20378 } 20379 } else { 20380 int i; 20381 boolean_t priv = B_FALSE; 20382 20383 /* 20384 * If the requested_port is in the well-known privileged range, 20385 * verify that the stream was opened by a privileged user. 20386 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20387 * but instead the code relies on: 20388 * - the fact that the address of the array and its size never 20389 * changes 20390 * - the atomic assignment of the elements of the array 20391 */ 20392 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20393 priv = B_TRUE; 20394 } else { 20395 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20396 if (requested_port == 20397 tcps->tcps_g_epriv_ports[i]) { 20398 priv = B_TRUE; 20399 break; 20400 } 20401 } 20402 } 20403 if (priv) { 20404 if (secpolicy_net_privaddr(cr, requested_port, 20405 IPPROTO_TCP) != 0) { 20406 if (connp->conn_debug) { 20407 (void) strlog(TCP_MOD_ID, 0, 1, 20408 SL_ERROR|SL_TRACE, 20409 "tcp_bind: no priv for port %d", 20410 requested_port); 20411 } 20412 return (-TACCES); 20413 } 20414 } 20415 user_specified = B_TRUE; 20416 20417 connp = tcp->tcp_connp; 20418 if (is_system_labeled()) { 20419 zone = crgetzone(cr); 20420 addrtype = tsol_mlp_addr_type( 20421 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20422 IPV6_VERSION, &v6addr, 20423 tcps->tcps_netstack->netstack_ip); 20424 if (addrtype == mlptSingle) { 20425 return (-TNOADDR); 20426 } 20427 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20428 requested_port, addrtype); 20429 } 20430 } 20431 20432 if (mlptype != mlptSingle) { 20433 if (secpolicy_net_bindmlp(cr) != 0) { 20434 if (connp->conn_debug) { 20435 (void) strlog(TCP_MOD_ID, 0, 1, 20436 SL_ERROR|SL_TRACE, 20437 "tcp_bind: no priv for multilevel port %d", 20438 requested_port); 20439 } 20440 return (-TACCES); 20441 } 20442 20443 /* 20444 * If we're specifically binding a shared IP address and the 20445 * port is MLP on shared addresses, then check to see if this 20446 * zone actually owns the MLP. Reject if not. 20447 */ 20448 if (mlptype == mlptShared && addrtype == mlptShared) { 20449 /* 20450 * No need to handle exclusive-stack zones since 20451 * ALL_ZONES only applies to the shared stack. 20452 */ 20453 zoneid_t mlpzone; 20454 20455 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20456 htons(mlp_port)); 20457 if (connp->conn_zoneid != mlpzone) { 20458 if (connp->conn_debug) { 20459 (void) strlog(TCP_MOD_ID, 0, 1, 20460 SL_ERROR|SL_TRACE, 20461 "tcp_bind: attempt to bind port " 20462 "%d on shared addr in zone %d " 20463 "(should be %d)", 20464 mlp_port, connp->conn_zoneid, 20465 mlpzone); 20466 } 20467 return (-TACCES); 20468 } 20469 } 20470 20471 if (!user_specified) { 20472 int err; 20473 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20474 requested_port, B_TRUE); 20475 if (err != 0) { 20476 if (connp->conn_debug) { 20477 (void) strlog(TCP_MOD_ID, 0, 1, 20478 SL_ERROR|SL_TRACE, 20479 "tcp_bind: cannot establish anon " 20480 "MLP for port %d", 20481 requested_port); 20482 } 20483 return (err); 20484 } 20485 connp->conn_anon_port = B_TRUE; 20486 } 20487 connp->conn_mlp_type = mlptype; 20488 } 20489 20490 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20491 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20492 user_specified); 20493 20494 if (allocated_port == 0) { 20495 connp->conn_mlp_type = mlptSingle; 20496 if (connp->conn_anon_port) { 20497 connp->conn_anon_port = B_FALSE; 20498 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20499 requested_port, B_FALSE); 20500 } 20501 if (bind_to_req_port_only) { 20502 if (connp->conn_debug) { 20503 (void) strlog(TCP_MOD_ID, 0, 1, 20504 SL_ERROR|SL_TRACE, 20505 "tcp_bind: requested addr busy"); 20506 } 20507 return (-TADDRBUSY); 20508 } else { 20509 /* If we are out of ports, fail the bind. */ 20510 if (connp->conn_debug) { 20511 (void) strlog(TCP_MOD_ID, 0, 1, 20512 SL_ERROR|SL_TRACE, 20513 "tcp_bind: out of ports?"); 20514 } 20515 return (-TNOADDR); 20516 } 20517 } 20518 20519 /* Pass the allocated port back */ 20520 *requested_port_ptr = allocated_port; 20521 return (0); 20522 } 20523 20524 /* 20525 * Check the address and check/pick a local port number. 20526 */ 20527 static int 20528 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20529 boolean_t bind_to_req_port_only) 20530 { 20531 tcp_t *tcp = connp->conn_tcp; 20532 sin_t *sin; 20533 sin6_t *sin6; 20534 in_port_t requested_port; 20535 ipaddr_t v4addr; 20536 in6_addr_t v6addr; 20537 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20538 zoneid_t zoneid = IPCL_ZONEID(connp); 20539 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20540 uint_t scopeid = 0; 20541 int error = 0; 20542 ip_xmit_attr_t *ixa = connp->conn_ixa; 20543 20544 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20545 20546 if (tcp->tcp_state == TCPS_BOUND) { 20547 return (0); 20548 } else if (tcp->tcp_state > TCPS_BOUND) { 20549 if (connp->conn_debug) { 20550 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20551 "tcp_bind: bad state, %d", tcp->tcp_state); 20552 } 20553 return (-TOUTSTATE); 20554 } 20555 20556 ASSERT(sa != NULL && len != 0); 20557 20558 if (!OK_32PTR((char *)sa)) { 20559 if (connp->conn_debug) { 20560 (void) strlog(TCP_MOD_ID, 0, 1, 20561 SL_ERROR|SL_TRACE, 20562 "tcp_bind: bad address parameter, " 20563 "address %p, len %d", 20564 (void *)sa, len); 20565 } 20566 return (-TPROTO); 20567 } 20568 20569 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20570 if (error != 0) { 20571 return (error); 20572 } 20573 20574 switch (len) { 20575 case sizeof (sin_t): /* Complete IPv4 address */ 20576 sin = (sin_t *)sa; 20577 requested_port = ntohs(sin->sin_port); 20578 v4addr = sin->sin_addr.s_addr; 20579 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20580 if (v4addr != INADDR_ANY) { 20581 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20582 B_FALSE); 20583 } 20584 break; 20585 20586 case sizeof (sin6_t): /* Complete IPv6 address */ 20587 sin6 = (sin6_t *)sa; 20588 v6addr = sin6->sin6_addr; 20589 requested_port = ntohs(sin6->sin6_port); 20590 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20591 if (connp->conn_ipv6_v6only) 20592 return (EADDRNOTAVAIL); 20593 20594 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20595 if (v4addr != INADDR_ANY) { 20596 laddr_type = ip_laddr_verify_v4(v4addr, 20597 zoneid, ipst, B_FALSE); 20598 } 20599 } else { 20600 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20601 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20602 scopeid = sin6->sin6_scope_id; 20603 laddr_type = ip_laddr_verify_v6(&v6addr, 20604 zoneid, ipst, B_FALSE, scopeid); 20605 } 20606 } 20607 break; 20608 20609 default: 20610 if (connp->conn_debug) { 20611 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20612 "tcp_bind: bad address length, %d", len); 20613 } 20614 return (EAFNOSUPPORT); 20615 /* return (-TBADADDR); */ 20616 } 20617 20618 /* Is the local address a valid unicast address? */ 20619 if (laddr_type == IPVL_BAD) 20620 return (EADDRNOTAVAIL); 20621 20622 connp->conn_bound_addr_v6 = v6addr; 20623 if (scopeid != 0) { 20624 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20625 ixa->ixa_scopeid = scopeid; 20626 connp->conn_incoming_ifindex = scopeid; 20627 } else { 20628 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20629 connp->conn_incoming_ifindex = connp->conn_bound_if; 20630 } 20631 20632 connp->conn_laddr_v6 = v6addr; 20633 connp->conn_saddr_v6 = v6addr; 20634 20635 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20636 20637 error = tcp_bind_select_lport(tcp, &requested_port, 20638 bind_to_req_port_only, cr); 20639 if (error != 0) { 20640 connp->conn_laddr_v6 = ipv6_all_zeros; 20641 connp->conn_saddr_v6 = ipv6_all_zeros; 20642 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20643 } 20644 return (error); 20645 } 20646 20647 /* 20648 * Return unix error is tli error is TSYSERR, otherwise return a negative 20649 * tli error. 20650 */ 20651 int 20652 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20653 boolean_t bind_to_req_port_only) 20654 { 20655 int error; 20656 tcp_t *tcp = connp->conn_tcp; 20657 20658 if (tcp->tcp_state >= TCPS_BOUND) { 20659 if (connp->conn_debug) { 20660 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20661 "tcp_bind: bad state, %d", tcp->tcp_state); 20662 } 20663 return (-TOUTSTATE); 20664 } 20665 20666 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20667 if (error != 0) 20668 return (error); 20669 20670 ASSERT(tcp->tcp_state == TCPS_BOUND); 20671 tcp->tcp_conn_req_max = 0; 20672 return (0); 20673 } 20674 20675 int 20676 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20677 socklen_t len, cred_t *cr) 20678 { 20679 int error; 20680 conn_t *connp = (conn_t *)proto_handle; 20681 squeue_t *sqp = connp->conn_sqp; 20682 20683 /* All Solaris components should pass a cred for this operation. */ 20684 ASSERT(cr != NULL); 20685 20686 ASSERT(sqp != NULL); 20687 ASSERT(connp->conn_upper_handle != NULL); 20688 20689 error = squeue_synch_enter(sqp, connp, NULL); 20690 if (error != 0) { 20691 /* failed to enter */ 20692 return (ENOSR); 20693 } 20694 20695 /* binding to a NULL address really means unbind */ 20696 if (sa == NULL) { 20697 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20698 error = tcp_do_unbind(connp); 20699 else 20700 error = EINVAL; 20701 } else { 20702 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20703 } 20704 20705 squeue_synch_exit(sqp, connp); 20706 20707 if (error < 0) { 20708 if (error == -TOUTSTATE) 20709 error = EINVAL; 20710 else 20711 error = proto_tlitosyserr(-error); 20712 } 20713 20714 return (error); 20715 } 20716 20717 /* 20718 * If the return value from this function is positive, it's a UNIX error. 20719 * Otherwise, if it's negative, then the absolute value is a TLI error. 20720 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20721 */ 20722 int 20723 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20724 cred_t *cr, pid_t pid) 20725 { 20726 tcp_t *tcp = connp->conn_tcp; 20727 sin_t *sin = (sin_t *)sa; 20728 sin6_t *sin6 = (sin6_t *)sa; 20729 ipaddr_t *dstaddrp; 20730 in_port_t dstport; 20731 uint_t srcid; 20732 int error; 20733 uint32_t mss; 20734 mblk_t *syn_mp; 20735 tcp_stack_t *tcps = tcp->tcp_tcps; 20736 int32_t oldstate; 20737 ip_xmit_attr_t *ixa = connp->conn_ixa; 20738 20739 oldstate = tcp->tcp_state; 20740 20741 switch (len) { 20742 default: 20743 /* 20744 * Should never happen 20745 */ 20746 return (EINVAL); 20747 20748 case sizeof (sin_t): 20749 sin = (sin_t *)sa; 20750 if (sin->sin_port == 0) { 20751 return (-TBADADDR); 20752 } 20753 if (connp->conn_ipv6_v6only) { 20754 return (EAFNOSUPPORT); 20755 } 20756 break; 20757 20758 case sizeof (sin6_t): 20759 sin6 = (sin6_t *)sa; 20760 if (sin6->sin6_port == 0) { 20761 return (-TBADADDR); 20762 } 20763 break; 20764 } 20765 /* 20766 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20767 * make sure that the conn_ipversion is IPV4_VERSION. We 20768 * need to this before we call tcp_bindi() so that the port lookup 20769 * code will look for ports in the correct port space (IPv4 and 20770 * IPv6 have separate port spaces). 20771 */ 20772 if (connp->conn_family == AF_INET6 && 20773 connp->conn_ipversion == IPV6_VERSION && 20774 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20775 if (connp->conn_ipv6_v6only) 20776 return (EADDRNOTAVAIL); 20777 20778 connp->conn_ipversion = IPV4_VERSION; 20779 } 20780 20781 switch (tcp->tcp_state) { 20782 case TCPS_LISTEN: 20783 /* 20784 * Listening sockets are not allowed to issue connect(). 20785 */ 20786 if (IPCL_IS_NONSTR(connp)) 20787 return (EOPNOTSUPP); 20788 /* FALLTHRU */ 20789 case TCPS_IDLE: 20790 /* 20791 * We support quick connect, refer to comments in 20792 * tcp_connect_*() 20793 */ 20794 /* FALLTHRU */ 20795 case TCPS_BOUND: 20796 break; 20797 default: 20798 return (-TOUTSTATE); 20799 } 20800 20801 /* 20802 * We update our cred/cpid based on the caller of connect 20803 */ 20804 if (connp->conn_cred != cr) { 20805 crhold(cr); 20806 crfree(connp->conn_cred); 20807 connp->conn_cred = cr; 20808 } 20809 connp->conn_cpid = pid; 20810 20811 /* Cache things in the ixa without any refhold */ 20812 ixa->ixa_cred = cr; 20813 ixa->ixa_cpid = pid; 20814 if (is_system_labeled()) { 20815 /* We need to restart with a label based on the cred */ 20816 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20817 } 20818 20819 if (connp->conn_family == AF_INET6) { 20820 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20821 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20822 sin6->sin6_port, sin6->sin6_flowinfo, 20823 sin6->__sin6_src_id, sin6->sin6_scope_id); 20824 } else { 20825 /* 20826 * Destination adress is mapped IPv6 address. 20827 * Source bound address should be unspecified or 20828 * IPv6 mapped address as well. 20829 */ 20830 if (!IN6_IS_ADDR_UNSPECIFIED( 20831 &connp->conn_bound_addr_v6) && 20832 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20833 return (EADDRNOTAVAIL); 20834 } 20835 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20836 dstport = sin6->sin6_port; 20837 srcid = sin6->__sin6_src_id; 20838 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20839 srcid); 20840 } 20841 } else { 20842 dstaddrp = &sin->sin_addr.s_addr; 20843 dstport = sin->sin_port; 20844 srcid = 0; 20845 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20846 } 20847 20848 if (error != 0) 20849 goto connect_failed; 20850 20851 CL_INET_CONNECT(connp, B_TRUE, error); 20852 if (error != 0) 20853 goto connect_failed; 20854 20855 /* connect succeeded */ 20856 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20857 tcp->tcp_active_open = 1; 20858 20859 /* 20860 * tcp_set_destination() does not adjust for TCP/IP header length. 20861 */ 20862 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20863 20864 /* 20865 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20866 * to the nearest MSS. 20867 * 20868 * We do the round up here because we need to get the interface MTU 20869 * first before we can do the round up. 20870 */ 20871 tcp->tcp_rwnd = connp->conn_rcvbuf; 20872 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20873 tcps->tcps_recv_hiwat_minmss * mss); 20874 connp->conn_rcvbuf = tcp->tcp_rwnd; 20875 tcp_set_ws_value(tcp); 20876 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20877 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20878 tcp->tcp_snd_ws_ok = B_TRUE; 20879 20880 /* 20881 * Set tcp_snd_ts_ok to true 20882 * so that tcp_xmit_mp will 20883 * include the timestamp 20884 * option in the SYN segment. 20885 */ 20886 if (tcps->tcps_tstamp_always || 20887 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20888 tcp->tcp_snd_ts_ok = B_TRUE; 20889 } 20890 20891 /* 20892 * tcp_snd_sack_ok can be set in 20893 * tcp_set_destination() if the sack metric 20894 * is set. So check it here also. 20895 */ 20896 if (tcps->tcps_sack_permitted == 2 || 20897 tcp->tcp_snd_sack_ok) { 20898 if (tcp->tcp_sack_info == NULL) { 20899 tcp->tcp_sack_info = kmem_cache_alloc( 20900 tcp_sack_info_cache, KM_SLEEP); 20901 } 20902 tcp->tcp_snd_sack_ok = B_TRUE; 20903 } 20904 20905 /* 20906 * Should we use ECN? Note that the current 20907 * default value (SunOS 5.9) of tcp_ecn_permitted 20908 * is 1. The reason for doing this is that there 20909 * are equipments out there that will drop ECN 20910 * enabled IP packets. Setting it to 1 avoids 20911 * compatibility problems. 20912 */ 20913 if (tcps->tcps_ecn_permitted == 2) 20914 tcp->tcp_ecn_ok = B_TRUE; 20915 20916 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20917 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 20918 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 20919 if (syn_mp != NULL) { 20920 /* 20921 * We must bump the generation before sending the syn 20922 * to ensure that we use the right generation in case 20923 * this thread issues a "connected" up call. 20924 */ 20925 SOCK_CONNID_BUMP(tcp->tcp_connid); 20926 tcp_send_data(tcp, syn_mp); 20927 } 20928 20929 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20930 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20931 return (0); 20932 20933 connect_failed: 20934 connp->conn_faddr_v6 = ipv6_all_zeros; 20935 connp->conn_fport = 0; 20936 tcp->tcp_state = oldstate; 20937 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20938 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20939 return (error); 20940 } 20941 20942 int 20943 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 20944 socklen_t len, sock_connid_t *id, cred_t *cr) 20945 { 20946 conn_t *connp = (conn_t *)proto_handle; 20947 squeue_t *sqp = connp->conn_sqp; 20948 int error; 20949 20950 ASSERT(connp->conn_upper_handle != NULL); 20951 20952 /* All Solaris components should pass a cred for this operation. */ 20953 ASSERT(cr != NULL); 20954 20955 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20956 if (error != 0) { 20957 return (error); 20958 } 20959 20960 error = squeue_synch_enter(sqp, connp, NULL); 20961 if (error != 0) { 20962 /* failed to enter */ 20963 return (ENOSR); 20964 } 20965 20966 /* 20967 * TCP supports quick connect, so no need to do an implicit bind 20968 */ 20969 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 20970 if (error == 0) { 20971 *id = connp->conn_tcp->tcp_connid; 20972 } else if (error < 0) { 20973 if (error == -TOUTSTATE) { 20974 switch (connp->conn_tcp->tcp_state) { 20975 case TCPS_SYN_SENT: 20976 error = EALREADY; 20977 break; 20978 case TCPS_ESTABLISHED: 20979 error = EISCONN; 20980 break; 20981 case TCPS_LISTEN: 20982 error = EOPNOTSUPP; 20983 break; 20984 default: 20985 error = EINVAL; 20986 break; 20987 } 20988 } else { 20989 error = proto_tlitosyserr(-error); 20990 } 20991 } 20992 20993 if (connp->conn_tcp->tcp_loopback) { 20994 struct sock_proto_props sopp; 20995 20996 sopp.sopp_flags = SOCKOPT_LOOPBACK; 20997 sopp.sopp_loopback = B_TRUE; 20998 20999 (*connp->conn_upcalls->su_set_proto_props)( 21000 connp->conn_upper_handle, &sopp); 21001 } 21002 done: 21003 squeue_synch_exit(sqp, connp); 21004 21005 return ((error == 0) ? EINPROGRESS : error); 21006 } 21007 21008 /* ARGSUSED */ 21009 sock_lower_handle_t 21010 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 21011 uint_t *smodep, int *errorp, int flags, cred_t *credp) 21012 { 21013 conn_t *connp; 21014 boolean_t isv6 = family == AF_INET6; 21015 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 21016 (proto != 0 && proto != IPPROTO_TCP)) { 21017 *errorp = EPROTONOSUPPORT; 21018 return (NULL); 21019 } 21020 21021 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 21022 if (connp == NULL) { 21023 return (NULL); 21024 } 21025 21026 /* 21027 * Put the ref for TCP. Ref for IP was already put 21028 * by ipcl_conn_create. Also Make the conn_t globally 21029 * visible to walkers 21030 */ 21031 mutex_enter(&connp->conn_lock); 21032 CONN_INC_REF_LOCKED(connp); 21033 ASSERT(connp->conn_ref == 2); 21034 connp->conn_state_flags &= ~CONN_INCIPIENT; 21035 21036 connp->conn_flags |= IPCL_NONSTR; 21037 mutex_exit(&connp->conn_lock); 21038 21039 ASSERT(errorp != NULL); 21040 *errorp = 0; 21041 *sock_downcalls = &sock_tcp_downcalls; 21042 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 21043 SM_SENDFILESUPP; 21044 21045 return ((sock_lower_handle_t)connp); 21046 } 21047 21048 /* ARGSUSED */ 21049 void 21050 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 21051 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 21052 { 21053 conn_t *connp = (conn_t *)proto_handle; 21054 struct sock_proto_props sopp; 21055 21056 ASSERT(connp->conn_upper_handle == NULL); 21057 21058 /* All Solaris components should pass a cred for this operation. */ 21059 ASSERT(cr != NULL); 21060 21061 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 21062 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 21063 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 21064 21065 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 21066 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 21067 sopp.sopp_maxpsz = INFPSZ; 21068 sopp.sopp_maxblk = INFPSZ; 21069 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 21070 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 21071 sopp.sopp_maxaddrlen = sizeof (sin6_t); 21072 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 21073 tcp_rinfo.mi_minpsz; 21074 21075 connp->conn_upcalls = sock_upcalls; 21076 connp->conn_upper_handle = sock_handle; 21077 21078 ASSERT(connp->conn_rcvbuf != 0 && 21079 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 21080 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 21081 } 21082 21083 /* ARGSUSED */ 21084 int 21085 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 21086 { 21087 conn_t *connp = (conn_t *)proto_handle; 21088 21089 ASSERT(connp->conn_upper_handle != NULL); 21090 21091 /* All Solaris components should pass a cred for this operation. */ 21092 ASSERT(cr != NULL); 21093 21094 tcp_close_common(connp, flags); 21095 21096 ip_free_helper_stream(connp); 21097 21098 /* 21099 * Drop IP's reference on the conn. This is the last reference 21100 * on the connp if the state was less than established. If the 21101 * connection has gone into timewait state, then we will have 21102 * one ref for the TCP and one more ref (total of two) for the 21103 * classifier connected hash list (a timewait connections stays 21104 * in connected hash till closed). 21105 * 21106 * We can't assert the references because there might be other 21107 * transient reference places because of some walkers or queued 21108 * packets in squeue for the timewait state. 21109 */ 21110 CONN_DEC_REF(connp); 21111 return (0); 21112 } 21113 21114 /* ARGSUSED */ 21115 int 21116 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 21117 cred_t *cr) 21118 { 21119 tcp_t *tcp; 21120 uint32_t msize; 21121 conn_t *connp = (conn_t *)proto_handle; 21122 int32_t tcpstate; 21123 21124 /* All Solaris components should pass a cred for this operation. */ 21125 ASSERT(cr != NULL); 21126 21127 ASSERT(connp->conn_ref >= 2); 21128 ASSERT(connp->conn_upper_handle != NULL); 21129 21130 if (msg->msg_controllen != 0) { 21131 freemsg(mp); 21132 return (EOPNOTSUPP); 21133 } 21134 21135 switch (DB_TYPE(mp)) { 21136 case M_DATA: 21137 tcp = connp->conn_tcp; 21138 ASSERT(tcp != NULL); 21139 21140 tcpstate = tcp->tcp_state; 21141 if (tcpstate < TCPS_ESTABLISHED) { 21142 freemsg(mp); 21143 /* 21144 * We return ENOTCONN if the endpoint is trying to 21145 * connect or has never been connected, and EPIPE if it 21146 * has been disconnected. The connection id helps us 21147 * distinguish between the last two cases. 21148 */ 21149 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 21150 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 21151 } else if (tcpstate > TCPS_CLOSE_WAIT) { 21152 freemsg(mp); 21153 return (EPIPE); 21154 } 21155 21156 msize = msgdsize(mp); 21157 21158 mutex_enter(&tcp->tcp_non_sq_lock); 21159 tcp->tcp_squeue_bytes += msize; 21160 /* 21161 * Squeue Flow Control 21162 */ 21163 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 21164 tcp_setqfull(tcp); 21165 } 21166 mutex_exit(&tcp->tcp_non_sq_lock); 21167 21168 /* 21169 * The application may pass in an address in the msghdr, but 21170 * we ignore the address on connection-oriented sockets. 21171 * Just like BSD this code does not generate an error for 21172 * TCP (a CONNREQUIRED socket) when sending to an address 21173 * passed in with sendto/sendmsg. Instead the data is 21174 * delivered on the connection as if no address had been 21175 * supplied. 21176 */ 21177 CONN_INC_REF(connp); 21178 21179 if (msg->msg_flags & MSG_OOB) { 21180 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 21181 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21182 } else { 21183 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 21184 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21185 } 21186 21187 return (0); 21188 21189 default: 21190 ASSERT(0); 21191 } 21192 21193 freemsg(mp); 21194 return (0); 21195 } 21196 21197 /* ARGSUSED2 */ 21198 void 21199 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21200 { 21201 int len; 21202 uint32_t msize; 21203 conn_t *connp = (conn_t *)arg; 21204 tcp_t *tcp = connp->conn_tcp; 21205 21206 msize = msgdsize(mp); 21207 21208 len = msize - 1; 21209 if (len < 0) { 21210 freemsg(mp); 21211 return; 21212 } 21213 21214 /* 21215 * Try to force urgent data out on the wire. Even if we have unsent 21216 * data this will at least send the urgent flag. 21217 * XXX does not handle more flag correctly. 21218 */ 21219 len += tcp->tcp_unsent; 21220 len += tcp->tcp_snxt; 21221 tcp->tcp_urg = len; 21222 tcp->tcp_valid_bits |= TCP_URG_VALID; 21223 21224 /* Bypass tcp protocol for fused tcp loopback */ 21225 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21226 return; 21227 21228 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 21229 if (DB_TYPE(mp) != M_DATA) { 21230 mblk_t *mp1 = mp; 21231 ASSERT(!IPCL_IS_NONSTR(connp)); 21232 mp = mp->b_cont; 21233 freeb(mp1); 21234 } 21235 tcp_wput_data(tcp, mp, B_TRUE); 21236 } 21237 21238 /* ARGSUSED3 */ 21239 int 21240 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21241 socklen_t *addrlenp, cred_t *cr) 21242 { 21243 conn_t *connp = (conn_t *)proto_handle; 21244 tcp_t *tcp = connp->conn_tcp; 21245 21246 ASSERT(connp->conn_upper_handle != NULL); 21247 /* All Solaris components should pass a cred for this operation. */ 21248 ASSERT(cr != NULL); 21249 21250 ASSERT(tcp != NULL); 21251 if (tcp->tcp_state < TCPS_SYN_RCVD) 21252 return (ENOTCONN); 21253 21254 return (conn_getpeername(connp, addr, addrlenp)); 21255 } 21256 21257 /* ARGSUSED3 */ 21258 int 21259 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21260 socklen_t *addrlenp, cred_t *cr) 21261 { 21262 conn_t *connp = (conn_t *)proto_handle; 21263 21264 /* All Solaris components should pass a cred for this operation. */ 21265 ASSERT(cr != NULL); 21266 21267 ASSERT(connp->conn_upper_handle != NULL); 21268 return (conn_getsockname(connp, addr, addrlenp)); 21269 } 21270 21271 /* 21272 * tcp_fallback 21273 * 21274 * A direct socket is falling back to using STREAMS. The queue 21275 * that is being passed down was created using tcp_open() with 21276 * the SO_FALLBACK flag set. As a result, the queue is not 21277 * associated with a conn, and the q_ptrs instead contain the 21278 * dev and minor area that should be used. 21279 * 21280 * The 'issocket' flag indicates whether the FireEngine 21281 * optimizations should be used. The common case would be that 21282 * optimizations are enabled, and they might be subsequently 21283 * disabled using the _SIOCSOCKFALLBACK ioctl. 21284 */ 21285 21286 /* 21287 * An active connection is falling back to TPI. Gather all the information 21288 * required by the STREAM head and TPI sonode and send it up. 21289 */ 21290 void 21291 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21292 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21293 { 21294 conn_t *connp = tcp->tcp_connp; 21295 struct stroptions *stropt; 21296 struct T_capability_ack tca; 21297 struct sockaddr_in6 laddr, faddr; 21298 socklen_t laddrlen, faddrlen; 21299 short opts; 21300 int error; 21301 mblk_t *mp; 21302 21303 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21304 connp->conn_minor_arena = WR(q)->q_ptr; 21305 21306 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21307 21308 connp->conn_rq = RD(q); 21309 connp->conn_wq = WR(q); 21310 21311 WR(q)->q_qinfo = &tcp_sock_winit; 21312 21313 if (!issocket) 21314 tcp_use_pure_tpi(tcp); 21315 21316 /* 21317 * free the helper stream 21318 */ 21319 ip_free_helper_stream(connp); 21320 21321 /* 21322 * Notify the STREAM head about options 21323 */ 21324 DB_TYPE(stropt_mp) = M_SETOPTS; 21325 stropt = (struct stroptions *)stropt_mp->b_rptr; 21326 stropt_mp->b_wptr += sizeof (struct stroptions); 21327 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21328 21329 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21330 tcp->tcp_tcps->tcps_wroff_xtra); 21331 if (tcp->tcp_snd_sack_ok) 21332 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21333 stropt->so_hiwat = connp->conn_rcvbuf; 21334 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21335 21336 putnext(RD(q), stropt_mp); 21337 21338 /* 21339 * Collect the information needed to sync with the sonode 21340 */ 21341 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21342 21343 laddrlen = faddrlen = sizeof (sin6_t); 21344 (void) tcp_getsockname((sock_lower_handle_t)connp, 21345 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21346 error = tcp_getpeername((sock_lower_handle_t)connp, 21347 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21348 if (error != 0) 21349 faddrlen = 0; 21350 21351 opts = 0; 21352 if (connp->conn_oobinline) 21353 opts |= SO_OOBINLINE; 21354 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21355 opts |= SO_DONTROUTE; 21356 21357 /* 21358 * Notify the socket that the protocol is now quiescent, 21359 * and it's therefore safe move data from the socket 21360 * to the stream head. 21361 */ 21362 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21363 (struct sockaddr *)&laddr, laddrlen, 21364 (struct sockaddr *)&faddr, faddrlen, opts); 21365 21366 while ((mp = tcp->tcp_rcv_list) != NULL) { 21367 tcp->tcp_rcv_list = mp->b_next; 21368 mp->b_next = NULL; 21369 /* We never do fallback for kernel RPC */ 21370 putnext(q, mp); 21371 } 21372 tcp->tcp_rcv_last_head = NULL; 21373 tcp->tcp_rcv_last_tail = NULL; 21374 tcp->tcp_rcv_cnt = 0; 21375 } 21376 21377 /* 21378 * An eager is falling back to TPI. All we have to do is send 21379 * up a T_CONN_IND. 21380 */ 21381 void 21382 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21383 { 21384 tcp_t *listener = eager->tcp_listener; 21385 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21386 21387 ASSERT(listener != NULL); 21388 ASSERT(mp != NULL); 21389 21390 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21391 21392 /* 21393 * TLI/XTI applications will get confused by 21394 * sending eager as an option since it violates 21395 * the option semantics. So remove the eager as 21396 * option since TLI/XTI app doesn't need it anyway. 21397 */ 21398 if (!direct_sockfs) { 21399 struct T_conn_ind *conn_ind; 21400 21401 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21402 conn_ind->OPT_length = 0; 21403 conn_ind->OPT_offset = 0; 21404 } 21405 21406 /* 21407 * Sockfs guarantees that the listener will not be closed 21408 * during fallback. So we can safely use the listener's queue. 21409 */ 21410 putnext(listener->tcp_connp->conn_rq, mp); 21411 } 21412 21413 int 21414 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21415 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21416 { 21417 tcp_t *tcp; 21418 conn_t *connp = (conn_t *)proto_handle; 21419 int error; 21420 mblk_t *stropt_mp; 21421 mblk_t *ordrel_mp; 21422 21423 tcp = connp->conn_tcp; 21424 21425 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21426 NULL); 21427 21428 /* Pre-allocate the T_ordrel_ind mblk. */ 21429 ASSERT(tcp->tcp_ordrel_mp == NULL); 21430 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21431 STR_NOSIG, NULL); 21432 ordrel_mp->b_datap->db_type = M_PROTO; 21433 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21434 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21435 21436 /* 21437 * Enter the squeue so that no new packets can come in 21438 */ 21439 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21440 if (error != 0) { 21441 /* failed to enter, free all the pre-allocated messages. */ 21442 freeb(stropt_mp); 21443 freeb(ordrel_mp); 21444 /* 21445 * We cannot process the eager, so at least send out a 21446 * RST so the peer can reconnect. 21447 */ 21448 if (tcp->tcp_listener != NULL) { 21449 (void) tcp_eager_blowoff(tcp->tcp_listener, 21450 tcp->tcp_conn_req_seqnum); 21451 } 21452 return (ENOMEM); 21453 } 21454 21455 /* 21456 * Both endpoints must be of the same type (either STREAMS or 21457 * non-STREAMS) for fusion to be enabled. So if we are fused, 21458 * we have to unfuse. 21459 */ 21460 if (tcp->tcp_fused) 21461 tcp_unfuse(tcp); 21462 21463 /* 21464 * No longer a direct socket 21465 */ 21466 connp->conn_flags &= ~IPCL_NONSTR; 21467 tcp->tcp_ordrel_mp = ordrel_mp; 21468 21469 if (tcp->tcp_listener != NULL) { 21470 /* The eager will deal with opts when accept() is called */ 21471 freeb(stropt_mp); 21472 tcp_fallback_eager(tcp, direct_sockfs); 21473 } else { 21474 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21475 quiesced_cb); 21476 } 21477 21478 /* 21479 * There should be atleast two ref's (IP + TCP) 21480 */ 21481 ASSERT(connp->conn_ref >= 2); 21482 squeue_synch_exit(connp->conn_sqp, connp); 21483 21484 return (0); 21485 } 21486 21487 /* ARGSUSED */ 21488 static void 21489 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21490 { 21491 conn_t *connp = (conn_t *)arg; 21492 tcp_t *tcp = connp->conn_tcp; 21493 21494 freemsg(mp); 21495 21496 if (tcp->tcp_fused) 21497 tcp_unfuse(tcp); 21498 21499 if (tcp_xmit_end(tcp) != 0) { 21500 /* 21501 * We were crossing FINs and got a reset from 21502 * the other side. Just ignore it. 21503 */ 21504 if (connp->conn_debug) { 21505 (void) strlog(TCP_MOD_ID, 0, 1, 21506 SL_ERROR|SL_TRACE, 21507 "tcp_shutdown_output() out of state %s", 21508 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21509 } 21510 } 21511 } 21512 21513 /* ARGSUSED */ 21514 int 21515 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21516 { 21517 conn_t *connp = (conn_t *)proto_handle; 21518 tcp_t *tcp = connp->conn_tcp; 21519 21520 ASSERT(connp->conn_upper_handle != NULL); 21521 21522 /* All Solaris components should pass a cred for this operation. */ 21523 ASSERT(cr != NULL); 21524 21525 /* 21526 * X/Open requires that we check the connected state. 21527 */ 21528 if (tcp->tcp_state < TCPS_SYN_SENT) 21529 return (ENOTCONN); 21530 21531 /* shutdown the send side */ 21532 if (how != SHUT_RD) { 21533 mblk_t *bp; 21534 21535 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21536 CONN_INC_REF(connp); 21537 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21538 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21539 21540 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21541 SOCK_OPCTL_SHUT_SEND, 0); 21542 } 21543 21544 /* shutdown the recv side */ 21545 if (how != SHUT_WR) 21546 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21547 SOCK_OPCTL_SHUT_RECV, 0); 21548 21549 return (0); 21550 } 21551 21552 /* 21553 * SOP_LISTEN() calls into tcp_listen(). 21554 */ 21555 /* ARGSUSED */ 21556 int 21557 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21558 { 21559 conn_t *connp = (conn_t *)proto_handle; 21560 int error; 21561 squeue_t *sqp = connp->conn_sqp; 21562 21563 ASSERT(connp->conn_upper_handle != NULL); 21564 21565 /* All Solaris components should pass a cred for this operation. */ 21566 ASSERT(cr != NULL); 21567 21568 error = squeue_synch_enter(sqp, connp, NULL); 21569 if (error != 0) { 21570 /* failed to enter */ 21571 return (ENOBUFS); 21572 } 21573 21574 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21575 if (error == 0) { 21576 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21577 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21578 } else if (error < 0) { 21579 if (error == -TOUTSTATE) 21580 error = EINVAL; 21581 else 21582 error = proto_tlitosyserr(-error); 21583 } 21584 squeue_synch_exit(sqp, connp); 21585 return (error); 21586 } 21587 21588 static int 21589 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21590 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21591 { 21592 tcp_t *tcp = connp->conn_tcp; 21593 int error = 0; 21594 tcp_stack_t *tcps = tcp->tcp_tcps; 21595 21596 /* All Solaris components should pass a cred for this operation. */ 21597 ASSERT(cr != NULL); 21598 21599 if (tcp->tcp_state >= TCPS_BOUND) { 21600 if ((tcp->tcp_state == TCPS_BOUND || 21601 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21602 /* 21603 * Handle listen() increasing backlog. 21604 * This is more "liberal" then what the TPI spec 21605 * requires but is needed to avoid a t_unbind 21606 * when handling listen() since the port number 21607 * might be "stolen" between the unbind and bind. 21608 */ 21609 goto do_listen; 21610 } 21611 if (connp->conn_debug) { 21612 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21613 "tcp_listen: bad state, %d", tcp->tcp_state); 21614 } 21615 return (-TOUTSTATE); 21616 } else { 21617 if (sa == NULL) { 21618 sin6_t addr; 21619 sin_t *sin; 21620 sin6_t *sin6; 21621 21622 ASSERT(IPCL_IS_NONSTR(connp)); 21623 /* Do an implicit bind: Request for a generic port. */ 21624 if (connp->conn_family == AF_INET) { 21625 len = sizeof (sin_t); 21626 sin = (sin_t *)&addr; 21627 *sin = sin_null; 21628 sin->sin_family = AF_INET; 21629 } else { 21630 ASSERT(connp->conn_family == AF_INET6); 21631 len = sizeof (sin6_t); 21632 sin6 = (sin6_t *)&addr; 21633 *sin6 = sin6_null; 21634 sin6->sin6_family = AF_INET6; 21635 } 21636 sa = (struct sockaddr *)&addr; 21637 } 21638 21639 error = tcp_bind_check(connp, sa, len, cr, 21640 bind_to_req_port_only); 21641 if (error) 21642 return (error); 21643 /* Fall through and do the fanout insertion */ 21644 } 21645 21646 do_listen: 21647 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21648 tcp->tcp_conn_req_max = backlog; 21649 if (tcp->tcp_conn_req_max) { 21650 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21651 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21652 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21653 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21654 /* 21655 * If this is a listener, do not reset the eager list 21656 * and other stuffs. Note that we don't check if the 21657 * existing eager list meets the new tcp_conn_req_max 21658 * requirement. 21659 */ 21660 if (tcp->tcp_state != TCPS_LISTEN) { 21661 tcp->tcp_state = TCPS_LISTEN; 21662 /* Initialize the chain. Don't need the eager_lock */ 21663 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21664 tcp->tcp_eager_next_drop_q0 = tcp; 21665 tcp->tcp_eager_prev_drop_q0 = tcp; 21666 tcp->tcp_second_ctimer_threshold = 21667 tcps->tcps_ip_abort_linterval; 21668 } 21669 } 21670 21671 /* 21672 * We need to make sure that the conn_recv is set to a non-null 21673 * value before we insert the conn into the classifier table. 21674 * This is to avoid a race with an incoming packet which does an 21675 * ipcl_classify(). 21676 * We initially set it to tcp_input_listener_unbound to try to 21677 * pick a good squeue for the listener when the first SYN arrives. 21678 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21679 * first SYN. 21680 */ 21681 connp->conn_recv = tcp_input_listener_unbound; 21682 21683 /* Insert the listener in the classifier table */ 21684 error = ip_laddr_fanout_insert(connp); 21685 if (error != 0) { 21686 /* Undo the bind - release the port number */ 21687 tcp->tcp_state = TCPS_IDLE; 21688 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21689 21690 connp->conn_laddr_v6 = ipv6_all_zeros; 21691 connp->conn_saddr_v6 = ipv6_all_zeros; 21692 connp->conn_ports = 0; 21693 21694 if (connp->conn_anon_port) { 21695 zone_t *zone; 21696 21697 zone = crgetzone(cr); 21698 connp->conn_anon_port = B_FALSE; 21699 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21700 connp->conn_proto, connp->conn_lport, B_FALSE); 21701 } 21702 connp->conn_mlp_type = mlptSingle; 21703 21704 tcp_bind_hash_remove(tcp); 21705 return (error); 21706 } else { 21707 /* 21708 * If there is a connection limit, allocate and initialize 21709 * the counter struct. Note that since listen can be called 21710 * multiple times, the struct may have been allready allocated. 21711 */ 21712 if (!list_is_empty(&tcps->tcps_listener_conf) && 21713 tcp->tcp_listen_cnt == NULL) { 21714 tcp_listen_cnt_t *tlc; 21715 uint32_t ratio; 21716 21717 ratio = tcp_find_listener_conf(tcps, 21718 ntohs(connp->conn_lport)); 21719 if (ratio != 0) { 21720 uint32_t mem_ratio, tot_buf; 21721 21722 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 21723 KM_SLEEP); 21724 /* 21725 * Calculate the connection limit based on 21726 * the configured ratio and maxusers. Maxusers 21727 * are calculated based on memory size, 21728 * ~ 1 user per MB. Note that the conn_rcvbuf 21729 * and conn_sndbuf may change after a 21730 * connection is accepted. So what we have 21731 * is only an approximation. 21732 */ 21733 if ((tot_buf = connp->conn_rcvbuf + 21734 connp->conn_sndbuf) < MB) { 21735 mem_ratio = MB / tot_buf; 21736 tlc->tlc_max = maxusers / ratio * 21737 mem_ratio; 21738 } else { 21739 mem_ratio = tot_buf / MB; 21740 tlc->tlc_max = maxusers / ratio / 21741 mem_ratio; 21742 } 21743 /* At least we should allow two connections! */ 21744 if (tlc->tlc_max <= tcp_min_conn_listener) 21745 tlc->tlc_max = tcp_min_conn_listener; 21746 tlc->tlc_cnt = 1; 21747 tlc->tlc_drop = 0; 21748 tcp->tcp_listen_cnt = tlc; 21749 } 21750 } 21751 } 21752 return (error); 21753 } 21754 21755 void 21756 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21757 { 21758 conn_t *connp = (conn_t *)proto_handle; 21759 tcp_t *tcp = connp->conn_tcp; 21760 mblk_t *mp; 21761 int error; 21762 21763 ASSERT(connp->conn_upper_handle != NULL); 21764 21765 /* 21766 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21767 * is currently running. 21768 */ 21769 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21770 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21771 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21772 return; 21773 } 21774 tcp->tcp_rsrv_mp = NULL; 21775 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21776 21777 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21778 ASSERT(error == 0); 21779 21780 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21781 tcp->tcp_rsrv_mp = mp; 21782 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21783 21784 if (tcp->tcp_fused) { 21785 tcp_fuse_backenable(tcp); 21786 } else { 21787 tcp->tcp_rwnd = connp->conn_rcvbuf; 21788 /* 21789 * Send back a window update immediately if TCP is above 21790 * ESTABLISHED state and the increase of the rcv window 21791 * that the other side knows is at least 1 MSS after flow 21792 * control is lifted. 21793 */ 21794 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21795 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21796 tcp_xmit_ctl(NULL, tcp, 21797 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21798 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21799 } 21800 } 21801 21802 squeue_synch_exit(connp->conn_sqp, connp); 21803 } 21804 21805 /* ARGSUSED */ 21806 int 21807 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21808 int mode, int32_t *rvalp, cred_t *cr) 21809 { 21810 conn_t *connp = (conn_t *)proto_handle; 21811 int error; 21812 21813 ASSERT(connp->conn_upper_handle != NULL); 21814 21815 /* All Solaris components should pass a cred for this operation. */ 21816 ASSERT(cr != NULL); 21817 21818 /* 21819 * If we don't have a helper stream then create one. 21820 * ip_create_helper_stream takes care of locking the conn_t, 21821 * so this check for NULL is just a performance optimization. 21822 */ 21823 if (connp->conn_helper_info == NULL) { 21824 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21825 21826 /* 21827 * Create a helper stream for non-STREAMS socket. 21828 */ 21829 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21830 if (error != 0) { 21831 ip0dbg(("tcp_ioctl: create of IP helper stream " 21832 "failed %d\n", error)); 21833 return (error); 21834 } 21835 } 21836 21837 switch (cmd) { 21838 case ND_SET: 21839 case ND_GET: 21840 case _SIOCSOCKFALLBACK: 21841 case TCP_IOC_ABORT_CONN: 21842 case TI_GETPEERNAME: 21843 case TI_GETMYNAME: 21844 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 21845 cmd)); 21846 error = EINVAL; 21847 break; 21848 default: 21849 /* 21850 * Pass on to IP using helper stream 21851 */ 21852 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21853 cmd, arg, mode, cr, rvalp); 21854 break; 21855 } 21856 return (error); 21857 } 21858 21859 sock_downcalls_t sock_tcp_downcalls = { 21860 tcp_activate, 21861 tcp_accept, 21862 tcp_bind, 21863 tcp_listen, 21864 tcp_connect, 21865 tcp_getpeername, 21866 tcp_getsockname, 21867 tcp_getsockopt, 21868 tcp_setsockopt, 21869 tcp_sendmsg, 21870 NULL, 21871 NULL, 21872 NULL, 21873 tcp_shutdown, 21874 tcp_clr_flowctrl, 21875 tcp_ioctl, 21876 tcp_close, 21877 }; 21878 21879 /* 21880 * Timeout function to reset the TCP stack variable tcps_reclaim to false. 21881 */ 21882 static void 21883 tcp_reclaim_timer(void *arg) 21884 { 21885 tcp_stack_t *tcps = (tcp_stack_t *)arg; 21886 21887 mutex_enter(&tcps->tcps_reclaim_lock); 21888 tcps->tcps_reclaim = B_FALSE; 21889 tcps->tcps_reclaim_tid = 0; 21890 mutex_exit(&tcps->tcps_reclaim_lock); 21891 /* Only need to print this once. */ 21892 if (tcps->tcps_netstack->netstack_stackid == GLOBAL_ZONEID) 21893 cmn_err(CE_WARN, "TCP defensive mode off\n"); 21894 } 21895 21896 /* 21897 * Kmem reclaim call back function. When the system is under memory 21898 * pressure, we set the TCP stack variable tcps_reclaim to true. This 21899 * variable is reset to false after tcps_reclaim_period msecs. During this 21900 * period, TCP will be more aggressive in aborting connections not making 21901 * progress, meaning retransmitting for some time (tcp_early_abort seconds). 21902 * TCP will also not accept new connection request for those listeners whose 21903 * q or q0 is not empty. 21904 */ 21905 /* ARGSUSED */ 21906 void 21907 tcp_conn_reclaim(void *arg) 21908 { 21909 netstack_handle_t nh; 21910 netstack_t *ns; 21911 tcp_stack_t *tcps; 21912 boolean_t new = B_FALSE; 21913 21914 netstack_next_init(&nh); 21915 while ((ns = netstack_next(&nh)) != NULL) { 21916 tcps = ns->netstack_tcp; 21917 mutex_enter(&tcps->tcps_reclaim_lock); 21918 if (!tcps->tcps_reclaim) { 21919 tcps->tcps_reclaim = B_TRUE; 21920 tcps->tcps_reclaim_tid = timeout(tcp_reclaim_timer, 21921 tcps, MSEC_TO_TICK(tcps->tcps_reclaim_period)); 21922 new = B_TRUE; 21923 } 21924 mutex_exit(&tcps->tcps_reclaim_lock); 21925 netstack_rele(ns); 21926 } 21927 netstack_next_fini(&nh); 21928 if (new) 21929 cmn_err(CE_WARN, "Memory pressure: TCP defensive mode on\n"); 21930 } 21931 21932 /* 21933 * Given a tcp_stack_t and a port (in host byte order), find a listener 21934 * configuration for that port and return the ratio. 21935 */ 21936 static uint32_t 21937 tcp_find_listener_conf(tcp_stack_t *tcps, in_port_t port) 21938 { 21939 tcp_listener_t *tl; 21940 uint32_t ratio = 0; 21941 21942 mutex_enter(&tcps->tcps_listener_conf_lock); 21943 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 21944 tl = list_next(&tcps->tcps_listener_conf, tl)) { 21945 if (tl->tl_port == port) { 21946 ratio = tl->tl_ratio; 21947 break; 21948 } 21949 } 21950 mutex_exit(&tcps->tcps_listener_conf_lock); 21951 return (ratio); 21952 } 21953 21954 /* 21955 * Ndd param helper routine to return the current list of listener limit 21956 * configuration. 21957 */ 21958 /* ARGSUSED */ 21959 static int 21960 tcp_listener_conf_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 21961 { 21962 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21963 tcp_listener_t *tl; 21964 21965 mutex_enter(&tcps->tcps_listener_conf_lock); 21966 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 21967 tl = list_next(&tcps->tcps_listener_conf, tl)) { 21968 (void) mi_mpprintf(mp, "%d:%d ", tl->tl_port, tl->tl_ratio); 21969 } 21970 mutex_exit(&tcps->tcps_listener_conf_lock); 21971 return (0); 21972 } 21973 21974 /* 21975 * Ndd param helper routine to add a new listener limit configuration. 21976 */ 21977 /* ARGSUSED */ 21978 static int 21979 tcp_listener_conf_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 21980 cred_t *cr) 21981 { 21982 tcp_listener_t *new_tl; 21983 tcp_listener_t *tl; 21984 long lport; 21985 long ratio; 21986 char *colon; 21987 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21988 21989 if (ddi_strtol(value, &colon, 10, &lport) != 0 || lport <= 0 || 21990 lport > USHRT_MAX || *colon != ':') { 21991 return (EINVAL); 21992 } 21993 if (ddi_strtol(colon + 1, NULL, 10, &ratio) != 0 || ratio <= 0) 21994 return (EINVAL); 21995 21996 mutex_enter(&tcps->tcps_listener_conf_lock); 21997 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 21998 tl = list_next(&tcps->tcps_listener_conf, tl)) { 21999 /* There is an existing entry, so update its ratio value. */ 22000 if (tl->tl_port == lport) { 22001 tl->tl_ratio = ratio; 22002 mutex_exit(&tcps->tcps_listener_conf_lock); 22003 return (0); 22004 } 22005 } 22006 22007 if ((new_tl = kmem_alloc(sizeof (tcp_listener_t), KM_NOSLEEP)) == 22008 NULL) { 22009 mutex_exit(&tcps->tcps_listener_conf_lock); 22010 return (ENOMEM); 22011 } 22012 22013 new_tl->tl_port = lport; 22014 new_tl->tl_ratio = ratio; 22015 list_insert_tail(&tcps->tcps_listener_conf, new_tl); 22016 mutex_exit(&tcps->tcps_listener_conf_lock); 22017 return (0); 22018 } 22019 22020 /* 22021 * Ndd param helper routine to remove a listener limit configuration. 22022 */ 22023 /* ARGSUSED */ 22024 static int 22025 tcp_listener_conf_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22026 cred_t *cr) 22027 { 22028 tcp_listener_t *tl; 22029 long lport; 22030 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22031 22032 if (ddi_strtol(value, NULL, 10, &lport) != 0 || lport <= 0 || 22033 lport > USHRT_MAX) { 22034 return (EINVAL); 22035 } 22036 mutex_enter(&tcps->tcps_listener_conf_lock); 22037 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22038 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22039 if (tl->tl_port == lport) { 22040 list_remove(&tcps->tcps_listener_conf, tl); 22041 mutex_exit(&tcps->tcps_listener_conf_lock); 22042 kmem_free(tl, sizeof (tcp_listener_t)); 22043 return (0); 22044 } 22045 } 22046 mutex_exit(&tcps->tcps_listener_conf_lock); 22047 return (ESRCH); 22048 } 22049 22050 /* 22051 * To remove all listener limit configuration in a tcp_stack_t. 22052 */ 22053 static void 22054 tcp_listener_conf_cleanup(tcp_stack_t *tcps) 22055 { 22056 tcp_listener_t *tl; 22057 22058 mutex_enter(&tcps->tcps_listener_conf_lock); 22059 while ((tl = list_head(&tcps->tcps_listener_conf)) != NULL) { 22060 list_remove(&tcps->tcps_listener_conf, tl); 22061 kmem_free(tl, sizeof (tcp_listener_t)); 22062 } 22063 mutex_destroy(&tcps->tcps_listener_conf_lock); 22064 list_destroy(&tcps->tcps_listener_conf); 22065 } 22066