1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/stropts.h> 29 #include <sys/errno.h> 30 #include <sys/ddi.h> 31 #include <sys/debug.h> 32 #include <sys/cmn_err.h> 33 #include <sys/stream.h> 34 #include <sys/strlog.h> 35 #include <sys/kmem.h> 36 #include <sys/sunddi.h> 37 #include <sys/tihdr.h> 38 #include <sys/atomic.h> 39 #include <sys/socket.h> 40 #include <sys/sysmacros.h> 41 #include <sys/crypto/common.h> 42 #include <sys/crypto/api.h> 43 #include <sys/zone.h> 44 #include <netinet/in.h> 45 #include <net/if.h> 46 #include <net/pfkeyv2.h> 47 #include <inet/common.h> 48 #include <netinet/ip6.h> 49 #include <inet/ip.h> 50 #include <inet/ip_ire.h> 51 #include <inet/ip6.h> 52 #include <inet/ipsec_info.h> 53 #include <inet/tcp.h> 54 #include <inet/sadb.h> 55 #include <inet/ipsec_impl.h> 56 #include <inet/ipsecah.h> 57 #include <inet/ipsecesp.h> 58 #include <sys/random.h> 59 #include <sys/dlpi.h> 60 #include <sys/iphada.h> 61 #include <inet/ip_if.h> 62 #include <inet/ipdrop.h> 63 #include <inet/ipclassifier.h> 64 #include <inet/sctp_ip.h> 65 #include <inet/tun.h> 66 67 /* 68 * This source file contains Security Association Database (SADB) common 69 * routines. They are linked in with the AH module. Since AH has no chance 70 * of falling under export control, it was safe to link it in there. 71 */ 72 73 static mblk_t *sadb_extended_acquire(ipsec_selector_t *, ipsec_policy_t *, 74 ipsec_action_t *, boolean_t, uint32_t, uint32_t, netstack_t *); 75 static void sadb_ill_df(ill_t *, mblk_t *, isaf_t *, int, boolean_t); 76 static ipsa_t *sadb_torch_assoc(isaf_t *, ipsa_t *, boolean_t, mblk_t **); 77 static void sadb_drain_torchq(queue_t *, mblk_t *); 78 static void sadb_destroy_acqlist(iacqf_t **, uint_t, boolean_t, 79 netstack_t *); 80 static void sadb_destroy(sadb_t *, netstack_t *); 81 static mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *); 82 83 static time_t sadb_add_time(time_t, uint64_t); 84 static void lifetime_fuzz(ipsa_t *); 85 static void age_pair_peer_list(templist_t *, sadb_t *, boolean_t); 86 static void ipsa_set_replay(ipsa_t *ipsa, uint32_t offset); 87 88 extern void (*cl_inet_getspi)(netstackid_t stack_id, uint8_t protocol, 89 uint8_t *ptr, size_t len, void *args); 90 extern int (*cl_inet_checkspi)(netstackid_t stack_id, uint8_t protocol, 91 uint32_t spi, void *args); 92 extern void (*cl_inet_deletespi)(netstackid_t stack_id, uint8_t protocol, 93 uint32_t spi, void *args); 94 95 /* 96 * ipsacq_maxpackets is defined here to make it tunable 97 * from /etc/system. 98 */ 99 extern uint64_t ipsacq_maxpackets; 100 101 #define SET_EXPIRE(sa, delta, exp) { \ 102 if (((sa)->ipsa_ ## delta) != 0) { \ 103 (sa)->ipsa_ ## exp = sadb_add_time((sa)->ipsa_addtime, \ 104 (sa)->ipsa_ ## delta); \ 105 } \ 106 } 107 108 #define UPDATE_EXPIRE(sa, delta, exp) { \ 109 if (((sa)->ipsa_ ## delta) != 0) { \ 110 time_t tmp = sadb_add_time((sa)->ipsa_usetime, \ 111 (sa)->ipsa_ ## delta); \ 112 if (((sa)->ipsa_ ## exp) == 0) \ 113 (sa)->ipsa_ ## exp = tmp; \ 114 else \ 115 (sa)->ipsa_ ## exp = \ 116 MIN((sa)->ipsa_ ## exp, tmp); \ 117 } \ 118 } 119 120 121 /* wrap the macro so we can pass it as a function pointer */ 122 void 123 sadb_sa_refrele(void *target) 124 { 125 IPSA_REFRELE(((ipsa_t *)target)); 126 } 127 128 /* 129 * We presume that sizeof (long) == sizeof (time_t) and that time_t is 130 * a signed type. 131 */ 132 #define TIME_MAX LONG_MAX 133 134 /* 135 * PF_KEY gives us lifetimes in uint64_t seconds. We presume that 136 * time_t is defined to be a signed type with the same range as 137 * "long". On ILP32 systems, we thus run the risk of wrapping around 138 * at end of time, as well as "overwrapping" the clock back around 139 * into a seemingly valid but incorrect future date earlier than the 140 * desired expiration. 141 * 142 * In order to avoid odd behavior (either negative lifetimes or loss 143 * of high order bits) when someone asks for bizarrely long SA 144 * lifetimes, we do a saturating add for expire times. 145 * 146 * We presume that ILP32 systems will be past end of support life when 147 * the 32-bit time_t overflows (a dangerous assumption, mind you..). 148 * 149 * On LP64, 2^64 seconds are about 5.8e11 years, at which point we 150 * will hopefully have figured out clever ways to avoid the use of 151 * fixed-sized integers in computation. 152 */ 153 static time_t 154 sadb_add_time(time_t base, uint64_t delta) 155 { 156 time_t sum; 157 158 /* 159 * Clip delta to the maximum possible time_t value to 160 * prevent "overwrapping" back into a shorter-than-desired 161 * future time. 162 */ 163 if (delta > TIME_MAX) 164 delta = TIME_MAX; 165 /* 166 * This sum may still overflow. 167 */ 168 sum = base + delta; 169 170 /* 171 * .. so if the result is less than the base, we overflowed. 172 */ 173 if (sum < base) 174 sum = TIME_MAX; 175 176 return (sum); 177 } 178 179 /* 180 * Callers of this function have already created a working security 181 * association, and have found the appropriate table & hash chain. All this 182 * function does is check duplicates, and insert the SA. The caller needs to 183 * hold the hash bucket lock and increment the refcnt before insertion. 184 * 185 * Return 0 if success, EEXIST if collision. 186 */ 187 #define SA_UNIQUE_MATCH(sa1, sa2) \ 188 (((sa1)->ipsa_unique_id & (sa1)->ipsa_unique_mask) == \ 189 ((sa2)->ipsa_unique_id & (sa2)->ipsa_unique_mask)) 190 191 int 192 sadb_insertassoc(ipsa_t *ipsa, isaf_t *bucket) 193 { 194 ipsa_t **ptpn = NULL; 195 ipsa_t *walker; 196 boolean_t unspecsrc; 197 198 ASSERT(MUTEX_HELD(&bucket->isaf_lock)); 199 200 unspecsrc = IPSA_IS_ADDR_UNSPEC(ipsa->ipsa_srcaddr, ipsa->ipsa_addrfam); 201 202 walker = bucket->isaf_ipsa; 203 ASSERT(walker == NULL || ipsa->ipsa_addrfam == walker->ipsa_addrfam); 204 205 /* 206 * Find insertion point (pointed to with **ptpn). Insert at the head 207 * of the list unless there's an unspecified source address, then 208 * insert it after the last SA with a specified source address. 209 * 210 * BTW, you'll have to walk the whole chain, matching on {DST, SPI} 211 * checking for collisions. 212 */ 213 214 while (walker != NULL) { 215 if (IPSA_ARE_ADDR_EQUAL(walker->ipsa_dstaddr, 216 ipsa->ipsa_dstaddr, ipsa->ipsa_addrfam)) { 217 if (walker->ipsa_spi == ipsa->ipsa_spi) 218 return (EEXIST); 219 220 mutex_enter(&walker->ipsa_lock); 221 if (ipsa->ipsa_state == IPSA_STATE_MATURE && 222 (walker->ipsa_flags & IPSA_F_USED) && 223 SA_UNIQUE_MATCH(walker, ipsa)) { 224 walker->ipsa_flags |= IPSA_F_CINVALID; 225 } 226 mutex_exit(&walker->ipsa_lock); 227 } 228 229 if (ptpn == NULL && unspecsrc) { 230 if (IPSA_IS_ADDR_UNSPEC(walker->ipsa_srcaddr, 231 walker->ipsa_addrfam)) 232 ptpn = walker->ipsa_ptpn; 233 else if (walker->ipsa_next == NULL) 234 ptpn = &walker->ipsa_next; 235 } 236 237 walker = walker->ipsa_next; 238 } 239 240 if (ptpn == NULL) 241 ptpn = &bucket->isaf_ipsa; 242 ipsa->ipsa_next = *ptpn; 243 ipsa->ipsa_ptpn = ptpn; 244 if (ipsa->ipsa_next != NULL) 245 ipsa->ipsa_next->ipsa_ptpn = &ipsa->ipsa_next; 246 *ptpn = ipsa; 247 ipsa->ipsa_linklock = &bucket->isaf_lock; 248 249 return (0); 250 } 251 #undef SA_UNIQUE_MATCH 252 253 /* 254 * Free a security association. Its reference count is 0, which means 255 * I must free it. The SA must be unlocked and must not be linked into 256 * any fanout list. 257 */ 258 static void 259 sadb_freeassoc(ipsa_t *ipsa) 260 { 261 ipsec_stack_t *ipss = ipsa->ipsa_netstack->netstack_ipsec; 262 263 ASSERT(ipss != NULL); 264 ASSERT(MUTEX_NOT_HELD(&ipsa->ipsa_lock)); 265 ASSERT(ipsa->ipsa_refcnt == 0); 266 ASSERT(ipsa->ipsa_next == NULL); 267 ASSERT(ipsa->ipsa_ptpn == NULL); 268 269 mutex_enter(&ipsa->ipsa_lock); 270 /* Don't call sadb_clear_lpkt() since we hold the ipsa_lock anyway. */ 271 ip_drop_packet(ipsa->ipsa_lpkt, B_TRUE, NULL, NULL, 272 DROPPER(ipss, ipds_sadb_inlarval_timeout), 273 &ipss->ipsec_sadb_dropper); 274 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_AUTH); 275 ipsec_destroy_ctx_tmpl(ipsa, IPSEC_ALG_ENCR); 276 mutex_exit(&ipsa->ipsa_lock); 277 278 /* bzero() these fields for paranoia's sake. */ 279 if (ipsa->ipsa_authkey != NULL) { 280 bzero(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen); 281 kmem_free(ipsa->ipsa_authkey, ipsa->ipsa_authkeylen); 282 } 283 if (ipsa->ipsa_encrkey != NULL) { 284 bzero(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen); 285 kmem_free(ipsa->ipsa_encrkey, ipsa->ipsa_encrkeylen); 286 } 287 if (ipsa->ipsa_src_cid != NULL) { 288 IPSID_REFRELE(ipsa->ipsa_src_cid); 289 } 290 if (ipsa->ipsa_dst_cid != NULL) { 291 IPSID_REFRELE(ipsa->ipsa_dst_cid); 292 } 293 if (ipsa->ipsa_integ != NULL) 294 kmem_free(ipsa->ipsa_integ, ipsa->ipsa_integlen); 295 if (ipsa->ipsa_sens != NULL) 296 kmem_free(ipsa->ipsa_sens, ipsa->ipsa_senslen); 297 298 mutex_destroy(&ipsa->ipsa_lock); 299 kmem_free(ipsa, sizeof (*ipsa)); 300 } 301 302 /* 303 * Unlink a security association from a hash bucket. Assume the hash bucket 304 * lock is held, but the association's lock is not. 305 * 306 * Note that we do not bump the bucket's generation number here because 307 * we might not be making a visible change to the set of visible SA's. 308 * All callers MUST bump the bucket's generation number before they unlock 309 * the bucket if they use sadb_unlinkassoc to permanetly remove an SA which 310 * was present in the bucket at the time it was locked. 311 */ 312 void 313 sadb_unlinkassoc(ipsa_t *ipsa) 314 { 315 ASSERT(ipsa->ipsa_linklock != NULL); 316 ASSERT(MUTEX_HELD(ipsa->ipsa_linklock)); 317 318 /* These fields are protected by the link lock. */ 319 *(ipsa->ipsa_ptpn) = ipsa->ipsa_next; 320 if (ipsa->ipsa_next != NULL) { 321 ipsa->ipsa_next->ipsa_ptpn = ipsa->ipsa_ptpn; 322 ipsa->ipsa_next = NULL; 323 } 324 325 ipsa->ipsa_ptpn = NULL; 326 327 /* This may destroy the SA. */ 328 IPSA_REFRELE(ipsa); 329 } 330 331 void 332 sadb_delete_cluster(ipsa_t *assoc) 333 { 334 uint8_t protocol; 335 336 if (cl_inet_deletespi && 337 ((assoc->ipsa_state == IPSA_STATE_LARVAL) || 338 (assoc->ipsa_state == IPSA_STATE_MATURE))) { 339 protocol = (assoc->ipsa_type == SADB_SATYPE_AH) ? 340 IPPROTO_AH : IPPROTO_ESP; 341 cl_inet_deletespi(assoc->ipsa_netstack->netstack_stackid, 342 protocol, assoc->ipsa_spi, NULL); 343 } 344 } 345 346 /* 347 * Create a larval security association with the specified SPI. All other 348 * fields are zeroed. 349 */ 350 static ipsa_t * 351 sadb_makelarvalassoc(uint32_t spi, uint32_t *src, uint32_t *dst, int addrfam, 352 netstack_t *ns) 353 { 354 ipsa_t *newbie; 355 356 /* 357 * Allocate... 358 */ 359 360 newbie = (ipsa_t *)kmem_zalloc(sizeof (ipsa_t), KM_NOSLEEP); 361 if (newbie == NULL) { 362 /* Can't make new larval SA. */ 363 return (NULL); 364 } 365 366 /* Assigned requested SPI, assume caller does SPI allocation magic. */ 367 newbie->ipsa_spi = spi; 368 newbie->ipsa_netstack = ns; /* No netstack_hold */ 369 370 /* 371 * Copy addresses... 372 */ 373 374 IPSA_COPY_ADDR(newbie->ipsa_srcaddr, src, addrfam); 375 IPSA_COPY_ADDR(newbie->ipsa_dstaddr, dst, addrfam); 376 377 newbie->ipsa_addrfam = addrfam; 378 379 /* 380 * Set common initialization values, including refcnt. 381 */ 382 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL); 383 newbie->ipsa_state = IPSA_STATE_LARVAL; 384 newbie->ipsa_refcnt = 1; 385 newbie->ipsa_freefunc = sadb_freeassoc; 386 387 /* 388 * There aren't a lot of other common initialization values, as 389 * they are copied in from the PF_KEY message. 390 */ 391 392 return (newbie); 393 } 394 395 /* 396 * Call me to initialize a security association fanout. 397 */ 398 static int 399 sadb_init_fanout(isaf_t **tablep, uint_t size, int kmflag) 400 { 401 isaf_t *table; 402 int i; 403 404 table = (isaf_t *)kmem_alloc(size * sizeof (*table), kmflag); 405 *tablep = table; 406 407 if (table == NULL) 408 return (ENOMEM); 409 410 for (i = 0; i < size; i++) { 411 mutex_init(&(table[i].isaf_lock), NULL, MUTEX_DEFAULT, NULL); 412 table[i].isaf_ipsa = NULL; 413 table[i].isaf_gen = 0; 414 } 415 416 return (0); 417 } 418 419 /* 420 * Call me to initialize an acquire fanout 421 */ 422 static int 423 sadb_init_acfanout(iacqf_t **tablep, uint_t size, int kmflag) 424 { 425 iacqf_t *table; 426 int i; 427 428 table = (iacqf_t *)kmem_alloc(size * sizeof (*table), kmflag); 429 *tablep = table; 430 431 if (table == NULL) 432 return (ENOMEM); 433 434 for (i = 0; i < size; i++) { 435 mutex_init(&(table[i].iacqf_lock), NULL, MUTEX_DEFAULT, NULL); 436 table[i].iacqf_ipsacq = NULL; 437 } 438 439 return (0); 440 } 441 442 /* 443 * Attempt to initialize an SADB instance. On failure, return ENOMEM; 444 * caller must clean up partial allocations. 445 */ 446 static int 447 sadb_init_trial(sadb_t *sp, uint_t size, int kmflag) 448 { 449 ASSERT(sp->sdb_of == NULL); 450 ASSERT(sp->sdb_if == NULL); 451 ASSERT(sp->sdb_acq == NULL); 452 453 sp->sdb_hashsize = size; 454 if (sadb_init_fanout(&sp->sdb_of, size, kmflag) != 0) 455 return (ENOMEM); 456 if (sadb_init_fanout(&sp->sdb_if, size, kmflag) != 0) 457 return (ENOMEM); 458 if (sadb_init_acfanout(&sp->sdb_acq, size, kmflag) != 0) 459 return (ENOMEM); 460 461 return (0); 462 } 463 464 /* 465 * Call me to initialize an SADB instance; fall back to default size on failure. 466 */ 467 static void 468 sadb_init(const char *name, sadb_t *sp, uint_t size, uint_t ver, 469 netstack_t *ns) 470 { 471 ASSERT(sp->sdb_of == NULL); 472 ASSERT(sp->sdb_if == NULL); 473 ASSERT(sp->sdb_acq == NULL); 474 475 if (size < IPSEC_DEFAULT_HASH_SIZE) 476 size = IPSEC_DEFAULT_HASH_SIZE; 477 478 if (sadb_init_trial(sp, size, KM_NOSLEEP) != 0) { 479 480 cmn_err(CE_WARN, 481 "Unable to allocate %u entry IPv%u %s SADB hash table", 482 size, ver, name); 483 484 sadb_destroy(sp, ns); 485 size = IPSEC_DEFAULT_HASH_SIZE; 486 cmn_err(CE_WARN, "Falling back to %d entries", size); 487 (void) sadb_init_trial(sp, size, KM_SLEEP); 488 } 489 } 490 491 492 /* 493 * Initialize an SADB-pair. 494 */ 495 void 496 sadbp_init(const char *name, sadbp_t *sp, int type, int size, netstack_t *ns) 497 { 498 sadb_init(name, &sp->s_v4, size, 4, ns); 499 sadb_init(name, &sp->s_v6, size, 6, ns); 500 501 sp->s_satype = type; 502 503 ASSERT((type == SADB_SATYPE_AH) || (type == SADB_SATYPE_ESP)); 504 if (type == SADB_SATYPE_AH) { 505 ipsec_stack_t *ipss = ns->netstack_ipsec; 506 507 ip_drop_register(&ipss->ipsec_sadb_dropper, "IPsec SADB"); 508 sp->s_addflags = AH_ADD_SETTABLE_FLAGS; 509 sp->s_updateflags = AH_UPDATE_SETTABLE_FLAGS; 510 } else { 511 sp->s_addflags = ESP_ADD_SETTABLE_FLAGS; 512 sp->s_updateflags = ESP_UPDATE_SETTABLE_FLAGS; 513 } 514 } 515 516 /* 517 * Deliver a single SADB_DUMP message representing a single SA. This is 518 * called many times by sadb_dump(). 519 * 520 * If the return value of this is ENOBUFS (not the same as ENOMEM), then 521 * the caller should take that as a hint that dupb() on the "original answer" 522 * failed, and that perhaps the caller should try again with a copyb()ed 523 * "original answer". 524 */ 525 static int 526 sadb_dump_deliver(queue_t *pfkey_q, mblk_t *original_answer, ipsa_t *ipsa, 527 sadb_msg_t *samsg) 528 { 529 mblk_t *answer; 530 531 answer = dupb(original_answer); 532 if (answer == NULL) 533 return (ENOBUFS); 534 answer->b_cont = sadb_sa2msg(ipsa, samsg); 535 if (answer->b_cont == NULL) { 536 freeb(answer); 537 return (ENOMEM); 538 } 539 540 /* Just do a putnext, and let keysock deal with flow control. */ 541 putnext(pfkey_q, answer); 542 return (0); 543 } 544 545 /* 546 * Common function to allocate and prepare a keysock_out_t M_CTL message. 547 */ 548 mblk_t * 549 sadb_keysock_out(minor_t serial) 550 { 551 mblk_t *mp; 552 keysock_out_t *kso; 553 554 mp = allocb(sizeof (ipsec_info_t), BPRI_HI); 555 if (mp != NULL) { 556 mp->b_datap->db_type = M_CTL; 557 mp->b_wptr += sizeof (ipsec_info_t); 558 kso = (keysock_out_t *)mp->b_rptr; 559 kso->ks_out_type = KEYSOCK_OUT; 560 kso->ks_out_len = sizeof (*kso); 561 kso->ks_out_serial = serial; 562 } 563 564 return (mp); 565 } 566 567 /* 568 * Perform an SADB_DUMP, spewing out every SA in an array of SA fanouts 569 * to keysock. 570 */ 571 static int 572 sadb_dump_fanout(queue_t *pfkey_q, mblk_t *mp, minor_t serial, isaf_t *fanout, 573 int num_entries, boolean_t do_peers, time_t active_time) 574 { 575 int i, error = 0; 576 mblk_t *original_answer; 577 ipsa_t *walker; 578 sadb_msg_t *samsg; 579 time_t current; 580 581 /* 582 * For each IPSA hash bucket do: 583 * - Hold the mutex 584 * - Walk each entry, doing an sadb_dump_deliver() on it. 585 */ 586 ASSERT(mp->b_cont != NULL); 587 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 588 589 original_answer = sadb_keysock_out(serial); 590 if (original_answer == NULL) 591 return (ENOMEM); 592 593 current = gethrestime_sec(); 594 for (i = 0; i < num_entries; i++) { 595 mutex_enter(&fanout[i].isaf_lock); 596 for (walker = fanout[i].isaf_ipsa; walker != NULL; 597 walker = walker->ipsa_next) { 598 if (!do_peers && walker->ipsa_haspeer) 599 continue; 600 if ((active_time != 0) && 601 ((current - walker->ipsa_lastuse) > active_time)) 602 continue; 603 error = sadb_dump_deliver(pfkey_q, original_answer, 604 walker, samsg); 605 if (error == ENOBUFS) { 606 mblk_t *new_original_answer; 607 608 /* Ran out of dupb's. Try a copyb. */ 609 new_original_answer = copyb(original_answer); 610 if (new_original_answer == NULL) { 611 error = ENOMEM; 612 } else { 613 freeb(original_answer); 614 original_answer = new_original_answer; 615 error = sadb_dump_deliver(pfkey_q, 616 original_answer, walker, samsg); 617 } 618 } 619 if (error != 0) 620 break; /* out of for loop. */ 621 } 622 mutex_exit(&fanout[i].isaf_lock); 623 if (error != 0) 624 break; /* out of for loop. */ 625 } 626 627 freeb(original_answer); 628 return (error); 629 } 630 631 /* 632 * Dump an entire SADB; outbound first, then inbound. 633 */ 634 635 int 636 sadb_dump(queue_t *pfkey_q, mblk_t *mp, keysock_in_t *ksi, sadb_t *sp) 637 { 638 int error; 639 time_t active_time = 0; 640 sadb_x_edump_t *edump = 641 (sadb_x_edump_t *)ksi->ks_in_extv[SADB_X_EXT_EDUMP]; 642 643 if (edump != NULL) { 644 active_time = edump->sadb_x_edump_timeout; 645 } 646 647 /* Dump outbound */ 648 error = sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_of, 649 sp->sdb_hashsize, B_TRUE, active_time); 650 if (error) 651 return (error); 652 653 /* Dump inbound */ 654 return sadb_dump_fanout(pfkey_q, mp, ksi->ks_in_serial, sp->sdb_if, 655 sp->sdb_hashsize, B_FALSE, active_time); 656 } 657 658 /* 659 * Generic sadb table walker. 660 * 661 * Call "walkfn" for each SA in each bucket in "table"; pass the 662 * bucket, the entry and "cookie" to the callback function. 663 * Take care to ensure that walkfn can delete the SA without screwing 664 * up our traverse. 665 * 666 * The bucket is locked for the duration of the callback, both so that the 667 * callback can just call sadb_unlinkassoc() when it wants to delete something, 668 * and so that no new entries are added while we're walking the list. 669 */ 670 static void 671 sadb_walker(isaf_t *table, uint_t numentries, 672 void (*walkfn)(isaf_t *head, ipsa_t *entry, void *cookie), 673 void *cookie) 674 { 675 int i; 676 for (i = 0; i < numentries; i++) { 677 ipsa_t *entry, *next; 678 679 mutex_enter(&table[i].isaf_lock); 680 681 for (entry = table[i].isaf_ipsa; entry != NULL; 682 entry = next) { 683 next = entry->ipsa_next; 684 (*walkfn)(&table[i], entry, cookie); 685 } 686 mutex_exit(&table[i].isaf_lock); 687 } 688 } 689 690 /* 691 * From the given SA, construct a dl_ct_ipsec_key and 692 * a dl_ct_ipsec structures to be sent to the adapter as part 693 * of a DL_CONTROL_REQ. 694 * 695 * ct_sa must point to the storage allocated for the key 696 * structure and must be followed by storage allocated 697 * for the SA information that must be sent to the driver 698 * as part of the DL_CONTROL_REQ request. 699 * 700 * The is_inbound boolean indicates whether the specified 701 * SA is part of an inbound SA table. 702 * 703 * Returns B_TRUE if the corresponding SA must be passed to 704 * a provider, B_FALSE otherwise; frees *mp if it returns B_FALSE. 705 */ 706 static boolean_t 707 sadb_req_from_sa(ipsa_t *sa, mblk_t *mp, boolean_t is_inbound) 708 { 709 dl_ct_ipsec_key_t *keyp; 710 dl_ct_ipsec_t *sap; 711 void *ct_sa = mp->b_wptr; 712 713 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 714 715 keyp = (dl_ct_ipsec_key_t *)(ct_sa); 716 sap = (dl_ct_ipsec_t *)(keyp + 1); 717 718 IPSECHW_DEBUG(IPSECHW_CAPAB, ("sadb_req_from_sa: " 719 "is_inbound = %d\n", is_inbound)); 720 721 /* initialize flag */ 722 sap->sadb_sa_flags = 0; 723 if (is_inbound) { 724 sap->sadb_sa_flags |= DL_CT_IPSEC_INBOUND; 725 /* 726 * If an inbound SA has a peer, then mark it has being 727 * an outbound SA as well. 728 */ 729 if (sa->ipsa_haspeer) 730 sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND; 731 } else { 732 /* 733 * If an outbound SA has a peer, then don't send it, 734 * since we will send the copy from the inbound table. 735 */ 736 if (sa->ipsa_haspeer) { 737 freemsg(mp); 738 return (B_FALSE); 739 } 740 sap->sadb_sa_flags |= DL_CT_IPSEC_OUTBOUND; 741 } 742 743 keyp->dl_key_spi = sa->ipsa_spi; 744 bcopy(sa->ipsa_dstaddr, keyp->dl_key_dest_addr, 745 DL_CTL_IPSEC_ADDR_LEN); 746 keyp->dl_key_addr_family = sa->ipsa_addrfam; 747 748 sap->sadb_sa_auth = sa->ipsa_auth_alg; 749 sap->sadb_sa_encrypt = sa->ipsa_encr_alg; 750 751 sap->sadb_key_len_a = sa->ipsa_authkeylen; 752 sap->sadb_key_bits_a = sa->ipsa_authkeybits; 753 bcopy(sa->ipsa_authkey, 754 sap->sadb_key_data_a, sap->sadb_key_len_a); 755 756 sap->sadb_key_len_e = sa->ipsa_encrkeylen; 757 sap->sadb_key_bits_e = sa->ipsa_encrkeybits; 758 bcopy(sa->ipsa_encrkey, 759 sap->sadb_key_data_e, sap->sadb_key_len_e); 760 761 mp->b_wptr += sizeof (dl_ct_ipsec_t) + sizeof (dl_ct_ipsec_key_t); 762 return (B_TRUE); 763 } 764 765 /* 766 * Called from AH or ESP to format a message which will be used to inform 767 * IPsec-acceleration-capable ills of a SADB change. 768 * (It is not possible to send the message to IP directly from this function 769 * since the SA, if any, is locked during the call). 770 * 771 * dl_operation: DL_CONTROL_REQ operation (add, delete, update, etc) 772 * sa_type: identifies whether the operation applies to AH or ESP 773 * (must be one of SADB_SATYPE_AH or SADB_SATYPE_ESP) 774 * sa: Pointer to an SA. Must be non-NULL and locked 775 * for ADD, DELETE, GET, and UPDATE operations. 776 * This function returns an mblk chain that must be passed to IP 777 * for forwarding to the IPsec capable providers. 778 */ 779 mblk_t * 780 sadb_fmt_sa_req(uint_t dl_operation, uint_t sa_type, ipsa_t *sa, 781 boolean_t is_inbound) 782 { 783 mblk_t *mp; 784 dl_control_req_t *ctrl; 785 boolean_t need_key = B_FALSE; 786 mblk_t *ctl_mp = NULL; 787 ipsec_ctl_t *ctl; 788 789 /* 790 * 1 allocate and initialize DL_CONTROL_REQ M_PROTO 791 * 2 if a key is needed for the operation 792 * 2.1 initialize key 793 * 2.2 if a full SA is needed for the operation 794 * 2.2.1 initialize full SA info 795 * 3 return message; caller will call ill_ipsec_capab_send_all() 796 * to send the resulting message to IPsec capable ills. 797 */ 798 799 ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP); 800 801 /* 802 * Allocate DL_CONTROL_REQ M_PROTO 803 * We allocate room for the SA even if it's not needed 804 * by some of the operations (for example flush) 805 */ 806 mp = allocb(sizeof (dl_control_req_t) + 807 sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI); 808 if (mp == NULL) 809 return (NULL); 810 mp->b_datap->db_type = M_PROTO; 811 812 /* initialize dl_control_req_t */ 813 ctrl = (dl_control_req_t *)mp->b_wptr; 814 ctrl->dl_primitive = DL_CONTROL_REQ; 815 ctrl->dl_operation = dl_operation; 816 ctrl->dl_type = sa_type == SADB_SATYPE_AH ? DL_CT_IPSEC_AH : 817 DL_CT_IPSEC_ESP; 818 ctrl->dl_key_offset = sizeof (dl_control_req_t); 819 ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t); 820 ctrl->dl_data_offset = sizeof (dl_control_req_t) + 821 sizeof (dl_ct_ipsec_key_t); 822 ctrl->dl_data_length = sizeof (dl_ct_ipsec_t); 823 mp->b_wptr += sizeof (dl_control_req_t); 824 825 if ((dl_operation == DL_CO_SET) || (dl_operation == DL_CO_DELETE)) { 826 ASSERT(sa != NULL); 827 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 828 829 need_key = B_TRUE; 830 831 /* 832 * Initialize key and SA data. Note that for some 833 * operations the SA data is ignored by the provider 834 * (delete, etc.) 835 */ 836 if (!sadb_req_from_sa(sa, mp, is_inbound)) 837 return (NULL); 838 } 839 840 /* construct control message */ 841 ctl_mp = allocb(sizeof (ipsec_ctl_t), BPRI_HI); 842 if (ctl_mp == NULL) { 843 cmn_err(CE_WARN, "sadb_fmt_sa_req: allocb failed\n"); 844 freemsg(mp); 845 return (NULL); 846 } 847 848 ctl_mp->b_datap->db_type = M_CTL; 849 ctl_mp->b_wptr += sizeof (ipsec_ctl_t); 850 ctl_mp->b_cont = mp; 851 852 ctl = (ipsec_ctl_t *)ctl_mp->b_rptr; 853 ctl->ipsec_ctl_type = IPSEC_CTL; 854 ctl->ipsec_ctl_len = sizeof (ipsec_ctl_t); 855 ctl->ipsec_ctl_sa_type = sa_type; 856 857 if (need_key) { 858 /* 859 * Keep an additional reference on SA, since it will be 860 * needed by IP to send control messages corresponding 861 * to that SA from its perimeter. IP will do a 862 * IPSA_REFRELE when done with the request. 863 */ 864 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 865 IPSA_REFHOLD(sa); 866 ctl->ipsec_ctl_sa = sa; 867 } else 868 ctl->ipsec_ctl_sa = NULL; 869 870 return (ctl_mp); 871 } 872 873 874 /* 875 * Called by sadb_ill_download() to dump the entries for a specific 876 * fanout table. For each SA entry in the table passed as argument, 877 * use mp as a template and constructs a full DL_CONTROL message, and 878 * call ill_dlpi_send(), provided by IP, to send the resulting 879 * messages to the ill. 880 */ 881 static void 882 sadb_ill_df(ill_t *ill, mblk_t *mp, isaf_t *fanout, int num_entries, 883 boolean_t is_inbound) 884 { 885 ipsa_t *walker; 886 mblk_t *nmp, *salist; 887 int i, error = 0; 888 ip_stack_t *ipst = ill->ill_ipst; 889 netstack_t *ns = ipst->ips_netstack; 890 891 IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_ill_df: fanout at 0x%p ne=%d\n", 892 (void *)fanout, num_entries)); 893 /* 894 * For each IPSA hash bucket do: 895 * - Hold the mutex 896 * - Walk each entry, sending a corresponding request to IP 897 * for it. 898 */ 899 ASSERT(mp->b_datap->db_type == M_PROTO); 900 901 for (i = 0; i < num_entries; i++) { 902 mutex_enter(&fanout[i].isaf_lock); 903 salist = NULL; 904 905 for (walker = fanout[i].isaf_ipsa; walker != NULL; 906 walker = walker->ipsa_next) { 907 IPSECHW_DEBUG(IPSECHW_SADB, 908 ("sadb_ill_df: sending SA to ill via IP \n")); 909 /* 910 * Duplicate the template mp passed and 911 * complete DL_CONTROL_REQ data. 912 * To be more memory efficient, we could use 913 * dupb() for the M_CTL and copyb() for the M_PROTO 914 * as the M_CTL, since the M_CTL is the same for 915 * every SA entry passed down to IP for the same ill. 916 * 917 * Note that copymsg/copyb ensure that the new mblk 918 * is at least as large as the source mblk even if it's 919 * not using all its storage -- therefore, nmp 920 * has trailing space for sadb_req_from_sa to add 921 * the SA-specific bits. 922 */ 923 mutex_enter(&walker->ipsa_lock); 924 if (ipsec_capab_match(ill, 925 ill->ill_phyint->phyint_ifindex, ill->ill_isv6, 926 walker, ns)) { 927 nmp = copymsg(mp); 928 if (nmp == NULL) { 929 IPSECHW_DEBUG(IPSECHW_SADB, 930 ("sadb_ill_df: alloc error\n")); 931 error = ENOMEM; 932 mutex_exit(&walker->ipsa_lock); 933 break; 934 } 935 if (sadb_req_from_sa(walker, nmp, is_inbound)) { 936 nmp->b_next = salist; 937 salist = nmp; 938 } 939 } 940 mutex_exit(&walker->ipsa_lock); 941 } 942 mutex_exit(&fanout[i].isaf_lock); 943 while (salist != NULL) { 944 nmp = salist; 945 salist = nmp->b_next; 946 nmp->b_next = NULL; 947 ill_dlpi_send(ill, nmp); 948 } 949 if (error != 0) 950 break; /* out of for loop. */ 951 } 952 } 953 954 /* 955 * Called by ill_ipsec_capab_add(). Sends a copy of the SADB of 956 * the type specified by sa_type to the specified ill. 957 * 958 * We call for each fanout table defined by the SADB (one per 959 * protocol). sadb_ill_df() finally calls ill_dlpi_send() for 960 * each SADB entry in order to send a corresponding DL_CONTROL_REQ 961 * message to the ill. 962 */ 963 void 964 sadb_ill_download(ill_t *ill, uint_t sa_type) 965 { 966 mblk_t *protomp; /* prototype message */ 967 dl_control_req_t *ctrl; 968 sadbp_t *spp; 969 sadb_t *sp; 970 int dlt; 971 ip_stack_t *ipst = ill->ill_ipst; 972 netstack_t *ns = ipst->ips_netstack; 973 974 ASSERT(sa_type == SADB_SATYPE_AH || sa_type == SADB_SATYPE_ESP); 975 976 /* 977 * Allocate and initialize prototype answer. A duplicate for 978 * each SA is sent down to the interface. 979 */ 980 981 /* DL_CONTROL_REQ M_PROTO mblk_t */ 982 protomp = allocb(sizeof (dl_control_req_t) + 983 sizeof (dl_ct_ipsec_key_t) + sizeof (dl_ct_ipsec_t), BPRI_HI); 984 if (protomp == NULL) 985 return; 986 protomp->b_datap->db_type = M_PROTO; 987 988 dlt = (sa_type == SADB_SATYPE_AH) ? DL_CT_IPSEC_AH : DL_CT_IPSEC_ESP; 989 if (sa_type == SADB_SATYPE_ESP) { 990 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 991 992 spp = &espstack->esp_sadb; 993 } else { 994 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 995 996 spp = &ahstack->ah_sadb; 997 } 998 999 ctrl = (dl_control_req_t *)protomp->b_wptr; 1000 ctrl->dl_primitive = DL_CONTROL_REQ; 1001 ctrl->dl_operation = DL_CO_SET; 1002 ctrl->dl_type = dlt; 1003 ctrl->dl_key_offset = sizeof (dl_control_req_t); 1004 ctrl->dl_key_length = sizeof (dl_ct_ipsec_key_t); 1005 ctrl->dl_data_offset = sizeof (dl_control_req_t) + 1006 sizeof (dl_ct_ipsec_key_t); 1007 ctrl->dl_data_length = sizeof (dl_ct_ipsec_t); 1008 protomp->b_wptr += sizeof (dl_control_req_t); 1009 1010 /* 1011 * then for each SADB entry, we fill out the dl_ct_ipsec_key_t 1012 * and dl_ct_ipsec_t 1013 */ 1014 sp = ill->ill_isv6 ? &(spp->s_v6) : &(spp->s_v4); 1015 sadb_ill_df(ill, protomp, sp->sdb_of, sp->sdb_hashsize, B_FALSE); 1016 sadb_ill_df(ill, protomp, sp->sdb_if, sp->sdb_hashsize, B_TRUE); 1017 freemsg(protomp); 1018 } 1019 1020 /* 1021 * Call me to free up a security association fanout. Use the forever 1022 * variable to indicate freeing up the SAs (forever == B_FALSE, e.g. 1023 * an SADB_FLUSH message), or destroying everything (forever == B_TRUE, 1024 * when a module is unloaded). 1025 */ 1026 static void 1027 sadb_destroyer(isaf_t **tablep, uint_t numentries, boolean_t forever, 1028 boolean_t inbound) 1029 { 1030 int i; 1031 isaf_t *table = *tablep; 1032 uint8_t protocol; 1033 ipsa_t *sa; 1034 netstackid_t sid; 1035 1036 if (table == NULL) 1037 return; 1038 1039 for (i = 0; i < numentries; i++) { 1040 mutex_enter(&table[i].isaf_lock); 1041 while ((sa = table[i].isaf_ipsa) != NULL) { 1042 if (inbound && cl_inet_deletespi && 1043 (sa->ipsa_state != IPSA_STATE_ACTIVE_ELSEWHERE) && 1044 (sa->ipsa_state != IPSA_STATE_IDLE)) { 1045 protocol = (sa->ipsa_type == SADB_SATYPE_AH) ? 1046 IPPROTO_AH : IPPROTO_ESP; 1047 sid = sa->ipsa_netstack->netstack_stackid; 1048 cl_inet_deletespi(sid, protocol, sa->ipsa_spi, 1049 NULL); 1050 } 1051 sadb_unlinkassoc(sa); 1052 } 1053 table[i].isaf_gen++; 1054 mutex_exit(&table[i].isaf_lock); 1055 if (forever) 1056 mutex_destroy(&(table[i].isaf_lock)); 1057 } 1058 1059 if (forever) { 1060 *tablep = NULL; 1061 kmem_free(table, numentries * sizeof (*table)); 1062 } 1063 } 1064 1065 /* 1066 * Entry points to sadb_destroyer(). 1067 */ 1068 static void 1069 sadb_flush(sadb_t *sp, netstack_t *ns) 1070 { 1071 /* 1072 * Flush out each bucket, one at a time. Were it not for keysock's 1073 * enforcement, there would be a subtlety where I could add on the 1074 * heels of a flush. With keysock's enforcement, however, this 1075 * makes ESP's job easy. 1076 */ 1077 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_FALSE, B_FALSE); 1078 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_FALSE, B_TRUE); 1079 1080 /* For each acquire, destroy it; leave the bucket mutex alone. */ 1081 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_FALSE, ns); 1082 } 1083 1084 static void 1085 sadb_destroy(sadb_t *sp, netstack_t *ns) 1086 { 1087 sadb_destroyer(&sp->sdb_of, sp->sdb_hashsize, B_TRUE, B_FALSE); 1088 sadb_destroyer(&sp->sdb_if, sp->sdb_hashsize, B_TRUE, B_TRUE); 1089 1090 /* For each acquire, destroy it, including the bucket mutex. */ 1091 sadb_destroy_acqlist(&sp->sdb_acq, sp->sdb_hashsize, B_TRUE, ns); 1092 1093 ASSERT(sp->sdb_of == NULL); 1094 ASSERT(sp->sdb_if == NULL); 1095 ASSERT(sp->sdb_acq == NULL); 1096 } 1097 1098 static void 1099 sadb_send_flush_req(sadbp_t *spp) 1100 { 1101 mblk_t *ctl_mp; 1102 1103 /* 1104 * we've been unplumbed, or never were plumbed; don't go there. 1105 */ 1106 if (spp->s_ip_q == NULL) 1107 return; 1108 1109 /* have IP send a flush msg to the IPsec accelerators */ 1110 ctl_mp = sadb_fmt_sa_req(DL_CO_FLUSH, spp->s_satype, NULL, B_TRUE); 1111 if (ctl_mp != NULL) 1112 putnext(spp->s_ip_q, ctl_mp); 1113 } 1114 1115 void 1116 sadbp_flush(sadbp_t *spp, netstack_t *ns) 1117 { 1118 sadb_flush(&spp->s_v4, ns); 1119 sadb_flush(&spp->s_v6, ns); 1120 1121 sadb_send_flush_req(spp); 1122 } 1123 1124 void 1125 sadbp_destroy(sadbp_t *spp, netstack_t *ns) 1126 { 1127 sadb_destroy(&spp->s_v4, ns); 1128 sadb_destroy(&spp->s_v6, ns); 1129 1130 sadb_send_flush_req(spp); 1131 if (spp->s_satype == SADB_SATYPE_AH) { 1132 ipsec_stack_t *ipss = ns->netstack_ipsec; 1133 1134 ip_drop_unregister(&ipss->ipsec_sadb_dropper); 1135 } 1136 } 1137 1138 1139 /* 1140 * Check hard vs. soft lifetimes. If there's a reality mismatch (e.g. 1141 * soft lifetimes > hard lifetimes) return an appropriate diagnostic for 1142 * EINVAL. 1143 */ 1144 int 1145 sadb_hardsoftchk(sadb_lifetime_t *hard, sadb_lifetime_t *soft, 1146 sadb_lifetime_t *idle) 1147 { 1148 if (hard == NULL || soft == NULL) 1149 return (0); 1150 1151 if (hard->sadb_lifetime_allocations != 0 && 1152 soft->sadb_lifetime_allocations != 0 && 1153 hard->sadb_lifetime_allocations < soft->sadb_lifetime_allocations) 1154 return (SADB_X_DIAGNOSTIC_ALLOC_HSERR); 1155 1156 if (hard->sadb_lifetime_bytes != 0 && 1157 soft->sadb_lifetime_bytes != 0 && 1158 hard->sadb_lifetime_bytes < soft->sadb_lifetime_bytes) 1159 return (SADB_X_DIAGNOSTIC_BYTES_HSERR); 1160 1161 if (hard->sadb_lifetime_addtime != 0 && 1162 soft->sadb_lifetime_addtime != 0 && 1163 hard->sadb_lifetime_addtime < soft->sadb_lifetime_addtime) 1164 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 1165 1166 if (hard->sadb_lifetime_usetime != 0 && 1167 soft->sadb_lifetime_usetime != 0 && 1168 hard->sadb_lifetime_usetime < soft->sadb_lifetime_usetime) 1169 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 1170 1171 if (idle != NULL) { 1172 if (hard->sadb_lifetime_addtime != 0 && 1173 idle->sadb_lifetime_addtime != 0 && 1174 hard->sadb_lifetime_addtime < idle->sadb_lifetime_addtime) 1175 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 1176 1177 if (soft->sadb_lifetime_addtime != 0 && 1178 idle->sadb_lifetime_addtime != 0 && 1179 soft->sadb_lifetime_addtime < idle->sadb_lifetime_addtime) 1180 return (SADB_X_DIAGNOSTIC_ADDTIME_HSERR); 1181 1182 if (hard->sadb_lifetime_usetime != 0 && 1183 idle->sadb_lifetime_usetime != 0 && 1184 hard->sadb_lifetime_usetime < idle->sadb_lifetime_usetime) 1185 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 1186 1187 if (soft->sadb_lifetime_usetime != 0 && 1188 idle->sadb_lifetime_usetime != 0 && 1189 soft->sadb_lifetime_usetime < idle->sadb_lifetime_usetime) 1190 return (SADB_X_DIAGNOSTIC_USETIME_HSERR); 1191 } 1192 1193 return (0); 1194 } 1195 1196 /* 1197 * Clone a security association for the purposes of inserting a single SA 1198 * into inbound and outbound tables respectively. This function should only 1199 * be called from sadb_common_add(). 1200 */ 1201 static ipsa_t * 1202 sadb_cloneassoc(ipsa_t *ipsa) 1203 { 1204 ipsa_t *newbie; 1205 boolean_t error = B_FALSE; 1206 1207 ASSERT(MUTEX_NOT_HELD(&(ipsa->ipsa_lock))); 1208 1209 newbie = kmem_alloc(sizeof (ipsa_t), KM_NOSLEEP); 1210 if (newbie == NULL) 1211 return (NULL); 1212 1213 /* Copy over what we can. */ 1214 *newbie = *ipsa; 1215 1216 /* bzero and initialize locks, in case *_init() allocates... */ 1217 mutex_init(&newbie->ipsa_lock, NULL, MUTEX_DEFAULT, NULL); 1218 1219 /* 1220 * While somewhat dain-bramaged, the most graceful way to 1221 * recover from errors is to keep plowing through the 1222 * allocations, and getting what I can. It's easier to call 1223 * sadb_freeassoc() on the stillborn clone when all the 1224 * pointers aren't pointing to the parent's data. 1225 */ 1226 1227 if (ipsa->ipsa_authkey != NULL) { 1228 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen, 1229 KM_NOSLEEP); 1230 if (newbie->ipsa_authkey == NULL) { 1231 error = B_TRUE; 1232 } else { 1233 bcopy(ipsa->ipsa_authkey, newbie->ipsa_authkey, 1234 newbie->ipsa_authkeylen); 1235 1236 newbie->ipsa_kcfauthkey.ck_data = 1237 newbie->ipsa_authkey; 1238 } 1239 1240 if (newbie->ipsa_amech.cm_param != NULL) { 1241 newbie->ipsa_amech.cm_param = 1242 (char *)&newbie->ipsa_mac_len; 1243 } 1244 } 1245 1246 if (ipsa->ipsa_encrkey != NULL) { 1247 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen, 1248 KM_NOSLEEP); 1249 if (newbie->ipsa_encrkey == NULL) { 1250 error = B_TRUE; 1251 } else { 1252 bcopy(ipsa->ipsa_encrkey, newbie->ipsa_encrkey, 1253 newbie->ipsa_encrkeylen); 1254 1255 newbie->ipsa_kcfencrkey.ck_data = 1256 newbie->ipsa_encrkey; 1257 } 1258 } 1259 1260 newbie->ipsa_authtmpl = NULL; 1261 newbie->ipsa_encrtmpl = NULL; 1262 newbie->ipsa_haspeer = B_TRUE; 1263 1264 if (ipsa->ipsa_integ != NULL) { 1265 newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen, 1266 KM_NOSLEEP); 1267 if (newbie->ipsa_integ == NULL) { 1268 error = B_TRUE; 1269 } else { 1270 bcopy(ipsa->ipsa_integ, newbie->ipsa_integ, 1271 newbie->ipsa_integlen); 1272 } 1273 } 1274 1275 if (ipsa->ipsa_sens != NULL) { 1276 newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen, 1277 KM_NOSLEEP); 1278 if (newbie->ipsa_sens == NULL) { 1279 error = B_TRUE; 1280 } else { 1281 bcopy(ipsa->ipsa_sens, newbie->ipsa_sens, 1282 newbie->ipsa_senslen); 1283 } 1284 } 1285 1286 if (ipsa->ipsa_src_cid != NULL) { 1287 newbie->ipsa_src_cid = ipsa->ipsa_src_cid; 1288 IPSID_REFHOLD(ipsa->ipsa_src_cid); 1289 } 1290 1291 if (ipsa->ipsa_dst_cid != NULL) { 1292 newbie->ipsa_dst_cid = ipsa->ipsa_dst_cid; 1293 IPSID_REFHOLD(ipsa->ipsa_dst_cid); 1294 } 1295 1296 if (error) { 1297 sadb_freeassoc(newbie); 1298 return (NULL); 1299 } 1300 1301 return (newbie); 1302 } 1303 1304 /* 1305 * Initialize a SADB address extension at the address specified by addrext. 1306 * Return a pointer to the end of the new address extension. 1307 */ 1308 static uint8_t * 1309 sadb_make_addr_ext(uint8_t *start, uint8_t *end, uint16_t exttype, 1310 sa_family_t af, uint32_t *addr, uint16_t port, uint8_t proto, int prefix) 1311 { 1312 struct sockaddr_in *sin; 1313 struct sockaddr_in6 *sin6; 1314 uint8_t *cur = start; 1315 int addrext_len; 1316 int sin_len; 1317 sadb_address_t *addrext = (sadb_address_t *)cur; 1318 1319 if (cur == NULL) 1320 return (NULL); 1321 1322 cur += sizeof (*addrext); 1323 if (cur > end) 1324 return (NULL); 1325 1326 addrext->sadb_address_proto = proto; 1327 addrext->sadb_address_prefixlen = prefix; 1328 addrext->sadb_address_reserved = 0; 1329 addrext->sadb_address_exttype = exttype; 1330 1331 switch (af) { 1332 case AF_INET: 1333 sin = (struct sockaddr_in *)cur; 1334 sin_len = sizeof (*sin); 1335 cur += sin_len; 1336 if (cur > end) 1337 return (NULL); 1338 1339 sin->sin_family = af; 1340 bzero(sin->sin_zero, sizeof (sin->sin_zero)); 1341 sin->sin_port = port; 1342 IPSA_COPY_ADDR(&sin->sin_addr, addr, af); 1343 break; 1344 case AF_INET6: 1345 sin6 = (struct sockaddr_in6 *)cur; 1346 sin_len = sizeof (*sin6); 1347 cur += sin_len; 1348 if (cur > end) 1349 return (NULL); 1350 1351 bzero(sin6, sizeof (*sin6)); 1352 sin6->sin6_family = af; 1353 sin6->sin6_port = port; 1354 IPSA_COPY_ADDR(&sin6->sin6_addr, addr, af); 1355 break; 1356 } 1357 1358 addrext_len = roundup(cur - start, sizeof (uint64_t)); 1359 addrext->sadb_address_len = SADB_8TO64(addrext_len); 1360 1361 cur = start + addrext_len; 1362 if (cur > end) 1363 cur = NULL; 1364 1365 return (cur); 1366 } 1367 1368 /* 1369 * Construct a key management cookie extension. 1370 */ 1371 1372 static uint8_t * 1373 sadb_make_kmc_ext(uint8_t *cur, uint8_t *end, uint32_t kmp, uint32_t kmc) 1374 { 1375 sadb_x_kmc_t *kmcext = (sadb_x_kmc_t *)cur; 1376 1377 if (cur == NULL) 1378 return (NULL); 1379 1380 cur += sizeof (*kmcext); 1381 1382 if (cur > end) 1383 return (NULL); 1384 1385 kmcext->sadb_x_kmc_len = SADB_8TO64(sizeof (*kmcext)); 1386 kmcext->sadb_x_kmc_exttype = SADB_X_EXT_KM_COOKIE; 1387 kmcext->sadb_x_kmc_proto = kmp; 1388 kmcext->sadb_x_kmc_cookie = kmc; 1389 kmcext->sadb_x_kmc_reserved = 0; 1390 1391 return (cur); 1392 } 1393 1394 /* 1395 * Given an original message header with sufficient space following it, and an 1396 * SA, construct a full PF_KEY message with all of the relevant extensions. 1397 * This is mostly used for SADB_GET, and SADB_DUMP. 1398 */ 1399 static mblk_t * 1400 sadb_sa2msg(ipsa_t *ipsa, sadb_msg_t *samsg) 1401 { 1402 int alloclen, addrsize, paddrsize, authsize, encrsize; 1403 int srcidsize, dstidsize; 1404 sa_family_t fam, pfam; /* Address family for SADB_EXT_ADDRESS */ 1405 /* src/dst and proxy sockaddrs. */ 1406 /* 1407 * The following are pointers into the PF_KEY message this PF_KEY 1408 * message creates. 1409 */ 1410 sadb_msg_t *newsamsg; 1411 sadb_sa_t *assoc; 1412 sadb_lifetime_t *lt; 1413 sadb_key_t *key; 1414 sadb_ident_t *ident; 1415 sadb_sens_t *sens; 1416 sadb_ext_t *walker; /* For when we need a generic ext. pointer. */ 1417 sadb_x_replay_ctr_t *repl_ctr; 1418 sadb_x_pair_t *pair_ext; 1419 1420 mblk_t *mp; 1421 uint64_t *bitmap; 1422 uint8_t *cur, *end; 1423 /* These indicate the presence of the above extension fields. */ 1424 boolean_t soft, hard, isrc, idst, auth, encr, sensinteg, srcid, dstid; 1425 boolean_t idle; 1426 boolean_t paired; 1427 uint32_t otherspi; 1428 1429 /* First off, figure out the allocation length for this message. */ 1430 1431 /* 1432 * Constant stuff. This includes base, SA, address (src, dst), 1433 * and lifetime (current). 1434 */ 1435 alloclen = sizeof (sadb_msg_t) + sizeof (sadb_sa_t) + 1436 sizeof (sadb_lifetime_t); 1437 1438 fam = ipsa->ipsa_addrfam; 1439 switch (fam) { 1440 case AF_INET: 1441 addrsize = roundup(sizeof (struct sockaddr_in) + 1442 sizeof (sadb_address_t), sizeof (uint64_t)); 1443 break; 1444 case AF_INET6: 1445 addrsize = roundup(sizeof (struct sockaddr_in6) + 1446 sizeof (sadb_address_t), sizeof (uint64_t)); 1447 break; 1448 default: 1449 return (NULL); 1450 } 1451 /* 1452 * Allocate TWO address extensions, for source and destination. 1453 * (Thus, the * 2.) 1454 */ 1455 alloclen += addrsize * 2; 1456 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) 1457 alloclen += addrsize; 1458 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) 1459 alloclen += addrsize; 1460 1461 if (ipsa->ipsa_flags & IPSA_F_PAIRED) { 1462 paired = B_TRUE; 1463 alloclen += sizeof (sadb_x_pair_t); 1464 otherspi = ipsa->ipsa_otherspi; 1465 } else { 1466 paired = B_FALSE; 1467 } 1468 1469 /* How 'bout other lifetimes? */ 1470 if (ipsa->ipsa_softaddlt != 0 || ipsa->ipsa_softuselt != 0 || 1471 ipsa->ipsa_softbyteslt != 0 || ipsa->ipsa_softalloc != 0) { 1472 alloclen += sizeof (sadb_lifetime_t); 1473 soft = B_TRUE; 1474 } else { 1475 soft = B_FALSE; 1476 } 1477 1478 if (ipsa->ipsa_hardaddlt != 0 || ipsa->ipsa_harduselt != 0 || 1479 ipsa->ipsa_hardbyteslt != 0 || ipsa->ipsa_hardalloc != 0) { 1480 alloclen += sizeof (sadb_lifetime_t); 1481 hard = B_TRUE; 1482 } else { 1483 hard = B_FALSE; 1484 } 1485 1486 if (ipsa->ipsa_idleaddlt != 0 || ipsa->ipsa_idleuselt != 0) { 1487 alloclen += sizeof (sadb_lifetime_t); 1488 idle = B_TRUE; 1489 } else { 1490 idle = B_FALSE; 1491 } 1492 1493 /* Inner addresses. */ 1494 if (ipsa->ipsa_innerfam == 0) { 1495 isrc = B_FALSE; 1496 idst = B_FALSE; 1497 } else { 1498 pfam = ipsa->ipsa_innerfam; 1499 switch (pfam) { 1500 case AF_INET6: 1501 paddrsize = roundup(sizeof (struct sockaddr_in6) + 1502 sizeof (sadb_address_t), sizeof (uint64_t)); 1503 break; 1504 case AF_INET: 1505 paddrsize = roundup(sizeof (struct sockaddr_in) + 1506 sizeof (sadb_address_t), sizeof (uint64_t)); 1507 break; 1508 default: 1509 cmn_err(CE_PANIC, 1510 "IPsec SADB: Proxy length failure.\n"); 1511 break; 1512 } 1513 isrc = B_TRUE; 1514 idst = B_TRUE; 1515 alloclen += 2 * paddrsize; 1516 } 1517 1518 /* For the following fields, assume that length != 0 ==> stuff */ 1519 if (ipsa->ipsa_authkeylen != 0) { 1520 authsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_authkeylen, 1521 sizeof (uint64_t)); 1522 alloclen += authsize; 1523 auth = B_TRUE; 1524 } else { 1525 auth = B_FALSE; 1526 } 1527 1528 if (ipsa->ipsa_encrkeylen != 0) { 1529 encrsize = roundup(sizeof (sadb_key_t) + ipsa->ipsa_encrkeylen, 1530 sizeof (uint64_t)); 1531 alloclen += encrsize; 1532 encr = B_TRUE; 1533 } else { 1534 encr = B_FALSE; 1535 } 1536 1537 /* No need for roundup on sens and integ. */ 1538 if (ipsa->ipsa_integlen != 0 || ipsa->ipsa_senslen != 0) { 1539 alloclen += sizeof (sadb_key_t) + ipsa->ipsa_integlen + 1540 ipsa->ipsa_senslen; 1541 sensinteg = B_TRUE; 1542 } else { 1543 sensinteg = B_FALSE; 1544 } 1545 1546 /* 1547 * Must use strlen() here for lengths. Identities use NULL 1548 * pointers to indicate their nonexistence. 1549 */ 1550 if (ipsa->ipsa_src_cid != NULL) { 1551 srcidsize = roundup(sizeof (sadb_ident_t) + 1552 strlen(ipsa->ipsa_src_cid->ipsid_cid) + 1, 1553 sizeof (uint64_t)); 1554 alloclen += srcidsize; 1555 srcid = B_TRUE; 1556 } else { 1557 srcid = B_FALSE; 1558 } 1559 1560 if (ipsa->ipsa_dst_cid != NULL) { 1561 dstidsize = roundup(sizeof (sadb_ident_t) + 1562 strlen(ipsa->ipsa_dst_cid->ipsid_cid) + 1, 1563 sizeof (uint64_t)); 1564 alloclen += dstidsize; 1565 dstid = B_TRUE; 1566 } else { 1567 dstid = B_FALSE; 1568 } 1569 1570 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) 1571 alloclen += sizeof (sadb_x_kmc_t); 1572 1573 if (ipsa->ipsa_replay != 0) { 1574 alloclen += sizeof (sadb_x_replay_ctr_t); 1575 } 1576 1577 /* Make sure the allocation length is a multiple of 8 bytes. */ 1578 ASSERT((alloclen & 0x7) == 0); 1579 1580 /* XXX Possibly make it esballoc, with a bzero-ing free_ftn. */ 1581 mp = allocb(alloclen, BPRI_HI); 1582 if (mp == NULL) 1583 return (NULL); 1584 1585 mp->b_wptr += alloclen; 1586 end = mp->b_wptr; 1587 newsamsg = (sadb_msg_t *)mp->b_rptr; 1588 *newsamsg = *samsg; 1589 newsamsg->sadb_msg_len = (uint16_t)SADB_8TO64(alloclen); 1590 1591 mutex_enter(&ipsa->ipsa_lock); /* Since I'm grabbing SA fields... */ 1592 1593 newsamsg->sadb_msg_satype = ipsa->ipsa_type; 1594 1595 assoc = (sadb_sa_t *)(newsamsg + 1); 1596 assoc->sadb_sa_len = SADB_8TO64(sizeof (*assoc)); 1597 assoc->sadb_sa_exttype = SADB_EXT_SA; 1598 assoc->sadb_sa_spi = ipsa->ipsa_spi; 1599 assoc->sadb_sa_replay = ipsa->ipsa_replay_wsize; 1600 assoc->sadb_sa_state = ipsa->ipsa_state; 1601 assoc->sadb_sa_auth = ipsa->ipsa_auth_alg; 1602 assoc->sadb_sa_encrypt = ipsa->ipsa_encr_alg; 1603 assoc->sadb_sa_flags = ipsa->ipsa_flags; 1604 1605 lt = (sadb_lifetime_t *)(assoc + 1); 1606 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1607 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 1608 /* We do not support the concept. */ 1609 lt->sadb_lifetime_allocations = 0; 1610 lt->sadb_lifetime_bytes = ipsa->ipsa_bytes; 1611 lt->sadb_lifetime_addtime = ipsa->ipsa_addtime; 1612 lt->sadb_lifetime_usetime = ipsa->ipsa_usetime; 1613 1614 if (hard) { 1615 lt++; 1616 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1617 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 1618 lt->sadb_lifetime_allocations = ipsa->ipsa_hardalloc; 1619 lt->sadb_lifetime_bytes = ipsa->ipsa_hardbyteslt; 1620 lt->sadb_lifetime_addtime = ipsa->ipsa_hardaddlt; 1621 lt->sadb_lifetime_usetime = ipsa->ipsa_harduselt; 1622 } 1623 1624 if (soft) { 1625 lt++; 1626 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1627 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 1628 lt->sadb_lifetime_allocations = ipsa->ipsa_softalloc; 1629 lt->sadb_lifetime_bytes = ipsa->ipsa_softbyteslt; 1630 lt->sadb_lifetime_addtime = ipsa->ipsa_softaddlt; 1631 lt->sadb_lifetime_usetime = ipsa->ipsa_softuselt; 1632 } 1633 1634 if (idle) { 1635 lt++; 1636 lt->sadb_lifetime_len = SADB_8TO64(sizeof (*lt)); 1637 lt->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE; 1638 lt->sadb_lifetime_addtime = ipsa->ipsa_idleaddlt; 1639 lt->sadb_lifetime_usetime = ipsa->ipsa_idleuselt; 1640 } 1641 1642 cur = (uint8_t *)(lt + 1); 1643 1644 /* NOTE: Don't fill in ports here if we are a tunnel-mode SA. */ 1645 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, fam, 1646 ipsa->ipsa_srcaddr, (!isrc && !idst) ? SA_SRCPORT(ipsa) : 0, 1647 SA_PROTO(ipsa), 0); 1648 if (cur == NULL) { 1649 freemsg(mp); 1650 mp = NULL; 1651 goto bail; 1652 } 1653 1654 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, fam, 1655 ipsa->ipsa_dstaddr, (!isrc && !idst) ? SA_DSTPORT(ipsa) : 0, 1656 SA_PROTO(ipsa), 0); 1657 if (cur == NULL) { 1658 freemsg(mp); 1659 mp = NULL; 1660 goto bail; 1661 } 1662 1663 if (ipsa->ipsa_flags & IPSA_F_NATT_LOC) { 1664 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_LOC, 1665 fam, &ipsa->ipsa_natt_addr_loc, ipsa->ipsa_local_nat_port, 1666 IPPROTO_UDP, 0); 1667 if (cur == NULL) { 1668 freemsg(mp); 1669 mp = NULL; 1670 goto bail; 1671 } 1672 } 1673 1674 if (ipsa->ipsa_flags & IPSA_F_NATT_REM) { 1675 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_NATT_REM, 1676 fam, &ipsa->ipsa_natt_addr_rem, ipsa->ipsa_remote_nat_port, 1677 IPPROTO_UDP, 0); 1678 if (cur == NULL) { 1679 freemsg(mp); 1680 mp = NULL; 1681 goto bail; 1682 } 1683 } 1684 1685 /* If we are a tunnel-mode SA, fill in the inner-selectors. */ 1686 if (isrc) { 1687 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 1688 pfam, ipsa->ipsa_innersrc, SA_SRCPORT(ipsa), 1689 SA_IPROTO(ipsa), ipsa->ipsa_innersrcpfx); 1690 if (cur == NULL) { 1691 freemsg(mp); 1692 mp = NULL; 1693 goto bail; 1694 } 1695 } 1696 1697 if (idst) { 1698 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 1699 pfam, ipsa->ipsa_innerdst, SA_DSTPORT(ipsa), 1700 SA_IPROTO(ipsa), ipsa->ipsa_innerdstpfx); 1701 if (cur == NULL) { 1702 freemsg(mp); 1703 mp = NULL; 1704 goto bail; 1705 } 1706 } 1707 1708 if ((ipsa->ipsa_kmp != 0) || (ipsa->ipsa_kmc != 0)) { 1709 cur = sadb_make_kmc_ext(cur, end, 1710 ipsa->ipsa_kmp, ipsa->ipsa_kmc); 1711 if (cur == NULL) { 1712 freemsg(mp); 1713 mp = NULL; 1714 goto bail; 1715 } 1716 } 1717 1718 walker = (sadb_ext_t *)cur; 1719 if (auth) { 1720 key = (sadb_key_t *)walker; 1721 key->sadb_key_len = SADB_8TO64(authsize); 1722 key->sadb_key_exttype = SADB_EXT_KEY_AUTH; 1723 key->sadb_key_bits = ipsa->ipsa_authkeybits; 1724 key->sadb_key_reserved = 0; 1725 bcopy(ipsa->ipsa_authkey, key + 1, ipsa->ipsa_authkeylen); 1726 walker = (sadb_ext_t *)((uint64_t *)walker + 1727 walker->sadb_ext_len); 1728 } 1729 1730 if (encr) { 1731 key = (sadb_key_t *)walker; 1732 key->sadb_key_len = SADB_8TO64(encrsize); 1733 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; 1734 key->sadb_key_bits = ipsa->ipsa_encrkeybits; 1735 key->sadb_key_reserved = 0; 1736 bcopy(ipsa->ipsa_encrkey, key + 1, ipsa->ipsa_encrkeylen); 1737 walker = (sadb_ext_t *)((uint64_t *)walker + 1738 walker->sadb_ext_len); 1739 } 1740 1741 if (srcid) { 1742 ident = (sadb_ident_t *)walker; 1743 ident->sadb_ident_len = SADB_8TO64(srcidsize); 1744 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_SRC; 1745 ident->sadb_ident_type = ipsa->ipsa_src_cid->ipsid_type; 1746 ident->sadb_ident_id = 0; 1747 ident->sadb_ident_reserved = 0; 1748 (void) strcpy((char *)(ident + 1), 1749 ipsa->ipsa_src_cid->ipsid_cid); 1750 walker = (sadb_ext_t *)((uint64_t *)walker + 1751 walker->sadb_ext_len); 1752 } 1753 1754 if (dstid) { 1755 ident = (sadb_ident_t *)walker; 1756 ident->sadb_ident_len = SADB_8TO64(dstidsize); 1757 ident->sadb_ident_exttype = SADB_EXT_IDENTITY_DST; 1758 ident->sadb_ident_type = ipsa->ipsa_dst_cid->ipsid_type; 1759 ident->sadb_ident_id = 0; 1760 ident->sadb_ident_reserved = 0; 1761 (void) strcpy((char *)(ident + 1), 1762 ipsa->ipsa_dst_cid->ipsid_cid); 1763 walker = (sadb_ext_t *)((uint64_t *)walker + 1764 walker->sadb_ext_len); 1765 } 1766 1767 if (sensinteg) { 1768 sens = (sadb_sens_t *)walker; 1769 sens->sadb_sens_len = SADB_8TO64(sizeof (sadb_sens_t *) + 1770 ipsa->ipsa_senslen + ipsa->ipsa_integlen); 1771 sens->sadb_sens_dpd = ipsa->ipsa_dpd; 1772 sens->sadb_sens_sens_level = ipsa->ipsa_senslevel; 1773 sens->sadb_sens_integ_level = ipsa->ipsa_integlevel; 1774 sens->sadb_sens_sens_len = SADB_8TO64(ipsa->ipsa_senslen); 1775 sens->sadb_sens_integ_len = SADB_8TO64(ipsa->ipsa_integlen); 1776 sens->sadb_sens_reserved = 0; 1777 bitmap = (uint64_t *)(sens + 1); 1778 if (ipsa->ipsa_sens != NULL) { 1779 bcopy(ipsa->ipsa_sens, bitmap, ipsa->ipsa_senslen); 1780 bitmap += sens->sadb_sens_sens_len; 1781 } 1782 if (ipsa->ipsa_integ != NULL) 1783 bcopy(ipsa->ipsa_integ, bitmap, ipsa->ipsa_integlen); 1784 walker = (sadb_ext_t *)((uint64_t *)walker + 1785 walker->sadb_ext_len); 1786 } 1787 1788 if (paired) { 1789 pair_ext = (sadb_x_pair_t *)walker; 1790 1791 pair_ext->sadb_x_pair_len = SADB_8TO64(sizeof (sadb_x_pair_t)); 1792 pair_ext->sadb_x_pair_exttype = SADB_X_EXT_PAIR; 1793 pair_ext->sadb_x_pair_spi = otherspi; 1794 1795 walker = (sadb_ext_t *)((uint64_t *)walker + 1796 walker->sadb_ext_len); 1797 } 1798 1799 if (ipsa->ipsa_replay != 0) { 1800 repl_ctr = (sadb_x_replay_ctr_t *)walker; 1801 repl_ctr->sadb_x_rc_len = SADB_8TO64(sizeof (*repl_ctr)); 1802 repl_ctr->sadb_x_rc_exttype = SADB_X_EXT_REPLAY_VALUE; 1803 repl_ctr->sadb_x_rc_replay32 = ipsa->ipsa_replay; 1804 repl_ctr->sadb_x_rc_replay64 = 0; 1805 walker = (sadb_ext_t *)(repl_ctr + 1); 1806 } 1807 1808 bail: 1809 /* Pardon any delays... */ 1810 mutex_exit(&ipsa->ipsa_lock); 1811 1812 return (mp); 1813 } 1814 1815 /* 1816 * Strip out key headers or unmarked headers (SADB_EXT_KEY_*, SADB_EXT_UNKNOWN) 1817 * and adjust base message accordingly. 1818 * 1819 * Assume message is pulled up in one piece of contiguous memory. 1820 * 1821 * Say if we start off with: 1822 * 1823 * +------+----+-------------+-----------+---------------+---------------+ 1824 * | base | SA | source addr | dest addr | rsrvd. or key | soft lifetime | 1825 * +------+----+-------------+-----------+---------------+---------------+ 1826 * 1827 * we will end up with 1828 * 1829 * +------+----+-------------+-----------+---------------+ 1830 * | base | SA | source addr | dest addr | soft lifetime | 1831 * +------+----+-------------+-----------+---------------+ 1832 */ 1833 static void 1834 sadb_strip(sadb_msg_t *samsg) 1835 { 1836 sadb_ext_t *ext; 1837 uint8_t *target = NULL; 1838 uint8_t *msgend; 1839 int sofar = SADB_8TO64(sizeof (*samsg)); 1840 int copylen; 1841 1842 ext = (sadb_ext_t *)(samsg + 1); 1843 msgend = (uint8_t *)samsg; 1844 msgend += SADB_64TO8(samsg->sadb_msg_len); 1845 while ((uint8_t *)ext < msgend) { 1846 if (ext->sadb_ext_type == SADB_EXT_RESERVED || 1847 ext->sadb_ext_type == SADB_EXT_KEY_AUTH || 1848 ext->sadb_ext_type == SADB_X_EXT_EDUMP || 1849 ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) { 1850 /* 1851 * Aha! I found a header to be erased. 1852 */ 1853 1854 if (target != NULL) { 1855 /* 1856 * If I had a previous header to be erased, 1857 * copy over it. I can get away with just 1858 * copying backwards because the target will 1859 * always be 8 bytes behind the source. 1860 */ 1861 copylen = ((uint8_t *)ext) - (target + 1862 SADB_64TO8( 1863 ((sadb_ext_t *)target)->sadb_ext_len)); 1864 ovbcopy(((uint8_t *)ext - copylen), target, 1865 copylen); 1866 target += copylen; 1867 ((sadb_ext_t *)target)->sadb_ext_len = 1868 SADB_8TO64(((uint8_t *)ext) - target + 1869 SADB_64TO8(ext->sadb_ext_len)); 1870 } else { 1871 target = (uint8_t *)ext; 1872 } 1873 } else { 1874 sofar += ext->sadb_ext_len; 1875 } 1876 1877 ext = (sadb_ext_t *)(((uint64_t *)ext) + ext->sadb_ext_len); 1878 } 1879 1880 ASSERT((uint8_t *)ext == msgend); 1881 1882 if (target != NULL) { 1883 copylen = ((uint8_t *)ext) - (target + 1884 SADB_64TO8(((sadb_ext_t *)target)->sadb_ext_len)); 1885 if (copylen != 0) 1886 ovbcopy(((uint8_t *)ext - copylen), target, copylen); 1887 } 1888 1889 /* Adjust samsg. */ 1890 samsg->sadb_msg_len = (uint16_t)sofar; 1891 1892 /* Assume all of the rest is cleared by caller in sadb_pfkey_echo(). */ 1893 } 1894 1895 /* 1896 * AH needs to send an error to PF_KEY. Assume mp points to an M_CTL 1897 * followed by an M_DATA with a PF_KEY message in it. The serial of 1898 * the sending keysock instance is included. 1899 */ 1900 void 1901 sadb_pfkey_error(queue_t *pfkey_q, mblk_t *mp, int error, int diagnostic, 1902 uint_t serial) 1903 { 1904 mblk_t *msg = mp->b_cont; 1905 sadb_msg_t *samsg; 1906 keysock_out_t *kso; 1907 1908 /* 1909 * Enough functions call this to merit a NULL queue check. 1910 */ 1911 if (pfkey_q == NULL) { 1912 freemsg(mp); 1913 return; 1914 } 1915 1916 ASSERT(msg != NULL); 1917 ASSERT((mp->b_wptr - mp->b_rptr) == sizeof (ipsec_info_t)); 1918 ASSERT((msg->b_wptr - msg->b_rptr) >= sizeof (sadb_msg_t)); 1919 samsg = (sadb_msg_t *)msg->b_rptr; 1920 kso = (keysock_out_t *)mp->b_rptr; 1921 1922 kso->ks_out_type = KEYSOCK_OUT; 1923 kso->ks_out_len = sizeof (*kso); 1924 kso->ks_out_serial = serial; 1925 1926 /* 1927 * Only send the base message up in the event of an error. 1928 * Don't worry about bzero()-ing, because it was probably bogus 1929 * anyway. 1930 */ 1931 msg->b_wptr = msg->b_rptr + sizeof (*samsg); 1932 samsg = (sadb_msg_t *)msg->b_rptr; 1933 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 1934 samsg->sadb_msg_errno = (uint8_t)error; 1935 if (diagnostic != SADB_X_DIAGNOSTIC_PRESET) 1936 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic; 1937 1938 putnext(pfkey_q, mp); 1939 } 1940 1941 /* 1942 * Send a successful return packet back to keysock via the queue in pfkey_q. 1943 * 1944 * Often, an SA is associated with the reply message, it's passed in if needed, 1945 * and NULL if not. BTW, that ipsa will have its refcnt appropriately held, 1946 * and the caller will release said refcnt. 1947 */ 1948 void 1949 sadb_pfkey_echo(queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg, 1950 keysock_in_t *ksi, ipsa_t *ipsa) 1951 { 1952 keysock_out_t *kso; 1953 mblk_t *mp1; 1954 sadb_msg_t *newsamsg; 1955 uint8_t *oldend; 1956 1957 ASSERT((mp->b_cont != NULL) && 1958 ((void *)samsg == (void *)mp->b_cont->b_rptr) && 1959 ((void *)mp->b_rptr == (void *)ksi)); 1960 1961 switch (samsg->sadb_msg_type) { 1962 case SADB_ADD: 1963 case SADB_UPDATE: 1964 case SADB_X_UPDATEPAIR: 1965 case SADB_X_DELPAIR_STATE: 1966 case SADB_FLUSH: 1967 case SADB_DUMP: 1968 /* 1969 * I have all of the message already. I just need to strip 1970 * out the keying material and echo the message back. 1971 * 1972 * NOTE: for SADB_DUMP, the function sadb_dump() did the 1973 * work. When DUMP reaches here, it should only be a base 1974 * message. 1975 */ 1976 justecho: 1977 if (ksi->ks_in_extv[SADB_EXT_KEY_AUTH] != NULL || 1978 ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL || 1979 ksi->ks_in_extv[SADB_X_EXT_EDUMP] != NULL) { 1980 sadb_strip(samsg); 1981 /* Assume PF_KEY message is contiguous. */ 1982 ASSERT(mp->b_cont->b_cont == NULL); 1983 oldend = mp->b_cont->b_wptr; 1984 mp->b_cont->b_wptr = mp->b_cont->b_rptr + 1985 SADB_64TO8(samsg->sadb_msg_len); 1986 bzero(mp->b_cont->b_wptr, oldend - mp->b_cont->b_wptr); 1987 } 1988 break; 1989 case SADB_GET: 1990 /* 1991 * Do a lot of work here, because of the ipsa I just found. 1992 * First construct the new PF_KEY message, then abandon 1993 * the old one. 1994 */ 1995 mp1 = sadb_sa2msg(ipsa, samsg); 1996 if (mp1 == NULL) { 1997 sadb_pfkey_error(pfkey_q, mp, ENOMEM, 1998 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); 1999 return; 2000 } 2001 freemsg(mp->b_cont); 2002 mp->b_cont = mp1; 2003 break; 2004 case SADB_DELETE: 2005 case SADB_X_DELPAIR: 2006 if (ipsa == NULL) 2007 goto justecho; 2008 /* 2009 * Because listening KMds may require more info, treat 2010 * DELETE like a special case of GET. 2011 */ 2012 mp1 = sadb_sa2msg(ipsa, samsg); 2013 if (mp1 == NULL) { 2014 sadb_pfkey_error(pfkey_q, mp, ENOMEM, 2015 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); 2016 return; 2017 } 2018 newsamsg = (sadb_msg_t *)mp1->b_rptr; 2019 sadb_strip(newsamsg); 2020 oldend = mp1->b_wptr; 2021 mp1->b_wptr = mp1->b_rptr + SADB_64TO8(newsamsg->sadb_msg_len); 2022 bzero(mp1->b_wptr, oldend - mp1->b_wptr); 2023 freemsg(mp->b_cont); 2024 mp->b_cont = mp1; 2025 break; 2026 default: 2027 if (mp != NULL) 2028 freemsg(mp); 2029 return; 2030 } 2031 2032 /* ksi is now null and void. */ 2033 kso = (keysock_out_t *)ksi; 2034 kso->ks_out_type = KEYSOCK_OUT; 2035 kso->ks_out_len = sizeof (*kso); 2036 kso->ks_out_serial = ksi->ks_in_serial; 2037 /* We're ready to send... */ 2038 putnext(pfkey_q, mp); 2039 } 2040 2041 /* 2042 * Set up a global pfkey_q instance for AH, ESP, or some other consumer. 2043 */ 2044 void 2045 sadb_keysock_hello(queue_t **pfkey_qp, queue_t *q, mblk_t *mp, 2046 void (*ager)(void *), void *agerarg, timeout_id_t *top, int satype) 2047 { 2048 keysock_hello_ack_t *kha; 2049 queue_t *oldq; 2050 2051 ASSERT(OTHERQ(q) != NULL); 2052 2053 /* 2054 * First, check atomically that I'm the first and only keysock 2055 * instance. 2056 * 2057 * Use OTHERQ(q), because qreply(q, mp) == putnext(OTHERQ(q), mp), 2058 * and I want this module to say putnext(*_pfkey_q, mp) for PF_KEY 2059 * messages. 2060 */ 2061 2062 oldq = casptr((void **)pfkey_qp, NULL, OTHERQ(q)); 2063 if (oldq != NULL) { 2064 ASSERT(oldq != q); 2065 cmn_err(CE_WARN, "Danger! Multiple keysocks on top of %s.\n", 2066 (satype == SADB_SATYPE_ESP)? "ESP" : "AH or other"); 2067 freemsg(mp); 2068 return; 2069 } 2070 2071 kha = (keysock_hello_ack_t *)mp->b_rptr; 2072 kha->ks_hello_len = sizeof (keysock_hello_ack_t); 2073 kha->ks_hello_type = KEYSOCK_HELLO_ACK; 2074 kha->ks_hello_satype = (uint8_t)satype; 2075 2076 /* 2077 * If we made it past the casptr, then we have "exclusive" access 2078 * to the timeout handle. Fire it off in 4 seconds, because it 2079 * just seems like a good interval. 2080 */ 2081 *top = qtimeout(*pfkey_qp, ager, agerarg, drv_usectohz(4000000)); 2082 2083 putnext(*pfkey_qp, mp); 2084 } 2085 2086 /* 2087 * Normalize IPv4-mapped IPv6 addresses (and prefixes) as appropriate. 2088 * 2089 * Check addresses themselves for wildcard or multicast. 2090 * Check ire table for local/non-local/broadcast. 2091 */ 2092 int 2093 sadb_addrcheck(queue_t *pfkey_q, mblk_t *mp, sadb_ext_t *ext, uint_t serial, 2094 netstack_t *ns) 2095 { 2096 sadb_address_t *addr = (sadb_address_t *)ext; 2097 struct sockaddr_in *sin; 2098 struct sockaddr_in6 *sin6; 2099 ire_t *ire; 2100 int diagnostic, type; 2101 boolean_t normalized = B_FALSE; 2102 2103 ASSERT(ext != NULL); 2104 ASSERT((ext->sadb_ext_type == SADB_EXT_ADDRESS_SRC) || 2105 (ext->sadb_ext_type == SADB_EXT_ADDRESS_DST) || 2106 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) || 2107 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) || 2108 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_LOC) || 2109 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_NATT_REM)); 2110 2111 /* Assign both sockaddrs, the compiler will do the right thing. */ 2112 sin = (struct sockaddr_in *)(addr + 1); 2113 sin6 = (struct sockaddr_in6 *)(addr + 1); 2114 2115 if (sin6->sin6_family == AF_INET6) { 2116 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 2117 /* 2118 * Convert to an AF_INET sockaddr. This means the 2119 * return messages will have the extra space, but have 2120 * AF_INET sockaddrs instead of AF_INET6. 2121 * 2122 * Yes, RFC 2367 isn't clear on what to do here w.r.t. 2123 * mapped addresses, but since AF_INET6 ::ffff:<v4> is 2124 * equal to AF_INET <v4>, it shouldnt be a huge 2125 * problem. 2126 */ 2127 sin->sin_family = AF_INET; 2128 IN6_V4MAPPED_TO_INADDR(&sin6->sin6_addr, 2129 &sin->sin_addr); 2130 bzero(&sin->sin_zero, sizeof (sin->sin_zero)); 2131 normalized = B_TRUE; 2132 } 2133 } else if (sin->sin_family != AF_INET) { 2134 switch (ext->sadb_ext_type) { 2135 case SADB_EXT_ADDRESS_SRC: 2136 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC_AF; 2137 break; 2138 case SADB_EXT_ADDRESS_DST: 2139 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF; 2140 break; 2141 case SADB_X_EXT_ADDRESS_INNER_SRC: 2142 diagnostic = SADB_X_DIAGNOSTIC_BAD_PROXY_AF; 2143 break; 2144 case SADB_X_EXT_ADDRESS_INNER_DST: 2145 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_DST_AF; 2146 break; 2147 case SADB_X_EXT_ADDRESS_NATT_LOC: 2148 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF; 2149 break; 2150 case SADB_X_EXT_ADDRESS_NATT_REM: 2151 diagnostic = SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF; 2152 break; 2153 /* There is no default, see above ASSERT. */ 2154 } 2155 bail: 2156 if (pfkey_q != NULL) { 2157 sadb_pfkey_error(pfkey_q, mp, EINVAL, diagnostic, 2158 serial); 2159 } else { 2160 /* 2161 * Scribble in sadb_msg that we got passed in. 2162 * Overload "mp" to be an sadb_msg pointer. 2163 */ 2164 sadb_msg_t *samsg = (sadb_msg_t *)mp; 2165 2166 samsg->sadb_msg_errno = EINVAL; 2167 samsg->sadb_x_msg_diagnostic = diagnostic; 2168 } 2169 return (KS_IN_ADDR_UNKNOWN); 2170 } 2171 2172 if (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC || 2173 ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_DST) { 2174 /* 2175 * We need only check for prefix issues. 2176 */ 2177 2178 /* Set diagnostic now, in case we need it later. */ 2179 diagnostic = 2180 (ext->sadb_ext_type == SADB_X_EXT_ADDRESS_INNER_SRC) ? 2181 SADB_X_DIAGNOSTIC_PREFIX_INNER_SRC : 2182 SADB_X_DIAGNOSTIC_PREFIX_INNER_DST; 2183 2184 if (normalized) 2185 addr->sadb_address_prefixlen -= 96; 2186 2187 /* 2188 * Verify and mask out inner-addresses based on prefix length. 2189 */ 2190 if (sin->sin_family == AF_INET) { 2191 if (addr->sadb_address_prefixlen > 32) 2192 goto bail; 2193 sin->sin_addr.s_addr &= 2194 ip_plen_to_mask(addr->sadb_address_prefixlen); 2195 } else { 2196 in6_addr_t mask; 2197 2198 ASSERT(sin->sin_family == AF_INET6); 2199 /* 2200 * ip_plen_to_mask_v6() returns NULL if the value in 2201 * question is out of range. 2202 */ 2203 if (ip_plen_to_mask_v6(addr->sadb_address_prefixlen, 2204 &mask) == NULL) 2205 goto bail; 2206 sin6->sin6_addr.s6_addr32[0] &= mask.s6_addr32[0]; 2207 sin6->sin6_addr.s6_addr32[1] &= mask.s6_addr32[1]; 2208 sin6->sin6_addr.s6_addr32[2] &= mask.s6_addr32[2]; 2209 sin6->sin6_addr.s6_addr32[3] &= mask.s6_addr32[3]; 2210 } 2211 2212 /* We don't care in these cases. */ 2213 return (KS_IN_ADDR_DONTCARE); 2214 } 2215 2216 if (sin->sin_family == AF_INET6) { 2217 /* Check the easy ones now. */ 2218 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 2219 return (KS_IN_ADDR_MBCAST); 2220 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 2221 return (KS_IN_ADDR_UNSPEC); 2222 /* 2223 * At this point, we're a unicast IPv6 address. 2224 * 2225 * A ctable lookup for local is sufficient here. If we're 2226 * local, return KS_IN_ADDR_ME, otherwise KS_IN_ADDR_NOTME. 2227 * 2228 * XXX Zones alert -> me/notme decision needs to be tempered 2229 * by what zone we're in when we go to zone-aware IPsec. 2230 */ 2231 ire = ire_ctable_lookup_v6(&sin6->sin6_addr, NULL, 2232 IRE_LOCAL, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 2233 ns->netstack_ip); 2234 if (ire != NULL) { 2235 /* Hey hey, it's local. */ 2236 IRE_REFRELE(ire); 2237 return (KS_IN_ADDR_ME); 2238 } 2239 } else { 2240 ASSERT(sin->sin_family == AF_INET); 2241 if (sin->sin_addr.s_addr == INADDR_ANY) 2242 return (KS_IN_ADDR_UNSPEC); 2243 if (CLASSD(sin->sin_addr.s_addr)) 2244 return (KS_IN_ADDR_MBCAST); 2245 /* 2246 * At this point we're a unicast or broadcast IPv4 address. 2247 * 2248 * Lookup on the ctable for IRE_BROADCAST or IRE_LOCAL. 2249 * A NULL return value is NOTME, otherwise, look at the 2250 * returned ire for broadcast or not and return accordingly. 2251 * 2252 * XXX Zones alert -> me/notme decision needs to be tempered 2253 * by what zone we're in when we go to zone-aware IPsec. 2254 */ 2255 ire = ire_ctable_lookup(sin->sin_addr.s_addr, 0, 2256 IRE_LOCAL | IRE_BROADCAST, NULL, ALL_ZONES, NULL, 2257 MATCH_IRE_TYPE, ns->netstack_ip); 2258 if (ire != NULL) { 2259 /* Check for local or broadcast */ 2260 type = ire->ire_type; 2261 IRE_REFRELE(ire); 2262 ASSERT(type == IRE_LOCAL || type == IRE_BROADCAST); 2263 return ((type == IRE_LOCAL) ? KS_IN_ADDR_ME : 2264 KS_IN_ADDR_MBCAST); 2265 } 2266 } 2267 2268 return (KS_IN_ADDR_NOTME); 2269 } 2270 2271 /* 2272 * Address normalizations and reality checks for inbound PF_KEY messages. 2273 * 2274 * For the case of src == unspecified AF_INET6, and dst == AF_INET, convert 2275 * the source to AF_INET. Do the same for the inner sources. 2276 */ 2277 boolean_t 2278 sadb_addrfix(keysock_in_t *ksi, queue_t *pfkey_q, mblk_t *mp, netstack_t *ns) 2279 { 2280 struct sockaddr_in *src, *isrc; 2281 struct sockaddr_in6 *dst, *idst; 2282 sadb_address_t *srcext, *dstext; 2283 uint16_t sport; 2284 sadb_ext_t **extv = ksi->ks_in_extv; 2285 int rc; 2286 2287 if (extv[SADB_EXT_ADDRESS_SRC] != NULL) { 2288 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_SRC], 2289 ksi->ks_in_serial, ns); 2290 if (rc == KS_IN_ADDR_UNKNOWN) 2291 return (B_FALSE); 2292 if (rc == KS_IN_ADDR_MBCAST) { 2293 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2294 SADB_X_DIAGNOSTIC_BAD_SRC, ksi->ks_in_serial); 2295 return (B_FALSE); 2296 } 2297 ksi->ks_in_srctype = rc; 2298 } 2299 2300 if (extv[SADB_EXT_ADDRESS_DST] != NULL) { 2301 rc = sadb_addrcheck(pfkey_q, mp, extv[SADB_EXT_ADDRESS_DST], 2302 ksi->ks_in_serial, ns); 2303 if (rc == KS_IN_ADDR_UNKNOWN) 2304 return (B_FALSE); 2305 if (rc == KS_IN_ADDR_UNSPEC) { 2306 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2307 SADB_X_DIAGNOSTIC_BAD_DST, ksi->ks_in_serial); 2308 return (B_FALSE); 2309 } 2310 ksi->ks_in_dsttype = rc; 2311 } 2312 2313 /* 2314 * NAT-Traversal addrs are simple enough to not require all of 2315 * the checks in sadb_addrcheck(). Just normalize or reject if not 2316 * AF_INET. 2317 */ 2318 if (extv[SADB_X_EXT_ADDRESS_NATT_LOC] != NULL) { 2319 rc = sadb_addrcheck(pfkey_q, mp, 2320 extv[SADB_X_EXT_ADDRESS_NATT_LOC], ksi->ks_in_serial, ns); 2321 2322 /* 2323 * Local NAT-T addresses never use an IRE_LOCAL, so it should 2324 * always be NOTME, or UNSPEC (to handle both tunnel mode 2325 * AND local-port flexibility). 2326 */ 2327 if (rc != KS_IN_ADDR_NOTME && rc != KS_IN_ADDR_UNSPEC) { 2328 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2329 SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC, 2330 ksi->ks_in_serial); 2331 return (B_FALSE); 2332 } 2333 src = (struct sockaddr_in *) 2334 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_LOC]) + 1); 2335 if (src->sin_family != AF_INET) { 2336 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2337 SADB_X_DIAGNOSTIC_BAD_NATT_LOC_AF, 2338 ksi->ks_in_serial); 2339 return (B_FALSE); 2340 } 2341 } 2342 2343 if (extv[SADB_X_EXT_ADDRESS_NATT_REM] != NULL) { 2344 rc = sadb_addrcheck(pfkey_q, mp, 2345 extv[SADB_X_EXT_ADDRESS_NATT_REM], ksi->ks_in_serial, ns); 2346 2347 /* 2348 * Remote NAT-T addresses never use an IRE_LOCAL, so it should 2349 * always be NOTME, or UNSPEC if it's a tunnel-mode SA. 2350 */ 2351 if (rc != KS_IN_ADDR_NOTME && 2352 !(extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL && 2353 rc == KS_IN_ADDR_UNSPEC)) { 2354 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2355 SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM, 2356 ksi->ks_in_serial); 2357 return (B_FALSE); 2358 } 2359 src = (struct sockaddr_in *) 2360 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_NATT_REM]) + 1); 2361 if (src->sin_family != AF_INET) { 2362 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2363 SADB_X_DIAGNOSTIC_BAD_NATT_REM_AF, 2364 ksi->ks_in_serial); 2365 return (B_FALSE); 2366 } 2367 } 2368 2369 if (extv[SADB_X_EXT_ADDRESS_INNER_SRC] != NULL) { 2370 if (extv[SADB_X_EXT_ADDRESS_INNER_DST] == NULL) { 2371 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2372 SADB_X_DIAGNOSTIC_MISSING_INNER_DST, 2373 ksi->ks_in_serial); 2374 return (B_FALSE); 2375 } 2376 2377 if (sadb_addrcheck(pfkey_q, mp, 2378 extv[SADB_X_EXT_ADDRESS_INNER_DST], ksi->ks_in_serial, ns) 2379 == KS_IN_ADDR_UNKNOWN || 2380 sadb_addrcheck(pfkey_q, mp, 2381 extv[SADB_X_EXT_ADDRESS_INNER_SRC], ksi->ks_in_serial, ns) 2382 == KS_IN_ADDR_UNKNOWN) 2383 return (B_FALSE); 2384 2385 isrc = (struct sockaddr_in *) 2386 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC]) + 2387 1); 2388 idst = (struct sockaddr_in6 *) 2389 (((sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]) + 2390 1); 2391 if (isrc->sin_family != idst->sin6_family) { 2392 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2393 SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH, 2394 ksi->ks_in_serial); 2395 return (B_FALSE); 2396 } 2397 } else if (extv[SADB_X_EXT_ADDRESS_INNER_DST] != NULL) { 2398 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2399 SADB_X_DIAGNOSTIC_MISSING_INNER_SRC, 2400 ksi->ks_in_serial); 2401 return (B_FALSE); 2402 } else { 2403 isrc = NULL; /* For inner/outer port check below. */ 2404 } 2405 2406 dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST]; 2407 srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC]; 2408 2409 if (dstext == NULL || srcext == NULL) 2410 return (B_TRUE); 2411 2412 dst = (struct sockaddr_in6 *)(dstext + 1); 2413 src = (struct sockaddr_in *)(srcext + 1); 2414 2415 if (isrc != NULL && 2416 (isrc->sin_port != 0 || idst->sin6_port != 0) && 2417 (src->sin_port != 0 || dst->sin6_port != 0)) { 2418 /* Can't set inner and outer ports in one SA. */ 2419 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2420 SADB_X_DIAGNOSTIC_DUAL_PORT_SETS, 2421 ksi->ks_in_serial); 2422 return (B_FALSE); 2423 } 2424 2425 if (dst->sin6_family == src->sin_family) 2426 return (B_TRUE); 2427 2428 if (srcext->sadb_address_proto != dstext->sadb_address_proto) { 2429 if (srcext->sadb_address_proto == 0) { 2430 srcext->sadb_address_proto = dstext->sadb_address_proto; 2431 } else if (dstext->sadb_address_proto == 0) { 2432 dstext->sadb_address_proto = srcext->sadb_address_proto; 2433 } else { 2434 /* Inequal protocols, neither were 0. Report error. */ 2435 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2436 SADB_X_DIAGNOSTIC_PROTO_MISMATCH, 2437 ksi->ks_in_serial); 2438 return (B_FALSE); 2439 } 2440 } 2441 2442 /* 2443 * With the exception of an unspec IPv6 source and an IPv4 2444 * destination, address families MUST me matched. 2445 */ 2446 if (src->sin_family == AF_INET || 2447 ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) { 2448 sadb_pfkey_error(pfkey_q, mp, EINVAL, 2449 SADB_X_DIAGNOSTIC_AF_MISMATCH, ksi->ks_in_serial); 2450 return (B_FALSE); 2451 } 2452 2453 /* 2454 * Convert "src" to AF_INET INADDR_ANY. We rely on sin_port being 2455 * in the same place for sockaddr_in and sockaddr_in6. 2456 */ 2457 sport = src->sin_port; 2458 bzero(src, sizeof (*src)); 2459 src->sin_family = AF_INET; 2460 src->sin_port = sport; 2461 2462 return (B_TRUE); 2463 } 2464 2465 /* 2466 * Set the results in "addrtype", given an IRE as requested by 2467 * sadb_addrcheck(). 2468 */ 2469 int 2470 sadb_addrset(ire_t *ire) 2471 { 2472 if ((ire->ire_type & IRE_BROADCAST) || 2473 (ire->ire_ipversion == IPV4_VERSION && CLASSD(ire->ire_addr)) || 2474 (ire->ire_ipversion == IPV6_VERSION && 2475 IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6)))) 2476 return (KS_IN_ADDR_MBCAST); 2477 if (ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) 2478 return (KS_IN_ADDR_ME); 2479 return (KS_IN_ADDR_NOTME); 2480 } 2481 2482 2483 /* 2484 * Walker callback function to delete sa's based on src/dst address. 2485 * Assumes that we're called with *head locked, no other locks held; 2486 * Conveniently, and not coincidentally, this is both what sadb_walker 2487 * gives us and also what sadb_unlinkassoc expects. 2488 */ 2489 2490 struct sadb_purge_state 2491 { 2492 uint32_t *src; 2493 uint32_t *dst; 2494 sa_family_t af; 2495 boolean_t inbnd; 2496 char *sidstr; 2497 char *didstr; 2498 uint16_t sidtype; 2499 uint16_t didtype; 2500 uint32_t kmproto; 2501 uint8_t sadb_sa_state; 2502 mblk_t *mq; 2503 sadb_t *sp; 2504 }; 2505 2506 static void 2507 sadb_purge_cb(isaf_t *head, ipsa_t *entry, void *cookie) 2508 { 2509 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie; 2510 2511 ASSERT(MUTEX_HELD(&head->isaf_lock)); 2512 2513 mutex_enter(&entry->ipsa_lock); 2514 2515 if ((entry->ipsa_state == IPSA_STATE_LARVAL) || 2516 (ps->src != NULL && 2517 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, ps->src, ps->af)) || 2518 (ps->dst != NULL && 2519 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_dstaddr, ps->dst, ps->af)) || 2520 (ps->didstr != NULL && (entry->ipsa_dst_cid != NULL) && 2521 !(ps->didtype == entry->ipsa_dst_cid->ipsid_type && 2522 strcmp(ps->didstr, entry->ipsa_dst_cid->ipsid_cid) == 0)) || 2523 (ps->sidstr != NULL && (entry->ipsa_src_cid != NULL) && 2524 !(ps->sidtype == entry->ipsa_src_cid->ipsid_type && 2525 strcmp(ps->sidstr, entry->ipsa_src_cid->ipsid_cid) == 0)) || 2526 (ps->kmproto <= SADB_X_KMP_MAX && ps->kmproto != entry->ipsa_kmp)) { 2527 mutex_exit(&entry->ipsa_lock); 2528 return; 2529 } 2530 2531 if (ps->inbnd) { 2532 sadb_delete_cluster(entry); 2533 } 2534 entry->ipsa_state = IPSA_STATE_DEAD; 2535 (void) sadb_torch_assoc(head, entry, ps->inbnd, &ps->mq); 2536 } 2537 2538 /* 2539 * Common code to purge an SA with a matching src or dst address. 2540 * Don't kill larval SA's in such a purge. 2541 */ 2542 int 2543 sadb_purge_sa(mblk_t *mp, keysock_in_t *ksi, sadb_t *sp, queue_t *pfkey_q, 2544 queue_t *ip_q) 2545 { 2546 sadb_address_t *dstext = 2547 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2548 sadb_address_t *srcext = 2549 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2550 sadb_ident_t *dstid = 2551 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST]; 2552 sadb_ident_t *srcid = 2553 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC]; 2554 sadb_x_kmc_t *kmc = 2555 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 2556 struct sockaddr_in *src, *dst; 2557 struct sockaddr_in6 *src6, *dst6; 2558 struct sadb_purge_state ps; 2559 2560 /* 2561 * Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck() 2562 * takes care of them. 2563 */ 2564 2565 /* enforced by caller */ 2566 ASSERT((dstext != NULL) || (srcext != NULL)); 2567 2568 ps.src = NULL; 2569 ps.dst = NULL; 2570 #ifdef DEBUG 2571 ps.af = (sa_family_t)-1; 2572 #endif 2573 ps.mq = NULL; 2574 ps.sidstr = NULL; 2575 ps.didstr = NULL; 2576 ps.kmproto = SADB_X_KMP_MAX + 1; 2577 2578 if (dstext != NULL) { 2579 dst = (struct sockaddr_in *)(dstext + 1); 2580 ps.af = dst->sin_family; 2581 if (dst->sin_family == AF_INET6) { 2582 dst6 = (struct sockaddr_in6 *)dst; 2583 ps.dst = (uint32_t *)&dst6->sin6_addr; 2584 } else { 2585 ps.dst = (uint32_t *)&dst->sin_addr; 2586 } 2587 } 2588 2589 if (srcext != NULL) { 2590 src = (struct sockaddr_in *)(srcext + 1); 2591 ps.af = src->sin_family; 2592 if (src->sin_family == AF_INET6) { 2593 src6 = (struct sockaddr_in6 *)(srcext + 1); 2594 ps.src = (uint32_t *)&src6->sin6_addr; 2595 } else { 2596 ps.src = (uint32_t *)&src->sin_addr; 2597 } 2598 ASSERT(dstext == NULL || src->sin_family == dst->sin_family); 2599 } 2600 2601 ASSERT(ps.af != (sa_family_t)-1); 2602 2603 if (dstid != NULL) { 2604 /* 2605 * NOTE: May need to copy string in the future 2606 * if the inbound keysock message disappears for some strange 2607 * reason. 2608 */ 2609 ps.didstr = (char *)(dstid + 1); 2610 ps.didtype = dstid->sadb_ident_type; 2611 } 2612 2613 if (srcid != NULL) { 2614 /* 2615 * NOTE: May need to copy string in the future 2616 * if the inbound keysock message disappears for some strange 2617 * reason. 2618 */ 2619 ps.sidstr = (char *)(srcid + 1); 2620 ps.sidtype = srcid->sadb_ident_type; 2621 } 2622 2623 if (kmc != NULL) 2624 ps.kmproto = kmc->sadb_x_kmc_proto; 2625 2626 /* 2627 * This is simple, crude, and effective. 2628 * Unimplemented optimizations (TBD): 2629 * - we can limit how many places we search based on where we 2630 * think the SA is filed. 2631 * - if we get a dst address, we can hash based on dst addr to find 2632 * the correct bucket in the outbound table. 2633 */ 2634 ps.inbnd = B_TRUE; 2635 sadb_walker(sp->sdb_if, sp->sdb_hashsize, sadb_purge_cb, &ps); 2636 ps.inbnd = B_FALSE; 2637 sadb_walker(sp->sdb_of, sp->sdb_hashsize, sadb_purge_cb, &ps); 2638 2639 if (ps.mq != NULL) 2640 sadb_drain_torchq(ip_q, ps.mq); 2641 2642 ASSERT(mp->b_cont != NULL); 2643 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 2644 NULL); 2645 return (0); 2646 } 2647 2648 static void 2649 sadb_delpair_state(isaf_t *head, ipsa_t *entry, void *cookie) 2650 { 2651 struct sadb_purge_state *ps = (struct sadb_purge_state *)cookie; 2652 isaf_t *inbound_bucket; 2653 ipsa_t *peer_assoc; 2654 2655 ASSERT(MUTEX_HELD(&head->isaf_lock)); 2656 2657 mutex_enter(&entry->ipsa_lock); 2658 2659 if ((entry->ipsa_state != ps->sadb_sa_state) || 2660 ((ps->src != NULL) && 2661 !IPSA_ARE_ADDR_EQUAL(entry->ipsa_srcaddr, ps->src, ps->af))) { 2662 mutex_exit(&entry->ipsa_lock); 2663 return; 2664 } 2665 2666 /* 2667 * The isaf_t *, which is passed in , is always an outbound bucket, 2668 * and we are preserving the outbound-then-inbound hash-bucket lock 2669 * ordering. The sadb_walker() which triggers this function is called 2670 * only on the outbound fanout, and the corresponding inbound bucket 2671 * lock is safe to acquire here. 2672 */ 2673 2674 if (entry->ipsa_haspeer) { 2675 inbound_bucket = INBOUND_BUCKET(ps->sp, entry->ipsa_spi); 2676 mutex_enter(&inbound_bucket->isaf_lock); 2677 peer_assoc = ipsec_getassocbyspi(inbound_bucket, 2678 entry->ipsa_spi, entry->ipsa_srcaddr, 2679 entry->ipsa_dstaddr, entry->ipsa_addrfam); 2680 } else { 2681 inbound_bucket = INBOUND_BUCKET(ps->sp, entry->ipsa_otherspi); 2682 mutex_enter(&inbound_bucket->isaf_lock); 2683 peer_assoc = ipsec_getassocbyspi(inbound_bucket, 2684 entry->ipsa_otherspi, entry->ipsa_dstaddr, 2685 entry->ipsa_srcaddr, entry->ipsa_addrfam); 2686 } 2687 2688 entry->ipsa_state = IPSA_STATE_DEAD; 2689 (void) sadb_torch_assoc(head, entry, B_FALSE, &ps->mq); 2690 if (peer_assoc != NULL) { 2691 mutex_enter(&peer_assoc->ipsa_lock); 2692 peer_assoc->ipsa_state = IPSA_STATE_DEAD; 2693 (void) sadb_torch_assoc(inbound_bucket, peer_assoc, 2694 B_FALSE, &ps->mq); 2695 } 2696 mutex_exit(&inbound_bucket->isaf_lock); 2697 } 2698 2699 /* 2700 * Common code to delete/get an SA. 2701 */ 2702 int 2703 sadb_delget_sa(mblk_t *mp, keysock_in_t *ksi, sadbp_t *spp, 2704 int *diagnostic, queue_t *pfkey_q, uint8_t sadb_msg_type) 2705 { 2706 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2707 sadb_address_t *srcext = 2708 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 2709 sadb_address_t *dstext = 2710 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2711 ipsa_t *echo_target = NULL; 2712 ipsap_t *ipsapp; 2713 mblk_t *torchq = NULL; 2714 uint_t error = 0; 2715 2716 if (assoc == NULL) { 2717 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 2718 return (EINVAL); 2719 } 2720 2721 if (sadb_msg_type == SADB_X_DELPAIR_STATE) { 2722 struct sockaddr_in *src; 2723 struct sockaddr_in6 *src6; 2724 struct sadb_purge_state ps; 2725 2726 if (srcext == NULL) { 2727 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 2728 return (EINVAL); 2729 } 2730 ps.src = NULL; 2731 ps.mq = NULL; 2732 src = (struct sockaddr_in *)(srcext + 1); 2733 ps.af = src->sin_family; 2734 if (src->sin_family == AF_INET6) { 2735 src6 = (struct sockaddr_in6 *)(srcext + 1); 2736 ps.src = (uint32_t *)&src6->sin6_addr; 2737 ps.sp = &spp->s_v6; 2738 } else { 2739 ps.src = (uint32_t *)&src->sin_addr; 2740 ps.sp = &spp->s_v4; 2741 } 2742 ps.inbnd = B_FALSE; 2743 ps.sadb_sa_state = assoc->sadb_sa_state; 2744 sadb_walker(ps.sp->sdb_of, ps.sp->sdb_hashsize, 2745 sadb_delpair_state, &ps); 2746 2747 if (ps.mq != NULL) 2748 sadb_drain_torchq(pfkey_q, ps.mq); 2749 2750 ASSERT(mp->b_cont != NULL); 2751 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 2752 ksi, NULL); 2753 return (0); 2754 } 2755 2756 if (dstext == NULL) { 2757 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 2758 return (EINVAL); 2759 } 2760 2761 ipsapp = get_ipsa_pair(assoc, srcext, dstext, spp); 2762 if (ipsapp == NULL) { 2763 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND; 2764 return (ESRCH); 2765 } 2766 2767 echo_target = ipsapp->ipsap_sa_ptr; 2768 if (echo_target == NULL) 2769 echo_target = ipsapp->ipsap_psa_ptr; 2770 2771 if (sadb_msg_type == SADB_DELETE || sadb_msg_type == SADB_X_DELPAIR) { 2772 /* 2773 * Bucket locks will be required if SA is actually unlinked. 2774 * get_ipsa_pair() returns valid hash bucket pointers even 2775 * if it can't find a pair SA pointer. 2776 */ 2777 mutex_enter(&ipsapp->ipsap_bucket->isaf_lock); 2778 mutex_enter(&ipsapp->ipsap_pbucket->isaf_lock); 2779 2780 if (ipsapp->ipsap_sa_ptr != NULL) { 2781 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2782 if (ipsapp->ipsap_sa_ptr->ipsa_flags & IPSA_F_INBOUND) { 2783 sadb_delete_cluster(ipsapp->ipsap_sa_ptr); 2784 } 2785 ipsapp->ipsap_sa_ptr->ipsa_state = IPSA_STATE_DEAD; 2786 (void) sadb_torch_assoc(ipsapp->ipsap_bucket, 2787 ipsapp->ipsap_sa_ptr, B_FALSE, &torchq); 2788 /* 2789 * sadb_torch_assoc() releases the ipsa_lock 2790 * and calls sadb_unlinkassoc() which does a 2791 * IPSA_REFRELE. 2792 */ 2793 } 2794 if (ipsapp->ipsap_psa_ptr != NULL) { 2795 mutex_enter(&ipsapp->ipsap_psa_ptr->ipsa_lock); 2796 if (sadb_msg_type == SADB_X_DELPAIR) { 2797 if (ipsapp->ipsap_psa_ptr->ipsa_flags & 2798 IPSA_F_INBOUND) { 2799 sadb_delete_cluster( 2800 ipsapp->ipsap_psa_ptr); 2801 } 2802 ipsapp->ipsap_psa_ptr->ipsa_state = 2803 IPSA_STATE_DEAD; 2804 (void) sadb_torch_assoc(ipsapp->ipsap_pbucket, 2805 ipsapp->ipsap_psa_ptr, B_FALSE, &torchq); 2806 } else { 2807 /* 2808 * Only half of the "pair" has been deleted. 2809 * Update the remaining SA and remove references 2810 * to its pair SA, which is now gone. 2811 */ 2812 ipsapp->ipsap_psa_ptr->ipsa_otherspi = 0; 2813 ipsapp->ipsap_psa_ptr->ipsa_flags &= 2814 ~IPSA_F_PAIRED; 2815 mutex_exit(&ipsapp->ipsap_psa_ptr->ipsa_lock); 2816 } 2817 } else if (sadb_msg_type == SADB_X_DELPAIR) { 2818 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 2819 error = ESRCH; 2820 } 2821 mutex_exit(&ipsapp->ipsap_bucket->isaf_lock); 2822 mutex_exit(&ipsapp->ipsap_pbucket->isaf_lock); 2823 } 2824 2825 if (torchq != NULL) 2826 sadb_drain_torchq(spp->s_ip_q, torchq); 2827 2828 ASSERT(mp->b_cont != NULL); 2829 2830 if (error == 0) 2831 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *) 2832 mp->b_cont->b_rptr, ksi, echo_target); 2833 2834 destroy_ipsa_pair(ipsapp); 2835 2836 return (error); 2837 } 2838 2839 /* 2840 * This function takes a sadb_sa_t and finds the ipsa_t structure 2841 * and the isaf_t (hash bucket) that its stored under. If the security 2842 * association has a peer, the ipsa_t structure and bucket for that security 2843 * association are also searched for. The "pair" of ipsa_t's and isaf_t's 2844 * are returned as a ipsap_t. 2845 * 2846 * Note that a "pair" is defined as one (but not both) of the following: 2847 * 2848 * A security association which has a soft reference to another security 2849 * association via its SPI. 2850 * 2851 * A security association that is not obviously "inbound" or "outbound" so 2852 * it appears in both hash tables, the "peer" being the same security 2853 * association in the other hash table. 2854 * 2855 * This function will return NULL if the ipsa_t can't be found in the 2856 * inbound or outbound hash tables (not found). If only one ipsa_t is 2857 * found, the pair ipsa_t will be NULL. Both isaf_t values are valid 2858 * provided at least one ipsa_t is found. 2859 */ 2860 ipsap_t * 2861 get_ipsa_pair(sadb_sa_t *assoc, sadb_address_t *srcext, sadb_address_t *dstext, 2862 sadbp_t *spp) 2863 { 2864 struct sockaddr_in *src, *dst; 2865 struct sockaddr_in6 *src6, *dst6; 2866 sadb_t *sp; 2867 uint32_t *srcaddr, *dstaddr; 2868 isaf_t *outbound_bucket, *inbound_bucket; 2869 boolean_t in_inbound_table = B_FALSE; 2870 ipsap_t *ipsapp; 2871 sa_family_t af; 2872 2873 uint32_t pair_srcaddr[IPSA_MAX_ADDRLEN]; 2874 uint32_t pair_dstaddr[IPSA_MAX_ADDRLEN]; 2875 uint32_t pair_spi; 2876 2877 ipsapp = kmem_zalloc(sizeof (*ipsapp), KM_NOSLEEP); 2878 if (ipsapp == NULL) 2879 return (NULL); 2880 2881 /* 2882 * Don't worry about IPv6 v4-mapped addresses, sadb_addrcheck() 2883 * takes care of them. 2884 */ 2885 2886 dst = (struct sockaddr_in *)(dstext + 1); 2887 af = dst->sin_family; 2888 if (af == AF_INET6) { 2889 sp = &spp->s_v6; 2890 dst6 = (struct sockaddr_in6 *)dst; 2891 dstaddr = (uint32_t *)&dst6->sin6_addr; 2892 if (srcext != NULL) { 2893 src6 = (struct sockaddr_in6 *)(srcext + 1); 2894 srcaddr = (uint32_t *)&src6->sin6_addr; 2895 ASSERT(src6->sin6_family == af); 2896 ASSERT(src6->sin6_family == AF_INET6); 2897 } else { 2898 srcaddr = ALL_ZEROES_PTR; 2899 } 2900 outbound_bucket = OUTBOUND_BUCKET_V6(sp, 2901 *(uint32_t *)dstaddr); 2902 } else { 2903 sp = &spp->s_v4; 2904 dstaddr = (uint32_t *)&dst->sin_addr; 2905 if (srcext != NULL) { 2906 src = (struct sockaddr_in *)(srcext + 1); 2907 srcaddr = (uint32_t *)&src->sin_addr; 2908 ASSERT(src->sin_family == af); 2909 ASSERT(src->sin_family == AF_INET); 2910 } else { 2911 srcaddr = ALL_ZEROES_PTR; 2912 } 2913 outbound_bucket = OUTBOUND_BUCKET_V4(sp, 2914 *(uint32_t *)dstaddr); 2915 } 2916 2917 inbound_bucket = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); 2918 2919 /* Lock down both buckets. */ 2920 mutex_enter(&outbound_bucket->isaf_lock); 2921 mutex_enter(&inbound_bucket->isaf_lock); 2922 2923 if (assoc->sadb_sa_flags & IPSA_F_INBOUND) { 2924 ipsapp->ipsap_sa_ptr = ipsec_getassocbyspi(inbound_bucket, 2925 assoc->sadb_sa_spi, srcaddr, dstaddr, af); 2926 if (ipsapp->ipsap_sa_ptr != NULL) { 2927 ipsapp->ipsap_bucket = inbound_bucket; 2928 ipsapp->ipsap_pbucket = outbound_bucket; 2929 in_inbound_table = B_TRUE; 2930 } else { 2931 ipsapp->ipsap_sa_ptr = 2932 ipsec_getassocbyspi(outbound_bucket, 2933 assoc->sadb_sa_spi, srcaddr, dstaddr, af); 2934 ipsapp->ipsap_bucket = outbound_bucket; 2935 ipsapp->ipsap_pbucket = inbound_bucket; 2936 } 2937 } else { 2938 /* IPSA_F_OUTBOUND is set *or* no directions flags set. */ 2939 ipsapp->ipsap_sa_ptr = 2940 ipsec_getassocbyspi(outbound_bucket, 2941 assoc->sadb_sa_spi, srcaddr, dstaddr, af); 2942 if (ipsapp->ipsap_sa_ptr != NULL) { 2943 ipsapp->ipsap_bucket = outbound_bucket; 2944 ipsapp->ipsap_pbucket = inbound_bucket; 2945 } else { 2946 ipsapp->ipsap_sa_ptr = 2947 ipsec_getassocbyspi(inbound_bucket, 2948 assoc->sadb_sa_spi, srcaddr, dstaddr, af); 2949 ipsapp->ipsap_bucket = inbound_bucket; 2950 ipsapp->ipsap_pbucket = outbound_bucket; 2951 if (ipsapp->ipsap_sa_ptr != NULL) 2952 in_inbound_table = B_TRUE; 2953 } 2954 } 2955 2956 if (ipsapp->ipsap_sa_ptr == NULL) { 2957 mutex_exit(&outbound_bucket->isaf_lock); 2958 mutex_exit(&inbound_bucket->isaf_lock); 2959 kmem_free(ipsapp, sizeof (*ipsapp)); 2960 return (NULL); 2961 } 2962 2963 if ((ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) && 2964 in_inbound_table) { 2965 mutex_exit(&outbound_bucket->isaf_lock); 2966 mutex_exit(&inbound_bucket->isaf_lock); 2967 return (ipsapp); 2968 } 2969 2970 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2971 if (ipsapp->ipsap_sa_ptr->ipsa_haspeer) { 2972 /* 2973 * haspeer implies no sa_pairing, look for same spi 2974 * in other hashtable. 2975 */ 2976 ipsapp->ipsap_psa_ptr = 2977 ipsec_getassocbyspi(ipsapp->ipsap_pbucket, 2978 assoc->sadb_sa_spi, srcaddr, dstaddr, af); 2979 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2980 mutex_exit(&outbound_bucket->isaf_lock); 2981 mutex_exit(&inbound_bucket->isaf_lock); 2982 return (ipsapp); 2983 } 2984 pair_spi = ipsapp->ipsap_sa_ptr->ipsa_otherspi; 2985 IPSA_COPY_ADDR(&pair_srcaddr, 2986 ipsapp->ipsap_sa_ptr->ipsa_srcaddr, af); 2987 IPSA_COPY_ADDR(&pair_dstaddr, 2988 ipsapp->ipsap_sa_ptr->ipsa_dstaddr, af); 2989 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 2990 mutex_exit(&outbound_bucket->isaf_lock); 2991 mutex_exit(&inbound_bucket->isaf_lock); 2992 2993 if (pair_spi == 0) { 2994 ASSERT(ipsapp->ipsap_bucket != NULL); 2995 ASSERT(ipsapp->ipsap_pbucket != NULL); 2996 return (ipsapp); 2997 } 2998 2999 /* found sa in outbound sadb, peer should be inbound */ 3000 3001 if (in_inbound_table) { 3002 /* Found SA in inbound table, pair will be in outbound. */ 3003 if (af == AF_INET6) { 3004 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V6(sp, 3005 *(uint32_t *)pair_srcaddr); 3006 } else { 3007 ipsapp->ipsap_pbucket = OUTBOUND_BUCKET_V4(sp, 3008 *(uint32_t *)pair_srcaddr); 3009 } 3010 } else { 3011 ipsapp->ipsap_pbucket = INBOUND_BUCKET(sp, pair_spi); 3012 } 3013 mutex_enter(&ipsapp->ipsap_pbucket->isaf_lock); 3014 ipsapp->ipsap_psa_ptr = ipsec_getassocbyspi(ipsapp->ipsap_pbucket, 3015 pair_spi, pair_dstaddr, pair_srcaddr, af); 3016 mutex_exit(&ipsapp->ipsap_pbucket->isaf_lock); 3017 ASSERT(ipsapp->ipsap_bucket != NULL); 3018 ASSERT(ipsapp->ipsap_pbucket != NULL); 3019 return (ipsapp); 3020 } 3021 3022 /* 3023 * Initialize the mechanism parameters associated with an SA. 3024 * These parameters can be shared by multiple packets, which saves 3025 * us from the overhead of consulting the algorithm table for 3026 * each packet. 3027 */ 3028 static void 3029 sadb_init_alginfo(ipsa_t *sa) 3030 { 3031 ipsec_alginfo_t *alg; 3032 ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec; 3033 3034 mutex_enter(&ipss->ipsec_alg_lock); 3035 3036 if (sa->ipsa_encrkey != NULL) { 3037 alg = ipss->ipsec_alglists[IPSEC_ALG_ENCR][sa->ipsa_encr_alg]; 3038 if (alg != NULL && ALG_VALID(alg)) { 3039 sa->ipsa_emech.cm_type = alg->alg_mech_type; 3040 sa->ipsa_emech.cm_param = NULL; 3041 sa->ipsa_emech.cm_param_len = 0; 3042 sa->ipsa_iv_len = alg->alg_datalen; 3043 } else 3044 sa->ipsa_emech.cm_type = CRYPTO_MECHANISM_INVALID; 3045 } 3046 3047 if (sa->ipsa_authkey != NULL) { 3048 alg = ipss->ipsec_alglists[IPSEC_ALG_AUTH][sa->ipsa_auth_alg]; 3049 if (alg != NULL && ALG_VALID(alg)) { 3050 sa->ipsa_amech.cm_type = alg->alg_mech_type; 3051 sa->ipsa_amech.cm_param = (char *)&sa->ipsa_mac_len; 3052 sa->ipsa_amech.cm_param_len = sizeof (size_t); 3053 sa->ipsa_mac_len = (size_t)alg->alg_datalen; 3054 } else 3055 sa->ipsa_amech.cm_type = CRYPTO_MECHANISM_INVALID; 3056 } 3057 3058 mutex_exit(&ipss->ipsec_alg_lock); 3059 } 3060 3061 /* 3062 * Perform NAT-traversal cached checksum offset calculations here. 3063 */ 3064 static void 3065 sadb_nat_calculations(ipsa_t *newbie, sadb_address_t *natt_loc_ext, 3066 sadb_address_t *natt_rem_ext, uint32_t *src_addr_ptr, 3067 uint32_t *dst_addr_ptr) 3068 { 3069 struct sockaddr_in *natt_loc, *natt_rem; 3070 uint32_t *natt_loc_ptr = NULL, *natt_rem_ptr = NULL; 3071 uint32_t running_sum = 0; 3072 3073 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16) 3074 3075 if (natt_rem_ext != NULL) { 3076 uint32_t l_src; 3077 uint32_t l_rem; 3078 3079 natt_rem = (struct sockaddr_in *)(natt_rem_ext + 1); 3080 3081 /* Ensured by sadb_addrfix(). */ 3082 ASSERT(natt_rem->sin_family == AF_INET); 3083 3084 natt_rem_ptr = (uint32_t *)(&natt_rem->sin_addr); 3085 newbie->ipsa_remote_nat_port = natt_rem->sin_port; 3086 l_src = *src_addr_ptr; 3087 l_rem = *natt_rem_ptr; 3088 3089 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */ 3090 newbie->ipsa_natt_addr_rem = *natt_rem_ptr; 3091 3092 l_src = ntohl(l_src); 3093 DOWN_SUM(l_src); 3094 DOWN_SUM(l_src); 3095 l_rem = ntohl(l_rem); 3096 DOWN_SUM(l_rem); 3097 DOWN_SUM(l_rem); 3098 3099 /* 3100 * We're 1's complement for checksums, so check for wraparound 3101 * here. 3102 */ 3103 if (l_rem > l_src) 3104 l_src--; 3105 3106 running_sum += l_src - l_rem; 3107 3108 DOWN_SUM(running_sum); 3109 DOWN_SUM(running_sum); 3110 } 3111 3112 if (natt_loc_ext != NULL) { 3113 natt_loc = (struct sockaddr_in *)(natt_loc_ext + 1); 3114 3115 /* Ensured by sadb_addrfix(). */ 3116 ASSERT(natt_loc->sin_family == AF_INET); 3117 3118 natt_loc_ptr = (uint32_t *)(&natt_loc->sin_addr); 3119 newbie->ipsa_local_nat_port = natt_loc->sin_port; 3120 3121 /* Instead of IPSA_COPY_ADDR(), just copy first 32 bits. */ 3122 newbie->ipsa_natt_addr_loc = *natt_loc_ptr; 3123 3124 /* 3125 * NAT-T port agility means we may have natt_loc_ext, but 3126 * only for a local-port change. 3127 */ 3128 if (natt_loc->sin_addr.s_addr != INADDR_ANY) { 3129 uint32_t l_dst = ntohl(*dst_addr_ptr); 3130 uint32_t l_loc = ntohl(*natt_loc_ptr); 3131 3132 DOWN_SUM(l_loc); 3133 DOWN_SUM(l_loc); 3134 DOWN_SUM(l_dst); 3135 DOWN_SUM(l_dst); 3136 3137 /* 3138 * We're 1's complement for checksums, so check for 3139 * wraparound here. 3140 */ 3141 if (l_loc > l_dst) 3142 l_dst--; 3143 3144 running_sum += l_dst - l_loc; 3145 DOWN_SUM(running_sum); 3146 DOWN_SUM(running_sum); 3147 } 3148 } 3149 3150 newbie->ipsa_inbound_cksum = running_sum; 3151 #undef DOWN_SUM 3152 } 3153 3154 /* 3155 * This function is called from consumers that need to insert a fully-grown 3156 * security association into its tables. This function takes into account that 3157 * SAs can be "inbound", "outbound", or "both". The "primary" and "secondary" 3158 * hash bucket parameters are set in order of what the SA will be most of the 3159 * time. (For example, an SA with an unspecified source, and a multicast 3160 * destination will primarily be an outbound SA. OTOH, if that destination 3161 * is unicast for this node, then the SA will primarily be inbound.) 3162 * 3163 * It takes a lot of parameters because even if clone is B_FALSE, this needs 3164 * to check both buckets for purposes of collision. 3165 * 3166 * Return 0 upon success. Return various errnos (ENOMEM, EEXIST) for 3167 * various error conditions. We may need to set samsg->sadb_x_msg_diagnostic 3168 * with additional diagnostic information because there is at least one EINVAL 3169 * case here. 3170 */ 3171 int 3172 sadb_common_add(queue_t *ip_q, queue_t *pfkey_q, mblk_t *mp, sadb_msg_t *samsg, 3173 keysock_in_t *ksi, isaf_t *primary, isaf_t *secondary, 3174 ipsa_t *newbie, boolean_t clone, boolean_t is_inbound, int *diagnostic, 3175 netstack_t *ns, sadbp_t *spp) 3176 { 3177 ipsa_t *newbie_clone = NULL, *scratch; 3178 ipsap_t *ipsapp = NULL; 3179 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 3180 sadb_address_t *srcext = 3181 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 3182 sadb_address_t *dstext = 3183 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 3184 sadb_address_t *isrcext = 3185 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC]; 3186 sadb_address_t *idstext = 3187 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST]; 3188 sadb_x_kmc_t *kmcext = 3189 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 3190 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 3191 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 3192 sadb_x_pair_t *pair_ext = 3193 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 3194 sadb_x_replay_ctr_t *replayext = 3195 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE]; 3196 uint8_t protocol = 3197 (samsg->sadb_msg_satype == SADB_SATYPE_AH) ? IPPROTO_AH:IPPROTO_ESP; 3198 #if 0 3199 /* 3200 * XXXMLS - When Trusted Solaris or Multi-Level Secure functionality 3201 * comes to ON, examine these if 0'ed fragments. Look for XXXMLS. 3202 */ 3203 sadb_sens_t *sens = (sadb_sens_t *); 3204 #endif 3205 struct sockaddr_in *src, *dst, *isrc, *idst; 3206 struct sockaddr_in6 *src6, *dst6, *isrc6, *idst6; 3207 sadb_lifetime_t *soft = 3208 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 3209 sadb_lifetime_t *hard = 3210 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 3211 sadb_lifetime_t *idle = 3212 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE]; 3213 sa_family_t af; 3214 int error = 0; 3215 boolean_t isupdate = (newbie != NULL); 3216 uint32_t *src_addr_ptr, *dst_addr_ptr, *isrc_addr_ptr, *idst_addr_ptr; 3217 mblk_t *ctl_mp = NULL; 3218 ipsec_stack_t *ipss = ns->netstack_ipsec; 3219 int rcode; 3220 3221 if (srcext == NULL) { 3222 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 3223 return (EINVAL); 3224 } 3225 if (dstext == NULL) { 3226 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 3227 return (EINVAL); 3228 } 3229 if (assoc == NULL) { 3230 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 3231 return (EINVAL); 3232 } 3233 3234 src = (struct sockaddr_in *)(srcext + 1); 3235 src6 = (struct sockaddr_in6 *)(srcext + 1); 3236 dst = (struct sockaddr_in *)(dstext + 1); 3237 dst6 = (struct sockaddr_in6 *)(dstext + 1); 3238 if (isrcext != NULL) { 3239 isrc = (struct sockaddr_in *)(isrcext + 1); 3240 isrc6 = (struct sockaddr_in6 *)(isrcext + 1); 3241 ASSERT(idstext != NULL); 3242 idst = (struct sockaddr_in *)(idstext + 1); 3243 idst6 = (struct sockaddr_in6 *)(idstext + 1); 3244 } else { 3245 isrc = NULL; 3246 isrc6 = NULL; 3247 } 3248 3249 af = src->sin_family; 3250 3251 if (af == AF_INET) { 3252 src_addr_ptr = (uint32_t *)&src->sin_addr; 3253 dst_addr_ptr = (uint32_t *)&dst->sin_addr; 3254 } else { 3255 ASSERT(af == AF_INET6); 3256 src_addr_ptr = (uint32_t *)&src6->sin6_addr; 3257 dst_addr_ptr = (uint32_t *)&dst6->sin6_addr; 3258 } 3259 3260 if (!isupdate && (clone == B_TRUE || is_inbound == B_TRUE) && 3261 cl_inet_checkspi && 3262 (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) { 3263 rcode = cl_inet_checkspi(ns->netstack_stackid, protocol, 3264 assoc->sadb_sa_spi, NULL); 3265 if (rcode == -1) { 3266 return (EEXIST); 3267 } 3268 } 3269 3270 /* 3271 * Check to see if the new SA will be cloned AND paired. The 3272 * reason a SA will be cloned is the source or destination addresses 3273 * are not specific enough to determine if the SA goes in the outbound 3274 * or the inbound hash table, so its cloned and put in both. If 3275 * the SA is paired, it's soft linked to another SA for the other 3276 * direction. Keeping track and looking up SA's that are direction 3277 * unspecific and linked is too hard. 3278 */ 3279 if (clone && (pair_ext != NULL)) { 3280 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 3281 return (EINVAL); 3282 } 3283 3284 if (!isupdate) { 3285 newbie = sadb_makelarvalassoc(assoc->sadb_sa_spi, 3286 src_addr_ptr, dst_addr_ptr, af, ns); 3287 if (newbie == NULL) 3288 return (ENOMEM); 3289 } 3290 3291 mutex_enter(&newbie->ipsa_lock); 3292 3293 if (isrc != NULL) { 3294 if (isrc->sin_family == AF_INET) { 3295 if (srcext->sadb_address_proto != IPPROTO_ENCAP) { 3296 if (srcext->sadb_address_proto != 0) { 3297 /* 3298 * Mismatched outer-packet protocol 3299 * and inner-packet address family. 3300 */ 3301 mutex_exit(&newbie->ipsa_lock); 3302 error = EPROTOTYPE; 3303 goto error; 3304 } else { 3305 /* Fill in with explicit protocol. */ 3306 srcext->sadb_address_proto = 3307 IPPROTO_ENCAP; 3308 dstext->sadb_address_proto = 3309 IPPROTO_ENCAP; 3310 } 3311 } 3312 isrc_addr_ptr = (uint32_t *)&isrc->sin_addr; 3313 idst_addr_ptr = (uint32_t *)&idst->sin_addr; 3314 } else { 3315 ASSERT(isrc->sin_family == AF_INET6); 3316 if (srcext->sadb_address_proto != IPPROTO_IPV6) { 3317 if (srcext->sadb_address_proto != 0) { 3318 /* 3319 * Mismatched outer-packet protocol 3320 * and inner-packet address family. 3321 */ 3322 mutex_exit(&newbie->ipsa_lock); 3323 error = EPROTOTYPE; 3324 goto error; 3325 } else { 3326 /* Fill in with explicit protocol. */ 3327 srcext->sadb_address_proto = 3328 IPPROTO_IPV6; 3329 dstext->sadb_address_proto = 3330 IPPROTO_IPV6; 3331 } 3332 } 3333 isrc_addr_ptr = (uint32_t *)&isrc6->sin6_addr; 3334 idst_addr_ptr = (uint32_t *)&idst6->sin6_addr; 3335 } 3336 newbie->ipsa_innerfam = isrc->sin_family; 3337 3338 IPSA_COPY_ADDR(newbie->ipsa_innersrc, isrc_addr_ptr, 3339 newbie->ipsa_innerfam); 3340 IPSA_COPY_ADDR(newbie->ipsa_innerdst, idst_addr_ptr, 3341 newbie->ipsa_innerfam); 3342 newbie->ipsa_innersrcpfx = isrcext->sadb_address_prefixlen; 3343 newbie->ipsa_innerdstpfx = idstext->sadb_address_prefixlen; 3344 3345 /* Unique value uses inner-ports for Tunnel Mode... */ 3346 newbie->ipsa_unique_id = SA_UNIQUE_ID(isrc->sin_port, 3347 idst->sin_port, dstext->sadb_address_proto, 3348 idstext->sadb_address_proto); 3349 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(isrc->sin_port, 3350 idst->sin_port, dstext->sadb_address_proto, 3351 idstext->sadb_address_proto); 3352 } else { 3353 /* ... and outer-ports for Transport Mode. */ 3354 newbie->ipsa_unique_id = SA_UNIQUE_ID(src->sin_port, 3355 dst->sin_port, dstext->sadb_address_proto, 0); 3356 newbie->ipsa_unique_mask = SA_UNIQUE_MASK(src->sin_port, 3357 dst->sin_port, dstext->sadb_address_proto, 0); 3358 } 3359 if (newbie->ipsa_unique_mask != (uint64_t)0) 3360 newbie->ipsa_flags |= IPSA_F_UNIQUE; 3361 3362 sadb_nat_calculations(newbie, 3363 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC], 3364 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM], 3365 src_addr_ptr, dst_addr_ptr); 3366 3367 newbie->ipsa_type = samsg->sadb_msg_satype; 3368 ASSERT((assoc->sadb_sa_state == SADB_SASTATE_MATURE) || 3369 (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE)); 3370 newbie->ipsa_auth_alg = assoc->sadb_sa_auth; 3371 newbie->ipsa_encr_alg = assoc->sadb_sa_encrypt; 3372 3373 newbie->ipsa_flags |= assoc->sadb_sa_flags; 3374 if ((newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_LOC && 3375 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC] == NULL) || 3376 (newbie->ipsa_flags & SADB_X_SAFLAGS_NATT_REM && 3377 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM] == NULL) || 3378 (newbie->ipsa_flags & SADB_X_SAFLAGS_TUNNEL && 3379 ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC] == NULL)) { 3380 mutex_exit(&newbie->ipsa_lock); 3381 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 3382 error = EINVAL; 3383 goto error; 3384 } 3385 /* 3386 * If unspecified source address, force replay_wsize to 0. 3387 * This is because an SA that has multiple sources of secure 3388 * traffic cannot enforce a replay counter w/o synchronizing the 3389 * senders. 3390 */ 3391 if (ksi->ks_in_srctype != KS_IN_ADDR_UNSPEC) 3392 newbie->ipsa_replay_wsize = assoc->sadb_sa_replay; 3393 else 3394 newbie->ipsa_replay_wsize = 0; 3395 3396 newbie->ipsa_addtime = gethrestime_sec(); 3397 3398 if (kmcext != NULL) { 3399 newbie->ipsa_kmp = kmcext->sadb_x_kmc_proto; 3400 newbie->ipsa_kmc = kmcext->sadb_x_kmc_cookie; 3401 } 3402 3403 /* 3404 * XXX CURRENT lifetime checks MAY BE needed for an UPDATE. 3405 * The spec says that one can update current lifetimes, but 3406 * that seems impractical, especially in the larval-to-mature 3407 * update that this function performs. 3408 */ 3409 if (soft != NULL) { 3410 newbie->ipsa_softaddlt = soft->sadb_lifetime_addtime; 3411 newbie->ipsa_softuselt = soft->sadb_lifetime_usetime; 3412 newbie->ipsa_softbyteslt = soft->sadb_lifetime_bytes; 3413 newbie->ipsa_softalloc = soft->sadb_lifetime_allocations; 3414 SET_EXPIRE(newbie, softaddlt, softexpiretime); 3415 } 3416 if (hard != NULL) { 3417 newbie->ipsa_hardaddlt = hard->sadb_lifetime_addtime; 3418 newbie->ipsa_harduselt = hard->sadb_lifetime_usetime; 3419 newbie->ipsa_hardbyteslt = hard->sadb_lifetime_bytes; 3420 newbie->ipsa_hardalloc = hard->sadb_lifetime_allocations; 3421 SET_EXPIRE(newbie, hardaddlt, hardexpiretime); 3422 } 3423 if (idle != NULL) { 3424 newbie->ipsa_idleaddlt = idle->sadb_lifetime_addtime; 3425 newbie->ipsa_idleuselt = idle->sadb_lifetime_usetime; 3426 newbie->ipsa_idleexpiretime = newbie->ipsa_addtime + 3427 newbie->ipsa_idleaddlt; 3428 newbie->ipsa_idletime = newbie->ipsa_idleaddlt; 3429 } 3430 3431 newbie->ipsa_authtmpl = NULL; 3432 newbie->ipsa_encrtmpl = NULL; 3433 3434 if (akey != NULL) { 3435 newbie->ipsa_authkeybits = akey->sadb_key_bits; 3436 newbie->ipsa_authkeylen = SADB_1TO8(akey->sadb_key_bits); 3437 /* In case we have to round up to the next byte... */ 3438 if ((akey->sadb_key_bits & 0x7) != 0) 3439 newbie->ipsa_authkeylen++; 3440 newbie->ipsa_authkey = kmem_alloc(newbie->ipsa_authkeylen, 3441 KM_NOSLEEP); 3442 if (newbie->ipsa_authkey == NULL) { 3443 error = ENOMEM; 3444 mutex_exit(&newbie->ipsa_lock); 3445 goto error; 3446 } 3447 bcopy(akey + 1, newbie->ipsa_authkey, newbie->ipsa_authkeylen); 3448 bzero(akey + 1, newbie->ipsa_authkeylen); 3449 3450 /* 3451 * Pre-initialize the kernel crypto framework key 3452 * structure. 3453 */ 3454 newbie->ipsa_kcfauthkey.ck_format = CRYPTO_KEY_RAW; 3455 newbie->ipsa_kcfauthkey.ck_length = newbie->ipsa_authkeybits; 3456 newbie->ipsa_kcfauthkey.ck_data = newbie->ipsa_authkey; 3457 3458 mutex_enter(&ipss->ipsec_alg_lock); 3459 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_AUTH); 3460 mutex_exit(&ipss->ipsec_alg_lock); 3461 if (error != 0) { 3462 mutex_exit(&newbie->ipsa_lock); 3463 goto error; 3464 } 3465 } 3466 3467 if (ekey != NULL) { 3468 newbie->ipsa_encrkeybits = ekey->sadb_key_bits; 3469 newbie->ipsa_encrkeylen = SADB_1TO8(ekey->sadb_key_bits); 3470 /* In case we have to round up to the next byte... */ 3471 if ((ekey->sadb_key_bits & 0x7) != 0) 3472 newbie->ipsa_encrkeylen++; 3473 newbie->ipsa_encrkey = kmem_alloc(newbie->ipsa_encrkeylen, 3474 KM_NOSLEEP); 3475 if (newbie->ipsa_encrkey == NULL) { 3476 error = ENOMEM; 3477 mutex_exit(&newbie->ipsa_lock); 3478 goto error; 3479 } 3480 bcopy(ekey + 1, newbie->ipsa_encrkey, newbie->ipsa_encrkeylen); 3481 /* XXX is this safe w.r.t db_ref, etc? */ 3482 bzero(ekey + 1, newbie->ipsa_encrkeylen); 3483 3484 /* 3485 * Pre-initialize the kernel crypto framework key 3486 * structure. 3487 */ 3488 newbie->ipsa_kcfencrkey.ck_format = CRYPTO_KEY_RAW; 3489 newbie->ipsa_kcfencrkey.ck_length = newbie->ipsa_encrkeybits; 3490 newbie->ipsa_kcfencrkey.ck_data = newbie->ipsa_encrkey; 3491 3492 mutex_enter(&ipss->ipsec_alg_lock); 3493 error = ipsec_create_ctx_tmpl(newbie, IPSEC_ALG_ENCR); 3494 mutex_exit(&ipss->ipsec_alg_lock); 3495 if (error != 0) { 3496 mutex_exit(&newbie->ipsa_lock); 3497 goto error; 3498 } 3499 } 3500 3501 sadb_init_alginfo(newbie); 3502 3503 /* 3504 * Ptrs to processing functions. 3505 */ 3506 if (newbie->ipsa_type == SADB_SATYPE_ESP) 3507 ipsecesp_init_funcs(newbie); 3508 else 3509 ipsecah_init_funcs(newbie); 3510 ASSERT(newbie->ipsa_output_func != NULL && 3511 newbie->ipsa_input_func != NULL); 3512 3513 /* 3514 * Certificate ID stuff. 3515 */ 3516 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC] != NULL) { 3517 sadb_ident_t *id = 3518 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_SRC]; 3519 3520 /* 3521 * Can assume strlen() will return okay because ext_check() in 3522 * keysock.c prepares the string for us. 3523 */ 3524 newbie->ipsa_src_cid = ipsid_lookup(id->sadb_ident_type, 3525 (char *)(id+1), ns); 3526 if (newbie->ipsa_src_cid == NULL) { 3527 error = ENOMEM; 3528 mutex_exit(&newbie->ipsa_lock); 3529 goto error; 3530 } 3531 } 3532 3533 if (ksi->ks_in_extv[SADB_EXT_IDENTITY_DST] != NULL) { 3534 sadb_ident_t *id = 3535 (sadb_ident_t *)ksi->ks_in_extv[SADB_EXT_IDENTITY_DST]; 3536 3537 /* 3538 * Can assume strlen() will return okay because ext_check() in 3539 * keysock.c prepares the string for us. 3540 */ 3541 newbie->ipsa_dst_cid = ipsid_lookup(id->sadb_ident_type, 3542 (char *)(id+1), ns); 3543 if (newbie->ipsa_dst_cid == NULL) { 3544 error = ENOMEM; 3545 mutex_exit(&newbie->ipsa_lock); 3546 goto error; 3547 } 3548 } 3549 3550 #if 0 3551 /* XXXMLS SENSITIVITY handling code. */ 3552 if (sens != NULL) { 3553 int i; 3554 uint64_t *bitmap = (uint64_t *)(sens + 1); 3555 3556 newbie->ipsa_dpd = sens->sadb_sens_dpd; 3557 newbie->ipsa_senslevel = sens->sadb_sens_sens_level; 3558 newbie->ipsa_integlevel = sens->sadb_sens_integ_level; 3559 newbie->ipsa_senslen = SADB_64TO8(sens->sadb_sens_sens_len); 3560 newbie->ipsa_integlen = SADB_64TO8(sens->sadb_sens_integ_len); 3561 newbie->ipsa_integ = kmem_alloc(newbie->ipsa_integlen, 3562 KM_NOSLEEP); 3563 if (newbie->ipsa_integ == NULL) { 3564 error = ENOMEM; 3565 mutex_exit(&newbie->ipsa_lock); 3566 goto error; 3567 } 3568 newbie->ipsa_sens = kmem_alloc(newbie->ipsa_senslen, 3569 KM_NOSLEEP); 3570 if (newbie->ipsa_sens == NULL) { 3571 error = ENOMEM; 3572 mutex_exit(&newbie->ipsa_lock); 3573 goto error; 3574 } 3575 for (i = 0; i < sens->sadb_sens_sens_len; i++) { 3576 newbie->ipsa_sens[i] = *bitmap; 3577 bitmap++; 3578 } 3579 for (i = 0; i < sens->sadb_sens_integ_len; i++) { 3580 newbie->ipsa_integ[i] = *bitmap; 3581 bitmap++; 3582 } 3583 } 3584 3585 #endif 3586 3587 if (replayext != NULL) { 3588 if ((replayext->sadb_x_rc_replay32 == 0) && 3589 (replayext->sadb_x_rc_replay64 != 0)) { 3590 error = EOPNOTSUPP; 3591 mutex_exit(&newbie->ipsa_lock); 3592 goto error; 3593 } 3594 newbie->ipsa_replay = replayext->sadb_x_rc_replay32; 3595 } 3596 3597 /* now that the SA has been updated, set its new state */ 3598 newbie->ipsa_state = assoc->sadb_sa_state; 3599 3600 if (clone) { 3601 newbie->ipsa_haspeer = B_TRUE; 3602 } else { 3603 if (!is_inbound) { 3604 lifetime_fuzz(newbie); 3605 } 3606 } 3607 /* 3608 * The less locks I hold when doing an insertion and possible cloning, 3609 * the better! 3610 */ 3611 mutex_exit(&newbie->ipsa_lock); 3612 3613 if (clone) { 3614 newbie_clone = sadb_cloneassoc(newbie); 3615 3616 if (newbie_clone == NULL) { 3617 error = ENOMEM; 3618 goto error; 3619 } 3620 } 3621 3622 /* 3623 * Enter the bucket locks. The order of entry is outbound, 3624 * inbound. We map "primary" and "secondary" into outbound and inbound 3625 * based on the destination address type. If the destination address 3626 * type is for a node that isn't mine (or potentially mine), the 3627 * "primary" bucket is the outbound one. 3628 */ 3629 if (!is_inbound) { 3630 /* primary == outbound */ 3631 mutex_enter(&primary->isaf_lock); 3632 mutex_enter(&secondary->isaf_lock); 3633 } else { 3634 /* primary == inbound */ 3635 mutex_enter(&secondary->isaf_lock); 3636 mutex_enter(&primary->isaf_lock); 3637 } 3638 3639 IPSECHW_DEBUG(IPSECHW_SADB, ("sadb_common_add: spi = 0x%x\n", 3640 newbie->ipsa_spi)); 3641 3642 /* 3643 * sadb_insertassoc() doesn't increment the reference 3644 * count. We therefore have to increment the 3645 * reference count one more time to reflect the 3646 * pointers of the table that reference this SA. 3647 */ 3648 IPSA_REFHOLD(newbie); 3649 3650 if (isupdate) { 3651 /* 3652 * Unlink from larval holding cell in the "inbound" fanout. 3653 */ 3654 ASSERT(newbie->ipsa_linklock == &primary->isaf_lock || 3655 newbie->ipsa_linklock == &secondary->isaf_lock); 3656 sadb_unlinkassoc(newbie); 3657 } 3658 3659 mutex_enter(&newbie->ipsa_lock); 3660 error = sadb_insertassoc(newbie, primary); 3661 if (error == 0) { 3662 ctl_mp = sadb_fmt_sa_req(DL_CO_SET, newbie->ipsa_type, newbie, 3663 is_inbound); 3664 } 3665 mutex_exit(&newbie->ipsa_lock); 3666 3667 if (error != 0) { 3668 /* 3669 * Since sadb_insertassoc() failed, we must decrement the 3670 * refcount again so the cleanup code will actually free 3671 * the offending SA. 3672 */ 3673 IPSA_REFRELE(newbie); 3674 goto error_unlock; 3675 } 3676 3677 if (newbie_clone != NULL) { 3678 mutex_enter(&newbie_clone->ipsa_lock); 3679 error = sadb_insertassoc(newbie_clone, secondary); 3680 mutex_exit(&newbie_clone->ipsa_lock); 3681 if (error != 0) { 3682 /* Collision in secondary table. */ 3683 sadb_unlinkassoc(newbie); /* This does REFRELE. */ 3684 goto error_unlock; 3685 } 3686 IPSA_REFHOLD(newbie_clone); 3687 } else { 3688 ASSERT(primary != secondary); 3689 scratch = ipsec_getassocbyspi(secondary, newbie->ipsa_spi, 3690 ALL_ZEROES_PTR, newbie->ipsa_dstaddr, af); 3691 if (scratch != NULL) { 3692 /* Collision in secondary table. */ 3693 sadb_unlinkassoc(newbie); /* This does REFRELE. */ 3694 /* Set the error, since ipsec_getassocbyspi() can't. */ 3695 error = EEXIST; 3696 goto error_unlock; 3697 } 3698 } 3699 3700 /* OKAY! So let's do some reality check assertions. */ 3701 3702 ASSERT(MUTEX_NOT_HELD(&newbie->ipsa_lock)); 3703 ASSERT(newbie_clone == NULL || 3704 (MUTEX_NOT_HELD(&newbie_clone->ipsa_lock))); 3705 /* 3706 * If hardware acceleration could happen, send it. 3707 */ 3708 if (ctl_mp != NULL) { 3709 putnext(ip_q, ctl_mp); 3710 ctl_mp = NULL; 3711 } 3712 3713 error_unlock: 3714 3715 /* 3716 * We can exit the locks in any order. Only entrance needs to 3717 * follow any protocol. 3718 */ 3719 mutex_exit(&secondary->isaf_lock); 3720 mutex_exit(&primary->isaf_lock); 3721 3722 if (pair_ext != NULL && error == 0) { 3723 /* update pair_spi if it exists. */ 3724 ipsapp = get_ipsa_pair(assoc, srcext, dstext, spp); 3725 if (ipsapp == NULL) { 3726 error = ESRCH; 3727 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 3728 } else if (ipsapp->ipsap_psa_ptr != NULL) { 3729 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY; 3730 error = EINVAL; 3731 } else { 3732 /* update_pairing() sets diagnostic */ 3733 error = update_pairing(ipsapp, ksi, diagnostic, spp); 3734 } 3735 } 3736 /* Common error point for this routine. */ 3737 error: 3738 if (newbie != NULL) { 3739 if (error != 0) { 3740 /* This SA is broken, let the reaper clean up. */ 3741 mutex_enter(&newbie->ipsa_lock); 3742 newbie->ipsa_state = IPSA_STATE_DEAD; 3743 newbie->ipsa_hardexpiretime = 1; 3744 mutex_exit(&newbie->ipsa_lock); 3745 } 3746 IPSA_REFRELE(newbie); 3747 } 3748 if (newbie_clone != NULL) { 3749 IPSA_REFRELE(newbie_clone); 3750 } 3751 if (ctl_mp != NULL) 3752 freemsg(ctl_mp); 3753 3754 if (error == 0) { 3755 /* 3756 * Construct favorable PF_KEY return message and send to 3757 * keysock. Update the flags in the original keysock message 3758 * to reflect the actual flags in the new SA. 3759 * (Q: Do I need to pass "newbie"? If I do, 3760 * make sure to REFHOLD, call, then REFRELE.) 3761 */ 3762 assoc->sadb_sa_flags = newbie->ipsa_flags; 3763 sadb_pfkey_echo(pfkey_q, mp, samsg, ksi, NULL); 3764 } 3765 3766 destroy_ipsa_pair(ipsapp); 3767 return (error); 3768 } 3769 3770 /* 3771 * Set the time of first use for a security association. Update any 3772 * expiration times as a result. 3773 */ 3774 void 3775 sadb_set_usetime(ipsa_t *assoc) 3776 { 3777 time_t snapshot = gethrestime_sec(); 3778 3779 mutex_enter(&assoc->ipsa_lock); 3780 assoc->ipsa_lastuse = snapshot; 3781 assoc->ipsa_idleexpiretime = snapshot + assoc->ipsa_idletime; 3782 3783 /* 3784 * Caller does check usetime before calling me usually, and 3785 * double-checking is better than a mutex_enter/exit hit. 3786 */ 3787 if (assoc->ipsa_usetime == 0) { 3788 /* 3789 * This is redundant for outbound SA's, as 3790 * ipsec_getassocbyconn() sets the IPSA_F_USED flag already. 3791 * Inbound SAs, however, have no such protection. 3792 */ 3793 assoc->ipsa_flags |= IPSA_F_USED; 3794 assoc->ipsa_usetime = snapshot; 3795 3796 /* 3797 * After setting the use time, see if we have a use lifetime 3798 * that would cause the actual SA expiration time to shorten. 3799 */ 3800 UPDATE_EXPIRE(assoc, softuselt, softexpiretime); 3801 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime); 3802 } 3803 mutex_exit(&assoc->ipsa_lock); 3804 } 3805 3806 /* 3807 * Send up a PF_KEY expire message for this association. 3808 */ 3809 static void 3810 sadb_expire_assoc(queue_t *pfkey_q, ipsa_t *assoc) 3811 { 3812 mblk_t *mp, *mp1; 3813 int alloclen, af; 3814 sadb_msg_t *samsg; 3815 sadb_lifetime_t *current, *expire; 3816 sadb_sa_t *saext; 3817 uint8_t *end; 3818 boolean_t tunnel_mode; 3819 3820 ASSERT(MUTEX_HELD(&assoc->ipsa_lock)); 3821 3822 /* Don't bother sending if there's no queue. */ 3823 if (pfkey_q == NULL) 3824 return; 3825 3826 /* If the SA is one of a pair, only SOFT expire the OUTBOUND SA */ 3827 if (assoc->ipsa_state == IPSA_STATE_DYING && 3828 (assoc->ipsa_flags & IPSA_F_PAIRED) && 3829 !(assoc->ipsa_flags & IPSA_F_OUTBOUND)) { 3830 return; 3831 } 3832 3833 mp = sadb_keysock_out(0); 3834 if (mp == NULL) { 3835 /* cmn_err(CE_WARN, */ 3836 /* "sadb_expire_assoc: Can't allocate KEYSOCK_OUT.\n"); */ 3837 return; 3838 } 3839 3840 alloclen = sizeof (*samsg) + sizeof (*current) + sizeof (*expire) + 3841 2 * sizeof (sadb_address_t) + sizeof (*saext); 3842 3843 af = assoc->ipsa_addrfam; 3844 switch (af) { 3845 case AF_INET: 3846 alloclen += 2 * sizeof (struct sockaddr_in); 3847 break; 3848 case AF_INET6: 3849 alloclen += 2 * sizeof (struct sockaddr_in6); 3850 break; 3851 default: 3852 /* Won't happen unless there's a kernel bug. */ 3853 freeb(mp); 3854 cmn_err(CE_WARN, 3855 "sadb_expire_assoc: Unknown address length.\n"); 3856 return; 3857 } 3858 3859 tunnel_mode = (assoc->ipsa_flags & IPSA_F_TUNNEL); 3860 if (tunnel_mode) { 3861 alloclen += 2 * sizeof (sadb_address_t); 3862 switch (assoc->ipsa_innerfam) { 3863 case AF_INET: 3864 alloclen += 2 * sizeof (struct sockaddr_in); 3865 break; 3866 case AF_INET6: 3867 alloclen += 2 * sizeof (struct sockaddr_in6); 3868 break; 3869 default: 3870 /* Won't happen unless there's a kernel bug. */ 3871 freeb(mp); 3872 cmn_err(CE_WARN, "sadb_expire_assoc: " 3873 "Unknown inner address length.\n"); 3874 return; 3875 } 3876 } 3877 3878 mp->b_cont = allocb(alloclen, BPRI_HI); 3879 if (mp->b_cont == NULL) { 3880 freeb(mp); 3881 /* cmn_err(CE_WARN, */ 3882 /* "sadb_expire_assoc: Can't allocate message.\n"); */ 3883 return; 3884 } 3885 3886 mp1 = mp; 3887 mp = mp->b_cont; 3888 end = mp->b_wptr + alloclen; 3889 3890 samsg = (sadb_msg_t *)mp->b_wptr; 3891 mp->b_wptr += sizeof (*samsg); 3892 samsg->sadb_msg_version = PF_KEY_V2; 3893 samsg->sadb_msg_type = SADB_EXPIRE; 3894 samsg->sadb_msg_errno = 0; 3895 samsg->sadb_msg_satype = assoc->ipsa_type; 3896 samsg->sadb_msg_len = SADB_8TO64(alloclen); 3897 samsg->sadb_msg_reserved = 0; 3898 samsg->sadb_msg_seq = 0; 3899 samsg->sadb_msg_pid = 0; 3900 3901 saext = (sadb_sa_t *)mp->b_wptr; 3902 mp->b_wptr += sizeof (*saext); 3903 saext->sadb_sa_len = SADB_8TO64(sizeof (*saext)); 3904 saext->sadb_sa_exttype = SADB_EXT_SA; 3905 saext->sadb_sa_spi = assoc->ipsa_spi; 3906 saext->sadb_sa_replay = assoc->ipsa_replay_wsize; 3907 saext->sadb_sa_state = assoc->ipsa_state; 3908 saext->sadb_sa_auth = assoc->ipsa_auth_alg; 3909 saext->sadb_sa_encrypt = assoc->ipsa_encr_alg; 3910 saext->sadb_sa_flags = assoc->ipsa_flags; 3911 3912 current = (sadb_lifetime_t *)mp->b_wptr; 3913 mp->b_wptr += sizeof (sadb_lifetime_t); 3914 current->sadb_lifetime_len = SADB_8TO64(sizeof (*current)); 3915 current->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3916 /* We do not support the concept. */ 3917 current->sadb_lifetime_allocations = 0; 3918 current->sadb_lifetime_bytes = assoc->ipsa_bytes; 3919 current->sadb_lifetime_addtime = assoc->ipsa_addtime; 3920 current->sadb_lifetime_usetime = assoc->ipsa_usetime; 3921 3922 expire = (sadb_lifetime_t *)mp->b_wptr; 3923 mp->b_wptr += sizeof (*expire); 3924 expire->sadb_lifetime_len = SADB_8TO64(sizeof (*expire)); 3925 3926 if (assoc->ipsa_state == IPSA_STATE_DEAD) { 3927 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3928 expire->sadb_lifetime_allocations = assoc->ipsa_hardalloc; 3929 expire->sadb_lifetime_bytes = assoc->ipsa_hardbyteslt; 3930 expire->sadb_lifetime_addtime = assoc->ipsa_hardaddlt; 3931 expire->sadb_lifetime_usetime = assoc->ipsa_harduselt; 3932 } else if (assoc->ipsa_state == IPSA_STATE_DYING) { 3933 expire->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 3934 expire->sadb_lifetime_allocations = assoc->ipsa_softalloc; 3935 expire->sadb_lifetime_bytes = assoc->ipsa_softbyteslt; 3936 expire->sadb_lifetime_addtime = assoc->ipsa_softaddlt; 3937 expire->sadb_lifetime_usetime = assoc->ipsa_softuselt; 3938 } else { 3939 ASSERT(assoc->ipsa_state == IPSA_STATE_MATURE); 3940 expire->sadb_lifetime_exttype = SADB_X_EXT_LIFETIME_IDLE; 3941 expire->sadb_lifetime_allocations = 0; 3942 expire->sadb_lifetime_bytes = 0; 3943 expire->sadb_lifetime_addtime = assoc->ipsa_idleaddlt; 3944 expire->sadb_lifetime_usetime = assoc->ipsa_idleuselt; 3945 } 3946 3947 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_SRC, 3948 af, assoc->ipsa_srcaddr, tunnel_mode ? 0 : SA_SRCPORT(assoc), 3949 SA_PROTO(assoc), 0); 3950 ASSERT(mp->b_wptr != NULL); 3951 3952 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, SADB_EXT_ADDRESS_DST, 3953 af, assoc->ipsa_dstaddr, tunnel_mode ? 0 : SA_DSTPORT(assoc), 3954 SA_PROTO(assoc), 0); 3955 ASSERT(mp->b_wptr != NULL); 3956 3957 if (tunnel_mode) { 3958 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, 3959 SADB_X_EXT_ADDRESS_INNER_SRC, assoc->ipsa_innerfam, 3960 assoc->ipsa_innersrc, SA_SRCPORT(assoc), SA_IPROTO(assoc), 3961 assoc->ipsa_innersrcpfx); 3962 ASSERT(mp->b_wptr != NULL); 3963 mp->b_wptr = sadb_make_addr_ext(mp->b_wptr, end, 3964 SADB_X_EXT_ADDRESS_INNER_DST, assoc->ipsa_innerfam, 3965 assoc->ipsa_innerdst, SA_DSTPORT(assoc), SA_IPROTO(assoc), 3966 assoc->ipsa_innerdstpfx); 3967 ASSERT(mp->b_wptr != NULL); 3968 } 3969 3970 /* Can just putnext, we're ready to go! */ 3971 putnext(pfkey_q, mp1); 3972 } 3973 3974 /* 3975 * "Age" the SA with the number of bytes that was used to protect traffic. 3976 * Send an SADB_EXPIRE message if appropriate. Return B_TRUE if there was 3977 * enough "charge" left in the SA to protect the data. Return B_FALSE 3978 * otherwise. (If B_FALSE is returned, the association either was, or became 3979 * DEAD.) 3980 */ 3981 boolean_t 3982 sadb_age_bytes(queue_t *pfkey_q, ipsa_t *assoc, uint64_t bytes, 3983 boolean_t sendmsg) 3984 { 3985 boolean_t rc = B_TRUE; 3986 uint64_t newtotal; 3987 3988 mutex_enter(&assoc->ipsa_lock); 3989 newtotal = assoc->ipsa_bytes + bytes; 3990 if (assoc->ipsa_hardbyteslt != 0 && 3991 newtotal >= assoc->ipsa_hardbyteslt) { 3992 if (assoc->ipsa_state != IPSA_STATE_DEAD) { 3993 sadb_delete_cluster(assoc); 3994 /* 3995 * Send EXPIRE message to PF_KEY. May wish to pawn 3996 * this off on another non-interrupt thread. Also 3997 * unlink this SA immediately. 3998 */ 3999 assoc->ipsa_state = IPSA_STATE_DEAD; 4000 if (sendmsg) 4001 sadb_expire_assoc(pfkey_q, assoc); 4002 /* 4003 * Set non-zero expiration time so sadb_age_assoc() 4004 * will work when reaping. 4005 */ 4006 assoc->ipsa_hardexpiretime = (time_t)1; 4007 } /* Else someone beat me to it! */ 4008 rc = B_FALSE; 4009 } else if (assoc->ipsa_softbyteslt != 0 && 4010 (newtotal >= assoc->ipsa_softbyteslt)) { 4011 if (assoc->ipsa_state < IPSA_STATE_DYING) { 4012 /* 4013 * Send EXPIRE message to PF_KEY. May wish to pawn 4014 * this off on another non-interrupt thread. 4015 */ 4016 assoc->ipsa_state = IPSA_STATE_DYING; 4017 assoc->ipsa_bytes = newtotal; 4018 if (sendmsg) 4019 sadb_expire_assoc(pfkey_q, assoc); 4020 } /* Else someone beat me to it! */ 4021 } 4022 if (rc == B_TRUE) 4023 assoc->ipsa_bytes = newtotal; 4024 mutex_exit(&assoc->ipsa_lock); 4025 return (rc); 4026 } 4027 4028 /* 4029 * Push one or more DL_CO_DELETE messages queued up by 4030 * sadb_torch_assoc down to the underlying driver now that it's a 4031 * convenient time for it (i.e., ipsa bucket locks not held). 4032 */ 4033 static void 4034 sadb_drain_torchq(queue_t *q, mblk_t *mp) 4035 { 4036 while (mp != NULL) { 4037 mblk_t *next = mp->b_next; 4038 mp->b_next = NULL; 4039 if (q != NULL) 4040 putnext(q, mp); 4041 else 4042 freemsg(mp); 4043 mp = next; 4044 } 4045 } 4046 4047 /* 4048 * "Torch" an individual SA. Returns NULL, so it can be tail-called from 4049 * sadb_age_assoc(). 4050 * 4051 * If SA is hardware-accelerated, and we can't allocate the mblk 4052 * containing the DL_CO_DELETE, just return; it will remain in the 4053 * table and be swept up by sadb_ager() in a subsequent pass. 4054 */ 4055 static ipsa_t * 4056 sadb_torch_assoc(isaf_t *head, ipsa_t *sa, boolean_t inbnd, mblk_t **mq) 4057 { 4058 mblk_t *mp; 4059 4060 ASSERT(MUTEX_HELD(&head->isaf_lock)); 4061 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 4062 ASSERT(sa->ipsa_state == IPSA_STATE_DEAD); 4063 4064 /* 4065 * Force cached SAs to be revalidated.. 4066 */ 4067 head->isaf_gen++; 4068 4069 if (sa->ipsa_flags & IPSA_F_HW) { 4070 mp = sadb_fmt_sa_req(DL_CO_DELETE, sa->ipsa_type, sa, inbnd); 4071 if (mp == NULL) { 4072 mutex_exit(&sa->ipsa_lock); 4073 return (NULL); 4074 } 4075 mp->b_next = *mq; 4076 *mq = mp; 4077 } 4078 mutex_exit(&sa->ipsa_lock); 4079 sadb_unlinkassoc(sa); 4080 4081 return (NULL); 4082 } 4083 4084 /* 4085 * Do various SA-is-idle activities depending on delta (the number of idle 4086 * seconds on the SA) and/or other properties of the SA. 4087 * 4088 * Return B_TRUE if I've sent a packet, because I have to drop the 4089 * association's mutex before sending a packet out the wire. 4090 */ 4091 /* ARGSUSED */ 4092 static boolean_t 4093 sadb_idle_activities(ipsa_t *assoc, time_t delta, boolean_t inbound) 4094 { 4095 ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp; 4096 int nat_t_interval = espstack->ipsecesp_nat_keepalive_interval; 4097 4098 ASSERT(MUTEX_HELD(&assoc->ipsa_lock)); 4099 4100 if (!inbound && (assoc->ipsa_flags & IPSA_F_NATT_LOC) && 4101 delta >= nat_t_interval && 4102 gethrestime_sec() - assoc->ipsa_last_nat_t_ka >= nat_t_interval) { 4103 ASSERT(assoc->ipsa_type == SADB_SATYPE_ESP); 4104 assoc->ipsa_last_nat_t_ka = gethrestime_sec(); 4105 mutex_exit(&assoc->ipsa_lock); 4106 ipsecesp_send_keepalive(assoc); 4107 return (B_TRUE); 4108 } 4109 return (B_FALSE); 4110 } 4111 4112 /* 4113 * Return "assoc" if haspeer is true and I send an expire. This allows 4114 * the consumers' aging functions to tidy up an expired SA's peer. 4115 */ 4116 static ipsa_t * 4117 sadb_age_assoc(isaf_t *head, queue_t *pfkey_q, ipsa_t *assoc, 4118 time_t current, int reap_delay, boolean_t inbound, mblk_t **mq) 4119 { 4120 ipsa_t *retval = NULL; 4121 boolean_t dropped_mutex = B_FALSE; 4122 4123 ASSERT(MUTEX_HELD(&head->isaf_lock)); 4124 4125 mutex_enter(&assoc->ipsa_lock); 4126 4127 if (((assoc->ipsa_state == IPSA_STATE_LARVAL) || 4128 ((assoc->ipsa_state == IPSA_STATE_IDLE) || 4129 (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) && 4130 (assoc->ipsa_hardexpiretime != 0))) && 4131 (assoc->ipsa_hardexpiretime <= current)) { 4132 assoc->ipsa_state = IPSA_STATE_DEAD; 4133 return (sadb_torch_assoc(head, assoc, inbound, mq)); 4134 } 4135 4136 /* 4137 * Check lifetimes. Fortunately, SA setup is done 4138 * such that there are only two times to look at, 4139 * softexpiretime, and hardexpiretime. 4140 * 4141 * Check hard first. 4142 */ 4143 4144 if (assoc->ipsa_hardexpiretime != 0 && 4145 assoc->ipsa_hardexpiretime <= current) { 4146 if (assoc->ipsa_state == IPSA_STATE_DEAD) 4147 return (sadb_torch_assoc(head, assoc, inbound, mq)); 4148 4149 if (inbound) { 4150 sadb_delete_cluster(assoc); 4151 } 4152 4153 /* 4154 * Send SADB_EXPIRE with hard lifetime, delay for unlinking. 4155 */ 4156 assoc->ipsa_state = IPSA_STATE_DEAD; 4157 if (assoc->ipsa_haspeer || assoc->ipsa_otherspi != 0) { 4158 /* 4159 * If the SA is paired or peered with another, put 4160 * a copy on a list which can be processed later, the 4161 * pair/peer SA needs to be updated so the both die 4162 * at the same time. 4163 * 4164 * If I return assoc, I have to bump up its reference 4165 * count to keep with the ipsa_t reference count 4166 * semantics. 4167 */ 4168 IPSA_REFHOLD(assoc); 4169 retval = assoc; 4170 } 4171 sadb_expire_assoc(pfkey_q, assoc); 4172 assoc->ipsa_hardexpiretime = current + reap_delay; 4173 } else if (assoc->ipsa_softexpiretime != 0 && 4174 assoc->ipsa_softexpiretime <= current && 4175 assoc->ipsa_state < IPSA_STATE_DYING) { 4176 /* 4177 * Send EXPIRE message to PF_KEY. May wish to pawn 4178 * this off on another non-interrupt thread. 4179 */ 4180 assoc->ipsa_state = IPSA_STATE_DYING; 4181 if (assoc->ipsa_haspeer) { 4182 /* 4183 * If the SA has a peer, update the peer's state 4184 * on SOFT_EXPIRE, this is mostly to prevent two 4185 * expire messages from effectively the same SA. 4186 * 4187 * Don't care about paired SA's, then can (and should) 4188 * be able to soft expire at different times. 4189 * 4190 * If I return assoc, I have to bump up its 4191 * reference count to keep with the ipsa_t reference 4192 * count semantics. 4193 */ 4194 IPSA_REFHOLD(assoc); 4195 retval = assoc; 4196 } 4197 sadb_expire_assoc(pfkey_q, assoc); 4198 } else if (assoc->ipsa_idletime != 0 && 4199 assoc->ipsa_idleexpiretime <= current) { 4200 if (assoc->ipsa_state == IPSA_STATE_ACTIVE_ELSEWHERE) { 4201 assoc->ipsa_state = IPSA_STATE_IDLE; 4202 } 4203 4204 /* 4205 * Need to handle Mature case 4206 */ 4207 if (assoc->ipsa_state == IPSA_STATE_MATURE) { 4208 sadb_expire_assoc(pfkey_q, assoc); 4209 } 4210 } else { 4211 /* Check idle time activities. */ 4212 dropped_mutex = sadb_idle_activities(assoc, 4213 current - assoc->ipsa_lastuse, inbound); 4214 } 4215 4216 if (!dropped_mutex) 4217 mutex_exit(&assoc->ipsa_lock); 4218 return (retval); 4219 } 4220 4221 /* 4222 * Called by a consumer protocol to do ther dirty work of reaping dead 4223 * Security Associations. 4224 * 4225 * NOTE: sadb_age_assoc() marks expired SA's as DEAD but only removed 4226 * SA's that are already marked DEAD, so expired SA's are only reaped 4227 * the second time sadb_ager() runs. 4228 */ 4229 void 4230 sadb_ager(sadb_t *sp, queue_t *pfkey_q, queue_t *ip_q, int reap_delay, 4231 netstack_t *ns) 4232 { 4233 int i; 4234 isaf_t *bucket; 4235 ipsa_t *assoc, *spare; 4236 iacqf_t *acqlist; 4237 ipsacq_t *acqrec, *spareacq; 4238 templist_t *haspeerlist, *newbie; 4239 /* Snapshot current time now. */ 4240 time_t current = gethrestime_sec(); 4241 mblk_t *mq = NULL; 4242 haspeerlist = NULL; 4243 4244 /* 4245 * Do my dirty work. This includes aging real entries, aging 4246 * larvals, and aging outstanding ACQUIREs. 4247 * 4248 * I hope I don't tie up resources for too long. 4249 */ 4250 4251 /* Age acquires. */ 4252 4253 for (i = 0; i < sp->sdb_hashsize; i++) { 4254 acqlist = &sp->sdb_acq[i]; 4255 mutex_enter(&acqlist->iacqf_lock); 4256 for (acqrec = acqlist->iacqf_ipsacq; acqrec != NULL; 4257 acqrec = spareacq) { 4258 spareacq = acqrec->ipsacq_next; 4259 if (current > acqrec->ipsacq_expire) 4260 sadb_destroy_acquire(acqrec, ns); 4261 } 4262 mutex_exit(&acqlist->iacqf_lock); 4263 } 4264 4265 /* Age inbound associations. */ 4266 for (i = 0; i < sp->sdb_hashsize; i++) { 4267 bucket = &(sp->sdb_if[i]); 4268 mutex_enter(&bucket->isaf_lock); 4269 for (assoc = bucket->isaf_ipsa; assoc != NULL; 4270 assoc = spare) { 4271 spare = assoc->ipsa_next; 4272 if (sadb_age_assoc(bucket, pfkey_q, assoc, current, 4273 reap_delay, B_TRUE, &mq) != NULL) { 4274 /* 4275 * Put SA's which have a peer or SA's which 4276 * are paired on a list for processing after 4277 * all the hash tables have been walked. 4278 * 4279 * sadb_age_assoc() increments the refcnt, 4280 * effectively doing an IPSA_REFHOLD(). 4281 */ 4282 newbie = kmem_alloc(sizeof (*newbie), 4283 KM_NOSLEEP); 4284 if (newbie == NULL) { 4285 /* 4286 * Don't forget to REFRELE(). 4287 */ 4288 IPSA_REFRELE(assoc); 4289 continue; /* for loop... */ 4290 } 4291 newbie->next = haspeerlist; 4292 newbie->ipsa = assoc; 4293 haspeerlist = newbie; 4294 } 4295 } 4296 mutex_exit(&bucket->isaf_lock); 4297 } 4298 4299 if (mq != NULL) { 4300 sadb_drain_torchq(ip_q, mq); 4301 mq = NULL; 4302 } 4303 age_pair_peer_list(haspeerlist, sp, B_FALSE); 4304 haspeerlist = NULL; 4305 4306 /* Age outbound associations. */ 4307 for (i = 0; i < sp->sdb_hashsize; i++) { 4308 bucket = &(sp->sdb_of[i]); 4309 mutex_enter(&bucket->isaf_lock); 4310 for (assoc = bucket->isaf_ipsa; assoc != NULL; 4311 assoc = spare) { 4312 spare = assoc->ipsa_next; 4313 if (sadb_age_assoc(bucket, pfkey_q, assoc, current, 4314 reap_delay, B_FALSE, &mq) != NULL) { 4315 /* 4316 * sadb_age_assoc() increments the refcnt, 4317 * effectively doing an IPSA_REFHOLD(). 4318 */ 4319 newbie = kmem_alloc(sizeof (*newbie), 4320 KM_NOSLEEP); 4321 if (newbie == NULL) { 4322 /* 4323 * Don't forget to REFRELE(). 4324 */ 4325 IPSA_REFRELE(assoc); 4326 continue; /* for loop... */ 4327 } 4328 newbie->next = haspeerlist; 4329 newbie->ipsa = assoc; 4330 haspeerlist = newbie; 4331 } 4332 } 4333 mutex_exit(&bucket->isaf_lock); 4334 } 4335 if (mq != NULL) { 4336 sadb_drain_torchq(ip_q, mq); 4337 mq = NULL; 4338 } 4339 4340 age_pair_peer_list(haspeerlist, sp, B_TRUE); 4341 4342 /* 4343 * Run a GC pass to clean out dead identities. 4344 */ 4345 ipsid_gc(ns); 4346 } 4347 4348 /* 4349 * Figure out when to reschedule the ager. 4350 */ 4351 timeout_id_t 4352 sadb_retimeout(hrtime_t begin, queue_t *pfkey_q, void (*ager)(void *), 4353 void *agerarg, uint_t *intp, uint_t intmax, short mid) 4354 { 4355 hrtime_t end = gethrtime(); 4356 uint_t interval = *intp; 4357 4358 /* 4359 * See how long this took. If it took too long, increase the 4360 * aging interval. 4361 */ 4362 if ((end - begin) > interval * 1000000) { 4363 if (interval >= intmax) { 4364 /* XXX Rate limit this? Or recommend flush? */ 4365 (void) strlog(mid, 0, 0, SL_ERROR | SL_WARN, 4366 "Too many SA's to age out in %d msec.\n", 4367 intmax); 4368 } else { 4369 /* Double by shifting by one bit. */ 4370 interval <<= 1; 4371 interval = min(interval, intmax); 4372 } 4373 } else if ((end - begin) <= interval * 500000 && 4374 interval > SADB_AGE_INTERVAL_DEFAULT) { 4375 /* 4376 * If I took less than half of the interval, then I should 4377 * ratchet the interval back down. Never automatically 4378 * shift below the default aging interval. 4379 * 4380 * NOTE:This even overrides manual setting of the age 4381 * interval using NDD. 4382 */ 4383 /* Halve by shifting one bit. */ 4384 interval >>= 1; 4385 interval = max(interval, SADB_AGE_INTERVAL_DEFAULT); 4386 } 4387 *intp = interval; 4388 return (qtimeout(pfkey_q, ager, agerarg, 4389 interval * drv_usectohz(1000))); 4390 } 4391 4392 4393 /* 4394 * Update the lifetime values of an SA. This is the path an SADB_UPDATE 4395 * message takes when updating a MATURE or DYING SA. 4396 */ 4397 static void 4398 sadb_update_lifetimes(ipsa_t *assoc, sadb_lifetime_t *hard, 4399 sadb_lifetime_t *soft, sadb_lifetime_t *idle, boolean_t outbound) 4400 { 4401 mutex_enter(&assoc->ipsa_lock); 4402 4403 /* 4404 * XXX RFC 2367 mentions how an SADB_EXT_LIFETIME_CURRENT can be 4405 * passed in during an update message. We currently don't handle 4406 * these. 4407 */ 4408 4409 if (hard != NULL) { 4410 if (hard->sadb_lifetime_bytes != 0) 4411 assoc->ipsa_hardbyteslt = hard->sadb_lifetime_bytes; 4412 if (hard->sadb_lifetime_usetime != 0) 4413 assoc->ipsa_harduselt = hard->sadb_lifetime_usetime; 4414 if (hard->sadb_lifetime_addtime != 0) 4415 assoc->ipsa_hardaddlt = hard->sadb_lifetime_addtime; 4416 if (assoc->ipsa_hardaddlt != 0) { 4417 assoc->ipsa_hardexpiretime = 4418 assoc->ipsa_addtime + assoc->ipsa_hardaddlt; 4419 } 4420 if (assoc->ipsa_harduselt != 0 && 4421 assoc->ipsa_flags & IPSA_F_USED) { 4422 UPDATE_EXPIRE(assoc, harduselt, hardexpiretime); 4423 } 4424 if (hard->sadb_lifetime_allocations != 0) 4425 assoc->ipsa_hardalloc = hard->sadb_lifetime_allocations; 4426 } 4427 4428 if (soft != NULL) { 4429 if (soft->sadb_lifetime_bytes != 0) { 4430 if (soft->sadb_lifetime_bytes > 4431 assoc->ipsa_hardbyteslt) { 4432 assoc->ipsa_softbyteslt = 4433 assoc->ipsa_hardbyteslt; 4434 } else { 4435 assoc->ipsa_softbyteslt = 4436 soft->sadb_lifetime_bytes; 4437 } 4438 } 4439 if (soft->sadb_lifetime_usetime != 0) { 4440 if (soft->sadb_lifetime_usetime > 4441 assoc->ipsa_harduselt) { 4442 assoc->ipsa_softuselt = 4443 assoc->ipsa_harduselt; 4444 } else { 4445 assoc->ipsa_softuselt = 4446 soft->sadb_lifetime_usetime; 4447 } 4448 } 4449 if (soft->sadb_lifetime_addtime != 0) { 4450 if (soft->sadb_lifetime_addtime > 4451 assoc->ipsa_hardexpiretime) { 4452 assoc->ipsa_softexpiretime = 4453 assoc->ipsa_hardexpiretime; 4454 } else { 4455 assoc->ipsa_softaddlt = 4456 soft->sadb_lifetime_addtime; 4457 } 4458 } 4459 if (assoc->ipsa_softaddlt != 0) { 4460 assoc->ipsa_softexpiretime = 4461 assoc->ipsa_addtime + assoc->ipsa_softaddlt; 4462 } 4463 if (assoc->ipsa_softuselt != 0 && 4464 assoc->ipsa_flags & IPSA_F_USED) { 4465 UPDATE_EXPIRE(assoc, softuselt, softexpiretime); 4466 } 4467 if (outbound && assoc->ipsa_softexpiretime != 0) { 4468 if (assoc->ipsa_state == IPSA_STATE_MATURE) 4469 lifetime_fuzz(assoc); 4470 } 4471 4472 if (soft->sadb_lifetime_allocations != 0) 4473 assoc->ipsa_softalloc = soft->sadb_lifetime_allocations; 4474 } 4475 4476 if (idle != NULL) { 4477 time_t current = gethrestime_sec(); 4478 if ((assoc->ipsa_idleexpiretime <= current) && 4479 (assoc->ipsa_idleaddlt == idle->sadb_lifetime_addtime)) { 4480 assoc->ipsa_idleexpiretime = 4481 current + assoc->ipsa_idleaddlt; 4482 } 4483 if (idle->sadb_lifetime_addtime != 0) 4484 assoc->ipsa_idleaddlt = idle->sadb_lifetime_addtime; 4485 if (idle->sadb_lifetime_usetime != 0) 4486 assoc->ipsa_idleuselt = idle->sadb_lifetime_usetime; 4487 if (assoc->ipsa_idleaddlt != 0) { 4488 assoc->ipsa_idleexpiretime = 4489 current + idle->sadb_lifetime_addtime; 4490 assoc->ipsa_idletime = idle->sadb_lifetime_addtime; 4491 } 4492 if (assoc->ipsa_idleuselt != 0) { 4493 if (assoc->ipsa_idletime != 0) { 4494 assoc->ipsa_idletime = min(assoc->ipsa_idletime, 4495 assoc->ipsa_idleuselt); 4496 assoc->ipsa_idleexpiretime = 4497 current + assoc->ipsa_idletime; 4498 } else { 4499 assoc->ipsa_idleexpiretime = 4500 current + assoc->ipsa_idleuselt; 4501 assoc->ipsa_idletime = assoc->ipsa_idleuselt; 4502 } 4503 } 4504 } 4505 mutex_exit(&assoc->ipsa_lock); 4506 } 4507 4508 static int 4509 sadb_update_state(ipsa_t *assoc, uint_t new_state, mblk_t **ipkt_lst) 4510 { 4511 int rcode = 0; 4512 time_t current = gethrestime_sec(); 4513 4514 mutex_enter(&assoc->ipsa_lock); 4515 4516 switch (new_state) { 4517 case SADB_X_SASTATE_ACTIVE_ELSEWHERE: 4518 if (assoc->ipsa_state == SADB_X_SASTATE_IDLE) { 4519 assoc->ipsa_state = IPSA_STATE_ACTIVE_ELSEWHERE; 4520 assoc->ipsa_idleexpiretime = 4521 current + assoc->ipsa_idletime; 4522 } 4523 break; 4524 case SADB_X_SASTATE_IDLE: 4525 if (assoc->ipsa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) { 4526 assoc->ipsa_state = IPSA_STATE_IDLE; 4527 assoc->ipsa_idleexpiretime = 4528 current + assoc->ipsa_idletime; 4529 } else { 4530 rcode = EINVAL; 4531 } 4532 break; 4533 4534 case SADB_X_SASTATE_ACTIVE: 4535 if (assoc->ipsa_state != SADB_X_SASTATE_IDLE) { 4536 rcode = EINVAL; 4537 break; 4538 } 4539 assoc->ipsa_state = IPSA_STATE_MATURE; 4540 assoc->ipsa_idleexpiretime = current + assoc->ipsa_idletime; 4541 4542 if (ipkt_lst == NULL) { 4543 break; 4544 } 4545 4546 if (assoc->ipsa_bpkt_head != NULL) { 4547 *ipkt_lst = assoc->ipsa_bpkt_head; 4548 assoc->ipsa_bpkt_head = assoc->ipsa_bpkt_tail = NULL; 4549 assoc->ipsa_mblkcnt = 0; 4550 } else { 4551 *ipkt_lst = NULL; 4552 } 4553 break; 4554 default: 4555 rcode = EINVAL; 4556 break; 4557 } 4558 4559 mutex_exit(&assoc->ipsa_lock); 4560 return (rcode); 4561 } 4562 4563 /* 4564 * Common code to update an SA. 4565 */ 4566 4567 int 4568 sadb_update_sa(mblk_t *mp, keysock_in_t *ksi, mblk_t **ipkt_lst, 4569 sadbp_t *spp, int *diagnostic, queue_t *pfkey_q, 4570 int (*add_sa_func)(mblk_t *, keysock_in_t *, int *, netstack_t *), 4571 netstack_t *ns, uint8_t sadb_msg_type) 4572 { 4573 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 4574 sadb_address_t *srcext = 4575 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 4576 sadb_address_t *dstext = 4577 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 4578 sadb_x_kmc_t *kmcext = 4579 (sadb_x_kmc_t *)ksi->ks_in_extv[SADB_X_EXT_KM_COOKIE]; 4580 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 4581 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 4582 sadb_x_replay_ctr_t *replext = 4583 (sadb_x_replay_ctr_t *)ksi->ks_in_extv[SADB_X_EXT_REPLAY_VALUE]; 4584 sadb_lifetime_t *soft = 4585 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 4586 sadb_lifetime_t *hard = 4587 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 4588 sadb_lifetime_t *idle = 4589 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE]; 4590 sadb_x_pair_t *pair_ext = 4591 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 4592 ipsa_t *echo_target = NULL; 4593 int error = 0; 4594 ipsap_t *ipsapp = NULL; 4595 uint32_t kmp = 0, kmc = 0; 4596 time_t current = gethrestime_sec(); 4597 4598 4599 /* I need certain extensions present for either UPDATE message. */ 4600 if (srcext == NULL) { 4601 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 4602 return (EINVAL); 4603 } 4604 if (dstext == NULL) { 4605 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 4606 return (EINVAL); 4607 } 4608 if (assoc == NULL) { 4609 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 4610 return (EINVAL); 4611 } 4612 4613 if (kmcext != NULL) { 4614 kmp = kmcext->sadb_x_kmc_proto; 4615 kmc = kmcext->sadb_x_kmc_cookie; 4616 } 4617 4618 ipsapp = get_ipsa_pair(assoc, srcext, dstext, spp); 4619 if (ipsapp == NULL) { 4620 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND; 4621 return (ESRCH); 4622 } 4623 4624 if (ipsapp->ipsap_psa_ptr == NULL && ipsapp->ipsap_sa_ptr != NULL) { 4625 if (ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) { 4626 /* 4627 * REFRELE the target and let the add_sa_func() 4628 * deal with updating a larval SA. 4629 */ 4630 destroy_ipsa_pair(ipsapp); 4631 return (add_sa_func(mp, ksi, diagnostic, ns)); 4632 } 4633 } 4634 4635 if (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE) { 4636 if (ipsapp->ipsap_sa_ptr != NULL && 4637 ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_IDLE) { 4638 if ((error = sadb_update_state(ipsapp->ipsap_sa_ptr, 4639 assoc->sadb_sa_state, NULL)) != 0) { 4640 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4641 goto bail; 4642 } 4643 } 4644 if (ipsapp->ipsap_psa_ptr != NULL && 4645 ipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_IDLE) { 4646 if ((error = sadb_update_state(ipsapp->ipsap_psa_ptr, 4647 assoc->sadb_sa_state, NULL)) != 0) { 4648 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4649 goto bail; 4650 } 4651 } 4652 } 4653 if (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE) { 4654 if (ipsapp->ipsap_sa_ptr != NULL) { 4655 error = sadb_update_state(ipsapp->ipsap_sa_ptr, 4656 assoc->sadb_sa_state, 4657 (ipsapp->ipsap_sa_ptr->ipsa_flags & 4658 IPSA_F_INBOUND) ? ipkt_lst : NULL); 4659 if (error) { 4660 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4661 goto bail; 4662 } 4663 } 4664 if (ipsapp->ipsap_psa_ptr != NULL) { 4665 error = sadb_update_state(ipsapp->ipsap_psa_ptr, 4666 assoc->sadb_sa_state, 4667 (ipsapp->ipsap_psa_ptr->ipsa_flags & 4668 IPSA_F_INBOUND) ? ipkt_lst : NULL); 4669 if (error) { 4670 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4671 goto bail; 4672 } 4673 } 4674 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 4675 ksi, echo_target); 4676 goto bail; 4677 } 4678 4679 /* 4680 * Reality checks for updates of active associations. 4681 * Sundry first-pass UPDATE-specific reality checks. 4682 * Have to do the checks here, because it's after the add_sa code. 4683 * XXX STATS : logging/stats here? 4684 */ 4685 4686 if (!((assoc->sadb_sa_state == SADB_SASTATE_MATURE) || 4687 (assoc->sadb_sa_state == SADB_X_SASTATE_ACTIVE_ELSEWHERE))) { 4688 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4689 error = EINVAL; 4690 goto bail; 4691 } 4692 4693 if (assoc->sadb_sa_flags & ~spp->s_updateflags) { 4694 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 4695 error = EINVAL; 4696 goto bail; 4697 } 4698 4699 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL) { 4700 error = EOPNOTSUPP; 4701 goto bail; 4702 } 4703 4704 if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) { 4705 error = EINVAL; 4706 goto bail; 4707 } 4708 if (akey != NULL) { 4709 *diagnostic = SADB_X_DIAGNOSTIC_AKEY_PRESENT; 4710 error = EINVAL; 4711 goto bail; 4712 } 4713 if (ekey != NULL) { 4714 *diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT; 4715 error = EINVAL; 4716 goto bail; 4717 } 4718 4719 if (ipsapp->ipsap_sa_ptr != NULL) { 4720 if (ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_DEAD) { 4721 error = ESRCH; /* DEAD == Not there, in this case. */ 4722 *diagnostic = SADB_X_DIAGNOSTIC_SA_EXPIRED; 4723 goto bail; 4724 } 4725 if ((kmp != 0) && 4726 ((ipsapp->ipsap_sa_ptr->ipsa_kmp != 0) || 4727 (ipsapp->ipsap_sa_ptr->ipsa_kmp != kmp))) { 4728 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP; 4729 error = EINVAL; 4730 goto bail; 4731 } 4732 if ((kmc != 0) && 4733 ((ipsapp->ipsap_sa_ptr->ipsa_kmc != 0) || 4734 (ipsapp->ipsap_sa_ptr->ipsa_kmc != kmc))) { 4735 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC; 4736 error = EINVAL; 4737 goto bail; 4738 } 4739 /* 4740 * Do not allow replay value change for MATURE or LARVAL SA. 4741 */ 4742 4743 if ((replext != NULL) && 4744 ((ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_LARVAL) || 4745 (ipsapp->ipsap_sa_ptr->ipsa_state == IPSA_STATE_MATURE))) { 4746 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 4747 error = EINVAL; 4748 goto bail; 4749 } 4750 } 4751 4752 if (ipsapp->ipsap_psa_ptr != NULL) { 4753 if (ipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_DEAD) { 4754 *diagnostic = SADB_X_DIAGNOSTIC_SA_EXPIRED; 4755 error = ESRCH; /* DEAD == Not there, in this case. */ 4756 goto bail; 4757 } 4758 if ((kmp != 0) && 4759 ((ipsapp->ipsap_psa_ptr->ipsa_kmp != 0) || 4760 (ipsapp->ipsap_psa_ptr->ipsa_kmp != kmp))) { 4761 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMP; 4762 error = EINVAL; 4763 goto bail; 4764 } 4765 if ((kmc != 0) && 4766 ((ipsapp->ipsap_psa_ptr->ipsa_kmc != 0) || 4767 (ipsapp->ipsap_psa_ptr->ipsa_kmc != kmc))) { 4768 *diagnostic = SADB_X_DIAGNOSTIC_DUPLICATE_KMC; 4769 error = EINVAL; 4770 goto bail; 4771 } 4772 } 4773 4774 if (ipsapp->ipsap_sa_ptr != NULL) { 4775 sadb_update_lifetimes(ipsapp->ipsap_sa_ptr, hard, soft, 4776 idle, B_TRUE); 4777 if (kmp != 0) 4778 ipsapp->ipsap_sa_ptr->ipsa_kmp = kmp; 4779 if (kmc != 0) 4780 ipsapp->ipsap_sa_ptr->ipsa_kmc = kmc; 4781 if ((replext != NULL) && 4782 (ipsapp->ipsap_sa_ptr->ipsa_replay_wsize != 0)) { 4783 /* 4784 * If an inbound SA, update the replay counter 4785 * and check off all the other sequence number 4786 */ 4787 if (ksi->ks_in_dsttype == KS_IN_ADDR_ME) { 4788 if (!sadb_replay_check(ipsapp->ipsap_sa_ptr, 4789 replext->sadb_x_rc_replay32)) { 4790 error = EINVAL; 4791 goto bail; 4792 } 4793 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4794 ipsapp->ipsap_sa_ptr->ipsa_idleexpiretime = 4795 current + 4796 ipsapp->ipsap_sa_ptr->ipsa_idletime; 4797 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4798 } else { 4799 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4800 ipsapp->ipsap_sa_ptr->ipsa_replay = 4801 replext->sadb_x_rc_replay32; 4802 ipsapp->ipsap_sa_ptr->ipsa_idleexpiretime = 4803 current + 4804 ipsapp->ipsap_sa_ptr->ipsa_idletime; 4805 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4806 } 4807 } 4808 } 4809 4810 if (sadb_msg_type == SADB_X_UPDATEPAIR) { 4811 if (ipsapp->ipsap_psa_ptr != NULL) { 4812 sadb_update_lifetimes(ipsapp->ipsap_psa_ptr, hard, soft, 4813 idle, B_FALSE); 4814 if (kmp != 0) 4815 ipsapp->ipsap_psa_ptr->ipsa_kmp = kmp; 4816 if (kmc != 0) 4817 ipsapp->ipsap_psa_ptr->ipsa_kmc = kmc; 4818 } else { 4819 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 4820 error = ESRCH; 4821 goto bail; 4822 } 4823 } 4824 4825 if (pair_ext != NULL) 4826 error = update_pairing(ipsapp, ksi, diagnostic, spp); 4827 4828 if (error == 0) 4829 sadb_pfkey_echo(pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, 4830 ksi, echo_target); 4831 bail: 4832 4833 destroy_ipsa_pair(ipsapp); 4834 4835 return (error); 4836 } 4837 4838 4839 int 4840 update_pairing(ipsap_t *ipsapp, keysock_in_t *ksi, int *diagnostic, 4841 sadbp_t *spp) 4842 { 4843 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 4844 sadb_address_t *srcext = 4845 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 4846 sadb_address_t *dstext = 4847 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 4848 sadb_x_pair_t *pair_ext = 4849 (sadb_x_pair_t *)ksi->ks_in_extv[SADB_X_EXT_PAIR]; 4850 int error = 0; 4851 ipsap_t *oipsapp = NULL; 4852 boolean_t undo_pair = B_FALSE; 4853 uint32_t ipsa_flags; 4854 4855 if (pair_ext->sadb_x_pair_spi == 0 || pair_ext->sadb_x_pair_spi == 4856 assoc->sadb_sa_spi) { 4857 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4858 return (EINVAL); 4859 } 4860 4861 /* 4862 * Assume for now that the spi value provided in the SADB_UPDATE 4863 * message was valid, update the SA with its pair spi value. 4864 * If the spi turns out to be bogus or the SA no longer exists 4865 * then this will be detected when the reverse update is made 4866 * below. 4867 */ 4868 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4869 ipsapp->ipsap_sa_ptr->ipsa_flags |= IPSA_F_PAIRED; 4870 ipsapp->ipsap_sa_ptr->ipsa_otherspi = pair_ext->sadb_x_pair_spi; 4871 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4872 4873 /* 4874 * After updating the ipsa_otherspi element of the SA, get_ipsa_pair() 4875 * should now return pointers to the SA *AND* its pair, if this is not 4876 * the case, the "otherspi" either did not exist or was deleted. Also 4877 * check that "otherspi" is not already paired. If everything looks 4878 * good, complete the update. IPSA_REFRELE the first pair_pointer 4879 * after this update to ensure its not deleted until we are done. 4880 */ 4881 oipsapp = get_ipsa_pair(assoc, srcext, dstext, spp); 4882 if (oipsapp == NULL) { 4883 /* 4884 * This should never happen, calling function still has 4885 * IPSA_REFHELD on the SA we just updated. 4886 */ 4887 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_SA_NOTFOUND; 4888 return (EINVAL); 4889 } 4890 4891 if (oipsapp->ipsap_psa_ptr == NULL) { 4892 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4893 undo_pair = B_TRUE; 4894 } else { 4895 ipsa_flags = oipsapp->ipsap_psa_ptr->ipsa_flags; 4896 if ((oipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_DEAD) || 4897 (oipsapp->ipsap_psa_ptr->ipsa_state == IPSA_STATE_DYING)) { 4898 /* Its dead Jim! */ 4899 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4900 undo_pair = B_TRUE; 4901 } else if ((ipsa_flags & (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) == 4902 (IPSA_F_OUTBOUND | IPSA_F_INBOUND)) { 4903 /* This SA is in both hashtables. */ 4904 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_INAPPROPRIATE; 4905 undo_pair = B_TRUE; 4906 } else if (ipsa_flags & IPSA_F_PAIRED) { 4907 /* This SA is already paired with another. */ 4908 *diagnostic = SADB_X_DIAGNOSTIC_PAIR_ALREADY; 4909 undo_pair = B_TRUE; 4910 } 4911 } 4912 4913 if (undo_pair) { 4914 /* The pair SA does not exist. */ 4915 mutex_enter(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4916 ipsapp->ipsap_sa_ptr->ipsa_flags &= ~IPSA_F_PAIRED; 4917 ipsapp->ipsap_sa_ptr->ipsa_otherspi = 0; 4918 mutex_exit(&ipsapp->ipsap_sa_ptr->ipsa_lock); 4919 error = EINVAL; 4920 } else { 4921 mutex_enter(&oipsapp->ipsap_psa_ptr->ipsa_lock); 4922 oipsapp->ipsap_psa_ptr->ipsa_otherspi = assoc->sadb_sa_spi; 4923 oipsapp->ipsap_psa_ptr->ipsa_flags |= IPSA_F_PAIRED; 4924 mutex_exit(&oipsapp->ipsap_psa_ptr->ipsa_lock); 4925 } 4926 4927 destroy_ipsa_pair(oipsapp); 4928 return (error); 4929 } 4930 4931 /* 4932 * The following functions deal with ACQUIRE LISTS. An ACQUIRE list is 4933 * a list of outstanding SADB_ACQUIRE messages. If ipsec_getassocbyconn() fails 4934 * for an outbound datagram, that datagram is queued up on an ACQUIRE record, 4935 * and an SADB_ACQUIRE message is sent up. Presumably, a user-space key 4936 * management daemon will process the ACQUIRE, use a SADB_GETSPI to reserve 4937 * an SPI value and a larval SA, then SADB_UPDATE the larval SA, and ADD the 4938 * other direction's SA. 4939 */ 4940 4941 /* 4942 * Check the ACQUIRE lists. If there's an existing ACQUIRE record, 4943 * grab it, lock it, and return it. Otherwise return NULL. 4944 */ 4945 static ipsacq_t * 4946 sadb_checkacquire(iacqf_t *bucket, ipsec_action_t *ap, ipsec_policy_t *pp, 4947 uint32_t *src, uint32_t *dst, uint32_t *isrc, uint32_t *idst, 4948 uint64_t unique_id) 4949 { 4950 ipsacq_t *walker; 4951 sa_family_t fam; 4952 uint32_t blank_address[4] = {0, 0, 0, 0}; 4953 4954 if (isrc == NULL) { 4955 ASSERT(idst == NULL); 4956 isrc = idst = blank_address; 4957 } 4958 4959 /* 4960 * Scan list for duplicates. Check for UNIQUE, src/dest, policy. 4961 * 4962 * XXX May need search for duplicates based on other things too! 4963 */ 4964 for (walker = bucket->iacqf_ipsacq; walker != NULL; 4965 walker = walker->ipsacq_next) { 4966 mutex_enter(&walker->ipsacq_lock); 4967 fam = walker->ipsacq_addrfam; 4968 if (IPSA_ARE_ADDR_EQUAL(dst, walker->ipsacq_dstaddr, fam) && 4969 IPSA_ARE_ADDR_EQUAL(src, walker->ipsacq_srcaddr, fam) && 4970 ip_addr_match((uint8_t *)isrc, walker->ipsacq_innersrcpfx, 4971 (in6_addr_t *)walker->ipsacq_innersrc) && 4972 ip_addr_match((uint8_t *)idst, walker->ipsacq_innerdstpfx, 4973 (in6_addr_t *)walker->ipsacq_innerdst) && 4974 (ap == walker->ipsacq_act) && 4975 (pp == walker->ipsacq_policy) && 4976 /* XXX do deep compares of ap/pp? */ 4977 (unique_id == walker->ipsacq_unique_id)) 4978 break; /* everything matched */ 4979 mutex_exit(&walker->ipsacq_lock); 4980 } 4981 4982 return (walker); 4983 } 4984 4985 /* 4986 * For this mblk, insert a new acquire record. Assume bucket contains addrs 4987 * of all of the same length. Give up (and drop) if memory 4988 * cannot be allocated for a new one; otherwise, invoke callback to 4989 * send the acquire up.. 4990 * 4991 * In cases where we need both AH and ESP, add the SA to the ESP ACQUIRE 4992 * list. The ah_add_sa_finish() routines can look at the packet's ipsec_out_t 4993 * and handle this case specially. 4994 */ 4995 void 4996 sadb_acquire(mblk_t *mp, ipsec_out_t *io, boolean_t need_ah, boolean_t need_esp) 4997 { 4998 sadbp_t *spp; 4999 sadb_t *sp; 5000 ipsacq_t *newbie; 5001 iacqf_t *bucket; 5002 mblk_t *datamp = mp->b_cont; 5003 mblk_t *extended; 5004 ipha_t *ipha = (ipha_t *)datamp->b_rptr; 5005 ip6_t *ip6h = (ip6_t *)datamp->b_rptr; 5006 uint32_t *src, *dst, *isrc, *idst; 5007 ipsec_policy_t *pp = io->ipsec_out_policy; 5008 ipsec_action_t *ap = io->ipsec_out_act; 5009 sa_family_t af; 5010 int hashoffset; 5011 uint32_t seq; 5012 uint64_t unique_id = 0; 5013 ipsec_selector_t sel; 5014 boolean_t tunnel_mode = io->ipsec_out_tunnel; 5015 netstack_t *ns = io->ipsec_out_ns; 5016 ipsec_stack_t *ipss = ns->netstack_ipsec; 5017 5018 ASSERT((pp != NULL) || (ap != NULL)); 5019 5020 ASSERT(need_ah != NULL || need_esp != NULL); 5021 /* Assign sadb pointers */ 5022 if (need_esp) { /* ESP for AH+ESP */ 5023 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 5024 5025 spp = &espstack->esp_sadb; 5026 } else { 5027 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 5028 5029 spp = &ahstack->ah_sadb; 5030 } 5031 sp = io->ipsec_out_v4 ? &spp->s_v4 : &spp->s_v6; 5032 5033 if (ap == NULL) 5034 ap = pp->ipsp_act; 5035 5036 ASSERT(ap != NULL); 5037 5038 if (ap->ipa_act.ipa_apply.ipp_use_unique || tunnel_mode) 5039 unique_id = SA_FORM_UNIQUE_ID(io); 5040 5041 /* 5042 * Set up an ACQUIRE record. 5043 * 5044 * Immediately, make sure the ACQUIRE sequence number doesn't slip 5045 * below the lowest point allowed in the kernel. (In other words, 5046 * make sure the high bit on the sequence number is set.) 5047 */ 5048 5049 seq = keysock_next_seq(ns) | IACQF_LOWEST_SEQ; 5050 5051 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5052 src = (uint32_t *)&ipha->ipha_src; 5053 dst = (uint32_t *)&ipha->ipha_dst; 5054 af = AF_INET; 5055 hashoffset = OUTBOUND_HASH_V4(sp, ipha->ipha_dst); 5056 ASSERT(io->ipsec_out_v4 == B_TRUE); 5057 } else { 5058 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 5059 src = (uint32_t *)&ip6h->ip6_src; 5060 dst = (uint32_t *)&ip6h->ip6_dst; 5061 af = AF_INET6; 5062 hashoffset = OUTBOUND_HASH_V6(sp, ip6h->ip6_dst); 5063 ASSERT(io->ipsec_out_v4 == B_FALSE); 5064 } 5065 5066 if (tunnel_mode) { 5067 /* Snag inner addresses. */ 5068 isrc = io->ipsec_out_insrc; 5069 idst = io->ipsec_out_indst; 5070 } else { 5071 isrc = idst = NULL; 5072 } 5073 5074 /* 5075 * Check buckets to see if there is an existing entry. If so, 5076 * grab it. sadb_checkacquire locks newbie if found. 5077 */ 5078 bucket = &(sp->sdb_acq[hashoffset]); 5079 mutex_enter(&bucket->iacqf_lock); 5080 newbie = sadb_checkacquire(bucket, ap, pp, src, dst, isrc, idst, 5081 unique_id); 5082 5083 if (newbie == NULL) { 5084 /* 5085 * Otherwise, allocate a new one. 5086 */ 5087 newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP); 5088 if (newbie == NULL) { 5089 mutex_exit(&bucket->iacqf_lock); 5090 ip_drop_packet(mp, B_FALSE, NULL, NULL, 5091 DROPPER(ipss, ipds_sadb_acquire_nomem), 5092 &ipss->ipsec_sadb_dropper); 5093 return; 5094 } 5095 newbie->ipsacq_policy = pp; 5096 if (pp != NULL) { 5097 IPPOL_REFHOLD(pp); 5098 } 5099 IPACT_REFHOLD(ap); 5100 newbie->ipsacq_act = ap; 5101 newbie->ipsacq_linklock = &bucket->iacqf_lock; 5102 newbie->ipsacq_next = bucket->iacqf_ipsacq; 5103 newbie->ipsacq_ptpn = &bucket->iacqf_ipsacq; 5104 if (newbie->ipsacq_next != NULL) 5105 newbie->ipsacq_next->ipsacq_ptpn = &newbie->ipsacq_next; 5106 bucket->iacqf_ipsacq = newbie; 5107 mutex_init(&newbie->ipsacq_lock, NULL, MUTEX_DEFAULT, NULL); 5108 mutex_enter(&newbie->ipsacq_lock); 5109 } 5110 5111 mutex_exit(&bucket->iacqf_lock); 5112 5113 /* 5114 * This assert looks silly for now, but we may need to enter newbie's 5115 * mutex during a search. 5116 */ 5117 ASSERT(MUTEX_HELD(&newbie->ipsacq_lock)); 5118 5119 mp->b_next = NULL; 5120 /* Queue up packet. Use b_next. */ 5121 if (newbie->ipsacq_numpackets == 0) { 5122 /* First one. */ 5123 newbie->ipsacq_mp = mp; 5124 newbie->ipsacq_numpackets = 1; 5125 newbie->ipsacq_expire = gethrestime_sec(); 5126 /* 5127 * Extended ACQUIRE with both AH+ESP will use ESP's timeout 5128 * value. 5129 */ 5130 newbie->ipsacq_expire += *spp->s_acquire_timeout; 5131 newbie->ipsacq_seq = seq; 5132 newbie->ipsacq_addrfam = af; 5133 5134 newbie->ipsacq_srcport = io->ipsec_out_src_port; 5135 newbie->ipsacq_dstport = io->ipsec_out_dst_port; 5136 newbie->ipsacq_icmp_type = io->ipsec_out_icmp_type; 5137 newbie->ipsacq_icmp_code = io->ipsec_out_icmp_code; 5138 if (tunnel_mode) { 5139 newbie->ipsacq_inneraddrfam = io->ipsec_out_inaf; 5140 newbie->ipsacq_proto = io->ipsec_out_inaf == AF_INET6 ? 5141 IPPROTO_IPV6 : IPPROTO_ENCAP; 5142 newbie->ipsacq_innersrcpfx = io->ipsec_out_insrcpfx; 5143 newbie->ipsacq_innerdstpfx = io->ipsec_out_indstpfx; 5144 IPSA_COPY_ADDR(newbie->ipsacq_innersrc, 5145 io->ipsec_out_insrc, io->ipsec_out_inaf); 5146 IPSA_COPY_ADDR(newbie->ipsacq_innerdst, 5147 io->ipsec_out_indst, io->ipsec_out_inaf); 5148 } else { 5149 newbie->ipsacq_proto = io->ipsec_out_proto; 5150 } 5151 newbie->ipsacq_unique_id = unique_id; 5152 } else { 5153 /* Scan to the end of the list & insert. */ 5154 mblk_t *lastone = newbie->ipsacq_mp; 5155 5156 while (lastone->b_next != NULL) 5157 lastone = lastone->b_next; 5158 lastone->b_next = mp; 5159 if (newbie->ipsacq_numpackets++ == ipsacq_maxpackets) { 5160 newbie->ipsacq_numpackets = ipsacq_maxpackets; 5161 lastone = newbie->ipsacq_mp; 5162 newbie->ipsacq_mp = lastone->b_next; 5163 lastone->b_next = NULL; 5164 ip_drop_packet(lastone, B_FALSE, NULL, NULL, 5165 DROPPER(ipss, ipds_sadb_acquire_toofull), 5166 &ipss->ipsec_sadb_dropper); 5167 } else { 5168 IP_ACQUIRE_STAT(ipss, qhiwater, 5169 newbie->ipsacq_numpackets); 5170 } 5171 } 5172 5173 /* 5174 * Reset addresses. Set them to the most recently added mblk chain, 5175 * so that the address pointers in the acquire record will point 5176 * at an mblk still attached to the acquire list. 5177 */ 5178 5179 newbie->ipsacq_srcaddr = src; 5180 newbie->ipsacq_dstaddr = dst; 5181 5182 /* 5183 * If the acquire record has more than one queued packet, we've 5184 * already sent an ACQUIRE, and don't need to repeat ourself. 5185 */ 5186 if (newbie->ipsacq_seq != seq || newbie->ipsacq_numpackets > 1) { 5187 /* I have an acquire outstanding already! */ 5188 mutex_exit(&newbie->ipsacq_lock); 5189 return; 5190 } 5191 5192 if (keysock_extended_reg(ns)) { 5193 /* 5194 * Construct an extended ACQUIRE. There are logging 5195 * opportunities here in failure cases. 5196 */ 5197 5198 (void) memset(&sel, 0, sizeof (sel)); 5199 sel.ips_isv4 = io->ipsec_out_v4; 5200 if (tunnel_mode) { 5201 sel.ips_protocol = (io->ipsec_out_inaf == AF_INET) ? 5202 IPPROTO_ENCAP : IPPROTO_IPV6; 5203 } else { 5204 sel.ips_protocol = io->ipsec_out_proto; 5205 sel.ips_local_port = io->ipsec_out_src_port; 5206 sel.ips_remote_port = io->ipsec_out_dst_port; 5207 } 5208 sel.ips_icmp_type = io->ipsec_out_icmp_type; 5209 sel.ips_icmp_code = io->ipsec_out_icmp_code; 5210 sel.ips_is_icmp_inv_acq = 0; 5211 if (af == AF_INET) { 5212 sel.ips_local_addr_v4 = ipha->ipha_src; 5213 sel.ips_remote_addr_v4 = ipha->ipha_dst; 5214 } else { 5215 sel.ips_local_addr_v6 = ip6h->ip6_src; 5216 sel.ips_remote_addr_v6 = ip6h->ip6_dst; 5217 } 5218 5219 extended = sadb_keysock_out(0); 5220 if (extended != NULL) { 5221 extended->b_cont = sadb_extended_acquire(&sel, pp, ap, 5222 tunnel_mode, seq, 0, ns); 5223 if (extended->b_cont == NULL) { 5224 freeb(extended); 5225 extended = NULL; 5226 } 5227 } 5228 } else 5229 extended = NULL; 5230 5231 /* 5232 * Send an ACQUIRE message (and possible an extended ACQUIRE) based on 5233 * this new record. The send-acquire callback assumes that acqrec is 5234 * already locked. 5235 */ 5236 (*spp->s_acqfn)(newbie, extended, ns); 5237 } 5238 5239 /* 5240 * Unlink and free an acquire record. 5241 */ 5242 void 5243 sadb_destroy_acquire(ipsacq_t *acqrec, netstack_t *ns) 5244 { 5245 mblk_t *mp; 5246 ipsec_stack_t *ipss = ns->netstack_ipsec; 5247 5248 ASSERT(MUTEX_HELD(acqrec->ipsacq_linklock)); 5249 5250 if (acqrec->ipsacq_policy != NULL) { 5251 IPPOL_REFRELE(acqrec->ipsacq_policy, ns); 5252 } 5253 if (acqrec->ipsacq_act != NULL) { 5254 IPACT_REFRELE(acqrec->ipsacq_act); 5255 } 5256 5257 /* Unlink */ 5258 *(acqrec->ipsacq_ptpn) = acqrec->ipsacq_next; 5259 if (acqrec->ipsacq_next != NULL) 5260 acqrec->ipsacq_next->ipsacq_ptpn = acqrec->ipsacq_ptpn; 5261 5262 /* 5263 * Free hanging mp's. 5264 * 5265 * XXX Instead of freemsg(), perhaps use IPSEC_REQ_FAILED. 5266 */ 5267 5268 mutex_enter(&acqrec->ipsacq_lock); 5269 while (acqrec->ipsacq_mp != NULL) { 5270 mp = acqrec->ipsacq_mp; 5271 acqrec->ipsacq_mp = mp->b_next; 5272 mp->b_next = NULL; 5273 ip_drop_packet(mp, B_FALSE, NULL, NULL, 5274 DROPPER(ipss, ipds_sadb_acquire_timeout), 5275 &ipss->ipsec_sadb_dropper); 5276 } 5277 mutex_exit(&acqrec->ipsacq_lock); 5278 5279 /* Free */ 5280 mutex_destroy(&acqrec->ipsacq_lock); 5281 kmem_free(acqrec, sizeof (*acqrec)); 5282 } 5283 5284 /* 5285 * Destroy an acquire list fanout. 5286 */ 5287 static void 5288 sadb_destroy_acqlist(iacqf_t **listp, uint_t numentries, boolean_t forever, 5289 netstack_t *ns) 5290 { 5291 int i; 5292 iacqf_t *list = *listp; 5293 5294 if (list == NULL) 5295 return; 5296 5297 for (i = 0; i < numentries; i++) { 5298 mutex_enter(&(list[i].iacqf_lock)); 5299 while (list[i].iacqf_ipsacq != NULL) 5300 sadb_destroy_acquire(list[i].iacqf_ipsacq, ns); 5301 mutex_exit(&(list[i].iacqf_lock)); 5302 if (forever) 5303 mutex_destroy(&(list[i].iacqf_lock)); 5304 } 5305 5306 if (forever) { 5307 *listp = NULL; 5308 kmem_free(list, numentries * sizeof (*list)); 5309 } 5310 } 5311 5312 /* 5313 * Create an algorithm descriptor for an extended ACQUIRE. Filter crypto 5314 * framework's view of reality vs. IPsec's. EF's wins, BTW. 5315 */ 5316 static uint8_t * 5317 sadb_new_algdesc(uint8_t *start, uint8_t *limit, 5318 sadb_x_ecomb_t *ecomb, uint8_t satype, uint8_t algtype, 5319 uint8_t alg, uint16_t minbits, uint16_t maxbits, ipsec_stack_t *ipss) 5320 { 5321 uint8_t *cur = start; 5322 ipsec_alginfo_t *algp; 5323 sadb_x_algdesc_t *algdesc = (sadb_x_algdesc_t *)cur; 5324 5325 cur += sizeof (*algdesc); 5326 if (cur >= limit) 5327 return (NULL); 5328 5329 ecomb->sadb_x_ecomb_numalgs++; 5330 5331 /* 5332 * Normalize vs. crypto framework's limits. This way, you can specify 5333 * a stronger policy, and when the framework loads a stronger version, 5334 * you can just keep plowing w/o rewhacking your SPD. 5335 */ 5336 mutex_enter(&ipss->ipsec_alg_lock); 5337 algp = ipss->ipsec_alglists[(algtype == SADB_X_ALGTYPE_AUTH) ? 5338 IPSEC_ALG_AUTH : IPSEC_ALG_ENCR][alg]; 5339 if (algp == NULL) { 5340 mutex_exit(&ipss->ipsec_alg_lock); 5341 return (NULL); /* Algorithm doesn't exist. Fail gracefully. */ 5342 } 5343 if (minbits < algp->alg_ef_minbits) 5344 minbits = algp->alg_ef_minbits; 5345 if (maxbits > algp->alg_ef_maxbits) 5346 maxbits = algp->alg_ef_maxbits; 5347 mutex_exit(&ipss->ipsec_alg_lock); 5348 5349 algdesc->sadb_x_algdesc_satype = satype; 5350 algdesc->sadb_x_algdesc_algtype = algtype; 5351 algdesc->sadb_x_algdesc_alg = alg; 5352 algdesc->sadb_x_algdesc_minbits = minbits; 5353 algdesc->sadb_x_algdesc_maxbits = maxbits; 5354 algdesc->sadb_x_algdesc_reserved = 0; 5355 return (cur); 5356 } 5357 5358 /* 5359 * Convert the given ipsec_action_t into an ecomb starting at *ecomb 5360 * which must fit before *limit 5361 * 5362 * return NULL if we ran out of room or a pointer to the end of the ecomb. 5363 */ 5364 static uint8_t * 5365 sadb_action_to_ecomb(uint8_t *start, uint8_t *limit, ipsec_action_t *act, 5366 netstack_t *ns) 5367 { 5368 uint8_t *cur = start; 5369 sadb_x_ecomb_t *ecomb = (sadb_x_ecomb_t *)cur; 5370 ipsec_prot_t *ipp; 5371 ipsec_stack_t *ipss = ns->netstack_ipsec; 5372 5373 cur += sizeof (*ecomb); 5374 if (cur >= limit) 5375 return (NULL); 5376 5377 ASSERT(act->ipa_act.ipa_type == IPSEC_ACT_APPLY); 5378 5379 ipp = &act->ipa_act.ipa_apply; 5380 5381 ecomb->sadb_x_ecomb_numalgs = 0; 5382 ecomb->sadb_x_ecomb_reserved = 0; 5383 ecomb->sadb_x_ecomb_reserved2 = 0; 5384 /* 5385 * No limits on allocations, since we really don't support that 5386 * concept currently. 5387 */ 5388 ecomb->sadb_x_ecomb_soft_allocations = 0; 5389 ecomb->sadb_x_ecomb_hard_allocations = 0; 5390 5391 /* 5392 * XXX TBD: Policy or global parameters will eventually be 5393 * able to fill in some of these. 5394 */ 5395 ecomb->sadb_x_ecomb_flags = 0; 5396 ecomb->sadb_x_ecomb_soft_bytes = 0; 5397 ecomb->sadb_x_ecomb_hard_bytes = 0; 5398 ecomb->sadb_x_ecomb_soft_addtime = 0; 5399 ecomb->sadb_x_ecomb_hard_addtime = 0; 5400 ecomb->sadb_x_ecomb_soft_usetime = 0; 5401 ecomb->sadb_x_ecomb_hard_usetime = 0; 5402 5403 if (ipp->ipp_use_ah) { 5404 cur = sadb_new_algdesc(cur, limit, ecomb, 5405 SADB_SATYPE_AH, SADB_X_ALGTYPE_AUTH, ipp->ipp_auth_alg, 5406 ipp->ipp_ah_minbits, ipp->ipp_ah_maxbits, ipss); 5407 if (cur == NULL) 5408 return (NULL); 5409 ipsecah_fill_defs(ecomb, ns); 5410 } 5411 5412 if (ipp->ipp_use_esp) { 5413 if (ipp->ipp_use_espa) { 5414 cur = sadb_new_algdesc(cur, limit, ecomb, 5415 SADB_SATYPE_ESP, SADB_X_ALGTYPE_AUTH, 5416 ipp->ipp_esp_auth_alg, 5417 ipp->ipp_espa_minbits, 5418 ipp->ipp_espa_maxbits, ipss); 5419 if (cur == NULL) 5420 return (NULL); 5421 } 5422 5423 cur = sadb_new_algdesc(cur, limit, ecomb, 5424 SADB_SATYPE_ESP, SADB_X_ALGTYPE_CRYPT, 5425 ipp->ipp_encr_alg, 5426 ipp->ipp_espe_minbits, 5427 ipp->ipp_espe_maxbits, ipss); 5428 if (cur == NULL) 5429 return (NULL); 5430 /* Fill in lifetimes if and only if AH didn't already... */ 5431 if (!ipp->ipp_use_ah) 5432 ipsecesp_fill_defs(ecomb, ns); 5433 } 5434 5435 return (cur); 5436 } 5437 5438 /* 5439 * Construct an extended ACQUIRE message based on a selector and the resulting 5440 * IPsec action. 5441 * 5442 * NOTE: This is used by both inverse ACQUIRE and actual ACQUIRE 5443 * generation. As a consequence, expect this function to evolve 5444 * rapidly. 5445 */ 5446 static mblk_t * 5447 sadb_extended_acquire(ipsec_selector_t *sel, ipsec_policy_t *pol, 5448 ipsec_action_t *act, boolean_t tunnel_mode, uint32_t seq, uint32_t pid, 5449 netstack_t *ns) 5450 { 5451 mblk_t *mp; 5452 sadb_msg_t *samsg; 5453 uint8_t *start, *cur, *end; 5454 uint32_t *saddrptr, *daddrptr; 5455 sa_family_t af; 5456 sadb_prop_t *eprop; 5457 ipsec_action_t *ap, *an; 5458 ipsec_selkey_t *ipsl; 5459 uint8_t proto, pfxlen; 5460 uint16_t lport, rport; 5461 uint32_t kmp, kmc; 5462 5463 /* 5464 * Find the action we want sooner rather than later.. 5465 */ 5466 an = NULL; 5467 if (pol == NULL) { 5468 ap = act; 5469 } else { 5470 ap = pol->ipsp_act; 5471 5472 if (ap != NULL) 5473 an = ap->ipa_next; 5474 } 5475 5476 /* 5477 * Just take a swag for the allocation for now. We can always 5478 * alter it later. 5479 */ 5480 #define SADB_EXTENDED_ACQUIRE_SIZE 4096 5481 mp = allocb(SADB_EXTENDED_ACQUIRE_SIZE, BPRI_HI); 5482 if (mp == NULL) 5483 return (NULL); 5484 5485 start = mp->b_rptr; 5486 end = start + SADB_EXTENDED_ACQUIRE_SIZE; 5487 5488 cur = start; 5489 5490 samsg = (sadb_msg_t *)cur; 5491 cur += sizeof (*samsg); 5492 5493 samsg->sadb_msg_version = PF_KEY_V2; 5494 samsg->sadb_msg_type = SADB_ACQUIRE; 5495 samsg->sadb_msg_errno = 0; 5496 samsg->sadb_msg_reserved = 0; 5497 samsg->sadb_msg_satype = 0; 5498 samsg->sadb_msg_seq = seq; 5499 samsg->sadb_msg_pid = pid; 5500 5501 if (tunnel_mode) { 5502 /* 5503 * Form inner address extensions based NOT on the inner 5504 * selectors (i.e. the packet data), but on the policy's 5505 * selector key (i.e. the policy's selector information). 5506 * 5507 * NOTE: The position of IPv4 and IPv6 addresses is the 5508 * same in ipsec_selkey_t (unless the compiler does very 5509 * strange things with unions, consult your local C language 5510 * lawyer for details). 5511 */ 5512 ipsl = &(pol->ipsp_sel->ipsl_key); 5513 if (ipsl->ipsl_valid & IPSL_IPV4) { 5514 af = AF_INET; 5515 ASSERT(sel->ips_protocol == IPPROTO_ENCAP); 5516 ASSERT(!(ipsl->ipsl_valid & IPSL_IPV6)); 5517 } else { 5518 af = AF_INET6; 5519 ASSERT(sel->ips_protocol == IPPROTO_IPV6); 5520 ASSERT(ipsl->ipsl_valid & IPSL_IPV6); 5521 } 5522 5523 if (ipsl->ipsl_valid & IPSL_LOCAL_ADDR) { 5524 saddrptr = (uint32_t *)(&ipsl->ipsl_local); 5525 pfxlen = ipsl->ipsl_local_pfxlen; 5526 } else { 5527 saddrptr = (uint32_t *)(&ipv6_all_zeros); 5528 pfxlen = 0; 5529 } 5530 /* XXX What about ICMP type/code? */ 5531 lport = (ipsl->ipsl_valid & IPSL_LOCAL_PORT) ? 5532 ipsl->ipsl_lport : 0; 5533 proto = (ipsl->ipsl_valid & IPSL_PROTOCOL) ? 5534 ipsl->ipsl_proto : 0; 5535 5536 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 5537 af, saddrptr, lport, proto, pfxlen); 5538 if (cur == NULL) { 5539 freeb(mp); 5540 return (NULL); 5541 } 5542 5543 if (ipsl->ipsl_valid & IPSL_REMOTE_ADDR) { 5544 daddrptr = (uint32_t *)(&ipsl->ipsl_remote); 5545 pfxlen = ipsl->ipsl_remote_pfxlen; 5546 } else { 5547 daddrptr = (uint32_t *)(&ipv6_all_zeros); 5548 pfxlen = 0; 5549 } 5550 /* XXX What about ICMP type/code? */ 5551 rport = (ipsl->ipsl_valid & IPSL_REMOTE_PORT) ? 5552 ipsl->ipsl_rport : 0; 5553 5554 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 5555 af, daddrptr, rport, proto, pfxlen); 5556 if (cur == NULL) { 5557 freeb(mp); 5558 return (NULL); 5559 } 5560 /* 5561 * TODO - if we go to 3408's dream of transport mode IP-in-IP 5562 * _with_ inner-packet address selectors, we'll need to further 5563 * distinguish tunnel mode here. For now, having inner 5564 * addresses and/or ports is sufficient. 5565 * 5566 * Meanwhile, whack proto/ports to reflect IP-in-IP for the 5567 * outer addresses. 5568 */ 5569 proto = sel->ips_protocol; /* Either _ENCAP or _IPV6 */ 5570 lport = rport = 0; 5571 } else if ((ap != NULL) && (!ap->ipa_want_unique)) { 5572 proto = 0; 5573 lport = 0; 5574 rport = 0; 5575 if (pol != NULL) { 5576 ipsl = &(pol->ipsp_sel->ipsl_key); 5577 if (ipsl->ipsl_valid & IPSL_PROTOCOL) 5578 proto = ipsl->ipsl_proto; 5579 if (ipsl->ipsl_valid & IPSL_REMOTE_PORT) 5580 rport = ipsl->ipsl_rport; 5581 if (ipsl->ipsl_valid & IPSL_LOCAL_PORT) 5582 lport = ipsl->ipsl_lport; 5583 } 5584 } else { 5585 proto = sel->ips_protocol; 5586 lport = sel->ips_local_port; 5587 rport = sel->ips_remote_port; 5588 } 5589 5590 af = sel->ips_isv4 ? AF_INET : AF_INET6; 5591 5592 /* 5593 * NOTE: The position of IPv4 and IPv6 addresses is the same in 5594 * ipsec_selector_t. 5595 */ 5596 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af, 5597 (uint32_t *)(&sel->ips_local_addr_v6), lport, proto, 0); 5598 5599 if (cur == NULL) { 5600 freeb(mp); 5601 return (NULL); 5602 } 5603 5604 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af, 5605 (uint32_t *)(&sel->ips_remote_addr_v6), rport, proto, 0); 5606 5607 if (cur == NULL) { 5608 freeb(mp); 5609 return (NULL); 5610 } 5611 5612 /* 5613 * This section will change a lot as policy evolves. 5614 * For now, it'll be relatively simple. 5615 */ 5616 eprop = (sadb_prop_t *)cur; 5617 cur += sizeof (*eprop); 5618 if (cur > end) { 5619 /* no space left */ 5620 freeb(mp); 5621 return (NULL); 5622 } 5623 5624 eprop->sadb_prop_exttype = SADB_X_EXT_EPROP; 5625 eprop->sadb_x_prop_ereserved = 0; 5626 eprop->sadb_x_prop_numecombs = 0; 5627 eprop->sadb_prop_replay = 32; /* default */ 5628 5629 kmc = kmp = 0; 5630 5631 for (; ap != NULL; ap = an) { 5632 an = (pol != NULL) ? ap->ipa_next : NULL; 5633 5634 /* 5635 * Skip non-IPsec policies 5636 */ 5637 if (ap->ipa_act.ipa_type != IPSEC_ACT_APPLY) 5638 continue; 5639 5640 if (ap->ipa_act.ipa_apply.ipp_km_proto) 5641 kmp = ap->ipa_act.ipa_apply.ipp_km_proto; 5642 if (ap->ipa_act.ipa_apply.ipp_km_cookie) 5643 kmc = ap->ipa_act.ipa_apply.ipp_km_cookie; 5644 if (ap->ipa_act.ipa_apply.ipp_replay_depth) { 5645 eprop->sadb_prop_replay = 5646 ap->ipa_act.ipa_apply.ipp_replay_depth; 5647 } 5648 5649 cur = sadb_action_to_ecomb(cur, end, ap, ns); 5650 if (cur == NULL) { /* no space */ 5651 freeb(mp); 5652 return (NULL); 5653 } 5654 eprop->sadb_x_prop_numecombs++; 5655 } 5656 5657 if (eprop->sadb_x_prop_numecombs == 0) { 5658 /* 5659 * This will happen if we fail to find a policy 5660 * allowing for IPsec processing. 5661 * Construct an error message. 5662 */ 5663 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 5664 samsg->sadb_msg_errno = ENOENT; 5665 samsg->sadb_x_msg_diagnostic = 0; 5666 return (mp); 5667 } 5668 5669 if ((kmp != 0) || (kmc != 0)) { 5670 cur = sadb_make_kmc_ext(cur, end, kmp, kmc); 5671 if (cur == NULL) { 5672 freeb(mp); 5673 return (NULL); 5674 } 5675 } 5676 5677 eprop->sadb_prop_len = SADB_8TO64(cur - (uint8_t *)eprop); 5678 samsg->sadb_msg_len = SADB_8TO64(cur - start); 5679 mp->b_wptr = cur; 5680 5681 return (mp); 5682 } 5683 5684 /* 5685 * Generic setup of an RFC 2367 ACQUIRE message. Caller sets satype. 5686 * 5687 * NOTE: This function acquires alg_lock as a side-effect if-and-only-if we 5688 * succeed (i.e. return non-NULL). Caller MUST release it. This is to 5689 * maximize code consolidation while preventing algorithm changes from messing 5690 * with the callers finishing touches on the ACQUIRE itself. 5691 */ 5692 mblk_t * 5693 sadb_setup_acquire(ipsacq_t *acqrec, uint8_t satype, ipsec_stack_t *ipss) 5694 { 5695 uint_t allocsize; 5696 mblk_t *pfkeymp, *msgmp; 5697 sa_family_t af; 5698 uint8_t *cur, *end; 5699 sadb_msg_t *samsg; 5700 uint16_t sport_typecode; 5701 uint16_t dport_typecode; 5702 uint8_t check_proto; 5703 boolean_t tunnel_mode = (acqrec->ipsacq_inneraddrfam != 0); 5704 5705 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); 5706 5707 pfkeymp = sadb_keysock_out(0); 5708 if (pfkeymp == NULL) 5709 return (NULL); 5710 5711 /* 5712 * First, allocate a basic ACQUIRE message 5713 */ 5714 allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) + 5715 sizeof (sadb_address_t) + sizeof (sadb_prop_t); 5716 5717 /* Make sure there's enough to cover both AF_INET and AF_INET6. */ 5718 allocsize += 2 * sizeof (struct sockaddr_in6); 5719 5720 mutex_enter(&ipss->ipsec_alg_lock); 5721 /* NOTE: The lock is now held through to this function's return. */ 5722 allocsize += ipss->ipsec_nalgs[IPSEC_ALG_AUTH] * 5723 ipss->ipsec_nalgs[IPSEC_ALG_ENCR] * sizeof (sadb_comb_t); 5724 5725 if (tunnel_mode) { 5726 /* Tunnel mode! */ 5727 allocsize += 2 * sizeof (sadb_address_t); 5728 /* Enough to cover both AF_INET and AF_INET6. */ 5729 allocsize += 2 * sizeof (struct sockaddr_in6); 5730 } 5731 5732 msgmp = allocb(allocsize, BPRI_HI); 5733 if (msgmp == NULL) { 5734 freeb(pfkeymp); 5735 mutex_exit(&ipss->ipsec_alg_lock); 5736 return (NULL); 5737 } 5738 5739 pfkeymp->b_cont = msgmp; 5740 cur = msgmp->b_rptr; 5741 end = cur + allocsize; 5742 samsg = (sadb_msg_t *)cur; 5743 cur += sizeof (sadb_msg_t); 5744 5745 af = acqrec->ipsacq_addrfam; 5746 switch (af) { 5747 case AF_INET: 5748 check_proto = IPPROTO_ICMP; 5749 break; 5750 case AF_INET6: 5751 check_proto = IPPROTO_ICMPV6; 5752 break; 5753 default: 5754 /* This should never happen unless we have kernel bugs. */ 5755 cmn_err(CE_WARN, 5756 "sadb_setup_acquire: corrupt ACQUIRE record.\n"); 5757 ASSERT(0); 5758 mutex_exit(&ipss->ipsec_alg_lock); 5759 return (NULL); 5760 } 5761 5762 samsg->sadb_msg_version = PF_KEY_V2; 5763 samsg->sadb_msg_type = SADB_ACQUIRE; 5764 samsg->sadb_msg_satype = satype; 5765 samsg->sadb_msg_errno = 0; 5766 samsg->sadb_msg_pid = 0; 5767 samsg->sadb_msg_reserved = 0; 5768 samsg->sadb_msg_seq = acqrec->ipsacq_seq; 5769 5770 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); 5771 5772 if ((acqrec->ipsacq_proto == check_proto) || tunnel_mode) { 5773 sport_typecode = dport_typecode = 0; 5774 } else { 5775 sport_typecode = acqrec->ipsacq_srcport; 5776 dport_typecode = acqrec->ipsacq_dstport; 5777 } 5778 5779 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_SRC, af, 5780 acqrec->ipsacq_srcaddr, sport_typecode, acqrec->ipsacq_proto, 0); 5781 5782 cur = sadb_make_addr_ext(cur, end, SADB_EXT_ADDRESS_DST, af, 5783 acqrec->ipsacq_dstaddr, dport_typecode, acqrec->ipsacq_proto, 0); 5784 5785 if (tunnel_mode) { 5786 sport_typecode = acqrec->ipsacq_srcport; 5787 dport_typecode = acqrec->ipsacq_dstport; 5788 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_SRC, 5789 acqrec->ipsacq_inneraddrfam, acqrec->ipsacq_innersrc, 5790 sport_typecode, acqrec->ipsacq_inner_proto, 5791 acqrec->ipsacq_innersrcpfx); 5792 cur = sadb_make_addr_ext(cur, end, SADB_X_EXT_ADDRESS_INNER_DST, 5793 acqrec->ipsacq_inneraddrfam, acqrec->ipsacq_innerdst, 5794 dport_typecode, acqrec->ipsacq_inner_proto, 5795 acqrec->ipsacq_innerdstpfx); 5796 } 5797 5798 /* XXX Insert identity information here. */ 5799 5800 /* XXXMLS Insert sensitivity information here. */ 5801 5802 if (cur != NULL) 5803 samsg->sadb_msg_len = SADB_8TO64(cur - msgmp->b_rptr); 5804 else 5805 mutex_exit(&ipss->ipsec_alg_lock); 5806 5807 return (pfkeymp); 5808 } 5809 5810 /* 5811 * Given an SADB_GETSPI message, find an appropriately ranged SA and 5812 * allocate an SA. If there are message improprieties, return (ipsa_t *)-1. 5813 * If there was a memory allocation error, return NULL. (Assume NULL != 5814 * (ipsa_t *)-1). 5815 * 5816 * master_spi is passed in host order. 5817 */ 5818 ipsa_t * 5819 sadb_getspi(keysock_in_t *ksi, uint32_t master_spi, int *diagnostic, 5820 netstack_t *ns, uint_t sa_type) 5821 { 5822 sadb_address_t *src = 5823 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 5824 *dst = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 5825 sadb_spirange_t *range = 5826 (sadb_spirange_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 5827 struct sockaddr_in *ssa, *dsa; 5828 struct sockaddr_in6 *ssa6, *dsa6; 5829 uint32_t *srcaddr, *dstaddr; 5830 sa_family_t af; 5831 uint32_t add, min, max; 5832 uint8_t protocol = 5833 (sa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP; 5834 5835 if (src == NULL) { 5836 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 5837 return ((ipsa_t *)-1); 5838 } 5839 if (dst == NULL) { 5840 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 5841 return ((ipsa_t *)-1); 5842 } 5843 if (range == NULL) { 5844 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_RANGE; 5845 return ((ipsa_t *)-1); 5846 } 5847 5848 min = ntohl(range->sadb_spirange_min); 5849 max = ntohl(range->sadb_spirange_max); 5850 dsa = (struct sockaddr_in *)(dst + 1); 5851 dsa6 = (struct sockaddr_in6 *)dsa; 5852 5853 ssa = (struct sockaddr_in *)(src + 1); 5854 ssa6 = (struct sockaddr_in6 *)ssa; 5855 ASSERT(dsa->sin_family == ssa->sin_family); 5856 5857 srcaddr = ALL_ZEROES_PTR; 5858 af = dsa->sin_family; 5859 switch (af) { 5860 case AF_INET: 5861 if (src != NULL) 5862 srcaddr = (uint32_t *)(&ssa->sin_addr); 5863 dstaddr = (uint32_t *)(&dsa->sin_addr); 5864 break; 5865 case AF_INET6: 5866 if (src != NULL) 5867 srcaddr = (uint32_t *)(&ssa6->sin6_addr); 5868 dstaddr = (uint32_t *)(&dsa6->sin6_addr); 5869 break; 5870 default: 5871 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST_AF; 5872 return ((ipsa_t *)-1); 5873 } 5874 5875 if (master_spi < min || master_spi > max) { 5876 /* Return a random value in the range. */ 5877 if (cl_inet_getspi) { 5878 cl_inet_getspi(ns->netstack_stackid, protocol, 5879 (uint8_t *)&add, sizeof (add), NULL); 5880 } else { 5881 (void) random_get_pseudo_bytes((uint8_t *)&add, 5882 sizeof (add)); 5883 } 5884 master_spi = min + (add % (max - min + 1)); 5885 } 5886 5887 /* 5888 * Since master_spi is passed in host order, we need to htonl() it 5889 * for the purposes of creating a new SA. 5890 */ 5891 return (sadb_makelarvalassoc(htonl(master_spi), srcaddr, dstaddr, af, 5892 ns)); 5893 } 5894 5895 /* 5896 * 5897 * Locate an ACQUIRE and nuke it. If I have an samsg that's larger than the 5898 * base header, just ignore it. Otherwise, lock down the whole ACQUIRE list 5899 * and scan for the sequence number in question. I may wish to accept an 5900 * address pair with it, for easier searching. 5901 * 5902 * Caller frees the message, so we don't have to here. 5903 * 5904 * NOTE: The ip_q parameter may be used in the future for ACQUIRE 5905 * failures. 5906 */ 5907 /* ARGSUSED */ 5908 void 5909 sadb_in_acquire(sadb_msg_t *samsg, sadbp_t *sp, queue_t *ip_q, netstack_t *ns) 5910 { 5911 int i; 5912 ipsacq_t *acqrec; 5913 iacqf_t *bucket; 5914 5915 /* 5916 * I only accept the base header for this! 5917 * Though to be honest, requiring the dst address would help 5918 * immensely. 5919 * 5920 * XXX There are already cases where I can get the dst address. 5921 */ 5922 if (samsg->sadb_msg_len > SADB_8TO64(sizeof (*samsg))) 5923 return; 5924 5925 /* 5926 * Using the samsg->sadb_msg_seq, find the ACQUIRE record, delete it, 5927 * (and in the future send a message to IP with the appropriate error 5928 * number). 5929 * 5930 * Q: Do I want to reject if pid != 0? 5931 */ 5932 5933 for (i = 0; i < sp->s_v4.sdb_hashsize; i++) { 5934 bucket = &sp->s_v4.sdb_acq[i]; 5935 mutex_enter(&bucket->iacqf_lock); 5936 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL; 5937 acqrec = acqrec->ipsacq_next) { 5938 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq) 5939 break; /* for acqrec... loop. */ 5940 } 5941 if (acqrec != NULL) 5942 break; /* for i = 0... loop. */ 5943 5944 mutex_exit(&bucket->iacqf_lock); 5945 } 5946 5947 if (acqrec == NULL) { 5948 for (i = 0; i < sp->s_v6.sdb_hashsize; i++) { 5949 bucket = &sp->s_v6.sdb_acq[i]; 5950 mutex_enter(&bucket->iacqf_lock); 5951 for (acqrec = bucket->iacqf_ipsacq; acqrec != NULL; 5952 acqrec = acqrec->ipsacq_next) { 5953 if (samsg->sadb_msg_seq == acqrec->ipsacq_seq) 5954 break; /* for acqrec... loop. */ 5955 } 5956 if (acqrec != NULL) 5957 break; /* for i = 0... loop. */ 5958 5959 mutex_exit(&bucket->iacqf_lock); 5960 } 5961 } 5962 5963 5964 if (acqrec == NULL) 5965 return; 5966 5967 /* 5968 * What do I do with the errno and IP? I may need mp's services a 5969 * little more. See sadb_destroy_acquire() for future directions 5970 * beyond free the mblk chain on the acquire record. 5971 */ 5972 5973 ASSERT(&bucket->iacqf_lock == acqrec->ipsacq_linklock); 5974 sadb_destroy_acquire(acqrec, ns); 5975 /* Have to exit mutex here, because of breaking out of for loop. */ 5976 mutex_exit(&bucket->iacqf_lock); 5977 } 5978 5979 /* 5980 * The following functions work with the replay windows of an SA. They assume 5981 * the ipsa->ipsa_replay_arr is an array of uint64_t, and that the bit vector 5982 * represents the highest sequence number packet received, and back 5983 * (ipsa->ipsa_replay_wsize) packets. 5984 */ 5985 5986 /* 5987 * Is the replay bit set? 5988 */ 5989 static boolean_t 5990 ipsa_is_replay_set(ipsa_t *ipsa, uint32_t offset) 5991 { 5992 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63); 5993 5994 return ((bit & ipsa->ipsa_replay_arr[offset >> 6]) ? B_TRUE : B_FALSE); 5995 } 5996 5997 /* 5998 * Shift the bits of the replay window over. 5999 */ 6000 static void 6001 ipsa_shift_replay(ipsa_t *ipsa, uint32_t shift) 6002 { 6003 int i; 6004 int jump = ((shift - 1) >> 6) + 1; 6005 6006 if (shift == 0) 6007 return; 6008 6009 for (i = (ipsa->ipsa_replay_wsize - 1) >> 6; i >= 0; i--) { 6010 if (i + jump <= (ipsa->ipsa_replay_wsize - 1) >> 6) { 6011 ipsa->ipsa_replay_arr[i + jump] |= 6012 ipsa->ipsa_replay_arr[i] >> (64 - (shift & 63)); 6013 } 6014 ipsa->ipsa_replay_arr[i] <<= shift; 6015 } 6016 } 6017 6018 /* 6019 * Set a bit in the bit vector. 6020 */ 6021 static void 6022 ipsa_set_replay(ipsa_t *ipsa, uint32_t offset) 6023 { 6024 uint64_t bit = (uint64_t)1 << (uint64_t)(offset & 63); 6025 6026 ipsa->ipsa_replay_arr[offset >> 6] |= bit; 6027 } 6028 6029 #define SADB_MAX_REPLAY_VALUE 0xffffffff 6030 6031 /* 6032 * Assume caller has NOT done ntohl() already on seq. Check to see 6033 * if replay sequence number "seq" has been seen already. 6034 */ 6035 boolean_t 6036 sadb_replay_check(ipsa_t *ipsa, uint32_t seq) 6037 { 6038 boolean_t rc; 6039 uint32_t diff; 6040 6041 if (ipsa->ipsa_replay_wsize == 0) 6042 return (B_TRUE); 6043 6044 /* 6045 * NOTE: I've already checked for 0 on the wire in sadb_replay_peek(). 6046 */ 6047 6048 /* Convert sequence number into host order before holding the mutex. */ 6049 seq = ntohl(seq); 6050 6051 mutex_enter(&ipsa->ipsa_lock); 6052 6053 /* Initialize inbound SA's ipsa_replay field to last one received. */ 6054 if (ipsa->ipsa_replay == 0) 6055 ipsa->ipsa_replay = 1; 6056 6057 if (seq > ipsa->ipsa_replay) { 6058 /* 6059 * I have received a new "highest value received". Shift 6060 * the replay window over. 6061 */ 6062 diff = seq - ipsa->ipsa_replay; 6063 if (diff < ipsa->ipsa_replay_wsize) { 6064 /* In replay window, shift bits over. */ 6065 ipsa_shift_replay(ipsa, diff); 6066 } else { 6067 /* WAY FAR AHEAD, clear bits and start again. */ 6068 bzero(ipsa->ipsa_replay_arr, 6069 sizeof (ipsa->ipsa_replay_arr)); 6070 } 6071 ipsa_set_replay(ipsa, 0); 6072 ipsa->ipsa_replay = seq; 6073 rc = B_TRUE; 6074 goto done; 6075 } 6076 diff = ipsa->ipsa_replay - seq; 6077 if (diff >= ipsa->ipsa_replay_wsize || ipsa_is_replay_set(ipsa, diff)) { 6078 rc = B_FALSE; 6079 goto done; 6080 } 6081 /* Set this packet as seen. */ 6082 ipsa_set_replay(ipsa, diff); 6083 6084 rc = B_TRUE; 6085 done: 6086 mutex_exit(&ipsa->ipsa_lock); 6087 return (rc); 6088 } 6089 6090 /* 6091 * "Peek" and see if we should even bother going through the effort of 6092 * running an authentication check on the sequence number passed in. 6093 * this takes into account packets that are below the replay window, 6094 * and collisions with already replayed packets. Return B_TRUE if it 6095 * is okay to proceed, B_FALSE if this packet should be dropped immediately. 6096 * Assume same byte-ordering as sadb_replay_check. 6097 */ 6098 boolean_t 6099 sadb_replay_peek(ipsa_t *ipsa, uint32_t seq) 6100 { 6101 boolean_t rc = B_FALSE; 6102 uint32_t diff; 6103 6104 if (ipsa->ipsa_replay_wsize == 0) 6105 return (B_TRUE); 6106 6107 /* 6108 * 0 is 0, regardless of byte order... :) 6109 * 6110 * If I get 0 on the wire (and there is a replay window) then the 6111 * sender most likely wrapped. This ipsa may need to be marked or 6112 * something. 6113 */ 6114 if (seq == 0) 6115 return (B_FALSE); 6116 6117 seq = ntohl(seq); 6118 mutex_enter(&ipsa->ipsa_lock); 6119 if (seq < ipsa->ipsa_replay - ipsa->ipsa_replay_wsize && 6120 ipsa->ipsa_replay >= ipsa->ipsa_replay_wsize) 6121 goto done; 6122 6123 /* 6124 * If I've hit 0xffffffff, then quite honestly, I don't need to 6125 * bother with formalities. I'm not accepting any more packets 6126 * on this SA. 6127 */ 6128 if (ipsa->ipsa_replay == SADB_MAX_REPLAY_VALUE) { 6129 /* 6130 * Since we're already holding the lock, update the 6131 * expire time ala. sadb_replay_delete() and return. 6132 */ 6133 ipsa->ipsa_hardexpiretime = (time_t)1; 6134 goto done; 6135 } 6136 6137 if (seq <= ipsa->ipsa_replay) { 6138 /* 6139 * This seq is in the replay window. I'm not below it, 6140 * because I already checked for that above! 6141 */ 6142 diff = ipsa->ipsa_replay - seq; 6143 if (ipsa_is_replay_set(ipsa, diff)) 6144 goto done; 6145 } 6146 /* Else return B_TRUE, I'm going to advance the window. */ 6147 6148 rc = B_TRUE; 6149 done: 6150 mutex_exit(&ipsa->ipsa_lock); 6151 return (rc); 6152 } 6153 6154 /* 6155 * Delete a single SA. 6156 * 6157 * For now, use the quick-and-dirty trick of making the association's 6158 * hard-expire lifetime (time_t)1, ensuring deletion by the *_ager(). 6159 */ 6160 void 6161 sadb_replay_delete(ipsa_t *assoc) 6162 { 6163 mutex_enter(&assoc->ipsa_lock); 6164 assoc->ipsa_hardexpiretime = (time_t)1; 6165 mutex_exit(&assoc->ipsa_lock); 6166 } 6167 6168 /* 6169 * Given a queue that presumably points to IP, send a T_BIND_REQ for _proto_ 6170 * down. The caller will handle the T_BIND_ACK locally. 6171 */ 6172 boolean_t 6173 sadb_t_bind_req(queue_t *q, int proto) 6174 { 6175 struct T_bind_req *tbr; 6176 mblk_t *mp; 6177 6178 mp = allocb(sizeof (struct T_bind_req) + 1, BPRI_HI); 6179 if (mp == NULL) { 6180 /* cmn_err(CE_WARN, */ 6181 /* "sadb_t_bind_req(%d): couldn't allocate mblk\n", proto); */ 6182 return (B_FALSE); 6183 } 6184 mp->b_datap->db_type = M_PCPROTO; 6185 tbr = (struct T_bind_req *)mp->b_rptr; 6186 mp->b_wptr += sizeof (struct T_bind_req); 6187 tbr->PRIM_type = T_BIND_REQ; 6188 tbr->ADDR_length = 0; 6189 tbr->ADDR_offset = 0; 6190 tbr->CONIND_number = 0; 6191 *mp->b_wptr = (uint8_t)proto; 6192 mp->b_wptr++; 6193 6194 putnext(q, mp); 6195 return (B_TRUE); 6196 } 6197 6198 /* 6199 * Special front-end to ipsec_rl_strlog() dealing with SA failure. 6200 * this is designed to take only a format string with "* %x * %s *", so 6201 * that "spi" is printed first, then "addr" is converted using inet_pton(). 6202 * 6203 * This is abstracted out to save the stack space for only when inet_pton() 6204 * is called. Make sure "spi" is in network order; it usually is when this 6205 * would get called. 6206 */ 6207 void 6208 ipsec_assocfailure(short mid, short sid, char level, ushort_t sl, char *fmt, 6209 uint32_t spi, void *addr, int af, netstack_t *ns) 6210 { 6211 char buf[INET6_ADDRSTRLEN]; 6212 6213 ASSERT(af == AF_INET6 || af == AF_INET); 6214 6215 ipsec_rl_strlog(ns, mid, sid, level, sl, fmt, ntohl(spi), 6216 inet_ntop(af, addr, buf, sizeof (buf))); 6217 } 6218 6219 /* 6220 * Fills in a reference to the policy, if any, from the conn, in *ppp 6221 * Releases a reference to the passed conn_t. 6222 */ 6223 static void 6224 ipsec_conn_pol(ipsec_selector_t *sel, conn_t *connp, ipsec_policy_t **ppp) 6225 { 6226 ipsec_policy_t *pp; 6227 ipsec_latch_t *ipl = connp->conn_latch; 6228 6229 if ((ipl != NULL) && (ipl->ipl_out_policy != NULL)) { 6230 pp = ipl->ipl_out_policy; 6231 IPPOL_REFHOLD(pp); 6232 } else { 6233 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, 6234 connp->conn_netstack); 6235 } 6236 *ppp = pp; 6237 CONN_DEC_REF(connp); 6238 } 6239 6240 /* 6241 * The following functions scan through active conn_t structures 6242 * and return a reference to the best-matching policy it can find. 6243 * Caller must release the reference. 6244 */ 6245 static void 6246 ipsec_udp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst) 6247 { 6248 connf_t *connfp; 6249 conn_t *connp = NULL; 6250 ipsec_selector_t portonly; 6251 6252 bzero((void *)&portonly, sizeof (portonly)); 6253 6254 if (sel->ips_local_port == 0) 6255 return; 6256 6257 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(sel->ips_local_port, 6258 ipst)]; 6259 mutex_enter(&connfp->connf_lock); 6260 6261 if (sel->ips_isv4) { 6262 connp = connfp->connf_head; 6263 while (connp != NULL) { 6264 if (IPCL_UDP_MATCH(connp, sel->ips_local_port, 6265 sel->ips_local_addr_v4, sel->ips_remote_port, 6266 sel->ips_remote_addr_v4)) 6267 break; 6268 connp = connp->conn_next; 6269 } 6270 6271 if (connp == NULL) { 6272 /* Try port-only match in IPv6. */ 6273 portonly.ips_local_port = sel->ips_local_port; 6274 sel = &portonly; 6275 } 6276 } 6277 6278 if (connp == NULL) { 6279 connp = connfp->connf_head; 6280 while (connp != NULL) { 6281 if (IPCL_UDP_MATCH_V6(connp, sel->ips_local_port, 6282 sel->ips_local_addr_v6, sel->ips_remote_port, 6283 sel->ips_remote_addr_v6)) 6284 break; 6285 connp = connp->conn_next; 6286 } 6287 6288 if (connp == NULL) { 6289 mutex_exit(&connfp->connf_lock); 6290 return; 6291 } 6292 } 6293 6294 CONN_INC_REF(connp); 6295 mutex_exit(&connfp->connf_lock); 6296 6297 ipsec_conn_pol(sel, connp, ppp); 6298 } 6299 6300 static conn_t * 6301 ipsec_find_listen_conn(uint16_t *pptr, ipsec_selector_t *sel, ip_stack_t *ipst) 6302 { 6303 connf_t *connfp; 6304 conn_t *connp = NULL; 6305 const in6_addr_t *v6addrmatch = &sel->ips_local_addr_v6; 6306 6307 if (sel->ips_local_port == 0) 6308 return (NULL); 6309 6310 connfp = &ipst->ips_ipcl_bind_fanout[ 6311 IPCL_BIND_HASH(sel->ips_local_port, ipst)]; 6312 mutex_enter(&connfp->connf_lock); 6313 6314 if (sel->ips_isv4) { 6315 connp = connfp->connf_head; 6316 while (connp != NULL) { 6317 if (IPCL_BIND_MATCH(connp, IPPROTO_TCP, 6318 sel->ips_local_addr_v4, pptr[1])) 6319 break; 6320 connp = connp->conn_next; 6321 } 6322 6323 if (connp == NULL) { 6324 /* Match to all-zeroes. */ 6325 v6addrmatch = &ipv6_all_zeros; 6326 } 6327 } 6328 6329 if (connp == NULL) { 6330 connp = connfp->connf_head; 6331 while (connp != NULL) { 6332 if (IPCL_BIND_MATCH_V6(connp, IPPROTO_TCP, 6333 *v6addrmatch, pptr[1])) 6334 break; 6335 connp = connp->conn_next; 6336 } 6337 6338 if (connp == NULL) { 6339 mutex_exit(&connfp->connf_lock); 6340 return (NULL); 6341 } 6342 } 6343 6344 CONN_INC_REF(connp); 6345 mutex_exit(&connfp->connf_lock); 6346 return (connp); 6347 } 6348 6349 static void 6350 ipsec_tcp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, ip_stack_t *ipst) 6351 { 6352 connf_t *connfp; 6353 conn_t *connp; 6354 uint32_t ports; 6355 uint16_t *pptr = (uint16_t *)&ports; 6356 6357 /* 6358 * Find TCP state in the following order: 6359 * 1.) Connected conns. 6360 * 2.) Listeners. 6361 * 6362 * Even though #2 will be the common case for inbound traffic, only 6363 * following this order insures correctness. 6364 */ 6365 6366 if (sel->ips_local_port == 0) 6367 return; 6368 6369 /* 6370 * 0 should be fport, 1 should be lport. SRC is the local one here. 6371 * See ipsec_construct_inverse_acquire() for details. 6372 */ 6373 pptr[0] = sel->ips_remote_port; 6374 pptr[1] = sel->ips_local_port; 6375 6376 connfp = &ipst->ips_ipcl_conn_fanout[ 6377 IPCL_CONN_HASH(sel->ips_remote_addr_v4, ports, ipst)]; 6378 mutex_enter(&connfp->connf_lock); 6379 connp = connfp->connf_head; 6380 6381 if (sel->ips_isv4) { 6382 while (connp != NULL) { 6383 if (IPCL_CONN_MATCH(connp, IPPROTO_TCP, 6384 sel->ips_remote_addr_v4, sel->ips_local_addr_v4, 6385 ports)) 6386 break; 6387 connp = connp->conn_next; 6388 } 6389 } else { 6390 while (connp != NULL) { 6391 if (IPCL_CONN_MATCH_V6(connp, IPPROTO_TCP, 6392 sel->ips_remote_addr_v6, sel->ips_local_addr_v6, 6393 ports)) 6394 break; 6395 connp = connp->conn_next; 6396 } 6397 } 6398 6399 if (connp != NULL) { 6400 CONN_INC_REF(connp); 6401 mutex_exit(&connfp->connf_lock); 6402 } else { 6403 mutex_exit(&connfp->connf_lock); 6404 6405 /* Try the listen hash. */ 6406 if ((connp = ipsec_find_listen_conn(pptr, sel, ipst)) == NULL) 6407 return; 6408 } 6409 6410 ipsec_conn_pol(sel, connp, ppp); 6411 } 6412 6413 static void 6414 ipsec_sctp_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6415 ip_stack_t *ipst) 6416 { 6417 conn_t *connp; 6418 uint32_t ports; 6419 uint16_t *pptr = (uint16_t *)&ports; 6420 6421 /* 6422 * Find SCP state in the following order: 6423 * 1.) Connected conns. 6424 * 2.) Listeners. 6425 * 6426 * Even though #2 will be the common case for inbound traffic, only 6427 * following this order insures correctness. 6428 */ 6429 6430 if (sel->ips_local_port == 0) 6431 return; 6432 6433 /* 6434 * 0 should be fport, 1 should be lport. SRC is the local one here. 6435 * See ipsec_construct_inverse_acquire() for details. 6436 */ 6437 pptr[0] = sel->ips_remote_port; 6438 pptr[1] = sel->ips_local_port; 6439 6440 if (sel->ips_isv4) { 6441 in6_addr_t src, dst; 6442 6443 IN6_IPADDR_TO_V4MAPPED(sel->ips_remote_addr_v4, &dst); 6444 IN6_IPADDR_TO_V4MAPPED(sel->ips_local_addr_v4, &src); 6445 connp = sctp_find_conn(&dst, &src, ports, ALL_ZONES, 6446 ipst->ips_netstack->netstack_sctp); 6447 } else { 6448 connp = sctp_find_conn(&sel->ips_remote_addr_v6, 6449 &sel->ips_local_addr_v6, ports, ALL_ZONES, 6450 ipst->ips_netstack->netstack_sctp); 6451 } 6452 if (connp == NULL) 6453 return; 6454 ipsec_conn_pol(sel, connp, ppp); 6455 } 6456 6457 /* 6458 * Fill in a query for the SPD (in "sel") using two PF_KEY address extensions. 6459 * Returns 0 or errno, and always sets *diagnostic to something appropriate 6460 * to PF_KEY. 6461 * 6462 * NOTE: For right now, this function (and ipsec_selector_t for that matter), 6463 * ignore prefix lengths in the address extension. Since we match on first- 6464 * entered policies, this shouldn't matter. Also, since we normalize prefix- 6465 * set addresses to mask out the lower bits, we should get a suitable search 6466 * key for the SPD anyway. This is the function to change if the assumption 6467 * about suitable search keys is wrong. 6468 */ 6469 static int 6470 ipsec_get_inverse_acquire_sel(ipsec_selector_t *sel, sadb_address_t *srcext, 6471 sadb_address_t *dstext, int *diagnostic) 6472 { 6473 struct sockaddr_in *src, *dst; 6474 struct sockaddr_in6 *src6, *dst6; 6475 6476 *diagnostic = 0; 6477 6478 bzero(sel, sizeof (*sel)); 6479 sel->ips_protocol = srcext->sadb_address_proto; 6480 dst = (struct sockaddr_in *)(dstext + 1); 6481 if (dst->sin_family == AF_INET6) { 6482 dst6 = (struct sockaddr_in6 *)dst; 6483 src6 = (struct sockaddr_in6 *)(srcext + 1); 6484 if (src6->sin6_family != AF_INET6) { 6485 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6486 return (EINVAL); 6487 } 6488 sel->ips_remote_addr_v6 = dst6->sin6_addr; 6489 sel->ips_local_addr_v6 = src6->sin6_addr; 6490 if (sel->ips_protocol == IPPROTO_ICMPV6) { 6491 sel->ips_is_icmp_inv_acq = 1; 6492 } else { 6493 sel->ips_remote_port = dst6->sin6_port; 6494 sel->ips_local_port = src6->sin6_port; 6495 } 6496 sel->ips_isv4 = B_FALSE; 6497 } else { 6498 src = (struct sockaddr_in *)(srcext + 1); 6499 if (src->sin_family != AF_INET) { 6500 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6501 return (EINVAL); 6502 } 6503 sel->ips_remote_addr_v4 = dst->sin_addr.s_addr; 6504 sel->ips_local_addr_v4 = src->sin_addr.s_addr; 6505 if (sel->ips_protocol == IPPROTO_ICMP) { 6506 sel->ips_is_icmp_inv_acq = 1; 6507 } else { 6508 sel->ips_remote_port = dst->sin_port; 6509 sel->ips_local_port = src->sin_port; 6510 } 6511 sel->ips_isv4 = B_TRUE; 6512 } 6513 return (0); 6514 } 6515 6516 /* 6517 * We have encapsulation. 6518 * - Lookup tun_t by address and look for an associated 6519 * tunnel policy 6520 * - If there are inner selectors 6521 * - check ITPF_P_TUNNEL and ITPF_P_ACTIVE 6522 * - Look up tunnel policy based on selectors 6523 * - Else 6524 * - Sanity check the negotation 6525 * - If appropriate, fall through to global policy 6526 */ 6527 static int 6528 ipsec_tun_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6529 sadb_address_t *innsrcext, sadb_address_t *inndstext, ipsec_tun_pol_t *itp, 6530 int *diagnostic, netstack_t *ns) 6531 { 6532 int err; 6533 ipsec_policy_head_t *polhead; 6534 6535 /* Check for inner selectors and act appropriately */ 6536 6537 if (innsrcext != NULL) { 6538 /* Inner selectors present */ 6539 ASSERT(inndstext != NULL); 6540 if ((itp == NULL) || 6541 (itp->itp_flags & (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) != 6542 (ITPF_P_ACTIVE | ITPF_P_TUNNEL)) { 6543 /* 6544 * If inner packet selectors, we must have negotiate 6545 * tunnel and active policy. If the tunnel has 6546 * transport-mode policy set on it, or has no policy, 6547 * fail. 6548 */ 6549 return (ENOENT); 6550 } else { 6551 /* 6552 * Reset "sel" to indicate inner selectors. Pass 6553 * inner PF_KEY address extensions for this to happen. 6554 */ 6555 err = ipsec_get_inverse_acquire_sel(sel, 6556 innsrcext, inndstext, diagnostic); 6557 if (err != 0) { 6558 ITP_REFRELE(itp, ns); 6559 return (err); 6560 } 6561 /* 6562 * Now look for a tunnel policy based on those inner 6563 * selectors. (Common code is below.) 6564 */ 6565 } 6566 } else { 6567 /* No inner selectors present */ 6568 if ((itp == NULL) || !(itp->itp_flags & ITPF_P_ACTIVE)) { 6569 /* 6570 * Transport mode negotiation with no tunnel policy 6571 * configured - return to indicate a global policy 6572 * check is needed. 6573 */ 6574 if (itp != NULL) { 6575 ITP_REFRELE(itp, ns); 6576 } 6577 return (0); 6578 } else if (itp->itp_flags & ITPF_P_TUNNEL) { 6579 /* Tunnel mode set with no inner selectors. */ 6580 ITP_REFRELE(itp, ns); 6581 return (ENOENT); 6582 } 6583 /* 6584 * Else, this is a tunnel policy configured with ifconfig(1m) 6585 * or "negotiate transport" with ipsecconf(1m). We have an 6586 * itp with policy set based on any match, so don't bother 6587 * changing fields in "sel". 6588 */ 6589 } 6590 6591 ASSERT(itp != NULL); 6592 polhead = itp->itp_policy; 6593 ASSERT(polhead != NULL); 6594 rw_enter(&polhead->iph_lock, RW_READER); 6595 *ppp = ipsec_find_policy_head(NULL, polhead, 6596 IPSEC_TYPE_INBOUND, sel, ns); 6597 rw_exit(&polhead->iph_lock); 6598 ITP_REFRELE(itp, ns); 6599 6600 /* 6601 * Don't default to global if we didn't find a matching policy entry. 6602 * Instead, send ENOENT, just like if we hit a transport-mode tunnel. 6603 */ 6604 if (*ppp == NULL) 6605 return (ENOENT); 6606 6607 return (0); 6608 } 6609 6610 static void 6611 ipsec_oth_pol(ipsec_selector_t *sel, ipsec_policy_t **ppp, 6612 ip_stack_t *ipst) 6613 { 6614 boolean_t isv4 = sel->ips_isv4; 6615 connf_t *connfp; 6616 conn_t *connp; 6617 6618 if (isv4) { 6619 connfp = &ipst->ips_ipcl_proto_fanout[sel->ips_protocol]; 6620 } else { 6621 connfp = &ipst->ips_ipcl_proto_fanout_v6[sel->ips_protocol]; 6622 } 6623 6624 mutex_enter(&connfp->connf_lock); 6625 for (connp = connfp->connf_head; connp != NULL; 6626 connp = connp->conn_next) { 6627 if (!((isv4 && !((connp->conn_src == 0 || 6628 connp->conn_src == sel->ips_local_addr_v4) && 6629 (connp->conn_rem == 0 || 6630 connp->conn_rem == sel->ips_remote_addr_v4))) || 6631 (!isv4 && !((IN6_IS_ADDR_UNSPECIFIED(&connp->conn_srcv6) || 6632 IN6_ARE_ADDR_EQUAL(&connp->conn_srcv6, 6633 &sel->ips_local_addr_v6)) && 6634 (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_remv6) || 6635 IN6_ARE_ADDR_EQUAL(&connp->conn_remv6, 6636 &sel->ips_remote_addr_v6)))))) { 6637 break; 6638 } 6639 } 6640 if (connp == NULL) { 6641 mutex_exit(&connfp->connf_lock); 6642 return; 6643 } 6644 6645 CONN_INC_REF(connp); 6646 mutex_exit(&connfp->connf_lock); 6647 6648 ipsec_conn_pol(sel, connp, ppp); 6649 } 6650 6651 /* 6652 * Construct an inverse ACQUIRE reply based on: 6653 * 6654 * 1.) Current global policy. 6655 * 2.) An conn_t match depending on what all was passed in the extv[]. 6656 * 3.) A tunnel's policy head. 6657 * ... 6658 * N.) Other stuff TBD (e.g. identities) 6659 * 6660 * If there is an error, set sadb_msg_errno and sadb_x_msg_diagnostic 6661 * in this function so the caller can extract them where appropriately. 6662 * 6663 * The SRC address is the local one - just like an outbound ACQUIRE message. 6664 */ 6665 mblk_t * 6666 ipsec_construct_inverse_acquire(sadb_msg_t *samsg, sadb_ext_t *extv[], 6667 netstack_t *ns) 6668 { 6669 int err; 6670 int diagnostic; 6671 sadb_address_t *srcext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_SRC], 6672 *dstext = (sadb_address_t *)extv[SADB_EXT_ADDRESS_DST], 6673 *innsrcext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_SRC], 6674 *inndstext = (sadb_address_t *)extv[SADB_X_EXT_ADDRESS_INNER_DST]; 6675 struct sockaddr_in6 *src, *dst; 6676 struct sockaddr_in6 *isrc, *idst; 6677 ipsec_tun_pol_t *itp = NULL; 6678 ipsec_policy_t *pp = NULL; 6679 ipsec_selector_t sel, isel; 6680 mblk_t *retmp; 6681 ip_stack_t *ipst = ns->netstack_ip; 6682 ipsec_stack_t *ipss = ns->netstack_ipsec; 6683 6684 /* Normalize addresses */ 6685 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)srcext, 0, ns) 6686 == KS_IN_ADDR_UNKNOWN) { 6687 err = EINVAL; 6688 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 6689 goto bail; 6690 } 6691 src = (struct sockaddr_in6 *)(srcext + 1); 6692 if (sadb_addrcheck(NULL, (mblk_t *)samsg, (sadb_ext_t *)dstext, 0, ns) 6693 == KS_IN_ADDR_UNKNOWN) { 6694 err = EINVAL; 6695 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 6696 goto bail; 6697 } 6698 dst = (struct sockaddr_in6 *)(dstext + 1); 6699 if (src->sin6_family != dst->sin6_family) { 6700 err = EINVAL; 6701 diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 6702 goto bail; 6703 } 6704 6705 /* Check for tunnel mode and act appropriately */ 6706 if (innsrcext != NULL) { 6707 if (inndstext == NULL) { 6708 err = EINVAL; 6709 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST; 6710 goto bail; 6711 } 6712 if (sadb_addrcheck(NULL, (mblk_t *)samsg, 6713 (sadb_ext_t *)innsrcext, 0, ns) == KS_IN_ADDR_UNKNOWN) { 6714 err = EINVAL; 6715 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_SRC; 6716 goto bail; 6717 } 6718 isrc = (struct sockaddr_in6 *)(innsrcext + 1); 6719 if (sadb_addrcheck(NULL, (mblk_t *)samsg, 6720 (sadb_ext_t *)inndstext, 0, ns) == KS_IN_ADDR_UNKNOWN) { 6721 err = EINVAL; 6722 diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_INNER_DST; 6723 goto bail; 6724 } 6725 idst = (struct sockaddr_in6 *)(inndstext + 1); 6726 if (isrc->sin6_family != idst->sin6_family) { 6727 err = EINVAL; 6728 diagnostic = SADB_X_DIAGNOSTIC_INNER_AF_MISMATCH; 6729 goto bail; 6730 } 6731 if (isrc->sin6_family != AF_INET && 6732 isrc->sin6_family != AF_INET6) { 6733 err = EINVAL; 6734 diagnostic = SADB_X_DIAGNOSTIC_BAD_INNER_SRC_AF; 6735 goto bail; 6736 } 6737 } else if (inndstext != NULL) { 6738 err = EINVAL; 6739 diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC; 6740 goto bail; 6741 } 6742 6743 /* Get selectors first, based on outer addresses */ 6744 err = ipsec_get_inverse_acquire_sel(&sel, srcext, dstext, &diagnostic); 6745 if (err != 0) 6746 goto bail; 6747 6748 /* Check for tunnel mode mismatches. */ 6749 if (innsrcext != NULL && 6750 ((isrc->sin6_family == AF_INET && 6751 sel.ips_protocol != IPPROTO_ENCAP && sel.ips_protocol != 0) || 6752 (isrc->sin6_family == AF_INET6 && 6753 sel.ips_protocol != IPPROTO_IPV6 && sel.ips_protocol != 0))) { 6754 err = EPROTOTYPE; 6755 goto bail; 6756 } 6757 6758 /* 6759 * Okay, we have the addresses and other selector information. 6760 * Let's first find a conn... 6761 */ 6762 pp = NULL; 6763 switch (sel.ips_protocol) { 6764 case IPPROTO_TCP: 6765 ipsec_tcp_pol(&sel, &pp, ipst); 6766 break; 6767 case IPPROTO_UDP: 6768 ipsec_udp_pol(&sel, &pp, ipst); 6769 break; 6770 case IPPROTO_SCTP: 6771 ipsec_sctp_pol(&sel, &pp, ipst); 6772 break; 6773 case IPPROTO_ENCAP: 6774 case IPPROTO_IPV6: 6775 rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_READER); 6776 /* 6777 * Assume sel.ips_remote_addr_* has the right address at 6778 * that exact position. 6779 */ 6780 itp = ipss->ipsec_itp_get_byaddr( 6781 (uint32_t *)(&sel.ips_local_addr_v6), 6782 (uint32_t *)(&sel.ips_remote_addr_v6), 6783 src->sin6_family, ns); 6784 rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock); 6785 if (innsrcext == NULL) { 6786 /* 6787 * Transport-mode tunnel, make sure we fake out isel 6788 * to contain something based on the outer protocol. 6789 */ 6790 bzero(&isel, sizeof (isel)); 6791 isel.ips_isv4 = (sel.ips_protocol == IPPROTO_ENCAP); 6792 } /* Else isel is initialized by ipsec_tun_pol(). */ 6793 err = ipsec_tun_pol(&isel, &pp, innsrcext, inndstext, itp, 6794 &diagnostic, ns); 6795 /* 6796 * NOTE: isel isn't used for now, but in RFC 430x IPsec, it 6797 * may be. 6798 */ 6799 if (err != 0) 6800 goto bail; 6801 break; 6802 default: 6803 ipsec_oth_pol(&sel, &pp, ipst); 6804 break; 6805 } 6806 6807 /* 6808 * If we didn't find a matching conn_t or other policy head, take a 6809 * look in the global policy. 6810 */ 6811 if (pp == NULL) { 6812 pp = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, NULL, NULL, &sel, 6813 ns); 6814 if (pp == NULL) { 6815 /* There's no global policy. */ 6816 err = ENOENT; 6817 diagnostic = 0; 6818 goto bail; 6819 } 6820 } 6821 6822 /* 6823 * Now that we have a policy entry/widget, construct an ACQUIRE 6824 * message based on that, fix fields where appropriate, 6825 * and return the message. 6826 */ 6827 retmp = sadb_extended_acquire(&sel, pp, NULL, 6828 (itp != NULL && (itp->itp_flags & ITPF_P_TUNNEL)), 6829 samsg->sadb_msg_seq, samsg->sadb_msg_pid, ns); 6830 if (pp != NULL) { 6831 IPPOL_REFRELE(pp, ns); 6832 } 6833 if (retmp != NULL) { 6834 return (retmp); 6835 } else { 6836 err = ENOMEM; 6837 diagnostic = 0; 6838 } 6839 bail: 6840 samsg->sadb_msg_errno = (uint8_t)err; 6841 samsg->sadb_x_msg_diagnostic = (uint16_t)diagnostic; 6842 return (NULL); 6843 } 6844 6845 /* 6846 * ipsa_lpkt is a one-element queue, only manipulated by the next two 6847 * functions. They have to hold the ipsa_lock because of potential races 6848 * between key management using SADB_UPDATE, and inbound packets that may 6849 * queue up on the larval SA (hence the 'l' in "lpkt"). 6850 */ 6851 6852 /* 6853 * sadb_set_lpkt: Return TRUE if we can swap in a value to ipsa->ipsa_lpkt and 6854 * freemsg the previous value. Return FALSE if we lost the race and the SA is 6855 * in a non-LARVAL state. free clue: ip_drop_packet(NULL) is safe. 6856 */ 6857 boolean_t 6858 sadb_set_lpkt(ipsa_t *ipsa, mblk_t *npkt, netstack_t *ns) 6859 { 6860 mblk_t *opkt; 6861 ipsec_stack_t *ipss = ns->netstack_ipsec; 6862 boolean_t is_larval; 6863 6864 mutex_enter(&ipsa->ipsa_lock); 6865 is_larval = (ipsa->ipsa_state == IPSA_STATE_LARVAL); 6866 if (is_larval) { 6867 opkt = ipsa->ipsa_lpkt; 6868 ipsa->ipsa_lpkt = npkt; 6869 } else { 6870 /* We lost the race. */ 6871 opkt = NULL; 6872 ASSERT(ipsa->ipsa_lpkt == NULL); 6873 } 6874 mutex_exit(&ipsa->ipsa_lock); 6875 6876 ip_drop_packet(opkt, B_TRUE, NULL, NULL, 6877 DROPPER(ipss, ipds_sadb_inlarval_replace), 6878 &ipss->ipsec_sadb_dropper); 6879 return (is_larval); 6880 } 6881 6882 /* 6883 * sadb_clear_lpkt: Atomically clear ipsa->ipsa_lpkt and return the 6884 * previous value. 6885 */ 6886 mblk_t * 6887 sadb_clear_lpkt(ipsa_t *ipsa) 6888 { 6889 mblk_t *opkt; 6890 6891 mutex_enter(&ipsa->ipsa_lock); 6892 opkt = ipsa->ipsa_lpkt; 6893 ipsa->ipsa_lpkt = NULL; 6894 mutex_exit(&ipsa->ipsa_lock); 6895 6896 return (opkt); 6897 } 6898 6899 /* 6900 * Buffer a packet that's in IDLE state as set by Solaris Clustering. 6901 */ 6902 void 6903 sadb_buf_pkt(ipsa_t *ipsa, mblk_t *bpkt, netstack_t *ns) 6904 { 6905 ipsec_stack_t *ipss = ns->netstack_ipsec; 6906 extern void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, 6907 sa_family_t, in6_addr_t, in6_addr_t, void *); 6908 in6_addr_t *srcaddr = (in6_addr_t *)(&ipsa->ipsa_srcaddr); 6909 in6_addr_t *dstaddr = (in6_addr_t *)(&ipsa->ipsa_dstaddr); 6910 6911 ASSERT(ipsa->ipsa_state == IPSA_STATE_IDLE); 6912 6913 if (cl_inet_idlesa == NULL) { 6914 ip_drop_packet(bpkt, B_TRUE, NULL, NULL, 6915 DROPPER(ipss, ipds_sadb_inidle_overflow), 6916 &ipss->ipsec_sadb_dropper); 6917 return; 6918 } 6919 6920 cl_inet_idlesa(ns->netstack_stackid, 6921 (ipsa->ipsa_type == SADB_SATYPE_AH) ? IPPROTO_AH : IPPROTO_ESP, 6922 ipsa->ipsa_spi, ipsa->ipsa_addrfam, *srcaddr, *dstaddr, NULL); 6923 6924 mutex_enter(&ipsa->ipsa_lock); 6925 ipsa->ipsa_mblkcnt++; 6926 if (ipsa->ipsa_bpkt_head == NULL) { 6927 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_tail = bpkt; 6928 } else { 6929 ipsa->ipsa_bpkt_tail->b_next = bpkt; 6930 ipsa->ipsa_bpkt_tail = bpkt; 6931 if (ipsa->ipsa_mblkcnt > SADB_MAX_IDLEPKTS) { 6932 mblk_t *tmp; 6933 tmp = ipsa->ipsa_bpkt_head; 6934 ipsa->ipsa_bpkt_head = ipsa->ipsa_bpkt_head->b_next; 6935 ip_drop_packet(tmp, B_TRUE, NULL, NULL, 6936 DROPPER(ipss, ipds_sadb_inidle_overflow), 6937 &ipss->ipsec_sadb_dropper); 6938 ipsa->ipsa_mblkcnt --; 6939 } 6940 } 6941 mutex_exit(&ipsa->ipsa_lock); 6942 6943 } 6944 6945 /* 6946 * Stub function that taskq_dispatch() invokes to take the mblk (in arg) 6947 * and put into STREAMS again. 6948 */ 6949 void 6950 sadb_clear_buf_pkt(void *ipkt) 6951 { 6952 mblk_t *tmp, *buf_pkt; 6953 6954 buf_pkt = (mblk_t *)ipkt; 6955 6956 while (buf_pkt != NULL) { 6957 tmp = buf_pkt->b_next; 6958 buf_pkt->b_next = NULL; 6959 ip_fanout_proto_again(buf_pkt, NULL, NULL, NULL); 6960 buf_pkt = tmp; 6961 } 6962 } 6963 /* 6964 * Walker callback used by sadb_alg_update() to free/create crypto 6965 * context template when a crypto software provider is removed or 6966 * added. 6967 */ 6968 6969 struct sadb_update_alg_state { 6970 ipsec_algtype_t alg_type; 6971 uint8_t alg_id; 6972 boolean_t is_added; 6973 }; 6974 6975 static void 6976 sadb_alg_update_cb(isaf_t *head, ipsa_t *entry, void *cookie) 6977 { 6978 struct sadb_update_alg_state *update_state = 6979 (struct sadb_update_alg_state *)cookie; 6980 crypto_ctx_template_t *ctx_tmpl = NULL; 6981 6982 ASSERT(MUTEX_HELD(&head->isaf_lock)); 6983 6984 if (entry->ipsa_state == IPSA_STATE_LARVAL) 6985 return; 6986 6987 mutex_enter(&entry->ipsa_lock); 6988 6989 switch (update_state->alg_type) { 6990 case IPSEC_ALG_AUTH: 6991 if (entry->ipsa_auth_alg == update_state->alg_id) 6992 ctx_tmpl = &entry->ipsa_authtmpl; 6993 break; 6994 case IPSEC_ALG_ENCR: 6995 if (entry->ipsa_encr_alg == update_state->alg_id) 6996 ctx_tmpl = &entry->ipsa_encrtmpl; 6997 break; 6998 default: 6999 ctx_tmpl = NULL; 7000 } 7001 7002 if (ctx_tmpl == NULL) { 7003 mutex_exit(&entry->ipsa_lock); 7004 return; 7005 } 7006 7007 /* 7008 * The context template of the SA may be affected by the change 7009 * of crypto provider. 7010 */ 7011 if (update_state->is_added) { 7012 /* create the context template if not already done */ 7013 if (*ctx_tmpl == NULL) { 7014 (void) ipsec_create_ctx_tmpl(entry, 7015 update_state->alg_type); 7016 } 7017 } else { 7018 /* 7019 * The crypto provider was removed. If the context template 7020 * exists but it is no longer valid, free it. 7021 */ 7022 if (*ctx_tmpl != NULL) 7023 ipsec_destroy_ctx_tmpl(entry, update_state->alg_type); 7024 } 7025 7026 mutex_exit(&entry->ipsa_lock); 7027 } 7028 7029 /* 7030 * Invoked by IP when an software crypto provider has been updated. 7031 * The type and id of the corresponding algorithm is passed as argument. 7032 * is_added is B_TRUE if the provider was added, B_FALSE if it was 7033 * removed. The function updates the SADB and free/creates the 7034 * context templates associated with SAs if needed. 7035 */ 7036 7037 #define SADB_ALG_UPDATE_WALK(sadb, table) \ 7038 sadb_walker((sadb).table, (sadb).sdb_hashsize, sadb_alg_update_cb, \ 7039 &update_state) 7040 7041 void 7042 sadb_alg_update(ipsec_algtype_t alg_type, uint8_t alg_id, boolean_t is_added, 7043 netstack_t *ns) 7044 { 7045 struct sadb_update_alg_state update_state; 7046 ipsecah_stack_t *ahstack = ns->netstack_ipsecah; 7047 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp; 7048 7049 update_state.alg_type = alg_type; 7050 update_state.alg_id = alg_id; 7051 update_state.is_added = is_added; 7052 7053 if (alg_type == IPSEC_ALG_AUTH) { 7054 /* walk the AH tables only for auth. algorithm changes */ 7055 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_of); 7056 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v4, sdb_if); 7057 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_of); 7058 SADB_ALG_UPDATE_WALK(ahstack->ah_sadb.s_v6, sdb_if); 7059 } 7060 7061 /* walk the ESP tables */ 7062 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_of); 7063 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v4, sdb_if); 7064 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_of); 7065 SADB_ALG_UPDATE_WALK(espstack->esp_sadb.s_v6, sdb_if); 7066 } 7067 7068 /* 7069 * Creates a context template for the specified SA. This function 7070 * is called when an SA is created and when a context template needs 7071 * to be created due to a change of software provider. 7072 */ 7073 int 7074 ipsec_create_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type) 7075 { 7076 ipsec_alginfo_t *alg; 7077 crypto_mechanism_t mech; 7078 crypto_key_t *key; 7079 crypto_ctx_template_t *sa_tmpl; 7080 int rv; 7081 ipsec_stack_t *ipss = sa->ipsa_netstack->netstack_ipsec; 7082 7083 ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock)); 7084 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 7085 7086 /* get pointers to the algorithm info, context template, and key */ 7087 switch (alg_type) { 7088 case IPSEC_ALG_AUTH: 7089 key = &sa->ipsa_kcfauthkey; 7090 sa_tmpl = &sa->ipsa_authtmpl; 7091 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_auth_alg]; 7092 break; 7093 case IPSEC_ALG_ENCR: 7094 key = &sa->ipsa_kcfencrkey; 7095 sa_tmpl = &sa->ipsa_encrtmpl; 7096 alg = ipss->ipsec_alglists[alg_type][sa->ipsa_encr_alg]; 7097 break; 7098 default: 7099 alg = NULL; 7100 } 7101 7102 if (alg == NULL || !ALG_VALID(alg)) 7103 return (EINVAL); 7104 7105 /* initialize the mech info structure for the framework */ 7106 ASSERT(alg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 7107 mech.cm_type = alg->alg_mech_type; 7108 mech.cm_param = NULL; 7109 mech.cm_param_len = 0; 7110 7111 /* create a new context template */ 7112 rv = crypto_create_ctx_template(&mech, key, sa_tmpl, KM_NOSLEEP); 7113 7114 /* 7115 * CRYPTO_MECH_NOT_SUPPORTED can be returned if only hardware 7116 * providers are available for that mechanism. In that case 7117 * we don't fail, and will generate the context template from 7118 * the framework callback when a software provider for that 7119 * mechanism registers. 7120 * 7121 * The context template is assigned the special value 7122 * IPSEC_CTX_TMPL_ALLOC if the allocation failed due to a 7123 * lack of memory. No attempt will be made to use 7124 * the context template if it is set to this value. 7125 */ 7126 if (rv == CRYPTO_HOST_MEMORY) { 7127 *sa_tmpl = IPSEC_CTX_TMPL_ALLOC; 7128 } else if (rv != CRYPTO_SUCCESS) { 7129 *sa_tmpl = NULL; 7130 if (rv != CRYPTO_MECH_NOT_SUPPORTED) 7131 return (EINVAL); 7132 } 7133 7134 return (0); 7135 } 7136 7137 /* 7138 * Destroy the context template of the specified algorithm type 7139 * of the specified SA. Must be called while holding the SA lock. 7140 */ 7141 void 7142 ipsec_destroy_ctx_tmpl(ipsa_t *sa, ipsec_algtype_t alg_type) 7143 { 7144 ASSERT(MUTEX_HELD(&sa->ipsa_lock)); 7145 7146 if (alg_type == IPSEC_ALG_AUTH) { 7147 if (sa->ipsa_authtmpl == IPSEC_CTX_TMPL_ALLOC) 7148 sa->ipsa_authtmpl = NULL; 7149 else if (sa->ipsa_authtmpl != NULL) { 7150 crypto_destroy_ctx_template(sa->ipsa_authtmpl); 7151 sa->ipsa_authtmpl = NULL; 7152 } 7153 } else { 7154 ASSERT(alg_type == IPSEC_ALG_ENCR); 7155 if (sa->ipsa_encrtmpl == IPSEC_CTX_TMPL_ALLOC) 7156 sa->ipsa_encrtmpl = NULL; 7157 else if (sa->ipsa_encrtmpl != NULL) { 7158 crypto_destroy_ctx_template(sa->ipsa_encrtmpl); 7159 sa->ipsa_encrtmpl = NULL; 7160 } 7161 } 7162 } 7163 7164 /* 7165 * Use the kernel crypto framework to check the validity of a key received 7166 * via keysock. Returns 0 if the key is OK, -1 otherwise. 7167 */ 7168 int 7169 ipsec_check_key(crypto_mech_type_t mech_type, sadb_key_t *sadb_key, 7170 boolean_t is_auth, int *diag) 7171 { 7172 crypto_mechanism_t mech; 7173 crypto_key_t crypto_key; 7174 int crypto_rc; 7175 7176 mech.cm_type = mech_type; 7177 mech.cm_param = NULL; 7178 mech.cm_param_len = 0; 7179 7180 crypto_key.ck_format = CRYPTO_KEY_RAW; 7181 crypto_key.ck_data = sadb_key + 1; 7182 crypto_key.ck_length = sadb_key->sadb_key_bits; 7183 7184 crypto_rc = crypto_key_check(&mech, &crypto_key); 7185 7186 switch (crypto_rc) { 7187 case CRYPTO_SUCCESS: 7188 return (0); 7189 case CRYPTO_MECHANISM_INVALID: 7190 case CRYPTO_MECH_NOT_SUPPORTED: 7191 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AALG : 7192 SADB_X_DIAGNOSTIC_BAD_EALG; 7193 break; 7194 case CRYPTO_KEY_SIZE_RANGE: 7195 *diag = is_auth ? SADB_X_DIAGNOSTIC_BAD_AKEYBITS : 7196 SADB_X_DIAGNOSTIC_BAD_EKEYBITS; 7197 break; 7198 case CRYPTO_WEAK_KEY: 7199 *diag = is_auth ? SADB_X_DIAGNOSTIC_WEAK_AKEY : 7200 SADB_X_DIAGNOSTIC_WEAK_EKEY; 7201 break; 7202 } 7203 7204 return (-1); 7205 } 7206 /* 7207 * If this is an outgoing SA then add some fuzz to the 7208 * SOFT EXPIRE time. The reason for this is to stop 7209 * peers trying to renegotiate SOFT expiring SA's at 7210 * the same time. The amount of fuzz needs to be at 7211 * least 10 seconds which is the typical interval 7212 * sadb_ager(), although this is only a guide as it 7213 * selftunes. 7214 */ 7215 void 7216 lifetime_fuzz(ipsa_t *assoc) 7217 { 7218 uint8_t rnd; 7219 7220 if (assoc->ipsa_softaddlt == 0) 7221 return; 7222 7223 (void) random_get_pseudo_bytes(&rnd, sizeof (rnd)); 7224 rnd = (rnd & 0xF) + 10; 7225 assoc->ipsa_softexpiretime -= rnd; 7226 assoc->ipsa_softaddlt -= rnd; 7227 } 7228 void 7229 destroy_ipsa_pair(ipsap_t *ipsapp) 7230 { 7231 if (ipsapp == NULL) 7232 return; 7233 7234 /* 7235 * Because of the multi-line macro nature of IPSA_REFRELE, keep 7236 * them in { }. 7237 */ 7238 if (ipsapp->ipsap_sa_ptr != NULL) { 7239 IPSA_REFRELE(ipsapp->ipsap_sa_ptr); 7240 } 7241 if (ipsapp->ipsap_psa_ptr != NULL) { 7242 IPSA_REFRELE(ipsapp->ipsap_psa_ptr); 7243 } 7244 7245 kmem_free(ipsapp, sizeof (*ipsapp)); 7246 } 7247 7248 /* 7249 * The sadb_ager() function walks through the hash tables of SA's and ages 7250 * them, if the SA expires as a result, its marked as DEAD and will be reaped 7251 * the next time sadb_ager() runs. SA's which are paired or have a peer (same 7252 * SA appears in both the inbound and outbound tables because its not possible 7253 * to determine its direction) are placed on a list when they expire. This is 7254 * to ensure that pair/peer SA's are reaped at the same time, even if they 7255 * expire at different times. 7256 * 7257 * This function is called twice by sadb_ager(), one after processing the 7258 * inbound table, then again after processing the outbound table. 7259 */ 7260 void 7261 age_pair_peer_list(templist_t *haspeerlist, sadb_t *sp, boolean_t outbound) 7262 { 7263 templist_t *listptr; 7264 int outhash; 7265 isaf_t *bucket; 7266 boolean_t haspeer; 7267 ipsa_t *peer_assoc, *dying; 7268 /* 7269 * Haspeer cases will contain both IPv4 and IPv6. This code 7270 * is address independent. 7271 */ 7272 while (haspeerlist != NULL) { 7273 /* "dying" contains the SA that has a peer. */ 7274 dying = haspeerlist->ipsa; 7275 haspeer = (dying->ipsa_haspeer); 7276 listptr = haspeerlist; 7277 haspeerlist = listptr->next; 7278 kmem_free(listptr, sizeof (*listptr)); 7279 /* 7280 * Pick peer bucket based on addrfam. 7281 */ 7282 if (outbound) { 7283 if (haspeer) 7284 bucket = INBOUND_BUCKET(sp, dying->ipsa_spi); 7285 else 7286 bucket = INBOUND_BUCKET(sp, 7287 dying->ipsa_otherspi); 7288 } else { /* inbound */ 7289 if (haspeer) { 7290 if (dying->ipsa_addrfam == AF_INET6) { 7291 outhash = OUTBOUND_HASH_V6(sp, 7292 *((in6_addr_t *)&dying-> 7293 ipsa_dstaddr)); 7294 } else { 7295 outhash = OUTBOUND_HASH_V4(sp, 7296 *((ipaddr_t *)&dying-> 7297 ipsa_dstaddr)); 7298 } 7299 } else if (dying->ipsa_addrfam == AF_INET6) { 7300 outhash = OUTBOUND_HASH_V6(sp, 7301 *((in6_addr_t *)&dying-> 7302 ipsa_srcaddr)); 7303 } else { 7304 outhash = OUTBOUND_HASH_V4(sp, 7305 *((ipaddr_t *)&dying-> 7306 ipsa_srcaddr)); 7307 } 7308 bucket = &(sp->sdb_of[outhash]); 7309 } 7310 7311 mutex_enter(&bucket->isaf_lock); 7312 /* 7313 * "haspeer" SA's have the same src/dst address ordering, 7314 * "paired" SA's have the src/dst addresses reversed. 7315 */ 7316 if (haspeer) { 7317 peer_assoc = ipsec_getassocbyspi(bucket, 7318 dying->ipsa_spi, dying->ipsa_srcaddr, 7319 dying->ipsa_dstaddr, dying->ipsa_addrfam); 7320 } else { 7321 peer_assoc = ipsec_getassocbyspi(bucket, 7322 dying->ipsa_otherspi, dying->ipsa_dstaddr, 7323 dying->ipsa_srcaddr, dying->ipsa_addrfam); 7324 } 7325 7326 mutex_exit(&bucket->isaf_lock); 7327 if (peer_assoc != NULL) { 7328 mutex_enter(&peer_assoc->ipsa_lock); 7329 mutex_enter(&dying->ipsa_lock); 7330 if (!haspeer) { 7331 /* 7332 * Only SA's which have a "peer" or are 7333 * "paired" end up on this list, so this 7334 * must be a "paired" SA, update the flags 7335 * to break the pair. 7336 */ 7337 peer_assoc->ipsa_otherspi = 0; 7338 peer_assoc->ipsa_flags &= ~IPSA_F_PAIRED; 7339 dying->ipsa_otherspi = 0; 7340 dying->ipsa_flags &= ~IPSA_F_PAIRED; 7341 } 7342 if (haspeer || outbound) { 7343 /* 7344 * Update the state of the "inbound" SA when 7345 * the "outbound" SA has expired. Don't update 7346 * the "outbound" SA when the "inbound" SA 7347 * SA expires because setting the hard_addtime 7348 * below will cause this to happen. 7349 */ 7350 peer_assoc->ipsa_state = dying->ipsa_state; 7351 } 7352 if (dying->ipsa_state == IPSA_STATE_DEAD) 7353 peer_assoc->ipsa_hardexpiretime = 1; 7354 7355 mutex_exit(&dying->ipsa_lock); 7356 mutex_exit(&peer_assoc->ipsa_lock); 7357 IPSA_REFRELE(peer_assoc); 7358 } 7359 IPSA_REFRELE(dying); 7360 } 7361 } 7362