1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/arp.h> 74 #include <inet/mib2.h> 75 #include <inet/ip.h> 76 #include <inet/ip6.h> 77 #include <inet/ip6_asp.h> 78 #include <inet/tcp.h> 79 #include <inet/ip_multi.h> 80 #include <inet/ip_ire.h> 81 #include <inet/ip_ftable.h> 82 #include <inet/ip_rts.h> 83 #include <inet/ip_ndp.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_impl.h> 86 #include <inet/tun.h> 87 #include <inet/sctp_ip.h> 88 #include <inet/ip_netinfo.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac_client.h> 100 #include <sys/dld.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize, boolean_t insert); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 195 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 196 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 197 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 198 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 199 static void ipif_save_ire(ipif_t *, ire_t *); 200 static void ipif_remove_ire(ipif_t *, ire_t *); 201 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 202 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 203 static void phyint_free(phyint_t *); 204 205 /* 206 * Per-ill IPsec capabilities management. 207 */ 208 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 209 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 210 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 211 static void ill_ipsec_capab_delete(ill_t *, uint_t); 212 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 213 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 214 boolean_t); 215 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 216 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 217 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 218 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 220 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 221 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 222 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 223 dl_capability_sub_t *); 224 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 225 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 226 int *); 227 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 228 static void ill_capability_dld_ack(ill_t *, mblk_t *, 229 dl_capability_sub_t *); 230 static void ill_capability_dld_enable(ill_t *); 231 static void ill_capability_ack_thr(void *); 232 static void ill_capability_lso_enable(ill_t *); 233 static void ill_capability_send(ill_t *, mblk_t *); 234 235 static ill_t *ill_prev_usesrc(ill_t *); 236 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 237 static void ill_disband_usesrc_group(ill_t *); 238 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 239 240 #ifdef DEBUG 241 static void ill_trace_cleanup(const ill_t *); 242 static void ipif_trace_cleanup(const ipif_t *); 243 #endif 244 245 /* 246 * if we go over the memory footprint limit more than once in this msec 247 * interval, we'll start pruning aggressively. 248 */ 249 int ip_min_frag_prune_time = 0; 250 251 /* 252 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 253 * and the IPsec DOI 254 */ 255 #define MAX_IPSEC_ALGS 256 256 257 #define BITSPERBYTE 8 258 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 259 260 #define IPSEC_ALG_ENABLE(algs, algid) \ 261 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 262 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 263 264 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 265 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 266 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 267 268 typedef uint8_t ipsec_capab_elem_t; 269 270 /* 271 * Per-algorithm parameters. Note that at present, only encryption 272 * algorithms have variable keysize (IKE does not provide a way to negotiate 273 * auth algorithm keysize). 274 * 275 * All sizes here are in bits. 276 */ 277 typedef struct 278 { 279 uint16_t minkeylen; 280 uint16_t maxkeylen; 281 } ipsec_capab_algparm_t; 282 283 /* 284 * Per-ill capabilities. 285 */ 286 struct ill_ipsec_capab_s { 287 ipsec_capab_elem_t *encr_hw_algs; 288 ipsec_capab_elem_t *auth_hw_algs; 289 uint32_t algs_size; /* size of _hw_algs in bytes */ 290 /* algorithm key lengths */ 291 ipsec_capab_algparm_t *encr_algparm; 292 uint32_t encr_algparm_size; 293 uint32_t encr_algparm_end; 294 }; 295 296 /* 297 * The field values are larger than strictly necessary for simple 298 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 299 */ 300 static area_t ip_area_template = { 301 AR_ENTRY_ADD, /* area_cmd */ 302 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 303 /* area_name_offset */ 304 /* area_name_length temporarily holds this structure length */ 305 sizeof (area_t), /* area_name_length */ 306 IP_ARP_PROTO_TYPE, /* area_proto */ 307 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 308 IP_ADDR_LEN, /* area_proto_addr_length */ 309 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 310 /* area_proto_mask_offset */ 311 0, /* area_flags */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 313 /* area_hw_addr_offset */ 314 /* Zero length hw_addr_length means 'use your idea of the address' */ 315 0 /* area_hw_addr_length */ 316 }; 317 318 /* 319 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 320 * support 321 */ 322 static area_t ip6_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IPV6_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 static ared_t ip_ared_template = { 341 AR_ENTRY_DELETE, 342 sizeof (ared_t) + IP_ADDR_LEN, 343 sizeof (ared_t), 344 IP_ARP_PROTO_TYPE, 345 sizeof (ared_t), 346 IP_ADDR_LEN, 347 0 348 }; 349 350 static ared_t ip6_ared_template = { 351 AR_ENTRY_DELETE, 352 sizeof (ared_t) + IPV6_ADDR_LEN, 353 sizeof (ared_t), 354 IP_ARP_PROTO_TYPE, 355 sizeof (ared_t), 356 IPV6_ADDR_LEN, 357 0 358 }; 359 360 /* 361 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 362 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 363 * areq is used). 364 */ 365 static areq_t ip_areq_template = { 366 AR_ENTRY_QUERY, /* cmd */ 367 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 368 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 369 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 370 sizeof (areq_t), /* target addr offset */ 371 IP_ADDR_LEN, /* target addr_length */ 372 0, /* flags */ 373 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 374 IP_ADDR_LEN, /* sender addr length */ 375 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 376 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 377 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 378 /* anything else filled in by the code */ 379 }; 380 381 static arc_t ip_aru_template = { 382 AR_INTERFACE_UP, 383 sizeof (arc_t), /* Name offset */ 384 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 385 }; 386 387 static arc_t ip_ard_template = { 388 AR_INTERFACE_DOWN, 389 sizeof (arc_t), /* Name offset */ 390 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 391 }; 392 393 static arc_t ip_aron_template = { 394 AR_INTERFACE_ON, 395 sizeof (arc_t), /* Name offset */ 396 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 397 }; 398 399 static arc_t ip_aroff_template = { 400 AR_INTERFACE_OFF, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arma_t ip_arma_multi_template = { 406 AR_MAPPING_ADD, 407 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 408 /* Name offset */ 409 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 410 IP_ARP_PROTO_TYPE, 411 sizeof (arma_t), /* proto_addr_offset */ 412 IP_ADDR_LEN, /* proto_addr_length */ 413 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 414 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 415 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 416 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 417 IP_MAX_HW_LEN, /* hw_addr_length */ 418 0, /* hw_mapping_start */ 419 }; 420 421 static ipft_t ip_ioctl_ftbl[] = { 422 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 423 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 424 IPFT_F_NO_REPLY }, 425 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 426 IPFT_F_NO_REPLY }, 427 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 428 { 0 } 429 }; 430 431 /* Simple ICMP IP Header Template */ 432 static ipha_t icmp_ipha = { 433 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 434 }; 435 436 /* Flag descriptors for ip_ipif_report */ 437 static nv_t ipif_nv_tbl[] = { 438 { IPIF_UP, "UP" }, 439 { IPIF_BROADCAST, "BROADCAST" }, 440 { ILLF_DEBUG, "DEBUG" }, 441 { PHYI_LOOPBACK, "LOOPBACK" }, 442 { IPIF_POINTOPOINT, "POINTOPOINT" }, 443 { ILLF_NOTRAILERS, "NOTRAILERS" }, 444 { PHYI_RUNNING, "RUNNING" }, 445 { ILLF_NOARP, "NOARP" }, 446 { PHYI_PROMISC, "PROMISC" }, 447 { PHYI_ALLMULTI, "ALLMULTI" }, 448 { PHYI_INTELLIGENT, "INTELLIGENT" }, 449 { ILLF_MULTICAST, "MULTICAST" }, 450 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 451 { IPIF_UNNUMBERED, "UNNUMBERED" }, 452 { IPIF_DHCPRUNNING, "DHCP" }, 453 { IPIF_PRIVATE, "PRIVATE" }, 454 { IPIF_NOXMIT, "NOXMIT" }, 455 { IPIF_NOLOCAL, "NOLOCAL" }, 456 { IPIF_DEPRECATED, "DEPRECATED" }, 457 { IPIF_PREFERRED, "PREFERRED" }, 458 { IPIF_TEMPORARY, "TEMPORARY" }, 459 { IPIF_ADDRCONF, "ADDRCONF" }, 460 { PHYI_VIRTUAL, "VIRTUAL" }, 461 { ILLF_ROUTER, "ROUTER" }, 462 { ILLF_NONUD, "NONUD" }, 463 { IPIF_ANYCAST, "ANYCAST" }, 464 { ILLF_NORTEXCH, "NORTEXCH" }, 465 { ILLF_IPV4, "IPV4" }, 466 { ILLF_IPV6, "IPV6" }, 467 { IPIF_NOFAILOVER, "NOFAILOVER" }, 468 { PHYI_FAILED, "FAILED" }, 469 { PHYI_STANDBY, "STANDBY" }, 470 { PHYI_INACTIVE, "INACTIVE" }, 471 { PHYI_OFFLINE, "OFFLINE" }, 472 { PHYI_IPMP, "IPMP" } 473 }; 474 475 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 476 477 static ip_m_t ip_m_tbl[] = { 478 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 479 ip_ether_v6intfid }, 480 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 481 ip_nodef_v6intfid }, 482 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 483 ip_nodef_v6intfid }, 484 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 485 ip_nodef_v6intfid }, 486 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 487 ip_ether_v6intfid }, 488 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 489 ip_ib_v6intfid }, 490 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 491 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 492 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid } 494 }; 495 496 static ill_t ill_null; /* Empty ILL for init. */ 497 char ipif_loopback_name[] = "lo0"; 498 static char *ipv4_forward_suffix = ":ip_forwarding"; 499 static char *ipv6_forward_suffix = ":ip6_forwarding"; 500 static sin6_t sin6_null; /* Zero address for quick clears */ 501 static sin_t sin_null; /* Zero address for quick clears */ 502 503 /* When set search for unused ipif_seqid */ 504 static ipif_t ipif_zero; 505 506 /* 507 * ppa arena is created after these many 508 * interfaces have been plumbed. 509 */ 510 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 511 512 /* 513 * Allocate per-interface mibs. 514 * Returns true if ok. False otherwise. 515 * ipsq may not yet be allocated (loopback case ). 516 */ 517 static boolean_t 518 ill_allocate_mibs(ill_t *ill) 519 { 520 /* Already allocated? */ 521 if (ill->ill_ip_mib != NULL) { 522 if (ill->ill_isv6) 523 ASSERT(ill->ill_icmp6_mib != NULL); 524 return (B_TRUE); 525 } 526 527 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 528 KM_NOSLEEP); 529 if (ill->ill_ip_mib == NULL) { 530 return (B_FALSE); 531 } 532 533 /* Setup static information */ 534 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 535 sizeof (mib2_ipIfStatsEntry_t)); 536 if (ill->ill_isv6) { 537 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 538 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 539 sizeof (mib2_ipv6AddrEntry_t)); 540 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 541 sizeof (mib2_ipv6RouteEntry_t)); 542 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 543 sizeof (mib2_ipv6NetToMediaEntry_t)); 544 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 545 sizeof (ipv6_member_t)); 546 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 547 sizeof (ipv6_grpsrc_t)); 548 } else { 549 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 550 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 551 sizeof (mib2_ipAddrEntry_t)); 552 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 553 sizeof (mib2_ipRouteEntry_t)); 554 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 555 sizeof (mib2_ipNetToMediaEntry_t)); 556 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 557 sizeof (ip_member_t)); 558 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 559 sizeof (ip_grpsrc_t)); 560 561 /* 562 * For a v4 ill, we are done at this point, because per ill 563 * icmp mibs are only used for v6. 564 */ 565 return (B_TRUE); 566 } 567 568 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 569 KM_NOSLEEP); 570 if (ill->ill_icmp6_mib == NULL) { 571 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 572 ill->ill_ip_mib = NULL; 573 return (B_FALSE); 574 } 575 /* static icmp info */ 576 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 577 sizeof (mib2_ipv6IfIcmpEntry_t); 578 /* 579 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 580 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 581 * -> ill_phyint_reinit 582 */ 583 return (B_TRUE); 584 } 585 586 /* 587 * Common code for preparation of ARP commands. Two points to remember: 588 * 1) The ill_name is tacked on at the end of the allocated space so 589 * the templates name_offset field must contain the total space 590 * to allocate less the name length. 591 * 592 * 2) The templates name_length field should contain the *template* 593 * length. We use it as a parameter to bcopy() and then write 594 * the real ill_name_length into the name_length field of the copy. 595 * (Always called as writer.) 596 */ 597 mblk_t * 598 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 599 { 600 arc_t *arc = (arc_t *)template; 601 char *cp; 602 int len; 603 mblk_t *mp; 604 uint_t name_length = ill->ill_name_length; 605 uint_t template_len = arc->arc_name_length; 606 607 len = arc->arc_name_offset + name_length; 608 mp = allocb(len, BPRI_HI); 609 if (mp == NULL) 610 return (NULL); 611 cp = (char *)mp->b_rptr; 612 mp->b_wptr = (uchar_t *)&cp[len]; 613 if (template_len) 614 bcopy(template, cp, template_len); 615 if (len > template_len) 616 bzero(&cp[template_len], len - template_len); 617 mp->b_datap->db_type = M_PROTO; 618 619 arc = (arc_t *)cp; 620 arc->arc_name_length = name_length; 621 cp = (char *)arc + arc->arc_name_offset; 622 bcopy(ill->ill_name, cp, name_length); 623 624 if (addr) { 625 area_t *area = (area_t *)mp->b_rptr; 626 627 cp = (char *)area + area->area_proto_addr_offset; 628 bcopy(addr, cp, area->area_proto_addr_length); 629 if (area->area_cmd == AR_ENTRY_ADD) { 630 cp = (char *)area; 631 len = area->area_proto_addr_length; 632 if (area->area_proto_mask_offset) 633 cp += area->area_proto_mask_offset; 634 else 635 cp += area->area_proto_addr_offset + len; 636 while (len-- > 0) 637 *cp++ = (char)~0; 638 } 639 } 640 return (mp); 641 } 642 643 mblk_t * 644 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 645 { 646 caddr_t addr; 647 mblk_t *mp; 648 area_t *area; 649 uchar_t *areap; 650 ill_t *ill = ipif->ipif_ill; 651 652 if (ill->ill_isv6) { 653 ASSERT(ill->ill_flags & ILLF_XRESOLV); 654 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 655 areap = (uchar_t *)&ip6_area_template; 656 } else { 657 addr = (caddr_t)&ipif->ipif_lcl_addr; 658 areap = (uchar_t *)&ip_area_template; 659 } 660 661 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 662 return (NULL); 663 664 /* 665 * IPMP requires that the hardware address be included in all 666 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 667 * If there are no active underlying ills in the group (and thus no 668 * hardware address, DAD will be deferred until an underlying ill 669 * becomes active. 670 */ 671 if (IS_IPMP(ill)) { 672 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 673 freemsg(mp); 674 return (NULL); 675 } 676 } else { 677 ill_refhold(ill); 678 } 679 680 area = (area_t *)mp->b_rptr; 681 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 682 area->area_flags |= optflags; 683 area->area_hw_addr_length = ill->ill_phys_addr_length; 684 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 685 area->area_hw_addr_length); 686 687 ill_refrele(ill); 688 return (mp); 689 } 690 691 mblk_t * 692 ipif_ared_alloc(ipif_t *ipif) 693 { 694 caddr_t addr; 695 uchar_t *aredp; 696 697 if (ipif->ipif_ill->ill_isv6) { 698 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 699 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 700 aredp = (uchar_t *)&ip6_ared_template; 701 } else { 702 addr = (caddr_t)&ipif->ipif_lcl_addr; 703 aredp = (uchar_t *)&ip_ared_template; 704 } 705 706 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 707 } 708 709 mblk_t * 710 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 711 { 712 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 713 (char *)&addr)); 714 } 715 716 mblk_t * 717 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 718 { 719 mblk_t *mp = ill_arp_alloc(ill, template, 0); 720 arie_t *arie; 721 722 if (mp != NULL) { 723 arie = (arie_t *)mp->b_rptr; 724 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 725 } 726 return (mp); 727 } 728 729 /* 730 * Completely vaporize a lower level tap and all associated interfaces. 731 * ill_delete is called only out of ip_close when the device control 732 * stream is being closed. 733 */ 734 void 735 ill_delete(ill_t *ill) 736 { 737 ipif_t *ipif; 738 ill_t *prev_ill; 739 ip_stack_t *ipst = ill->ill_ipst; 740 741 /* 742 * ill_delete may be forcibly entering the ipsq. The previous 743 * ioctl may not have completed and may need to be aborted. 744 * ipsq_flush takes care of it. If we don't need to enter the 745 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 746 * ill_delete_tail is sufficient. 747 */ 748 ipsq_flush(ill); 749 750 /* 751 * Nuke all interfaces. ipif_free will take down the interface, 752 * remove it from the list, and free the data structure. 753 * Walk down the ipif list and remove the logical interfaces 754 * first before removing the main ipif. We can't unplumb 755 * zeroth interface first in the case of IPv6 as reset_conn_ill 756 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 757 * POINTOPOINT. 758 * 759 * If ill_ipif was not properly initialized (i.e low on memory), 760 * then no interfaces to clean up. In this case just clean up the 761 * ill. 762 */ 763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 764 ipif_free(ipif); 765 766 /* 767 * Used only by ill_arp_on and ill_arp_off, which are writers. 768 * So nobody can be using this mp now. Free the mp allocated for 769 * honoring ILLF_NOARP 770 */ 771 freemsg(ill->ill_arp_on_mp); 772 ill->ill_arp_on_mp = NULL; 773 774 /* Clean up msgs on pending upcalls for mrouted */ 775 reset_mrt_ill(ill); 776 777 /* 778 * ipif_free -> reset_conn_ipif will remove all multicast 779 * references for IPv4. For IPv6, we need to do it here as 780 * it points only at ills. 781 */ 782 reset_conn_ill(ill); 783 784 /* 785 * Remove multicast references added as a result of calls to 786 * ip_join_allmulti(). 787 */ 788 ip_purge_allmulti(ill); 789 790 /* 791 * If the ill being deleted is under IPMP, boot it out of the illgrp. 792 */ 793 if (IS_UNDER_IPMP(ill)) 794 ipmp_ill_leave_illgrp(ill); 795 796 /* 797 * ill_down will arrange to blow off any IRE's dependent on this 798 * ILL, and shut down fragmentation reassembly. 799 */ 800 ill_down(ill); 801 802 /* Let SCTP know, so that it can remove this from its list. */ 803 sctp_update_ill(ill, SCTP_ILL_REMOVE); 804 805 /* 806 * If an address on this ILL is being used as a source address then 807 * clear out the pointers in other ILLs that point to this ILL. 808 */ 809 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 810 if (ill->ill_usesrc_grp_next != NULL) { 811 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 812 ill_disband_usesrc_group(ill); 813 } else { /* consumer of the usesrc ILL */ 814 prev_ill = ill_prev_usesrc(ill); 815 prev_ill->ill_usesrc_grp_next = 816 ill->ill_usesrc_grp_next; 817 } 818 } 819 rw_exit(&ipst->ips_ill_g_usesrc_lock); 820 } 821 822 static void 823 ipif_non_duplicate(ipif_t *ipif) 824 { 825 ill_t *ill = ipif->ipif_ill; 826 mutex_enter(&ill->ill_lock); 827 if (ipif->ipif_flags & IPIF_DUPLICATE) { 828 ipif->ipif_flags &= ~IPIF_DUPLICATE; 829 ASSERT(ill->ill_ipif_dup_count > 0); 830 ill->ill_ipif_dup_count--; 831 } 832 mutex_exit(&ill->ill_lock); 833 } 834 835 /* 836 * ill_delete_tail is called from ip_modclose after all references 837 * to the closing ill are gone. The wait is done in ip_modclose 838 */ 839 void 840 ill_delete_tail(ill_t *ill) 841 { 842 mblk_t **mpp; 843 ipif_t *ipif; 844 ip_stack_t *ipst = ill->ill_ipst; 845 846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 847 ipif_non_duplicate(ipif); 848 ipif_down_tail(ipif); 849 } 850 851 ASSERT(ill->ill_ipif_dup_count == 0 && 852 ill->ill_arp_down_mp == NULL && 853 ill->ill_arp_del_mapping_mp == NULL); 854 855 /* 856 * If polling capability is enabled (which signifies direct 857 * upcall into IP and driver has ill saved as a handle), 858 * we need to make sure that unbind has completed before we 859 * let the ill disappear and driver no longer has any reference 860 * to this ill. 861 */ 862 mutex_enter(&ill->ill_lock); 863 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 864 cv_wait(&ill->ill_cv, &ill->ill_lock); 865 mutex_exit(&ill->ill_lock); 866 ASSERT(!(ill->ill_capabilities & 867 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 868 869 if (ill->ill_net_type != IRE_LOOPBACK) 870 qprocsoff(ill->ill_rq); 871 872 /* 873 * We do an ipsq_flush once again now. New messages could have 874 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 875 * could also have landed up if an ioctl thread had looked up 876 * the ill before we set the ILL_CONDEMNED flag, but not yet 877 * enqueued the ioctl when we did the ipsq_flush last time. 878 */ 879 ipsq_flush(ill); 880 881 /* 882 * Free capabilities. 883 */ 884 if (ill->ill_ipsec_capab_ah != NULL) { 885 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 886 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 887 ill->ill_ipsec_capab_ah = NULL; 888 } 889 890 if (ill->ill_ipsec_capab_esp != NULL) { 891 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 892 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 893 ill->ill_ipsec_capab_esp = NULL; 894 } 895 896 if (ill->ill_mdt_capab != NULL) { 897 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 898 ill->ill_mdt_capab = NULL; 899 } 900 901 if (ill->ill_hcksum_capab != NULL) { 902 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 903 ill->ill_hcksum_capab = NULL; 904 } 905 906 if (ill->ill_zerocopy_capab != NULL) { 907 kmem_free(ill->ill_zerocopy_capab, 908 sizeof (ill_zerocopy_capab_t)); 909 ill->ill_zerocopy_capab = NULL; 910 } 911 912 if (ill->ill_lso_capab != NULL) { 913 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 914 ill->ill_lso_capab = NULL; 915 } 916 917 if (ill->ill_dld_capab != NULL) { 918 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 919 ill->ill_dld_capab = NULL; 920 } 921 922 while (ill->ill_ipif != NULL) 923 ipif_free_tail(ill->ill_ipif); 924 925 /* 926 * We have removed all references to ilm from conn and the ones joined 927 * within the kernel. 928 * 929 * We don't walk conns, mrts and ires because 930 * 931 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 932 * 2) ill_down ->ill_downi walks all the ires and cleans up 933 * ill references. 934 */ 935 ASSERT(ilm_walk_ill(ill) == 0); 936 937 /* 938 * If this ill is an IPMP meta-interface, blow away the illgrp. This 939 * is safe to do because the illgrp has already been unlinked from the 940 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 941 */ 942 if (IS_IPMP(ill)) { 943 ipmp_illgrp_destroy(ill->ill_grp); 944 ill->ill_grp = NULL; 945 } 946 947 /* 948 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 949 * could free the phyint. No more reference to the phyint after this 950 * point. 951 */ 952 (void) ill_glist_delete(ill); 953 954 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 955 if (ill->ill_ndd_name != NULL) 956 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 957 rw_exit(&ipst->ips_ip_g_nd_lock); 958 959 if (ill->ill_frag_ptr != NULL) { 960 uint_t count; 961 962 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 963 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 964 } 965 mi_free(ill->ill_frag_ptr); 966 ill->ill_frag_ptr = NULL; 967 ill->ill_frag_hash_tbl = NULL; 968 } 969 970 freemsg(ill->ill_nd_lla_mp); 971 /* Free all retained control messages. */ 972 mpp = &ill->ill_first_mp_to_free; 973 do { 974 while (mpp[0]) { 975 mblk_t *mp; 976 mblk_t *mp1; 977 978 mp = mpp[0]; 979 mpp[0] = mp->b_next; 980 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 981 mp1->b_next = NULL; 982 mp1->b_prev = NULL; 983 } 984 freemsg(mp); 985 } 986 } while (mpp++ != &ill->ill_last_mp_to_free); 987 988 ill_free_mib(ill); 989 990 #ifdef DEBUG 991 ill_trace_cleanup(ill); 992 #endif 993 994 /* Drop refcnt here */ 995 netstack_rele(ill->ill_ipst->ips_netstack); 996 ill->ill_ipst = NULL; 997 } 998 999 static void 1000 ill_free_mib(ill_t *ill) 1001 { 1002 ip_stack_t *ipst = ill->ill_ipst; 1003 1004 /* 1005 * MIB statistics must not be lost, so when an interface 1006 * goes away the counter values will be added to the global 1007 * MIBs. 1008 */ 1009 if (ill->ill_ip_mib != NULL) { 1010 if (ill->ill_isv6) { 1011 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 1012 ill->ill_ip_mib); 1013 } else { 1014 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 1015 ill->ill_ip_mib); 1016 } 1017 1018 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1019 ill->ill_ip_mib = NULL; 1020 } 1021 if (ill->ill_icmp6_mib != NULL) { 1022 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1023 ill->ill_icmp6_mib); 1024 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1025 ill->ill_icmp6_mib = NULL; 1026 } 1027 } 1028 1029 /* 1030 * Concatenate together a physical address and a sap. 1031 * 1032 * Sap_lengths are interpreted as follows: 1033 * sap_length == 0 ==> no sap 1034 * sap_length > 0 ==> sap is at the head of the dlpi address 1035 * sap_length < 0 ==> sap is at the tail of the dlpi address 1036 */ 1037 static void 1038 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1039 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1040 { 1041 uint16_t sap_addr = (uint16_t)sap_src; 1042 1043 if (sap_length == 0) { 1044 if (phys_src == NULL) 1045 bzero(dst, phys_length); 1046 else 1047 bcopy(phys_src, dst, phys_length); 1048 } else if (sap_length < 0) { 1049 if (phys_src == NULL) 1050 bzero(dst, phys_length); 1051 else 1052 bcopy(phys_src, dst, phys_length); 1053 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1054 } else { 1055 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1056 if (phys_src == NULL) 1057 bzero((char *)dst + sap_length, phys_length); 1058 else 1059 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1060 } 1061 } 1062 1063 /* 1064 * Generate a dl_unitdata_req mblk for the device and address given. 1065 * addr_length is the length of the physical portion of the address. 1066 * If addr is NULL include an all zero address of the specified length. 1067 * TRUE? In any case, addr_length is taken to be the entire length of the 1068 * dlpi address, including the absolute value of sap_length. 1069 */ 1070 mblk_t * 1071 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1072 t_scalar_t sap_length) 1073 { 1074 dl_unitdata_req_t *dlur; 1075 mblk_t *mp; 1076 t_scalar_t abs_sap_length; /* absolute value */ 1077 1078 abs_sap_length = ABS(sap_length); 1079 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1080 DL_UNITDATA_REQ); 1081 if (mp == NULL) 1082 return (NULL); 1083 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1084 /* HACK: accomodate incompatible DLPI drivers */ 1085 if (addr_length == 8) 1086 addr_length = 6; 1087 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1088 dlur->dl_dest_addr_offset = sizeof (*dlur); 1089 dlur->dl_priority.dl_min = 0; 1090 dlur->dl_priority.dl_max = 0; 1091 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1092 (uchar_t *)&dlur[1]); 1093 return (mp); 1094 } 1095 1096 /* 1097 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1098 * Return an error if we already have 1 or more ioctls in progress. 1099 * This is used only for non-exclusive ioctls. Currently this is used 1100 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1101 * and thus need to use ipsq_pending_mp_add. 1102 */ 1103 boolean_t 1104 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1105 { 1106 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1107 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1108 /* 1109 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1110 */ 1111 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1112 (add_mp->b_datap->db_type == M_IOCTL)); 1113 1114 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1115 /* 1116 * Return error if the conn has started closing. The conn 1117 * could have finished cleaning up the pending mp list, 1118 * If so we should not add another mp to the list negating 1119 * the cleanup. 1120 */ 1121 if (connp->conn_state_flags & CONN_CLOSING) 1122 return (B_FALSE); 1123 /* 1124 * Add the pending mp to the head of the list, chained by b_next. 1125 * Note down the conn on which the ioctl request came, in b_prev. 1126 * This will be used to later get the conn, when we get a response 1127 * on the ill queue, from some other module (typically arp) 1128 */ 1129 add_mp->b_next = (void *)ill->ill_pending_mp; 1130 add_mp->b_queue = CONNP_TO_WQ(connp); 1131 ill->ill_pending_mp = add_mp; 1132 if (connp != NULL) 1133 connp->conn_oper_pending_ill = ill; 1134 return (B_TRUE); 1135 } 1136 1137 /* 1138 * Retrieve the ill_pending_mp and return it. We have to walk the list 1139 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1140 */ 1141 mblk_t * 1142 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1143 { 1144 mblk_t *prev = NULL; 1145 mblk_t *curr = NULL; 1146 uint_t id; 1147 conn_t *connp; 1148 1149 /* 1150 * When the conn closes, conn_ioctl_cleanup needs to clean 1151 * up the pending mp, but it does not know the ioc_id and 1152 * passes in a zero for it. 1153 */ 1154 mutex_enter(&ill->ill_lock); 1155 if (ioc_id != 0) 1156 *connpp = NULL; 1157 1158 /* Search the list for the appropriate ioctl based on ioc_id */ 1159 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1160 prev = curr, curr = curr->b_next) { 1161 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1162 connp = Q_TO_CONN(curr->b_queue); 1163 /* Match based on the ioc_id or based on the conn */ 1164 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1165 break; 1166 } 1167 1168 if (curr != NULL) { 1169 /* Unlink the mblk from the pending mp list */ 1170 if (prev != NULL) { 1171 prev->b_next = curr->b_next; 1172 } else { 1173 ASSERT(ill->ill_pending_mp == curr); 1174 ill->ill_pending_mp = curr->b_next; 1175 } 1176 1177 /* 1178 * conn refcnt must have been bumped up at the start of 1179 * the ioctl. So we can safely access the conn. 1180 */ 1181 ASSERT(CONN_Q(curr->b_queue)); 1182 *connpp = Q_TO_CONN(curr->b_queue); 1183 curr->b_next = NULL; 1184 curr->b_queue = NULL; 1185 } 1186 1187 mutex_exit(&ill->ill_lock); 1188 1189 return (curr); 1190 } 1191 1192 /* 1193 * Add the pending mp to the list. There can be only 1 pending mp 1194 * in the list. Any exclusive ioctl that needs to wait for a response 1195 * from another module or driver needs to use this function to set 1196 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1197 * the other module/driver. This is also used while waiting for the 1198 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1199 */ 1200 boolean_t 1201 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1202 int waitfor) 1203 { 1204 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1205 1206 ASSERT(IAM_WRITER_IPIF(ipif)); 1207 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1208 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1209 ASSERT(ipx->ipx_pending_mp == NULL); 1210 /* 1211 * The caller may be using a different ipif than the one passed into 1212 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1213 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1214 * that `ipx_current_ipif == ipif'. 1215 */ 1216 ASSERT(ipx->ipx_current_ipif != NULL); 1217 1218 /* 1219 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1220 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1221 */ 1222 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1223 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1224 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1225 1226 if (connp != NULL) { 1227 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1228 /* 1229 * Return error if the conn has started closing. The conn 1230 * could have finished cleaning up the pending mp list, 1231 * If so we should not add another mp to the list negating 1232 * the cleanup. 1233 */ 1234 if (connp->conn_state_flags & CONN_CLOSING) 1235 return (B_FALSE); 1236 } 1237 mutex_enter(&ipx->ipx_lock); 1238 ipx->ipx_pending_ipif = ipif; 1239 /* 1240 * Note down the queue in b_queue. This will be returned by 1241 * ipsq_pending_mp_get. Caller will then use these values to restart 1242 * the processing 1243 */ 1244 add_mp->b_next = NULL; 1245 add_mp->b_queue = q; 1246 ipx->ipx_pending_mp = add_mp; 1247 ipx->ipx_waitfor = waitfor; 1248 mutex_exit(&ipx->ipx_lock); 1249 1250 if (connp != NULL) 1251 connp->conn_oper_pending_ill = ipif->ipif_ill; 1252 1253 return (B_TRUE); 1254 } 1255 1256 /* 1257 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1258 * queued in the list. 1259 */ 1260 mblk_t * 1261 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1262 { 1263 mblk_t *curr = NULL; 1264 ipxop_t *ipx = ipsq->ipsq_xop; 1265 1266 *connpp = NULL; 1267 mutex_enter(&ipx->ipx_lock); 1268 if (ipx->ipx_pending_mp == NULL) { 1269 mutex_exit(&ipx->ipx_lock); 1270 return (NULL); 1271 } 1272 1273 /* There can be only 1 such excl message */ 1274 curr = ipx->ipx_pending_mp; 1275 ASSERT(curr->b_next == NULL); 1276 ipx->ipx_pending_ipif = NULL; 1277 ipx->ipx_pending_mp = NULL; 1278 ipx->ipx_waitfor = 0; 1279 mutex_exit(&ipx->ipx_lock); 1280 1281 if (CONN_Q(curr->b_queue)) { 1282 /* 1283 * This mp did a refhold on the conn, at the start of the ioctl. 1284 * So we can safely return a pointer to the conn to the caller. 1285 */ 1286 *connpp = Q_TO_CONN(curr->b_queue); 1287 } else { 1288 *connpp = NULL; 1289 } 1290 curr->b_next = NULL; 1291 curr->b_prev = NULL; 1292 return (curr); 1293 } 1294 1295 /* 1296 * Cleanup the ioctl mp queued in ipx_pending_mp 1297 * - Called in the ill_delete path 1298 * - Called in the M_ERROR or M_HANGUP path on the ill. 1299 * - Called in the conn close path. 1300 */ 1301 boolean_t 1302 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1303 { 1304 mblk_t *mp; 1305 ipxop_t *ipx; 1306 queue_t *q; 1307 ipif_t *ipif; 1308 1309 ASSERT(IAM_WRITER_ILL(ill)); 1310 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1311 1312 /* 1313 * If connp is null, unconditionally clean up the ipx_pending_mp. 1314 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1315 * even if it is meant for another ill, since we have to enqueue 1316 * a new mp now in ipx_pending_mp to complete the ipif_down. 1317 * If connp is non-null we are called from the conn close path. 1318 */ 1319 mutex_enter(&ipx->ipx_lock); 1320 mp = ipx->ipx_pending_mp; 1321 if (mp == NULL || (connp != NULL && 1322 mp->b_queue != CONNP_TO_WQ(connp))) { 1323 mutex_exit(&ipx->ipx_lock); 1324 return (B_FALSE); 1325 } 1326 /* Now remove from the ipx_pending_mp */ 1327 ipx->ipx_pending_mp = NULL; 1328 q = mp->b_queue; 1329 mp->b_next = NULL; 1330 mp->b_prev = NULL; 1331 mp->b_queue = NULL; 1332 1333 ipif = ipx->ipx_pending_ipif; 1334 ipx->ipx_pending_ipif = NULL; 1335 ipx->ipx_waitfor = 0; 1336 ipx->ipx_current_ipif = NULL; 1337 ipx->ipx_current_ioctl = 0; 1338 ipx->ipx_current_done = B_TRUE; 1339 mutex_exit(&ipx->ipx_lock); 1340 1341 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1342 if (connp == NULL) { 1343 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1344 } else { 1345 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1346 mutex_enter(&ipif->ipif_ill->ill_lock); 1347 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1348 mutex_exit(&ipif->ipif_ill->ill_lock); 1349 } 1350 } else { 1351 /* 1352 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1353 * be just inet_freemsg. we have to restart it 1354 * otherwise the thread will be stuck. 1355 */ 1356 inet_freemsg(mp); 1357 } 1358 return (B_TRUE); 1359 } 1360 1361 /* 1362 * The ill is closing. Cleanup all the pending mps. Called exclusively 1363 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1364 * knows this ill, and hence nobody can add an mp to this list 1365 */ 1366 static void 1367 ill_pending_mp_cleanup(ill_t *ill) 1368 { 1369 mblk_t *mp; 1370 queue_t *q; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 1374 mutex_enter(&ill->ill_lock); 1375 /* 1376 * Every mp on the pending mp list originating from an ioctl 1377 * added 1 to the conn refcnt, at the start of the ioctl. 1378 * So bump it down now. See comments in ip_wput_nondata() 1379 */ 1380 while (ill->ill_pending_mp != NULL) { 1381 mp = ill->ill_pending_mp; 1382 ill->ill_pending_mp = mp->b_next; 1383 mutex_exit(&ill->ill_lock); 1384 1385 q = mp->b_queue; 1386 ASSERT(CONN_Q(q)); 1387 mp->b_next = NULL; 1388 mp->b_prev = NULL; 1389 mp->b_queue = NULL; 1390 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1391 mutex_enter(&ill->ill_lock); 1392 } 1393 ill->ill_pending_ipif = NULL; 1394 1395 mutex_exit(&ill->ill_lock); 1396 } 1397 1398 /* 1399 * Called in the conn close path and ill delete path 1400 */ 1401 static void 1402 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1403 { 1404 ipsq_t *ipsq; 1405 mblk_t *prev; 1406 mblk_t *curr; 1407 mblk_t *next; 1408 queue_t *q; 1409 mblk_t *tmp_list = NULL; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 if (connp != NULL) 1413 q = CONNP_TO_WQ(connp); 1414 else 1415 q = ill->ill_wq; 1416 1417 ipsq = ill->ill_phyint->phyint_ipsq; 1418 /* 1419 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1420 * In the case of ioctl from a conn, there can be only 1 mp 1421 * queued on the ipsq. If an ill is being unplumbed, only messages 1422 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1423 * ioctls meant for this ill form conn's are not flushed. They will 1424 * be processed during ipsq_exit and will not find the ill and will 1425 * return error. 1426 */ 1427 mutex_enter(&ipsq->ipsq_lock); 1428 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1429 curr = next) { 1430 next = curr->b_next; 1431 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1432 /* Unlink the mblk from the pending mp list */ 1433 if (prev != NULL) { 1434 prev->b_next = curr->b_next; 1435 } else { 1436 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1437 ipsq->ipsq_xopq_mphead = curr->b_next; 1438 } 1439 if (ipsq->ipsq_xopq_mptail == curr) 1440 ipsq->ipsq_xopq_mptail = prev; 1441 /* 1442 * Create a temporary list and release the ipsq lock 1443 * New elements are added to the head of the tmp_list 1444 */ 1445 curr->b_next = tmp_list; 1446 tmp_list = curr; 1447 } else { 1448 prev = curr; 1449 } 1450 } 1451 mutex_exit(&ipsq->ipsq_lock); 1452 1453 while (tmp_list != NULL) { 1454 curr = tmp_list; 1455 tmp_list = curr->b_next; 1456 curr->b_next = NULL; 1457 curr->b_prev = NULL; 1458 curr->b_queue = NULL; 1459 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1460 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1461 CONN_CLOSE : NO_COPYOUT, NULL); 1462 } else { 1463 /* 1464 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1465 * this can't be just inet_freemsg. we have to 1466 * restart it otherwise the thread will be stuck. 1467 */ 1468 inet_freemsg(curr); 1469 } 1470 } 1471 } 1472 1473 /* 1474 * This conn has started closing. Cleanup any pending ioctl from this conn. 1475 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1476 */ 1477 void 1478 conn_ioctl_cleanup(conn_t *connp) 1479 { 1480 mblk_t *curr; 1481 ipsq_t *ipsq; 1482 ill_t *ill; 1483 boolean_t refheld; 1484 1485 /* 1486 * Is any exclusive ioctl pending ? If so clean it up. If the 1487 * ioctl has not yet started, the mp is pending in the list headed by 1488 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1489 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1490 * is currently executing now the mp is not queued anywhere but 1491 * conn_oper_pending_ill is null. The conn close will wait 1492 * till the conn_ref drops to zero. 1493 */ 1494 mutex_enter(&connp->conn_lock); 1495 ill = connp->conn_oper_pending_ill; 1496 if (ill == NULL) { 1497 mutex_exit(&connp->conn_lock); 1498 return; 1499 } 1500 1501 curr = ill_pending_mp_get(ill, &connp, 0); 1502 if (curr != NULL) { 1503 mutex_exit(&connp->conn_lock); 1504 CONN_DEC_REF(connp); 1505 inet_freemsg(curr); 1506 return; 1507 } 1508 /* 1509 * We may not be able to refhold the ill if the ill/ipif 1510 * is changing. But we need to make sure that the ill will 1511 * not vanish. So we just bump up the ill_waiter count. 1512 */ 1513 refheld = ill_waiter_inc(ill); 1514 mutex_exit(&connp->conn_lock); 1515 if (refheld) { 1516 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1517 ill_waiter_dcr(ill); 1518 /* 1519 * Check whether this ioctl has started and is 1520 * pending. If it is not found there then check 1521 * whether this ioctl has not even started and is in 1522 * the ipsq_xopq list. 1523 */ 1524 if (!ipsq_pending_mp_cleanup(ill, connp)) 1525 ipsq_xopq_mp_cleanup(ill, connp); 1526 ipsq = ill->ill_phyint->phyint_ipsq; 1527 ipsq_exit(ipsq); 1528 return; 1529 } 1530 } 1531 1532 /* 1533 * The ill is also closing and we could not bump up the 1534 * ill_waiter_count or we could not enter the ipsq. Leave 1535 * the cleanup to ill_delete 1536 */ 1537 mutex_enter(&connp->conn_lock); 1538 while (connp->conn_oper_pending_ill != NULL) 1539 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1540 mutex_exit(&connp->conn_lock); 1541 if (refheld) 1542 ill_waiter_dcr(ill); 1543 } 1544 1545 /* 1546 * ipcl_walk function for cleaning up conn_*_ill fields. 1547 */ 1548 static void 1549 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1550 { 1551 ill_t *ill = (ill_t *)arg; 1552 ire_t *ire; 1553 1554 mutex_enter(&connp->conn_lock); 1555 if (connp->conn_multicast_ill == ill) { 1556 /* Revert to late binding */ 1557 connp->conn_multicast_ill = NULL; 1558 } 1559 if (connp->conn_incoming_ill == ill) 1560 connp->conn_incoming_ill = NULL; 1561 if (connp->conn_outgoing_ill == ill) 1562 connp->conn_outgoing_ill = NULL; 1563 if (connp->conn_dhcpinit_ill == ill) { 1564 connp->conn_dhcpinit_ill = NULL; 1565 ASSERT(ill->ill_dhcpinit != 0); 1566 atomic_dec_32(&ill->ill_dhcpinit); 1567 } 1568 if (connp->conn_ire_cache != NULL) { 1569 ire = connp->conn_ire_cache; 1570 /* 1571 * Source address selection makes it possible for IRE_CACHE 1572 * entries to be created with ire_stq coming from interface X 1573 * and ipif coming from interface Y. Thus whenever interface 1574 * X goes down, remove all references to it by checking both 1575 * on ire_ipif and ire_stq. 1576 */ 1577 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1578 (ire->ire_type == IRE_CACHE && 1579 ire->ire_stq == ill->ill_wq)) { 1580 connp->conn_ire_cache = NULL; 1581 mutex_exit(&connp->conn_lock); 1582 ire_refrele_notr(ire); 1583 return; 1584 } 1585 } 1586 mutex_exit(&connp->conn_lock); 1587 } 1588 1589 /* ARGSUSED */ 1590 void 1591 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1592 { 1593 ill_t *ill = q->q_ptr; 1594 ipif_t *ipif; 1595 1596 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1597 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1598 ipif_non_duplicate(ipif); 1599 ipif_down_tail(ipif); 1600 } 1601 freemsg(mp); 1602 ipsq_current_finish(ipsq); 1603 } 1604 1605 /* 1606 * ill_down_start is called when we want to down this ill and bring it up again 1607 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1608 * all interfaces, but don't tear down any plumbing. 1609 */ 1610 boolean_t 1611 ill_down_start(queue_t *q, mblk_t *mp) 1612 { 1613 ill_t *ill = q->q_ptr; 1614 ipif_t *ipif; 1615 1616 ASSERT(IAM_WRITER_ILL(ill)); 1617 1618 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1619 (void) ipif_down(ipif, NULL, NULL); 1620 1621 ill_down(ill); 1622 1623 (void) ipsq_pending_mp_cleanup(ill, NULL); 1624 1625 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1626 1627 /* 1628 * Atomically test and add the pending mp if references are active. 1629 */ 1630 mutex_enter(&ill->ill_lock); 1631 if (!ill_is_quiescent(ill)) { 1632 /* call cannot fail since `conn_t *' argument is NULL */ 1633 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1634 mp, ILL_DOWN); 1635 mutex_exit(&ill->ill_lock); 1636 return (B_FALSE); 1637 } 1638 mutex_exit(&ill->ill_lock); 1639 return (B_TRUE); 1640 } 1641 1642 static void 1643 ill_down(ill_t *ill) 1644 { 1645 ip_stack_t *ipst = ill->ill_ipst; 1646 1647 /* Blow off any IREs dependent on this ILL. */ 1648 ire_walk(ill_downi, ill, ipst); 1649 1650 /* Remove any conn_*_ill depending on this ill */ 1651 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1652 } 1653 1654 /* 1655 * ire_walk routine used to delete every IRE that depends on queues 1656 * associated with 'ill'. (Always called as writer.) 1657 */ 1658 static void 1659 ill_downi(ire_t *ire, char *ill_arg) 1660 { 1661 ill_t *ill = (ill_t *)ill_arg; 1662 1663 /* 1664 * Source address selection makes it possible for IRE_CACHE 1665 * entries to be created with ire_stq coming from interface X 1666 * and ipif coming from interface Y. Thus whenever interface 1667 * X goes down, remove all references to it by checking both 1668 * on ire_ipif and ire_stq. 1669 */ 1670 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1671 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1672 ire_delete(ire); 1673 } 1674 } 1675 1676 /* 1677 * Remove ire/nce from the fastpath list. 1678 */ 1679 void 1680 ill_fastpath_nack(ill_t *ill) 1681 { 1682 nce_fastpath_list_dispatch(ill, NULL, NULL); 1683 } 1684 1685 /* Consume an M_IOCACK of the fastpath probe. */ 1686 void 1687 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1688 { 1689 mblk_t *mp1 = mp; 1690 1691 /* 1692 * If this was the first attempt turn on the fastpath probing. 1693 */ 1694 mutex_enter(&ill->ill_lock); 1695 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1696 ill->ill_dlpi_fastpath_state = IDS_OK; 1697 mutex_exit(&ill->ill_lock); 1698 1699 /* Free the M_IOCACK mblk, hold on to the data */ 1700 mp = mp->b_cont; 1701 freeb(mp1); 1702 if (mp == NULL) 1703 return; 1704 if (mp->b_cont != NULL) { 1705 /* 1706 * Update all IRE's or NCE's that are waiting for 1707 * fastpath update. 1708 */ 1709 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1710 mp1 = mp->b_cont; 1711 freeb(mp); 1712 mp = mp1; 1713 } else { 1714 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1715 } 1716 1717 freeb(mp); 1718 } 1719 1720 /* 1721 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1722 * The data portion of the request is a dl_unitdata_req_t template for 1723 * what we would send downstream in the absence of a fastpath confirmation. 1724 */ 1725 int 1726 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1727 { 1728 struct iocblk *ioc; 1729 mblk_t *mp; 1730 1731 if (dlur_mp == NULL) 1732 return (EINVAL); 1733 1734 mutex_enter(&ill->ill_lock); 1735 switch (ill->ill_dlpi_fastpath_state) { 1736 case IDS_FAILED: 1737 /* 1738 * Driver NAKed the first fastpath ioctl - assume it doesn't 1739 * support it. 1740 */ 1741 mutex_exit(&ill->ill_lock); 1742 return (ENOTSUP); 1743 case IDS_UNKNOWN: 1744 /* This is the first probe */ 1745 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1746 break; 1747 default: 1748 break; 1749 } 1750 mutex_exit(&ill->ill_lock); 1751 1752 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1753 return (EAGAIN); 1754 1755 mp->b_cont = copyb(dlur_mp); 1756 if (mp->b_cont == NULL) { 1757 freeb(mp); 1758 return (EAGAIN); 1759 } 1760 1761 ioc = (struct iocblk *)mp->b_rptr; 1762 ioc->ioc_count = msgdsize(mp->b_cont); 1763 1764 putnext(ill->ill_wq, mp); 1765 return (0); 1766 } 1767 1768 void 1769 ill_capability_probe(ill_t *ill) 1770 { 1771 mblk_t *mp; 1772 1773 ASSERT(IAM_WRITER_ILL(ill)); 1774 1775 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1776 ill->ill_dlpi_capab_state != IDCS_FAILED) 1777 return; 1778 1779 /* 1780 * We are starting a new cycle of capability negotiation. 1781 * Free up the capab reset messages of any previous incarnation. 1782 * We will do a fresh allocation when we get the response to our probe 1783 */ 1784 if (ill->ill_capab_reset_mp != NULL) { 1785 freemsg(ill->ill_capab_reset_mp); 1786 ill->ill_capab_reset_mp = NULL; 1787 } 1788 1789 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1790 1791 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1792 if (mp == NULL) 1793 return; 1794 1795 ill_capability_send(ill, mp); 1796 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1797 } 1798 1799 void 1800 ill_capability_reset(ill_t *ill, boolean_t reneg) 1801 { 1802 ASSERT(IAM_WRITER_ILL(ill)); 1803 1804 if (ill->ill_dlpi_capab_state != IDCS_OK) 1805 return; 1806 1807 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1808 1809 ill_capability_send(ill, ill->ill_capab_reset_mp); 1810 ill->ill_capab_reset_mp = NULL; 1811 /* 1812 * We turn off all capabilities except those pertaining to 1813 * direct function call capabilities viz. ILL_CAPAB_DLD* 1814 * which will be turned off by the corresponding reset functions. 1815 */ 1816 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1817 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1818 } 1819 1820 static void 1821 ill_capability_reset_alloc(ill_t *ill) 1822 { 1823 mblk_t *mp; 1824 size_t size = 0; 1825 int err; 1826 dl_capability_req_t *capb; 1827 1828 ASSERT(IAM_WRITER_ILL(ill)); 1829 ASSERT(ill->ill_capab_reset_mp == NULL); 1830 1831 if (ILL_MDT_CAPABLE(ill)) 1832 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1833 1834 if (ILL_HCKSUM_CAPABLE(ill)) { 1835 size += sizeof (dl_capability_sub_t) + 1836 sizeof (dl_capab_hcksum_t); 1837 } 1838 1839 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1840 size += sizeof (dl_capability_sub_t) + 1841 sizeof (dl_capab_zerocopy_t); 1842 } 1843 1844 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1845 size += sizeof (dl_capability_sub_t); 1846 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1847 NULL, NULL); 1848 } 1849 1850 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1851 size += sizeof (dl_capability_sub_t) + 1852 sizeof (dl_capab_dld_t); 1853 } 1854 1855 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1856 STR_NOSIG, &err); 1857 1858 mp->b_datap->db_type = M_PROTO; 1859 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1860 1861 capb = (dl_capability_req_t *)mp->b_rptr; 1862 capb->dl_primitive = DL_CAPABILITY_REQ; 1863 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1864 capb->dl_sub_length = size; 1865 1866 mp->b_wptr += sizeof (dl_capability_req_t); 1867 1868 /* 1869 * Each handler fills in the corresponding dl_capability_sub_t 1870 * inside the mblk, 1871 */ 1872 ill_capability_mdt_reset_fill(ill, mp); 1873 ill_capability_hcksum_reset_fill(ill, mp); 1874 ill_capability_zerocopy_reset_fill(ill, mp); 1875 ill_capability_ipsec_reset_fill(ill, mp); 1876 ill_capability_dld_reset_fill(ill, mp); 1877 1878 ill->ill_capab_reset_mp = mp; 1879 } 1880 1881 static void 1882 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1883 { 1884 dl_capab_id_t *id_ic; 1885 uint_t sub_dl_cap = outers->dl_cap; 1886 dl_capability_sub_t *inners; 1887 uint8_t *capend; 1888 1889 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1890 1891 /* 1892 * Note: range checks here are not absolutely sufficient to 1893 * make us robust against malformed messages sent by drivers; 1894 * this is in keeping with the rest of IP's dlpi handling. 1895 * (Remember, it's coming from something else in the kernel 1896 * address space) 1897 */ 1898 1899 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1900 if (capend > mp->b_wptr) { 1901 cmn_err(CE_WARN, "ill_capability_id_ack: " 1902 "malformed sub-capability too long for mblk"); 1903 return; 1904 } 1905 1906 id_ic = (dl_capab_id_t *)(outers + 1); 1907 1908 if (outers->dl_length < sizeof (*id_ic) || 1909 (inners = &id_ic->id_subcap, 1910 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1911 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1912 "encapsulated capab type %d too long for mblk", 1913 inners->dl_cap); 1914 return; 1915 } 1916 1917 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1918 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1919 "isn't as expected; pass-thru module(s) detected, " 1920 "discarding capability\n", inners->dl_cap)); 1921 return; 1922 } 1923 1924 /* Process the encapsulated sub-capability */ 1925 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1926 } 1927 1928 /* 1929 * Process Multidata Transmit capability negotiation ack received from a 1930 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1931 * DL_CAPABILITY_ACK message. 1932 */ 1933 static void 1934 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1935 { 1936 mblk_t *nmp = NULL; 1937 dl_capability_req_t *oc; 1938 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1939 ill_mdt_capab_t **ill_mdt_capab; 1940 uint_t sub_dl_cap = isub->dl_cap; 1941 uint8_t *capend; 1942 1943 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1944 1945 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1946 1947 /* 1948 * Note: range checks here are not absolutely sufficient to 1949 * make us robust against malformed messages sent by drivers; 1950 * this is in keeping with the rest of IP's dlpi handling. 1951 * (Remember, it's coming from something else in the kernel 1952 * address space) 1953 */ 1954 1955 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1956 if (capend > mp->b_wptr) { 1957 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1958 "malformed sub-capability too long for mblk"); 1959 return; 1960 } 1961 1962 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1963 1964 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1965 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1966 "unsupported MDT sub-capability (version %d, expected %d)", 1967 mdt_ic->mdt_version, MDT_VERSION_2); 1968 return; 1969 } 1970 1971 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1972 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1973 "capability isn't as expected; pass-thru module(s) " 1974 "detected, discarding capability\n")); 1975 return; 1976 } 1977 1978 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1979 1980 if (*ill_mdt_capab == NULL) { 1981 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1982 KM_NOSLEEP); 1983 if (*ill_mdt_capab == NULL) { 1984 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1985 "could not enable MDT version %d " 1986 "for %s (ENOMEM)\n", MDT_VERSION_2, 1987 ill->ill_name); 1988 return; 1989 } 1990 } 1991 1992 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1993 "MDT version %d (%d bytes leading, %d bytes trailing " 1994 "header spaces, %d max pld bufs, %d span limit)\n", 1995 ill->ill_name, MDT_VERSION_2, 1996 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1997 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1998 1999 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2000 (*ill_mdt_capab)->ill_mdt_on = 1; 2001 /* 2002 * Round the following values to the nearest 32-bit; ULP 2003 * may further adjust them to accomodate for additional 2004 * protocol headers. We pass these values to ULP during 2005 * bind time. 2006 */ 2007 (*ill_mdt_capab)->ill_mdt_hdr_head = 2008 roundup(mdt_ic->mdt_hdr_head, 4); 2009 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2010 roundup(mdt_ic->mdt_hdr_tail, 4); 2011 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2012 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2013 2014 ill->ill_capabilities |= ILL_CAPAB_MDT; 2015 } else { 2016 uint_t size; 2017 uchar_t *rptr; 2018 2019 size = sizeof (dl_capability_req_t) + 2020 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2021 2022 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2023 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2024 "could not enable MDT for %s (ENOMEM)\n", 2025 ill->ill_name); 2026 return; 2027 } 2028 2029 rptr = nmp->b_rptr; 2030 /* initialize dl_capability_req_t */ 2031 oc = (dl_capability_req_t *)nmp->b_rptr; 2032 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2033 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2034 sizeof (dl_capab_mdt_t); 2035 nmp->b_rptr += sizeof (dl_capability_req_t); 2036 2037 /* initialize dl_capability_sub_t */ 2038 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2039 nmp->b_rptr += sizeof (*isub); 2040 2041 /* initialize dl_capab_mdt_t */ 2042 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2043 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2044 2045 nmp->b_rptr = rptr; 2046 2047 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2048 "to enable MDT version %d\n", ill->ill_name, 2049 MDT_VERSION_2)); 2050 2051 /* set ENABLE flag */ 2052 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2053 2054 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2055 ill_capability_send(ill, nmp); 2056 } 2057 } 2058 2059 static void 2060 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2061 { 2062 dl_capab_mdt_t *mdt_subcap; 2063 dl_capability_sub_t *dl_subcap; 2064 2065 if (!ILL_MDT_CAPABLE(ill)) 2066 return; 2067 2068 ASSERT(ill->ill_mdt_capab != NULL); 2069 2070 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2071 dl_subcap->dl_cap = DL_CAPAB_MDT; 2072 dl_subcap->dl_length = sizeof (*mdt_subcap); 2073 2074 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2075 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2076 mdt_subcap->mdt_flags = 0; 2077 mdt_subcap->mdt_hdr_head = 0; 2078 mdt_subcap->mdt_hdr_tail = 0; 2079 2080 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2081 } 2082 2083 static void 2084 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2085 { 2086 dl_capability_sub_t *dl_subcap; 2087 2088 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2089 return; 2090 2091 /* 2092 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2093 * initialized below since it is not used by DLD. 2094 */ 2095 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2096 dl_subcap->dl_cap = DL_CAPAB_DLD; 2097 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2098 2099 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2100 } 2101 2102 /* 2103 * Send a DL_NOTIFY_REQ to the specified ill to enable 2104 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2105 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2106 * acceleration. 2107 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2108 */ 2109 static boolean_t 2110 ill_enable_promisc_notify(ill_t *ill) 2111 { 2112 mblk_t *mp; 2113 dl_notify_req_t *req; 2114 2115 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2116 2117 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2118 if (mp == NULL) 2119 return (B_FALSE); 2120 2121 req = (dl_notify_req_t *)mp->b_rptr; 2122 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2123 DL_NOTE_PROMISC_OFF_PHYS; 2124 2125 ill_dlpi_send(ill, mp); 2126 2127 return (B_TRUE); 2128 } 2129 2130 /* 2131 * Allocate an IPsec capability request which will be filled by our 2132 * caller to turn on support for one or more algorithms. 2133 */ 2134 static mblk_t * 2135 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2136 { 2137 mblk_t *nmp; 2138 dl_capability_req_t *ocap; 2139 dl_capab_ipsec_t *ocip; 2140 dl_capab_ipsec_t *icip; 2141 uint8_t *ptr; 2142 icip = (dl_capab_ipsec_t *)(isub + 1); 2143 2144 /* 2145 * The first time around, we send a DL_NOTIFY_REQ to enable 2146 * PROMISC_ON/OFF notification from the provider. We need to 2147 * do this before enabling the algorithms to avoid leakage of 2148 * cleartext packets. 2149 */ 2150 2151 if (!ill_enable_promisc_notify(ill)) 2152 return (NULL); 2153 2154 /* 2155 * Allocate new mblk which will contain a new capability 2156 * request to enable the capabilities. 2157 */ 2158 2159 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2160 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2161 if (nmp == NULL) 2162 return (NULL); 2163 2164 ptr = nmp->b_rptr; 2165 2166 /* initialize dl_capability_req_t */ 2167 ocap = (dl_capability_req_t *)ptr; 2168 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2169 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2170 ptr += sizeof (dl_capability_req_t); 2171 2172 /* initialize dl_capability_sub_t */ 2173 bcopy(isub, ptr, sizeof (*isub)); 2174 ptr += sizeof (*isub); 2175 2176 /* initialize dl_capab_ipsec_t */ 2177 ocip = (dl_capab_ipsec_t *)ptr; 2178 bcopy(icip, ocip, sizeof (*icip)); 2179 2180 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2181 return (nmp); 2182 } 2183 2184 /* 2185 * Process an IPsec capability negotiation ack received from a DLS Provider. 2186 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2187 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2188 */ 2189 static void 2190 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2191 { 2192 dl_capab_ipsec_t *icip; 2193 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2194 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2195 uint_t cipher, nciphers; 2196 mblk_t *nmp; 2197 uint_t alg_len; 2198 boolean_t need_sadb_dump; 2199 uint_t sub_dl_cap = isub->dl_cap; 2200 ill_ipsec_capab_t **ill_capab; 2201 uint64_t ill_capab_flag; 2202 uint8_t *capend, *ciphend; 2203 boolean_t sadb_resync; 2204 2205 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2206 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2207 2208 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2209 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2210 ill_capab_flag = ILL_CAPAB_AH; 2211 } else { 2212 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2213 ill_capab_flag = ILL_CAPAB_ESP; 2214 } 2215 2216 /* 2217 * If the ill capability structure exists, then this incoming 2218 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2219 * If this is so, then we'd need to resynchronize the SADB 2220 * after re-enabling the offloaded ciphers. 2221 */ 2222 sadb_resync = (*ill_capab != NULL); 2223 2224 /* 2225 * Note: range checks here are not absolutely sufficient to 2226 * make us robust against malformed messages sent by drivers; 2227 * this is in keeping with the rest of IP's dlpi handling. 2228 * (Remember, it's coming from something else in the kernel 2229 * address space) 2230 */ 2231 2232 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2233 if (capend > mp->b_wptr) { 2234 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2235 "malformed sub-capability too long for mblk"); 2236 return; 2237 } 2238 2239 /* 2240 * There are two types of acks we process here: 2241 * 1. acks in reply to a (first form) generic capability req 2242 * (no ENABLE flag set) 2243 * 2. acks in reply to a ENABLE capability req. 2244 * (ENABLE flag set) 2245 * 2246 * We process the subcapability passed as argument as follows: 2247 * 1 do initializations 2248 * 1.1 initialize nmp = NULL 2249 * 1.2 set need_sadb_dump to B_FALSE 2250 * 2 for each cipher in subcapability: 2251 * 2.1 if ENABLE flag is set: 2252 * 2.1.1 update per-ill ipsec capabilities info 2253 * 2.1.2 set need_sadb_dump to B_TRUE 2254 * 2.2 if ENABLE flag is not set: 2255 * 2.2.1 if nmp is NULL: 2256 * 2.2.1.1 allocate and initialize nmp 2257 * 2.2.1.2 init current pos in nmp 2258 * 2.2.2 copy current cipher to current pos in nmp 2259 * 2.2.3 set ENABLE flag in nmp 2260 * 2.2.4 update current pos 2261 * 3 if nmp is not equal to NULL, send enable request 2262 * 3.1 send capability request 2263 * 4 if need_sadb_dump is B_TRUE 2264 * 4.1 enable promiscuous on/off notifications 2265 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2266 * AH or ESP SA's to interface. 2267 */ 2268 2269 nmp = NULL; 2270 oalg = NULL; 2271 need_sadb_dump = B_FALSE; 2272 icip = (dl_capab_ipsec_t *)(isub + 1); 2273 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2274 2275 nciphers = icip->cip_nciphers; 2276 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2277 2278 if (ciphend > capend) { 2279 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2280 "too many ciphers for sub-capability len"); 2281 return; 2282 } 2283 2284 for (cipher = 0; cipher < nciphers; cipher++) { 2285 alg_len = sizeof (dl_capab_ipsec_alg_t); 2286 2287 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2288 /* 2289 * TBD: when we provide a way to disable capabilities 2290 * from above, need to manage the request-pending state 2291 * and fail if we were not expecting this ACK. 2292 */ 2293 IPSECHW_DEBUG(IPSECHW_CAPAB, 2294 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2295 2296 /* 2297 * Update IPsec capabilities for this ill 2298 */ 2299 2300 if (*ill_capab == NULL) { 2301 IPSECHW_DEBUG(IPSECHW_CAPAB, 2302 ("ill_capability_ipsec_ack: " 2303 "allocating ipsec_capab for ill\n")); 2304 *ill_capab = ill_ipsec_capab_alloc(); 2305 2306 if (*ill_capab == NULL) { 2307 cmn_err(CE_WARN, 2308 "ill_capability_ipsec_ack: " 2309 "could not enable IPsec Hardware " 2310 "acceleration for %s (ENOMEM)\n", 2311 ill->ill_name); 2312 return; 2313 } 2314 } 2315 2316 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2317 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2318 2319 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2320 cmn_err(CE_WARN, 2321 "ill_capability_ipsec_ack: " 2322 "malformed IPsec algorithm id %d", 2323 ialg->alg_prim); 2324 continue; 2325 } 2326 2327 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2328 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2329 ialg->alg_prim); 2330 } else { 2331 ipsec_capab_algparm_t *alp; 2332 2333 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2334 ialg->alg_prim); 2335 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2336 ialg->alg_prim)) { 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "no space for IPsec alg id %d", 2340 ialg->alg_prim); 2341 continue; 2342 } 2343 alp = &((*ill_capab)->encr_algparm[ 2344 ialg->alg_prim]); 2345 alp->minkeylen = ialg->alg_minbits; 2346 alp->maxkeylen = ialg->alg_maxbits; 2347 } 2348 ill->ill_capabilities |= ill_capab_flag; 2349 /* 2350 * indicate that a capability was enabled, which 2351 * will be used below to kick off a SADB dump 2352 * to the ill. 2353 */ 2354 need_sadb_dump = B_TRUE; 2355 } else { 2356 IPSECHW_DEBUG(IPSECHW_CAPAB, 2357 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2358 ialg->alg_prim)); 2359 2360 if (nmp == NULL) { 2361 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2362 if (nmp == NULL) { 2363 /* 2364 * Sending the PROMISC_ON/OFF 2365 * notification request failed. 2366 * We cannot enable the algorithms 2367 * since the Provider will not 2368 * notify IP of promiscous mode 2369 * changes, which could lead 2370 * to leakage of packets. 2371 */ 2372 cmn_err(CE_WARN, 2373 "ill_capability_ipsec_ack: " 2374 "could not enable IPsec Hardware " 2375 "acceleration for %s (ENOMEM)\n", 2376 ill->ill_name); 2377 return; 2378 } 2379 /* ptr to current output alg specifier */ 2380 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2381 } 2382 2383 /* 2384 * Copy current alg specifier, set ENABLE 2385 * flag, and advance to next output alg. 2386 * For now we enable all IPsec capabilities. 2387 */ 2388 ASSERT(oalg != NULL); 2389 bcopy(ialg, oalg, alg_len); 2390 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2391 nmp->b_wptr += alg_len; 2392 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2393 } 2394 2395 /* move to next input algorithm specifier */ 2396 ialg = (dl_capab_ipsec_alg_t *) 2397 ((char *)ialg + alg_len); 2398 } 2399 2400 if (nmp != NULL) 2401 /* 2402 * nmp points to a DL_CAPABILITY_REQ message to enable 2403 * IPsec hardware acceleration. 2404 */ 2405 ill_capability_send(ill, nmp); 2406 2407 if (need_sadb_dump) 2408 /* 2409 * An acknowledgement corresponding to a request to 2410 * enable acceleration was received, notify SADB. 2411 */ 2412 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2413 } 2414 2415 /* 2416 * Given an mblk with enough space in it, create sub-capability entries for 2417 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2418 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2419 * in preparation for the reset the DL_CAPABILITY_REQ message. 2420 */ 2421 static void 2422 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2423 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2424 { 2425 dl_capab_ipsec_t *oipsec; 2426 dl_capab_ipsec_alg_t *oalg; 2427 dl_capability_sub_t *dl_subcap; 2428 int i, k; 2429 2430 ASSERT(nciphers > 0); 2431 ASSERT(ill_cap != NULL); 2432 ASSERT(mp != NULL); 2433 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2434 2435 /* dl_capability_sub_t for "stype" */ 2436 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2437 dl_subcap->dl_cap = stype; 2438 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2439 mp->b_wptr += sizeof (dl_capability_sub_t); 2440 2441 /* dl_capab_ipsec_t for "stype" */ 2442 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2443 oipsec->cip_version = 1; 2444 oipsec->cip_nciphers = nciphers; 2445 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2446 2447 /* create entries for "stype" AUTH ciphers */ 2448 for (i = 0; i < ill_cap->algs_size; i++) { 2449 for (k = 0; k < BITSPERBYTE; k++) { 2450 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2451 continue; 2452 2453 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2454 bzero((void *)oalg, sizeof (*oalg)); 2455 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2456 oalg->alg_prim = k + (BITSPERBYTE * i); 2457 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2458 } 2459 } 2460 /* create entries for "stype" ENCR ciphers */ 2461 for (i = 0; i < ill_cap->algs_size; i++) { 2462 for (k = 0; k < BITSPERBYTE; k++) { 2463 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2464 continue; 2465 2466 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2467 bzero((void *)oalg, sizeof (*oalg)); 2468 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2469 oalg->alg_prim = k + (BITSPERBYTE * i); 2470 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2471 } 2472 } 2473 } 2474 2475 /* 2476 * Macro to count number of 1s in a byte (8-bit word). The total count is 2477 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2478 * POPC instruction, but our macro is more flexible for an arbitrary length 2479 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2480 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2481 * stays that way, we can reduce the number of iterations required. 2482 */ 2483 #define COUNT_1S(val, sum) { \ 2484 uint8_t x = val & 0xff; \ 2485 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2486 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2487 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2488 } 2489 2490 /* ARGSUSED */ 2491 static int 2492 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2493 int *esp_cntp, int *esp_lenp) 2494 { 2495 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2496 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2497 uint64_t ill_capabilities = ill->ill_capabilities; 2498 int ah_cnt = 0, esp_cnt = 0; 2499 int ah_len = 0, esp_len = 0; 2500 int i, size = 0; 2501 2502 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2503 return (0); 2504 2505 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2506 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2507 2508 /* Find out the number of ciphers for AH */ 2509 if (cap_ah != NULL) { 2510 for (i = 0; i < cap_ah->algs_size; i++) { 2511 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2512 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2513 } 2514 if (ah_cnt > 0) { 2515 size += sizeof (dl_capability_sub_t) + 2516 sizeof (dl_capab_ipsec_t); 2517 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2518 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2519 size += ah_len; 2520 } 2521 } 2522 2523 /* Find out the number of ciphers for ESP */ 2524 if (cap_esp != NULL) { 2525 for (i = 0; i < cap_esp->algs_size; i++) { 2526 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2527 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2528 } 2529 if (esp_cnt > 0) { 2530 size += sizeof (dl_capability_sub_t) + 2531 sizeof (dl_capab_ipsec_t); 2532 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2533 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2534 size += esp_len; 2535 } 2536 } 2537 2538 if (ah_cntp != NULL) 2539 *ah_cntp = ah_cnt; 2540 if (ah_lenp != NULL) 2541 *ah_lenp = ah_len; 2542 if (esp_cntp != NULL) 2543 *esp_cntp = esp_cnt; 2544 if (esp_lenp != NULL) 2545 *esp_lenp = esp_len; 2546 2547 return (size); 2548 } 2549 2550 /* ARGSUSED */ 2551 static void 2552 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2553 { 2554 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2555 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2556 int ah_cnt = 0, esp_cnt = 0; 2557 int ah_len = 0, esp_len = 0; 2558 int size; 2559 2560 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2561 &esp_cnt, &esp_len); 2562 if (size == 0) 2563 return; 2564 2565 /* 2566 * Clear the capability flags for IPsec HA but retain the ill 2567 * capability structures since it's possible that another thread 2568 * is still referring to them. The structures only get deallocated 2569 * when we destroy the ill. 2570 * 2571 * Various places check the flags to see if the ill is capable of 2572 * hardware acceleration, and by clearing them we ensure that new 2573 * outbound IPsec packets are sent down encrypted. 2574 */ 2575 2576 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2577 if (ah_cnt > 0) { 2578 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2579 cap_ah, mp); 2580 } 2581 2582 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2583 if (esp_cnt > 0) { 2584 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2585 cap_esp, mp); 2586 } 2587 2588 /* 2589 * At this point we've composed a bunch of sub-capabilities to be 2590 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2591 * by the caller. Upon receiving this reset message, the driver 2592 * must stop inbound decryption (by destroying all inbound SAs) 2593 * and let the corresponding packets come in encrypted. 2594 */ 2595 } 2596 2597 static void 2598 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2599 boolean_t encapsulated) 2600 { 2601 boolean_t legacy = B_FALSE; 2602 2603 /* 2604 * Note that only the following two sub-capabilities may be 2605 * considered as "legacy", since their original definitions 2606 * do not incorporate the dl_mid_t module ID token, and hence 2607 * may require the use of the wrapper sub-capability. 2608 */ 2609 switch (subp->dl_cap) { 2610 case DL_CAPAB_IPSEC_AH: 2611 case DL_CAPAB_IPSEC_ESP: 2612 legacy = B_TRUE; 2613 break; 2614 } 2615 2616 /* 2617 * For legacy sub-capabilities which don't incorporate a queue_t 2618 * pointer in their structures, discard them if we detect that 2619 * there are intermediate modules in between IP and the driver. 2620 */ 2621 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2622 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2623 "%d discarded; %d module(s) present below IP\n", 2624 subp->dl_cap, ill->ill_lmod_cnt)); 2625 return; 2626 } 2627 2628 switch (subp->dl_cap) { 2629 case DL_CAPAB_IPSEC_AH: 2630 case DL_CAPAB_IPSEC_ESP: 2631 ill_capability_ipsec_ack(ill, mp, subp); 2632 break; 2633 case DL_CAPAB_MDT: 2634 ill_capability_mdt_ack(ill, mp, subp); 2635 break; 2636 case DL_CAPAB_HCKSUM: 2637 ill_capability_hcksum_ack(ill, mp, subp); 2638 break; 2639 case DL_CAPAB_ZEROCOPY: 2640 ill_capability_zerocopy_ack(ill, mp, subp); 2641 break; 2642 case DL_CAPAB_DLD: 2643 ill_capability_dld_ack(ill, mp, subp); 2644 break; 2645 default: 2646 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2647 subp->dl_cap)); 2648 } 2649 } 2650 2651 /* 2652 * Process a hardware checksum offload capability negotiation ack received 2653 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2654 * of a DL_CAPABILITY_ACK message. 2655 */ 2656 static void 2657 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2658 { 2659 dl_capability_req_t *ocap; 2660 dl_capab_hcksum_t *ihck, *ohck; 2661 ill_hcksum_capab_t **ill_hcksum; 2662 mblk_t *nmp = NULL; 2663 uint_t sub_dl_cap = isub->dl_cap; 2664 uint8_t *capend; 2665 2666 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2667 2668 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2669 2670 /* 2671 * Note: range checks here are not absolutely sufficient to 2672 * make us robust against malformed messages sent by drivers; 2673 * this is in keeping with the rest of IP's dlpi handling. 2674 * (Remember, it's coming from something else in the kernel 2675 * address space) 2676 */ 2677 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2678 if (capend > mp->b_wptr) { 2679 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2680 "malformed sub-capability too long for mblk"); 2681 return; 2682 } 2683 2684 /* 2685 * There are two types of acks we process here: 2686 * 1. acks in reply to a (first form) generic capability req 2687 * (no ENABLE flag set) 2688 * 2. acks in reply to a ENABLE capability req. 2689 * (ENABLE flag set) 2690 */ 2691 ihck = (dl_capab_hcksum_t *)(isub + 1); 2692 2693 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2694 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2695 "unsupported hardware checksum " 2696 "sub-capability (version %d, expected %d)", 2697 ihck->hcksum_version, HCKSUM_VERSION_1); 2698 return; 2699 } 2700 2701 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2702 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2703 "checksum capability isn't as expected; pass-thru " 2704 "module(s) detected, discarding capability\n")); 2705 return; 2706 } 2707 2708 #define CURR_HCKSUM_CAPAB \ 2709 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2710 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2711 2712 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2713 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2714 /* do ENABLE processing */ 2715 if (*ill_hcksum == NULL) { 2716 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2717 KM_NOSLEEP); 2718 2719 if (*ill_hcksum == NULL) { 2720 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2721 "could not enable hcksum version %d " 2722 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2723 ill->ill_name); 2724 return; 2725 } 2726 } 2727 2728 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2729 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2730 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2731 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2732 "has enabled hardware checksumming\n ", 2733 ill->ill_name)); 2734 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2735 /* 2736 * Enabling hardware checksum offload 2737 * Currently IP supports {TCP,UDP}/IPv4 2738 * partial and full cksum offload and 2739 * IPv4 header checksum offload. 2740 * Allocate new mblk which will 2741 * contain a new capability request 2742 * to enable hardware checksum offload. 2743 */ 2744 uint_t size; 2745 uchar_t *rptr; 2746 2747 size = sizeof (dl_capability_req_t) + 2748 sizeof (dl_capability_sub_t) + isub->dl_length; 2749 2750 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2751 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2752 "could not enable hardware cksum for %s (ENOMEM)\n", 2753 ill->ill_name); 2754 return; 2755 } 2756 2757 rptr = nmp->b_rptr; 2758 /* initialize dl_capability_req_t */ 2759 ocap = (dl_capability_req_t *)nmp->b_rptr; 2760 ocap->dl_sub_offset = 2761 sizeof (dl_capability_req_t); 2762 ocap->dl_sub_length = 2763 sizeof (dl_capability_sub_t) + 2764 isub->dl_length; 2765 nmp->b_rptr += sizeof (dl_capability_req_t); 2766 2767 /* initialize dl_capability_sub_t */ 2768 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2769 nmp->b_rptr += sizeof (*isub); 2770 2771 /* initialize dl_capab_hcksum_t */ 2772 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2773 bcopy(ihck, ohck, sizeof (*ihck)); 2774 2775 nmp->b_rptr = rptr; 2776 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2777 2778 /* Set ENABLE flag */ 2779 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2780 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2781 2782 /* 2783 * nmp points to a DL_CAPABILITY_REQ message to enable 2784 * hardware checksum acceleration. 2785 */ 2786 ill_capability_send(ill, nmp); 2787 } else { 2788 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2789 "advertised %x hardware checksum capability flags\n", 2790 ill->ill_name, ihck->hcksum_txflags)); 2791 } 2792 } 2793 2794 static void 2795 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2796 { 2797 dl_capab_hcksum_t *hck_subcap; 2798 dl_capability_sub_t *dl_subcap; 2799 2800 if (!ILL_HCKSUM_CAPABLE(ill)) 2801 return; 2802 2803 ASSERT(ill->ill_hcksum_capab != NULL); 2804 2805 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2806 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2807 dl_subcap->dl_length = sizeof (*hck_subcap); 2808 2809 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2810 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2811 hck_subcap->hcksum_txflags = 0; 2812 2813 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2814 } 2815 2816 static void 2817 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2818 { 2819 mblk_t *nmp = NULL; 2820 dl_capability_req_t *oc; 2821 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2822 ill_zerocopy_capab_t **ill_zerocopy_capab; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 uint8_t *capend; 2825 2826 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2827 2828 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2829 2830 /* 2831 * Note: range checks here are not absolutely sufficient to 2832 * make us robust against malformed messages sent by drivers; 2833 * this is in keeping with the rest of IP's dlpi handling. 2834 * (Remember, it's coming from something else in the kernel 2835 * address space) 2836 */ 2837 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2838 if (capend > mp->b_wptr) { 2839 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2840 "malformed sub-capability too long for mblk"); 2841 return; 2842 } 2843 2844 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2845 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2846 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2847 "unsupported ZEROCOPY sub-capability (version %d, " 2848 "expected %d)", zc_ic->zerocopy_version, 2849 ZEROCOPY_VERSION_1); 2850 return; 2851 } 2852 2853 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2854 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2855 "capability isn't as expected; pass-thru module(s) " 2856 "detected, discarding capability\n")); 2857 return; 2858 } 2859 2860 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2861 if (*ill_zerocopy_capab == NULL) { 2862 *ill_zerocopy_capab = 2863 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2864 KM_NOSLEEP); 2865 2866 if (*ill_zerocopy_capab == NULL) { 2867 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2868 "could not enable Zero-copy version %d " 2869 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2870 ill->ill_name); 2871 return; 2872 } 2873 } 2874 2875 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2876 "supports Zero-copy version %d\n", ill->ill_name, 2877 ZEROCOPY_VERSION_1)); 2878 2879 (*ill_zerocopy_capab)->ill_zerocopy_version = 2880 zc_ic->zerocopy_version; 2881 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2882 zc_ic->zerocopy_flags; 2883 2884 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2885 } else { 2886 uint_t size; 2887 uchar_t *rptr; 2888 2889 size = sizeof (dl_capability_req_t) + 2890 sizeof (dl_capability_sub_t) + 2891 sizeof (dl_capab_zerocopy_t); 2892 2893 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2894 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2895 "could not enable zerocopy for %s (ENOMEM)\n", 2896 ill->ill_name); 2897 return; 2898 } 2899 2900 rptr = nmp->b_rptr; 2901 /* initialize dl_capability_req_t */ 2902 oc = (dl_capability_req_t *)rptr; 2903 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2904 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2905 sizeof (dl_capab_zerocopy_t); 2906 rptr += sizeof (dl_capability_req_t); 2907 2908 /* initialize dl_capability_sub_t */ 2909 bcopy(isub, rptr, sizeof (*isub)); 2910 rptr += sizeof (*isub); 2911 2912 /* initialize dl_capab_zerocopy_t */ 2913 zc_oc = (dl_capab_zerocopy_t *)rptr; 2914 *zc_oc = *zc_ic; 2915 2916 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2917 "to enable zero-copy version %d\n", ill->ill_name, 2918 ZEROCOPY_VERSION_1)); 2919 2920 /* set VMSAFE_MEM flag */ 2921 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2922 2923 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2924 ill_capability_send(ill, nmp); 2925 } 2926 } 2927 2928 static void 2929 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2930 { 2931 dl_capab_zerocopy_t *zerocopy_subcap; 2932 dl_capability_sub_t *dl_subcap; 2933 2934 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2935 return; 2936 2937 ASSERT(ill->ill_zerocopy_capab != NULL); 2938 2939 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2940 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2941 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2942 2943 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2944 zerocopy_subcap->zerocopy_version = 2945 ill->ill_zerocopy_capab->ill_zerocopy_version; 2946 zerocopy_subcap->zerocopy_flags = 0; 2947 2948 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2949 } 2950 2951 /* 2952 * DLD capability 2953 * Refer to dld.h for more information regarding the purpose and usage 2954 * of this capability. 2955 */ 2956 static void 2957 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2958 { 2959 dl_capab_dld_t *dld_ic, dld; 2960 uint_t sub_dl_cap = isub->dl_cap; 2961 uint8_t *capend; 2962 ill_dld_capab_t *idc; 2963 2964 ASSERT(IAM_WRITER_ILL(ill)); 2965 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2966 2967 /* 2968 * Note: range checks here are not absolutely sufficient to 2969 * make us robust against malformed messages sent by drivers; 2970 * this is in keeping with the rest of IP's dlpi handling. 2971 * (Remember, it's coming from something else in the kernel 2972 * address space) 2973 */ 2974 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2975 if (capend > mp->b_wptr) { 2976 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2977 "malformed sub-capability too long for mblk"); 2978 return; 2979 } 2980 dld_ic = (dl_capab_dld_t *)(isub + 1); 2981 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2982 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2983 "unsupported DLD sub-capability (version %d, " 2984 "expected %d)", dld_ic->dld_version, 2985 DLD_CURRENT_VERSION); 2986 return; 2987 } 2988 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2989 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2990 "capability isn't as expected; pass-thru module(s) " 2991 "detected, discarding capability\n")); 2992 return; 2993 } 2994 2995 /* 2996 * Copy locally to ensure alignment. 2997 */ 2998 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2999 3000 if ((idc = ill->ill_dld_capab) == NULL) { 3001 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 3002 if (idc == NULL) { 3003 cmn_err(CE_WARN, "ill_capability_dld_ack: " 3004 "could not enable DLD version %d " 3005 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 3006 ill->ill_name); 3007 return; 3008 } 3009 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 3010 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 3011 ill->ill_dld_capab = idc; 3012 } 3013 ip1dbg(("ill_capability_dld_ack: interface %s " 3014 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 3015 3016 ill_capability_dld_enable(ill); 3017 } 3018 3019 /* 3020 * Typically capability negotiation between IP and the driver happens via 3021 * DLPI message exchange. However GLD also offers a direct function call 3022 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 3023 * But arbitrary function calls into IP or GLD are not permitted, since both 3024 * of them are protected by their own perimeter mechanism. The perimeter can 3025 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 3026 * these perimeters is IP -> MAC. Thus for example to enable the squeue 3027 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 3028 * to enter the mac perimeter and then do the direct function calls into 3029 * GLD to enable squeue polling. The ring related callbacks from the mac into 3030 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3031 * protected by the mac perimeter. 3032 */ 3033 static void 3034 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3035 { 3036 ill_dld_capab_t *idc = ill->ill_dld_capab; 3037 int err; 3038 3039 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3040 DLD_ENABLE); 3041 ASSERT(err == 0); 3042 } 3043 3044 static void 3045 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3046 { 3047 ill_dld_capab_t *idc = ill->ill_dld_capab; 3048 int err; 3049 3050 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3051 DLD_DISABLE); 3052 ASSERT(err == 0); 3053 } 3054 3055 boolean_t 3056 ill_mac_perim_held(ill_t *ill) 3057 { 3058 ill_dld_capab_t *idc = ill->ill_dld_capab; 3059 3060 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3061 DLD_QUERY)); 3062 } 3063 3064 static void 3065 ill_capability_direct_enable(ill_t *ill) 3066 { 3067 ill_dld_capab_t *idc = ill->ill_dld_capab; 3068 ill_dld_direct_t *idd = &idc->idc_direct; 3069 dld_capab_direct_t direct; 3070 int rc; 3071 3072 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3073 3074 bzero(&direct, sizeof (direct)); 3075 direct.di_rx_cf = (uintptr_t)ip_input; 3076 direct.di_rx_ch = ill; 3077 3078 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3079 DLD_ENABLE); 3080 if (rc == 0) { 3081 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3082 idd->idd_tx_dh = direct.di_tx_dh; 3083 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3084 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3085 /* 3086 * One time registration of flow enable callback function 3087 */ 3088 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3089 ill_flow_enable, ill); 3090 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3091 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3092 } else { 3093 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3094 "capability, rc = %d\n", rc); 3095 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3096 } 3097 } 3098 3099 static void 3100 ill_capability_poll_enable(ill_t *ill) 3101 { 3102 ill_dld_capab_t *idc = ill->ill_dld_capab; 3103 dld_capab_poll_t poll; 3104 int rc; 3105 3106 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3107 3108 bzero(&poll, sizeof (poll)); 3109 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3110 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3111 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3112 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3113 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3114 poll.poll_ring_ch = ill; 3115 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3116 DLD_ENABLE); 3117 if (rc == 0) { 3118 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3119 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3120 } else { 3121 ip1dbg(("warning: could not enable POLL " 3122 "capability, rc = %d\n", rc)); 3123 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3124 } 3125 } 3126 3127 /* 3128 * Enable the LSO capability. 3129 */ 3130 static void 3131 ill_capability_lso_enable(ill_t *ill) 3132 { 3133 ill_dld_capab_t *idc = ill->ill_dld_capab; 3134 dld_capab_lso_t lso; 3135 int rc; 3136 3137 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3138 3139 if (ill->ill_lso_capab == NULL) { 3140 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3141 KM_NOSLEEP); 3142 if (ill->ill_lso_capab == NULL) { 3143 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3144 "could not enable LSO for %s (ENOMEM)\n", 3145 ill->ill_name); 3146 return; 3147 } 3148 } 3149 3150 bzero(&lso, sizeof (lso)); 3151 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3152 DLD_ENABLE)) == 0) { 3153 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3154 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3155 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3156 ip1dbg(("ill_capability_lso_enable: interface %s " 3157 "has enabled LSO\n ", ill->ill_name)); 3158 } else { 3159 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3160 ill->ill_lso_capab = NULL; 3161 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3162 } 3163 } 3164 3165 static void 3166 ill_capability_dld_enable(ill_t *ill) 3167 { 3168 mac_perim_handle_t mph; 3169 3170 ASSERT(IAM_WRITER_ILL(ill)); 3171 3172 if (ill->ill_isv6) 3173 return; 3174 3175 ill_mac_perim_enter(ill, &mph); 3176 if (!ill->ill_isv6) { 3177 ill_capability_direct_enable(ill); 3178 ill_capability_poll_enable(ill); 3179 ill_capability_lso_enable(ill); 3180 } 3181 ill->ill_capabilities |= ILL_CAPAB_DLD; 3182 ill_mac_perim_exit(ill, mph); 3183 } 3184 3185 static void 3186 ill_capability_dld_disable(ill_t *ill) 3187 { 3188 ill_dld_capab_t *idc; 3189 ill_dld_direct_t *idd; 3190 mac_perim_handle_t mph; 3191 3192 ASSERT(IAM_WRITER_ILL(ill)); 3193 3194 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3195 return; 3196 3197 ill_mac_perim_enter(ill, &mph); 3198 3199 idc = ill->ill_dld_capab; 3200 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3201 /* 3202 * For performance we avoid locks in the transmit data path 3203 * and don't maintain a count of the number of threads using 3204 * direct calls. Thus some threads could be using direct 3205 * transmit calls to GLD, even after the capability mechanism 3206 * turns it off. This is still safe since the handles used in 3207 * the direct calls continue to be valid until the unplumb is 3208 * completed. Remove the callback that was added (1-time) at 3209 * capab enable time. 3210 */ 3211 mutex_enter(&ill->ill_lock); 3212 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3213 mutex_exit(&ill->ill_lock); 3214 if (ill->ill_flownotify_mh != NULL) { 3215 idd = &idc->idc_direct; 3216 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3217 ill->ill_flownotify_mh); 3218 ill->ill_flownotify_mh = NULL; 3219 } 3220 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3221 NULL, DLD_DISABLE); 3222 } 3223 3224 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3225 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3226 ip_squeue_clean_all(ill); 3227 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3228 NULL, DLD_DISABLE); 3229 } 3230 3231 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3232 ASSERT(ill->ill_lso_capab != NULL); 3233 /* 3234 * Clear the capability flag for LSO but retain the 3235 * ill_lso_capab structure since it's possible that another 3236 * thread is still referring to it. The structure only gets 3237 * deallocated when we destroy the ill. 3238 */ 3239 3240 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3241 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3242 NULL, DLD_DISABLE); 3243 } 3244 3245 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3246 ill_mac_perim_exit(ill, mph); 3247 } 3248 3249 /* 3250 * Capability Negotiation protocol 3251 * 3252 * We don't wait for DLPI capability operations to finish during interface 3253 * bringup or teardown. Doing so would introduce more asynchrony and the 3254 * interface up/down operations will need multiple return and restarts. 3255 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3256 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3257 * exclusive operation won't start until the DLPI operations of the previous 3258 * exclusive operation complete. 3259 * 3260 * The capability state machine is shown below. 3261 * 3262 * state next state event, action 3263 * 3264 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3265 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3266 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3267 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3268 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3269 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3270 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3271 * ill_capability_probe. 3272 */ 3273 3274 /* 3275 * Dedicated thread started from ip_stack_init that handles capability 3276 * disable. This thread ensures the taskq dispatch does not fail by waiting 3277 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3278 * that direct calls to DLD are done in a cv_waitable context. 3279 */ 3280 void 3281 ill_taskq_dispatch(ip_stack_t *ipst) 3282 { 3283 callb_cpr_t cprinfo; 3284 char name[64]; 3285 mblk_t *mp; 3286 3287 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3288 ipst->ips_netstack->netstack_stackid); 3289 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3290 name); 3291 mutex_enter(&ipst->ips_capab_taskq_lock); 3292 3293 for (;;) { 3294 mp = list_head(&ipst->ips_capab_taskq_list); 3295 while (mp != NULL) { 3296 list_remove(&ipst->ips_capab_taskq_list, mp); 3297 mutex_exit(&ipst->ips_capab_taskq_lock); 3298 VERIFY(taskq_dispatch(system_taskq, 3299 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3300 mutex_enter(&ipst->ips_capab_taskq_lock); 3301 mp = list_head(&ipst->ips_capab_taskq_list); 3302 } 3303 3304 if (ipst->ips_capab_taskq_quit) 3305 break; 3306 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3307 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3308 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3309 } 3310 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3311 CALLB_CPR_EXIT(&cprinfo); 3312 thread_exit(); 3313 } 3314 3315 /* 3316 * Consume a new-style hardware capabilities negotiation ack. 3317 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3318 */ 3319 static void 3320 ill_capability_ack_thr(void *arg) 3321 { 3322 mblk_t *mp = arg; 3323 dl_capability_ack_t *capp; 3324 dl_capability_sub_t *subp, *endp; 3325 ill_t *ill; 3326 boolean_t reneg; 3327 3328 ill = (ill_t *)mp->b_prev; 3329 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3330 3331 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3332 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3333 /* 3334 * We have received the ack for our DL_CAPAB reset request. 3335 * There isnt' anything in the message that needs processing. 3336 * All message based capabilities have been disabled, now 3337 * do the function call based capability disable. 3338 */ 3339 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3340 ill_capability_dld_disable(ill); 3341 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3342 if (reneg) 3343 ill_capability_probe(ill); 3344 goto done; 3345 } 3346 3347 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3348 ill->ill_dlpi_capab_state = IDCS_OK; 3349 3350 capp = (dl_capability_ack_t *)mp->b_rptr; 3351 3352 if (capp->dl_sub_length == 0) { 3353 /* no new-style capabilities */ 3354 goto done; 3355 } 3356 3357 /* make sure the driver supplied correct dl_sub_length */ 3358 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3359 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3360 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3361 goto done; 3362 } 3363 3364 3365 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3366 /* 3367 * There are sub-capabilities. Process the ones we know about. 3368 * Loop until we don't have room for another sub-cap header.. 3369 */ 3370 for (subp = SC(capp, capp->dl_sub_offset), 3371 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3372 subp <= endp; 3373 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3374 3375 switch (subp->dl_cap) { 3376 case DL_CAPAB_ID_WRAPPER: 3377 ill_capability_id_ack(ill, mp, subp); 3378 break; 3379 default: 3380 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3381 break; 3382 } 3383 } 3384 #undef SC 3385 done: 3386 inet_freemsg(mp); 3387 ill_capability_done(ill); 3388 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3389 } 3390 3391 /* 3392 * This needs to be started in a taskq thread to provide a cv_waitable 3393 * context. 3394 */ 3395 void 3396 ill_capability_ack(ill_t *ill, mblk_t *mp) 3397 { 3398 ip_stack_t *ipst = ill->ill_ipst; 3399 3400 mp->b_prev = (mblk_t *)ill; 3401 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3402 TQ_NOSLEEP) != 0) 3403 return; 3404 3405 /* 3406 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3407 * which will do the dispatch using TQ_SLEEP to guarantee success. 3408 */ 3409 mutex_enter(&ipst->ips_capab_taskq_lock); 3410 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3411 cv_signal(&ipst->ips_capab_taskq_cv); 3412 mutex_exit(&ipst->ips_capab_taskq_lock); 3413 } 3414 3415 /* 3416 * This routine is called to scan the fragmentation reassembly table for 3417 * the specified ILL for any packets that are starting to smell. 3418 * dead_interval is the maximum time in seconds that will be tolerated. It 3419 * will either be the value specified in ip_g_frag_timeout, or zero if the 3420 * ILL is shutting down and it is time to blow everything off. 3421 * 3422 * It returns the number of seconds (as a time_t) that the next frag timer 3423 * should be scheduled for, 0 meaning that the timer doesn't need to be 3424 * re-started. Note that the method of calculating next_timeout isn't 3425 * entirely accurate since time will flow between the time we grab 3426 * current_time and the time we schedule the next timeout. This isn't a 3427 * big problem since this is the timer for sending an ICMP reassembly time 3428 * exceeded messages, and it doesn't have to be exactly accurate. 3429 * 3430 * This function is 3431 * sometimes called as writer, although this is not required. 3432 */ 3433 time_t 3434 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3435 { 3436 ipfb_t *ipfb; 3437 ipfb_t *endp; 3438 ipf_t *ipf; 3439 ipf_t *ipfnext; 3440 mblk_t *mp; 3441 time_t current_time = gethrestime_sec(); 3442 time_t next_timeout = 0; 3443 uint32_t hdr_length; 3444 mblk_t *send_icmp_head; 3445 mblk_t *send_icmp_head_v6; 3446 zoneid_t zoneid; 3447 ip_stack_t *ipst = ill->ill_ipst; 3448 3449 ipfb = ill->ill_frag_hash_tbl; 3450 if (ipfb == NULL) 3451 return (B_FALSE); 3452 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3453 /* Walk the frag hash table. */ 3454 for (; ipfb < endp; ipfb++) { 3455 send_icmp_head = NULL; 3456 send_icmp_head_v6 = NULL; 3457 mutex_enter(&ipfb->ipfb_lock); 3458 while ((ipf = ipfb->ipfb_ipf) != 0) { 3459 time_t frag_time = current_time - ipf->ipf_timestamp; 3460 time_t frag_timeout; 3461 3462 if (frag_time < dead_interval) { 3463 /* 3464 * There are some outstanding fragments 3465 * that will timeout later. Make note of 3466 * the time so that we can reschedule the 3467 * next timeout appropriately. 3468 */ 3469 frag_timeout = dead_interval - frag_time; 3470 if (next_timeout == 0 || 3471 frag_timeout < next_timeout) { 3472 next_timeout = frag_timeout; 3473 } 3474 break; 3475 } 3476 /* Time's up. Get it out of here. */ 3477 hdr_length = ipf->ipf_nf_hdr_len; 3478 ipfnext = ipf->ipf_hash_next; 3479 if (ipfnext) 3480 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3481 *ipf->ipf_ptphn = ipfnext; 3482 mp = ipf->ipf_mp->b_cont; 3483 for (; mp; mp = mp->b_cont) { 3484 /* Extra points for neatness. */ 3485 IP_REASS_SET_START(mp, 0); 3486 IP_REASS_SET_END(mp, 0); 3487 } 3488 mp = ipf->ipf_mp->b_cont; 3489 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3490 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3491 ipfb->ipfb_count -= ipf->ipf_count; 3492 ASSERT(ipfb->ipfb_frag_pkts > 0); 3493 ipfb->ipfb_frag_pkts--; 3494 /* 3495 * We do not send any icmp message from here because 3496 * we currently are holding the ipfb_lock for this 3497 * hash chain. If we try and send any icmp messages 3498 * from here we may end up via a put back into ip 3499 * trying to get the same lock, causing a recursive 3500 * mutex panic. Instead we build a list and send all 3501 * the icmp messages after we have dropped the lock. 3502 */ 3503 if (ill->ill_isv6) { 3504 if (hdr_length != 0) { 3505 mp->b_next = send_icmp_head_v6; 3506 send_icmp_head_v6 = mp; 3507 } else { 3508 freemsg(mp); 3509 } 3510 } else { 3511 if (hdr_length != 0) { 3512 mp->b_next = send_icmp_head; 3513 send_icmp_head = mp; 3514 } else { 3515 freemsg(mp); 3516 } 3517 } 3518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3519 freeb(ipf->ipf_mp); 3520 } 3521 mutex_exit(&ipfb->ipfb_lock); 3522 /* 3523 * Now need to send any icmp messages that we delayed from 3524 * above. 3525 */ 3526 while (send_icmp_head_v6 != NULL) { 3527 ip6_t *ip6h; 3528 3529 mp = send_icmp_head_v6; 3530 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3531 mp->b_next = NULL; 3532 if (mp->b_datap->db_type == M_CTL) 3533 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3534 else 3535 ip6h = (ip6_t *)mp->b_rptr; 3536 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3537 ill, ipst); 3538 if (zoneid == ALL_ZONES) { 3539 freemsg(mp); 3540 } else { 3541 icmp_time_exceeded_v6(ill->ill_wq, mp, 3542 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3543 B_FALSE, zoneid, ipst); 3544 } 3545 } 3546 while (send_icmp_head != NULL) { 3547 ipaddr_t dst; 3548 3549 mp = send_icmp_head; 3550 send_icmp_head = send_icmp_head->b_next; 3551 mp->b_next = NULL; 3552 3553 if (mp->b_datap->db_type == M_CTL) 3554 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3555 else 3556 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3557 3558 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3559 if (zoneid == ALL_ZONES) { 3560 freemsg(mp); 3561 } else { 3562 icmp_time_exceeded(ill->ill_wq, mp, 3563 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3564 ipst); 3565 } 3566 } 3567 } 3568 /* 3569 * A non-dying ILL will use the return value to decide whether to 3570 * restart the frag timer, and for how long. 3571 */ 3572 return (next_timeout); 3573 } 3574 3575 /* 3576 * This routine is called when the approximate count of mblk memory used 3577 * for the specified ILL has exceeded max_count. 3578 */ 3579 void 3580 ill_frag_prune(ill_t *ill, uint_t max_count) 3581 { 3582 ipfb_t *ipfb; 3583 ipf_t *ipf; 3584 size_t count; 3585 3586 /* 3587 * If we are here within ip_min_frag_prune_time msecs remove 3588 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3589 * ill_frag_free_num_pkts. 3590 */ 3591 mutex_enter(&ill->ill_lock); 3592 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3593 (ip_min_frag_prune_time != 0 ? 3594 ip_min_frag_prune_time : msec_per_tick)) { 3595 3596 ill->ill_frag_free_num_pkts++; 3597 3598 } else { 3599 ill->ill_frag_free_num_pkts = 0; 3600 } 3601 ill->ill_last_frag_clean_time = lbolt; 3602 mutex_exit(&ill->ill_lock); 3603 3604 /* 3605 * free ill_frag_free_num_pkts oldest packets from each bucket. 3606 */ 3607 if (ill->ill_frag_free_num_pkts != 0) { 3608 int ix; 3609 3610 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3611 ipfb = &ill->ill_frag_hash_tbl[ix]; 3612 mutex_enter(&ipfb->ipfb_lock); 3613 if (ipfb->ipfb_ipf != NULL) { 3614 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3615 ill->ill_frag_free_num_pkts); 3616 } 3617 mutex_exit(&ipfb->ipfb_lock); 3618 } 3619 } 3620 /* 3621 * While the reassembly list for this ILL is too big, prune a fragment 3622 * queue by age, oldest first. 3623 */ 3624 while (ill->ill_frag_count > max_count) { 3625 int ix; 3626 ipfb_t *oipfb = NULL; 3627 uint_t oldest = UINT_MAX; 3628 3629 count = 0; 3630 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3631 ipfb = &ill->ill_frag_hash_tbl[ix]; 3632 mutex_enter(&ipfb->ipfb_lock); 3633 ipf = ipfb->ipfb_ipf; 3634 if (ipf != NULL && ipf->ipf_gen < oldest) { 3635 oldest = ipf->ipf_gen; 3636 oipfb = ipfb; 3637 } 3638 count += ipfb->ipfb_count; 3639 mutex_exit(&ipfb->ipfb_lock); 3640 } 3641 if (oipfb == NULL) 3642 break; 3643 3644 if (count <= max_count) 3645 return; /* Somebody beat us to it, nothing to do */ 3646 mutex_enter(&oipfb->ipfb_lock); 3647 ipf = oipfb->ipfb_ipf; 3648 if (ipf != NULL) { 3649 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3650 } 3651 mutex_exit(&oipfb->ipfb_lock); 3652 } 3653 } 3654 3655 /* 3656 * free 'free_cnt' fragmented packets starting at ipf. 3657 */ 3658 void 3659 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3660 { 3661 size_t count; 3662 mblk_t *mp; 3663 mblk_t *tmp; 3664 ipf_t **ipfp = ipf->ipf_ptphn; 3665 3666 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3667 ASSERT(ipfp != NULL); 3668 ASSERT(ipf != NULL); 3669 3670 while (ipf != NULL && free_cnt-- > 0) { 3671 count = ipf->ipf_count; 3672 mp = ipf->ipf_mp; 3673 ipf = ipf->ipf_hash_next; 3674 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3675 IP_REASS_SET_START(tmp, 0); 3676 IP_REASS_SET_END(tmp, 0); 3677 } 3678 atomic_add_32(&ill->ill_frag_count, -count); 3679 ASSERT(ipfb->ipfb_count >= count); 3680 ipfb->ipfb_count -= count; 3681 ASSERT(ipfb->ipfb_frag_pkts > 0); 3682 ipfb->ipfb_frag_pkts--; 3683 freemsg(mp); 3684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3685 } 3686 3687 if (ipf) 3688 ipf->ipf_ptphn = ipfp; 3689 ipfp[0] = ipf; 3690 } 3691 3692 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3693 "obsolete and may be removed in a future release of Solaris. Use " \ 3694 "ifconfig(1M) to manipulate the forwarding status of an interface." 3695 3696 /* 3697 * For obsolete per-interface forwarding configuration; 3698 * called in response to ND_GET. 3699 */ 3700 /* ARGSUSED */ 3701 static int 3702 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3703 { 3704 ill_t *ill = (ill_t *)cp; 3705 3706 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3707 3708 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3709 return (0); 3710 } 3711 3712 /* 3713 * For obsolete per-interface forwarding configuration; 3714 * called in response to ND_SET. 3715 */ 3716 /* ARGSUSED */ 3717 static int 3718 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3719 cred_t *ioc_cr) 3720 { 3721 long value; 3722 int retval; 3723 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3724 3725 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3726 3727 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3728 value < 0 || value > 1) { 3729 return (EINVAL); 3730 } 3731 3732 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3733 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3734 rw_exit(&ipst->ips_ill_g_lock); 3735 return (retval); 3736 } 3737 3738 /* 3739 * Helper function for ill_forward_set(). 3740 */ 3741 static void 3742 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3743 { 3744 ip_stack_t *ipst = ill->ill_ipst; 3745 3746 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3747 3748 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3749 (enable ? "Enabling" : "Disabling"), 3750 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3751 mutex_enter(&ill->ill_lock); 3752 if (enable) 3753 ill->ill_flags |= ILLF_ROUTER; 3754 else 3755 ill->ill_flags &= ~ILLF_ROUTER; 3756 mutex_exit(&ill->ill_lock); 3757 if (ill->ill_isv6) 3758 ill_set_nce_router_flags(ill, enable); 3759 /* Notify routing socket listeners of this change. */ 3760 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3761 } 3762 3763 /* 3764 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3765 * socket messages for each interface whose flags we change. 3766 */ 3767 int 3768 ill_forward_set(ill_t *ill, boolean_t enable) 3769 { 3770 ipmp_illgrp_t *illg; 3771 ip_stack_t *ipst = ill->ill_ipst; 3772 3773 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3774 3775 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3776 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3777 return (0); 3778 3779 if (IS_LOOPBACK(ill)) 3780 return (EINVAL); 3781 3782 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3783 /* 3784 * Update all of the interfaces in the group. 3785 */ 3786 illg = ill->ill_grp; 3787 ill = list_head(&illg->ig_if); 3788 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3789 ill_forward_set_on_ill(ill, enable); 3790 3791 /* 3792 * Update the IPMP meta-interface. 3793 */ 3794 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3795 return (0); 3796 } 3797 3798 ill_forward_set_on_ill(ill, enable); 3799 return (0); 3800 } 3801 3802 /* 3803 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3804 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3805 * set or clear. 3806 */ 3807 static void 3808 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3809 { 3810 ipif_t *ipif; 3811 nce_t *nce; 3812 3813 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3814 /* 3815 * NOTE: we're called separately for each ill in an illgrp, 3816 * so don't match across the illgrp. 3817 */ 3818 nce = ndp_lookup_v6(ill, B_FALSE, &ipif->ipif_v6lcl_addr, 3819 B_FALSE); 3820 if (nce != NULL) { 3821 mutex_enter(&nce->nce_lock); 3822 if (enable) 3823 nce->nce_flags |= NCE_F_ISROUTER; 3824 else 3825 nce->nce_flags &= ~NCE_F_ISROUTER; 3826 mutex_exit(&nce->nce_lock); 3827 NCE_REFRELE(nce); 3828 } 3829 } 3830 } 3831 3832 /* 3833 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3834 * for this ill. Make sure the v6/v4 question has been answered about this 3835 * ill. The creation of this ndd variable is only for backwards compatibility. 3836 * The preferred way to control per-interface IP forwarding is through the 3837 * ILLF_ROUTER interface flag. 3838 */ 3839 static int 3840 ill_set_ndd_name(ill_t *ill) 3841 { 3842 char *suffix; 3843 ip_stack_t *ipst = ill->ill_ipst; 3844 3845 ASSERT(IAM_WRITER_ILL(ill)); 3846 3847 if (ill->ill_isv6) 3848 suffix = ipv6_forward_suffix; 3849 else 3850 suffix = ipv4_forward_suffix; 3851 3852 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3853 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3854 /* 3855 * Copies over the '\0'. 3856 * Note that strlen(suffix) is always bounded. 3857 */ 3858 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3859 strlen(suffix) + 1); 3860 3861 /* 3862 * Use of the nd table requires holding the reader lock. 3863 * Modifying the nd table thru nd_load/nd_unload requires 3864 * the writer lock. 3865 */ 3866 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3867 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3868 nd_ill_forward_set, (caddr_t)ill)) { 3869 /* 3870 * If the nd_load failed, it only meant that it could not 3871 * allocate a new bunch of room for further NDD expansion. 3872 * Because of that, the ill_ndd_name will be set to 0, and 3873 * this interface is at the mercy of the global ip_forwarding 3874 * variable. 3875 */ 3876 rw_exit(&ipst->ips_ip_g_nd_lock); 3877 ill->ill_ndd_name = NULL; 3878 return (ENOMEM); 3879 } 3880 rw_exit(&ipst->ips_ip_g_nd_lock); 3881 return (0); 3882 } 3883 3884 /* 3885 * Intializes the context structure and returns the first ill in the list 3886 * cuurently start_list and end_list can have values: 3887 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3888 * IP_V4_G_HEAD Traverse IPV4 list only. 3889 * IP_V6_G_HEAD Traverse IPV6 list only. 3890 */ 3891 3892 /* 3893 * We don't check for CONDEMNED ills here. Caller must do that if 3894 * necessary under the ill lock. 3895 */ 3896 ill_t * 3897 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3898 ip_stack_t *ipst) 3899 { 3900 ill_if_t *ifp; 3901 ill_t *ill; 3902 avl_tree_t *avl_tree; 3903 3904 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3905 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3906 3907 /* 3908 * setup the lists to search 3909 */ 3910 if (end_list != MAX_G_HEADS) { 3911 ctx->ctx_current_list = start_list; 3912 ctx->ctx_last_list = end_list; 3913 } else { 3914 ctx->ctx_last_list = MAX_G_HEADS - 1; 3915 ctx->ctx_current_list = 0; 3916 } 3917 3918 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3919 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3920 if (ifp != (ill_if_t *) 3921 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3922 avl_tree = &ifp->illif_avl_by_ppa; 3923 ill = avl_first(avl_tree); 3924 /* 3925 * ill is guaranteed to be non NULL or ifp should have 3926 * not existed. 3927 */ 3928 ASSERT(ill != NULL); 3929 return (ill); 3930 } 3931 ctx->ctx_current_list++; 3932 } 3933 3934 return (NULL); 3935 } 3936 3937 /* 3938 * returns the next ill in the list. ill_first() must have been called 3939 * before calling ill_next() or bad things will happen. 3940 */ 3941 3942 /* 3943 * We don't check for CONDEMNED ills here. Caller must do that if 3944 * necessary under the ill lock. 3945 */ 3946 ill_t * 3947 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3948 { 3949 ill_if_t *ifp; 3950 ill_t *ill; 3951 ip_stack_t *ipst = lastill->ill_ipst; 3952 3953 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3954 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3955 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3956 AVL_AFTER)) != NULL) { 3957 return (ill); 3958 } 3959 3960 /* goto next ill_ifp in the list. */ 3961 ifp = lastill->ill_ifptr->illif_next; 3962 3963 /* make sure not at end of circular list */ 3964 while (ifp == 3965 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3966 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3967 return (NULL); 3968 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3969 } 3970 3971 return (avl_first(&ifp->illif_avl_by_ppa)); 3972 } 3973 3974 /* 3975 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3976 * The final number (PPA) must not have any leading zeros. Upon success, a 3977 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3978 */ 3979 static char * 3980 ill_get_ppa_ptr(char *name) 3981 { 3982 int namelen = strlen(name); 3983 int end_ndx = namelen - 1; 3984 int ppa_ndx, i; 3985 3986 /* 3987 * Check that the first character is [a-zA-Z], and that the last 3988 * character is [0-9]. 3989 */ 3990 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3991 return (NULL); 3992 3993 /* 3994 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3995 */ 3996 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3997 if (!isdigit(name[ppa_ndx - 1])) 3998 break; 3999 4000 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 4001 return (NULL); 4002 4003 /* 4004 * Check that the intermediate characters are [a-z0-9.] 4005 */ 4006 for (i = 1; i < ppa_ndx; i++) { 4007 if (!isalpha(name[i]) && !isdigit(name[i]) && 4008 name[i] != '.' && name[i] != '_') { 4009 return (NULL); 4010 } 4011 } 4012 4013 return (name + ppa_ndx); 4014 } 4015 4016 /* 4017 * use avl tree to locate the ill. 4018 */ 4019 static ill_t * 4020 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4021 ipsq_func_t func, int *error, ip_stack_t *ipst) 4022 { 4023 char *ppa_ptr = NULL; 4024 int len; 4025 uint_t ppa; 4026 ill_t *ill = NULL; 4027 ill_if_t *ifp; 4028 int list; 4029 ipsq_t *ipsq; 4030 4031 if (error != NULL) 4032 *error = 0; 4033 4034 /* 4035 * get ppa ptr 4036 */ 4037 if (isv6) 4038 list = IP_V6_G_HEAD; 4039 else 4040 list = IP_V4_G_HEAD; 4041 4042 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4043 if (error != NULL) 4044 *error = ENXIO; 4045 return (NULL); 4046 } 4047 4048 len = ppa_ptr - name + 1; 4049 4050 ppa = stoi(&ppa_ptr); 4051 4052 ifp = IP_VX_ILL_G_LIST(list, ipst); 4053 4054 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4055 /* 4056 * match is done on len - 1 as the name is not null 4057 * terminated it contains ppa in addition to the interface 4058 * name. 4059 */ 4060 if ((ifp->illif_name_len == len) && 4061 bcmp(ifp->illif_name, name, len - 1) == 0) { 4062 break; 4063 } else { 4064 ifp = ifp->illif_next; 4065 } 4066 } 4067 4068 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4069 /* 4070 * Even the interface type does not exist. 4071 */ 4072 if (error != NULL) 4073 *error = ENXIO; 4074 return (NULL); 4075 } 4076 4077 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4078 if (ill != NULL) { 4079 /* 4080 * The block comment at the start of ipif_down 4081 * explains the use of the macros used below 4082 */ 4083 GRAB_CONN_LOCK(q); 4084 mutex_enter(&ill->ill_lock); 4085 if (ILL_CAN_LOOKUP(ill)) { 4086 ill_refhold_locked(ill); 4087 mutex_exit(&ill->ill_lock); 4088 RELEASE_CONN_LOCK(q); 4089 return (ill); 4090 } else if (ILL_CAN_WAIT(ill, q)) { 4091 ipsq = ill->ill_phyint->phyint_ipsq; 4092 mutex_enter(&ipsq->ipsq_lock); 4093 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4094 mutex_exit(&ill->ill_lock); 4095 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4096 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4097 mutex_exit(&ipsq->ipsq_lock); 4098 RELEASE_CONN_LOCK(q); 4099 if (error != NULL) 4100 *error = EINPROGRESS; 4101 return (NULL); 4102 } 4103 mutex_exit(&ill->ill_lock); 4104 RELEASE_CONN_LOCK(q); 4105 } 4106 if (error != NULL) 4107 *error = ENXIO; 4108 return (NULL); 4109 } 4110 4111 /* 4112 * comparison function for use with avl. 4113 */ 4114 static int 4115 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4116 { 4117 uint_t ppa; 4118 uint_t ill_ppa; 4119 4120 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4121 4122 ppa = *((uint_t *)ppa_ptr); 4123 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4124 /* 4125 * We want the ill with the lowest ppa to be on the 4126 * top. 4127 */ 4128 if (ill_ppa < ppa) 4129 return (1); 4130 if (ill_ppa > ppa) 4131 return (-1); 4132 return (0); 4133 } 4134 4135 /* 4136 * remove an interface type from the global list. 4137 */ 4138 static void 4139 ill_delete_interface_type(ill_if_t *interface) 4140 { 4141 ASSERT(interface != NULL); 4142 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4143 4144 avl_destroy(&interface->illif_avl_by_ppa); 4145 if (interface->illif_ppa_arena != NULL) 4146 vmem_destroy(interface->illif_ppa_arena); 4147 4148 remque(interface); 4149 4150 mi_free(interface); 4151 } 4152 4153 /* 4154 * remove ill from the global list. 4155 */ 4156 static void 4157 ill_glist_delete(ill_t *ill) 4158 { 4159 ip_stack_t *ipst; 4160 phyint_t *phyi; 4161 4162 if (ill == NULL) 4163 return; 4164 ipst = ill->ill_ipst; 4165 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4166 4167 /* 4168 * If the ill was never inserted into the AVL tree 4169 * we skip the if branch. 4170 */ 4171 if (ill->ill_ifptr != NULL) { 4172 /* 4173 * remove from AVL tree and free ppa number 4174 */ 4175 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4176 4177 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4178 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4179 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4180 } 4181 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4182 ill_delete_interface_type(ill->ill_ifptr); 4183 } 4184 4185 /* 4186 * Indicate ill is no longer in the list. 4187 */ 4188 ill->ill_ifptr = NULL; 4189 ill->ill_name_length = 0; 4190 ill->ill_name[0] = '\0'; 4191 ill->ill_ppa = UINT_MAX; 4192 } 4193 4194 /* Generate one last event for this ill. */ 4195 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4196 ill->ill_name_length); 4197 4198 ASSERT(ill->ill_phyint != NULL); 4199 phyi = ill->ill_phyint; 4200 ill->ill_phyint = NULL; 4201 4202 /* 4203 * ill_init allocates a phyint always to store the copy 4204 * of flags relevant to phyint. At that point in time, we could 4205 * not assign the name and hence phyint_illv4/v6 could not be 4206 * initialized. Later in ipif_set_values, we assign the name to 4207 * the ill, at which point in time we assign phyint_illv4/v6. 4208 * Thus we don't rely on phyint_illv6 to be initialized always. 4209 */ 4210 if (ill->ill_flags & ILLF_IPV6) 4211 phyi->phyint_illv6 = NULL; 4212 else 4213 phyi->phyint_illv4 = NULL; 4214 4215 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4216 rw_exit(&ipst->ips_ill_g_lock); 4217 return; 4218 } 4219 4220 /* 4221 * There are no ills left on this phyint; pull it out of the phyint 4222 * avl trees, and free it. 4223 */ 4224 if (phyi->phyint_ifindex > 0) { 4225 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4226 phyi); 4227 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4228 phyi); 4229 } 4230 rw_exit(&ipst->ips_ill_g_lock); 4231 4232 phyint_free(phyi); 4233 } 4234 4235 /* 4236 * allocate a ppa, if the number of plumbed interfaces of this type are 4237 * less than ill_no_arena do a linear search to find a unused ppa. 4238 * When the number goes beyond ill_no_arena switch to using an arena. 4239 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4240 * is the return value for an error condition, so allocation starts at one 4241 * and is decremented by one. 4242 */ 4243 static int 4244 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4245 { 4246 ill_t *tmp_ill; 4247 uint_t start, end; 4248 int ppa; 4249 4250 if (ifp->illif_ppa_arena == NULL && 4251 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4252 /* 4253 * Create an arena. 4254 */ 4255 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4256 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4257 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4258 /* allocate what has already been assigned */ 4259 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4260 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4261 tmp_ill, AVL_AFTER)) { 4262 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4263 1, /* size */ 4264 1, /* align/quantum */ 4265 0, /* phase */ 4266 0, /* nocross */ 4267 /* minaddr */ 4268 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4269 /* maxaddr */ 4270 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4271 VM_NOSLEEP|VM_FIRSTFIT); 4272 if (ppa == 0) { 4273 ip1dbg(("ill_alloc_ppa: ppa allocation" 4274 " failed while switching")); 4275 vmem_destroy(ifp->illif_ppa_arena); 4276 ifp->illif_ppa_arena = NULL; 4277 break; 4278 } 4279 } 4280 } 4281 4282 if (ifp->illif_ppa_arena != NULL) { 4283 if (ill->ill_ppa == UINT_MAX) { 4284 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4285 1, VM_NOSLEEP|VM_FIRSTFIT); 4286 if (ppa == 0) 4287 return (EAGAIN); 4288 ill->ill_ppa = --ppa; 4289 } else { 4290 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4291 1, /* size */ 4292 1, /* align/quantum */ 4293 0, /* phase */ 4294 0, /* nocross */ 4295 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4296 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4297 VM_NOSLEEP|VM_FIRSTFIT); 4298 /* 4299 * Most likely the allocation failed because 4300 * the requested ppa was in use. 4301 */ 4302 if (ppa == 0) 4303 return (EEXIST); 4304 } 4305 return (0); 4306 } 4307 4308 /* 4309 * No arena is in use and not enough (>ill_no_arena) interfaces have 4310 * been plumbed to create one. Do a linear search to get a unused ppa. 4311 */ 4312 if (ill->ill_ppa == UINT_MAX) { 4313 end = UINT_MAX - 1; 4314 start = 0; 4315 } else { 4316 end = start = ill->ill_ppa; 4317 } 4318 4319 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4320 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4321 if (start++ >= end) { 4322 if (ill->ill_ppa == UINT_MAX) 4323 return (EAGAIN); 4324 else 4325 return (EEXIST); 4326 } 4327 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4328 } 4329 ill->ill_ppa = start; 4330 return (0); 4331 } 4332 4333 /* 4334 * Insert ill into the list of configured ill's. Once this function completes, 4335 * the ill is globally visible and is available through lookups. More precisely 4336 * this happens after the caller drops the ill_g_lock. 4337 */ 4338 static int 4339 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4340 { 4341 ill_if_t *ill_interface; 4342 avl_index_t where = 0; 4343 int error; 4344 int name_length; 4345 int index; 4346 boolean_t check_length = B_FALSE; 4347 ip_stack_t *ipst = ill->ill_ipst; 4348 4349 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4350 4351 name_length = mi_strlen(name) + 1; 4352 4353 if (isv6) 4354 index = IP_V6_G_HEAD; 4355 else 4356 index = IP_V4_G_HEAD; 4357 4358 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4359 /* 4360 * Search for interface type based on name 4361 */ 4362 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4363 if ((ill_interface->illif_name_len == name_length) && 4364 (strcmp(ill_interface->illif_name, name) == 0)) { 4365 break; 4366 } 4367 ill_interface = ill_interface->illif_next; 4368 } 4369 4370 /* 4371 * Interface type not found, create one. 4372 */ 4373 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4374 4375 ill_g_head_t ghead; 4376 4377 /* 4378 * allocate ill_if_t structure 4379 */ 4380 4381 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4382 if (ill_interface == NULL) { 4383 return (ENOMEM); 4384 } 4385 4386 4387 4388 (void) strcpy(ill_interface->illif_name, name); 4389 ill_interface->illif_name_len = name_length; 4390 4391 avl_create(&ill_interface->illif_avl_by_ppa, 4392 ill_compare_ppa, sizeof (ill_t), 4393 offsetof(struct ill_s, ill_avl_byppa)); 4394 4395 /* 4396 * link the structure in the back to maintain order 4397 * of configuration for ifconfig output. 4398 */ 4399 ghead = ipst->ips_ill_g_heads[index]; 4400 insque(ill_interface, ghead.ill_g_list_tail); 4401 4402 } 4403 4404 if (ill->ill_ppa == UINT_MAX) 4405 check_length = B_TRUE; 4406 4407 error = ill_alloc_ppa(ill_interface, ill); 4408 if (error != 0) { 4409 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4410 ill_delete_interface_type(ill->ill_ifptr); 4411 return (error); 4412 } 4413 4414 /* 4415 * When the ppa is choosen by the system, check that there is 4416 * enough space to insert ppa. if a specific ppa was passed in this 4417 * check is not required as the interface name passed in will have 4418 * the right ppa in it. 4419 */ 4420 if (check_length) { 4421 /* 4422 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4423 */ 4424 char buf[sizeof (uint_t) * 3]; 4425 4426 /* 4427 * convert ppa to string to calculate the amount of space 4428 * required for it in the name. 4429 */ 4430 numtos(ill->ill_ppa, buf); 4431 4432 /* Do we have enough space to insert ppa ? */ 4433 4434 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4435 /* Free ppa and interface type struct */ 4436 if (ill_interface->illif_ppa_arena != NULL) { 4437 vmem_free(ill_interface->illif_ppa_arena, 4438 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4439 } 4440 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4441 ill_delete_interface_type(ill->ill_ifptr); 4442 4443 return (EINVAL); 4444 } 4445 } 4446 4447 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4448 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4449 4450 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4451 &where); 4452 ill->ill_ifptr = ill_interface; 4453 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4454 4455 ill_phyint_reinit(ill); 4456 return (0); 4457 } 4458 4459 /* Initialize the per phyint ipsq used for serialization */ 4460 static boolean_t 4461 ipsq_init(ill_t *ill, boolean_t enter) 4462 { 4463 ipsq_t *ipsq; 4464 ipxop_t *ipx; 4465 4466 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4467 return (B_FALSE); 4468 4469 ill->ill_phyint->phyint_ipsq = ipsq; 4470 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4471 ipx->ipx_ipsq = ipsq; 4472 ipsq->ipsq_next = ipsq; 4473 ipsq->ipsq_phyint = ill->ill_phyint; 4474 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4475 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4476 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4477 if (enter) { 4478 ipx->ipx_writer = curthread; 4479 ipx->ipx_forced = B_FALSE; 4480 ipx->ipx_reentry_cnt = 1; 4481 #ifdef DEBUG 4482 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4483 #endif 4484 } 4485 return (B_TRUE); 4486 } 4487 4488 /* 4489 * ill_init is called by ip_open when a device control stream is opened. 4490 * It does a few initializations, and shoots a DL_INFO_REQ message down 4491 * to the driver. The response is later picked up in ip_rput_dlpi and 4492 * used to set up default mechanisms for talking to the driver. (Always 4493 * called as writer.) 4494 * 4495 * If this function returns error, ip_open will call ip_close which in 4496 * turn will call ill_delete to clean up any memory allocated here that 4497 * is not yet freed. 4498 */ 4499 int 4500 ill_init(queue_t *q, ill_t *ill) 4501 { 4502 int count; 4503 dl_info_req_t *dlir; 4504 mblk_t *info_mp; 4505 uchar_t *frag_ptr; 4506 4507 /* 4508 * The ill is initialized to zero by mi_alloc*(). In addition 4509 * some fields already contain valid values, initialized in 4510 * ip_open(), before we reach here. 4511 */ 4512 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4513 4514 ill->ill_rq = q; 4515 ill->ill_wq = WR(q); 4516 4517 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4518 BPRI_HI); 4519 if (info_mp == NULL) 4520 return (ENOMEM); 4521 4522 /* 4523 * Allocate sufficient space to contain our fragment hash table and 4524 * the device name. 4525 */ 4526 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4527 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4528 if (frag_ptr == NULL) { 4529 freemsg(info_mp); 4530 return (ENOMEM); 4531 } 4532 ill->ill_frag_ptr = frag_ptr; 4533 ill->ill_frag_free_num_pkts = 0; 4534 ill->ill_last_frag_clean_time = 0; 4535 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4536 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4537 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4538 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4539 NULL, MUTEX_DEFAULT, NULL); 4540 } 4541 4542 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4543 if (ill->ill_phyint == NULL) { 4544 freemsg(info_mp); 4545 mi_free(frag_ptr); 4546 return (ENOMEM); 4547 } 4548 4549 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4550 /* 4551 * For now pretend this is a v4 ill. We need to set phyint_ill* 4552 * at this point because of the following reason. If we can't 4553 * enter the ipsq at some point and cv_wait, the writer that 4554 * wakes us up tries to locate us using the list of all phyints 4555 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4556 * If we don't set it now, we risk a missed wakeup. 4557 */ 4558 ill->ill_phyint->phyint_illv4 = ill; 4559 ill->ill_ppa = UINT_MAX; 4560 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4561 4562 if (!ipsq_init(ill, B_TRUE)) { 4563 freemsg(info_mp); 4564 mi_free(frag_ptr); 4565 mi_free(ill->ill_phyint); 4566 return (ENOMEM); 4567 } 4568 4569 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4570 4571 /* Frag queue limit stuff */ 4572 ill->ill_frag_count = 0; 4573 ill->ill_ipf_gen = 0; 4574 4575 ill->ill_global_timer = INFINITY; 4576 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4577 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4578 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4579 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4580 4581 /* 4582 * Initialize IPv6 configuration variables. The IP module is always 4583 * opened as an IPv4 module. Instead tracking down the cases where 4584 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4585 * here for convenience, this has no effect until the ill is set to do 4586 * IPv6. 4587 */ 4588 ill->ill_reachable_time = ND_REACHABLE_TIME; 4589 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4590 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4591 ill->ill_max_buf = ND_MAX_Q; 4592 ill->ill_refcnt = 0; 4593 4594 /* Send down the Info Request to the driver. */ 4595 info_mp->b_datap->db_type = M_PCPROTO; 4596 dlir = (dl_info_req_t *)info_mp->b_rptr; 4597 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4598 dlir->dl_primitive = DL_INFO_REQ; 4599 4600 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4601 4602 qprocson(q); 4603 ill_dlpi_send(ill, info_mp); 4604 4605 return (0); 4606 } 4607 4608 /* 4609 * ill_dls_info 4610 * creates datalink socket info from the device. 4611 */ 4612 int 4613 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4614 { 4615 size_t len; 4616 ill_t *ill = ipif->ipif_ill; 4617 4618 sdl->sdl_family = AF_LINK; 4619 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4620 sdl->sdl_type = ill->ill_type; 4621 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4622 len = strlen(sdl->sdl_data); 4623 ASSERT(len < 256); 4624 sdl->sdl_nlen = (uchar_t)len; 4625 sdl->sdl_alen = ill->ill_phys_addr_length; 4626 sdl->sdl_slen = 0; 4627 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4628 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4629 4630 return (sizeof (struct sockaddr_dl)); 4631 } 4632 4633 /* 4634 * ill_xarp_info 4635 * creates xarp info from the device. 4636 */ 4637 static int 4638 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4639 { 4640 sdl->sdl_family = AF_LINK; 4641 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4642 sdl->sdl_type = ill->ill_type; 4643 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4644 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4645 sdl->sdl_alen = ill->ill_phys_addr_length; 4646 sdl->sdl_slen = 0; 4647 return (sdl->sdl_nlen); 4648 } 4649 4650 static int 4651 loopback_kstat_update(kstat_t *ksp, int rw) 4652 { 4653 kstat_named_t *kn; 4654 netstackid_t stackid; 4655 netstack_t *ns; 4656 ip_stack_t *ipst; 4657 4658 if (ksp == NULL || ksp->ks_data == NULL) 4659 return (EIO); 4660 4661 if (rw == KSTAT_WRITE) 4662 return (EACCES); 4663 4664 kn = KSTAT_NAMED_PTR(ksp); 4665 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4666 4667 ns = netstack_find_by_stackid(stackid); 4668 if (ns == NULL) 4669 return (-1); 4670 4671 ipst = ns->netstack_ip; 4672 if (ipst == NULL) { 4673 netstack_rele(ns); 4674 return (-1); 4675 } 4676 kn[0].value.ui32 = ipst->ips_loopback_packets; 4677 kn[1].value.ui32 = ipst->ips_loopback_packets; 4678 netstack_rele(ns); 4679 return (0); 4680 } 4681 4682 /* 4683 * Has ifindex been plumbed already? 4684 */ 4685 static boolean_t 4686 phyint_exists(uint_t index, ip_stack_t *ipst) 4687 { 4688 ASSERT(index != 0); 4689 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4690 4691 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4692 &index, NULL) != NULL); 4693 } 4694 4695 /* Pick a unique ifindex */ 4696 boolean_t 4697 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4698 { 4699 uint_t starting_index; 4700 4701 if (!ipst->ips_ill_index_wrap) { 4702 *indexp = ipst->ips_ill_index++; 4703 if (ipst->ips_ill_index == 0) { 4704 /* Reached the uint_t limit Next time wrap */ 4705 ipst->ips_ill_index_wrap = B_TRUE; 4706 } 4707 return (B_TRUE); 4708 } 4709 4710 /* 4711 * Start reusing unused indexes. Note that we hold the ill_g_lock 4712 * at this point and don't want to call any function that attempts 4713 * to get the lock again. 4714 */ 4715 starting_index = ipst->ips_ill_index++; 4716 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4717 if (ipst->ips_ill_index != 0 && 4718 !phyint_exists(ipst->ips_ill_index, ipst)) { 4719 /* found unused index - use it */ 4720 *indexp = ipst->ips_ill_index; 4721 return (B_TRUE); 4722 } 4723 } 4724 4725 /* 4726 * all interface indicies are inuse. 4727 */ 4728 return (B_FALSE); 4729 } 4730 4731 /* 4732 * Assign a unique interface index for the phyint. 4733 */ 4734 static boolean_t 4735 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4736 { 4737 ASSERT(phyi->phyint_ifindex == 0); 4738 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4739 } 4740 4741 /* 4742 * Return a pointer to the ill which matches the supplied name. Note that 4743 * the ill name length includes the null termination character. (May be 4744 * called as writer.) 4745 * If do_alloc and the interface is "lo0" it will be automatically created. 4746 * Cannot bump up reference on condemned ills. So dup detect can't be done 4747 * using this func. 4748 */ 4749 ill_t * 4750 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4751 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4752 ip_stack_t *ipst) 4753 { 4754 ill_t *ill; 4755 ipif_t *ipif; 4756 ipsq_t *ipsq; 4757 kstat_named_t *kn; 4758 boolean_t isloopback; 4759 in6_addr_t ov6addr; 4760 4761 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4762 4763 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4764 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4765 rw_exit(&ipst->ips_ill_g_lock); 4766 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4767 return (ill); 4768 4769 /* 4770 * Couldn't find it. Does this happen to be a lookup for the 4771 * loopback device and are we allowed to allocate it? 4772 */ 4773 if (!isloopback || !do_alloc) 4774 return (NULL); 4775 4776 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4777 4778 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4779 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4780 rw_exit(&ipst->ips_ill_g_lock); 4781 return (ill); 4782 } 4783 4784 /* Create the loopback device on demand */ 4785 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4786 sizeof (ipif_loopback_name), BPRI_MED)); 4787 if (ill == NULL) 4788 goto done; 4789 4790 *ill = ill_null; 4791 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4792 ill->ill_ipst = ipst; 4793 netstack_hold(ipst->ips_netstack); 4794 /* 4795 * For exclusive stacks we set the zoneid to zero 4796 * to make IP operate as if in the global zone. 4797 */ 4798 ill->ill_zoneid = GLOBAL_ZONEID; 4799 4800 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4801 if (ill->ill_phyint == NULL) 4802 goto done; 4803 4804 if (isv6) 4805 ill->ill_phyint->phyint_illv6 = ill; 4806 else 4807 ill->ill_phyint->phyint_illv4 = ill; 4808 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4809 ill->ill_max_frag = IP_LOOPBACK_MTU; 4810 /* Add room for tcp+ip headers */ 4811 if (isv6) { 4812 ill->ill_isv6 = B_TRUE; 4813 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4814 } else { 4815 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4816 } 4817 if (!ill_allocate_mibs(ill)) 4818 goto done; 4819 ill->ill_max_mtu = ill->ill_max_frag; 4820 /* 4821 * ipif_loopback_name can't be pointed at directly because its used 4822 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4823 * from the glist, ill_glist_delete() sets the first character of 4824 * ill_name to '\0'. 4825 */ 4826 ill->ill_name = (char *)ill + sizeof (*ill); 4827 (void) strcpy(ill->ill_name, ipif_loopback_name); 4828 ill->ill_name_length = sizeof (ipif_loopback_name); 4829 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4830 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4831 4832 ill->ill_global_timer = INFINITY; 4833 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4834 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4835 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4836 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4837 4838 /* No resolver here. */ 4839 ill->ill_net_type = IRE_LOOPBACK; 4840 4841 /* Initialize the ipsq */ 4842 if (!ipsq_init(ill, B_FALSE)) 4843 goto done; 4844 4845 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4846 if (ipif == NULL) 4847 goto done; 4848 4849 ill->ill_flags = ILLF_MULTICAST; 4850 4851 ov6addr = ipif->ipif_v6lcl_addr; 4852 /* Set up default loopback address and mask. */ 4853 if (!isv6) { 4854 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4855 4856 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4857 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4858 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4859 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4860 ipif->ipif_v6subnet); 4861 ill->ill_flags |= ILLF_IPV4; 4862 } else { 4863 ipif->ipif_v6lcl_addr = ipv6_loopback; 4864 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4865 ipif->ipif_v6net_mask = ipv6_all_ones; 4866 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4867 ipif->ipif_v6subnet); 4868 ill->ill_flags |= ILLF_IPV6; 4869 } 4870 4871 /* 4872 * Chain us in at the end of the ill list. hold the ill 4873 * before we make it globally visible. 1 for the lookup. 4874 */ 4875 ill->ill_refcnt = 0; 4876 ill_refhold(ill); 4877 4878 ill->ill_frag_count = 0; 4879 ill->ill_frag_free_num_pkts = 0; 4880 ill->ill_last_frag_clean_time = 0; 4881 4882 ipsq = ill->ill_phyint->phyint_ipsq; 4883 4884 if (ill_glist_insert(ill, "lo", isv6) != 0) 4885 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4886 4887 /* Let SCTP know so that it can add this to its list */ 4888 sctp_update_ill(ill, SCTP_ILL_INSERT); 4889 4890 /* 4891 * We have already assigned ipif_v6lcl_addr above, but we need to 4892 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4893 * requires to be after ill_glist_insert() since we need the 4894 * ill_index set. Pass on ipv6_loopback as the old address. 4895 */ 4896 sctp_update_ipif_addr(ipif, ov6addr); 4897 4898 /* 4899 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4900 * If so, free our original one. 4901 */ 4902 if (ipsq != ill->ill_phyint->phyint_ipsq) 4903 ipsq_delete(ipsq); 4904 4905 /* 4906 * Delay this till the ipif is allocated as ipif_allocate 4907 * de-references ill_phyint for getting the ifindex. We 4908 * can't do this before ipif_allocate because ill_phyint_reinit 4909 * -> phyint_assign_ifindex expects ipif to be present. 4910 */ 4911 mutex_enter(&ill->ill_phyint->phyint_lock); 4912 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4913 mutex_exit(&ill->ill_phyint->phyint_lock); 4914 4915 if (ipst->ips_loopback_ksp == NULL) { 4916 /* Export loopback interface statistics */ 4917 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4918 ipif_loopback_name, "net", 4919 KSTAT_TYPE_NAMED, 2, 0, 4920 ipst->ips_netstack->netstack_stackid); 4921 if (ipst->ips_loopback_ksp != NULL) { 4922 ipst->ips_loopback_ksp->ks_update = 4923 loopback_kstat_update; 4924 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4925 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4926 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4927 ipst->ips_loopback_ksp->ks_private = 4928 (void *)(uintptr_t)ipst->ips_netstack-> 4929 netstack_stackid; 4930 kstat_install(ipst->ips_loopback_ksp); 4931 } 4932 } 4933 4934 if (error != NULL) 4935 *error = 0; 4936 *did_alloc = B_TRUE; 4937 rw_exit(&ipst->ips_ill_g_lock); 4938 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4939 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4940 return (ill); 4941 done: 4942 if (ill != NULL) { 4943 if (ill->ill_phyint != NULL) { 4944 ipsq = ill->ill_phyint->phyint_ipsq; 4945 if (ipsq != NULL) { 4946 ipsq->ipsq_phyint = NULL; 4947 ipsq_delete(ipsq); 4948 } 4949 mi_free(ill->ill_phyint); 4950 } 4951 ill_free_mib(ill); 4952 if (ill->ill_ipst != NULL) 4953 netstack_rele(ill->ill_ipst->ips_netstack); 4954 mi_free(ill); 4955 } 4956 rw_exit(&ipst->ips_ill_g_lock); 4957 if (error != NULL) 4958 *error = ENOMEM; 4959 return (NULL); 4960 } 4961 4962 /* 4963 * For IPP calls - use the ip_stack_t for global stack. 4964 */ 4965 ill_t * 4966 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4967 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4968 { 4969 ip_stack_t *ipst; 4970 ill_t *ill; 4971 4972 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4973 if (ipst == NULL) { 4974 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4975 return (NULL); 4976 } 4977 4978 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4979 netstack_rele(ipst->ips_netstack); 4980 return (ill); 4981 } 4982 4983 /* 4984 * Return a pointer to the ill which matches the index and IP version type. 4985 */ 4986 ill_t * 4987 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4988 ipsq_func_t func, int *err, ip_stack_t *ipst) 4989 { 4990 ill_t *ill; 4991 ipsq_t *ipsq; 4992 phyint_t *phyi; 4993 4994 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4995 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4996 4997 if (err != NULL) 4998 *err = 0; 4999 5000 /* 5001 * Indexes are stored in the phyint - a common structure 5002 * to both IPv4 and IPv6. 5003 */ 5004 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5005 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5006 (void *) &index, NULL); 5007 if (phyi != NULL) { 5008 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5009 if (ill != NULL) { 5010 /* 5011 * The block comment at the start of ipif_down 5012 * explains the use of the macros used below 5013 */ 5014 GRAB_CONN_LOCK(q); 5015 mutex_enter(&ill->ill_lock); 5016 if (ILL_CAN_LOOKUP(ill)) { 5017 ill_refhold_locked(ill); 5018 mutex_exit(&ill->ill_lock); 5019 RELEASE_CONN_LOCK(q); 5020 rw_exit(&ipst->ips_ill_g_lock); 5021 return (ill); 5022 } else if (ILL_CAN_WAIT(ill, q)) { 5023 ipsq = ill->ill_phyint->phyint_ipsq; 5024 mutex_enter(&ipsq->ipsq_lock); 5025 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5026 rw_exit(&ipst->ips_ill_g_lock); 5027 mutex_exit(&ill->ill_lock); 5028 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5029 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5030 mutex_exit(&ipsq->ipsq_lock); 5031 RELEASE_CONN_LOCK(q); 5032 if (err != NULL) 5033 *err = EINPROGRESS; 5034 return (NULL); 5035 } 5036 RELEASE_CONN_LOCK(q); 5037 mutex_exit(&ill->ill_lock); 5038 } 5039 } 5040 rw_exit(&ipst->ips_ill_g_lock); 5041 if (err != NULL) 5042 *err = ENXIO; 5043 return (NULL); 5044 } 5045 5046 /* 5047 * Return the ifindex next in sequence after the passed in ifindex. 5048 * If there is no next ifindex for the given protocol, return 0. 5049 */ 5050 uint_t 5051 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5052 { 5053 phyint_t *phyi; 5054 phyint_t *phyi_initial; 5055 uint_t ifindex; 5056 5057 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5058 5059 if (index == 0) { 5060 phyi = avl_first( 5061 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5062 } else { 5063 phyi = phyi_initial = avl_find( 5064 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5065 (void *) &index, NULL); 5066 } 5067 5068 for (; phyi != NULL; 5069 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5070 phyi, AVL_AFTER)) { 5071 /* 5072 * If we're not returning the first interface in the tree 5073 * and we still haven't moved past the phyint_t that 5074 * corresponds to index, avl_walk needs to be called again 5075 */ 5076 if (!((index != 0) && (phyi == phyi_initial))) { 5077 if (isv6) { 5078 if ((phyi->phyint_illv6) && 5079 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5080 (phyi->phyint_illv6->ill_isv6 == 1)) 5081 break; 5082 } else { 5083 if ((phyi->phyint_illv4) && 5084 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5085 (phyi->phyint_illv4->ill_isv6 == 0)) 5086 break; 5087 } 5088 } 5089 } 5090 5091 rw_exit(&ipst->ips_ill_g_lock); 5092 5093 if (phyi != NULL) 5094 ifindex = phyi->phyint_ifindex; 5095 else 5096 ifindex = 0; 5097 5098 return (ifindex); 5099 } 5100 5101 /* 5102 * Return the ifindex for the named interface. 5103 * If there is no next ifindex for the interface, return 0. 5104 */ 5105 uint_t 5106 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5107 { 5108 phyint_t *phyi; 5109 avl_index_t where = 0; 5110 uint_t ifindex; 5111 5112 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5113 5114 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5115 name, &where)) == NULL) { 5116 rw_exit(&ipst->ips_ill_g_lock); 5117 return (0); 5118 } 5119 5120 ifindex = phyi->phyint_ifindex; 5121 5122 rw_exit(&ipst->ips_ill_g_lock); 5123 5124 return (ifindex); 5125 } 5126 5127 /* 5128 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5129 * that gives a running thread a reference to the ill. This reference must be 5130 * released by the thread when it is done accessing the ill and related 5131 * objects. ill_refcnt can not be used to account for static references 5132 * such as other structures pointing to an ill. Callers must generally 5133 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5134 * or be sure that the ill is not being deleted or changing state before 5135 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5136 * ill won't change any of its critical state such as address, netmask etc. 5137 */ 5138 void 5139 ill_refhold(ill_t *ill) 5140 { 5141 mutex_enter(&ill->ill_lock); 5142 ill->ill_refcnt++; 5143 ILL_TRACE_REF(ill); 5144 mutex_exit(&ill->ill_lock); 5145 } 5146 5147 void 5148 ill_refhold_locked(ill_t *ill) 5149 { 5150 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5151 ill->ill_refcnt++; 5152 ILL_TRACE_REF(ill); 5153 } 5154 5155 int 5156 ill_check_and_refhold(ill_t *ill) 5157 { 5158 mutex_enter(&ill->ill_lock); 5159 if (ILL_CAN_LOOKUP(ill)) { 5160 ill_refhold_locked(ill); 5161 mutex_exit(&ill->ill_lock); 5162 return (0); 5163 } 5164 mutex_exit(&ill->ill_lock); 5165 return (ILL_LOOKUP_FAILED); 5166 } 5167 5168 /* 5169 * Must not be called while holding any locks. Otherwise if this is 5170 * the last reference to be released, there is a chance of recursive mutex 5171 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5172 * to restart an ioctl. 5173 */ 5174 void 5175 ill_refrele(ill_t *ill) 5176 { 5177 mutex_enter(&ill->ill_lock); 5178 ASSERT(ill->ill_refcnt != 0); 5179 ill->ill_refcnt--; 5180 ILL_UNTRACE_REF(ill); 5181 if (ill->ill_refcnt != 0) { 5182 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5183 mutex_exit(&ill->ill_lock); 5184 return; 5185 } 5186 5187 /* Drops the ill_lock */ 5188 ipif_ill_refrele_tail(ill); 5189 } 5190 5191 /* 5192 * Obtain a weak reference count on the ill. This reference ensures the 5193 * ill won't be freed, but the ill may change any of its critical state 5194 * such as netmask, address etc. Returns an error if the ill has started 5195 * closing. 5196 */ 5197 boolean_t 5198 ill_waiter_inc(ill_t *ill) 5199 { 5200 mutex_enter(&ill->ill_lock); 5201 if (ill->ill_state_flags & ILL_CONDEMNED) { 5202 mutex_exit(&ill->ill_lock); 5203 return (B_FALSE); 5204 } 5205 ill->ill_waiters++; 5206 mutex_exit(&ill->ill_lock); 5207 return (B_TRUE); 5208 } 5209 5210 void 5211 ill_waiter_dcr(ill_t *ill) 5212 { 5213 mutex_enter(&ill->ill_lock); 5214 ill->ill_waiters--; 5215 if (ill->ill_waiters == 0) 5216 cv_broadcast(&ill->ill_cv); 5217 mutex_exit(&ill->ill_lock); 5218 } 5219 5220 /* 5221 * Named Dispatch routine to produce a formatted report on all ILLs. 5222 * This report is accessed by using the ndd utility to "get" ND variable 5223 * "ip_ill_status". 5224 */ 5225 /* ARGSUSED */ 5226 int 5227 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5228 { 5229 ill_t *ill; 5230 ill_walk_context_t ctx; 5231 ip_stack_t *ipst; 5232 5233 ipst = CONNQ_TO_IPST(q); 5234 5235 (void) mi_mpprintf(mp, 5236 "ILL " MI_COL_HDRPAD_STR 5237 /* 01234567[89ABCDEF] */ 5238 "rq " MI_COL_HDRPAD_STR 5239 /* 01234567[89ABCDEF] */ 5240 "wq " MI_COL_HDRPAD_STR 5241 /* 01234567[89ABCDEF] */ 5242 "upcnt mxfrg err name"); 5243 /* 12345 12345 123 xxxxxxxx */ 5244 5245 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5246 ill = ILL_START_WALK_ALL(&ctx, ipst); 5247 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5248 (void) mi_mpprintf(mp, 5249 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5250 "%05u %05u %03d %s", 5251 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5252 ill->ill_ipif_up_count, 5253 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5254 } 5255 rw_exit(&ipst->ips_ill_g_lock); 5256 5257 return (0); 5258 } 5259 5260 /* 5261 * Named Dispatch routine to produce a formatted report on all IPIFs. 5262 * This report is accessed by using the ndd utility to "get" ND variable 5263 * "ip_ipif_status". 5264 */ 5265 /* ARGSUSED */ 5266 int 5267 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5268 { 5269 char buf1[INET6_ADDRSTRLEN]; 5270 char buf2[INET6_ADDRSTRLEN]; 5271 char buf3[INET6_ADDRSTRLEN]; 5272 char buf4[INET6_ADDRSTRLEN]; 5273 char buf5[INET6_ADDRSTRLEN]; 5274 char buf6[INET6_ADDRSTRLEN]; 5275 char buf[LIFNAMSIZ]; 5276 ill_t *ill; 5277 ipif_t *ipif; 5278 nv_t *nvp; 5279 uint64_t flags; 5280 zoneid_t zoneid; 5281 ill_walk_context_t ctx; 5282 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5283 5284 (void) mi_mpprintf(mp, 5285 "IPIF metric mtu in/out/forward name zone flags...\n" 5286 "\tlocal address\n" 5287 "\tsrc address\n" 5288 "\tsubnet\n" 5289 "\tmask\n" 5290 "\tbroadcast\n" 5291 "\tp-p-dst"); 5292 5293 ASSERT(q->q_next == NULL); 5294 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5295 5296 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5297 ill = ILL_START_WALK_ALL(&ctx, ipst); 5298 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5299 for (ipif = ill->ill_ipif; ipif != NULL; 5300 ipif = ipif->ipif_next) { 5301 if (zoneid != GLOBAL_ZONEID && 5302 zoneid != ipif->ipif_zoneid && 5303 ipif->ipif_zoneid != ALL_ZONES) 5304 continue; 5305 5306 ipif_get_name(ipif, buf, sizeof (buf)); 5307 (void) mi_mpprintf(mp, 5308 MI_COL_PTRFMT_STR 5309 "%04u %05u %u/%u/%u %s %d", 5310 (void *)ipif, 5311 ipif->ipif_metric, ipif->ipif_mtu, 5312 ipif->ipif_ib_pkt_count, 5313 ipif->ipif_ob_pkt_count, 5314 ipif->ipif_fo_pkt_count, 5315 buf, 5316 ipif->ipif_zoneid); 5317 5318 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5319 ipif->ipif_ill->ill_phyint->phyint_flags; 5320 5321 /* Tack on text strings for any flags. */ 5322 nvp = ipif_nv_tbl; 5323 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5324 if (nvp->nv_value & flags) 5325 (void) mi_mpprintf_nr(mp, " %s", 5326 nvp->nv_name); 5327 } 5328 (void) mi_mpprintf(mp, 5329 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5330 inet_ntop(AF_INET6, 5331 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5332 inet_ntop(AF_INET6, 5333 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5334 inet_ntop(AF_INET6, 5335 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5336 inet_ntop(AF_INET6, 5337 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5338 inet_ntop(AF_INET6, 5339 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5340 inet_ntop(AF_INET6, 5341 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5342 } 5343 } 5344 rw_exit(&ipst->ips_ill_g_lock); 5345 return (0); 5346 } 5347 5348 /* 5349 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5350 * driver. We construct best guess defaults for lower level information that 5351 * we need. If an interface is brought up without injection of any overriding 5352 * information from outside, we have to be ready to go with these defaults. 5353 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5354 * we primarely want the dl_provider_style. 5355 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5356 * at which point we assume the other part of the information is valid. 5357 */ 5358 void 5359 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5360 { 5361 uchar_t *brdcst_addr; 5362 uint_t brdcst_addr_length, phys_addr_length; 5363 t_scalar_t sap_length; 5364 dl_info_ack_t *dlia; 5365 ip_m_t *ipm; 5366 dl_qos_cl_sel1_t *sel1; 5367 int min_mtu; 5368 5369 ASSERT(IAM_WRITER_ILL(ill)); 5370 5371 /* 5372 * Till the ill is fully up ILL_CHANGING will be set and 5373 * the ill is not globally visible. So no need for a lock. 5374 */ 5375 dlia = (dl_info_ack_t *)mp->b_rptr; 5376 ill->ill_mactype = dlia->dl_mac_type; 5377 5378 ipm = ip_m_lookup(dlia->dl_mac_type); 5379 if (ipm == NULL) { 5380 ipm = ip_m_lookup(DL_OTHER); 5381 ASSERT(ipm != NULL); 5382 } 5383 ill->ill_media = ipm; 5384 5385 /* 5386 * When the new DLPI stuff is ready we'll pull lengths 5387 * from dlia. 5388 */ 5389 if (dlia->dl_version == DL_VERSION_2) { 5390 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5391 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5392 brdcst_addr_length); 5393 if (brdcst_addr == NULL) { 5394 brdcst_addr_length = 0; 5395 } 5396 sap_length = dlia->dl_sap_length; 5397 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5398 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5399 brdcst_addr_length, sap_length, phys_addr_length)); 5400 } else { 5401 brdcst_addr_length = 6; 5402 brdcst_addr = ip_six_byte_all_ones; 5403 sap_length = -2; 5404 phys_addr_length = brdcst_addr_length; 5405 } 5406 5407 ill->ill_bcast_addr_length = brdcst_addr_length; 5408 ill->ill_phys_addr_length = phys_addr_length; 5409 ill->ill_sap_length = sap_length; 5410 5411 /* 5412 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5413 * but we must ensure a minimum IP MTU is used since other bits of 5414 * IP will fly apart otherwise. 5415 */ 5416 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5417 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5418 ill->ill_max_mtu = ill->ill_max_frag; 5419 5420 ill->ill_type = ipm->ip_m_type; 5421 5422 if (!ill->ill_dlpi_style_set) { 5423 if (dlia->dl_provider_style == DL_STYLE2) 5424 ill->ill_needs_attach = 1; 5425 5426 /* 5427 * Allocate the first ipif on this ill. We don't delay it 5428 * further as ioctl handling assumes atleast one ipif to 5429 * be present. 5430 * 5431 * At this point we don't know whether the ill is v4 or v6. 5432 * We will know this whan the SIOCSLIFNAME happens and 5433 * the correct value for ill_isv6 will be assigned in 5434 * ipif_set_values(). We need to hold the ill lock and 5435 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5436 * the wakeup. 5437 */ 5438 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5439 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5440 mutex_enter(&ill->ill_lock); 5441 ASSERT(ill->ill_dlpi_style_set == 0); 5442 ill->ill_dlpi_style_set = 1; 5443 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5444 cv_broadcast(&ill->ill_cv); 5445 mutex_exit(&ill->ill_lock); 5446 freemsg(mp); 5447 return; 5448 } 5449 ASSERT(ill->ill_ipif != NULL); 5450 /* 5451 * We know whether it is IPv4 or IPv6 now, as this is the 5452 * second DL_INFO_ACK we are recieving in response to the 5453 * DL_INFO_REQ sent in ipif_set_values. 5454 */ 5455 if (ill->ill_isv6) 5456 ill->ill_sap = IP6_DL_SAP; 5457 else 5458 ill->ill_sap = IP_DL_SAP; 5459 /* 5460 * Set ipif_mtu which is used to set the IRE's 5461 * ire_max_frag value. The driver could have sent 5462 * a different mtu from what it sent last time. No 5463 * need to call ipif_mtu_change because IREs have 5464 * not yet been created. 5465 */ 5466 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5467 /* 5468 * Clear all the flags that were set based on ill_bcast_addr_length 5469 * and ill_phys_addr_length (in ipif_set_values) as these could have 5470 * changed now and we need to re-evaluate. 5471 */ 5472 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5473 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5474 5475 /* 5476 * Free ill_resolver_mp and ill_bcast_mp as things could have 5477 * changed now. 5478 * 5479 * NOTE: The IPMP meta-interface is special-cased because it starts 5480 * with no underlying interfaces (and thus an unknown broadcast 5481 * address length), but we enforce that an interface is broadcast- 5482 * capable as part of allowing it to join a group. 5483 */ 5484 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5485 if (ill->ill_resolver_mp != NULL) 5486 freemsg(ill->ill_resolver_mp); 5487 if (ill->ill_bcast_mp != NULL) 5488 freemsg(ill->ill_bcast_mp); 5489 if (ill->ill_flags & ILLF_XRESOLV) 5490 ill->ill_net_type = IRE_IF_RESOLVER; 5491 else 5492 ill->ill_net_type = IRE_IF_NORESOLVER; 5493 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5494 ill->ill_phys_addr_length, 5495 ill->ill_sap, 5496 ill->ill_sap_length); 5497 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5498 5499 if (ill->ill_isv6) 5500 /* 5501 * Note: xresolv interfaces will eventually need NOARP 5502 * set here as well, but that will require those 5503 * external resolvers to have some knowledge of 5504 * that flag and act appropriately. Not to be changed 5505 * at present. 5506 */ 5507 ill->ill_flags |= ILLF_NONUD; 5508 else 5509 ill->ill_flags |= ILLF_NOARP; 5510 5511 if (ill->ill_phys_addr_length == 0) { 5512 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5513 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5514 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5515 } else { 5516 /* pt-pt supports multicast. */ 5517 ill->ill_flags |= ILLF_MULTICAST; 5518 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5519 } 5520 } 5521 } else { 5522 ill->ill_net_type = IRE_IF_RESOLVER; 5523 if (ill->ill_bcast_mp != NULL) 5524 freemsg(ill->ill_bcast_mp); 5525 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5526 ill->ill_bcast_addr_length, ill->ill_sap, 5527 ill->ill_sap_length); 5528 /* 5529 * Later detect lack of DLPI driver multicast 5530 * capability by catching DL_ENABMULTI errors in 5531 * ip_rput_dlpi. 5532 */ 5533 ill->ill_flags |= ILLF_MULTICAST; 5534 if (!ill->ill_isv6) 5535 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5536 } 5537 5538 /* For IPMP, PHYI_IPMP should already be set by ipif_allocate() */ 5539 if (ill->ill_mactype == SUNW_DL_IPMP) 5540 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5541 5542 /* By default an interface does not support any CoS marking */ 5543 ill->ill_flags &= ~ILLF_COS_ENABLED; 5544 5545 /* 5546 * If we get QoS information in DL_INFO_ACK, the device supports 5547 * some form of CoS marking, set ILLF_COS_ENABLED. 5548 */ 5549 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5550 dlia->dl_qos_length); 5551 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5552 ill->ill_flags |= ILLF_COS_ENABLED; 5553 } 5554 5555 /* Clear any previous error indication. */ 5556 ill->ill_error = 0; 5557 freemsg(mp); 5558 } 5559 5560 /* 5561 * Perform various checks to verify that an address would make sense as a 5562 * local, remote, or subnet interface address. 5563 */ 5564 static boolean_t 5565 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5566 { 5567 ipaddr_t net_mask; 5568 5569 /* 5570 * Don't allow all zeroes, or all ones, but allow 5571 * all ones netmask. 5572 */ 5573 if ((net_mask = ip_net_mask(addr)) == 0) 5574 return (B_FALSE); 5575 /* A given netmask overrides the "guess" netmask */ 5576 if (subnet_mask != 0) 5577 net_mask = subnet_mask; 5578 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5579 (addr == (addr | ~net_mask)))) { 5580 return (B_FALSE); 5581 } 5582 5583 /* 5584 * Even if the netmask is all ones, we do not allow address to be 5585 * 255.255.255.255 5586 */ 5587 if (addr == INADDR_BROADCAST) 5588 return (B_FALSE); 5589 5590 if (CLASSD(addr)) 5591 return (B_FALSE); 5592 5593 return (B_TRUE); 5594 } 5595 5596 #define V6_IPIF_LINKLOCAL(p) \ 5597 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5598 5599 /* 5600 * Compare two given ipifs and check if the second one is better than 5601 * the first one using the order of preference (not taking deprecated 5602 * into acount) specified in ipif_lookup_multicast(). 5603 */ 5604 static boolean_t 5605 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5606 { 5607 /* Check the least preferred first. */ 5608 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5609 /* If both ipifs are the same, use the first one. */ 5610 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5611 return (B_FALSE); 5612 else 5613 return (B_TRUE); 5614 } 5615 5616 /* For IPv6, check for link local address. */ 5617 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5618 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5619 V6_IPIF_LINKLOCAL(new_ipif)) { 5620 /* The second one is equal or less preferred. */ 5621 return (B_FALSE); 5622 } else { 5623 return (B_TRUE); 5624 } 5625 } 5626 5627 /* Then check for point to point interface. */ 5628 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5629 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5630 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5631 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5632 return (B_FALSE); 5633 } else { 5634 return (B_TRUE); 5635 } 5636 } 5637 5638 /* old_ipif is a normal interface, so no need to use the new one. */ 5639 return (B_FALSE); 5640 } 5641 5642 /* 5643 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5644 * The ipif must be up, and its ill must multicast-capable, not 5645 * condemned, not an underlying interface in an IPMP group, and 5646 * not a VNI interface. Order of preference: 5647 * 5648 * 1a. normal 5649 * 1b. normal, but deprecated 5650 * 2a. point to point 5651 * 2b. point to point, but deprecated 5652 * 3a. link local 5653 * 3b. link local, but deprecated 5654 * 4. loopback. 5655 */ 5656 ipif_t * 5657 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5658 { 5659 ill_t *ill; 5660 ill_walk_context_t ctx; 5661 ipif_t *ipif; 5662 ipif_t *saved_ipif = NULL; 5663 ipif_t *dep_ipif = NULL; 5664 5665 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5666 if (isv6) 5667 ill = ILL_START_WALK_V6(&ctx, ipst); 5668 else 5669 ill = ILL_START_WALK_V4(&ctx, ipst); 5670 5671 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5672 mutex_enter(&ill->ill_lock); 5673 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5674 !(ill->ill_flags & ILLF_MULTICAST)) { 5675 mutex_exit(&ill->ill_lock); 5676 continue; 5677 } 5678 for (ipif = ill->ill_ipif; ipif != NULL; 5679 ipif = ipif->ipif_next) { 5680 if (zoneid != ipif->ipif_zoneid && 5681 zoneid != ALL_ZONES && 5682 ipif->ipif_zoneid != ALL_ZONES) { 5683 continue; 5684 } 5685 if (!(ipif->ipif_flags & IPIF_UP) || 5686 !IPIF_CAN_LOOKUP(ipif)) { 5687 continue; 5688 } 5689 5690 /* 5691 * Found one candidate. If it is deprecated, 5692 * remember it in dep_ipif. If it is not deprecated, 5693 * remember it in saved_ipif. 5694 */ 5695 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5696 if (dep_ipif == NULL) { 5697 dep_ipif = ipif; 5698 } else if (ipif_comp_multi(dep_ipif, ipif, 5699 isv6)) { 5700 /* 5701 * If the previous dep_ipif does not 5702 * belong to the same ill, we've done 5703 * a ipif_refhold() on it. So we need 5704 * to release it. 5705 */ 5706 if (dep_ipif->ipif_ill != ill) 5707 ipif_refrele(dep_ipif); 5708 dep_ipif = ipif; 5709 } 5710 continue; 5711 } 5712 if (saved_ipif == NULL) { 5713 saved_ipif = ipif; 5714 } else { 5715 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5716 if (saved_ipif->ipif_ill != ill) 5717 ipif_refrele(saved_ipif); 5718 saved_ipif = ipif; 5719 } 5720 } 5721 } 5722 /* 5723 * Before going to the next ill, do a ipif_refhold() on the 5724 * saved ones. 5725 */ 5726 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5727 ipif_refhold_locked(saved_ipif); 5728 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5729 ipif_refhold_locked(dep_ipif); 5730 mutex_exit(&ill->ill_lock); 5731 } 5732 rw_exit(&ipst->ips_ill_g_lock); 5733 5734 /* 5735 * If we have only the saved_ipif, return it. But if we have both 5736 * saved_ipif and dep_ipif, check to see which one is better. 5737 */ 5738 if (saved_ipif != NULL) { 5739 if (dep_ipif != NULL) { 5740 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5741 ipif_refrele(saved_ipif); 5742 return (dep_ipif); 5743 } else { 5744 ipif_refrele(dep_ipif); 5745 return (saved_ipif); 5746 } 5747 } 5748 return (saved_ipif); 5749 } else { 5750 return (dep_ipif); 5751 } 5752 } 5753 5754 /* 5755 * This function is called when an application does not specify an interface 5756 * to be used for multicast traffic (joining a group/sending data). It 5757 * calls ire_lookup_multi() to look for an interface route for the 5758 * specified multicast group. Doing this allows the administrator to add 5759 * prefix routes for multicast to indicate which interface to be used for 5760 * multicast traffic in the above scenario. The route could be for all 5761 * multicast (224.0/4), for a single multicast group (a /32 route) or 5762 * anything in between. If there is no such multicast route, we just find 5763 * any multicast capable interface and return it. The returned ipif 5764 * is refhold'ed. 5765 */ 5766 ipif_t * 5767 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5768 { 5769 ire_t *ire; 5770 ipif_t *ipif; 5771 5772 ire = ire_lookup_multi(group, zoneid, ipst); 5773 if (ire != NULL) { 5774 ipif = ire->ire_ipif; 5775 ipif_refhold(ipif); 5776 ire_refrele(ire); 5777 return (ipif); 5778 } 5779 5780 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5781 } 5782 5783 /* 5784 * Look for an ipif with the specified interface address and destination. 5785 * The destination address is used only for matching point-to-point interfaces. 5786 */ 5787 ipif_t * 5788 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5789 ipsq_func_t func, int *error, ip_stack_t *ipst) 5790 { 5791 ipif_t *ipif; 5792 ill_t *ill; 5793 ill_walk_context_t ctx; 5794 ipsq_t *ipsq; 5795 5796 if (error != NULL) 5797 *error = 0; 5798 5799 /* 5800 * First match all the point-to-point interfaces 5801 * before looking at non-point-to-point interfaces. 5802 * This is done to avoid returning non-point-to-point 5803 * ipif instead of unnumbered point-to-point ipif. 5804 */ 5805 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5806 ill = ILL_START_WALK_V4(&ctx, ipst); 5807 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5808 GRAB_CONN_LOCK(q); 5809 mutex_enter(&ill->ill_lock); 5810 for (ipif = ill->ill_ipif; ipif != NULL; 5811 ipif = ipif->ipif_next) { 5812 /* Allow the ipif to be down */ 5813 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5814 (ipif->ipif_lcl_addr == if_addr) && 5815 (ipif->ipif_pp_dst_addr == dst)) { 5816 /* 5817 * The block comment at the start of ipif_down 5818 * explains the use of the macros used below 5819 */ 5820 if (IPIF_CAN_LOOKUP(ipif)) { 5821 ipif_refhold_locked(ipif); 5822 mutex_exit(&ill->ill_lock); 5823 RELEASE_CONN_LOCK(q); 5824 rw_exit(&ipst->ips_ill_g_lock); 5825 return (ipif); 5826 } else if (IPIF_CAN_WAIT(ipif, q)) { 5827 ipsq = ill->ill_phyint->phyint_ipsq; 5828 mutex_enter(&ipsq->ipsq_lock); 5829 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5830 mutex_exit(&ill->ill_lock); 5831 rw_exit(&ipst->ips_ill_g_lock); 5832 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5833 ill); 5834 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5835 mutex_exit(&ipsq->ipsq_lock); 5836 RELEASE_CONN_LOCK(q); 5837 if (error != NULL) 5838 *error = EINPROGRESS; 5839 return (NULL); 5840 } 5841 } 5842 } 5843 mutex_exit(&ill->ill_lock); 5844 RELEASE_CONN_LOCK(q); 5845 } 5846 rw_exit(&ipst->ips_ill_g_lock); 5847 5848 /* lookup the ipif based on interface address */ 5849 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5850 ipst); 5851 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5852 return (ipif); 5853 } 5854 5855 /* 5856 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5857 */ 5858 static ipif_t * 5859 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5860 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5861 ip_stack_t *ipst) 5862 { 5863 ipif_t *ipif; 5864 ill_t *ill; 5865 boolean_t ptp = B_FALSE; 5866 ipsq_t *ipsq; 5867 ill_walk_context_t ctx; 5868 5869 if (error != NULL) 5870 *error = 0; 5871 5872 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5873 /* 5874 * Repeat twice, first based on local addresses and 5875 * next time for pointopoint. 5876 */ 5877 repeat: 5878 ill = ILL_START_WALK_V4(&ctx, ipst); 5879 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5880 if (match_ill != NULL && ill != match_ill && 5881 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5882 continue; 5883 } 5884 GRAB_CONN_LOCK(q); 5885 mutex_enter(&ill->ill_lock); 5886 for (ipif = ill->ill_ipif; ipif != NULL; 5887 ipif = ipif->ipif_next) { 5888 if (zoneid != ALL_ZONES && 5889 zoneid != ipif->ipif_zoneid && 5890 ipif->ipif_zoneid != ALL_ZONES) 5891 continue; 5892 /* Allow the ipif to be down */ 5893 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5894 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5895 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5896 (ipif->ipif_pp_dst_addr == addr))) { 5897 /* 5898 * The block comment at the start of ipif_down 5899 * explains the use of the macros used below 5900 */ 5901 if (IPIF_CAN_LOOKUP(ipif)) { 5902 ipif_refhold_locked(ipif); 5903 mutex_exit(&ill->ill_lock); 5904 RELEASE_CONN_LOCK(q); 5905 rw_exit(&ipst->ips_ill_g_lock); 5906 return (ipif); 5907 } else if (IPIF_CAN_WAIT(ipif, q)) { 5908 ipsq = ill->ill_phyint->phyint_ipsq; 5909 mutex_enter(&ipsq->ipsq_lock); 5910 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5911 mutex_exit(&ill->ill_lock); 5912 rw_exit(&ipst->ips_ill_g_lock); 5913 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5914 ill); 5915 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5916 mutex_exit(&ipsq->ipsq_lock); 5917 RELEASE_CONN_LOCK(q); 5918 if (error != NULL) 5919 *error = EINPROGRESS; 5920 return (NULL); 5921 } 5922 } 5923 } 5924 mutex_exit(&ill->ill_lock); 5925 RELEASE_CONN_LOCK(q); 5926 } 5927 5928 /* If we already did the ptp case, then we are done */ 5929 if (ptp) { 5930 rw_exit(&ipst->ips_ill_g_lock); 5931 if (error != NULL) 5932 *error = ENXIO; 5933 return (NULL); 5934 } 5935 ptp = B_TRUE; 5936 goto repeat; 5937 } 5938 5939 /* 5940 * Check if the address exists in the system. 5941 * We don't hold the conn_lock as we will not perform defered ipsqueue 5942 * operation. 5943 */ 5944 boolean_t 5945 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5946 { 5947 ipif_t *ipif; 5948 ill_t *ill; 5949 ill_walk_context_t ctx; 5950 5951 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5952 5953 ill = ILL_START_WALK_V4(&ctx, ipst); 5954 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5955 mutex_enter(&ill->ill_lock); 5956 for (ipif = ill->ill_ipif; ipif != NULL; 5957 ipif = ipif->ipif_next) { 5958 if (zoneid != ALL_ZONES && 5959 zoneid != ipif->ipif_zoneid && 5960 ipif->ipif_zoneid != ALL_ZONES) 5961 continue; 5962 /* Allow the ipif to be down */ 5963 /* 5964 * XXX Different from ipif_lookup_addr(), we don't do 5965 * twice lookups. As from bind()'s point of view, we 5966 * may return once we find a match. 5967 */ 5968 if (((ipif->ipif_lcl_addr == addr) && 5969 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5970 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5971 (ipif->ipif_pp_dst_addr == addr))) { 5972 /* 5973 * Allow bind() to be successful even if the 5974 * ipif is with IPIF_CHANGING bit set. 5975 */ 5976 mutex_exit(&ill->ill_lock); 5977 rw_exit(&ipst->ips_ill_g_lock); 5978 return (B_TRUE); 5979 } 5980 } 5981 mutex_exit(&ill->ill_lock); 5982 } 5983 5984 rw_exit(&ipst->ips_ill_g_lock); 5985 return (B_FALSE); 5986 } 5987 5988 /* 5989 * Lookup an ipif with the specified address. For point-to-point links we 5990 * look for matches on either the destination address or the local address, 5991 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5992 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5993 * (or illgrp if `match_ill' is in an IPMP group). 5994 */ 5995 ipif_t * 5996 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5997 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5998 { 5999 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 6000 func, error, ipst)); 6001 } 6002 6003 /* 6004 * Special abbreviated version of ipif_lookup_addr() that doesn't match 6005 * `match_ill' across the IPMP group. This function is only needed in some 6006 * corner-cases; almost everything should use ipif_lookup_addr(). 6007 */ 6008 static ipif_t * 6009 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6010 { 6011 ASSERT(match_ill != NULL); 6012 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 6013 NULL, NULL, NULL, NULL, ipst)); 6014 } 6015 6016 /* 6017 * Look for an ipif with the specified address. For point-point links 6018 * we look for matches on either the destination address and the local 6019 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6020 * is set. 6021 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 6022 * ill (or illgrp if `match_ill' is in an IPMP group). 6023 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6024 */ 6025 zoneid_t 6026 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6027 { 6028 zoneid_t zoneid; 6029 ipif_t *ipif; 6030 ill_t *ill; 6031 boolean_t ptp = B_FALSE; 6032 ill_walk_context_t ctx; 6033 6034 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6035 /* 6036 * Repeat twice, first based on local addresses and 6037 * next time for pointopoint. 6038 */ 6039 repeat: 6040 ill = ILL_START_WALK_V4(&ctx, ipst); 6041 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6042 if (match_ill != NULL && ill != match_ill && 6043 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 6044 continue; 6045 } 6046 mutex_enter(&ill->ill_lock); 6047 for (ipif = ill->ill_ipif; ipif != NULL; 6048 ipif = ipif->ipif_next) { 6049 /* Allow the ipif to be down */ 6050 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6051 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6052 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6053 (ipif->ipif_pp_dst_addr == addr)) && 6054 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6055 zoneid = ipif->ipif_zoneid; 6056 mutex_exit(&ill->ill_lock); 6057 rw_exit(&ipst->ips_ill_g_lock); 6058 /* 6059 * If ipif_zoneid was ALL_ZONES then we have 6060 * a trusted extensions shared IP address. 6061 * In that case GLOBAL_ZONEID works to send. 6062 */ 6063 if (zoneid == ALL_ZONES) 6064 zoneid = GLOBAL_ZONEID; 6065 return (zoneid); 6066 } 6067 } 6068 mutex_exit(&ill->ill_lock); 6069 } 6070 6071 /* If we already did the ptp case, then we are done */ 6072 if (ptp) { 6073 rw_exit(&ipst->ips_ill_g_lock); 6074 return (ALL_ZONES); 6075 } 6076 ptp = B_TRUE; 6077 goto repeat; 6078 } 6079 6080 /* 6081 * Look for an ipif that matches the specified remote address i.e. the 6082 * ipif that would receive the specified packet. 6083 * First look for directly connected interfaces and then do a recursive 6084 * IRE lookup and pick the first ipif corresponding to the source address in the 6085 * ire. 6086 * Returns: held ipif 6087 */ 6088 ipif_t * 6089 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6090 { 6091 ipif_t *ipif; 6092 ire_t *ire; 6093 ip_stack_t *ipst = ill->ill_ipst; 6094 6095 ASSERT(!ill->ill_isv6); 6096 6097 /* 6098 * Someone could be changing this ipif currently or change it 6099 * after we return this. Thus a few packets could use the old 6100 * old values. However structure updates/creates (ire, ilg, ilm etc) 6101 * will atomically be updated or cleaned up with the new value 6102 * Thus we don't need a lock to check the flags or other attrs below. 6103 */ 6104 mutex_enter(&ill->ill_lock); 6105 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6106 if (!IPIF_CAN_LOOKUP(ipif)) 6107 continue; 6108 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6109 ipif->ipif_zoneid != ALL_ZONES) 6110 continue; 6111 /* Allow the ipif to be down */ 6112 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6113 if ((ipif->ipif_pp_dst_addr == addr) || 6114 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6115 ipif->ipif_lcl_addr == addr)) { 6116 ipif_refhold_locked(ipif); 6117 mutex_exit(&ill->ill_lock); 6118 return (ipif); 6119 } 6120 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6121 ipif_refhold_locked(ipif); 6122 mutex_exit(&ill->ill_lock); 6123 return (ipif); 6124 } 6125 } 6126 mutex_exit(&ill->ill_lock); 6127 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6128 NULL, MATCH_IRE_RECURSIVE, ipst); 6129 if (ire != NULL) { 6130 /* 6131 * The callers of this function wants to know the 6132 * interface on which they have to send the replies 6133 * back. For IREs that have ire_stq and ire_ipif 6134 * derived from different ills, we really don't care 6135 * what we return here. 6136 */ 6137 ipif = ire->ire_ipif; 6138 if (ipif != NULL) { 6139 ipif_refhold(ipif); 6140 ire_refrele(ire); 6141 return (ipif); 6142 } 6143 ire_refrele(ire); 6144 } 6145 /* Pick the first interface */ 6146 ipif = ipif_get_next_ipif(NULL, ill); 6147 return (ipif); 6148 } 6149 6150 /* 6151 * This func does not prevent refcnt from increasing. But if 6152 * the caller has taken steps to that effect, then this func 6153 * can be used to determine whether the ill has become quiescent 6154 */ 6155 static boolean_t 6156 ill_is_quiescent(ill_t *ill) 6157 { 6158 ipif_t *ipif; 6159 6160 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6161 6162 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6163 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6164 return (B_FALSE); 6165 } 6166 } 6167 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6168 return (B_FALSE); 6169 } 6170 return (B_TRUE); 6171 } 6172 6173 boolean_t 6174 ill_is_freeable(ill_t *ill) 6175 { 6176 ipif_t *ipif; 6177 6178 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6179 6180 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6181 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6182 return (B_FALSE); 6183 } 6184 } 6185 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6186 return (B_FALSE); 6187 } 6188 return (B_TRUE); 6189 } 6190 6191 /* 6192 * This func does not prevent refcnt from increasing. But if 6193 * the caller has taken steps to that effect, then this func 6194 * can be used to determine whether the ipif has become quiescent 6195 */ 6196 static boolean_t 6197 ipif_is_quiescent(ipif_t *ipif) 6198 { 6199 ill_t *ill; 6200 6201 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6202 6203 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6204 return (B_FALSE); 6205 } 6206 6207 ill = ipif->ipif_ill; 6208 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6209 ill->ill_logical_down) { 6210 return (B_TRUE); 6211 } 6212 6213 /* This is the last ipif going down or being deleted on this ill */ 6214 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6215 return (B_FALSE); 6216 } 6217 6218 return (B_TRUE); 6219 } 6220 6221 /* 6222 * return true if the ipif can be destroyed: the ipif has to be quiescent 6223 * with zero references from ire/nce/ilm to it. 6224 */ 6225 static boolean_t 6226 ipif_is_freeable(ipif_t *ipif) 6227 { 6228 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6229 ASSERT(ipif->ipif_id != 0); 6230 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6231 } 6232 6233 /* 6234 * The ipif/ill/ire has been refreled. Do the tail processing. 6235 * Determine if the ipif or ill in question has become quiescent and if so 6236 * wakeup close and/or restart any queued pending ioctl that is waiting 6237 * for the ipif_down (or ill_down) 6238 */ 6239 void 6240 ipif_ill_refrele_tail(ill_t *ill) 6241 { 6242 mblk_t *mp; 6243 conn_t *connp; 6244 ipsq_t *ipsq; 6245 ipxop_t *ipx; 6246 ipif_t *ipif; 6247 dl_notify_ind_t *dlindp; 6248 6249 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6250 6251 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6252 /* ip_modclose() may be waiting */ 6253 cv_broadcast(&ill->ill_cv); 6254 } 6255 6256 ipsq = ill->ill_phyint->phyint_ipsq; 6257 mutex_enter(&ipsq->ipsq_lock); 6258 ipx = ipsq->ipsq_xop; 6259 mutex_enter(&ipx->ipx_lock); 6260 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6261 goto unlock; 6262 6263 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6264 6265 ipif = ipx->ipx_pending_ipif; 6266 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6267 goto unlock; 6268 6269 switch (ipx->ipx_waitfor) { 6270 case IPIF_DOWN: 6271 if (!ipif_is_quiescent(ipif)) 6272 goto unlock; 6273 break; 6274 case IPIF_FREE: 6275 if (!ipif_is_freeable(ipif)) 6276 goto unlock; 6277 break; 6278 case ILL_DOWN: 6279 if (!ill_is_quiescent(ill)) 6280 goto unlock; 6281 break; 6282 case ILL_FREE: 6283 /* 6284 * ILL_FREE is only for loopback; normal ill teardown waits 6285 * synchronously in ip_modclose() without using ipx_waitfor, 6286 * handled by the cv_broadcast() at the top of this function. 6287 */ 6288 if (!ill_is_freeable(ill)) 6289 goto unlock; 6290 break; 6291 default: 6292 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6293 (void *)ipsq, ipx->ipx_waitfor); 6294 } 6295 6296 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6297 mutex_exit(&ipx->ipx_lock); 6298 mp = ipsq_pending_mp_get(ipsq, &connp); 6299 mutex_exit(&ipsq->ipsq_lock); 6300 mutex_exit(&ill->ill_lock); 6301 6302 ASSERT(mp != NULL); 6303 /* 6304 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6305 * we can only get here when the current operation decides it 6306 * it needs to quiesce via ipsq_pending_mp_add(). 6307 */ 6308 switch (mp->b_datap->db_type) { 6309 case M_PCPROTO: 6310 case M_PROTO: 6311 /* 6312 * For now, only DL_NOTIFY_IND messages can use this facility. 6313 */ 6314 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6315 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6316 6317 switch (dlindp->dl_notification) { 6318 case DL_NOTE_PHYS_ADDR: 6319 qwriter_ip(ill, ill->ill_rq, mp, 6320 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6321 return; 6322 default: 6323 ASSERT(0); 6324 ill_refrele(ill); 6325 } 6326 break; 6327 6328 case M_ERROR: 6329 case M_HANGUP: 6330 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6331 B_TRUE); 6332 return; 6333 6334 case M_IOCTL: 6335 case M_IOCDATA: 6336 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6337 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6338 return; 6339 6340 default: 6341 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6342 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6343 } 6344 return; 6345 unlock: 6346 mutex_exit(&ipsq->ipsq_lock); 6347 mutex_exit(&ipx->ipx_lock); 6348 mutex_exit(&ill->ill_lock); 6349 } 6350 6351 #ifdef DEBUG 6352 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6353 static void 6354 th_trace_rrecord(th_trace_t *th_trace) 6355 { 6356 tr_buf_t *tr_buf; 6357 uint_t lastref; 6358 6359 lastref = th_trace->th_trace_lastref; 6360 lastref++; 6361 if (lastref == TR_BUF_MAX) 6362 lastref = 0; 6363 th_trace->th_trace_lastref = lastref; 6364 tr_buf = &th_trace->th_trbuf[lastref]; 6365 tr_buf->tr_time = lbolt; 6366 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6367 } 6368 6369 static void 6370 th_trace_free(void *value) 6371 { 6372 th_trace_t *th_trace = value; 6373 6374 ASSERT(th_trace->th_refcnt == 0); 6375 kmem_free(th_trace, sizeof (*th_trace)); 6376 } 6377 6378 /* 6379 * Find or create the per-thread hash table used to track object references. 6380 * The ipst argument is NULL if we shouldn't allocate. 6381 * 6382 * Accesses per-thread data, so there's no need to lock here. 6383 */ 6384 static mod_hash_t * 6385 th_trace_gethash(ip_stack_t *ipst) 6386 { 6387 th_hash_t *thh; 6388 6389 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6390 mod_hash_t *mh; 6391 char name[256]; 6392 size_t objsize, rshift; 6393 int retv; 6394 6395 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6396 return (NULL); 6397 (void) snprintf(name, sizeof (name), "th_trace_%p", 6398 (void *)curthread); 6399 6400 /* 6401 * We use mod_hash_create_extended here rather than the more 6402 * obvious mod_hash_create_ptrhash because the latter has a 6403 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6404 * block. 6405 */ 6406 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6407 MAX(sizeof (ire_t), sizeof (nce_t))); 6408 rshift = highbit(objsize); 6409 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6410 th_trace_free, mod_hash_byptr, (void *)rshift, 6411 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6412 if (mh == NULL) { 6413 kmem_free(thh, sizeof (*thh)); 6414 return (NULL); 6415 } 6416 thh->thh_hash = mh; 6417 thh->thh_ipst = ipst; 6418 /* 6419 * We trace ills, ipifs, ires, and nces. All of these are 6420 * per-IP-stack, so the lock on the thread list is as well. 6421 */ 6422 rw_enter(&ip_thread_rwlock, RW_WRITER); 6423 list_insert_tail(&ip_thread_list, thh); 6424 rw_exit(&ip_thread_rwlock); 6425 retv = tsd_set(ip_thread_data, thh); 6426 ASSERT(retv == 0); 6427 } 6428 return (thh != NULL ? thh->thh_hash : NULL); 6429 } 6430 6431 boolean_t 6432 th_trace_ref(const void *obj, ip_stack_t *ipst) 6433 { 6434 th_trace_t *th_trace; 6435 mod_hash_t *mh; 6436 mod_hash_val_t val; 6437 6438 if ((mh = th_trace_gethash(ipst)) == NULL) 6439 return (B_FALSE); 6440 6441 /* 6442 * Attempt to locate the trace buffer for this obj and thread. 6443 * If it does not exist, then allocate a new trace buffer and 6444 * insert into the hash. 6445 */ 6446 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6447 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6448 if (th_trace == NULL) 6449 return (B_FALSE); 6450 6451 th_trace->th_id = curthread; 6452 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6453 (mod_hash_val_t)th_trace) != 0) { 6454 kmem_free(th_trace, sizeof (th_trace_t)); 6455 return (B_FALSE); 6456 } 6457 } else { 6458 th_trace = (th_trace_t *)val; 6459 } 6460 6461 ASSERT(th_trace->th_refcnt >= 0 && 6462 th_trace->th_refcnt < TR_BUF_MAX - 1); 6463 6464 th_trace->th_refcnt++; 6465 th_trace_rrecord(th_trace); 6466 return (B_TRUE); 6467 } 6468 6469 /* 6470 * For the purpose of tracing a reference release, we assume that global 6471 * tracing is always on and that the same thread initiated the reference hold 6472 * is releasing. 6473 */ 6474 void 6475 th_trace_unref(const void *obj) 6476 { 6477 int retv; 6478 mod_hash_t *mh; 6479 th_trace_t *th_trace; 6480 mod_hash_val_t val; 6481 6482 mh = th_trace_gethash(NULL); 6483 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6484 ASSERT(retv == 0); 6485 th_trace = (th_trace_t *)val; 6486 6487 ASSERT(th_trace->th_refcnt > 0); 6488 th_trace->th_refcnt--; 6489 th_trace_rrecord(th_trace); 6490 } 6491 6492 /* 6493 * If tracing has been disabled, then we assume that the reference counts are 6494 * now useless, and we clear them out before destroying the entries. 6495 */ 6496 void 6497 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6498 { 6499 th_hash_t *thh; 6500 mod_hash_t *mh; 6501 mod_hash_val_t val; 6502 th_trace_t *th_trace; 6503 int retv; 6504 6505 rw_enter(&ip_thread_rwlock, RW_READER); 6506 for (thh = list_head(&ip_thread_list); thh != NULL; 6507 thh = list_next(&ip_thread_list, thh)) { 6508 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6509 &val) == 0) { 6510 th_trace = (th_trace_t *)val; 6511 if (trace_disable) 6512 th_trace->th_refcnt = 0; 6513 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6514 ASSERT(retv == 0); 6515 } 6516 } 6517 rw_exit(&ip_thread_rwlock); 6518 } 6519 6520 void 6521 ipif_trace_ref(ipif_t *ipif) 6522 { 6523 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6524 6525 if (ipif->ipif_trace_disable) 6526 return; 6527 6528 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6529 ipif->ipif_trace_disable = B_TRUE; 6530 ipif_trace_cleanup(ipif); 6531 } 6532 } 6533 6534 void 6535 ipif_untrace_ref(ipif_t *ipif) 6536 { 6537 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6538 6539 if (!ipif->ipif_trace_disable) 6540 th_trace_unref(ipif); 6541 } 6542 6543 void 6544 ill_trace_ref(ill_t *ill) 6545 { 6546 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6547 6548 if (ill->ill_trace_disable) 6549 return; 6550 6551 if (!th_trace_ref(ill, ill->ill_ipst)) { 6552 ill->ill_trace_disable = B_TRUE; 6553 ill_trace_cleanup(ill); 6554 } 6555 } 6556 6557 void 6558 ill_untrace_ref(ill_t *ill) 6559 { 6560 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6561 6562 if (!ill->ill_trace_disable) 6563 th_trace_unref(ill); 6564 } 6565 6566 /* 6567 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6568 * failure, ipif_trace_disable is set. 6569 */ 6570 static void 6571 ipif_trace_cleanup(const ipif_t *ipif) 6572 { 6573 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6574 } 6575 6576 /* 6577 * Called when ill is unplumbed or when memory alloc fails. Note that on 6578 * failure, ill_trace_disable is set. 6579 */ 6580 static void 6581 ill_trace_cleanup(const ill_t *ill) 6582 { 6583 th_trace_cleanup(ill, ill->ill_trace_disable); 6584 } 6585 #endif /* DEBUG */ 6586 6587 void 6588 ipif_refhold_locked(ipif_t *ipif) 6589 { 6590 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6591 ipif->ipif_refcnt++; 6592 IPIF_TRACE_REF(ipif); 6593 } 6594 6595 void 6596 ipif_refhold(ipif_t *ipif) 6597 { 6598 ill_t *ill; 6599 6600 ill = ipif->ipif_ill; 6601 mutex_enter(&ill->ill_lock); 6602 ipif->ipif_refcnt++; 6603 IPIF_TRACE_REF(ipif); 6604 mutex_exit(&ill->ill_lock); 6605 } 6606 6607 /* 6608 * Must not be called while holding any locks. Otherwise if this is 6609 * the last reference to be released there is a chance of recursive mutex 6610 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6611 * to restart an ioctl. 6612 */ 6613 void 6614 ipif_refrele(ipif_t *ipif) 6615 { 6616 ill_t *ill; 6617 6618 ill = ipif->ipif_ill; 6619 6620 mutex_enter(&ill->ill_lock); 6621 ASSERT(ipif->ipif_refcnt != 0); 6622 ipif->ipif_refcnt--; 6623 IPIF_UNTRACE_REF(ipif); 6624 if (ipif->ipif_refcnt != 0) { 6625 mutex_exit(&ill->ill_lock); 6626 return; 6627 } 6628 6629 /* Drops the ill_lock */ 6630 ipif_ill_refrele_tail(ill); 6631 } 6632 6633 ipif_t * 6634 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6635 { 6636 ipif_t *ipif; 6637 6638 mutex_enter(&ill->ill_lock); 6639 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6640 ipif != NULL; ipif = ipif->ipif_next) { 6641 if (!IPIF_CAN_LOOKUP(ipif)) 6642 continue; 6643 ipif_refhold_locked(ipif); 6644 mutex_exit(&ill->ill_lock); 6645 return (ipif); 6646 } 6647 mutex_exit(&ill->ill_lock); 6648 return (NULL); 6649 } 6650 6651 /* 6652 * TODO: make this table extendible at run time 6653 * Return a pointer to the mac type info for 'mac_type' 6654 */ 6655 static ip_m_t * 6656 ip_m_lookup(t_uscalar_t mac_type) 6657 { 6658 ip_m_t *ipm; 6659 6660 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6661 if (ipm->ip_m_mac_type == mac_type) 6662 return (ipm); 6663 return (NULL); 6664 } 6665 6666 /* 6667 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6668 * ipif_arg is passed in to associate it with the correct interface. 6669 * We may need to restart this operation if the ipif cannot be looked up 6670 * due to an exclusive operation that is currently in progress. The restart 6671 * entry point is specified by 'func' 6672 */ 6673 int 6674 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6675 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6676 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6677 struct rtsa_s *sp, ip_stack_t *ipst) 6678 { 6679 ire_t *ire; 6680 ire_t *gw_ire = NULL; 6681 ipif_t *ipif = NULL; 6682 boolean_t ipif_refheld = B_FALSE; 6683 uint_t type; 6684 int match_flags = MATCH_IRE_TYPE; 6685 int error; 6686 tsol_gc_t *gc = NULL; 6687 tsol_gcgrp_t *gcgrp = NULL; 6688 boolean_t gcgrp_xtraref = B_FALSE; 6689 6690 ip1dbg(("ip_rt_add:")); 6691 6692 if (ire_arg != NULL) 6693 *ire_arg = NULL; 6694 6695 /* 6696 * If this is the case of RTF_HOST being set, then we set the netmask 6697 * to all ones (regardless if one was supplied). 6698 */ 6699 if (flags & RTF_HOST) 6700 mask = IP_HOST_MASK; 6701 6702 /* 6703 * Prevent routes with a zero gateway from being created (since 6704 * interfaces can currently be plumbed and brought up no assigned 6705 * address). 6706 */ 6707 if (gw_addr == 0) 6708 return (ENETUNREACH); 6709 /* 6710 * Get the ipif, if any, corresponding to the gw_addr 6711 */ 6712 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6713 ipst); 6714 if (ipif != NULL) { 6715 if (IS_VNI(ipif->ipif_ill)) { 6716 ipif_refrele(ipif); 6717 return (EINVAL); 6718 } 6719 ipif_refheld = B_TRUE; 6720 } else if (error == EINPROGRESS) { 6721 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6722 return (EINPROGRESS); 6723 } else { 6724 error = 0; 6725 } 6726 6727 if (ipif != NULL) { 6728 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6729 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6730 } else { 6731 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6732 } 6733 6734 /* 6735 * GateD will attempt to create routes with a loopback interface 6736 * address as the gateway and with RTF_GATEWAY set. We allow 6737 * these routes to be added, but create them as interface routes 6738 * since the gateway is an interface address. 6739 */ 6740 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6741 flags &= ~RTF_GATEWAY; 6742 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6743 mask == IP_HOST_MASK) { 6744 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6745 ALL_ZONES, NULL, match_flags, ipst); 6746 if (ire != NULL) { 6747 ire_refrele(ire); 6748 if (ipif_refheld) 6749 ipif_refrele(ipif); 6750 return (EEXIST); 6751 } 6752 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6753 "for 0x%x\n", (void *)ipif, 6754 ipif->ipif_ire_type, 6755 ntohl(ipif->ipif_lcl_addr))); 6756 ire = ire_create( 6757 (uchar_t *)&dst_addr, /* dest address */ 6758 (uchar_t *)&mask, /* mask */ 6759 (uchar_t *)&ipif->ipif_src_addr, 6760 NULL, /* no gateway */ 6761 &ipif->ipif_mtu, 6762 NULL, 6763 ipif->ipif_rq, /* recv-from queue */ 6764 NULL, /* no send-to queue */ 6765 ipif->ipif_ire_type, /* LOOPBACK */ 6766 ipif, 6767 0, 6768 0, 6769 0, 6770 (ipif->ipif_flags & IPIF_PRIVATE) ? 6771 RTF_PRIVATE : 0, 6772 &ire_uinfo_null, 6773 NULL, 6774 NULL, 6775 ipst); 6776 6777 if (ire == NULL) { 6778 if (ipif_refheld) 6779 ipif_refrele(ipif); 6780 return (ENOMEM); 6781 } 6782 error = ire_add(&ire, q, mp, func, B_FALSE); 6783 if (error == 0) 6784 goto save_ire; 6785 if (ipif_refheld) 6786 ipif_refrele(ipif); 6787 return (error); 6788 6789 } 6790 } 6791 6792 /* 6793 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6794 * and the gateway address provided is one of the system's interface 6795 * addresses. By using the routing socket interface and supplying an 6796 * RTA_IFP sockaddr with an interface index, an alternate method of 6797 * specifying an interface route to be created is available which uses 6798 * the interface index that specifies the outgoing interface rather than 6799 * the address of an outgoing interface (which may not be able to 6800 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6801 * flag, routes can be specified which not only specify the next-hop to 6802 * be used when routing to a certain prefix, but also which outgoing 6803 * interface should be used. 6804 * 6805 * Previously, interfaces would have unique addresses assigned to them 6806 * and so the address assigned to a particular interface could be used 6807 * to identify a particular interface. One exception to this was the 6808 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6809 * 6810 * With the advent of IPv6 and its link-local addresses, this 6811 * restriction was relaxed and interfaces could share addresses between 6812 * themselves. In fact, typically all of the link-local interfaces on 6813 * an IPv6 node or router will have the same link-local address. In 6814 * order to differentiate between these interfaces, the use of an 6815 * interface index is necessary and this index can be carried inside a 6816 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6817 * of using the interface index, however, is that all of the ipif's that 6818 * are part of an ill have the same index and so the RTA_IFP sockaddr 6819 * cannot be used to differentiate between ipif's (or logical 6820 * interfaces) that belong to the same ill (physical interface). 6821 * 6822 * For example, in the following case involving IPv4 interfaces and 6823 * logical interfaces 6824 * 6825 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6826 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6827 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6828 * 6829 * the ipif's corresponding to each of these interface routes can be 6830 * uniquely identified by the "gateway" (actually interface address). 6831 * 6832 * In this case involving multiple IPv6 default routes to a particular 6833 * link-local gateway, the use of RTA_IFP is necessary to specify which 6834 * default route is of interest: 6835 * 6836 * default fe80::123:4567:89ab:cdef U if0 6837 * default fe80::123:4567:89ab:cdef U if1 6838 */ 6839 6840 /* RTF_GATEWAY not set */ 6841 if (!(flags & RTF_GATEWAY)) { 6842 queue_t *stq; 6843 6844 if (sp != NULL) { 6845 ip2dbg(("ip_rt_add: gateway security attributes " 6846 "cannot be set with interface route\n")); 6847 if (ipif_refheld) 6848 ipif_refrele(ipif); 6849 return (EINVAL); 6850 } 6851 6852 /* 6853 * As the interface index specified with the RTA_IFP sockaddr is 6854 * the same for all ipif's off of an ill, the matching logic 6855 * below uses MATCH_IRE_ILL if such an index was specified. 6856 * This means that routes sharing the same prefix when added 6857 * using a RTA_IFP sockaddr must have distinct interface 6858 * indices (namely, they must be on distinct ill's). 6859 * 6860 * On the other hand, since the gateway address will usually be 6861 * different for each ipif on the system, the matching logic 6862 * uses MATCH_IRE_IPIF in the case of a traditional interface 6863 * route. This means that interface routes for the same prefix 6864 * can be created if they belong to distinct ipif's and if a 6865 * RTA_IFP sockaddr is not present. 6866 */ 6867 if (ipif_arg != NULL) { 6868 if (ipif_refheld) { 6869 ipif_refrele(ipif); 6870 ipif_refheld = B_FALSE; 6871 } 6872 ipif = ipif_arg; 6873 match_flags |= MATCH_IRE_ILL; 6874 } else { 6875 /* 6876 * Check the ipif corresponding to the gw_addr 6877 */ 6878 if (ipif == NULL) 6879 return (ENETUNREACH); 6880 match_flags |= MATCH_IRE_IPIF; 6881 } 6882 ASSERT(ipif != NULL); 6883 6884 /* 6885 * We check for an existing entry at this point. 6886 * 6887 * Since a netmask isn't passed in via the ioctl interface 6888 * (SIOCADDRT), we don't check for a matching netmask in that 6889 * case. 6890 */ 6891 if (!ioctl_msg) 6892 match_flags |= MATCH_IRE_MASK; 6893 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6894 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6895 if (ire != NULL) { 6896 ire_refrele(ire); 6897 if (ipif_refheld) 6898 ipif_refrele(ipif); 6899 return (EEXIST); 6900 } 6901 6902 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6903 ? ipif->ipif_rq : ipif->ipif_wq; 6904 6905 /* 6906 * Create a copy of the IRE_LOOPBACK, 6907 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6908 * the modified address and netmask. 6909 */ 6910 ire = ire_create( 6911 (uchar_t *)&dst_addr, 6912 (uint8_t *)&mask, 6913 (uint8_t *)&ipif->ipif_src_addr, 6914 NULL, 6915 &ipif->ipif_mtu, 6916 NULL, 6917 NULL, 6918 stq, 6919 ipif->ipif_net_type, 6920 ipif, 6921 0, 6922 0, 6923 0, 6924 flags, 6925 &ire_uinfo_null, 6926 NULL, 6927 NULL, 6928 ipst); 6929 if (ire == NULL) { 6930 if (ipif_refheld) 6931 ipif_refrele(ipif); 6932 return (ENOMEM); 6933 } 6934 6935 /* 6936 * Some software (for example, GateD and Sun Cluster) attempts 6937 * to create (what amount to) IRE_PREFIX routes with the 6938 * loopback address as the gateway. This is primarily done to 6939 * set up prefixes with the RTF_REJECT flag set (for example, 6940 * when generating aggregate routes.) 6941 * 6942 * If the IRE type (as defined by ipif->ipif_net_type) is 6943 * IRE_LOOPBACK, then we map the request into a 6944 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6945 * these interface routes, by definition, can only be that. 6946 * 6947 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6948 * routine, but rather using ire_create() directly. 6949 * 6950 */ 6951 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6952 ire->ire_type = IRE_IF_NORESOLVER; 6953 ire->ire_flags |= RTF_BLACKHOLE; 6954 } 6955 6956 error = ire_add(&ire, q, mp, func, B_FALSE); 6957 if (error == 0) 6958 goto save_ire; 6959 6960 /* 6961 * In the result of failure, ire_add() will have already 6962 * deleted the ire in question, so there is no need to 6963 * do that here. 6964 */ 6965 if (ipif_refheld) 6966 ipif_refrele(ipif); 6967 return (error); 6968 } 6969 if (ipif_refheld) { 6970 ipif_refrele(ipif); 6971 ipif_refheld = B_FALSE; 6972 } 6973 6974 /* 6975 * Get an interface IRE for the specified gateway. 6976 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6977 * gateway, it is currently unreachable and we fail the request 6978 * accordingly. 6979 */ 6980 ipif = ipif_arg; 6981 if (ipif_arg != NULL) 6982 match_flags |= MATCH_IRE_ILL; 6983 again: 6984 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6985 ALL_ZONES, 0, NULL, match_flags, ipst); 6986 if (gw_ire == NULL) { 6987 /* 6988 * With IPMP, we allow host routes to influence in.mpathd's 6989 * target selection. However, if the test addresses are on 6990 * their own network, the above lookup will fail since the 6991 * underlying IRE_INTERFACEs are marked hidden. So allow 6992 * hidden test IREs to be found and try again. 6993 */ 6994 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6995 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6996 goto again; 6997 } 6998 return (ENETUNREACH); 6999 } 7000 7001 /* 7002 * We create one of three types of IREs as a result of this request 7003 * based on the netmask. A netmask of all ones (which is automatically 7004 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7005 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7006 * created. Otherwise, an IRE_PREFIX route is created for the 7007 * destination prefix. 7008 */ 7009 if (mask == IP_HOST_MASK) 7010 type = IRE_HOST; 7011 else if (mask == 0) 7012 type = IRE_DEFAULT; 7013 else 7014 type = IRE_PREFIX; 7015 7016 /* check for a duplicate entry */ 7017 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7018 NULL, ALL_ZONES, 0, NULL, 7019 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7020 if (ire != NULL) { 7021 ire_refrele(gw_ire); 7022 ire_refrele(ire); 7023 return (EEXIST); 7024 } 7025 7026 /* Security attribute exists */ 7027 if (sp != NULL) { 7028 tsol_gcgrp_addr_t ga; 7029 7030 /* find or create the gateway credentials group */ 7031 ga.ga_af = AF_INET; 7032 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7033 7034 /* we hold reference to it upon success */ 7035 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7036 if (gcgrp == NULL) { 7037 ire_refrele(gw_ire); 7038 return (ENOMEM); 7039 } 7040 7041 /* 7042 * Create and add the security attribute to the group; a 7043 * reference to the group is made upon allocating a new 7044 * entry successfully. If it finds an already-existing 7045 * entry for the security attribute in the group, it simply 7046 * returns it and no new reference is made to the group. 7047 */ 7048 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7049 if (gc == NULL) { 7050 /* release reference held by gcgrp_lookup */ 7051 GCGRP_REFRELE(gcgrp); 7052 ire_refrele(gw_ire); 7053 return (ENOMEM); 7054 } 7055 } 7056 7057 /* Create the IRE. */ 7058 ire = ire_create( 7059 (uchar_t *)&dst_addr, /* dest address */ 7060 (uchar_t *)&mask, /* mask */ 7061 /* src address assigned by the caller? */ 7062 (uchar_t *)(((src_addr != INADDR_ANY) && 7063 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7064 (uchar_t *)&gw_addr, /* gateway address */ 7065 &gw_ire->ire_max_frag, 7066 NULL, /* no src nce */ 7067 NULL, /* no recv-from queue */ 7068 NULL, /* no send-to queue */ 7069 (ushort_t)type, /* IRE type */ 7070 ipif_arg, 7071 0, 7072 0, 7073 0, 7074 flags, 7075 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7076 gc, /* security attribute */ 7077 NULL, 7078 ipst); 7079 7080 /* 7081 * The ire holds a reference to the 'gc' and the 'gc' holds a 7082 * reference to the 'gcgrp'. We can now release the extra reference 7083 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7084 */ 7085 if (gcgrp_xtraref) 7086 GCGRP_REFRELE(gcgrp); 7087 if (ire == NULL) { 7088 if (gc != NULL) 7089 GC_REFRELE(gc); 7090 ire_refrele(gw_ire); 7091 return (ENOMEM); 7092 } 7093 7094 /* 7095 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7096 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7097 */ 7098 7099 /* Add the new IRE. */ 7100 error = ire_add(&ire, q, mp, func, B_FALSE); 7101 if (error != 0) { 7102 /* 7103 * In the result of failure, ire_add() will have already 7104 * deleted the ire in question, so there is no need to 7105 * do that here. 7106 */ 7107 ire_refrele(gw_ire); 7108 return (error); 7109 } 7110 7111 if (flags & RTF_MULTIRT) { 7112 /* 7113 * Invoke the CGTP (multirouting) filtering module 7114 * to add the dst address in the filtering database. 7115 * Replicated inbound packets coming from that address 7116 * will be filtered to discard the duplicates. 7117 * It is not necessary to call the CGTP filter hook 7118 * when the dst address is a broadcast or multicast, 7119 * because an IP source address cannot be a broadcast 7120 * or a multicast. 7121 */ 7122 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7123 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7124 if (ire_dst != NULL) { 7125 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7126 ire_refrele(ire_dst); 7127 goto save_ire; 7128 } 7129 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7130 !CLASSD(ire->ire_addr)) { 7131 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7132 ipst->ips_netstack->netstack_stackid, 7133 ire->ire_addr, 7134 ire->ire_gateway_addr, 7135 ire->ire_src_addr, 7136 gw_ire->ire_src_addr); 7137 if (res != 0) { 7138 ire_refrele(gw_ire); 7139 ire_delete(ire); 7140 return (res); 7141 } 7142 } 7143 } 7144 7145 /* 7146 * Now that the prefix IRE entry has been created, delete any 7147 * existing gateway IRE cache entries as well as any IRE caches 7148 * using the gateway, and force them to be created through 7149 * ip_newroute. 7150 */ 7151 if (gc != NULL) { 7152 ASSERT(gcgrp != NULL); 7153 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7154 } 7155 7156 save_ire: 7157 if (gw_ire != NULL) { 7158 ire_refrele(gw_ire); 7159 } 7160 if (ipif != NULL) { 7161 /* 7162 * Save enough information so that we can recreate the IRE if 7163 * the interface goes down and then up. The metrics associated 7164 * with the route will be saved as well when rts_setmetrics() is 7165 * called after the IRE has been created. In the case where 7166 * memory cannot be allocated, none of this information will be 7167 * saved. 7168 */ 7169 ipif_save_ire(ipif, ire); 7170 } 7171 if (ioctl_msg) 7172 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7173 if (ire_arg != NULL) { 7174 /* 7175 * Store the ire that was successfully added into where ire_arg 7176 * points to so that callers don't have to look it up 7177 * themselves (but they are responsible for ire_refrele()ing 7178 * the ire when they are finished with it). 7179 */ 7180 *ire_arg = ire; 7181 } else { 7182 ire_refrele(ire); /* Held in ire_add */ 7183 } 7184 if (ipif_refheld) 7185 ipif_refrele(ipif); 7186 return (0); 7187 } 7188 7189 /* 7190 * ip_rt_delete is called to delete an IPv4 route. 7191 * ipif_arg is passed in to associate it with the correct interface. 7192 * We may need to restart this operation if the ipif cannot be looked up 7193 * due to an exclusive operation that is currently in progress. The restart 7194 * entry point is specified by 'func' 7195 */ 7196 /* ARGSUSED4 */ 7197 int 7198 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7199 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7200 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7201 { 7202 ire_t *ire = NULL; 7203 ipif_t *ipif; 7204 boolean_t ipif_refheld = B_FALSE; 7205 uint_t type; 7206 uint_t match_flags = MATCH_IRE_TYPE; 7207 int err = 0; 7208 7209 ip1dbg(("ip_rt_delete:")); 7210 /* 7211 * If this is the case of RTF_HOST being set, then we set the netmask 7212 * to all ones. Otherwise, we use the netmask if one was supplied. 7213 */ 7214 if (flags & RTF_HOST) { 7215 mask = IP_HOST_MASK; 7216 match_flags |= MATCH_IRE_MASK; 7217 } else if (rtm_addrs & RTA_NETMASK) { 7218 match_flags |= MATCH_IRE_MASK; 7219 } 7220 7221 /* 7222 * Note that RTF_GATEWAY is never set on a delete, therefore 7223 * we check if the gateway address is one of our interfaces first, 7224 * and fall back on RTF_GATEWAY routes. 7225 * 7226 * This makes it possible to delete an original 7227 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7228 * 7229 * As the interface index specified with the RTA_IFP sockaddr is the 7230 * same for all ipif's off of an ill, the matching logic below uses 7231 * MATCH_IRE_ILL if such an index was specified. This means a route 7232 * sharing the same prefix and interface index as the the route 7233 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7234 * is specified in the request. 7235 * 7236 * On the other hand, since the gateway address will usually be 7237 * different for each ipif on the system, the matching logic 7238 * uses MATCH_IRE_IPIF in the case of a traditional interface 7239 * route. This means that interface routes for the same prefix can be 7240 * uniquely identified if they belong to distinct ipif's and if a 7241 * RTA_IFP sockaddr is not present. 7242 * 7243 * For more detail on specifying routes by gateway address and by 7244 * interface index, see the comments in ip_rt_add(). 7245 */ 7246 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7247 ipst); 7248 if (ipif != NULL) 7249 ipif_refheld = B_TRUE; 7250 else if (err == EINPROGRESS) 7251 return (err); 7252 else 7253 err = 0; 7254 if (ipif != NULL) { 7255 if (ipif_arg != NULL) { 7256 if (ipif_refheld) { 7257 ipif_refrele(ipif); 7258 ipif_refheld = B_FALSE; 7259 } 7260 ipif = ipif_arg; 7261 match_flags |= MATCH_IRE_ILL; 7262 } else { 7263 match_flags |= MATCH_IRE_IPIF; 7264 } 7265 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7266 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7267 ALL_ZONES, NULL, match_flags, ipst); 7268 } 7269 if (ire == NULL) { 7270 ire = ire_ftable_lookup(dst_addr, mask, 0, 7271 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7272 match_flags, ipst); 7273 } 7274 } 7275 7276 if (ire == NULL) { 7277 /* 7278 * At this point, the gateway address is not one of our own 7279 * addresses or a matching interface route was not found. We 7280 * set the IRE type to lookup based on whether 7281 * this is a host route, a default route or just a prefix. 7282 * 7283 * If an ipif_arg was passed in, then the lookup is based on an 7284 * interface index so MATCH_IRE_ILL is added to match_flags. 7285 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7286 * set as the route being looked up is not a traditional 7287 * interface route. 7288 */ 7289 match_flags &= ~MATCH_IRE_IPIF; 7290 match_flags |= MATCH_IRE_GW; 7291 if (ipif_arg != NULL) 7292 match_flags |= MATCH_IRE_ILL; 7293 if (mask == IP_HOST_MASK) 7294 type = IRE_HOST; 7295 else if (mask == 0) 7296 type = IRE_DEFAULT; 7297 else 7298 type = IRE_PREFIX; 7299 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7300 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7301 } 7302 7303 if (ipif_refheld) 7304 ipif_refrele(ipif); 7305 7306 /* ipif is not refheld anymore */ 7307 if (ire == NULL) 7308 return (ESRCH); 7309 7310 if (ire->ire_flags & RTF_MULTIRT) { 7311 /* 7312 * Invoke the CGTP (multirouting) filtering module 7313 * to remove the dst address from the filtering database. 7314 * Packets coming from that address will no longer be 7315 * filtered to remove duplicates. 7316 */ 7317 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7318 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7319 ipst->ips_netstack->netstack_stackid, 7320 ire->ire_addr, ire->ire_gateway_addr); 7321 } 7322 ip_cgtp_bcast_delete(ire, ipst); 7323 } 7324 7325 ipif = ire->ire_ipif; 7326 if (ipif != NULL) 7327 ipif_remove_ire(ipif, ire); 7328 if (ioctl_msg) 7329 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7330 ire_delete(ire); 7331 ire_refrele(ire); 7332 return (err); 7333 } 7334 7335 /* 7336 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7337 */ 7338 /* ARGSUSED */ 7339 int 7340 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7341 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7342 { 7343 ipaddr_t dst_addr; 7344 ipaddr_t gw_addr; 7345 ipaddr_t mask; 7346 int error = 0; 7347 mblk_t *mp1; 7348 struct rtentry *rt; 7349 ipif_t *ipif = NULL; 7350 ip_stack_t *ipst; 7351 7352 ASSERT(q->q_next == NULL); 7353 ipst = CONNQ_TO_IPST(q); 7354 7355 ip1dbg(("ip_siocaddrt:")); 7356 /* Existence of mp1 verified in ip_wput_nondata */ 7357 mp1 = mp->b_cont->b_cont; 7358 rt = (struct rtentry *)mp1->b_rptr; 7359 7360 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7361 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7362 7363 /* 7364 * If the RTF_HOST flag is on, this is a request to assign a gateway 7365 * to a particular host address. In this case, we set the netmask to 7366 * all ones for the particular destination address. Otherwise, 7367 * determine the netmask to be used based on dst_addr and the interfaces 7368 * in use. 7369 */ 7370 if (rt->rt_flags & RTF_HOST) { 7371 mask = IP_HOST_MASK; 7372 } else { 7373 /* 7374 * Note that ip_subnet_mask returns a zero mask in the case of 7375 * default (an all-zeroes address). 7376 */ 7377 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7378 } 7379 7380 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7381 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7382 if (ipif != NULL) 7383 ipif_refrele(ipif); 7384 return (error); 7385 } 7386 7387 /* 7388 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7389 */ 7390 /* ARGSUSED */ 7391 int 7392 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7393 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7394 { 7395 ipaddr_t dst_addr; 7396 ipaddr_t gw_addr; 7397 ipaddr_t mask; 7398 int error; 7399 mblk_t *mp1; 7400 struct rtentry *rt; 7401 ipif_t *ipif = NULL; 7402 ip_stack_t *ipst; 7403 7404 ASSERT(q->q_next == NULL); 7405 ipst = CONNQ_TO_IPST(q); 7406 7407 ip1dbg(("ip_siocdelrt:")); 7408 /* Existence of mp1 verified in ip_wput_nondata */ 7409 mp1 = mp->b_cont->b_cont; 7410 rt = (struct rtentry *)mp1->b_rptr; 7411 7412 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7413 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7414 7415 /* 7416 * If the RTF_HOST flag is on, this is a request to delete a gateway 7417 * to a particular host address. In this case, we set the netmask to 7418 * all ones for the particular destination address. Otherwise, 7419 * determine the netmask to be used based on dst_addr and the interfaces 7420 * in use. 7421 */ 7422 if (rt->rt_flags & RTF_HOST) { 7423 mask = IP_HOST_MASK; 7424 } else { 7425 /* 7426 * Note that ip_subnet_mask returns a zero mask in the case of 7427 * default (an all-zeroes address). 7428 */ 7429 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7430 } 7431 7432 error = ip_rt_delete(dst_addr, mask, gw_addr, 7433 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7434 mp, ip_process_ioctl, ipst); 7435 if (ipif != NULL) 7436 ipif_refrele(ipif); 7437 return (error); 7438 } 7439 7440 /* 7441 * Enqueue the mp onto the ipsq, chained by b_next. 7442 * b_prev stores the function to be executed later, and b_queue the queue 7443 * where this mp originated. 7444 */ 7445 void 7446 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7447 ill_t *pending_ill) 7448 { 7449 conn_t *connp; 7450 ipxop_t *ipx = ipsq->ipsq_xop; 7451 7452 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7453 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7454 ASSERT(func != NULL); 7455 7456 mp->b_queue = q; 7457 mp->b_prev = (void *)func; 7458 mp->b_next = NULL; 7459 7460 switch (type) { 7461 case CUR_OP: 7462 if (ipx->ipx_mptail != NULL) { 7463 ASSERT(ipx->ipx_mphead != NULL); 7464 ipx->ipx_mptail->b_next = mp; 7465 } else { 7466 ASSERT(ipx->ipx_mphead == NULL); 7467 ipx->ipx_mphead = mp; 7468 } 7469 ipx->ipx_mptail = mp; 7470 break; 7471 7472 case NEW_OP: 7473 if (ipsq->ipsq_xopq_mptail != NULL) { 7474 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7475 ipsq->ipsq_xopq_mptail->b_next = mp; 7476 } else { 7477 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7478 ipsq->ipsq_xopq_mphead = mp; 7479 } 7480 ipsq->ipsq_xopq_mptail = mp; 7481 ipx->ipx_ipsq_queued = B_TRUE; 7482 break; 7483 7484 case SWITCH_OP: 7485 ASSERT(ipsq->ipsq_swxop != NULL); 7486 /* only one switch operation is currently allowed */ 7487 ASSERT(ipsq->ipsq_switch_mp == NULL); 7488 ipsq->ipsq_switch_mp = mp; 7489 ipx->ipx_ipsq_queued = B_TRUE; 7490 break; 7491 default: 7492 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7493 } 7494 7495 if (CONN_Q(q) && pending_ill != NULL) { 7496 connp = Q_TO_CONN(q); 7497 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7498 connp->conn_oper_pending_ill = pending_ill; 7499 } 7500 } 7501 7502 /* 7503 * Dequeue the next message that requested exclusive access to this IPSQ's 7504 * xop. Specifically: 7505 * 7506 * 1. If we're still processing the current operation on `ipsq', then 7507 * dequeue the next message for the operation (from ipx_mphead), or 7508 * return NULL if there are no queued messages for the operation. 7509 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7510 * 7511 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7512 * not set) see if the ipsq has requested an xop switch. If so, switch 7513 * `ipsq' to a different xop. Xop switches only happen when joining or 7514 * leaving IPMP groups and require a careful dance -- see the comments 7515 * in-line below for details. If we're leaving a group xop or if we're 7516 * joining a group xop and become writer on it, then we proceed to (3). 7517 * Otherwise, we return NULL and exit the xop. 7518 * 7519 * 3. For each IPSQ in the xop, return any switch operation stored on 7520 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7521 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7522 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7523 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7524 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7525 * each phyint in the group, including the IPMP meta-interface phyint. 7526 */ 7527 static mblk_t * 7528 ipsq_dq(ipsq_t *ipsq) 7529 { 7530 ill_t *illv4, *illv6; 7531 mblk_t *mp; 7532 ipsq_t *xopipsq; 7533 ipsq_t *leftipsq = NULL; 7534 ipxop_t *ipx; 7535 phyint_t *phyi = ipsq->ipsq_phyint; 7536 ip_stack_t *ipst = ipsq->ipsq_ipst; 7537 boolean_t emptied = B_FALSE; 7538 7539 /* 7540 * Grab all the locks we need in the defined order (ill_g_lock -> 7541 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7542 */ 7543 rw_enter(&ipst->ips_ill_g_lock, 7544 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7545 mutex_enter(&ipsq->ipsq_lock); 7546 ipx = ipsq->ipsq_xop; 7547 mutex_enter(&ipx->ipx_lock); 7548 7549 /* 7550 * Dequeue the next message associated with the current exclusive 7551 * operation, if any. 7552 */ 7553 if ((mp = ipx->ipx_mphead) != NULL) { 7554 ipx->ipx_mphead = mp->b_next; 7555 if (ipx->ipx_mphead == NULL) 7556 ipx->ipx_mptail = NULL; 7557 mp->b_next = (void *)ipsq; 7558 goto out; 7559 } 7560 7561 if (ipx->ipx_current_ipif != NULL) 7562 goto empty; 7563 7564 if (ipsq->ipsq_swxop != NULL) { 7565 /* 7566 * The exclusive operation that is now being completed has 7567 * requested a switch to a different xop. This happens 7568 * when an interface joins or leaves an IPMP group. Joins 7569 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7570 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7571 * (phyint_free()), or interface plumb for an ill type 7572 * not in the IPMP group (ip_rput_dlpi_writer()). 7573 * 7574 * Xop switches are not allowed on the IPMP meta-interface. 7575 */ 7576 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7577 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7578 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7579 7580 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7581 /* 7582 * We're switching back to our own xop, so we have two 7583 * xop's to drain/exit: our own, and the group xop 7584 * that we are leaving. 7585 * 7586 * First, pull ourselves out of the group ipsq list. 7587 * This is safe since we're writer on ill_g_lock. 7588 */ 7589 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7590 7591 xopipsq = ipx->ipx_ipsq; 7592 while (xopipsq->ipsq_next != ipsq) 7593 xopipsq = xopipsq->ipsq_next; 7594 7595 xopipsq->ipsq_next = ipsq->ipsq_next; 7596 ipsq->ipsq_next = ipsq; 7597 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7598 ipsq->ipsq_swxop = NULL; 7599 7600 /* 7601 * Second, prepare to exit the group xop. The actual 7602 * ipsq_exit() is done at the end of this function 7603 * since we cannot hold any locks across ipsq_exit(). 7604 * Note that although we drop the group's ipx_lock, no 7605 * threads can proceed since we're still ipx_writer. 7606 */ 7607 leftipsq = xopipsq; 7608 mutex_exit(&ipx->ipx_lock); 7609 7610 /* 7611 * Third, set ipx to point to our own xop (which was 7612 * inactive and therefore can be entered). 7613 */ 7614 ipx = ipsq->ipsq_xop; 7615 mutex_enter(&ipx->ipx_lock); 7616 ASSERT(ipx->ipx_writer == NULL); 7617 ASSERT(ipx->ipx_current_ipif == NULL); 7618 } else { 7619 /* 7620 * We're switching from our own xop to a group xop. 7621 * The requestor of the switch must ensure that the 7622 * group xop cannot go away (e.g. by ensuring the 7623 * phyint associated with the xop cannot go away). 7624 * 7625 * If we can become writer on our new xop, then we'll 7626 * do the drain. Otherwise, the current writer of our 7627 * new xop will do the drain when it exits. 7628 * 7629 * First, splice ourselves into the group IPSQ list. 7630 * This is safe since we're writer on ill_g_lock. 7631 */ 7632 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7633 7634 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7635 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7636 xopipsq = xopipsq->ipsq_next; 7637 7638 xopipsq->ipsq_next = ipsq; 7639 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7640 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7641 ipsq->ipsq_swxop = NULL; 7642 7643 /* 7644 * Second, exit our own xop, since it's now unused. 7645 * This is safe since we've got the only reference. 7646 */ 7647 ASSERT(ipx->ipx_writer == curthread); 7648 ipx->ipx_writer = NULL; 7649 VERIFY(--ipx->ipx_reentry_cnt == 0); 7650 ipx->ipx_ipsq_queued = B_FALSE; 7651 mutex_exit(&ipx->ipx_lock); 7652 7653 /* 7654 * Third, set ipx to point to our new xop, and check 7655 * if we can become writer on it. If we cannot, then 7656 * the current writer will drain the IPSQ group when 7657 * it exits. Our ipsq_xop is guaranteed to be stable 7658 * because we're still holding ipsq_lock. 7659 */ 7660 ipx = ipsq->ipsq_xop; 7661 mutex_enter(&ipx->ipx_lock); 7662 if (ipx->ipx_writer != NULL || 7663 ipx->ipx_current_ipif != NULL) { 7664 goto out; 7665 } 7666 } 7667 7668 /* 7669 * Fourth, become writer on our new ipx before we continue 7670 * with the drain. Note that we never dropped ipsq_lock 7671 * above, so no other thread could've raced with us to 7672 * become writer first. Also, we're holding ipx_lock, so 7673 * no other thread can examine the ipx right now. 7674 */ 7675 ASSERT(ipx->ipx_current_ipif == NULL); 7676 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7677 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7678 ipx->ipx_writer = curthread; 7679 ipx->ipx_forced = B_FALSE; 7680 #ifdef DEBUG 7681 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7682 #endif 7683 } 7684 7685 xopipsq = ipsq; 7686 do { 7687 /* 7688 * So that other operations operate on a consistent and 7689 * complete phyint, a switch message on an IPSQ must be 7690 * handled prior to any other operations on that IPSQ. 7691 */ 7692 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7693 xopipsq->ipsq_switch_mp = NULL; 7694 ASSERT(mp->b_next == NULL); 7695 mp->b_next = (void *)xopipsq; 7696 goto out; 7697 } 7698 7699 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7700 xopipsq->ipsq_xopq_mphead = mp->b_next; 7701 if (xopipsq->ipsq_xopq_mphead == NULL) 7702 xopipsq->ipsq_xopq_mptail = NULL; 7703 mp->b_next = (void *)xopipsq; 7704 goto out; 7705 } 7706 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7707 empty: 7708 /* 7709 * There are no messages. Further, we are holding ipx_lock, hence no 7710 * new messages can end up on any IPSQ in the xop. 7711 */ 7712 ipx->ipx_writer = NULL; 7713 ipx->ipx_forced = B_FALSE; 7714 VERIFY(--ipx->ipx_reentry_cnt == 0); 7715 ipx->ipx_ipsq_queued = B_FALSE; 7716 emptied = B_TRUE; 7717 #ifdef DEBUG 7718 ipx->ipx_depth = 0; 7719 #endif 7720 out: 7721 mutex_exit(&ipx->ipx_lock); 7722 mutex_exit(&ipsq->ipsq_lock); 7723 7724 /* 7725 * If we completely emptied the xop, then wake up any threads waiting 7726 * to enter any of the IPSQ's associated with it. 7727 */ 7728 if (emptied) { 7729 xopipsq = ipsq; 7730 do { 7731 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7732 continue; 7733 7734 illv4 = phyi->phyint_illv4; 7735 illv6 = phyi->phyint_illv6; 7736 7737 GRAB_ILL_LOCKS(illv4, illv6); 7738 if (illv4 != NULL) 7739 cv_broadcast(&illv4->ill_cv); 7740 if (illv6 != NULL) 7741 cv_broadcast(&illv6->ill_cv); 7742 RELEASE_ILL_LOCKS(illv4, illv6); 7743 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7744 } 7745 rw_exit(&ipst->ips_ill_g_lock); 7746 7747 /* 7748 * Now that all locks are dropped, exit the IPSQ we left. 7749 */ 7750 if (leftipsq != NULL) 7751 ipsq_exit(leftipsq); 7752 7753 return (mp); 7754 } 7755 7756 /* 7757 * Enter the ipsq corresponding to ill, by waiting synchronously till 7758 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7759 * will have to drain completely before ipsq_enter returns success. 7760 * ipx_current_ipif will be set if some exclusive op is in progress, 7761 * and the ipsq_exit logic will start the next enqueued op after 7762 * completion of the current op. If 'force' is used, we don't wait 7763 * for the enqueued ops. This is needed when a conn_close wants to 7764 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7765 * of an ill can also use this option. But we dont' use it currently. 7766 */ 7767 #define ENTER_SQ_WAIT_TICKS 100 7768 boolean_t 7769 ipsq_enter(ill_t *ill, boolean_t force, int type) 7770 { 7771 ipsq_t *ipsq; 7772 ipxop_t *ipx; 7773 boolean_t waited_enough = B_FALSE; 7774 7775 /* 7776 * Note that the relationship between ill and ipsq is fixed as long as 7777 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7778 * relationship between the IPSQ and xop cannot change. However, 7779 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7780 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7781 * waking up all ills in the xop when it becomes available. 7782 */ 7783 mutex_enter(&ill->ill_lock); 7784 for (;;) { 7785 if (ill->ill_state_flags & ILL_CONDEMNED) { 7786 mutex_exit(&ill->ill_lock); 7787 return (B_FALSE); 7788 } 7789 7790 ipsq = ill->ill_phyint->phyint_ipsq; 7791 mutex_enter(&ipsq->ipsq_lock); 7792 ipx = ipsq->ipsq_xop; 7793 mutex_enter(&ipx->ipx_lock); 7794 7795 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7796 ipx->ipx_current_ipif == NULL || waited_enough)) 7797 break; 7798 7799 if (!force || ipx->ipx_writer != NULL) { 7800 mutex_exit(&ipx->ipx_lock); 7801 mutex_exit(&ipsq->ipsq_lock); 7802 cv_wait(&ill->ill_cv, &ill->ill_lock); 7803 } else { 7804 mutex_exit(&ipx->ipx_lock); 7805 mutex_exit(&ipsq->ipsq_lock); 7806 (void) cv_timedwait(&ill->ill_cv, 7807 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7808 waited_enough = B_TRUE; 7809 } 7810 } 7811 7812 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7813 ASSERT(ipx->ipx_reentry_cnt == 0); 7814 ipx->ipx_writer = curthread; 7815 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7816 ipx->ipx_reentry_cnt++; 7817 #ifdef DEBUG 7818 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7819 #endif 7820 mutex_exit(&ipx->ipx_lock); 7821 mutex_exit(&ipsq->ipsq_lock); 7822 mutex_exit(&ill->ill_lock); 7823 return (B_TRUE); 7824 } 7825 7826 boolean_t 7827 ill_perim_enter(ill_t *ill) 7828 { 7829 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7830 } 7831 7832 void 7833 ill_perim_exit(ill_t *ill) 7834 { 7835 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7836 } 7837 7838 /* 7839 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7840 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7841 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7842 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7843 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7844 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7845 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7846 * up the interface) and are enqueued in ipx_mphead. 7847 * 7848 * If a thread does not want to reenter the ipsq when it is already writer, 7849 * it must make sure that the specified reentry point to be called later 7850 * when the ipsq is empty, nor any code path starting from the specified reentry 7851 * point must never ever try to enter the ipsq again. Otherwise it can lead 7852 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7853 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7854 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7855 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7856 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7857 * ioctl if the current ioctl has completed. If the current ioctl is still 7858 * in progress it simply returns. The current ioctl could be waiting for 7859 * a response from another module (arp or the driver or could be waiting for 7860 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7861 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7862 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7863 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7864 * all associated DLPI operations have completed. 7865 */ 7866 7867 /* 7868 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7869 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7870 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7871 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7872 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7873 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7874 */ 7875 ipsq_t * 7876 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7877 ipsq_func_t func, int type, boolean_t reentry_ok) 7878 { 7879 ipsq_t *ipsq; 7880 ipxop_t *ipx; 7881 7882 /* Only 1 of ipif or ill can be specified */ 7883 ASSERT((ipif != NULL) ^ (ill != NULL)); 7884 if (ipif != NULL) 7885 ill = ipif->ipif_ill; 7886 7887 /* 7888 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7889 * ipx of an ipsq can't change when ipsq_lock is held. 7890 */ 7891 GRAB_CONN_LOCK(q); 7892 mutex_enter(&ill->ill_lock); 7893 ipsq = ill->ill_phyint->phyint_ipsq; 7894 mutex_enter(&ipsq->ipsq_lock); 7895 ipx = ipsq->ipsq_xop; 7896 mutex_enter(&ipx->ipx_lock); 7897 7898 /* 7899 * 1. Enter the ipsq if we are already writer and reentry is ok. 7900 * (Note: If the caller does not specify reentry_ok then neither 7901 * 'func' nor any of its callees must ever attempt to enter the ipsq 7902 * again. Otherwise it can lead to an infinite loop 7903 * 2. Enter the ipsq if there is no current writer and this attempted 7904 * entry is part of the current operation 7905 * 3. Enter the ipsq if there is no current writer and this is a new 7906 * operation and the operation queue is empty and there is no 7907 * operation currently in progress 7908 */ 7909 if ((ipx->ipx_writer == curthread && reentry_ok) || 7910 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7911 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7912 /* Success. */ 7913 ipx->ipx_reentry_cnt++; 7914 ipx->ipx_writer = curthread; 7915 ipx->ipx_forced = B_FALSE; 7916 mutex_exit(&ipx->ipx_lock); 7917 mutex_exit(&ipsq->ipsq_lock); 7918 mutex_exit(&ill->ill_lock); 7919 RELEASE_CONN_LOCK(q); 7920 #ifdef DEBUG 7921 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7922 #endif 7923 return (ipsq); 7924 } 7925 7926 if (func != NULL) 7927 ipsq_enq(ipsq, q, mp, func, type, ill); 7928 7929 mutex_exit(&ipx->ipx_lock); 7930 mutex_exit(&ipsq->ipsq_lock); 7931 mutex_exit(&ill->ill_lock); 7932 RELEASE_CONN_LOCK(q); 7933 return (NULL); 7934 } 7935 7936 /* 7937 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7938 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7939 * cannot be entered, the mp is queued for completion. 7940 */ 7941 void 7942 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7943 boolean_t reentry_ok) 7944 { 7945 ipsq_t *ipsq; 7946 7947 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7948 7949 /* 7950 * Drop the caller's refhold on the ill. This is safe since we either 7951 * entered the IPSQ (and thus are exclusive), or failed to enter the 7952 * IPSQ, in which case we return without accessing ill anymore. This 7953 * is needed because func needs to see the correct refcount. 7954 * e.g. removeif can work only then. 7955 */ 7956 ill_refrele(ill); 7957 if (ipsq != NULL) { 7958 (*func)(ipsq, q, mp, NULL); 7959 ipsq_exit(ipsq); 7960 } 7961 } 7962 7963 /* 7964 * Exit the specified IPSQ. If this is the final exit on it then drain it 7965 * prior to exiting. Caller must be writer on the specified IPSQ. 7966 */ 7967 void 7968 ipsq_exit(ipsq_t *ipsq) 7969 { 7970 mblk_t *mp; 7971 ipsq_t *mp_ipsq; 7972 queue_t *q; 7973 phyint_t *phyi; 7974 ipsq_func_t func; 7975 7976 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7977 7978 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7979 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7980 ipsq->ipsq_xop->ipx_reentry_cnt--; 7981 return; 7982 } 7983 7984 for (;;) { 7985 phyi = ipsq->ipsq_phyint; 7986 mp = ipsq_dq(ipsq); 7987 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7988 7989 /* 7990 * If we've changed to a new IPSQ, and the phyint associated 7991 * with the old one has gone away, free the old IPSQ. Note 7992 * that this cannot happen while the IPSQ is in a group. 7993 */ 7994 if (mp_ipsq != ipsq && phyi == NULL) { 7995 ASSERT(ipsq->ipsq_next == ipsq); 7996 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7997 ipsq_delete(ipsq); 7998 } 7999 8000 if (mp == NULL) 8001 break; 8002 8003 q = mp->b_queue; 8004 func = (ipsq_func_t)mp->b_prev; 8005 ipsq = mp_ipsq; 8006 mp->b_next = mp->b_prev = NULL; 8007 mp->b_queue = NULL; 8008 8009 /* 8010 * If 'q' is an conn queue, it is valid, since we did a 8011 * a refhold on the conn at the start of the ioctl. 8012 * If 'q' is an ill queue, it is valid, since close of an 8013 * ill will clean up its IPSQ. 8014 */ 8015 (*func)(ipsq, q, mp, NULL); 8016 } 8017 } 8018 8019 /* 8020 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8021 * and `ioccmd'. 8022 */ 8023 void 8024 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8025 { 8026 ipxop_t *ipx = ipsq->ipsq_xop; 8027 8028 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8029 ASSERT(ipx->ipx_current_ipif == NULL); 8030 ASSERT(ipx->ipx_current_ioctl == 0); 8031 8032 ipx->ipx_current_done = B_FALSE; 8033 ipx->ipx_current_ioctl = ioccmd; 8034 mutex_enter(&ipx->ipx_lock); 8035 ipx->ipx_current_ipif = ipif; 8036 mutex_exit(&ipx->ipx_lock); 8037 } 8038 8039 /* 8040 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8041 * the next exclusive operation to begin once we ipsq_exit(). However, if 8042 * pending DLPI operations remain, then we will wait for the queue to drain 8043 * before allowing the next exclusive operation to begin. This ensures that 8044 * DLPI operations from one exclusive operation are never improperly processed 8045 * as part of a subsequent exclusive operation. 8046 */ 8047 void 8048 ipsq_current_finish(ipsq_t *ipsq) 8049 { 8050 ipxop_t *ipx = ipsq->ipsq_xop; 8051 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8052 ipif_t *ipif = ipx->ipx_current_ipif; 8053 8054 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8055 8056 /* 8057 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 8058 * (but in that case, IPIF_CHANGING will already be clear and no 8059 * pending DLPI messages can remain). 8060 */ 8061 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 8062 ill_t *ill = ipif->ipif_ill; 8063 8064 mutex_enter(&ill->ill_lock); 8065 dlpi_pending = ill->ill_dlpi_pending; 8066 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8067 mutex_exit(&ill->ill_lock); 8068 } 8069 8070 ASSERT(!ipx->ipx_current_done); 8071 ipx->ipx_current_done = B_TRUE; 8072 ipx->ipx_current_ioctl = 0; 8073 if (dlpi_pending == DL_PRIM_INVAL) { 8074 mutex_enter(&ipx->ipx_lock); 8075 ipx->ipx_current_ipif = NULL; 8076 mutex_exit(&ipx->ipx_lock); 8077 } 8078 } 8079 8080 /* 8081 * The ill is closing. Flush all messages on the ipsq that originated 8082 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8083 * for this ill since ipsq_enter could not have entered until then. 8084 * New messages can't be queued since the CONDEMNED flag is set. 8085 */ 8086 static void 8087 ipsq_flush(ill_t *ill) 8088 { 8089 queue_t *q; 8090 mblk_t *prev; 8091 mblk_t *mp; 8092 mblk_t *mp_next; 8093 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8094 8095 ASSERT(IAM_WRITER_ILL(ill)); 8096 8097 /* 8098 * Flush any messages sent up by the driver. 8099 */ 8100 mutex_enter(&ipx->ipx_lock); 8101 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8102 mp_next = mp->b_next; 8103 q = mp->b_queue; 8104 if (q == ill->ill_rq || q == ill->ill_wq) { 8105 /* dequeue mp */ 8106 if (prev == NULL) 8107 ipx->ipx_mphead = mp->b_next; 8108 else 8109 prev->b_next = mp->b_next; 8110 if (ipx->ipx_mptail == mp) { 8111 ASSERT(mp_next == NULL); 8112 ipx->ipx_mptail = prev; 8113 } 8114 inet_freemsg(mp); 8115 } else { 8116 prev = mp; 8117 } 8118 } 8119 mutex_exit(&ipx->ipx_lock); 8120 (void) ipsq_pending_mp_cleanup(ill, NULL); 8121 ipsq_xopq_mp_cleanup(ill, NULL); 8122 ill_pending_mp_cleanup(ill); 8123 } 8124 8125 /* 8126 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8127 * refhold and return the associated ipif 8128 */ 8129 /* ARGSUSED */ 8130 int 8131 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8132 cmd_info_t *ci, ipsq_func_t func) 8133 { 8134 boolean_t exists; 8135 struct iftun_req *ta; 8136 ipif_t *ipif; 8137 ill_t *ill; 8138 boolean_t isv6; 8139 mblk_t *mp1; 8140 int error; 8141 conn_t *connp; 8142 ip_stack_t *ipst; 8143 8144 /* Existence verified in ip_wput_nondata */ 8145 mp1 = mp->b_cont->b_cont; 8146 ta = (struct iftun_req *)mp1->b_rptr; 8147 /* 8148 * Null terminate the string to protect against buffer 8149 * overrun. String was generated by user code and may not 8150 * be trusted. 8151 */ 8152 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8153 8154 connp = Q_TO_CONN(q); 8155 isv6 = connp->conn_af_isv6; 8156 ipst = connp->conn_netstack->netstack_ip; 8157 8158 /* Disallows implicit create */ 8159 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8160 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8161 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8162 if (ipif == NULL) 8163 return (error); 8164 8165 if (ipif->ipif_id != 0) { 8166 /* 8167 * We really don't want to set/get tunnel parameters 8168 * on virtual tunnel interfaces. Only allow the 8169 * base tunnel to do these. 8170 */ 8171 ipif_refrele(ipif); 8172 return (EINVAL); 8173 } 8174 8175 /* 8176 * Send down to tunnel mod for ioctl processing. 8177 * Will finish ioctl in ip_rput_other(). 8178 */ 8179 ill = ipif->ipif_ill; 8180 if (ill->ill_net_type == IRE_LOOPBACK) { 8181 ipif_refrele(ipif); 8182 return (EOPNOTSUPP); 8183 } 8184 8185 if (ill->ill_wq == NULL) { 8186 ipif_refrele(ipif); 8187 return (ENXIO); 8188 } 8189 /* 8190 * Mark the ioctl as coming from an IPv6 interface for 8191 * tun's convenience. 8192 */ 8193 if (ill->ill_isv6) 8194 ta->ifta_flags |= 0x80000000; 8195 ci->ci_ipif = ipif; 8196 return (0); 8197 } 8198 8199 /* 8200 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8201 * and return the associated ipif. 8202 * Return value: 8203 * Non zero: An error has occurred. ci may not be filled out. 8204 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8205 * a held ipif in ci.ci_ipif. 8206 */ 8207 int 8208 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8209 cmd_info_t *ci, ipsq_func_t func) 8210 { 8211 char *name; 8212 struct ifreq *ifr; 8213 struct lifreq *lifr; 8214 ipif_t *ipif = NULL; 8215 ill_t *ill; 8216 conn_t *connp; 8217 boolean_t isv6; 8218 boolean_t exists; 8219 int err; 8220 mblk_t *mp1; 8221 zoneid_t zoneid; 8222 ip_stack_t *ipst; 8223 8224 if (q->q_next != NULL) { 8225 ill = (ill_t *)q->q_ptr; 8226 isv6 = ill->ill_isv6; 8227 connp = NULL; 8228 zoneid = ALL_ZONES; 8229 ipst = ill->ill_ipst; 8230 } else { 8231 ill = NULL; 8232 connp = Q_TO_CONN(q); 8233 isv6 = connp->conn_af_isv6; 8234 zoneid = connp->conn_zoneid; 8235 if (zoneid == GLOBAL_ZONEID) { 8236 /* global zone can access ipifs in all zones */ 8237 zoneid = ALL_ZONES; 8238 } 8239 ipst = connp->conn_netstack->netstack_ip; 8240 } 8241 8242 /* Has been checked in ip_wput_nondata */ 8243 mp1 = mp->b_cont->b_cont; 8244 8245 if (ipip->ipi_cmd_type == IF_CMD) { 8246 /* This a old style SIOC[GS]IF* command */ 8247 ifr = (struct ifreq *)mp1->b_rptr; 8248 /* 8249 * Null terminate the string to protect against buffer 8250 * overrun. String was generated by user code and may not 8251 * be trusted. 8252 */ 8253 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8254 name = ifr->ifr_name; 8255 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8256 ci->ci_sin6 = NULL; 8257 ci->ci_lifr = (struct lifreq *)ifr; 8258 } else { 8259 /* This a new style SIOC[GS]LIF* command */ 8260 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8261 lifr = (struct lifreq *)mp1->b_rptr; 8262 /* 8263 * Null terminate the string to protect against buffer 8264 * overrun. String was generated by user code and may not 8265 * be trusted. 8266 */ 8267 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8268 name = lifr->lifr_name; 8269 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8270 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8271 ci->ci_lifr = lifr; 8272 } 8273 8274 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8275 /* 8276 * The ioctl will be failed if the ioctl comes down 8277 * an conn stream 8278 */ 8279 if (ill == NULL) { 8280 /* 8281 * Not an ill queue, return EINVAL same as the 8282 * old error code. 8283 */ 8284 return (ENXIO); 8285 } 8286 ipif = ill->ill_ipif; 8287 ipif_refhold(ipif); 8288 } else { 8289 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8290 &exists, isv6, zoneid, 8291 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8292 ipst); 8293 if (ipif == NULL) { 8294 if (err == EINPROGRESS) 8295 return (err); 8296 err = 0; /* Ensure we don't use it below */ 8297 } 8298 } 8299 8300 /* 8301 * Old style [GS]IFCMD does not admit IPv6 ipif 8302 */ 8303 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8304 ipif_refrele(ipif); 8305 return (ENXIO); 8306 } 8307 8308 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8309 name[0] == '\0') { 8310 /* 8311 * Handle a or a SIOC?IF* with a null name 8312 * during plumb (on the ill queue before the I_PLINK). 8313 */ 8314 ipif = ill->ill_ipif; 8315 ipif_refhold(ipif); 8316 } 8317 8318 if (ipif == NULL) 8319 return (ENXIO); 8320 8321 ci->ci_ipif = ipif; 8322 return (0); 8323 } 8324 8325 /* 8326 * Return the total number of ipifs. 8327 */ 8328 static uint_t 8329 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8330 { 8331 uint_t numifs = 0; 8332 ill_t *ill; 8333 ill_walk_context_t ctx; 8334 ipif_t *ipif; 8335 8336 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8337 ill = ILL_START_WALK_V4(&ctx, ipst); 8338 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8339 if (IS_UNDER_IPMP(ill)) 8340 continue; 8341 for (ipif = ill->ill_ipif; ipif != NULL; 8342 ipif = ipif->ipif_next) { 8343 if (ipif->ipif_zoneid == zoneid || 8344 ipif->ipif_zoneid == ALL_ZONES) 8345 numifs++; 8346 } 8347 } 8348 rw_exit(&ipst->ips_ill_g_lock); 8349 return (numifs); 8350 } 8351 8352 /* 8353 * Return the total number of ipifs. 8354 */ 8355 static uint_t 8356 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8357 { 8358 uint_t numifs = 0; 8359 ill_t *ill; 8360 ipif_t *ipif; 8361 ill_walk_context_t ctx; 8362 8363 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8364 8365 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8366 if (family == AF_INET) 8367 ill = ILL_START_WALK_V4(&ctx, ipst); 8368 else if (family == AF_INET6) 8369 ill = ILL_START_WALK_V6(&ctx, ipst); 8370 else 8371 ill = ILL_START_WALK_ALL(&ctx, ipst); 8372 8373 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8374 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8375 continue; 8376 8377 for (ipif = ill->ill_ipif; ipif != NULL; 8378 ipif = ipif->ipif_next) { 8379 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8380 !(lifn_flags & LIFC_NOXMIT)) 8381 continue; 8382 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8383 !(lifn_flags & LIFC_TEMPORARY)) 8384 continue; 8385 if (((ipif->ipif_flags & 8386 (IPIF_NOXMIT|IPIF_NOLOCAL| 8387 IPIF_DEPRECATED)) || 8388 IS_LOOPBACK(ill) || 8389 !(ipif->ipif_flags & IPIF_UP)) && 8390 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8391 continue; 8392 8393 if (zoneid != ipif->ipif_zoneid && 8394 ipif->ipif_zoneid != ALL_ZONES && 8395 (zoneid != GLOBAL_ZONEID || 8396 !(lifn_flags & LIFC_ALLZONES))) 8397 continue; 8398 8399 numifs++; 8400 } 8401 } 8402 rw_exit(&ipst->ips_ill_g_lock); 8403 return (numifs); 8404 } 8405 8406 uint_t 8407 ip_get_lifsrcofnum(ill_t *ill) 8408 { 8409 uint_t numifs = 0; 8410 ill_t *ill_head = ill; 8411 ip_stack_t *ipst = ill->ill_ipst; 8412 8413 /* 8414 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8415 * other thread may be trying to relink the ILLs in this usesrc group 8416 * and adjusting the ill_usesrc_grp_next pointers 8417 */ 8418 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8419 if ((ill->ill_usesrc_ifindex == 0) && 8420 (ill->ill_usesrc_grp_next != NULL)) { 8421 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8422 ill = ill->ill_usesrc_grp_next) 8423 numifs++; 8424 } 8425 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8426 8427 return (numifs); 8428 } 8429 8430 /* Null values are passed in for ipif, sin, and ifreq */ 8431 /* ARGSUSED */ 8432 int 8433 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8434 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8435 { 8436 int *nump; 8437 conn_t *connp = Q_TO_CONN(q); 8438 8439 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8440 8441 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8442 nump = (int *)mp->b_cont->b_cont->b_rptr; 8443 8444 *nump = ip_get_numifs(connp->conn_zoneid, 8445 connp->conn_netstack->netstack_ip); 8446 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8447 return (0); 8448 } 8449 8450 /* Null values are passed in for ipif, sin, and ifreq */ 8451 /* ARGSUSED */ 8452 int 8453 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8454 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8455 { 8456 struct lifnum *lifn; 8457 mblk_t *mp1; 8458 conn_t *connp = Q_TO_CONN(q); 8459 8460 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8461 8462 /* Existence checked in ip_wput_nondata */ 8463 mp1 = mp->b_cont->b_cont; 8464 8465 lifn = (struct lifnum *)mp1->b_rptr; 8466 switch (lifn->lifn_family) { 8467 case AF_UNSPEC: 8468 case AF_INET: 8469 case AF_INET6: 8470 break; 8471 default: 8472 return (EAFNOSUPPORT); 8473 } 8474 8475 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8476 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8477 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8478 return (0); 8479 } 8480 8481 /* ARGSUSED */ 8482 int 8483 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8484 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8485 { 8486 STRUCT_HANDLE(ifconf, ifc); 8487 mblk_t *mp1; 8488 struct iocblk *iocp; 8489 struct ifreq *ifr; 8490 ill_walk_context_t ctx; 8491 ill_t *ill; 8492 ipif_t *ipif; 8493 struct sockaddr_in *sin; 8494 int32_t ifclen; 8495 zoneid_t zoneid; 8496 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8497 8498 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8499 8500 ip1dbg(("ip_sioctl_get_ifconf")); 8501 /* Existence verified in ip_wput_nondata */ 8502 mp1 = mp->b_cont->b_cont; 8503 iocp = (struct iocblk *)mp->b_rptr; 8504 zoneid = Q_TO_CONN(q)->conn_zoneid; 8505 8506 /* 8507 * The original SIOCGIFCONF passed in a struct ifconf which specified 8508 * the user buffer address and length into which the list of struct 8509 * ifreqs was to be copied. Since AT&T Streams does not seem to 8510 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8511 * the SIOCGIFCONF operation was redefined to simply provide 8512 * a large output buffer into which we are supposed to jam the ifreq 8513 * array. The same ioctl command code was used, despite the fact that 8514 * both the applications and the kernel code had to change, thus making 8515 * it impossible to support both interfaces. 8516 * 8517 * For reasons not good enough to try to explain, the following 8518 * algorithm is used for deciding what to do with one of these: 8519 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8520 * form with the output buffer coming down as the continuation message. 8521 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8522 * and we have to copy in the ifconf structure to find out how big the 8523 * output buffer is and where to copy out to. Sure no problem... 8524 * 8525 */ 8526 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8527 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8528 int numifs = 0; 8529 size_t ifc_bufsize; 8530 8531 /* 8532 * Must be (better be!) continuation of a TRANSPARENT 8533 * IOCTL. We just copied in the ifconf structure. 8534 */ 8535 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8536 (struct ifconf *)mp1->b_rptr); 8537 8538 /* 8539 * Allocate a buffer to hold requested information. 8540 * 8541 * If ifc_len is larger than what is needed, we only 8542 * allocate what we will use. 8543 * 8544 * If ifc_len is smaller than what is needed, return 8545 * EINVAL. 8546 * 8547 * XXX: the ill_t structure can hava 2 counters, for 8548 * v4 and v6 (not just ill_ipif_up_count) to store the 8549 * number of interfaces for a device, so we don't need 8550 * to count them here... 8551 */ 8552 numifs = ip_get_numifs(zoneid, ipst); 8553 8554 ifclen = STRUCT_FGET(ifc, ifc_len); 8555 ifc_bufsize = numifs * sizeof (struct ifreq); 8556 if (ifc_bufsize > ifclen) { 8557 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8558 /* old behaviour */ 8559 return (EINVAL); 8560 } else { 8561 ifc_bufsize = ifclen; 8562 } 8563 } 8564 8565 mp1 = mi_copyout_alloc(q, mp, 8566 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8567 if (mp1 == NULL) 8568 return (ENOMEM); 8569 8570 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8571 } 8572 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8573 /* 8574 * the SIOCGIFCONF ioctl only knows about 8575 * IPv4 addresses, so don't try to tell 8576 * it about interfaces with IPv6-only 8577 * addresses. (Last parm 'isv6' is B_FALSE) 8578 */ 8579 8580 ifr = (struct ifreq *)mp1->b_rptr; 8581 8582 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8583 ill = ILL_START_WALK_V4(&ctx, ipst); 8584 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8585 if (IS_UNDER_IPMP(ill)) 8586 continue; 8587 for (ipif = ill->ill_ipif; ipif != NULL; 8588 ipif = ipif->ipif_next) { 8589 if (zoneid != ipif->ipif_zoneid && 8590 ipif->ipif_zoneid != ALL_ZONES) 8591 continue; 8592 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8593 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8594 /* old behaviour */ 8595 rw_exit(&ipst->ips_ill_g_lock); 8596 return (EINVAL); 8597 } else { 8598 goto if_copydone; 8599 } 8600 } 8601 ipif_get_name(ipif, ifr->ifr_name, 8602 sizeof (ifr->ifr_name)); 8603 sin = (sin_t *)&ifr->ifr_addr; 8604 *sin = sin_null; 8605 sin->sin_family = AF_INET; 8606 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8607 ifr++; 8608 } 8609 } 8610 if_copydone: 8611 rw_exit(&ipst->ips_ill_g_lock); 8612 mp1->b_wptr = (uchar_t *)ifr; 8613 8614 if (STRUCT_BUF(ifc) != NULL) { 8615 STRUCT_FSET(ifc, ifc_len, 8616 (int)((uchar_t *)ifr - mp1->b_rptr)); 8617 } 8618 return (0); 8619 } 8620 8621 /* 8622 * Get the interfaces using the address hosted on the interface passed in, 8623 * as a source adddress 8624 */ 8625 /* ARGSUSED */ 8626 int 8627 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8628 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8629 { 8630 mblk_t *mp1; 8631 ill_t *ill, *ill_head; 8632 ipif_t *ipif, *orig_ipif; 8633 int numlifs = 0; 8634 size_t lifs_bufsize, lifsmaxlen; 8635 struct lifreq *lifr; 8636 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8637 uint_t ifindex; 8638 zoneid_t zoneid; 8639 int err = 0; 8640 boolean_t isv6 = B_FALSE; 8641 struct sockaddr_in *sin; 8642 struct sockaddr_in6 *sin6; 8643 STRUCT_HANDLE(lifsrcof, lifs); 8644 ip_stack_t *ipst; 8645 8646 ipst = CONNQ_TO_IPST(q); 8647 8648 ASSERT(q->q_next == NULL); 8649 8650 zoneid = Q_TO_CONN(q)->conn_zoneid; 8651 8652 /* Existence verified in ip_wput_nondata */ 8653 mp1 = mp->b_cont->b_cont; 8654 8655 /* 8656 * Must be (better be!) continuation of a TRANSPARENT 8657 * IOCTL. We just copied in the lifsrcof structure. 8658 */ 8659 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8660 (struct lifsrcof *)mp1->b_rptr); 8661 8662 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8663 return (EINVAL); 8664 8665 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8666 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8667 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8668 ip_process_ioctl, &err, ipst); 8669 if (ipif == NULL) { 8670 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8671 ifindex)); 8672 return (err); 8673 } 8674 8675 /* Allocate a buffer to hold requested information */ 8676 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8677 lifs_bufsize = numlifs * sizeof (struct lifreq); 8678 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8679 /* The actual size needed is always returned in lifs_len */ 8680 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8681 8682 /* If the amount we need is more than what is passed in, abort */ 8683 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8684 ipif_refrele(ipif); 8685 return (0); 8686 } 8687 8688 mp1 = mi_copyout_alloc(q, mp, 8689 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8690 if (mp1 == NULL) { 8691 ipif_refrele(ipif); 8692 return (ENOMEM); 8693 } 8694 8695 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8696 bzero(mp1->b_rptr, lifs_bufsize); 8697 8698 lifr = (struct lifreq *)mp1->b_rptr; 8699 8700 ill = ill_head = ipif->ipif_ill; 8701 orig_ipif = ipif; 8702 8703 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8704 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8705 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8706 8707 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8708 for (; (ill != NULL) && (ill != ill_head); 8709 ill = ill->ill_usesrc_grp_next) { 8710 8711 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8712 break; 8713 8714 ipif = ill->ill_ipif; 8715 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8716 if (ipif->ipif_isv6) { 8717 sin6 = (sin6_t *)&lifr->lifr_addr; 8718 *sin6 = sin6_null; 8719 sin6->sin6_family = AF_INET6; 8720 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8721 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8722 &ipif->ipif_v6net_mask); 8723 } else { 8724 sin = (sin_t *)&lifr->lifr_addr; 8725 *sin = sin_null; 8726 sin->sin_family = AF_INET; 8727 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8728 lifr->lifr_addrlen = ip_mask_to_plen( 8729 ipif->ipif_net_mask); 8730 } 8731 lifr++; 8732 } 8733 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8734 rw_exit(&ipst->ips_ill_g_lock); 8735 ipif_refrele(orig_ipif); 8736 mp1->b_wptr = (uchar_t *)lifr; 8737 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8738 8739 return (0); 8740 } 8741 8742 /* ARGSUSED */ 8743 int 8744 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8745 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8746 { 8747 mblk_t *mp1; 8748 int list; 8749 ill_t *ill; 8750 ipif_t *ipif; 8751 int flags; 8752 int numlifs = 0; 8753 size_t lifc_bufsize; 8754 struct lifreq *lifr; 8755 sa_family_t family; 8756 struct sockaddr_in *sin; 8757 struct sockaddr_in6 *sin6; 8758 ill_walk_context_t ctx; 8759 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8760 int32_t lifclen; 8761 zoneid_t zoneid; 8762 STRUCT_HANDLE(lifconf, lifc); 8763 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8764 8765 ip1dbg(("ip_sioctl_get_lifconf")); 8766 8767 ASSERT(q->q_next == NULL); 8768 8769 zoneid = Q_TO_CONN(q)->conn_zoneid; 8770 8771 /* Existence verified in ip_wput_nondata */ 8772 mp1 = mp->b_cont->b_cont; 8773 8774 /* 8775 * An extended version of SIOCGIFCONF that takes an 8776 * additional address family and flags field. 8777 * AF_UNSPEC retrieve both IPv4 and IPv6. 8778 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8779 * interfaces are omitted. 8780 * Similarly, IPIF_TEMPORARY interfaces are omitted 8781 * unless LIFC_TEMPORARY is specified. 8782 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8783 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8784 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8785 * has priority over LIFC_NOXMIT. 8786 */ 8787 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8788 8789 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8790 return (EINVAL); 8791 8792 /* 8793 * Must be (better be!) continuation of a TRANSPARENT 8794 * IOCTL. We just copied in the lifconf structure. 8795 */ 8796 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8797 8798 family = STRUCT_FGET(lifc, lifc_family); 8799 flags = STRUCT_FGET(lifc, lifc_flags); 8800 8801 switch (family) { 8802 case AF_UNSPEC: 8803 /* 8804 * walk all ILL's. 8805 */ 8806 list = MAX_G_HEADS; 8807 break; 8808 case AF_INET: 8809 /* 8810 * walk only IPV4 ILL's. 8811 */ 8812 list = IP_V4_G_HEAD; 8813 break; 8814 case AF_INET6: 8815 /* 8816 * walk only IPV6 ILL's. 8817 */ 8818 list = IP_V6_G_HEAD; 8819 break; 8820 default: 8821 return (EAFNOSUPPORT); 8822 } 8823 8824 /* 8825 * Allocate a buffer to hold requested information. 8826 * 8827 * If lifc_len is larger than what is needed, we only 8828 * allocate what we will use. 8829 * 8830 * If lifc_len is smaller than what is needed, return 8831 * EINVAL. 8832 */ 8833 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8834 lifc_bufsize = numlifs * sizeof (struct lifreq); 8835 lifclen = STRUCT_FGET(lifc, lifc_len); 8836 if (lifc_bufsize > lifclen) { 8837 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8838 return (EINVAL); 8839 else 8840 lifc_bufsize = lifclen; 8841 } 8842 8843 mp1 = mi_copyout_alloc(q, mp, 8844 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8845 if (mp1 == NULL) 8846 return (ENOMEM); 8847 8848 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8849 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8850 8851 lifr = (struct lifreq *)mp1->b_rptr; 8852 8853 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8854 ill = ill_first(list, list, &ctx, ipst); 8855 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8856 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8857 continue; 8858 8859 for (ipif = ill->ill_ipif; ipif != NULL; 8860 ipif = ipif->ipif_next) { 8861 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8862 !(flags & LIFC_NOXMIT)) 8863 continue; 8864 8865 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8866 !(flags & LIFC_TEMPORARY)) 8867 continue; 8868 8869 if (((ipif->ipif_flags & 8870 (IPIF_NOXMIT|IPIF_NOLOCAL| 8871 IPIF_DEPRECATED)) || 8872 IS_LOOPBACK(ill) || 8873 !(ipif->ipif_flags & IPIF_UP)) && 8874 (flags & LIFC_EXTERNAL_SOURCE)) 8875 continue; 8876 8877 if (zoneid != ipif->ipif_zoneid && 8878 ipif->ipif_zoneid != ALL_ZONES && 8879 (zoneid != GLOBAL_ZONEID || 8880 !(flags & LIFC_ALLZONES))) 8881 continue; 8882 8883 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8884 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8885 rw_exit(&ipst->ips_ill_g_lock); 8886 return (EINVAL); 8887 } else { 8888 goto lif_copydone; 8889 } 8890 } 8891 8892 ipif_get_name(ipif, lifr->lifr_name, 8893 sizeof (lifr->lifr_name)); 8894 lifr->lifr_type = ill->ill_type; 8895 if (ipif->ipif_isv6) { 8896 sin6 = (sin6_t *)&lifr->lifr_addr; 8897 *sin6 = sin6_null; 8898 sin6->sin6_family = AF_INET6; 8899 sin6->sin6_addr = 8900 ipif->ipif_v6lcl_addr; 8901 lifr->lifr_addrlen = 8902 ip_mask_to_plen_v6( 8903 &ipif->ipif_v6net_mask); 8904 } else { 8905 sin = (sin_t *)&lifr->lifr_addr; 8906 *sin = sin_null; 8907 sin->sin_family = AF_INET; 8908 sin->sin_addr.s_addr = 8909 ipif->ipif_lcl_addr; 8910 lifr->lifr_addrlen = 8911 ip_mask_to_plen( 8912 ipif->ipif_net_mask); 8913 } 8914 lifr++; 8915 } 8916 } 8917 lif_copydone: 8918 rw_exit(&ipst->ips_ill_g_lock); 8919 8920 mp1->b_wptr = (uchar_t *)lifr; 8921 if (STRUCT_BUF(lifc) != NULL) { 8922 STRUCT_FSET(lifc, lifc_len, 8923 (int)((uchar_t *)lifr - mp1->b_rptr)); 8924 } 8925 return (0); 8926 } 8927 8928 static void 8929 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8930 { 8931 ip6_asp_t *table; 8932 size_t table_size; 8933 mblk_t *data_mp; 8934 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8935 ip_stack_t *ipst; 8936 8937 if (q->q_next == NULL) 8938 ipst = CONNQ_TO_IPST(q); 8939 else 8940 ipst = ILLQ_TO_IPST(q); 8941 8942 /* These two ioctls are I_STR only */ 8943 if (iocp->ioc_count == TRANSPARENT) { 8944 miocnak(q, mp, 0, EINVAL); 8945 return; 8946 } 8947 8948 data_mp = mp->b_cont; 8949 if (data_mp == NULL) { 8950 /* The user passed us a NULL argument */ 8951 table = NULL; 8952 table_size = iocp->ioc_count; 8953 } else { 8954 /* 8955 * The user provided a table. The stream head 8956 * may have copied in the user data in chunks, 8957 * so make sure everything is pulled up 8958 * properly. 8959 */ 8960 if (MBLKL(data_mp) < iocp->ioc_count) { 8961 mblk_t *new_data_mp; 8962 if ((new_data_mp = msgpullup(data_mp, -1)) == 8963 NULL) { 8964 miocnak(q, mp, 0, ENOMEM); 8965 return; 8966 } 8967 freemsg(data_mp); 8968 data_mp = new_data_mp; 8969 mp->b_cont = data_mp; 8970 } 8971 table = (ip6_asp_t *)data_mp->b_rptr; 8972 table_size = iocp->ioc_count; 8973 } 8974 8975 switch (iocp->ioc_cmd) { 8976 case SIOCGIP6ADDRPOLICY: 8977 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8978 if (iocp->ioc_rval == -1) 8979 iocp->ioc_error = EINVAL; 8980 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8981 else if (table != NULL && 8982 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8983 ip6_asp_t *src = table; 8984 ip6_asp32_t *dst = (void *)table; 8985 int count = table_size / sizeof (ip6_asp_t); 8986 int i; 8987 8988 /* 8989 * We need to do an in-place shrink of the array 8990 * to match the alignment attributes of the 8991 * 32-bit ABI looking at it. 8992 */ 8993 /* LINTED: logical expression always true: op "||" */ 8994 ASSERT(sizeof (*src) > sizeof (*dst)); 8995 for (i = 1; i < count; i++) 8996 bcopy(src + i, dst + i, sizeof (*dst)); 8997 } 8998 #endif 8999 break; 9000 9001 case SIOCSIP6ADDRPOLICY: 9002 ASSERT(mp->b_prev == NULL); 9003 mp->b_prev = (void *)q; 9004 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9005 /* 9006 * We pass in the datamodel here so that the ip6_asp_replace() 9007 * routine can handle converting from 32-bit to native formats 9008 * where necessary. 9009 * 9010 * A better way to handle this might be to convert the inbound 9011 * data structure here, and hang it off a new 'mp'; thus the 9012 * ip6_asp_replace() logic would always be dealing with native 9013 * format data structures.. 9014 * 9015 * (An even simpler way to handle these ioctls is to just 9016 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9017 * and just recompile everything that depends on it.) 9018 */ 9019 #endif 9020 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9021 iocp->ioc_flag & IOC_MODELS); 9022 return; 9023 } 9024 9025 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9026 qreply(q, mp); 9027 } 9028 9029 static void 9030 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9031 { 9032 mblk_t *data_mp; 9033 struct dstinforeq *dir; 9034 uint8_t *end, *cur; 9035 in6_addr_t *daddr, *saddr; 9036 ipaddr_t v4daddr; 9037 ire_t *ire; 9038 char *slabel, *dlabel; 9039 boolean_t isipv4; 9040 int match_ire; 9041 ill_t *dst_ill; 9042 ipif_t *src_ipif, *ire_ipif; 9043 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9044 zoneid_t zoneid; 9045 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9046 9047 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9048 zoneid = Q_TO_CONN(q)->conn_zoneid; 9049 9050 /* 9051 * This ioctl is I_STR only, and must have a 9052 * data mblk following the M_IOCTL mblk. 9053 */ 9054 data_mp = mp->b_cont; 9055 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9056 miocnak(q, mp, 0, EINVAL); 9057 return; 9058 } 9059 9060 if (MBLKL(data_mp) < iocp->ioc_count) { 9061 mblk_t *new_data_mp; 9062 9063 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9064 miocnak(q, mp, 0, ENOMEM); 9065 return; 9066 } 9067 freemsg(data_mp); 9068 data_mp = new_data_mp; 9069 mp->b_cont = data_mp; 9070 } 9071 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9072 9073 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9074 end - cur >= sizeof (struct dstinforeq); 9075 cur += sizeof (struct dstinforeq)) { 9076 dir = (struct dstinforeq *)cur; 9077 daddr = &dir->dir_daddr; 9078 saddr = &dir->dir_saddr; 9079 9080 /* 9081 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9082 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9083 * and ipif_select_source[_v6]() do not. 9084 */ 9085 dir->dir_dscope = ip_addr_scope_v6(daddr); 9086 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9087 9088 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9089 if (isipv4) { 9090 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9091 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9092 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9093 } else { 9094 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9095 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9096 } 9097 if (ire == NULL) { 9098 dir->dir_dreachable = 0; 9099 9100 /* move on to next dst addr */ 9101 continue; 9102 } 9103 dir->dir_dreachable = 1; 9104 9105 ire_ipif = ire->ire_ipif; 9106 if (ire_ipif == NULL) 9107 goto next_dst; 9108 9109 /* 9110 * We expect to get back an interface ire or a 9111 * gateway ire cache entry. For both types, the 9112 * output interface is ire_ipif->ipif_ill. 9113 */ 9114 dst_ill = ire_ipif->ipif_ill; 9115 dir->dir_dmactype = dst_ill->ill_mactype; 9116 9117 if (isipv4) { 9118 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9119 } else { 9120 src_ipif = ipif_select_source_v6(dst_ill, 9121 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9122 } 9123 if (src_ipif == NULL) 9124 goto next_dst; 9125 9126 *saddr = src_ipif->ipif_v6lcl_addr; 9127 dir->dir_sscope = ip_addr_scope_v6(saddr); 9128 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9129 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9130 dir->dir_sdeprecated = 9131 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9132 ipif_refrele(src_ipif); 9133 next_dst: 9134 ire_refrele(ire); 9135 } 9136 miocack(q, mp, iocp->ioc_count, 0); 9137 } 9138 9139 /* 9140 * Check if this is an address assigned to this machine. 9141 * Skips interfaces that are down by using ire checks. 9142 * Translates mapped addresses to v4 addresses and then 9143 * treats them as such, returning true if the v4 address 9144 * associated with this mapped address is configured. 9145 * Note: Applications will have to be careful what they do 9146 * with the response; use of mapped addresses limits 9147 * what can be done with the socket, especially with 9148 * respect to socket options and ioctls - neither IPv4 9149 * options nor IPv6 sticky options/ancillary data options 9150 * may be used. 9151 */ 9152 /* ARGSUSED */ 9153 int 9154 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9155 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9156 { 9157 struct sioc_addrreq *sia; 9158 sin_t *sin; 9159 ire_t *ire; 9160 mblk_t *mp1; 9161 zoneid_t zoneid; 9162 ip_stack_t *ipst; 9163 9164 ip1dbg(("ip_sioctl_tmyaddr")); 9165 9166 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9167 zoneid = Q_TO_CONN(q)->conn_zoneid; 9168 ipst = CONNQ_TO_IPST(q); 9169 9170 /* Existence verified in ip_wput_nondata */ 9171 mp1 = mp->b_cont->b_cont; 9172 sia = (struct sioc_addrreq *)mp1->b_rptr; 9173 sin = (sin_t *)&sia->sa_addr; 9174 switch (sin->sin_family) { 9175 case AF_INET6: { 9176 sin6_t *sin6 = (sin6_t *)sin; 9177 9178 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9179 ipaddr_t v4_addr; 9180 9181 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9182 v4_addr); 9183 ire = ire_ctable_lookup(v4_addr, 0, 9184 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9185 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9186 } else { 9187 in6_addr_t v6addr; 9188 9189 v6addr = sin6->sin6_addr; 9190 ire = ire_ctable_lookup_v6(&v6addr, 0, 9191 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9192 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9193 } 9194 break; 9195 } 9196 case AF_INET: { 9197 ipaddr_t v4addr; 9198 9199 v4addr = sin->sin_addr.s_addr; 9200 ire = ire_ctable_lookup(v4addr, 0, 9201 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9202 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9203 break; 9204 } 9205 default: 9206 return (EAFNOSUPPORT); 9207 } 9208 if (ire != NULL) { 9209 sia->sa_res = 1; 9210 ire_refrele(ire); 9211 } else { 9212 sia->sa_res = 0; 9213 } 9214 return (0); 9215 } 9216 9217 /* 9218 * Check if this is an address assigned on-link i.e. neighbor, 9219 * and makes sure it's reachable from the current zone. 9220 * Returns true for my addresses as well. 9221 * Translates mapped addresses to v4 addresses and then 9222 * treats them as such, returning true if the v4 address 9223 * associated with this mapped address is configured. 9224 * Note: Applications will have to be careful what they do 9225 * with the response; use of mapped addresses limits 9226 * what can be done with the socket, especially with 9227 * respect to socket options and ioctls - neither IPv4 9228 * options nor IPv6 sticky options/ancillary data options 9229 * may be used. 9230 */ 9231 /* ARGSUSED */ 9232 int 9233 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9234 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9235 { 9236 struct sioc_addrreq *sia; 9237 sin_t *sin; 9238 mblk_t *mp1; 9239 ire_t *ire = NULL; 9240 zoneid_t zoneid; 9241 ip_stack_t *ipst; 9242 9243 ip1dbg(("ip_sioctl_tonlink")); 9244 9245 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9246 zoneid = Q_TO_CONN(q)->conn_zoneid; 9247 ipst = CONNQ_TO_IPST(q); 9248 9249 /* Existence verified in ip_wput_nondata */ 9250 mp1 = mp->b_cont->b_cont; 9251 sia = (struct sioc_addrreq *)mp1->b_rptr; 9252 sin = (sin_t *)&sia->sa_addr; 9253 9254 /* 9255 * Match addresses with a zero gateway field to avoid 9256 * routes going through a router. 9257 * Exclude broadcast and multicast addresses. 9258 */ 9259 switch (sin->sin_family) { 9260 case AF_INET6: { 9261 sin6_t *sin6 = (sin6_t *)sin; 9262 9263 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9264 ipaddr_t v4_addr; 9265 9266 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9267 v4_addr); 9268 if (!CLASSD(v4_addr)) { 9269 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9270 NULL, NULL, zoneid, NULL, 9271 MATCH_IRE_GW, ipst); 9272 } 9273 } else { 9274 in6_addr_t v6addr; 9275 in6_addr_t v6gw; 9276 9277 v6addr = sin6->sin6_addr; 9278 v6gw = ipv6_all_zeros; 9279 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9280 ire = ire_route_lookup_v6(&v6addr, 0, 9281 &v6gw, 0, NULL, NULL, zoneid, 9282 NULL, MATCH_IRE_GW, ipst); 9283 } 9284 } 9285 break; 9286 } 9287 case AF_INET: { 9288 ipaddr_t v4addr; 9289 9290 v4addr = sin->sin_addr.s_addr; 9291 if (!CLASSD(v4addr)) { 9292 ire = ire_route_lookup(v4addr, 0, 0, 0, 9293 NULL, NULL, zoneid, NULL, 9294 MATCH_IRE_GW, ipst); 9295 } 9296 break; 9297 } 9298 default: 9299 return (EAFNOSUPPORT); 9300 } 9301 sia->sa_res = 0; 9302 if (ire != NULL) { 9303 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9304 IRE_LOCAL|IRE_LOOPBACK)) { 9305 sia->sa_res = 1; 9306 } 9307 ire_refrele(ire); 9308 } 9309 return (0); 9310 } 9311 9312 /* 9313 * TBD: implement when kernel maintaines a list of site prefixes. 9314 */ 9315 /* ARGSUSED */ 9316 int 9317 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9318 ip_ioctl_cmd_t *ipip, void *ifreq) 9319 { 9320 return (ENXIO); 9321 } 9322 9323 /* ARGSUSED */ 9324 int 9325 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9326 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9327 { 9328 ill_t *ill; 9329 mblk_t *mp1; 9330 conn_t *connp; 9331 boolean_t success; 9332 9333 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9334 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9335 /* ioctl comes down on an conn */ 9336 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9337 connp = Q_TO_CONN(q); 9338 9339 mp->b_datap->db_type = M_IOCTL; 9340 9341 /* 9342 * Send down a copy. (copymsg does not copy b_next/b_prev). 9343 * The original mp contains contaminated b_next values due to 'mi', 9344 * which is needed to do the mi_copy_done. Unfortunately if we 9345 * send down the original mblk itself and if we are popped due to an 9346 * an unplumb before the response comes back from tunnel, 9347 * the streamhead (which does a freemsg) will see this contaminated 9348 * message and the assertion in freemsg about non-null b_next/b_prev 9349 * will panic a DEBUG kernel. 9350 */ 9351 mp1 = copymsg(mp); 9352 if (mp1 == NULL) 9353 return (ENOMEM); 9354 9355 ill = ipif->ipif_ill; 9356 mutex_enter(&connp->conn_lock); 9357 mutex_enter(&ill->ill_lock); 9358 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9359 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9360 mp, 0); 9361 } else { 9362 success = ill_pending_mp_add(ill, connp, mp); 9363 } 9364 mutex_exit(&ill->ill_lock); 9365 mutex_exit(&connp->conn_lock); 9366 9367 if (success) { 9368 ip1dbg(("sending down tunparam request ")); 9369 putnext(ill->ill_wq, mp1); 9370 return (EINPROGRESS); 9371 } else { 9372 /* The conn has started closing */ 9373 freemsg(mp1); 9374 return (EINTR); 9375 } 9376 } 9377 9378 /* 9379 * ARP IOCTLs. 9380 * How does IP get in the business of fronting ARP configuration/queries? 9381 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9382 * are by tradition passed in through a datagram socket. That lands in IP. 9383 * As it happens, this is just as well since the interface is quite crude in 9384 * that it passes in no information about protocol or hardware types, or 9385 * interface association. After making the protocol assumption, IP is in 9386 * the position to look up the name of the ILL, which ARP will need, and 9387 * format a request that can be handled by ARP. The request is passed up 9388 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9389 * back a response. ARP supports its own set of more general IOCTLs, in 9390 * case anyone is interested. 9391 */ 9392 /* ARGSUSED */ 9393 int 9394 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9395 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9396 { 9397 mblk_t *mp1; 9398 mblk_t *mp2; 9399 mblk_t *pending_mp; 9400 ipaddr_t ipaddr; 9401 area_t *area; 9402 struct iocblk *iocp; 9403 conn_t *connp; 9404 struct arpreq *ar; 9405 struct xarpreq *xar; 9406 int flags, alength; 9407 uchar_t *lladdr; 9408 ire_t *ire; 9409 ip_stack_t *ipst; 9410 ill_t *ill = ipif->ipif_ill; 9411 ill_t *proxy_ill = NULL; 9412 ipmp_arpent_t *entp = NULL; 9413 boolean_t if_arp_ioctl = B_FALSE; 9414 boolean_t proxyarp = B_FALSE; 9415 9416 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9417 connp = Q_TO_CONN(q); 9418 ipst = connp->conn_netstack->netstack_ip; 9419 9420 if (ipip->ipi_cmd_type == XARP_CMD) { 9421 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9422 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9423 ar = NULL; 9424 9425 flags = xar->xarp_flags; 9426 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9427 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9428 /* 9429 * Validate against user's link layer address length 9430 * input and name and addr length limits. 9431 */ 9432 alength = ill->ill_phys_addr_length; 9433 if (ipip->ipi_cmd == SIOCSXARP) { 9434 if (alength != xar->xarp_ha.sdl_alen || 9435 (alength + xar->xarp_ha.sdl_nlen > 9436 sizeof (xar->xarp_ha.sdl_data))) 9437 return (EINVAL); 9438 } 9439 } else { 9440 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9441 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9442 xar = NULL; 9443 9444 flags = ar->arp_flags; 9445 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9446 /* 9447 * Theoretically, the sa_family could tell us what link 9448 * layer type this operation is trying to deal with. By 9449 * common usage AF_UNSPEC means ethernet. We'll assume 9450 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9451 * for now. Our new SIOC*XARP ioctls can be used more 9452 * generally. 9453 * 9454 * If the underlying media happens to have a non 6 byte 9455 * address, arp module will fail set/get, but the del 9456 * operation will succeed. 9457 */ 9458 alength = 6; 9459 if ((ipip->ipi_cmd != SIOCDARP) && 9460 (alength != ill->ill_phys_addr_length)) { 9461 return (EINVAL); 9462 } 9463 } 9464 9465 ipaddr = sin->sin_addr.s_addr; 9466 9467 /* 9468 * IPMP ARP special handling: 9469 * 9470 * 1. Since ARP mappings must appear consistent across the group, 9471 * prohibit changing ARP mappings on the underlying interfaces. 9472 * 9473 * 2. Since ARP mappings for IPMP data addresses are maintained by 9474 * IP itself, prohibit changing them. 9475 * 9476 * 3. For proxy ARP, use a functioning hardware address in the group, 9477 * provided one exists. If one doesn't, just add the entry as-is; 9478 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9479 */ 9480 if (IS_UNDER_IPMP(ill)) { 9481 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9482 return (EPERM); 9483 } 9484 if (IS_IPMP(ill)) { 9485 ipmp_illgrp_t *illg = ill->ill_grp; 9486 9487 switch (ipip->ipi_cmd) { 9488 case SIOCSARP: 9489 case SIOCSXARP: 9490 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9491 if (proxy_ill != NULL) { 9492 proxyarp = B_TRUE; 9493 if (!ipmp_ill_is_active(proxy_ill)) 9494 proxy_ill = ipmp_illgrp_next_ill(illg); 9495 if (proxy_ill != NULL) 9496 lladdr = proxy_ill->ill_phys_addr; 9497 } 9498 /* FALLTHRU */ 9499 case SIOCDARP: 9500 case SIOCDXARP: 9501 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9502 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9503 if (ire != NULL) { 9504 ire_refrele(ire); 9505 return (EPERM); 9506 } 9507 } 9508 } 9509 9510 /* 9511 * We are going to pass up to ARP a packet chain that looks 9512 * like: 9513 * 9514 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9515 * 9516 * Get a copy of the original IOCTL mblk to head the chain, 9517 * to be sent up (in mp1). Also get another copy to store 9518 * in the ill_pending_mp list, for matching the response 9519 * when it comes back from ARP. 9520 */ 9521 mp1 = copyb(mp); 9522 pending_mp = copymsg(mp); 9523 if (mp1 == NULL || pending_mp == NULL) { 9524 if (mp1 != NULL) 9525 freeb(mp1); 9526 if (pending_mp != NULL) 9527 inet_freemsg(pending_mp); 9528 return (ENOMEM); 9529 } 9530 9531 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9532 (caddr_t)&ipaddr); 9533 if (mp2 == NULL) { 9534 freeb(mp1); 9535 inet_freemsg(pending_mp); 9536 return (ENOMEM); 9537 } 9538 /* Put together the chain. */ 9539 mp1->b_cont = mp2; 9540 mp1->b_datap->db_type = M_IOCTL; 9541 mp2->b_cont = mp; 9542 mp2->b_datap->db_type = M_DATA; 9543 9544 iocp = (struct iocblk *)mp1->b_rptr; 9545 9546 /* 9547 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9548 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9549 * cp_private field (or cp_rval on 32-bit systems) in place of the 9550 * ioc_count field; set ioc_count to be correct. 9551 */ 9552 iocp->ioc_count = MBLKL(mp1->b_cont); 9553 9554 /* 9555 * Set the proper command in the ARP message. 9556 * Convert the SIOC{G|S|D}ARP calls into our 9557 * AR_ENTRY_xxx calls. 9558 */ 9559 area = (area_t *)mp2->b_rptr; 9560 switch (iocp->ioc_cmd) { 9561 case SIOCDARP: 9562 case SIOCDXARP: 9563 /* 9564 * We defer deleting the corresponding IRE until 9565 * we return from arp. 9566 */ 9567 area->area_cmd = AR_ENTRY_DELETE; 9568 area->area_proto_mask_offset = 0; 9569 break; 9570 case SIOCGARP: 9571 case SIOCGXARP: 9572 area->area_cmd = AR_ENTRY_SQUERY; 9573 area->area_proto_mask_offset = 0; 9574 break; 9575 case SIOCSARP: 9576 case SIOCSXARP: 9577 /* 9578 * Delete the corresponding ire to make sure IP will 9579 * pick up any change from arp. 9580 */ 9581 if (!if_arp_ioctl) { 9582 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9583 } else { 9584 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9585 if (ipif != NULL) { 9586 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9587 ipst); 9588 ipif_refrele(ipif); 9589 } 9590 } 9591 break; 9592 } 9593 iocp->ioc_cmd = area->area_cmd; 9594 9595 /* 9596 * Fill in the rest of the ARP operation fields. 9597 */ 9598 area->area_hw_addr_length = alength; 9599 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9600 9601 /* Translate the flags. */ 9602 if (flags & ATF_PERM) 9603 area->area_flags |= ACE_F_PERMANENT; 9604 if (flags & ATF_PUBL) 9605 area->area_flags |= ACE_F_PUBLISH; 9606 if (flags & ATF_AUTHORITY) 9607 area->area_flags |= ACE_F_AUTHORITY; 9608 9609 /* 9610 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9611 * so that IP can update ARP as the active ills in the group change. 9612 */ 9613 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9614 (area->area_flags & ACE_F_PERMANENT)) { 9615 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9616 9617 /* 9618 * The second part of the conditional below handles a corner 9619 * case: if this is proxy ARP and the IPMP group has no active 9620 * interfaces, we can't send the request to ARP now since it 9621 * won't be able to build an ACE. So we return success and 9622 * notify ARP about the proxy ARP entry once an interface 9623 * becomes active. 9624 */ 9625 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9626 mp2->b_cont = NULL; 9627 inet_freemsg(mp1); 9628 inet_freemsg(pending_mp); 9629 return (entp == NULL ? ENOMEM : 0); 9630 } 9631 } 9632 9633 /* 9634 * Before sending 'mp' to ARP, we have to clear the b_next 9635 * and b_prev. Otherwise if STREAMS encounters such a message 9636 * in freemsg(), (because ARP can close any time) it can cause 9637 * a panic. But mi code needs the b_next and b_prev values of 9638 * mp->b_cont, to complete the ioctl. So we store it here 9639 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9640 * when the response comes down from ARP. 9641 */ 9642 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9643 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9644 mp->b_cont->b_next = NULL; 9645 mp->b_cont->b_prev = NULL; 9646 9647 mutex_enter(&connp->conn_lock); 9648 mutex_enter(&ill->ill_lock); 9649 /* conn has not yet started closing, hence this can't fail */ 9650 if (ipip->ipi_flags & IPI_WR) { 9651 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9652 pending_mp, 0) != 0); 9653 } else { 9654 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9655 } 9656 mutex_exit(&ill->ill_lock); 9657 mutex_exit(&connp->conn_lock); 9658 9659 /* 9660 * Up to ARP it goes. The response will come back in ip_wput() as an 9661 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9662 */ 9663 putnext(ill->ill_rq, mp1); 9664 9665 /* 9666 * If we created an IPMP ARP entry, mark that we've notified ARP. 9667 */ 9668 if (entp != NULL) 9669 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9670 9671 return (EINPROGRESS); 9672 } 9673 9674 /* 9675 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9676 * the associated sin and refhold and return the associated ipif via `ci'. 9677 */ 9678 int 9679 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9680 cmd_info_t *ci, ipsq_func_t func) 9681 { 9682 mblk_t *mp1; 9683 int err; 9684 sin_t *sin; 9685 conn_t *connp; 9686 ipif_t *ipif; 9687 ire_t *ire = NULL; 9688 ill_t *ill = NULL; 9689 boolean_t exists; 9690 ip_stack_t *ipst; 9691 struct arpreq *ar; 9692 struct xarpreq *xar; 9693 struct sockaddr_dl *sdl; 9694 9695 /* ioctl comes down on a conn */ 9696 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9697 connp = Q_TO_CONN(q); 9698 if (connp->conn_af_isv6) 9699 return (ENXIO); 9700 9701 ipst = connp->conn_netstack->netstack_ip; 9702 9703 /* Verified in ip_wput_nondata */ 9704 mp1 = mp->b_cont->b_cont; 9705 9706 if (ipip->ipi_cmd_type == XARP_CMD) { 9707 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9708 xar = (struct xarpreq *)mp1->b_rptr; 9709 sin = (sin_t *)&xar->xarp_pa; 9710 sdl = &xar->xarp_ha; 9711 9712 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9713 return (ENXIO); 9714 if (sdl->sdl_nlen >= LIFNAMSIZ) 9715 return (EINVAL); 9716 } else { 9717 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9718 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9719 ar = (struct arpreq *)mp1->b_rptr; 9720 sin = (sin_t *)&ar->arp_pa; 9721 } 9722 9723 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9724 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9725 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9726 mp, func, &err, ipst); 9727 if (ipif == NULL) 9728 return (err); 9729 if (ipif->ipif_id != 0) { 9730 ipif_refrele(ipif); 9731 return (ENXIO); 9732 } 9733 } else { 9734 /* 9735 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9736 * of 0: use the IP address to find the ipif. If the IP 9737 * address is an IPMP test address, ire_ftable_lookup() will 9738 * find the wrong ill, so we first do an ipif_lookup_addr(). 9739 */ 9740 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9741 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9742 if (ipif == NULL) { 9743 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9744 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9745 MATCH_IRE_TYPE, ipst); 9746 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9747 if (ire != NULL) 9748 ire_refrele(ire); 9749 return (ENXIO); 9750 } 9751 ipif = ill->ill_ipif; 9752 ipif_refhold(ipif); 9753 ire_refrele(ire); 9754 } 9755 } 9756 9757 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9758 ipif_refrele(ipif); 9759 return (ENXIO); 9760 } 9761 9762 ci->ci_sin = sin; 9763 ci->ci_ipif = ipif; 9764 return (0); 9765 } 9766 9767 /* 9768 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9769 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9770 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9771 * up and thus an ill can join that illgrp. 9772 * 9773 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9774 * open()/close() primarily because close() is not allowed to fail or block 9775 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9776 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9777 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9778 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9779 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9780 * state if I_UNLINK didn't occur. 9781 * 9782 * Note that for each plumb/unplumb operation, we may end up here more than 9783 * once because of the way ifconfig works. However, it's OK to link the same 9784 * illgrp more than once, or unlink an illgrp that's already unlinked. 9785 */ 9786 static int 9787 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9788 { 9789 int err; 9790 ip_stack_t *ipst = ill->ill_ipst; 9791 9792 ASSERT(IS_IPMP(ill)); 9793 ASSERT(IAM_WRITER_ILL(ill)); 9794 9795 switch (ioccmd) { 9796 case I_LINK: 9797 return (ENOTSUP); 9798 9799 case I_PLINK: 9800 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9801 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9802 rw_exit(&ipst->ips_ipmp_lock); 9803 break; 9804 9805 case I_PUNLINK: 9806 /* 9807 * Require all UP ipifs be brought down prior to unlinking the 9808 * illgrp so any associated IREs (and other state) is torched. 9809 */ 9810 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9811 return (EBUSY); 9812 9813 /* 9814 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9815 * with an SIOCSLIFGROUPNAME request from an ill trying to 9816 * join this group. Specifically: ills trying to join grab 9817 * ipmp_lock and bump a "pending join" counter checked by 9818 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9819 * joins can occur (since we have ipmp_lock). Once we drop 9820 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9821 * find the illgrp (since we unlinked it) and will return 9822 * EAFNOSUPPORT. This will then take them back through the 9823 * IPMP meta-interface plumbing logic in ifconfig, and thus 9824 * back through I_PLINK above. 9825 */ 9826 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9827 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9828 rw_exit(&ipst->ips_ipmp_lock); 9829 return (err); 9830 default: 9831 break; 9832 } 9833 return (0); 9834 } 9835 9836 /* 9837 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9838 * atomically set/clear the muxids. Also complete the ioctl by acking or 9839 * naking it. Note that the code is structured such that the link type, 9840 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9841 * its clones use the persistent link, while pppd(1M) and perhaps many 9842 * other daemons may use non-persistent link. When combined with some 9843 * ill_t states, linking and unlinking lower streams may be used as 9844 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9845 */ 9846 /* ARGSUSED */ 9847 void 9848 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9849 { 9850 mblk_t *mp1, *mp2; 9851 struct linkblk *li; 9852 struct ipmx_s *ipmxp; 9853 ill_t *ill; 9854 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9855 int err = 0; 9856 boolean_t entered_ipsq = B_FALSE; 9857 boolean_t islink; 9858 ip_stack_t *ipst; 9859 9860 if (CONN_Q(q)) 9861 ipst = CONNQ_TO_IPST(q); 9862 else 9863 ipst = ILLQ_TO_IPST(q); 9864 9865 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9866 ioccmd == I_LINK || ioccmd == I_UNLINK); 9867 9868 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9869 9870 mp1 = mp->b_cont; /* This is the linkblk info */ 9871 li = (struct linkblk *)mp1->b_rptr; 9872 9873 /* 9874 * ARP has added this special mblk, and the utility is asking us 9875 * to perform consistency checks, and also atomically set the 9876 * muxid. Ifconfig is an example. It achieves this by using 9877 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9878 * to /dev/udp[6] stream for use as the mux when plinking the IP 9879 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9880 * and other comments in this routine for more details. 9881 */ 9882 mp2 = mp1->b_cont; /* This is added by ARP */ 9883 9884 /* 9885 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9886 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9887 * get the special mblk above. For backward compatibility, we 9888 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9889 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9890 * not atomic, and can leave the streams unplumbable if the utility 9891 * is interrupted before it does the SIOCSLIFMUXID. 9892 */ 9893 if (mp2 == NULL) { 9894 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9895 if (err == EINPROGRESS) 9896 return; 9897 goto done; 9898 } 9899 9900 /* 9901 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9902 * ARP has appended this last mblk to tell us whether the lower stream 9903 * is an arp-dev stream or an IP module stream. 9904 */ 9905 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9906 if (ipmxp->ipmx_arpdev_stream) { 9907 /* 9908 * The lower stream is the arp-dev stream. 9909 */ 9910 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9911 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9912 if (ill == NULL) { 9913 if (err == EINPROGRESS) 9914 return; 9915 err = EINVAL; 9916 goto done; 9917 } 9918 9919 if (ipsq == NULL) { 9920 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9921 NEW_OP, B_FALSE); 9922 if (ipsq == NULL) { 9923 ill_refrele(ill); 9924 return; 9925 } 9926 entered_ipsq = B_TRUE; 9927 } 9928 ASSERT(IAM_WRITER_ILL(ill)); 9929 ill_refrele(ill); 9930 9931 /* 9932 * To ensure consistency between IP and ARP, the following 9933 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9934 * This is because the muxid's are stored in the IP stream on 9935 * the ill. 9936 * 9937 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9938 * the ARP stream. On an arp-dev stream, IP checks that it is 9939 * not yet plinked, and it also checks that the corresponding 9940 * IP stream is already plinked. 9941 * 9942 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9943 * punlinking the IP stream. IP does not allow punlink of the 9944 * IP stream unless the arp stream has been punlinked. 9945 */ 9946 if ((islink && 9947 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9948 (!islink && ill->ill_arp_muxid != li->l_index)) { 9949 err = EINVAL; 9950 goto done; 9951 } 9952 9953 if (IS_IPMP(ill) && 9954 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9955 goto done; 9956 9957 ill->ill_arp_muxid = islink ? li->l_index : 0; 9958 } else { 9959 /* 9960 * The lower stream is probably an IP module stream. Do 9961 * consistency checking. 9962 */ 9963 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9964 if (err == EINPROGRESS) 9965 return; 9966 } 9967 done: 9968 if (err == 0) 9969 miocack(q, mp, 0, 0); 9970 else 9971 miocnak(q, mp, 0, err); 9972 9973 /* Conn was refheld in ip_sioctl_copyin_setup */ 9974 if (CONN_Q(q)) 9975 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9976 if (entered_ipsq) 9977 ipsq_exit(ipsq); 9978 } 9979 9980 /* 9981 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9982 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9983 * module stream). If `doconsist' is set, then do the extended consistency 9984 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9985 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9986 * an error code on failure. 9987 */ 9988 static int 9989 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9990 struct linkblk *li, boolean_t doconsist) 9991 { 9992 int err = 0; 9993 ill_t *ill; 9994 queue_t *ipwq, *dwq; 9995 const char *name; 9996 struct qinit *qinfo; 9997 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9998 boolean_t entered_ipsq = B_FALSE; 9999 10000 /* 10001 * Walk the lower stream to verify it's the IP module stream. 10002 * The IP module is identified by its name, wput function, 10003 * and non-NULL q_next. STREAMS ensures that the lower stream 10004 * (li->l_qbot) will not vanish until this ioctl completes. 10005 */ 10006 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10007 qinfo = ipwq->q_qinfo; 10008 name = qinfo->qi_minfo->mi_idname; 10009 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10010 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10011 break; 10012 } 10013 } 10014 10015 /* 10016 * If this isn't an IP module stream, bail. 10017 */ 10018 if (ipwq == NULL) 10019 return (0); 10020 10021 ill = ipwq->q_ptr; 10022 ASSERT(ill != NULL); 10023 10024 if (ipsq == NULL) { 10025 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10026 NEW_OP, B_FALSE); 10027 if (ipsq == NULL) 10028 return (EINPROGRESS); 10029 entered_ipsq = B_TRUE; 10030 } 10031 ASSERT(IAM_WRITER_ILL(ill)); 10032 10033 if (doconsist) { 10034 /* 10035 * Consistency checking requires that I_{P}LINK occurs 10036 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10037 * occurs prior to clearing ill_arp_muxid. 10038 */ 10039 if ((islink && ill->ill_ip_muxid != 0) || 10040 (!islink && ill->ill_arp_muxid != 0)) { 10041 err = EINVAL; 10042 goto done; 10043 } 10044 } 10045 10046 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 10047 goto done; 10048 10049 /* 10050 * As part of I_{P}LINKing, stash the number of downstream modules and 10051 * the read queue of the module immediately below IP in the ill. 10052 * These are used during the capability negotiation below. 10053 */ 10054 ill->ill_lmod_rq = NULL; 10055 ill->ill_lmod_cnt = 0; 10056 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10057 ill->ill_lmod_rq = RD(dwq); 10058 for (; dwq != NULL; dwq = dwq->q_next) 10059 ill->ill_lmod_cnt++; 10060 } 10061 10062 if (doconsist) 10063 ill->ill_ip_muxid = islink ? li->l_index : 0; 10064 10065 /* 10066 * Mark the ipsq busy until the capability operations initiated below 10067 * complete. The PLINK/UNLINK ioctl itself completes when our caller 10068 * returns, but the capability operation may complete asynchronously 10069 * much later. 10070 */ 10071 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 10072 /* 10073 * If there's at least one up ipif on this ill, then we're bound to 10074 * the underlying driver via DLPI. In that case, renegotiate 10075 * capabilities to account for any possible change in modules 10076 * interposed between IP and the driver. 10077 */ 10078 if (ill->ill_ipif_up_count > 0) { 10079 if (islink) 10080 ill_capability_probe(ill); 10081 else 10082 ill_capability_reset(ill, B_FALSE); 10083 } 10084 ipsq_current_finish(ipsq); 10085 done: 10086 if (entered_ipsq) 10087 ipsq_exit(ipsq); 10088 10089 return (err); 10090 } 10091 10092 /* 10093 * Search the ioctl command in the ioctl tables and return a pointer 10094 * to the ioctl command information. The ioctl command tables are 10095 * static and fully populated at compile time. 10096 */ 10097 ip_ioctl_cmd_t * 10098 ip_sioctl_lookup(int ioc_cmd) 10099 { 10100 int index; 10101 ip_ioctl_cmd_t *ipip; 10102 ip_ioctl_cmd_t *ipip_end; 10103 10104 if (ioc_cmd == IPI_DONTCARE) 10105 return (NULL); 10106 10107 /* 10108 * Do a 2 step search. First search the indexed table 10109 * based on the least significant byte of the ioctl cmd. 10110 * If we don't find a match, then search the misc table 10111 * serially. 10112 */ 10113 index = ioc_cmd & 0xFF; 10114 if (index < ip_ndx_ioctl_count) { 10115 ipip = &ip_ndx_ioctl_table[index]; 10116 if (ipip->ipi_cmd == ioc_cmd) { 10117 /* Found a match in the ndx table */ 10118 return (ipip); 10119 } 10120 } 10121 10122 /* Search the misc table */ 10123 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10124 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10125 if (ipip->ipi_cmd == ioc_cmd) 10126 /* Found a match in the misc table */ 10127 return (ipip); 10128 } 10129 10130 return (NULL); 10131 } 10132 10133 /* 10134 * Wrapper function for resuming deferred ioctl processing 10135 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10136 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10137 */ 10138 /* ARGSUSED */ 10139 void 10140 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10141 void *dummy_arg) 10142 { 10143 ip_sioctl_copyin_setup(q, mp); 10144 } 10145 10146 /* 10147 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10148 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10149 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10150 * We establish here the size of the block to be copied in. mi_copyin 10151 * arranges for this to happen, an processing continues in ip_wput with 10152 * an M_IOCDATA message. 10153 */ 10154 void 10155 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10156 { 10157 int copyin_size; 10158 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10159 ip_ioctl_cmd_t *ipip; 10160 cred_t *cr; 10161 ip_stack_t *ipst; 10162 10163 if (CONN_Q(q)) 10164 ipst = CONNQ_TO_IPST(q); 10165 else 10166 ipst = ILLQ_TO_IPST(q); 10167 10168 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10169 if (ipip == NULL) { 10170 /* 10171 * The ioctl is not one we understand or own. 10172 * Pass it along to be processed down stream, 10173 * if this is a module instance of IP, else nak 10174 * the ioctl. 10175 */ 10176 if (q->q_next == NULL) { 10177 goto nak; 10178 } else { 10179 putnext(q, mp); 10180 return; 10181 } 10182 } 10183 10184 /* 10185 * If this is deferred, then we will do all the checks when we 10186 * come back. 10187 */ 10188 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10189 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10190 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10191 return; 10192 } 10193 10194 /* 10195 * Only allow a very small subset of IP ioctls on this stream if 10196 * IP is a module and not a driver. Allowing ioctls to be processed 10197 * in this case may cause assert failures or data corruption. 10198 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10199 * ioctls allowed on an IP module stream, after which this stream 10200 * normally becomes a multiplexor (at which time the stream head 10201 * will fail all ioctls). 10202 */ 10203 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10204 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10205 /* 10206 * Pass common Streams ioctls which the IP 10207 * module does not own or consume along to 10208 * be processed down stream. 10209 */ 10210 putnext(q, mp); 10211 return; 10212 } else { 10213 goto nak; 10214 } 10215 } 10216 10217 /* Make sure we have ioctl data to process. */ 10218 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10219 goto nak; 10220 10221 /* 10222 * Prefer dblk credential over ioctl credential; some synthesized 10223 * ioctls have kcred set because there's no way to crhold() 10224 * a credential in some contexts. (ioc_cr is not crfree() by 10225 * the framework; the caller of ioctl needs to hold the reference 10226 * for the duration of the call). 10227 */ 10228 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10229 10230 /* Make sure normal users don't send down privileged ioctls */ 10231 if ((ipip->ipi_flags & IPI_PRIV) && 10232 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10233 /* We checked the privilege earlier but log it here */ 10234 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10235 return; 10236 } 10237 10238 /* 10239 * The ioctl command tables can only encode fixed length 10240 * ioctl data. If the length is variable, the table will 10241 * encode the length as zero. Such special cases are handled 10242 * below in the switch. 10243 */ 10244 if (ipip->ipi_copyin_size != 0) { 10245 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10246 return; 10247 } 10248 10249 switch (iocp->ioc_cmd) { 10250 case O_SIOCGIFCONF: 10251 case SIOCGIFCONF: 10252 /* 10253 * This IOCTL is hilarious. See comments in 10254 * ip_sioctl_get_ifconf for the story. 10255 */ 10256 if (iocp->ioc_count == TRANSPARENT) 10257 copyin_size = SIZEOF_STRUCT(ifconf, 10258 iocp->ioc_flag); 10259 else 10260 copyin_size = iocp->ioc_count; 10261 mi_copyin(q, mp, NULL, copyin_size); 10262 return; 10263 10264 case O_SIOCGLIFCONF: 10265 case SIOCGLIFCONF: 10266 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10267 mi_copyin(q, mp, NULL, copyin_size); 10268 return; 10269 10270 case SIOCGLIFSRCOF: 10271 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10272 mi_copyin(q, mp, NULL, copyin_size); 10273 return; 10274 case SIOCGIP6ADDRPOLICY: 10275 ip_sioctl_ip6addrpolicy(q, mp); 10276 ip6_asp_table_refrele(ipst); 10277 return; 10278 10279 case SIOCSIP6ADDRPOLICY: 10280 ip_sioctl_ip6addrpolicy(q, mp); 10281 return; 10282 10283 case SIOCGDSTINFO: 10284 ip_sioctl_dstinfo(q, mp); 10285 ip6_asp_table_refrele(ipst); 10286 return; 10287 10288 case I_PLINK: 10289 case I_PUNLINK: 10290 case I_LINK: 10291 case I_UNLINK: 10292 /* 10293 * We treat non-persistent link similarly as the persistent 10294 * link case, in terms of plumbing/unplumbing, as well as 10295 * dynamic re-plumbing events indicator. See comments 10296 * in ip_sioctl_plink() for more. 10297 * 10298 * Request can be enqueued in the 'ipsq' while waiting 10299 * to become exclusive. So bump up the conn ref. 10300 */ 10301 if (CONN_Q(q)) 10302 CONN_INC_REF(Q_TO_CONN(q)); 10303 ip_sioctl_plink(NULL, q, mp, NULL); 10304 return; 10305 10306 case ND_GET: 10307 case ND_SET: 10308 /* 10309 * Use of the nd table requires holding the reader lock. 10310 * Modifying the nd table thru nd_load/nd_unload requires 10311 * the writer lock. 10312 */ 10313 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10314 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10315 rw_exit(&ipst->ips_ip_g_nd_lock); 10316 10317 if (iocp->ioc_error) 10318 iocp->ioc_count = 0; 10319 mp->b_datap->db_type = M_IOCACK; 10320 qreply(q, mp); 10321 return; 10322 } 10323 rw_exit(&ipst->ips_ip_g_nd_lock); 10324 /* 10325 * We don't understand this subioctl of ND_GET / ND_SET. 10326 * Maybe intended for some driver / module below us 10327 */ 10328 if (q->q_next) { 10329 putnext(q, mp); 10330 } else { 10331 iocp->ioc_error = ENOENT; 10332 mp->b_datap->db_type = M_IOCNAK; 10333 iocp->ioc_count = 0; 10334 qreply(q, mp); 10335 } 10336 return; 10337 10338 case IP_IOCTL: 10339 ip_wput_ioctl(q, mp); 10340 return; 10341 default: 10342 cmn_err(CE_PANIC, "should not happen "); 10343 } 10344 nak: 10345 if (mp->b_cont != NULL) { 10346 freemsg(mp->b_cont); 10347 mp->b_cont = NULL; 10348 } 10349 iocp->ioc_error = EINVAL; 10350 mp->b_datap->db_type = M_IOCNAK; 10351 iocp->ioc_count = 0; 10352 qreply(q, mp); 10353 } 10354 10355 /* ip_wput hands off ARP IOCTL responses to us */ 10356 /* ARGSUSED3 */ 10357 void 10358 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10359 { 10360 struct arpreq *ar; 10361 struct xarpreq *xar; 10362 area_t *area; 10363 mblk_t *area_mp; 10364 struct iocblk *iocp; 10365 mblk_t *orig_ioc_mp, *tmp; 10366 struct iocblk *orig_iocp; 10367 ill_t *ill; 10368 conn_t *connp = NULL; 10369 mblk_t *pending_mp; 10370 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10371 int *flagsp; 10372 char *storage = NULL; 10373 sin_t *sin; 10374 ipaddr_t addr; 10375 int err; 10376 ip_stack_t *ipst; 10377 10378 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10379 ill = q->q_ptr; 10380 ASSERT(ill != NULL); 10381 ipst = ill->ill_ipst; 10382 10383 /* 10384 * We should get back from ARP a packet chain that looks like: 10385 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10386 */ 10387 if (!(area_mp = mp->b_cont) || 10388 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10389 !(orig_ioc_mp = area_mp->b_cont) || 10390 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10391 freemsg(mp); 10392 return; 10393 } 10394 10395 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10396 10397 tmp = (orig_ioc_mp->b_cont)->b_cont; 10398 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10399 (orig_iocp->ioc_cmd == SIOCSXARP) || 10400 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10401 x_arp_ioctl = B_TRUE; 10402 xar = (struct xarpreq *)tmp->b_rptr; 10403 sin = (sin_t *)&xar->xarp_pa; 10404 flagsp = &xar->xarp_flags; 10405 storage = xar->xarp_ha.sdl_data; 10406 if (xar->xarp_ha.sdl_nlen != 0) 10407 ifx_arp_ioctl = B_TRUE; 10408 } else { 10409 ar = (struct arpreq *)tmp->b_rptr; 10410 sin = (sin_t *)&ar->arp_pa; 10411 flagsp = &ar->arp_flags; 10412 storage = ar->arp_ha.sa_data; 10413 } 10414 10415 iocp = (struct iocblk *)mp->b_rptr; 10416 10417 /* 10418 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10419 * Otherwise, we can find it from our ioc_id. 10420 */ 10421 if (ipsq != NULL) 10422 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10423 else 10424 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10425 10426 if (pending_mp == NULL) { 10427 ASSERT(connp == NULL); 10428 inet_freemsg(mp); 10429 return; 10430 } 10431 ASSERT(connp != NULL); 10432 q = CONNP_TO_WQ(connp); 10433 10434 /* Uncouple the internally generated IOCTL from the original one */ 10435 area = (area_t *)area_mp->b_rptr; 10436 area_mp->b_cont = NULL; 10437 10438 /* 10439 * Restore the b_next and b_prev used by mi code. This is needed 10440 * to complete the ioctl using mi* functions. We stored them in 10441 * the pending mp prior to sending the request to ARP. 10442 */ 10443 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10444 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10445 inet_freemsg(pending_mp); 10446 10447 /* 10448 * We're done if there was an error or if this is not an SIOCG{X}ARP 10449 * Catch the case where there is an IRE_CACHE by no entry in the 10450 * arp table. 10451 */ 10452 addr = sin->sin_addr.s_addr; 10453 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10454 ire_t *ire; 10455 dl_unitdata_req_t *dlup; 10456 mblk_t *llmp; 10457 int addr_len; 10458 ill_t *ipsqill = NULL; 10459 10460 if (ifx_arp_ioctl) { 10461 /* 10462 * There's no need to lookup the ill, since 10463 * we've already done that when we started 10464 * processing the ioctl and sent the message 10465 * to ARP on that ill. So use the ill that 10466 * is stored in q->q_ptr. 10467 */ 10468 ipsqill = ill; 10469 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10470 ipsqill->ill_ipif, ALL_ZONES, 10471 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10472 } else { 10473 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10475 if (ire != NULL) 10476 ipsqill = ire_to_ill(ire); 10477 } 10478 10479 if ((x_arp_ioctl) && (ipsqill != NULL)) 10480 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10481 10482 if (ire != NULL) { 10483 /* 10484 * Since the ire obtained from cachetable is used for 10485 * mac addr copying below, treat an incomplete ire as if 10486 * as if we never found it. 10487 */ 10488 if (ire->ire_nce != NULL && 10489 ire->ire_nce->nce_state != ND_REACHABLE) { 10490 ire_refrele(ire); 10491 ire = NULL; 10492 ipsqill = NULL; 10493 goto errack; 10494 } 10495 *flagsp = ATF_INUSE; 10496 llmp = (ire->ire_nce != NULL ? 10497 ire->ire_nce->nce_res_mp : NULL); 10498 if (llmp != NULL && ipsqill != NULL) { 10499 uchar_t *macaddr; 10500 10501 addr_len = ipsqill->ill_phys_addr_length; 10502 if (x_arp_ioctl && ((addr_len + 10503 ipsqill->ill_name_length) > 10504 sizeof (xar->xarp_ha.sdl_data))) { 10505 ire_refrele(ire); 10506 freemsg(mp); 10507 ip_ioctl_finish(q, orig_ioc_mp, 10508 EINVAL, NO_COPYOUT, ipsq); 10509 return; 10510 } 10511 *flagsp |= ATF_COM; 10512 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10513 if (ipsqill->ill_sap_length < 0) 10514 macaddr = llmp->b_rptr + 10515 dlup->dl_dest_addr_offset; 10516 else 10517 macaddr = llmp->b_rptr + 10518 dlup->dl_dest_addr_offset + 10519 ipsqill->ill_sap_length; 10520 /* 10521 * For SIOCGARP, MAC address length 10522 * validation has already been done 10523 * before the ioctl was issued to ARP to 10524 * allow it to progress only on 6 byte 10525 * addressable (ethernet like) media. Thus 10526 * the mac address copying can not overwrite 10527 * the sa_data area below. 10528 */ 10529 bcopy(macaddr, storage, addr_len); 10530 } 10531 /* Ditch the internal IOCTL. */ 10532 freemsg(mp); 10533 ire_refrele(ire); 10534 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10535 return; 10536 } 10537 } 10538 10539 /* 10540 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10541 * on the IPMP meta-interface, ensure any ARP entries added in 10542 * ip_sioctl_arp() are deleted. 10543 */ 10544 if (IS_IPMP(ill) && 10545 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10546 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10547 ipmp_illgrp_t *illg = ill->ill_grp; 10548 ipmp_arpent_t *entp; 10549 10550 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10551 ipmp_illgrp_destroy_arpent(illg, entp); 10552 } 10553 10554 /* 10555 * Delete the coresponding IRE_CACHE if any. 10556 * Reset the error if there was one (in case there was no entry 10557 * in arp.) 10558 */ 10559 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10560 ipif_t *ipintf = NULL; 10561 10562 if (ifx_arp_ioctl) { 10563 /* 10564 * There's no need to lookup the ill, since 10565 * we've already done that when we started 10566 * processing the ioctl and sent the message 10567 * to ARP on that ill. So use the ill that 10568 * is stored in q->q_ptr. 10569 */ 10570 ipintf = ill->ill_ipif; 10571 } 10572 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10573 /* 10574 * The address in "addr" may be an entry for a 10575 * router. If that's true, then any off-net 10576 * IRE_CACHE entries that go through the router 10577 * with address "addr" must be clobbered. Use 10578 * ire_walk to achieve this goal. 10579 */ 10580 if (ifx_arp_ioctl) 10581 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10582 ire_delete_cache_gw, (char *)&addr, ill); 10583 else 10584 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10585 ALL_ZONES, ipst); 10586 iocp->ioc_error = 0; 10587 } 10588 } 10589 errack: 10590 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10591 err = iocp->ioc_error; 10592 freemsg(mp); 10593 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10594 return; 10595 } 10596 10597 /* 10598 * Completion of an SIOCG{X}ARP. Translate the information from 10599 * the area_t into the struct {x}arpreq. 10600 */ 10601 if (x_arp_ioctl) { 10602 storage += ill_xarp_info(&xar->xarp_ha, ill); 10603 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10604 sizeof (xar->xarp_ha.sdl_data)) { 10605 freemsg(mp); 10606 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10607 ipsq); 10608 return; 10609 } 10610 } 10611 *flagsp = ATF_INUSE; 10612 if (area->area_flags & ACE_F_PERMANENT) 10613 *flagsp |= ATF_PERM; 10614 if (area->area_flags & ACE_F_PUBLISH) 10615 *flagsp |= ATF_PUBL; 10616 if (area->area_flags & ACE_F_AUTHORITY) 10617 *flagsp |= ATF_AUTHORITY; 10618 if (area->area_hw_addr_length != 0) { 10619 *flagsp |= ATF_COM; 10620 /* 10621 * For SIOCGARP, MAC address length validation has 10622 * already been done before the ioctl was issued to ARP 10623 * to allow it to progress only on 6 byte addressable 10624 * (ethernet like) media. Thus the mac address copying 10625 * can not overwrite the sa_data area below. 10626 */ 10627 bcopy((char *)area + area->area_hw_addr_offset, 10628 storage, area->area_hw_addr_length); 10629 } 10630 10631 /* Ditch the internal IOCTL. */ 10632 freemsg(mp); 10633 /* Complete the original. */ 10634 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10635 } 10636 10637 /* 10638 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10639 * interface) create the next available logical interface for this 10640 * physical interface. 10641 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10642 * ipif with the specified name. 10643 * 10644 * If the address family is not AF_UNSPEC then set the address as well. 10645 * 10646 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10647 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10648 * 10649 * Executed as a writer on the ill. 10650 * So no lock is needed to traverse the ipif chain, or examine the 10651 * phyint flags. 10652 */ 10653 /* ARGSUSED */ 10654 int 10655 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10656 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10657 { 10658 mblk_t *mp1; 10659 struct lifreq *lifr; 10660 boolean_t isv6; 10661 boolean_t exists; 10662 char *name; 10663 char *endp; 10664 char *cp; 10665 int namelen; 10666 ipif_t *ipif; 10667 long id; 10668 ipsq_t *ipsq; 10669 ill_t *ill; 10670 sin_t *sin; 10671 int err = 0; 10672 boolean_t found_sep = B_FALSE; 10673 conn_t *connp; 10674 zoneid_t zoneid; 10675 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10676 10677 ASSERT(q->q_next == NULL); 10678 ip1dbg(("ip_sioctl_addif\n")); 10679 /* Existence of mp1 has been checked in ip_wput_nondata */ 10680 mp1 = mp->b_cont->b_cont; 10681 /* 10682 * Null terminate the string to protect against buffer 10683 * overrun. String was generated by user code and may not 10684 * be trusted. 10685 */ 10686 lifr = (struct lifreq *)mp1->b_rptr; 10687 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10688 name = lifr->lifr_name; 10689 ASSERT(CONN_Q(q)); 10690 connp = Q_TO_CONN(q); 10691 isv6 = connp->conn_af_isv6; 10692 zoneid = connp->conn_zoneid; 10693 namelen = mi_strlen(name); 10694 if (namelen == 0) 10695 return (EINVAL); 10696 10697 exists = B_FALSE; 10698 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10699 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10700 /* 10701 * Allow creating lo0 using SIOCLIFADDIF. 10702 * can't be any other writer thread. So can pass null below 10703 * for the last 4 args to ipif_lookup_name. 10704 */ 10705 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10706 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10707 /* Prevent any further action */ 10708 if (ipif == NULL) { 10709 return (ENOBUFS); 10710 } else if (!exists) { 10711 /* We created the ipif now and as writer */ 10712 ipif_refrele(ipif); 10713 return (0); 10714 } else { 10715 ill = ipif->ipif_ill; 10716 ill_refhold(ill); 10717 ipif_refrele(ipif); 10718 } 10719 } else { 10720 /* Look for a colon in the name. */ 10721 endp = &name[namelen]; 10722 for (cp = endp; --cp > name; ) { 10723 if (*cp == IPIF_SEPARATOR_CHAR) { 10724 found_sep = B_TRUE; 10725 /* 10726 * Reject any non-decimal aliases for plumbing 10727 * of logical interfaces. Aliases with leading 10728 * zeroes are also rejected as they introduce 10729 * ambiguity in the naming of the interfaces. 10730 * Comparing with "0" takes care of all such 10731 * cases. 10732 */ 10733 if ((strncmp("0", cp+1, 1)) == 0) 10734 return (EINVAL); 10735 10736 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10737 id <= 0 || *endp != '\0') { 10738 return (EINVAL); 10739 } 10740 *cp = '\0'; 10741 break; 10742 } 10743 } 10744 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10745 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10746 if (found_sep) 10747 *cp = IPIF_SEPARATOR_CHAR; 10748 if (ill == NULL) 10749 return (err); 10750 } 10751 10752 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10753 B_TRUE); 10754 10755 /* 10756 * Release the refhold due to the lookup, now that we are excl 10757 * or we are just returning 10758 */ 10759 ill_refrele(ill); 10760 10761 if (ipsq == NULL) 10762 return (EINPROGRESS); 10763 10764 /* We are now exclusive on the IPSQ */ 10765 ASSERT(IAM_WRITER_ILL(ill)); 10766 10767 if (found_sep) { 10768 /* Now see if there is an IPIF with this unit number. */ 10769 for (ipif = ill->ill_ipif; ipif != NULL; 10770 ipif = ipif->ipif_next) { 10771 if (ipif->ipif_id == id) { 10772 err = EEXIST; 10773 goto done; 10774 } 10775 } 10776 } 10777 10778 /* 10779 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10780 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10781 * instead. 10782 */ 10783 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10784 B_TRUE, B_TRUE)) == NULL) { 10785 err = ENOBUFS; 10786 goto done; 10787 } 10788 10789 /* Return created name with ioctl */ 10790 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10791 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10792 ip1dbg(("created %s\n", lifr->lifr_name)); 10793 10794 /* Set address */ 10795 sin = (sin_t *)&lifr->lifr_addr; 10796 if (sin->sin_family != AF_UNSPEC) { 10797 err = ip_sioctl_addr(ipif, sin, q, mp, 10798 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10799 } 10800 10801 done: 10802 ipsq_exit(ipsq); 10803 return (err); 10804 } 10805 10806 /* 10807 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10808 * interface) delete it based on the IP address (on this physical interface). 10809 * Otherwise delete it based on the ipif_id. 10810 * Also, special handling to allow a removeif of lo0. 10811 */ 10812 /* ARGSUSED */ 10813 int 10814 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10815 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10816 { 10817 conn_t *connp; 10818 ill_t *ill = ipif->ipif_ill; 10819 boolean_t success; 10820 ip_stack_t *ipst; 10821 10822 ipst = CONNQ_TO_IPST(q); 10823 10824 ASSERT(q->q_next == NULL); 10825 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10826 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10827 ASSERT(IAM_WRITER_IPIF(ipif)); 10828 10829 connp = Q_TO_CONN(q); 10830 /* 10831 * Special case for unplumbing lo0 (the loopback physical interface). 10832 * If unplumbing lo0, the incoming address structure has been 10833 * initialized to all zeros. When unplumbing lo0, all its logical 10834 * interfaces must be removed too. 10835 * 10836 * Note that this interface may be called to remove a specific 10837 * loopback logical interface (eg, lo0:1). But in that case 10838 * ipif->ipif_id != 0 so that the code path for that case is the 10839 * same as any other interface (meaning it skips the code directly 10840 * below). 10841 */ 10842 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10843 if (sin->sin_family == AF_UNSPEC && 10844 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10845 /* 10846 * Mark it condemned. No new ref. will be made to ill. 10847 */ 10848 mutex_enter(&ill->ill_lock); 10849 ill->ill_state_flags |= ILL_CONDEMNED; 10850 for (ipif = ill->ill_ipif; ipif != NULL; 10851 ipif = ipif->ipif_next) { 10852 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10853 } 10854 mutex_exit(&ill->ill_lock); 10855 10856 ipif = ill->ill_ipif; 10857 /* unplumb the loopback interface */ 10858 ill_delete(ill); 10859 mutex_enter(&connp->conn_lock); 10860 mutex_enter(&ill->ill_lock); 10861 10862 /* Are any references to this ill active */ 10863 if (ill_is_freeable(ill)) { 10864 mutex_exit(&ill->ill_lock); 10865 mutex_exit(&connp->conn_lock); 10866 ill_delete_tail(ill); 10867 mi_free(ill); 10868 return (0); 10869 } 10870 success = ipsq_pending_mp_add(connp, ipif, 10871 CONNP_TO_WQ(connp), mp, ILL_FREE); 10872 mutex_exit(&connp->conn_lock); 10873 mutex_exit(&ill->ill_lock); 10874 if (success) 10875 return (EINPROGRESS); 10876 else 10877 return (EINTR); 10878 } 10879 } 10880 10881 if (ipif->ipif_id == 0) { 10882 ipsq_t *ipsq; 10883 10884 /* Find based on address */ 10885 if (ipif->ipif_isv6) { 10886 sin6_t *sin6; 10887 10888 if (sin->sin_family != AF_INET6) 10889 return (EAFNOSUPPORT); 10890 10891 sin6 = (sin6_t *)sin; 10892 /* We are a writer, so we should be able to lookup */ 10893 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10894 ipst); 10895 } else { 10896 if (sin->sin_family != AF_INET) 10897 return (EAFNOSUPPORT); 10898 10899 /* We are a writer, so we should be able to lookup */ 10900 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10901 ipst); 10902 } 10903 if (ipif == NULL) { 10904 return (EADDRNOTAVAIL); 10905 } 10906 10907 /* 10908 * It is possible for a user to send an SIOCLIFREMOVEIF with 10909 * lifr_name of the physical interface but with an ip address 10910 * lifr_addr of a logical interface plumbed over it. 10911 * So update ipx_current_ipif now that ipif points to the 10912 * correct one. 10913 */ 10914 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10915 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10916 10917 /* This is a writer */ 10918 ipif_refrele(ipif); 10919 } 10920 10921 /* 10922 * Can not delete instance zero since it is tied to the ill. 10923 */ 10924 if (ipif->ipif_id == 0) 10925 return (EBUSY); 10926 10927 mutex_enter(&ill->ill_lock); 10928 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10929 mutex_exit(&ill->ill_lock); 10930 10931 ipif_free(ipif); 10932 10933 mutex_enter(&connp->conn_lock); 10934 mutex_enter(&ill->ill_lock); 10935 10936 10937 /* Are any references to this ipif active */ 10938 if (ipif_is_freeable(ipif)) { 10939 mutex_exit(&ill->ill_lock); 10940 mutex_exit(&connp->conn_lock); 10941 ipif_non_duplicate(ipif); 10942 ipif_down_tail(ipif); 10943 ipif_free_tail(ipif); /* frees ipif */ 10944 return (0); 10945 } 10946 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10947 IPIF_FREE); 10948 mutex_exit(&ill->ill_lock); 10949 mutex_exit(&connp->conn_lock); 10950 if (success) 10951 return (EINPROGRESS); 10952 else 10953 return (EINTR); 10954 } 10955 10956 /* 10957 * Restart the removeif ioctl. The refcnt has gone down to 0. 10958 * The ipif is already condemned. So can't find it thru lookups. 10959 */ 10960 /* ARGSUSED */ 10961 int 10962 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10963 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10964 { 10965 ill_t *ill = ipif->ipif_ill; 10966 10967 ASSERT(IAM_WRITER_IPIF(ipif)); 10968 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10969 10970 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10971 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10972 10973 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10974 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10975 ill_delete_tail(ill); 10976 mi_free(ill); 10977 return (0); 10978 } 10979 10980 ipif_non_duplicate(ipif); 10981 ipif_down_tail(ipif); 10982 ipif_free_tail(ipif); 10983 10984 ILL_UNMARK_CHANGING(ill); 10985 return (0); 10986 } 10987 10988 /* 10989 * Set the local interface address. 10990 * Allow an address of all zero when the interface is down. 10991 */ 10992 /* ARGSUSED */ 10993 int 10994 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10995 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10996 { 10997 int err = 0; 10998 in6_addr_t v6addr; 10999 boolean_t need_up = B_FALSE; 11000 11001 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11002 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11003 11004 ASSERT(IAM_WRITER_IPIF(ipif)); 11005 11006 if (ipif->ipif_isv6) { 11007 sin6_t *sin6; 11008 ill_t *ill; 11009 phyint_t *phyi; 11010 11011 if (sin->sin_family != AF_INET6) 11012 return (EAFNOSUPPORT); 11013 11014 sin6 = (sin6_t *)sin; 11015 v6addr = sin6->sin6_addr; 11016 ill = ipif->ipif_ill; 11017 phyi = ill->ill_phyint; 11018 11019 /* 11020 * Enforce that true multicast interfaces have a link-local 11021 * address for logical unit 0. 11022 */ 11023 if (ipif->ipif_id == 0 && 11024 (ill->ill_flags & ILLF_MULTICAST) && 11025 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11026 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11027 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11028 return (EADDRNOTAVAIL); 11029 } 11030 11031 /* 11032 * up interfaces shouldn't have the unspecified address 11033 * unless they also have the IPIF_NOLOCAL flags set and 11034 * have a subnet assigned. 11035 */ 11036 if ((ipif->ipif_flags & IPIF_UP) && 11037 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11038 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11039 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11040 return (EADDRNOTAVAIL); 11041 } 11042 11043 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11044 return (EADDRNOTAVAIL); 11045 } else { 11046 ipaddr_t addr; 11047 11048 if (sin->sin_family != AF_INET) 11049 return (EAFNOSUPPORT); 11050 11051 addr = sin->sin_addr.s_addr; 11052 11053 /* Allow 0 as the local address. */ 11054 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11055 return (EADDRNOTAVAIL); 11056 11057 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11058 } 11059 11060 /* 11061 * Even if there is no change we redo things just to rerun 11062 * ipif_set_default. 11063 */ 11064 if (ipif->ipif_flags & IPIF_UP) { 11065 /* 11066 * Setting a new local address, make sure 11067 * we have net and subnet bcast ire's for 11068 * the old address if we need them. 11069 */ 11070 if (!ipif->ipif_isv6) 11071 ipif_check_bcast_ires(ipif); 11072 /* 11073 * If the interface is already marked up, 11074 * we call ipif_down which will take care 11075 * of ditching any IREs that have been set 11076 * up based on the old interface address. 11077 */ 11078 err = ipif_logical_down(ipif, q, mp); 11079 if (err == EINPROGRESS) 11080 return (err); 11081 ipif_down_tail(ipif); 11082 need_up = 1; 11083 } 11084 11085 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11086 return (err); 11087 } 11088 11089 int 11090 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11091 boolean_t need_up) 11092 { 11093 in6_addr_t v6addr; 11094 in6_addr_t ov6addr; 11095 ipaddr_t addr; 11096 sin6_t *sin6; 11097 int sinlen; 11098 int err = 0; 11099 ill_t *ill = ipif->ipif_ill; 11100 boolean_t need_dl_down; 11101 boolean_t need_arp_down; 11102 struct iocblk *iocp; 11103 11104 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11105 11106 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11107 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11108 ASSERT(IAM_WRITER_IPIF(ipif)); 11109 11110 /* Must cancel any pending timer before taking the ill_lock */ 11111 if (ipif->ipif_recovery_id != 0) 11112 (void) untimeout(ipif->ipif_recovery_id); 11113 ipif->ipif_recovery_id = 0; 11114 11115 if (ipif->ipif_isv6) { 11116 sin6 = (sin6_t *)sin; 11117 v6addr = sin6->sin6_addr; 11118 sinlen = sizeof (struct sockaddr_in6); 11119 } else { 11120 addr = sin->sin_addr.s_addr; 11121 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11122 sinlen = sizeof (struct sockaddr_in); 11123 } 11124 mutex_enter(&ill->ill_lock); 11125 ov6addr = ipif->ipif_v6lcl_addr; 11126 ipif->ipif_v6lcl_addr = v6addr; 11127 sctp_update_ipif_addr(ipif, ov6addr); 11128 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11129 ipif->ipif_v6src_addr = ipv6_all_zeros; 11130 } else { 11131 ipif->ipif_v6src_addr = v6addr; 11132 } 11133 ipif->ipif_addr_ready = 0; 11134 11135 /* 11136 * If the interface was previously marked as a duplicate, then since 11137 * we've now got a "new" address, it should no longer be considered a 11138 * duplicate -- even if the "new" address is the same as the old one. 11139 * Note that if all ipifs are down, we may have a pending ARP down 11140 * event to handle. This is because we want to recover from duplicates 11141 * and thus delay tearing down ARP until the duplicates have been 11142 * removed or disabled. 11143 */ 11144 need_dl_down = need_arp_down = B_FALSE; 11145 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11146 need_arp_down = !need_up; 11147 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11148 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11149 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11150 need_dl_down = B_TRUE; 11151 } 11152 } 11153 11154 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11155 !ill->ill_is_6to4tun) { 11156 queue_t *wqp = ill->ill_wq; 11157 11158 /* 11159 * The local address of this interface is a 6to4 address, 11160 * check if this interface is in fact a 6to4 tunnel or just 11161 * an interface configured with a 6to4 address. We are only 11162 * interested in the former. 11163 */ 11164 if (wqp != NULL) { 11165 while ((wqp->q_next != NULL) && 11166 (wqp->q_next->q_qinfo != NULL) && 11167 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11168 11169 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11170 == TUN6TO4_MODID) { 11171 /* set for use in IP */ 11172 ill->ill_is_6to4tun = 1; 11173 break; 11174 } 11175 wqp = wqp->q_next; 11176 } 11177 } 11178 } 11179 11180 ipif_set_default(ipif); 11181 11182 /* 11183 * When publishing an interface address change event, we only notify 11184 * the event listeners of the new address. It is assumed that if they 11185 * actively care about the addresses assigned that they will have 11186 * already discovered the previous address assigned (if there was one.) 11187 * 11188 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11189 */ 11190 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11191 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11192 NE_ADDRESS_CHANGE, sin, sinlen); 11193 } 11194 11195 mutex_exit(&ill->ill_lock); 11196 11197 if (need_up) { 11198 /* 11199 * Now bring the interface back up. If this 11200 * is the only IPIF for the ILL, ipif_up 11201 * will have to re-bind to the device, so 11202 * we may get back EINPROGRESS, in which 11203 * case, this IOCTL will get completed in 11204 * ip_rput_dlpi when we see the DL_BIND_ACK. 11205 */ 11206 err = ipif_up(ipif, q, mp); 11207 } 11208 11209 if (need_dl_down) 11210 ill_dl_down(ill); 11211 if (need_arp_down) 11212 ipif_resolver_down(ipif); 11213 11214 return (err); 11215 } 11216 11217 11218 /* 11219 * Restart entry point to restart the address set operation after the 11220 * refcounts have dropped to zero. 11221 */ 11222 /* ARGSUSED */ 11223 int 11224 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11225 ip_ioctl_cmd_t *ipip, void *ifreq) 11226 { 11227 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11228 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11229 ASSERT(IAM_WRITER_IPIF(ipif)); 11230 ipif_down_tail(ipif); 11231 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11232 } 11233 11234 /* ARGSUSED */ 11235 int 11236 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11237 ip_ioctl_cmd_t *ipip, void *if_req) 11238 { 11239 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11240 struct lifreq *lifr = (struct lifreq *)if_req; 11241 11242 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11244 /* 11245 * The net mask and address can't change since we have a 11246 * reference to the ipif. So no lock is necessary. 11247 */ 11248 if (ipif->ipif_isv6) { 11249 *sin6 = sin6_null; 11250 sin6->sin6_family = AF_INET6; 11251 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11252 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11253 lifr->lifr_addrlen = 11254 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11255 } else { 11256 *sin = sin_null; 11257 sin->sin_family = AF_INET; 11258 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11259 if (ipip->ipi_cmd_type == LIF_CMD) { 11260 lifr->lifr_addrlen = 11261 ip_mask_to_plen(ipif->ipif_net_mask); 11262 } 11263 } 11264 return (0); 11265 } 11266 11267 /* 11268 * Set the destination address for a pt-pt interface. 11269 */ 11270 /* ARGSUSED */ 11271 int 11272 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11273 ip_ioctl_cmd_t *ipip, void *if_req) 11274 { 11275 int err = 0; 11276 in6_addr_t v6addr; 11277 boolean_t need_up = B_FALSE; 11278 11279 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11280 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11281 ASSERT(IAM_WRITER_IPIF(ipif)); 11282 11283 if (ipif->ipif_isv6) { 11284 sin6_t *sin6; 11285 11286 if (sin->sin_family != AF_INET6) 11287 return (EAFNOSUPPORT); 11288 11289 sin6 = (sin6_t *)sin; 11290 v6addr = sin6->sin6_addr; 11291 11292 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11293 return (EADDRNOTAVAIL); 11294 } else { 11295 ipaddr_t addr; 11296 11297 if (sin->sin_family != AF_INET) 11298 return (EAFNOSUPPORT); 11299 11300 addr = sin->sin_addr.s_addr; 11301 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11302 return (EADDRNOTAVAIL); 11303 11304 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11305 } 11306 11307 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11308 return (0); /* No change */ 11309 11310 if (ipif->ipif_flags & IPIF_UP) { 11311 /* 11312 * If the interface is already marked up, 11313 * we call ipif_down which will take care 11314 * of ditching any IREs that have been set 11315 * up based on the old pp dst address. 11316 */ 11317 err = ipif_logical_down(ipif, q, mp); 11318 if (err == EINPROGRESS) 11319 return (err); 11320 ipif_down_tail(ipif); 11321 need_up = B_TRUE; 11322 } 11323 /* 11324 * could return EINPROGRESS. If so ioctl will complete in 11325 * ip_rput_dlpi_writer 11326 */ 11327 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11328 return (err); 11329 } 11330 11331 static int 11332 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11333 boolean_t need_up) 11334 { 11335 in6_addr_t v6addr; 11336 ill_t *ill = ipif->ipif_ill; 11337 int err = 0; 11338 boolean_t need_dl_down; 11339 boolean_t need_arp_down; 11340 11341 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11342 ipif->ipif_id, (void *)ipif)); 11343 11344 /* Must cancel any pending timer before taking the ill_lock */ 11345 if (ipif->ipif_recovery_id != 0) 11346 (void) untimeout(ipif->ipif_recovery_id); 11347 ipif->ipif_recovery_id = 0; 11348 11349 if (ipif->ipif_isv6) { 11350 sin6_t *sin6; 11351 11352 sin6 = (sin6_t *)sin; 11353 v6addr = sin6->sin6_addr; 11354 } else { 11355 ipaddr_t addr; 11356 11357 addr = sin->sin_addr.s_addr; 11358 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11359 } 11360 mutex_enter(&ill->ill_lock); 11361 /* Set point to point destination address. */ 11362 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11363 /* 11364 * Allow this as a means of creating logical 11365 * pt-pt interfaces on top of e.g. an Ethernet. 11366 * XXX Undocumented HACK for testing. 11367 * pt-pt interfaces are created with NUD disabled. 11368 */ 11369 ipif->ipif_flags |= IPIF_POINTOPOINT; 11370 ipif->ipif_flags &= ~IPIF_BROADCAST; 11371 if (ipif->ipif_isv6) 11372 ill->ill_flags |= ILLF_NONUD; 11373 } 11374 11375 /* 11376 * If the interface was previously marked as a duplicate, then since 11377 * we've now got a "new" address, it should no longer be considered a 11378 * duplicate -- even if the "new" address is the same as the old one. 11379 * Note that if all ipifs are down, we may have a pending ARP down 11380 * event to handle. 11381 */ 11382 need_dl_down = need_arp_down = B_FALSE; 11383 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11384 need_arp_down = !need_up; 11385 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11386 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11387 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11388 need_dl_down = B_TRUE; 11389 } 11390 } 11391 11392 /* Set the new address. */ 11393 ipif->ipif_v6pp_dst_addr = v6addr; 11394 /* Make sure subnet tracks pp_dst */ 11395 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11396 mutex_exit(&ill->ill_lock); 11397 11398 if (need_up) { 11399 /* 11400 * Now bring the interface back up. If this 11401 * is the only IPIF for the ILL, ipif_up 11402 * will have to re-bind to the device, so 11403 * we may get back EINPROGRESS, in which 11404 * case, this IOCTL will get completed in 11405 * ip_rput_dlpi when we see the DL_BIND_ACK. 11406 */ 11407 err = ipif_up(ipif, q, mp); 11408 } 11409 11410 if (need_dl_down) 11411 ill_dl_down(ill); 11412 if (need_arp_down) 11413 ipif_resolver_down(ipif); 11414 11415 return (err); 11416 } 11417 11418 /* 11419 * Restart entry point to restart the dstaddress set operation after the 11420 * refcounts have dropped to zero. 11421 */ 11422 /* ARGSUSED */ 11423 int 11424 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11425 ip_ioctl_cmd_t *ipip, void *ifreq) 11426 { 11427 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11428 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11429 ipif_down_tail(ipif); 11430 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11431 } 11432 11433 /* ARGSUSED */ 11434 int 11435 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11436 ip_ioctl_cmd_t *ipip, void *if_req) 11437 { 11438 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11439 11440 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11441 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11442 /* 11443 * Get point to point destination address. The addresses can't 11444 * change since we hold a reference to the ipif. 11445 */ 11446 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11447 return (EADDRNOTAVAIL); 11448 11449 if (ipif->ipif_isv6) { 11450 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11451 *sin6 = sin6_null; 11452 sin6->sin6_family = AF_INET6; 11453 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11454 } else { 11455 *sin = sin_null; 11456 sin->sin_family = AF_INET; 11457 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11458 } 11459 return (0); 11460 } 11461 11462 /* 11463 * Set interface flags. Many flags require special handling (e.g., 11464 * bringing the interface down); see below for details. 11465 * 11466 * NOTE : We really don't enforce that ipif_id zero should be used 11467 * for setting any flags other than IFF_LOGINT_FLAGS. This 11468 * is because applications generally does SICGLIFFLAGS and 11469 * ORs in the new flags (that affects the logical) and does a 11470 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11471 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11472 * flags that will be turned on is correct with respect to 11473 * ipif_id 0. For backward compatibility reasons, it is not done. 11474 */ 11475 /* ARGSUSED */ 11476 int 11477 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11478 ip_ioctl_cmd_t *ipip, void *if_req) 11479 { 11480 uint64_t turn_on; 11481 uint64_t turn_off; 11482 int err = 0; 11483 phyint_t *phyi; 11484 ill_t *ill; 11485 uint64_t intf_flags, cantchange_flags; 11486 boolean_t phyint_flags_modified = B_FALSE; 11487 uint64_t flags; 11488 struct ifreq *ifr; 11489 struct lifreq *lifr; 11490 boolean_t set_linklocal = B_FALSE; 11491 boolean_t zero_source = B_FALSE; 11492 11493 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11494 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11495 11496 ASSERT(IAM_WRITER_IPIF(ipif)); 11497 11498 ill = ipif->ipif_ill; 11499 phyi = ill->ill_phyint; 11500 11501 if (ipip->ipi_cmd_type == IF_CMD) { 11502 ifr = (struct ifreq *)if_req; 11503 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11504 } else { 11505 lifr = (struct lifreq *)if_req; 11506 flags = lifr->lifr_flags; 11507 } 11508 11509 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11510 11511 /* 11512 * Have the flags been set correctly until now? 11513 */ 11514 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11515 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11516 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11517 /* 11518 * Compare the new flags to the old, and partition 11519 * into those coming on and those going off. 11520 * For the 16 bit command keep the bits above bit 16 unchanged. 11521 */ 11522 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11523 flags |= intf_flags & ~0xFFFF; 11524 11525 /* 11526 * Explicitly fail attempts to change flags that are always invalid on 11527 * an IPMP meta-interface. 11528 */ 11529 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11530 return (EINVAL); 11531 11532 /* 11533 * Check which flags will change; silently ignore flags which userland 11534 * is not allowed to control. (Because these flags may change between 11535 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11536 * control, we need to silently ignore them rather than fail.) 11537 */ 11538 cantchange_flags = IFF_CANTCHANGE; 11539 if (IS_IPMP(ill)) 11540 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11541 11542 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11543 if (turn_on == 0) 11544 return (0); /* No change */ 11545 11546 turn_off = intf_flags & turn_on; 11547 turn_on ^= turn_off; 11548 11549 /* 11550 * All test addresses must be IFF_DEPRECATED (to ensure source address 11551 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11552 * allow it to be turned off. 11553 */ 11554 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11555 (turn_on|intf_flags) & IFF_NOFAILOVER) 11556 return (EINVAL); 11557 11558 if (turn_on & IFF_NOFAILOVER) { 11559 turn_on |= IFF_DEPRECATED; 11560 flags |= IFF_DEPRECATED; 11561 } 11562 11563 /* 11564 * On underlying interfaces, only allow applications to manage test 11565 * addresses -- otherwise, they may get confused when the address 11566 * moves as part of being brought up. Likewise, prevent an 11567 * application-managed test address from being converted to a data 11568 * address. To prevent migration of administratively up addresses in 11569 * the kernel, we don't allow them to be converted either. 11570 */ 11571 if (IS_UNDER_IPMP(ill)) { 11572 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11573 11574 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11575 return (EINVAL); 11576 11577 if ((turn_off & IFF_NOFAILOVER) && 11578 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11579 return (EINVAL); 11580 } 11581 11582 /* 11583 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11584 * IPv6 interfaces. 11585 */ 11586 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11587 return (EINVAL); 11588 11589 /* 11590 * cannot turn off IFF_NOXMIT on VNI interfaces. 11591 */ 11592 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11593 return (EINVAL); 11594 11595 /* 11596 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11597 * interfaces. It makes no sense in that context. 11598 */ 11599 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11600 return (EINVAL); 11601 11602 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11603 zero_source = B_TRUE; 11604 11605 /* 11606 * For IPv6 ipif_id 0, don't allow the interface to be up without 11607 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11608 * If the link local address isn't set, and can be set, it will get 11609 * set later on in this function. 11610 */ 11611 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11612 (flags & IFF_UP) && !zero_source && 11613 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11614 if (ipif_cant_setlinklocal(ipif)) 11615 return (EINVAL); 11616 set_linklocal = B_TRUE; 11617 } 11618 11619 /* 11620 * If we modify physical interface flags, we'll potentially need to 11621 * send up two routing socket messages for the changes (one for the 11622 * IPv4 ill, and another for the IPv6 ill). Note that here. 11623 */ 11624 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11625 phyint_flags_modified = B_TRUE; 11626 11627 /* 11628 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11629 * (otherwise, we'd immediately use them, defeating standby). Also, 11630 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11631 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11632 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11633 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11634 * will not be honored. 11635 */ 11636 if (turn_on & PHYI_STANDBY) { 11637 /* 11638 * No need to grab ill_g_usesrc_lock here; see the 11639 * synchronization notes in ip.c. 11640 */ 11641 if (ill->ill_usesrc_grp_next != NULL || 11642 intf_flags & PHYI_INACTIVE) 11643 return (EINVAL); 11644 if (!(flags & PHYI_FAILED)) { 11645 flags |= PHYI_INACTIVE; 11646 turn_on |= PHYI_INACTIVE; 11647 } 11648 } 11649 11650 if (turn_off & PHYI_STANDBY) { 11651 flags &= ~PHYI_INACTIVE; 11652 turn_off |= PHYI_INACTIVE; 11653 } 11654 11655 /* 11656 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11657 * would end up on. 11658 */ 11659 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11660 (PHYI_FAILED | PHYI_INACTIVE)) 11661 return (EINVAL); 11662 11663 /* 11664 * If ILLF_ROUTER changes, we need to change the ip forwarding 11665 * status of the interface. 11666 */ 11667 if ((turn_on | turn_off) & ILLF_ROUTER) 11668 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11669 11670 /* 11671 * If the interface is not UP and we are not going to 11672 * bring it UP, record the flags and return. When the 11673 * interface comes UP later, the right actions will be 11674 * taken. 11675 */ 11676 if (!(ipif->ipif_flags & IPIF_UP) && 11677 !(turn_on & IPIF_UP)) { 11678 /* Record new flags in their respective places. */ 11679 mutex_enter(&ill->ill_lock); 11680 mutex_enter(&ill->ill_phyint->phyint_lock); 11681 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11682 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11683 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11684 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11685 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11686 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11687 mutex_exit(&ill->ill_lock); 11688 mutex_exit(&ill->ill_phyint->phyint_lock); 11689 11690 /* 11691 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11692 * same to the kernel: if any of them has been set by 11693 * userland, the interface cannot be used for data traffic. 11694 */ 11695 if ((turn_on|turn_off) & 11696 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11697 ASSERT(!IS_IPMP(ill)); 11698 /* 11699 * It's possible the ill is part of an "anonymous" 11700 * IPMP group rather than a real group. In that case, 11701 * there are no other interfaces in the group and thus 11702 * no need to call ipmp_phyint_refresh_active(). 11703 */ 11704 if (IS_UNDER_IPMP(ill)) 11705 ipmp_phyint_refresh_active(phyi); 11706 } 11707 11708 if (phyint_flags_modified) { 11709 if (phyi->phyint_illv4 != NULL) { 11710 ip_rts_ifmsg(phyi->phyint_illv4-> 11711 ill_ipif, RTSQ_DEFAULT); 11712 } 11713 if (phyi->phyint_illv6 != NULL) { 11714 ip_rts_ifmsg(phyi->phyint_illv6-> 11715 ill_ipif, RTSQ_DEFAULT); 11716 } 11717 } 11718 return (0); 11719 } else if (set_linklocal || zero_source) { 11720 mutex_enter(&ill->ill_lock); 11721 if (set_linklocal) 11722 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11723 if (zero_source) 11724 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11725 mutex_exit(&ill->ill_lock); 11726 } 11727 11728 /* 11729 * Disallow IPv6 interfaces coming up that have the unspecified address, 11730 * or point-to-point interfaces with an unspecified destination. We do 11731 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11732 * have a subnet assigned, which is how in.ndpd currently manages its 11733 * onlink prefix list when no addresses are configured with those 11734 * prefixes. 11735 */ 11736 if (ipif->ipif_isv6 && 11737 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11738 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11739 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11740 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11741 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11742 return (EINVAL); 11743 } 11744 11745 /* 11746 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11747 * from being brought up. 11748 */ 11749 if (!ipif->ipif_isv6 && 11750 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11751 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11752 return (EINVAL); 11753 } 11754 11755 /* 11756 * The only flag changes that we currently take specific action on are 11757 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11758 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11759 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11760 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11761 * of bringing it back up will trigger the address to be moved. 11762 */ 11763 if ((turn_on|turn_off) & 11764 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11765 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11766 IPIF_NOFAILOVER)) { 11767 /* 11768 * Taking this ipif down, make sure we have 11769 * valid net and subnet bcast ire's for other 11770 * logical interfaces, if we need them. 11771 */ 11772 if (!ipif->ipif_isv6) 11773 ipif_check_bcast_ires(ipif); 11774 11775 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11776 !(turn_off & IPIF_UP)) { 11777 if (ipif->ipif_flags & IPIF_UP) 11778 ill->ill_logical_down = 1; 11779 turn_on &= ~IPIF_UP; 11780 } 11781 err = ipif_down(ipif, q, mp); 11782 ip1dbg(("ipif_down returns %d err ", err)); 11783 if (err == EINPROGRESS) 11784 return (err); 11785 ipif_down_tail(ipif); 11786 } 11787 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11788 } 11789 11790 static int 11791 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11792 { 11793 ill_t *ill; 11794 phyint_t *phyi; 11795 uint64_t turn_on, turn_off; 11796 uint64_t intf_flags, cantchange_flags; 11797 boolean_t phyint_flags_modified = B_FALSE; 11798 int err = 0; 11799 boolean_t set_linklocal = B_FALSE; 11800 boolean_t zero_source = B_FALSE; 11801 11802 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11803 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11804 11805 ASSERT(IAM_WRITER_IPIF(ipif)); 11806 11807 ill = ipif->ipif_ill; 11808 phyi = ill->ill_phyint; 11809 11810 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11811 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11812 if (IS_IPMP(ill)) 11813 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11814 11815 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11816 turn_off = intf_flags & turn_on; 11817 turn_on ^= turn_off; 11818 11819 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11820 phyint_flags_modified = B_TRUE; 11821 11822 /* 11823 * Now we change the flags. Track current value of 11824 * other flags in their respective places. 11825 */ 11826 mutex_enter(&ill->ill_lock); 11827 mutex_enter(&phyi->phyint_lock); 11828 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11829 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11830 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11831 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11832 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11833 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11834 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11835 set_linklocal = B_TRUE; 11836 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11837 } 11838 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11839 zero_source = B_TRUE; 11840 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11841 } 11842 mutex_exit(&ill->ill_lock); 11843 mutex_exit(&phyi->phyint_lock); 11844 11845 if (set_linklocal) 11846 (void) ipif_setlinklocal(ipif); 11847 11848 if (zero_source) 11849 ipif->ipif_v6src_addr = ipv6_all_zeros; 11850 else 11851 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11852 11853 /* 11854 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11855 * the kernel: if any of them has been set by userland, the interface 11856 * cannot be used for data traffic. 11857 */ 11858 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11859 ASSERT(!IS_IPMP(ill)); 11860 /* 11861 * It's possible the ill is part of an "anonymous" IPMP group 11862 * rather than a real group. In that case, there are no other 11863 * interfaces in the group and thus no need for us to call 11864 * ipmp_phyint_refresh_active(). 11865 */ 11866 if (IS_UNDER_IPMP(ill)) 11867 ipmp_phyint_refresh_active(phyi); 11868 } 11869 11870 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11871 /* 11872 * XXX ipif_up really does not know whether a phyint flags 11873 * was modified or not. So, it sends up information on 11874 * only one routing sockets message. As we don't bring up 11875 * the interface and also set PHYI_ flags simultaneously 11876 * it should be okay. 11877 */ 11878 err = ipif_up(ipif, q, mp); 11879 } else { 11880 /* 11881 * Make sure routing socket sees all changes to the flags. 11882 * ipif_up_done* handles this when we use ipif_up. 11883 */ 11884 if (phyint_flags_modified) { 11885 if (phyi->phyint_illv4 != NULL) { 11886 ip_rts_ifmsg(phyi->phyint_illv4-> 11887 ill_ipif, RTSQ_DEFAULT); 11888 } 11889 if (phyi->phyint_illv6 != NULL) { 11890 ip_rts_ifmsg(phyi->phyint_illv6-> 11891 ill_ipif, RTSQ_DEFAULT); 11892 } 11893 } else { 11894 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11895 } 11896 /* 11897 * Update the flags in SCTP's IPIF list, ipif_up() will do 11898 * this in need_up case. 11899 */ 11900 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11901 } 11902 return (err); 11903 } 11904 11905 /* 11906 * Restart the flags operation now that the refcounts have dropped to zero. 11907 */ 11908 /* ARGSUSED */ 11909 int 11910 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11911 ip_ioctl_cmd_t *ipip, void *if_req) 11912 { 11913 uint64_t flags; 11914 struct ifreq *ifr = if_req; 11915 struct lifreq *lifr = if_req; 11916 11917 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11918 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11919 11920 ipif_down_tail(ipif); 11921 if (ipip->ipi_cmd_type == IF_CMD) { 11922 /* cast to uint16_t prevents unwanted sign extension */ 11923 flags = (uint16_t)ifr->ifr_flags; 11924 } else { 11925 flags = lifr->lifr_flags; 11926 } 11927 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11928 } 11929 11930 /* 11931 * Can operate on either a module or a driver queue. 11932 */ 11933 /* ARGSUSED */ 11934 int 11935 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11936 ip_ioctl_cmd_t *ipip, void *if_req) 11937 { 11938 /* 11939 * Has the flags been set correctly till now ? 11940 */ 11941 ill_t *ill = ipif->ipif_ill; 11942 phyint_t *phyi = ill->ill_phyint; 11943 11944 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11946 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11947 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11948 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11949 11950 /* 11951 * Need a lock since some flags can be set even when there are 11952 * references to the ipif. 11953 */ 11954 mutex_enter(&ill->ill_lock); 11955 if (ipip->ipi_cmd_type == IF_CMD) { 11956 struct ifreq *ifr = (struct ifreq *)if_req; 11957 11958 /* Get interface flags (low 16 only). */ 11959 ifr->ifr_flags = ((ipif->ipif_flags | 11960 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11961 } else { 11962 struct lifreq *lifr = (struct lifreq *)if_req; 11963 11964 /* Get interface flags. */ 11965 lifr->lifr_flags = ipif->ipif_flags | 11966 ill->ill_flags | phyi->phyint_flags; 11967 } 11968 mutex_exit(&ill->ill_lock); 11969 return (0); 11970 } 11971 11972 /* ARGSUSED */ 11973 int 11974 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11975 ip_ioctl_cmd_t *ipip, void *if_req) 11976 { 11977 int mtu; 11978 int ip_min_mtu; 11979 struct ifreq *ifr; 11980 struct lifreq *lifr; 11981 ire_t *ire; 11982 ip_stack_t *ipst; 11983 11984 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11985 ipif->ipif_id, (void *)ipif)); 11986 if (ipip->ipi_cmd_type == IF_CMD) { 11987 ifr = (struct ifreq *)if_req; 11988 mtu = ifr->ifr_metric; 11989 } else { 11990 lifr = (struct lifreq *)if_req; 11991 mtu = lifr->lifr_mtu; 11992 } 11993 11994 if (ipif->ipif_isv6) 11995 ip_min_mtu = IPV6_MIN_MTU; 11996 else 11997 ip_min_mtu = IP_MIN_MTU; 11998 11999 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12000 return (EINVAL); 12001 12002 /* 12003 * Change the MTU size in all relevant ire's. 12004 * Mtu change Vs. new ire creation - protocol below. 12005 * First change ipif_mtu and the ire_max_frag of the 12006 * interface ire. Then do an ire walk and change the 12007 * ire_max_frag of all affected ires. During ire_add 12008 * under the bucket lock, set the ire_max_frag of the 12009 * new ire being created from the ipif/ire from which 12010 * it is being derived. If an mtu change happens after 12011 * the ire is added, the new ire will be cleaned up. 12012 * Conversely if the mtu change happens before the ire 12013 * is added, ire_add will see the new value of the mtu. 12014 */ 12015 ipif->ipif_mtu = mtu; 12016 ipif->ipif_flags |= IPIF_FIXEDMTU; 12017 12018 if (ipif->ipif_isv6) 12019 ire = ipif_to_ire_v6(ipif); 12020 else 12021 ire = ipif_to_ire(ipif); 12022 if (ire != NULL) { 12023 ire->ire_max_frag = ipif->ipif_mtu; 12024 ire_refrele(ire); 12025 } 12026 ipst = ipif->ipif_ill->ill_ipst; 12027 if (ipif->ipif_flags & IPIF_UP) { 12028 if (ipif->ipif_isv6) 12029 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12030 ipst); 12031 else 12032 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12033 ipst); 12034 } 12035 /* Update the MTU in SCTP's list */ 12036 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12037 return (0); 12038 } 12039 12040 /* Get interface MTU. */ 12041 /* ARGSUSED */ 12042 int 12043 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12044 ip_ioctl_cmd_t *ipip, void *if_req) 12045 { 12046 struct ifreq *ifr; 12047 struct lifreq *lifr; 12048 12049 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12050 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12051 if (ipip->ipi_cmd_type == IF_CMD) { 12052 ifr = (struct ifreq *)if_req; 12053 ifr->ifr_metric = ipif->ipif_mtu; 12054 } else { 12055 lifr = (struct lifreq *)if_req; 12056 lifr->lifr_mtu = ipif->ipif_mtu; 12057 } 12058 return (0); 12059 } 12060 12061 /* Set interface broadcast address. */ 12062 /* ARGSUSED2 */ 12063 int 12064 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12065 ip_ioctl_cmd_t *ipip, void *if_req) 12066 { 12067 ipaddr_t addr; 12068 ire_t *ire; 12069 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12070 12071 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12072 ipif->ipif_id)); 12073 12074 ASSERT(IAM_WRITER_IPIF(ipif)); 12075 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12076 return (EADDRNOTAVAIL); 12077 12078 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12079 12080 if (sin->sin_family != AF_INET) 12081 return (EAFNOSUPPORT); 12082 12083 addr = sin->sin_addr.s_addr; 12084 if (ipif->ipif_flags & IPIF_UP) { 12085 /* 12086 * If we are already up, make sure the new 12087 * broadcast address makes sense. If it does, 12088 * there should be an IRE for it already. 12089 * Don't match on ipif, only on the ill 12090 * since we are sharing these now. 12091 */ 12092 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12093 ipif, ALL_ZONES, NULL, 12094 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12095 if (ire == NULL) { 12096 return (EINVAL); 12097 } else { 12098 ire_refrele(ire); 12099 } 12100 } 12101 /* 12102 * Changing the broadcast addr for this ipif. 12103 * Make sure we have valid net and subnet bcast 12104 * ire's for other logical interfaces, if needed. 12105 */ 12106 if (addr != ipif->ipif_brd_addr) 12107 ipif_check_bcast_ires(ipif); 12108 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12109 return (0); 12110 } 12111 12112 /* Get interface broadcast address. */ 12113 /* ARGSUSED */ 12114 int 12115 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12116 ip_ioctl_cmd_t *ipip, void *if_req) 12117 { 12118 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12119 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12120 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12121 return (EADDRNOTAVAIL); 12122 12123 /* IPIF_BROADCAST not possible with IPv6 */ 12124 ASSERT(!ipif->ipif_isv6); 12125 *sin = sin_null; 12126 sin->sin_family = AF_INET; 12127 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12128 return (0); 12129 } 12130 12131 /* 12132 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12133 */ 12134 /* ARGSUSED */ 12135 int 12136 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12137 ip_ioctl_cmd_t *ipip, void *if_req) 12138 { 12139 int err = 0; 12140 in6_addr_t v6mask; 12141 12142 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12143 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12144 12145 ASSERT(IAM_WRITER_IPIF(ipif)); 12146 12147 if (ipif->ipif_isv6) { 12148 sin6_t *sin6; 12149 12150 if (sin->sin_family != AF_INET6) 12151 return (EAFNOSUPPORT); 12152 12153 sin6 = (sin6_t *)sin; 12154 v6mask = sin6->sin6_addr; 12155 } else { 12156 ipaddr_t mask; 12157 12158 if (sin->sin_family != AF_INET) 12159 return (EAFNOSUPPORT); 12160 12161 mask = sin->sin_addr.s_addr; 12162 V4MASK_TO_V6(mask, v6mask); 12163 } 12164 12165 /* 12166 * No big deal if the interface isn't already up, or the mask 12167 * isn't really changing, or this is pt-pt. 12168 */ 12169 if (!(ipif->ipif_flags & IPIF_UP) || 12170 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12171 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12172 ipif->ipif_v6net_mask = v6mask; 12173 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12174 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12175 ipif->ipif_v6net_mask, 12176 ipif->ipif_v6subnet); 12177 } 12178 return (0); 12179 } 12180 /* 12181 * Make sure we have valid net and subnet broadcast ire's 12182 * for the old netmask, if needed by other logical interfaces. 12183 */ 12184 if (!ipif->ipif_isv6) 12185 ipif_check_bcast_ires(ipif); 12186 12187 err = ipif_logical_down(ipif, q, mp); 12188 if (err == EINPROGRESS) 12189 return (err); 12190 ipif_down_tail(ipif); 12191 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12192 return (err); 12193 } 12194 12195 static int 12196 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12197 { 12198 in6_addr_t v6mask; 12199 int err = 0; 12200 12201 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12202 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12203 12204 if (ipif->ipif_isv6) { 12205 sin6_t *sin6; 12206 12207 sin6 = (sin6_t *)sin; 12208 v6mask = sin6->sin6_addr; 12209 } else { 12210 ipaddr_t mask; 12211 12212 mask = sin->sin_addr.s_addr; 12213 V4MASK_TO_V6(mask, v6mask); 12214 } 12215 12216 ipif->ipif_v6net_mask = v6mask; 12217 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12218 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12219 ipif->ipif_v6subnet); 12220 } 12221 err = ipif_up(ipif, q, mp); 12222 12223 if (err == 0 || err == EINPROGRESS) { 12224 /* 12225 * The interface must be DL_BOUND if this packet has to 12226 * go out on the wire. Since we only go through a logical 12227 * down and are bound with the driver during an internal 12228 * down/up that is satisfied. 12229 */ 12230 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12231 /* Potentially broadcast an address mask reply. */ 12232 ipif_mask_reply(ipif); 12233 } 12234 } 12235 return (err); 12236 } 12237 12238 /* ARGSUSED */ 12239 int 12240 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12241 ip_ioctl_cmd_t *ipip, void *if_req) 12242 { 12243 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12244 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12245 ipif_down_tail(ipif); 12246 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12247 } 12248 12249 /* Get interface net mask. */ 12250 /* ARGSUSED */ 12251 int 12252 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12253 ip_ioctl_cmd_t *ipip, void *if_req) 12254 { 12255 struct lifreq *lifr = (struct lifreq *)if_req; 12256 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12257 12258 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12259 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12260 12261 /* 12262 * net mask can't change since we have a reference to the ipif. 12263 */ 12264 if (ipif->ipif_isv6) { 12265 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12266 *sin6 = sin6_null; 12267 sin6->sin6_family = AF_INET6; 12268 sin6->sin6_addr = ipif->ipif_v6net_mask; 12269 lifr->lifr_addrlen = 12270 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12271 } else { 12272 *sin = sin_null; 12273 sin->sin_family = AF_INET; 12274 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12275 if (ipip->ipi_cmd_type == LIF_CMD) { 12276 lifr->lifr_addrlen = 12277 ip_mask_to_plen(ipif->ipif_net_mask); 12278 } 12279 } 12280 return (0); 12281 } 12282 12283 /* ARGSUSED */ 12284 int 12285 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12286 ip_ioctl_cmd_t *ipip, void *if_req) 12287 { 12288 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12289 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12290 12291 /* 12292 * Since no applications should ever be setting metrics on underlying 12293 * interfaces, we explicitly fail to smoke 'em out. 12294 */ 12295 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12296 return (EINVAL); 12297 12298 /* 12299 * Set interface metric. We don't use this for 12300 * anything but we keep track of it in case it is 12301 * important to routing applications or such. 12302 */ 12303 if (ipip->ipi_cmd_type == IF_CMD) { 12304 struct ifreq *ifr; 12305 12306 ifr = (struct ifreq *)if_req; 12307 ipif->ipif_metric = ifr->ifr_metric; 12308 } else { 12309 struct lifreq *lifr; 12310 12311 lifr = (struct lifreq *)if_req; 12312 ipif->ipif_metric = lifr->lifr_metric; 12313 } 12314 return (0); 12315 } 12316 12317 /* ARGSUSED */ 12318 int 12319 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12320 ip_ioctl_cmd_t *ipip, void *if_req) 12321 { 12322 /* Get interface metric. */ 12323 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12324 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12325 12326 if (ipip->ipi_cmd_type == IF_CMD) { 12327 struct ifreq *ifr; 12328 12329 ifr = (struct ifreq *)if_req; 12330 ifr->ifr_metric = ipif->ipif_metric; 12331 } else { 12332 struct lifreq *lifr; 12333 12334 lifr = (struct lifreq *)if_req; 12335 lifr->lifr_metric = ipif->ipif_metric; 12336 } 12337 12338 return (0); 12339 } 12340 12341 /* ARGSUSED */ 12342 int 12343 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12344 ip_ioctl_cmd_t *ipip, void *if_req) 12345 { 12346 12347 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12348 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12349 /* 12350 * Set the muxid returned from I_PLINK. 12351 */ 12352 if (ipip->ipi_cmd_type == IF_CMD) { 12353 struct ifreq *ifr = (struct ifreq *)if_req; 12354 12355 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12356 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12357 } else { 12358 struct lifreq *lifr = (struct lifreq *)if_req; 12359 12360 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12361 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12362 } 12363 return (0); 12364 } 12365 12366 /* ARGSUSED */ 12367 int 12368 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12369 ip_ioctl_cmd_t *ipip, void *if_req) 12370 { 12371 12372 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12373 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12374 /* 12375 * Get the muxid saved in ill for I_PUNLINK. 12376 */ 12377 if (ipip->ipi_cmd_type == IF_CMD) { 12378 struct ifreq *ifr = (struct ifreq *)if_req; 12379 12380 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12381 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12382 } else { 12383 struct lifreq *lifr = (struct lifreq *)if_req; 12384 12385 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12386 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12387 } 12388 return (0); 12389 } 12390 12391 /* 12392 * Set the subnet prefix. Does not modify the broadcast address. 12393 */ 12394 /* ARGSUSED */ 12395 int 12396 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12397 ip_ioctl_cmd_t *ipip, void *if_req) 12398 { 12399 int err = 0; 12400 in6_addr_t v6addr; 12401 in6_addr_t v6mask; 12402 boolean_t need_up = B_FALSE; 12403 int addrlen; 12404 12405 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12406 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12407 12408 ASSERT(IAM_WRITER_IPIF(ipif)); 12409 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12410 12411 if (ipif->ipif_isv6) { 12412 sin6_t *sin6; 12413 12414 if (sin->sin_family != AF_INET6) 12415 return (EAFNOSUPPORT); 12416 12417 sin6 = (sin6_t *)sin; 12418 v6addr = sin6->sin6_addr; 12419 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12420 return (EADDRNOTAVAIL); 12421 } else { 12422 ipaddr_t addr; 12423 12424 if (sin->sin_family != AF_INET) 12425 return (EAFNOSUPPORT); 12426 12427 addr = sin->sin_addr.s_addr; 12428 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12429 return (EADDRNOTAVAIL); 12430 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12431 /* Add 96 bits */ 12432 addrlen += IPV6_ABITS - IP_ABITS; 12433 } 12434 12435 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12436 return (EINVAL); 12437 12438 /* Check if bits in the address is set past the mask */ 12439 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12440 return (EINVAL); 12441 12442 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12443 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12444 return (0); /* No change */ 12445 12446 if (ipif->ipif_flags & IPIF_UP) { 12447 /* 12448 * If the interface is already marked up, 12449 * we call ipif_down which will take care 12450 * of ditching any IREs that have been set 12451 * up based on the old interface address. 12452 */ 12453 err = ipif_logical_down(ipif, q, mp); 12454 if (err == EINPROGRESS) 12455 return (err); 12456 ipif_down_tail(ipif); 12457 need_up = B_TRUE; 12458 } 12459 12460 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12461 return (err); 12462 } 12463 12464 static int 12465 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12466 queue_t *q, mblk_t *mp, boolean_t need_up) 12467 { 12468 ill_t *ill = ipif->ipif_ill; 12469 int err = 0; 12470 12471 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12472 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12473 12474 /* Set the new address. */ 12475 mutex_enter(&ill->ill_lock); 12476 ipif->ipif_v6net_mask = v6mask; 12477 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12478 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12479 ipif->ipif_v6subnet); 12480 } 12481 mutex_exit(&ill->ill_lock); 12482 12483 if (need_up) { 12484 /* 12485 * Now bring the interface back up. If this 12486 * is the only IPIF for the ILL, ipif_up 12487 * will have to re-bind to the device, so 12488 * we may get back EINPROGRESS, in which 12489 * case, this IOCTL will get completed in 12490 * ip_rput_dlpi when we see the DL_BIND_ACK. 12491 */ 12492 err = ipif_up(ipif, q, mp); 12493 if (err == EINPROGRESS) 12494 return (err); 12495 } 12496 return (err); 12497 } 12498 12499 /* ARGSUSED */ 12500 int 12501 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12502 ip_ioctl_cmd_t *ipip, void *if_req) 12503 { 12504 int addrlen; 12505 in6_addr_t v6addr; 12506 in6_addr_t v6mask; 12507 struct lifreq *lifr = (struct lifreq *)if_req; 12508 12509 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12510 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12511 ipif_down_tail(ipif); 12512 12513 addrlen = lifr->lifr_addrlen; 12514 if (ipif->ipif_isv6) { 12515 sin6_t *sin6; 12516 12517 sin6 = (sin6_t *)sin; 12518 v6addr = sin6->sin6_addr; 12519 } else { 12520 ipaddr_t addr; 12521 12522 addr = sin->sin_addr.s_addr; 12523 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12524 addrlen += IPV6_ABITS - IP_ABITS; 12525 } 12526 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12527 12528 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12529 } 12530 12531 /* ARGSUSED */ 12532 int 12533 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12534 ip_ioctl_cmd_t *ipip, void *if_req) 12535 { 12536 struct lifreq *lifr = (struct lifreq *)if_req; 12537 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12538 12539 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12540 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12541 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12542 12543 if (ipif->ipif_isv6) { 12544 *sin6 = sin6_null; 12545 sin6->sin6_family = AF_INET6; 12546 sin6->sin6_addr = ipif->ipif_v6subnet; 12547 lifr->lifr_addrlen = 12548 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12549 } else { 12550 *sin = sin_null; 12551 sin->sin_family = AF_INET; 12552 sin->sin_addr.s_addr = ipif->ipif_subnet; 12553 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12554 } 12555 return (0); 12556 } 12557 12558 /* 12559 * Set the IPv6 address token. 12560 */ 12561 /* ARGSUSED */ 12562 int 12563 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12564 ip_ioctl_cmd_t *ipi, void *if_req) 12565 { 12566 ill_t *ill = ipif->ipif_ill; 12567 int err; 12568 in6_addr_t v6addr; 12569 in6_addr_t v6mask; 12570 boolean_t need_up = B_FALSE; 12571 int i; 12572 sin6_t *sin6 = (sin6_t *)sin; 12573 struct lifreq *lifr = (struct lifreq *)if_req; 12574 int addrlen; 12575 12576 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12577 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12578 ASSERT(IAM_WRITER_IPIF(ipif)); 12579 12580 addrlen = lifr->lifr_addrlen; 12581 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12582 if (ipif->ipif_id != 0) 12583 return (EINVAL); 12584 12585 if (!ipif->ipif_isv6) 12586 return (EINVAL); 12587 12588 if (addrlen > IPV6_ABITS) 12589 return (EINVAL); 12590 12591 v6addr = sin6->sin6_addr; 12592 12593 /* 12594 * The length of the token is the length from the end. To get 12595 * the proper mask for this, compute the mask of the bits not 12596 * in the token; ie. the prefix, and then xor to get the mask. 12597 */ 12598 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12599 return (EINVAL); 12600 for (i = 0; i < 4; i++) { 12601 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12602 } 12603 12604 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12605 ill->ill_token_length == addrlen) 12606 return (0); /* No change */ 12607 12608 if (ipif->ipif_flags & IPIF_UP) { 12609 err = ipif_logical_down(ipif, q, mp); 12610 if (err == EINPROGRESS) 12611 return (err); 12612 ipif_down_tail(ipif); 12613 need_up = B_TRUE; 12614 } 12615 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12616 return (err); 12617 } 12618 12619 static int 12620 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12621 mblk_t *mp, boolean_t need_up) 12622 { 12623 in6_addr_t v6addr; 12624 in6_addr_t v6mask; 12625 ill_t *ill = ipif->ipif_ill; 12626 int i; 12627 int err = 0; 12628 12629 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12630 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12631 v6addr = sin6->sin6_addr; 12632 /* 12633 * The length of the token is the length from the end. To get 12634 * the proper mask for this, compute the mask of the bits not 12635 * in the token; ie. the prefix, and then xor to get the mask. 12636 */ 12637 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12638 for (i = 0; i < 4; i++) 12639 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12640 12641 mutex_enter(&ill->ill_lock); 12642 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12643 ill->ill_token_length = addrlen; 12644 mutex_exit(&ill->ill_lock); 12645 12646 if (need_up) { 12647 /* 12648 * Now bring the interface back up. If this 12649 * is the only IPIF for the ILL, ipif_up 12650 * will have to re-bind to the device, so 12651 * we may get back EINPROGRESS, in which 12652 * case, this IOCTL will get completed in 12653 * ip_rput_dlpi when we see the DL_BIND_ACK. 12654 */ 12655 err = ipif_up(ipif, q, mp); 12656 if (err == EINPROGRESS) 12657 return (err); 12658 } 12659 return (err); 12660 } 12661 12662 /* ARGSUSED */ 12663 int 12664 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12665 ip_ioctl_cmd_t *ipi, void *if_req) 12666 { 12667 ill_t *ill; 12668 sin6_t *sin6 = (sin6_t *)sin; 12669 struct lifreq *lifr = (struct lifreq *)if_req; 12670 12671 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12672 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12673 if (ipif->ipif_id != 0) 12674 return (EINVAL); 12675 12676 ill = ipif->ipif_ill; 12677 if (!ill->ill_isv6) 12678 return (ENXIO); 12679 12680 *sin6 = sin6_null; 12681 sin6->sin6_family = AF_INET6; 12682 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12683 sin6->sin6_addr = ill->ill_token; 12684 lifr->lifr_addrlen = ill->ill_token_length; 12685 return (0); 12686 } 12687 12688 /* 12689 * Set (hardware) link specific information that might override 12690 * what was acquired through the DL_INFO_ACK. 12691 * The logic is as follows. 12692 * 12693 * become exclusive 12694 * set CHANGING flag 12695 * change mtu on affected IREs 12696 * clear CHANGING flag 12697 * 12698 * An ire add that occurs before the CHANGING flag is set will have its mtu 12699 * changed by the ip_sioctl_lnkinfo. 12700 * 12701 * During the time the CHANGING flag is set, no new ires will be added to the 12702 * bucket, and ire add will fail (due the CHANGING flag). 12703 * 12704 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12705 * before it is added to the bucket. 12706 * 12707 * Obviously only 1 thread can set the CHANGING flag and we need to become 12708 * exclusive to set the flag. 12709 */ 12710 /* ARGSUSED */ 12711 int 12712 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12713 ip_ioctl_cmd_t *ipi, void *if_req) 12714 { 12715 ill_t *ill = ipif->ipif_ill; 12716 ipif_t *nipif; 12717 int ip_min_mtu; 12718 boolean_t mtu_walk = B_FALSE; 12719 struct lifreq *lifr = (struct lifreq *)if_req; 12720 lif_ifinfo_req_t *lir; 12721 ire_t *ire; 12722 12723 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12724 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12725 lir = &lifr->lifr_ifinfo; 12726 ASSERT(IAM_WRITER_IPIF(ipif)); 12727 12728 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12729 if (ipif->ipif_id != 0) 12730 return (EINVAL); 12731 12732 /* Set interface MTU. */ 12733 if (ipif->ipif_isv6) 12734 ip_min_mtu = IPV6_MIN_MTU; 12735 else 12736 ip_min_mtu = IP_MIN_MTU; 12737 12738 /* 12739 * Verify values before we set anything. Allow zero to 12740 * mean unspecified. 12741 */ 12742 if (lir->lir_maxmtu != 0 && 12743 (lir->lir_maxmtu > ill->ill_max_frag || 12744 lir->lir_maxmtu < ip_min_mtu)) 12745 return (EINVAL); 12746 if (lir->lir_reachtime != 0 && 12747 lir->lir_reachtime > ND_MAX_REACHTIME) 12748 return (EINVAL); 12749 if (lir->lir_reachretrans != 0 && 12750 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12751 return (EINVAL); 12752 12753 mutex_enter(&ill->ill_lock); 12754 ill->ill_state_flags |= ILL_CHANGING; 12755 for (nipif = ill->ill_ipif; nipif != NULL; 12756 nipif = nipif->ipif_next) { 12757 nipif->ipif_state_flags |= IPIF_CHANGING; 12758 } 12759 12760 if (lir->lir_maxmtu != 0) { 12761 ill->ill_max_mtu = lir->lir_maxmtu; 12762 ill->ill_user_mtu = lir->lir_maxmtu; 12763 mtu_walk = B_TRUE; 12764 } 12765 mutex_exit(&ill->ill_lock); 12766 12767 if (lir->lir_reachtime != 0) 12768 ill->ill_reachable_time = lir->lir_reachtime; 12769 12770 if (lir->lir_reachretrans != 0) 12771 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12772 12773 ill->ill_max_hops = lir->lir_maxhops; 12774 12775 ill->ill_max_buf = ND_MAX_Q; 12776 12777 if (mtu_walk) { 12778 /* 12779 * Set the MTU on all ipifs associated with this ill except 12780 * for those whose MTU was fixed via SIOCSLIFMTU. 12781 */ 12782 for (nipif = ill->ill_ipif; nipif != NULL; 12783 nipif = nipif->ipif_next) { 12784 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12785 continue; 12786 12787 nipif->ipif_mtu = ill->ill_max_mtu; 12788 12789 if (!(nipif->ipif_flags & IPIF_UP)) 12790 continue; 12791 12792 if (nipif->ipif_isv6) 12793 ire = ipif_to_ire_v6(nipif); 12794 else 12795 ire = ipif_to_ire(nipif); 12796 if (ire != NULL) { 12797 ire->ire_max_frag = ipif->ipif_mtu; 12798 ire_refrele(ire); 12799 } 12800 12801 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12802 nipif, ill); 12803 } 12804 } 12805 12806 mutex_enter(&ill->ill_lock); 12807 for (nipif = ill->ill_ipif; nipif != NULL; 12808 nipif = nipif->ipif_next) { 12809 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12810 } 12811 ILL_UNMARK_CHANGING(ill); 12812 mutex_exit(&ill->ill_lock); 12813 12814 /* 12815 * Refresh IPMP meta-interface MTU if necessary. 12816 */ 12817 if (IS_UNDER_IPMP(ill)) 12818 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12819 12820 return (0); 12821 } 12822 12823 /* ARGSUSED */ 12824 int 12825 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12826 ip_ioctl_cmd_t *ipi, void *if_req) 12827 { 12828 struct lif_ifinfo_req *lir; 12829 ill_t *ill = ipif->ipif_ill; 12830 12831 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12832 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12833 if (ipif->ipif_id != 0) 12834 return (EINVAL); 12835 12836 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12837 lir->lir_maxhops = ill->ill_max_hops; 12838 lir->lir_reachtime = ill->ill_reachable_time; 12839 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12840 lir->lir_maxmtu = ill->ill_max_mtu; 12841 12842 return (0); 12843 } 12844 12845 /* 12846 * Return best guess as to the subnet mask for the specified address. 12847 * Based on the subnet masks for all the configured interfaces. 12848 * 12849 * We end up returning a zero mask in the case of default, multicast or 12850 * experimental. 12851 */ 12852 static ipaddr_t 12853 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12854 { 12855 ipaddr_t net_mask; 12856 ill_t *ill; 12857 ipif_t *ipif; 12858 ill_walk_context_t ctx; 12859 ipif_t *fallback_ipif = NULL; 12860 12861 net_mask = ip_net_mask(addr); 12862 if (net_mask == 0) { 12863 *ipifp = NULL; 12864 return (0); 12865 } 12866 12867 /* Let's check to see if this is maybe a local subnet route. */ 12868 /* this function only applies to IPv4 interfaces */ 12869 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12870 ill = ILL_START_WALK_V4(&ctx, ipst); 12871 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12872 mutex_enter(&ill->ill_lock); 12873 for (ipif = ill->ill_ipif; ipif != NULL; 12874 ipif = ipif->ipif_next) { 12875 if (!IPIF_CAN_LOOKUP(ipif)) 12876 continue; 12877 if (!(ipif->ipif_flags & IPIF_UP)) 12878 continue; 12879 if ((ipif->ipif_subnet & net_mask) == 12880 (addr & net_mask)) { 12881 /* 12882 * Don't trust pt-pt interfaces if there are 12883 * other interfaces. 12884 */ 12885 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12886 if (fallback_ipif == NULL) { 12887 ipif_refhold_locked(ipif); 12888 fallback_ipif = ipif; 12889 } 12890 continue; 12891 } 12892 12893 /* 12894 * Fine. Just assume the same net mask as the 12895 * directly attached subnet interface is using. 12896 */ 12897 ipif_refhold_locked(ipif); 12898 mutex_exit(&ill->ill_lock); 12899 rw_exit(&ipst->ips_ill_g_lock); 12900 if (fallback_ipif != NULL) 12901 ipif_refrele(fallback_ipif); 12902 *ipifp = ipif; 12903 return (ipif->ipif_net_mask); 12904 } 12905 } 12906 mutex_exit(&ill->ill_lock); 12907 } 12908 rw_exit(&ipst->ips_ill_g_lock); 12909 12910 *ipifp = fallback_ipif; 12911 return ((fallback_ipif != NULL) ? 12912 fallback_ipif->ipif_net_mask : net_mask); 12913 } 12914 12915 /* 12916 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12917 */ 12918 static void 12919 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12920 { 12921 IOCP iocp; 12922 ipft_t *ipft; 12923 ipllc_t *ipllc; 12924 mblk_t *mp1; 12925 cred_t *cr; 12926 int error = 0; 12927 conn_t *connp; 12928 12929 ip1dbg(("ip_wput_ioctl")); 12930 iocp = (IOCP)mp->b_rptr; 12931 mp1 = mp->b_cont; 12932 if (mp1 == NULL) { 12933 iocp->ioc_error = EINVAL; 12934 mp->b_datap->db_type = M_IOCNAK; 12935 iocp->ioc_count = 0; 12936 qreply(q, mp); 12937 return; 12938 } 12939 12940 /* 12941 * These IOCTLs provide various control capabilities to 12942 * upstream agents such as ULPs and processes. There 12943 * are currently two such IOCTLs implemented. They 12944 * are used by TCP to provide update information for 12945 * existing IREs and to forcibly delete an IRE for a 12946 * host that is not responding, thereby forcing an 12947 * attempt at a new route. 12948 */ 12949 iocp->ioc_error = EINVAL; 12950 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12951 goto done; 12952 12953 ipllc = (ipllc_t *)mp1->b_rptr; 12954 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12955 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12956 break; 12957 } 12958 /* 12959 * prefer credential from mblk over ioctl; 12960 * see ip_sioctl_copyin_setup 12961 */ 12962 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12963 12964 /* 12965 * Refhold the conn in case the request gets queued up in some lookup 12966 */ 12967 ASSERT(CONN_Q(q)); 12968 connp = Q_TO_CONN(q); 12969 CONN_INC_REF(connp); 12970 if (ipft->ipft_pfi && 12971 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12972 pullupmsg(mp1, ipft->ipft_min_size))) { 12973 error = (*ipft->ipft_pfi)(q, 12974 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12975 } 12976 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12977 /* 12978 * CONN_OPER_PENDING_DONE happens in the function called 12979 * through ipft_pfi above. 12980 */ 12981 return; 12982 } 12983 12984 CONN_OPER_PENDING_DONE(connp); 12985 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12986 freemsg(mp); 12987 return; 12988 } 12989 iocp->ioc_error = error; 12990 12991 done: 12992 mp->b_datap->db_type = M_IOCACK; 12993 if (iocp->ioc_error) 12994 iocp->ioc_count = 0; 12995 qreply(q, mp); 12996 } 12997 12998 /* 12999 * Lookup an ipif using the sequence id (ipif_seqid) 13000 */ 13001 ipif_t * 13002 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13003 { 13004 ipif_t *ipif; 13005 13006 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13007 13008 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13009 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13010 return (ipif); 13011 } 13012 return (NULL); 13013 } 13014 13015 /* 13016 * Assign a unique id for the ipif. This is used later when we send 13017 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13018 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13019 * IRE is added, we verify that ipif has not disappeared. 13020 */ 13021 13022 static void 13023 ipif_assign_seqid(ipif_t *ipif) 13024 { 13025 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13026 13027 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13028 } 13029 13030 /* 13031 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 13032 * administratively down (i.e., no DAD), of the same type, and locked. Note 13033 * that the clone is complete -- including the seqid -- and the expectation is 13034 * that the caller will either free or overwrite `sipif' before it's unlocked. 13035 */ 13036 static void 13037 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 13038 { 13039 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 13040 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 13041 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13042 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13043 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 13044 ASSERT(sipif->ipif_arp_del_mp == NULL); 13045 ASSERT(dipif->ipif_arp_del_mp == NULL); 13046 ASSERT(sipif->ipif_igmp_rpt == NULL); 13047 ASSERT(dipif->ipif_igmp_rpt == NULL); 13048 ASSERT(sipif->ipif_multicast_up == 0); 13049 ASSERT(dipif->ipif_multicast_up == 0); 13050 ASSERT(sipif->ipif_joined_allhosts == 0); 13051 ASSERT(dipif->ipif_joined_allhosts == 0); 13052 13053 dipif->ipif_mtu = sipif->ipif_mtu; 13054 dipif->ipif_flags = sipif->ipif_flags; 13055 dipif->ipif_metric = sipif->ipif_metric; 13056 dipif->ipif_zoneid = sipif->ipif_zoneid; 13057 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 13058 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 13059 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 13060 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 13061 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 13062 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 13063 13064 /* 13065 * While dipif is down right now, it might've been up before. Since 13066 * it's changing identity, its packet counters need to be reset. 13067 */ 13068 dipif->ipif_ib_pkt_count = 0; 13069 dipif->ipif_ob_pkt_count = 0; 13070 dipif->ipif_fo_pkt_count = 0; 13071 13072 /* 13073 * As per the comment atop the function, we assume that these sipif 13074 * fields will be changed before sipif is unlocked. 13075 */ 13076 dipif->ipif_seqid = sipif->ipif_seqid; 13077 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 13078 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 13079 dipif->ipif_state_flags = sipif->ipif_state_flags; 13080 } 13081 13082 /* 13083 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 13084 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 13085 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13086 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13087 * down (i.e., no DAD), of the same type, and unlocked. 13088 */ 13089 static void 13090 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13091 { 13092 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13093 int ipx_current_ioctl; 13094 13095 ASSERT(sipif != dipif); 13096 ASSERT(sipif != virgipif); 13097 13098 /* 13099 * Grab all of the locks that protect the ipif in a defined order. 13100 */ 13101 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13102 if (sipif > dipif) { 13103 mutex_enter(&sipif->ipif_saved_ire_lock); 13104 mutex_enter(&dipif->ipif_saved_ire_lock); 13105 } else { 13106 mutex_enter(&dipif->ipif_saved_ire_lock); 13107 mutex_enter(&sipif->ipif_saved_ire_lock); 13108 } 13109 13110 ipif_clone(sipif, dipif); 13111 if (virgipif != NULL) { 13112 ipif_clone(virgipif, sipif); 13113 mi_free(virgipif); 13114 } 13115 13116 mutex_exit(&sipif->ipif_saved_ire_lock); 13117 mutex_exit(&dipif->ipif_saved_ire_lock); 13118 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13119 13120 /* 13121 * Transfer ownership of the current xop, if necessary. 13122 */ 13123 if (ipsq->ipsq_xop->ipx_current_ipif == sipif) { 13124 ASSERT(ipsq->ipsq_xop->ipx_pending_ipif == NULL); 13125 ipx_current_ioctl = ipsq->ipsq_xop->ipx_current_ioctl; 13126 ipsq_current_finish(ipsq); 13127 ipsq_current_start(ipsq, dipif, ipx_current_ioctl); 13128 } 13129 13130 if (virgipif == NULL) 13131 mi_free(sipif); 13132 } 13133 13134 /* 13135 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13136 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13137 * be inserted into the first space available in the list. The value of 13138 * ipif_id will then be set to the appropriate value for its position. 13139 */ 13140 static int 13141 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13142 { 13143 ill_t *ill; 13144 ipif_t *tipif; 13145 ipif_t **tipifp; 13146 int id; 13147 ip_stack_t *ipst; 13148 13149 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13150 IAM_WRITER_IPIF(ipif)); 13151 13152 ill = ipif->ipif_ill; 13153 ASSERT(ill != NULL); 13154 ipst = ill->ill_ipst; 13155 13156 /* 13157 * In the case of lo0:0 we already hold the ill_g_lock. 13158 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13159 * ipif_insert. 13160 */ 13161 if (acquire_g_lock) 13162 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13163 mutex_enter(&ill->ill_lock); 13164 id = ipif->ipif_id; 13165 tipifp = &(ill->ill_ipif); 13166 if (id == -1) { /* need to find a real id */ 13167 id = 0; 13168 while ((tipif = *tipifp) != NULL) { 13169 ASSERT(tipif->ipif_id >= id); 13170 if (tipif->ipif_id != id) 13171 break; /* non-consecutive id */ 13172 id++; 13173 tipifp = &(tipif->ipif_next); 13174 } 13175 /* limit number of logical interfaces */ 13176 if (id >= ipst->ips_ip_addrs_per_if) { 13177 mutex_exit(&ill->ill_lock); 13178 if (acquire_g_lock) 13179 rw_exit(&ipst->ips_ill_g_lock); 13180 return (-1); 13181 } 13182 ipif->ipif_id = id; /* assign new id */ 13183 } else if (id < ipst->ips_ip_addrs_per_if) { 13184 /* we have a real id; insert ipif in the right place */ 13185 while ((tipif = *tipifp) != NULL) { 13186 ASSERT(tipif->ipif_id != id); 13187 if (tipif->ipif_id > id) 13188 break; /* found correct location */ 13189 tipifp = &(tipif->ipif_next); 13190 } 13191 } else { 13192 mutex_exit(&ill->ill_lock); 13193 if (acquire_g_lock) 13194 rw_exit(&ipst->ips_ill_g_lock); 13195 return (-1); 13196 } 13197 13198 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13199 13200 ipif->ipif_next = tipif; 13201 *tipifp = ipif; 13202 mutex_exit(&ill->ill_lock); 13203 if (acquire_g_lock) 13204 rw_exit(&ipst->ips_ill_g_lock); 13205 13206 return (0); 13207 } 13208 13209 static void 13210 ipif_remove(ipif_t *ipif) 13211 { 13212 ipif_t **ipifp; 13213 ill_t *ill = ipif->ipif_ill; 13214 13215 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13216 13217 mutex_enter(&ill->ill_lock); 13218 ipifp = &ill->ill_ipif; 13219 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13220 if (*ipifp == ipif) { 13221 *ipifp = ipif->ipif_next; 13222 break; 13223 } 13224 } 13225 mutex_exit(&ill->ill_lock); 13226 } 13227 13228 /* 13229 * Allocate and initialize a new interface control structure. (Always 13230 * called as writer.) 13231 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13232 * is not part of the global linked list of ills. ipif_seqid is unique 13233 * in the system and to preserve the uniqueness, it is assigned only 13234 * when ill becomes part of the global list. At that point ill will 13235 * have a name. If it doesn't get assigned here, it will get assigned 13236 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13237 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13238 * the interface flags or any other information from the DL_INFO_ACK for 13239 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13240 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13241 * second DL_INFO_ACK comes in from the driver. 13242 */ 13243 static ipif_t * 13244 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13245 boolean_t insert) 13246 { 13247 ipif_t *ipif; 13248 phyint_t *phyi = ill->ill_phyint; 13249 ip_stack_t *ipst = ill->ill_ipst; 13250 13251 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13252 ill->ill_name, id, (void *)ill)); 13253 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13254 13255 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13256 return (NULL); 13257 *ipif = ipif_zero; /* start clean */ 13258 13259 ipif->ipif_ill = ill; 13260 ipif->ipif_id = id; /* could be -1 */ 13261 /* 13262 * Inherit the zoneid from the ill; for the shared stack instance 13263 * this is always the global zone 13264 */ 13265 ipif->ipif_zoneid = ill->ill_zoneid; 13266 13267 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13268 13269 ipif->ipif_refcnt = 0; 13270 ipif->ipif_saved_ire_cnt = 0; 13271 13272 if (insert) { 13273 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13274 mi_free(ipif); 13275 return (NULL); 13276 } 13277 /* -1 id should have been replaced by real id */ 13278 id = ipif->ipif_id; 13279 ASSERT(id >= 0); 13280 } 13281 13282 if (ill->ill_name[0] != '\0') 13283 ipif_assign_seqid(ipif); 13284 13285 /* 13286 * If this is ipif zero, configure ill/phyint-wide information. 13287 * Defer most configuration until we're guaranteed we're attached. 13288 */ 13289 if (id == 0) { 13290 if (ill->ill_mactype == SUNW_DL_IPMP) { 13291 /* 13292 * Set PHYI_IPMP and also set PHYI_FAILED since there 13293 * are no active interfaces. Similarly, PHYI_RUNNING 13294 * isn't set until the group has an active interface. 13295 */ 13296 mutex_enter(&phyi->phyint_lock); 13297 phyi->phyint_flags |= (PHYI_IPMP | PHYI_FAILED); 13298 mutex_exit(&phyi->phyint_lock); 13299 13300 /* 13301 * Create the illgrp (which must not exist yet because 13302 * the zeroth ipif is created once per ill). However, 13303 * do not not link it to the ipmp_grp_t until I_PLINK 13304 * is called; see ip_sioctl_plink_ipmp() for details. 13305 */ 13306 if (ipmp_illgrp_create(ill) == NULL) { 13307 if (insert) { 13308 rw_enter(&ipst->ips_ill_g_lock, 13309 RW_WRITER); 13310 ipif_remove(ipif); 13311 rw_exit(&ipst->ips_ill_g_lock); 13312 } 13313 mi_free(ipif); 13314 return (NULL); 13315 } 13316 } else { 13317 /* 13318 * By default, PHYI_RUNNING is set when the zeroth 13319 * ipif is created. For other ipifs, we don't touch 13320 * it since DLPI notifications may have changed it. 13321 */ 13322 mutex_enter(&phyi->phyint_lock); 13323 phyi->phyint_flags |= PHYI_RUNNING; 13324 mutex_exit(&phyi->phyint_lock); 13325 } 13326 } 13327 13328 /* 13329 * We grab the ill_lock and phyint_lock to protect the flag changes. 13330 * The ipif is still not up and can't be looked up until the 13331 * ioctl completes and the IPIF_CHANGING flag is cleared. 13332 */ 13333 mutex_enter(&ill->ill_lock); 13334 mutex_enter(&phyi->phyint_lock); 13335 13336 ipif->ipif_ire_type = ire_type; 13337 13338 if (ipif->ipif_isv6) { 13339 ill->ill_flags |= ILLF_IPV6; 13340 } else { 13341 ipaddr_t inaddr_any = INADDR_ANY; 13342 13343 ill->ill_flags |= ILLF_IPV4; 13344 13345 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13346 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13347 &ipif->ipif_v6lcl_addr); 13348 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13349 &ipif->ipif_v6src_addr); 13350 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13351 &ipif->ipif_v6subnet); 13352 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13353 &ipif->ipif_v6net_mask); 13354 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13355 &ipif->ipif_v6brd_addr); 13356 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13357 &ipif->ipif_v6pp_dst_addr); 13358 } 13359 13360 /* 13361 * Don't set the interface flags etc. now, will do it in 13362 * ip_ll_subnet_defaults. 13363 */ 13364 if (!initialize) 13365 goto out; 13366 13367 ipif->ipif_mtu = ill->ill_max_mtu; 13368 13369 /* 13370 * NOTE: The IPMP meta-interface is special-cased because it starts 13371 * with no underlying interfaces (and thus an unknown broadcast 13372 * address length), but all interfaces that can be placed into an IPMP 13373 * group are required to be broadcast-capable. 13374 */ 13375 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13376 /* 13377 * Later detect lack of DLPI driver multicast 13378 * capability by catching DL_ENABMULTI errors in 13379 * ip_rput_dlpi. 13380 */ 13381 ill->ill_flags |= ILLF_MULTICAST; 13382 if (!ipif->ipif_isv6) 13383 ipif->ipif_flags |= IPIF_BROADCAST; 13384 } else { 13385 if (ill->ill_net_type != IRE_LOOPBACK) { 13386 if (ipif->ipif_isv6) 13387 /* 13388 * Note: xresolv interfaces will eventually need 13389 * NOARP set here as well, but that will require 13390 * those external resolvers to have some 13391 * knowledge of that flag and act appropriately. 13392 * Not to be changed at present. 13393 */ 13394 ill->ill_flags |= ILLF_NONUD; 13395 else 13396 ill->ill_flags |= ILLF_NOARP; 13397 } 13398 if (ill->ill_phys_addr_length == 0) { 13399 if (ill->ill_mactype == SUNW_DL_VNI) { 13400 ipif->ipif_flags |= IPIF_NOXMIT; 13401 phyi->phyint_flags |= PHYI_VIRTUAL; 13402 } else { 13403 /* pt-pt supports multicast. */ 13404 ill->ill_flags |= ILLF_MULTICAST; 13405 if (ill->ill_net_type == IRE_LOOPBACK) { 13406 phyi->phyint_flags |= 13407 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13408 } else { 13409 ipif->ipif_flags |= IPIF_POINTOPOINT; 13410 } 13411 } 13412 } 13413 } 13414 out: 13415 mutex_exit(&phyi->phyint_lock); 13416 mutex_exit(&ill->ill_lock); 13417 return (ipif); 13418 } 13419 13420 /* 13421 * If appropriate, send a message up to the resolver delete the entry 13422 * for the address of this interface which is going out of business. 13423 * (Always called as writer). 13424 * 13425 * NOTE : We need to check for NULL mps as some of the fields are 13426 * initialized only for some interface types. See ipif_resolver_up() 13427 * for details. 13428 */ 13429 void 13430 ipif_resolver_down(ipif_t *ipif) 13431 { 13432 mblk_t *mp; 13433 ill_t *ill = ipif->ipif_ill; 13434 13435 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13436 ASSERT(IAM_WRITER_IPIF(ipif)); 13437 13438 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13439 return; 13440 13441 /* Delete the mapping for the local address */ 13442 mp = ipif->ipif_arp_del_mp; 13443 if (mp != NULL) { 13444 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13445 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13446 putnext(ill->ill_rq, mp); 13447 ipif->ipif_arp_del_mp = NULL; 13448 } 13449 13450 /* 13451 * Make IPMP aware of the deleted data address. 13452 */ 13453 if (IS_IPMP(ill)) 13454 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13455 13456 /* 13457 * If this is the last ipif that is going down and there are no 13458 * duplicate addresses we may yet attempt to re-probe, then we need to 13459 * clean up ARP completely. 13460 */ 13461 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13462 /* 13463 * If this was the last ipif on an IPMP interface, purge any 13464 * IPMP ARP entries associated with it. 13465 */ 13466 if (IS_IPMP(ill)) 13467 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13468 13469 /* Send up AR_INTERFACE_DOWN message */ 13470 mp = ill->ill_arp_down_mp; 13471 if (mp != NULL) { 13472 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13473 *(unsigned *)mp->b_rptr, ill->ill_name, 13474 ipif->ipif_id)); 13475 putnext(ill->ill_rq, mp); 13476 ill->ill_arp_down_mp = NULL; 13477 } 13478 13479 /* Tell ARP to delete the multicast mappings */ 13480 mp = ill->ill_arp_del_mapping_mp; 13481 if (mp != NULL) { 13482 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13483 *(unsigned *)mp->b_rptr, ill->ill_name, 13484 ipif->ipif_id)); 13485 putnext(ill->ill_rq, mp); 13486 ill->ill_arp_del_mapping_mp = NULL; 13487 } 13488 } 13489 } 13490 13491 /* 13492 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13493 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13494 * that it wants the add_mp allocated in this function to be returned 13495 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13496 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13497 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13498 * as it does a ipif_arp_down after calling this function - which will 13499 * remove what we add here. 13500 * 13501 * Returns -1 on failures and 0 on success. 13502 */ 13503 int 13504 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13505 { 13506 mblk_t *del_mp = NULL; 13507 mblk_t *add_mp = NULL; 13508 mblk_t *mp; 13509 ill_t *ill = ipif->ipif_ill; 13510 phyint_t *phyi = ill->ill_phyint; 13511 ipaddr_t addr, mask, extract_mask = 0; 13512 arma_t *arma; 13513 uint8_t *maddr, *bphys_addr; 13514 uint32_t hw_start; 13515 dl_unitdata_req_t *dlur; 13516 13517 ASSERT(IAM_WRITER_IPIF(ipif)); 13518 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13519 return (0); 13520 13521 /* 13522 * IPMP meta-interfaces don't have any inherent multicast mappings, 13523 * and instead use the ones on the underlying interfaces. 13524 */ 13525 if (IS_IPMP(ill)) 13526 return (0); 13527 13528 /* 13529 * Delete the existing mapping from ARP. Normally ipif_down 13530 * -> ipif_arp_down should send this up to ARP. The only 13531 * reason we would find this when we are switching from 13532 * Multicast to Broadcast where we did not do a down. 13533 */ 13534 mp = ill->ill_arp_del_mapping_mp; 13535 if (mp != NULL) { 13536 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13537 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13538 putnext(ill->ill_rq, mp); 13539 ill->ill_arp_del_mapping_mp = NULL; 13540 } 13541 13542 if (arp_add_mapping_mp != NULL) 13543 *arp_add_mapping_mp = NULL; 13544 13545 /* 13546 * Check that the address is not to long for the constant 13547 * length reserved in the template arma_t. 13548 */ 13549 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13550 return (-1); 13551 13552 /* Add mapping mblk */ 13553 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13554 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13555 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13556 (caddr_t)&addr); 13557 if (add_mp == NULL) 13558 return (-1); 13559 arma = (arma_t *)add_mp->b_rptr; 13560 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13561 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13562 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13563 13564 /* 13565 * Determine the broadcast address. 13566 */ 13567 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13568 if (ill->ill_sap_length < 0) 13569 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13570 else 13571 bphys_addr = (uchar_t *)dlur + 13572 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13573 /* 13574 * Check PHYI_MULTI_BCAST and length of physical 13575 * address to determine if we use the mapping or the 13576 * broadcast address. 13577 */ 13578 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13579 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13580 bphys_addr, maddr, &hw_start, &extract_mask)) 13581 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13582 13583 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13584 (ill->ill_flags & ILLF_MULTICAST)) { 13585 /* Make sure this will not match the "exact" entry. */ 13586 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13587 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13588 (caddr_t)&addr); 13589 if (del_mp == NULL) { 13590 freemsg(add_mp); 13591 return (-1); 13592 } 13593 bcopy(&extract_mask, (char *)arma + 13594 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13595 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13596 /* Use link-layer broadcast address for MULTI_BCAST */ 13597 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13598 ip2dbg(("ipif_arp_setup_multicast: adding" 13599 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13600 } else { 13601 arma->arma_hw_mapping_start = hw_start; 13602 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13603 " ARP setup for %s\n", ill->ill_name)); 13604 } 13605 } else { 13606 freemsg(add_mp); 13607 ASSERT(del_mp == NULL); 13608 /* It is neither MULTICAST nor MULTI_BCAST */ 13609 return (0); 13610 } 13611 ASSERT(add_mp != NULL && del_mp != NULL); 13612 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13613 ill->ill_arp_del_mapping_mp = del_mp; 13614 if (arp_add_mapping_mp != NULL) { 13615 /* The caller just wants the mblks allocated */ 13616 *arp_add_mapping_mp = add_mp; 13617 } else { 13618 /* The caller wants us to send it to arp */ 13619 putnext(ill->ill_rq, add_mp); 13620 } 13621 return (0); 13622 } 13623 13624 /* 13625 * Get the resolver set up for a new IP address. (Always called as writer.) 13626 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13627 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13628 * 13629 * The enumerated value res_act tunes the behavior: 13630 * * Res_act_initial: set up all the resolver structures for a new 13631 * IP address. 13632 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13633 * ARP message in defense of the address. 13634 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13635 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13636 * 13637 * Returns error on failure. 13638 */ 13639 int 13640 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13641 { 13642 mblk_t *arp_up_mp = NULL; 13643 mblk_t *arp_down_mp = NULL; 13644 mblk_t *arp_add_mp = NULL; 13645 mblk_t *arp_del_mp = NULL; 13646 mblk_t *arp_add_mapping_mp = NULL; 13647 mblk_t *arp_del_mapping_mp = NULL; 13648 ill_t *ill = ipif->ipif_ill; 13649 int err = ENOMEM; 13650 boolean_t added_ipif = B_FALSE; 13651 boolean_t publish; 13652 boolean_t was_dup; 13653 13654 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13655 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13656 ASSERT(IAM_WRITER_IPIF(ipif)); 13657 13658 was_dup = B_FALSE; 13659 if (res_act == Res_act_initial) { 13660 ipif->ipif_addr_ready = 0; 13661 /* 13662 * We're bringing an interface up here. There's no way that we 13663 * should need to shut down ARP now. 13664 */ 13665 mutex_enter(&ill->ill_lock); 13666 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13667 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13668 ill->ill_ipif_dup_count--; 13669 was_dup = B_TRUE; 13670 } 13671 mutex_exit(&ill->ill_lock); 13672 } 13673 if (ipif->ipif_recovery_id != 0) 13674 (void) untimeout(ipif->ipif_recovery_id); 13675 ipif->ipif_recovery_id = 0; 13676 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13677 ipif->ipif_addr_ready = 1; 13678 return (0); 13679 } 13680 /* NDP will set the ipif_addr_ready flag when it's ready */ 13681 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13682 return (0); 13683 13684 if (ill->ill_isv6) { 13685 /* 13686 * External resolver for IPv6 13687 */ 13688 ASSERT(res_act == Res_act_initial); 13689 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13690 } else { 13691 /* 13692 * IPv4 arp case. If the ARP stream has already started 13693 * closing, fail this request for ARP bringup. Else 13694 * record the fact that an ARP bringup is pending. 13695 */ 13696 mutex_enter(&ill->ill_lock); 13697 if (ill->ill_arp_closing) { 13698 mutex_exit(&ill->ill_lock); 13699 err = EINVAL; 13700 goto failed; 13701 } else { 13702 if (ill->ill_ipif_up_count == 0 && 13703 ill->ill_ipif_dup_count == 0 && !was_dup) 13704 ill->ill_arp_bringup_pending = 1; 13705 mutex_exit(&ill->ill_lock); 13706 } 13707 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13708 } 13709 13710 if (IS_IPMP(ill) && publish) { 13711 /* 13712 * If we're here via ipif_up(), then the ipif won't be bound 13713 * yet -- add it to the group, which will bind it if possible. 13714 * (We would add it in ipif_up(), but deleting on failure 13715 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13716 * then the ipif has already been added to the group and we 13717 * just need to use the binding. 13718 */ 13719 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13720 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13721 /* 13722 * We couldn't bind the ipif to an ill yet, 13723 * so we have nothing to publish. 13724 */ 13725 publish = B_FALSE; 13726 } 13727 added_ipif = B_TRUE; 13728 } 13729 } 13730 13731 /* 13732 * Add an entry for the local address in ARP only if it 13733 * is not UNNUMBERED and it is suitable for publishing. 13734 */ 13735 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13736 if (res_act == Res_act_defend) { 13737 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13738 if (arp_add_mp == NULL) 13739 goto failed; 13740 /* 13741 * If we're just defending our address now, then 13742 * there's no need to set up ARP multicast mappings. 13743 * The publish command is enough. 13744 */ 13745 goto done; 13746 } 13747 13748 /* 13749 * Allocate an ARP add message and an ARP delete message (the 13750 * latter is saved for use when the address goes down). 13751 */ 13752 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13753 goto failed; 13754 13755 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13756 goto failed; 13757 13758 if (res_act != Res_act_initial) 13759 goto arp_setup_multicast; 13760 } else { 13761 if (res_act != Res_act_initial) 13762 goto done; 13763 } 13764 /* 13765 * Need to bring up ARP or setup multicast mapping only 13766 * when the first interface is coming UP. 13767 */ 13768 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13769 goto done; 13770 13771 /* 13772 * Allocate an ARP down message (to be saved) and an ARP up message. 13773 */ 13774 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13775 if (arp_down_mp == NULL) 13776 goto failed; 13777 13778 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13779 if (arp_up_mp == NULL) 13780 goto failed; 13781 13782 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13783 goto done; 13784 13785 arp_setup_multicast: 13786 /* 13787 * Setup the multicast mappings. This function initializes 13788 * ill_arp_del_mapping_mp also. This does not need to be done for 13789 * IPv6, or for the IPMP interface (since it has no link-layer). 13790 */ 13791 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13792 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13793 if (err != 0) 13794 goto failed; 13795 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13796 ASSERT(arp_add_mapping_mp != NULL); 13797 } 13798 done: 13799 if (arp_up_mp != NULL) { 13800 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13801 ill->ill_name, ipif->ipif_id)); 13802 putnext(ill->ill_rq, arp_up_mp); 13803 arp_up_mp = NULL; 13804 } 13805 if (arp_add_mp != NULL) { 13806 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13807 ill->ill_name, ipif->ipif_id)); 13808 /* 13809 * If it's an extended ARP implementation, then we'll wait to 13810 * hear that DAD has finished before using the interface. 13811 */ 13812 if (!ill->ill_arp_extend) 13813 ipif->ipif_addr_ready = 1; 13814 putnext(ill->ill_rq, arp_add_mp); 13815 arp_add_mp = NULL; 13816 } else { 13817 ipif->ipif_addr_ready = 1; 13818 } 13819 if (arp_add_mapping_mp != NULL) { 13820 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13821 ill->ill_name, ipif->ipif_id)); 13822 putnext(ill->ill_rq, arp_add_mapping_mp); 13823 arp_add_mapping_mp = NULL; 13824 } 13825 13826 if (res_act == Res_act_initial) { 13827 if (ill->ill_flags & ILLF_NOARP) 13828 err = ill_arp_off(ill); 13829 else 13830 err = ill_arp_on(ill); 13831 if (err != 0) { 13832 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13833 err)); 13834 goto failed; 13835 } 13836 } 13837 13838 if (arp_del_mp != NULL) { 13839 ASSERT(ipif->ipif_arp_del_mp == NULL); 13840 ipif->ipif_arp_del_mp = arp_del_mp; 13841 } 13842 if (arp_down_mp != NULL) { 13843 ASSERT(ill->ill_arp_down_mp == NULL); 13844 ill->ill_arp_down_mp = arp_down_mp; 13845 } 13846 if (arp_del_mapping_mp != NULL) { 13847 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13848 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13849 } 13850 13851 return ((ill->ill_ipif_up_count != 0 || was_dup || 13852 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13853 failed: 13854 ip1dbg(("ipif_resolver_up: FAILED\n")); 13855 if (added_ipif) 13856 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13857 freemsg(arp_add_mp); 13858 freemsg(arp_del_mp); 13859 freemsg(arp_add_mapping_mp); 13860 freemsg(arp_up_mp); 13861 freemsg(arp_down_mp); 13862 ill->ill_arp_bringup_pending = 0; 13863 return (err); 13864 } 13865 13866 /* 13867 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13868 * just gone back up. 13869 */ 13870 static void 13871 ipif_arp_start_dad(ipif_t *ipif) 13872 { 13873 ill_t *ill = ipif->ipif_ill; 13874 mblk_t *arp_add_mp; 13875 13876 /* ACE_F_UNVERIFIED restarts DAD */ 13877 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13878 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13879 ipif->ipif_lcl_addr == INADDR_ANY || 13880 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13881 /* 13882 * If we can't contact ARP for some reason, that's not really a 13883 * problem. Just send out the routing socket notification that 13884 * DAD completion would have done, and continue. 13885 */ 13886 ipif_mask_reply(ipif); 13887 ipif_up_notify(ipif); 13888 ipif->ipif_addr_ready = 1; 13889 return; 13890 } 13891 13892 putnext(ill->ill_rq, arp_add_mp); 13893 } 13894 13895 static void 13896 ipif_ndp_start_dad(ipif_t *ipif) 13897 { 13898 nce_t *nce; 13899 13900 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13901 B_FALSE); 13902 if (nce == NULL) 13903 return; 13904 13905 if (!ndp_restart_dad(nce)) { 13906 /* 13907 * If we can't restart DAD for some reason, that's not really a 13908 * problem. Just send out the routing socket notification that 13909 * DAD completion would have done, and continue. 13910 */ 13911 ipif_up_notify(ipif); 13912 ipif->ipif_addr_ready = 1; 13913 } 13914 NCE_REFRELE(nce); 13915 } 13916 13917 /* 13918 * Restart duplicate address detection on all interfaces on the given ill. 13919 * 13920 * This is called when an interface transitions from down to up 13921 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13922 * 13923 * Note that since the underlying physical link has transitioned, we must cause 13924 * at least one routing socket message to be sent here, either via DAD 13925 * completion or just by default on the first ipif. (If we don't do this, then 13926 * in.mpathd will see long delays when doing link-based failure recovery.) 13927 */ 13928 void 13929 ill_restart_dad(ill_t *ill, boolean_t went_up) 13930 { 13931 ipif_t *ipif; 13932 13933 if (ill == NULL) 13934 return; 13935 13936 /* 13937 * If layer two doesn't support duplicate address detection, then just 13938 * send the routing socket message now and be done with it. 13939 */ 13940 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13941 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13942 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13943 return; 13944 } 13945 13946 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13947 if (went_up) { 13948 if (ipif->ipif_flags & IPIF_UP) { 13949 if (ill->ill_isv6) 13950 ipif_ndp_start_dad(ipif); 13951 else 13952 ipif_arp_start_dad(ipif); 13953 } else if (ill->ill_isv6 && 13954 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13955 /* 13956 * For IPv4, the ARP module itself will 13957 * automatically start the DAD process when it 13958 * sees DL_NOTE_LINK_UP. We respond to the 13959 * AR_CN_READY at the completion of that task. 13960 * For IPv6, we must kick off the bring-up 13961 * process now. 13962 */ 13963 ndp_do_recovery(ipif); 13964 } else { 13965 /* 13966 * Unfortunately, the first ipif is "special" 13967 * and represents the underlying ill in the 13968 * routing socket messages. Thus, when this 13969 * one ipif is down, we must still notify so 13970 * that the user knows the IFF_RUNNING status 13971 * change. (If the first ipif is up, then 13972 * we'll handle eventual routing socket 13973 * notification via DAD completion.) 13974 */ 13975 if (ipif == ill->ill_ipif) { 13976 ip_rts_ifmsg(ill->ill_ipif, 13977 RTSQ_DEFAULT); 13978 } 13979 } 13980 } else { 13981 /* 13982 * After link down, we'll need to send a new routing 13983 * message when the link comes back, so clear 13984 * ipif_addr_ready. 13985 */ 13986 ipif->ipif_addr_ready = 0; 13987 } 13988 } 13989 13990 /* 13991 * If we've torn down links, then notify the user right away. 13992 */ 13993 if (!went_up) 13994 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13995 } 13996 13997 static void 13998 ipsq_delete(ipsq_t *ipsq) 13999 { 14000 ipxop_t *ipx = ipsq->ipsq_xop; 14001 14002 ipsq->ipsq_ipst = NULL; 14003 ASSERT(ipsq->ipsq_phyint == NULL); 14004 ASSERT(ipsq->ipsq_xop != NULL); 14005 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 14006 ASSERT(ipx->ipx_pending_mp == NULL); 14007 kmem_free(ipsq, sizeof (ipsq_t)); 14008 } 14009 14010 static int 14011 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 14012 { 14013 int err; 14014 ipif_t *ipif; 14015 14016 if (ill == NULL) 14017 return (0); 14018 14019 /* 14020 * Except for ipif_state_flags and ill_state_flags the other 14021 * fields of the ipif/ill that are modified below are protected 14022 * implicitly since we are a writer. We would have tried to down 14023 * even an ipif that was already down, in ill_down_ipifs. So we 14024 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14025 */ 14026 ASSERT(IAM_WRITER_ILL(ill)); 14027 14028 ill->ill_up_ipifs = B_TRUE; 14029 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14030 mutex_enter(&ill->ill_lock); 14031 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14032 mutex_exit(&ill->ill_lock); 14033 if (ipif->ipif_was_up) { 14034 if (!(ipif->ipif_flags & IPIF_UP)) 14035 err = ipif_up(ipif, q, mp); 14036 ipif->ipif_was_up = B_FALSE; 14037 if (err != 0) { 14038 ASSERT(err == EINPROGRESS); 14039 return (err); 14040 } 14041 } 14042 } 14043 mutex_enter(&ill->ill_lock); 14044 ill->ill_state_flags &= ~ILL_CHANGING; 14045 mutex_exit(&ill->ill_lock); 14046 ill->ill_up_ipifs = B_FALSE; 14047 return (0); 14048 } 14049 14050 /* 14051 * This function is called to bring up all the ipifs that were up before 14052 * bringing the ill down via ill_down_ipifs(). 14053 */ 14054 int 14055 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14056 { 14057 int err; 14058 14059 ASSERT(IAM_WRITER_ILL(ill)); 14060 14061 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 14062 if (err != 0) 14063 return (err); 14064 14065 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 14066 } 14067 14068 /* 14069 * Bring down any IPIF_UP ipifs on ill. 14070 */ 14071 static void 14072 ill_down_ipifs(ill_t *ill) 14073 { 14074 ipif_t *ipif; 14075 14076 ASSERT(IAM_WRITER_ILL(ill)); 14077 14078 /* 14079 * Except for ipif_state_flags the other fields of the ipif/ill that 14080 * are modified below are protected implicitly since we are a writer 14081 */ 14082 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14083 /* 14084 * We go through the ipif_down logic even if the ipif 14085 * is already down, since routes can be added based 14086 * on down ipifs. Going through ipif_down once again 14087 * will delete any IREs created based on these routes. 14088 */ 14089 if (ipif->ipif_flags & IPIF_UP) 14090 ipif->ipif_was_up = B_TRUE; 14091 14092 mutex_enter(&ill->ill_lock); 14093 ipif->ipif_state_flags |= IPIF_CHANGING; 14094 mutex_exit(&ill->ill_lock); 14095 14096 /* 14097 * Need to re-create net/subnet bcast ires if 14098 * they are dependent on ipif. 14099 */ 14100 if (!ipif->ipif_isv6) 14101 ipif_check_bcast_ires(ipif); 14102 (void) ipif_logical_down(ipif, NULL, NULL); 14103 ipif_non_duplicate(ipif); 14104 ipif_down_tail(ipif); 14105 } 14106 } 14107 14108 void 14109 ill_lock_ills(ill_t **list, int cnt) 14110 { 14111 int i; 14112 14113 if (cnt > 1) { 14114 boolean_t try_again; 14115 do { 14116 try_again = B_FALSE; 14117 for (i = 0; i < cnt - 1; i++) { 14118 if (list[i] < list[i + 1]) { 14119 ill_t *tmp; 14120 14121 /* swap the elements */ 14122 tmp = list[i]; 14123 list[i] = list[i + 1]; 14124 list[i + 1] = tmp; 14125 try_again = B_TRUE; 14126 } 14127 } 14128 } while (try_again); 14129 } 14130 14131 for (i = 0; i < cnt; i++) { 14132 if (i == 0) { 14133 if (list[i] != NULL) 14134 mutex_enter(&list[i]->ill_lock); 14135 else 14136 return; 14137 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14138 mutex_enter(&list[i]->ill_lock); 14139 } 14140 } 14141 } 14142 14143 void 14144 ill_unlock_ills(ill_t **list, int cnt) 14145 { 14146 int i; 14147 14148 for (i = 0; i < cnt; i++) { 14149 if ((i == 0) && (list[i] != NULL)) { 14150 mutex_exit(&list[i]->ill_lock); 14151 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14152 mutex_exit(&list[i]->ill_lock); 14153 } 14154 } 14155 } 14156 14157 /* 14158 * Redo source address selection. This is called when a 14159 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 14160 */ 14161 void 14162 ill_update_source_selection(ill_t *ill) 14163 { 14164 ipif_t *ipif; 14165 14166 ASSERT(IAM_WRITER_ILL(ill)); 14167 14168 /* 14169 * Underlying interfaces are only used for test traffic and thus 14170 * should always send with their (deprecated) source addresses. 14171 */ 14172 if (IS_UNDER_IPMP(ill)) 14173 return; 14174 14175 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14176 if (ill->ill_isv6) 14177 ipif_recreate_interface_routes_v6(NULL, ipif); 14178 else 14179 ipif_recreate_interface_routes(NULL, ipif); 14180 } 14181 } 14182 14183 /* 14184 * Finish the group join started in ip_sioctl_groupname(). 14185 */ 14186 /* ARGSUSED */ 14187 static void 14188 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14189 { 14190 ill_t *ill = q->q_ptr; 14191 phyint_t *phyi = ill->ill_phyint; 14192 ipmp_grp_t *grp = phyi->phyint_grp; 14193 ip_stack_t *ipst = ill->ill_ipst; 14194 14195 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14196 ASSERT(!IS_IPMP(ill) && grp != NULL); 14197 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14198 14199 if (phyi->phyint_illv4 != NULL) { 14200 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14201 VERIFY(grp->gr_pendv4-- > 0); 14202 rw_exit(&ipst->ips_ipmp_lock); 14203 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14204 } 14205 if (phyi->phyint_illv6 != NULL) { 14206 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14207 VERIFY(grp->gr_pendv6-- > 0); 14208 rw_exit(&ipst->ips_ipmp_lock); 14209 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14210 } 14211 freemsg(mp); 14212 } 14213 14214 /* 14215 * Process an SIOCSLIFGROUPNAME request. 14216 */ 14217 /* ARGSUSED */ 14218 int 14219 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14220 ip_ioctl_cmd_t *ipip, void *ifreq) 14221 { 14222 struct lifreq *lifr = ifreq; 14223 ill_t *ill = ipif->ipif_ill; 14224 ip_stack_t *ipst = ill->ill_ipst; 14225 phyint_t *phyi = ill->ill_phyint; 14226 ipmp_grp_t *grp = phyi->phyint_grp; 14227 mblk_t *ipsq_mp; 14228 int err = 0; 14229 14230 /* 14231 * Note that phyint_grp can only change here, where we're exclusive. 14232 */ 14233 ASSERT(IAM_WRITER_ILL(ill)); 14234 14235 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14236 (phyi->phyint_flags & PHYI_VIRTUAL)) 14237 return (EINVAL); 14238 14239 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14240 14241 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14242 14243 /* 14244 * If the name hasn't changed, there's nothing to do. 14245 */ 14246 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14247 goto unlock; 14248 14249 /* 14250 * Handle requests to rename an IPMP meta-interface. 14251 * 14252 * Note that creation of the IPMP meta-interface is handled in 14253 * userland through the standard plumbing sequence. As part of the 14254 * plumbing the IPMP meta-interface, its initial groupname is set to 14255 * the name of the interface (see ipif_set_values_tail()). 14256 */ 14257 if (IS_IPMP(ill)) { 14258 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14259 goto unlock; 14260 } 14261 14262 /* 14263 * Handle requests to add or remove an IP interface from a group. 14264 */ 14265 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14266 /* 14267 * Moves are handled by first removing the interface from 14268 * its existing group, and then adding it to another group. 14269 * So, fail if it's already in a group. 14270 */ 14271 if (IS_UNDER_IPMP(ill)) { 14272 err = EALREADY; 14273 goto unlock; 14274 } 14275 14276 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14277 if (grp == NULL) { 14278 err = ENOENT; 14279 goto unlock; 14280 } 14281 14282 /* 14283 * Check if the phyint and its ills are suitable for 14284 * inclusion into the group. 14285 */ 14286 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14287 goto unlock; 14288 14289 /* 14290 * Checks pass; join the group, and enqueue the remaining 14291 * illgrp joins for when we've become part of the group xop 14292 * and are exclusive across its IPSQs. Since qwriter_ip() 14293 * requires an mblk_t to scribble on, and since `mp' will be 14294 * freed as part of completing the ioctl, allocate another. 14295 */ 14296 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14297 err = ENOMEM; 14298 goto unlock; 14299 } 14300 14301 /* 14302 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14303 * IPMP meta-interface ills needed by `phyi' cannot go away 14304 * before ip_join_illgrps() is called back. See the comments 14305 * in ip_sioctl_plink_ipmp() for more. 14306 */ 14307 if (phyi->phyint_illv4 != NULL) 14308 grp->gr_pendv4++; 14309 if (phyi->phyint_illv6 != NULL) 14310 grp->gr_pendv6++; 14311 14312 rw_exit(&ipst->ips_ipmp_lock); 14313 14314 ipmp_phyint_join_grp(phyi, grp); 14315 ill_refhold(ill); 14316 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14317 SWITCH_OP, B_FALSE); 14318 return (0); 14319 } else { 14320 /* 14321 * Request to remove the interface from a group. If the 14322 * interface is not in a group, this trivially succeeds. 14323 */ 14324 rw_exit(&ipst->ips_ipmp_lock); 14325 if (IS_UNDER_IPMP(ill)) 14326 ipmp_phyint_leave_grp(phyi); 14327 return (0); 14328 } 14329 unlock: 14330 rw_exit(&ipst->ips_ipmp_lock); 14331 return (err); 14332 } 14333 14334 /* 14335 * Process an SIOCGLIFBINDING request. 14336 */ 14337 /* ARGSUSED */ 14338 int 14339 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14340 ip_ioctl_cmd_t *ipip, void *ifreq) 14341 { 14342 ill_t *bound_ill; 14343 struct lifreq *lifr = ifreq; 14344 14345 if (!IS_IPMP(ipif->ipif_ill)) 14346 return (EINVAL); 14347 14348 if ((bound_ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 14349 lifr->lifr_binding[0] = '\0'; 14350 return (0); 14351 } 14352 14353 (void) strlcpy(lifr->lifr_binding, bound_ill->ill_name, LIFNAMSIZ); 14354 ill_refrele(bound_ill); 14355 return (0); 14356 } 14357 14358 /* 14359 * Process an SIOCGLIFGROUPNAME request. 14360 */ 14361 /* ARGSUSED */ 14362 int 14363 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14364 ip_ioctl_cmd_t *ipip, void *ifreq) 14365 { 14366 ipmp_grp_t *grp; 14367 struct lifreq *lifr = ifreq; 14368 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14369 14370 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14371 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14372 lifr->lifr_groupname[0] = '\0'; 14373 else 14374 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14375 rw_exit(&ipst->ips_ipmp_lock); 14376 return (0); 14377 } 14378 14379 /* 14380 * Process an SIOCGLIFGROUPINFO request. 14381 */ 14382 /* ARGSUSED */ 14383 int 14384 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14385 ip_ioctl_cmd_t *ipip, void *dummy) 14386 { 14387 lifgroupinfo_t *lifgr; 14388 ipmp_grp_t *grp; 14389 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14390 14391 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14392 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14393 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14394 14395 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14396 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14397 rw_exit(&ipst->ips_ipmp_lock); 14398 return (ENOENT); 14399 } 14400 ipmp_grp_info(grp, lifgr); 14401 rw_exit(&ipst->ips_ipmp_lock); 14402 return (0); 14403 } 14404 14405 static void 14406 ill_dl_down(ill_t *ill) 14407 { 14408 /* 14409 * The ill is down; unbind but stay attached since we're still 14410 * associated with a PPA. If we have negotiated DLPI capabilites 14411 * with the data link service provider (IDS_OK) then reset them. 14412 * The interval between unbinding and rebinding is potentially 14413 * unbounded hence we cannot assume things will be the same. 14414 * The DLPI capabilities will be probed again when the data link 14415 * is brought up. 14416 */ 14417 mblk_t *mp = ill->ill_unbind_mp; 14418 14419 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14420 14421 ill->ill_unbind_mp = NULL; 14422 if (mp != NULL) { 14423 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14424 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14425 ill->ill_name)); 14426 mutex_enter(&ill->ill_lock); 14427 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14428 mutex_exit(&ill->ill_lock); 14429 /* 14430 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14431 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14432 * ill_capability_dld_disable disable rightaway. If this is not 14433 * an unplumb operation then the disable happens on receipt of 14434 * the capab ack via ip_rput_dlpi_writer -> 14435 * ill_capability_ack_thr. In both cases the order of 14436 * the operations seen by DLD is capability disable followed 14437 * by DL_UNBIND. Also the DLD capability disable needs a 14438 * cv_wait'able context. 14439 */ 14440 if (ill->ill_state_flags & ILL_CONDEMNED) 14441 ill_capability_dld_disable(ill); 14442 ill_capability_reset(ill, B_FALSE); 14443 ill_dlpi_send(ill, mp); 14444 } 14445 14446 /* 14447 * Toss all of our multicast memberships. We could keep them, but 14448 * then we'd have to do bookkeeping of any joins and leaves performed 14449 * by the application while the the interface is down (we can't just 14450 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14451 * on a downed interface). 14452 */ 14453 ill_leave_multicast(ill); 14454 14455 mutex_enter(&ill->ill_lock); 14456 ill->ill_dl_up = 0; 14457 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14458 mutex_exit(&ill->ill_lock); 14459 } 14460 14461 static void 14462 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14463 { 14464 union DL_primitives *dlp; 14465 t_uscalar_t prim; 14466 14467 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14468 14469 dlp = (union DL_primitives *)mp->b_rptr; 14470 prim = dlp->dl_primitive; 14471 14472 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14473 dl_primstr(prim), prim, ill->ill_name)); 14474 14475 switch (prim) { 14476 case DL_PHYS_ADDR_REQ: 14477 { 14478 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14479 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14480 break; 14481 } 14482 case DL_BIND_REQ: 14483 mutex_enter(&ill->ill_lock); 14484 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14485 mutex_exit(&ill->ill_lock); 14486 break; 14487 } 14488 14489 /* 14490 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14491 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14492 * we only wait for the ACK of the DL_UNBIND_REQ. 14493 */ 14494 mutex_enter(&ill->ill_lock); 14495 if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) 14496 ill->ill_dlpi_pending = prim; 14497 14498 mutex_exit(&ill->ill_lock); 14499 putnext(ill->ill_wq, mp); 14500 } 14501 14502 /* 14503 * Helper function for ill_dlpi_send(). 14504 */ 14505 /* ARGSUSED */ 14506 static void 14507 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14508 { 14509 ill_dlpi_send(q->q_ptr, mp); 14510 } 14511 14512 /* 14513 * Send a DLPI control message to the driver but make sure there 14514 * is only one outstanding message. Uses ill_dlpi_pending to tell 14515 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14516 * when an ACK or a NAK is received to process the next queued message. 14517 */ 14518 void 14519 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14520 { 14521 mblk_t **mpp; 14522 14523 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14524 14525 /* 14526 * To ensure that any DLPI requests for current exclusive operation 14527 * are always completely sent before any DLPI messages for other 14528 * operations, require writer access before enqueuing. 14529 */ 14530 if (!IAM_WRITER_ILL(ill)) { 14531 ill_refhold(ill); 14532 /* qwriter_ip() does the ill_refrele() */ 14533 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14534 NEW_OP, B_TRUE); 14535 return; 14536 } 14537 14538 mutex_enter(&ill->ill_lock); 14539 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14540 /* Must queue message. Tail insertion */ 14541 mpp = &ill->ill_dlpi_deferred; 14542 while (*mpp != NULL) 14543 mpp = &((*mpp)->b_next); 14544 14545 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14546 ill->ill_name)); 14547 14548 *mpp = mp; 14549 mutex_exit(&ill->ill_lock); 14550 return; 14551 } 14552 mutex_exit(&ill->ill_lock); 14553 ill_dlpi_dispatch(ill, mp); 14554 } 14555 14556 static void 14557 ill_capability_send(ill_t *ill, mblk_t *mp) 14558 { 14559 ill->ill_capab_pending_cnt++; 14560 ill_dlpi_send(ill, mp); 14561 } 14562 14563 void 14564 ill_capability_done(ill_t *ill) 14565 { 14566 ASSERT(ill->ill_capab_pending_cnt != 0); 14567 14568 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14569 14570 ill->ill_capab_pending_cnt--; 14571 if (ill->ill_capab_pending_cnt == 0 && 14572 ill->ill_dlpi_capab_state == IDCS_OK) 14573 ill_capability_reset_alloc(ill); 14574 } 14575 14576 /* 14577 * Send all deferred DLPI messages without waiting for their ACKs. 14578 */ 14579 void 14580 ill_dlpi_send_deferred(ill_t *ill) 14581 { 14582 mblk_t *mp, *nextmp; 14583 14584 /* 14585 * Clear ill_dlpi_pending so that the message is not queued in 14586 * ill_dlpi_send(). 14587 */ 14588 mutex_enter(&ill->ill_lock); 14589 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14590 mp = ill->ill_dlpi_deferred; 14591 ill->ill_dlpi_deferred = NULL; 14592 mutex_exit(&ill->ill_lock); 14593 14594 for (; mp != NULL; mp = nextmp) { 14595 nextmp = mp->b_next; 14596 mp->b_next = NULL; 14597 ill_dlpi_send(ill, mp); 14598 } 14599 } 14600 14601 /* 14602 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14603 */ 14604 boolean_t 14605 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14606 { 14607 t_uscalar_t pending; 14608 14609 mutex_enter(&ill->ill_lock); 14610 if (ill->ill_dlpi_pending == prim) { 14611 mutex_exit(&ill->ill_lock); 14612 return (B_TRUE); 14613 } 14614 14615 /* 14616 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14617 * without waiting, so don't print any warnings in that case. 14618 */ 14619 if (ill->ill_state_flags & ILL_CONDEMNED) { 14620 mutex_exit(&ill->ill_lock); 14621 return (B_FALSE); 14622 } 14623 pending = ill->ill_dlpi_pending; 14624 mutex_exit(&ill->ill_lock); 14625 14626 if (pending == DL_PRIM_INVAL) { 14627 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14628 "received unsolicited ack for %s on %s\n", 14629 dl_primstr(prim), ill->ill_name); 14630 } else { 14631 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14632 "received unexpected ack for %s on %s (expecting %s)\n", 14633 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14634 } 14635 return (B_FALSE); 14636 } 14637 14638 /* 14639 * Complete the current DLPI operation associated with `prim' on `ill' and 14640 * start the next queued DLPI operation (if any). If there are no queued DLPI 14641 * operations and the ill's current exclusive IPSQ operation has finished 14642 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14643 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14644 * the comments above ipsq_current_finish() for details. 14645 */ 14646 void 14647 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14648 { 14649 mblk_t *mp; 14650 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14651 ipxop_t *ipx = ipsq->ipsq_xop; 14652 14653 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14654 mutex_enter(&ill->ill_lock); 14655 14656 ASSERT(prim != DL_PRIM_INVAL); 14657 ASSERT(ill->ill_dlpi_pending == prim); 14658 14659 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14660 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14661 14662 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14663 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14664 if (ipx->ipx_current_done) { 14665 mutex_enter(&ipx->ipx_lock); 14666 ipx->ipx_current_ipif = NULL; 14667 mutex_exit(&ipx->ipx_lock); 14668 } 14669 cv_signal(&ill->ill_cv); 14670 mutex_exit(&ill->ill_lock); 14671 return; 14672 } 14673 14674 ill->ill_dlpi_deferred = mp->b_next; 14675 mp->b_next = NULL; 14676 mutex_exit(&ill->ill_lock); 14677 14678 ill_dlpi_dispatch(ill, mp); 14679 } 14680 14681 void 14682 conn_delete_ire(conn_t *connp, caddr_t arg) 14683 { 14684 ipif_t *ipif = (ipif_t *)arg; 14685 ire_t *ire; 14686 14687 /* 14688 * Look at the cached ires on conns which has pointers to ipifs. 14689 * We just call ire_refrele which clears up the reference 14690 * to ire. Called when a conn closes. Also called from ipif_free 14691 * to cleanup indirect references to the stale ipif via the cached ire. 14692 */ 14693 mutex_enter(&connp->conn_lock); 14694 ire = connp->conn_ire_cache; 14695 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14696 connp->conn_ire_cache = NULL; 14697 mutex_exit(&connp->conn_lock); 14698 IRE_REFRELE_NOTR(ire); 14699 return; 14700 } 14701 mutex_exit(&connp->conn_lock); 14702 14703 } 14704 14705 /* 14706 * Some operations (e.g., ipif_down()) conditionally delete a number 14707 * of IREs. Those IREs may have been previously cached in the conn structure. 14708 * This ipcl_walk() walker function releases all references to such IREs based 14709 * on the condemned flag. 14710 */ 14711 /* ARGSUSED */ 14712 void 14713 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14714 { 14715 ire_t *ire; 14716 14717 mutex_enter(&connp->conn_lock); 14718 ire = connp->conn_ire_cache; 14719 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14720 connp->conn_ire_cache = NULL; 14721 mutex_exit(&connp->conn_lock); 14722 IRE_REFRELE_NOTR(ire); 14723 return; 14724 } 14725 mutex_exit(&connp->conn_lock); 14726 } 14727 14728 /* 14729 * Take down a specific interface, but don't lose any information about it. 14730 * (Always called as writer.) 14731 * This function goes through the down sequence even if the interface is 14732 * already down. There are 2 reasons. 14733 * a. Currently we permit interface routes that depend on down interfaces 14734 * to be added. This behaviour itself is questionable. However it appears 14735 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14736 * time. We go thru the cleanup in order to remove these routes. 14737 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14738 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14739 * down, but we need to cleanup i.e. do ill_dl_down and 14740 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14741 * 14742 * IP-MT notes: 14743 * 14744 * Model of reference to interfaces. 14745 * 14746 * The following members in ipif_t track references to the ipif. 14747 * int ipif_refcnt; Active reference count 14748 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14749 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14750 * 14751 * The following members in ill_t track references to the ill. 14752 * int ill_refcnt; active refcnt 14753 * uint_t ill_ire_cnt; Number of ires referencing ill 14754 * uint_t ill_nce_cnt; Number of nces referencing ill 14755 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14756 * 14757 * Reference to an ipif or ill can be obtained in any of the following ways. 14758 * 14759 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14760 * Pointers to ipif / ill from other data structures viz ire and conn. 14761 * Implicit reference to the ipif / ill by holding a reference to the ire. 14762 * 14763 * The ipif/ill lookup functions return a reference held ipif / ill. 14764 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14765 * This is a purely dynamic reference count associated with threads holding 14766 * references to the ipif / ill. Pointers from other structures do not 14767 * count towards this reference count. 14768 * 14769 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14770 * associated with the ipif/ill. This is incremented whenever a new 14771 * ire is created referencing the ipif/ill. This is done atomically inside 14772 * ire_add_v[46] where the ire is actually added to the ire hash table. 14773 * The count is decremented in ire_inactive where the ire is destroyed. 14774 * 14775 * nce's reference ill's thru nce_ill and the count of nce's associated with 14776 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14777 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14778 * table. Similarly it is decremented in ndp_inactive() where the nce 14779 * is destroyed. 14780 * 14781 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14782 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14783 * in ilm_walker_cleanup() or ilm_delete(). 14784 * 14785 * Flow of ioctls involving interface down/up 14786 * 14787 * The following is the sequence of an attempt to set some critical flags on an 14788 * up interface. 14789 * ip_sioctl_flags 14790 * ipif_down 14791 * wait for ipif to be quiescent 14792 * ipif_down_tail 14793 * ip_sioctl_flags_tail 14794 * 14795 * All set ioctls that involve down/up sequence would have a skeleton similar 14796 * to the above. All the *tail functions are called after the refcounts have 14797 * dropped to the appropriate values. 14798 * 14799 * The mechanism to quiesce an ipif is as follows. 14800 * 14801 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14802 * on the ipif. Callers either pass a flag requesting wait or the lookup 14803 * functions will return NULL. 14804 * 14805 * Delete all ires referencing this ipif 14806 * 14807 * Any thread attempting to do an ipif_refhold on an ipif that has been 14808 * obtained thru a cached pointer will first make sure that 14809 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14810 * increment the refcount. 14811 * 14812 * The above guarantees that the ipif refcount will eventually come down to 14813 * zero and the ipif will quiesce, once all threads that currently hold a 14814 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14815 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14816 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14817 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14818 * in ip.h 14819 * 14820 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14821 * 14822 * Threads trying to lookup an ipif or ill can pass a flag requesting 14823 * wait and restart if the ipif / ill cannot be looked up currently. 14824 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14825 * failure if the ipif is currently undergoing an exclusive operation, and 14826 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14827 * is restarted by ipsq_exit() when the current exclusive operation completes. 14828 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14829 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14830 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14831 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14832 * until we release the ipsq_lock, even though the the ill/ipif state flags 14833 * can change after we drop the ill_lock. 14834 * 14835 * An attempt to send out a packet using an ipif that is currently 14836 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14837 * operation and restart it later when the exclusive condition on the ipif ends. 14838 * This is an example of not passing the wait flag to the lookup functions. For 14839 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14840 * out a multicast packet on that ipif will fail while the ipif is 14841 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14842 * currently IPIF_CHANGING will also fail. 14843 */ 14844 int 14845 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14846 { 14847 ill_t *ill = ipif->ipif_ill; 14848 conn_t *connp; 14849 boolean_t success; 14850 boolean_t ipif_was_up = B_FALSE; 14851 ip_stack_t *ipst = ill->ill_ipst; 14852 14853 ASSERT(IAM_WRITER_IPIF(ipif)); 14854 14855 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14856 14857 if (ipif->ipif_flags & IPIF_UP) { 14858 mutex_enter(&ill->ill_lock); 14859 ipif->ipif_flags &= ~IPIF_UP; 14860 ASSERT(ill->ill_ipif_up_count > 0); 14861 --ill->ill_ipif_up_count; 14862 mutex_exit(&ill->ill_lock); 14863 ipif_was_up = B_TRUE; 14864 /* Update status in SCTP's list */ 14865 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14866 ill_nic_event_dispatch(ipif->ipif_ill, 14867 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14868 } 14869 14870 /* 14871 * Blow away memberships we established in ipif_multicast_up(). 14872 */ 14873 ipif_multicast_down(ipif); 14874 14875 /* 14876 * Remove from the mapping for __sin6_src_id. We insert only 14877 * when the address is not INADDR_ANY. As IPv4 addresses are 14878 * stored as mapped addresses, we need to check for mapped 14879 * INADDR_ANY also. 14880 */ 14881 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14882 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14883 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14884 int err; 14885 14886 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14887 ipif->ipif_zoneid, ipst); 14888 if (err != 0) { 14889 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14890 } 14891 } 14892 14893 /* 14894 * Delete all IRE's pointing at this ipif or its source address. 14895 */ 14896 if (ipif->ipif_isv6) { 14897 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14898 ipst); 14899 } else { 14900 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14901 ipst); 14902 } 14903 14904 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14905 /* 14906 * Since the interface is now down, it may have just become 14907 * inactive. Note that this needs to be done even for a 14908 * lll_logical_down(), or ARP entries will not get correctly 14909 * restored when the interface comes back up. 14910 */ 14911 if (IS_UNDER_IPMP(ill)) 14912 ipmp_ill_refresh_active(ill); 14913 } 14914 14915 /* 14916 * Cleaning up the conn_ire_cache or conns must be done only after the 14917 * ires have been deleted above. Otherwise a thread could end up 14918 * caching an ire in a conn after we have finished the cleanup of the 14919 * conn. The caching is done after making sure that the ire is not yet 14920 * condemned. Also documented in the block comment above ip_output 14921 */ 14922 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14923 /* Also, delete the ires cached in SCTP */ 14924 sctp_ire_cache_flush(ipif); 14925 14926 /* 14927 * Update any other ipifs which have used "our" local address as 14928 * a source address. This entails removing and recreating IRE_INTERFACE 14929 * entries for such ipifs. 14930 */ 14931 if (ipif->ipif_isv6) 14932 ipif_update_other_ipifs_v6(ipif); 14933 else 14934 ipif_update_other_ipifs(ipif); 14935 14936 /* 14937 * neighbor-discovery or arp entries for this interface. 14938 */ 14939 ipif_ndp_down(ipif); 14940 14941 /* 14942 * If mp is NULL the caller will wait for the appropriate refcnt. 14943 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14944 * and ill_delete -> ipif_free -> ipif_down 14945 */ 14946 if (mp == NULL) { 14947 ASSERT(q == NULL); 14948 return (0); 14949 } 14950 14951 if (CONN_Q(q)) { 14952 connp = Q_TO_CONN(q); 14953 mutex_enter(&connp->conn_lock); 14954 } else { 14955 connp = NULL; 14956 } 14957 mutex_enter(&ill->ill_lock); 14958 /* 14959 * Are there any ire's pointing to this ipif that are still active ? 14960 * If this is the last ipif going down, are there any ire's pointing 14961 * to this ill that are still active ? 14962 */ 14963 if (ipif_is_quiescent(ipif)) { 14964 mutex_exit(&ill->ill_lock); 14965 if (connp != NULL) 14966 mutex_exit(&connp->conn_lock); 14967 return (0); 14968 } 14969 14970 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14971 ill->ill_name, (void *)ill)); 14972 /* 14973 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14974 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14975 * which in turn is called by the last refrele on the ipif/ill/ire. 14976 */ 14977 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14978 if (!success) { 14979 /* The conn is closing. So just return */ 14980 ASSERT(connp != NULL); 14981 mutex_exit(&ill->ill_lock); 14982 mutex_exit(&connp->conn_lock); 14983 return (EINTR); 14984 } 14985 14986 mutex_exit(&ill->ill_lock); 14987 if (connp != NULL) 14988 mutex_exit(&connp->conn_lock); 14989 return (EINPROGRESS); 14990 } 14991 14992 void 14993 ipif_down_tail(ipif_t *ipif) 14994 { 14995 ill_t *ill = ipif->ipif_ill; 14996 14997 /* 14998 * Skip any loopback interface (null wq). 14999 * If this is the last logical interface on the ill 15000 * have ill_dl_down tell the driver we are gone (unbind) 15001 * Note that lun 0 can ipif_down even though 15002 * there are other logical units that are up. 15003 * This occurs e.g. when we change a "significant" IFF_ flag. 15004 */ 15005 if (ill->ill_wq != NULL && !ill->ill_logical_down && 15006 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 15007 ill->ill_dl_up) { 15008 ill_dl_down(ill); 15009 } 15010 ill->ill_logical_down = 0; 15011 15012 /* 15013 * Has to be after removing the routes in ipif_down_delete_ire. 15014 */ 15015 ipif_resolver_down(ipif); 15016 15017 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15018 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 15019 } 15020 15021 /* 15022 * Bring interface logically down without bringing the physical interface 15023 * down e.g. when the netmask is changed. This avoids long lasting link 15024 * negotiations between an ethernet interface and a certain switches. 15025 */ 15026 static int 15027 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 15028 { 15029 /* 15030 * The ill_logical_down flag is a transient flag. It is set here 15031 * and is cleared once the down has completed in ipif_down_tail. 15032 * This flag does not indicate whether the ill stream is in the 15033 * DL_BOUND state with the driver. Instead this flag is used by 15034 * ipif_down_tail to determine whether to DL_UNBIND the stream with 15035 * the driver. The state of the ill stream i.e. whether it is 15036 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 15037 */ 15038 ipif->ipif_ill->ill_logical_down = 1; 15039 return (ipif_down(ipif, q, mp)); 15040 } 15041 15042 /* 15043 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 15044 * If the usesrc client ILL is already part of a usesrc group or not, 15045 * in either case a ire_stq with the matching usesrc client ILL will 15046 * locate the IRE's that need to be deleted. We want IREs to be created 15047 * with the new source address. 15048 */ 15049 static void 15050 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 15051 { 15052 ill_t *ucill = (ill_t *)ill_arg; 15053 15054 ASSERT(IAM_WRITER_ILL(ucill)); 15055 15056 if (ire->ire_stq == NULL) 15057 return; 15058 15059 if ((ire->ire_type == IRE_CACHE) && 15060 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 15061 ire_delete(ire); 15062 } 15063 15064 /* 15065 * ire_walk routine to delete every IRE dependent on the interface 15066 * address that is going down. (Always called as writer.) 15067 * Works for both v4 and v6. 15068 * In addition for checking for ire_ipif matches it also checks for 15069 * IRE_CACHE entries which have the same source address as the 15070 * disappearing ipif since ipif_select_source might have picked 15071 * that source. Note that ipif_down/ipif_update_other_ipifs takes 15072 * care of any IRE_INTERFACE with the disappearing source address. 15073 */ 15074 static void 15075 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 15076 { 15077 ipif_t *ipif = (ipif_t *)ipif_arg; 15078 15079 ASSERT(IAM_WRITER_IPIF(ipif)); 15080 if (ire->ire_ipif == NULL) 15081 return; 15082 15083 if (ire->ire_ipif != ipif) { 15084 /* 15085 * Look for a matching source address. 15086 */ 15087 if (ire->ire_type != IRE_CACHE) 15088 return; 15089 if (ipif->ipif_flags & IPIF_NOLOCAL) 15090 return; 15091 15092 if (ire->ire_ipversion == IPV4_VERSION) { 15093 if (ire->ire_src_addr != ipif->ipif_src_addr) 15094 return; 15095 } else { 15096 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 15097 &ipif->ipif_v6lcl_addr)) 15098 return; 15099 } 15100 ire_delete(ire); 15101 return; 15102 } 15103 /* 15104 * ire_delete() will do an ire_flush_cache which will delete 15105 * all ire_ipif matches 15106 */ 15107 ire_delete(ire); 15108 } 15109 15110 /* 15111 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 15112 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 15113 * 2) when an interface is brought up or down (on that ill). 15114 * This ensures that the IRE_CACHE entries don't retain stale source 15115 * address selection results. 15116 */ 15117 void 15118 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 15119 { 15120 ill_t *ill = (ill_t *)ill_arg; 15121 15122 ASSERT(IAM_WRITER_ILL(ill)); 15123 ASSERT(ire->ire_type == IRE_CACHE); 15124 15125 /* 15126 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15127 * ill, but we only want to delete the IRE if ire_ipif matches. 15128 */ 15129 ASSERT(ire->ire_ipif != NULL); 15130 if (ill == ire->ire_ipif->ipif_ill) 15131 ire_delete(ire); 15132 } 15133 15134 /* 15135 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 15136 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 15137 * the IPMP ill. 15138 */ 15139 void 15140 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 15141 { 15142 ill_t *ill = (ill_t *)ill_arg; 15143 15144 ASSERT(IAM_WRITER_ILL(ill)); 15145 ASSERT(ire->ire_type == IRE_CACHE); 15146 15147 /* 15148 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15149 * ill, but we only want to delete the IRE if ire_stq matches. 15150 */ 15151 if (ire->ire_stq->q_ptr == ill_arg) 15152 ire_delete(ire); 15153 } 15154 15155 /* 15156 * Delete all broadcast IREs with a source address on `ill_arg'. 15157 */ 15158 static void 15159 ill_broadcast_delete(ire_t *ire, char *ill_arg) 15160 { 15161 ill_t *ill = (ill_t *)ill_arg; 15162 15163 ASSERT(IAM_WRITER_ILL(ill)); 15164 ASSERT(ire->ire_type == IRE_BROADCAST); 15165 15166 if (ire->ire_ipif->ipif_ill == ill) 15167 ire_delete(ire); 15168 } 15169 15170 /* 15171 * Initiate deallocate of an IPIF. Always called as writer. Called by 15172 * ill_delete or ip_sioctl_removeif. 15173 */ 15174 static void 15175 ipif_free(ipif_t *ipif) 15176 { 15177 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15178 15179 ASSERT(IAM_WRITER_IPIF(ipif)); 15180 15181 if (ipif->ipif_recovery_id != 0) 15182 (void) untimeout(ipif->ipif_recovery_id); 15183 ipif->ipif_recovery_id = 0; 15184 15185 /* Remove conn references */ 15186 reset_conn_ipif(ipif); 15187 15188 /* 15189 * Make sure we have valid net and subnet broadcast ire's for the 15190 * other ipif's which share them with this ipif. 15191 */ 15192 if (!ipif->ipif_isv6) 15193 ipif_check_bcast_ires(ipif); 15194 15195 /* 15196 * Take down the interface. We can be called either from ill_delete 15197 * or from ip_sioctl_removeif. 15198 */ 15199 (void) ipif_down(ipif, NULL, NULL); 15200 15201 /* 15202 * Now that the interface is down, there's no chance it can still 15203 * become a duplicate. Cancel any timer that may have been set while 15204 * tearing down. 15205 */ 15206 if (ipif->ipif_recovery_id != 0) 15207 (void) untimeout(ipif->ipif_recovery_id); 15208 ipif->ipif_recovery_id = 0; 15209 15210 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15211 /* Remove pointers to this ill in the multicast routing tables */ 15212 reset_mrt_vif_ipif(ipif); 15213 /* If necessary, clear the cached source ipif rotor. */ 15214 if (ipif->ipif_ill->ill_src_ipif == ipif) 15215 ipif->ipif_ill->ill_src_ipif = NULL; 15216 rw_exit(&ipst->ips_ill_g_lock); 15217 } 15218 15219 static void 15220 ipif_free_tail(ipif_t *ipif) 15221 { 15222 mblk_t *mp; 15223 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15224 15225 /* 15226 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15227 */ 15228 mutex_enter(&ipif->ipif_saved_ire_lock); 15229 mp = ipif->ipif_saved_ire_mp; 15230 ipif->ipif_saved_ire_mp = NULL; 15231 mutex_exit(&ipif->ipif_saved_ire_lock); 15232 freemsg(mp); 15233 15234 /* 15235 * Need to hold both ill_g_lock and ill_lock while 15236 * inserting or removing an ipif from the linked list 15237 * of ipifs hanging off the ill. 15238 */ 15239 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15240 15241 ASSERT(ilm_walk_ipif(ipif) == 0); 15242 15243 #ifdef DEBUG 15244 ipif_trace_cleanup(ipif); 15245 #endif 15246 15247 /* Ask SCTP to take it out of it list */ 15248 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15249 15250 /* Get it out of the ILL interface list. */ 15251 ipif_remove(ipif); 15252 rw_exit(&ipst->ips_ill_g_lock); 15253 15254 mutex_destroy(&ipif->ipif_saved_ire_lock); 15255 15256 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15257 ASSERT(ipif->ipif_recovery_id == 0); 15258 15259 /* Free the memory. */ 15260 mi_free(ipif); 15261 } 15262 15263 /* 15264 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15265 * is zero. 15266 */ 15267 void 15268 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15269 { 15270 char lbuf[LIFNAMSIZ]; 15271 char *name; 15272 size_t name_len; 15273 15274 buf[0] = '\0'; 15275 name = ipif->ipif_ill->ill_name; 15276 name_len = ipif->ipif_ill->ill_name_length; 15277 if (ipif->ipif_id != 0) { 15278 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15279 ipif->ipif_id); 15280 name = lbuf; 15281 name_len = mi_strlen(name) + 1; 15282 } 15283 len -= 1; 15284 buf[len] = '\0'; 15285 len = MIN(len, name_len); 15286 bcopy(name, buf, len); 15287 } 15288 15289 /* 15290 * Find an IPIF based on the name passed in. Names can be of the 15291 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15292 * The <phys> string can have forms like <dev><#> (e.g., le0), 15293 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15294 * When there is no colon, the implied unit id is zero. <phys> must 15295 * correspond to the name of an ILL. (May be called as writer.) 15296 */ 15297 static ipif_t * 15298 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15299 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15300 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15301 { 15302 char *cp; 15303 char *endp; 15304 long id; 15305 ill_t *ill; 15306 ipif_t *ipif; 15307 uint_t ire_type; 15308 boolean_t did_alloc = B_FALSE; 15309 ipsq_t *ipsq; 15310 15311 if (error != NULL) 15312 *error = 0; 15313 15314 /* 15315 * If the caller wants to us to create the ipif, make sure we have a 15316 * valid zoneid 15317 */ 15318 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15319 15320 if (namelen == 0) { 15321 if (error != NULL) 15322 *error = ENXIO; 15323 return (NULL); 15324 } 15325 15326 *exists = B_FALSE; 15327 /* Look for a colon in the name. */ 15328 endp = &name[namelen]; 15329 for (cp = endp; --cp > name; ) { 15330 if (*cp == IPIF_SEPARATOR_CHAR) 15331 break; 15332 } 15333 15334 if (*cp == IPIF_SEPARATOR_CHAR) { 15335 /* 15336 * Reject any non-decimal aliases for logical 15337 * interfaces. Aliases with leading zeroes 15338 * are also rejected as they introduce ambiguity 15339 * in the naming of the interfaces. 15340 * In order to confirm with existing semantics, 15341 * and to not break any programs/script relying 15342 * on that behaviour, if<0>:0 is considered to be 15343 * a valid interface. 15344 * 15345 * If alias has two or more digits and the first 15346 * is zero, fail. 15347 */ 15348 if (&cp[2] < endp && cp[1] == '0') { 15349 if (error != NULL) 15350 *error = EINVAL; 15351 return (NULL); 15352 } 15353 } 15354 15355 if (cp <= name) { 15356 cp = endp; 15357 } else { 15358 *cp = '\0'; 15359 } 15360 15361 /* 15362 * Look up the ILL, based on the portion of the name 15363 * before the slash. ill_lookup_on_name returns a held ill. 15364 * Temporary to check whether ill exists already. If so 15365 * ill_lookup_on_name will clear it. 15366 */ 15367 ill = ill_lookup_on_name(name, do_alloc, isv6, 15368 q, mp, func, error, &did_alloc, ipst); 15369 if (cp != endp) 15370 *cp = IPIF_SEPARATOR_CHAR; 15371 if (ill == NULL) 15372 return (NULL); 15373 15374 /* Establish the unit number in the name. */ 15375 id = 0; 15376 if (cp < endp && *endp == '\0') { 15377 /* If there was a colon, the unit number follows. */ 15378 cp++; 15379 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15380 ill_refrele(ill); 15381 if (error != NULL) 15382 *error = ENXIO; 15383 return (NULL); 15384 } 15385 } 15386 15387 GRAB_CONN_LOCK(q); 15388 mutex_enter(&ill->ill_lock); 15389 /* Now see if there is an IPIF with this unit number. */ 15390 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15391 if (ipif->ipif_id == id) { 15392 if (zoneid != ALL_ZONES && 15393 zoneid != ipif->ipif_zoneid && 15394 ipif->ipif_zoneid != ALL_ZONES) { 15395 mutex_exit(&ill->ill_lock); 15396 RELEASE_CONN_LOCK(q); 15397 ill_refrele(ill); 15398 if (error != NULL) 15399 *error = ENXIO; 15400 return (NULL); 15401 } 15402 /* 15403 * The block comment at the start of ipif_down 15404 * explains the use of the macros used below 15405 */ 15406 if (IPIF_CAN_LOOKUP(ipif)) { 15407 ipif_refhold_locked(ipif); 15408 mutex_exit(&ill->ill_lock); 15409 if (!did_alloc) 15410 *exists = B_TRUE; 15411 /* 15412 * Drop locks before calling ill_refrele 15413 * since it can potentially call into 15414 * ipif_ill_refrele_tail which can end up 15415 * in trying to acquire any lock. 15416 */ 15417 RELEASE_CONN_LOCK(q); 15418 ill_refrele(ill); 15419 return (ipif); 15420 } else if (IPIF_CAN_WAIT(ipif, q)) { 15421 ipsq = ill->ill_phyint->phyint_ipsq; 15422 mutex_enter(&ipsq->ipsq_lock); 15423 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15424 mutex_exit(&ill->ill_lock); 15425 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15426 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15427 mutex_exit(&ipsq->ipsq_lock); 15428 RELEASE_CONN_LOCK(q); 15429 ill_refrele(ill); 15430 if (error != NULL) 15431 *error = EINPROGRESS; 15432 return (NULL); 15433 } 15434 } 15435 } 15436 RELEASE_CONN_LOCK(q); 15437 15438 if (!do_alloc) { 15439 mutex_exit(&ill->ill_lock); 15440 ill_refrele(ill); 15441 if (error != NULL) 15442 *error = ENXIO; 15443 return (NULL); 15444 } 15445 15446 /* 15447 * If none found, atomically allocate and return a new one. 15448 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15449 * to support "receive only" use of lo0:1 etc. as is still done 15450 * below as an initial guess. 15451 * However, this is now likely to be overriden later in ipif_up_done() 15452 * when we know for sure what address has been configured on the 15453 * interface, since we might have more than one loopback interface 15454 * with a loopback address, e.g. in the case of zones, and all the 15455 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15456 */ 15457 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15458 ire_type = IRE_LOOPBACK; 15459 else 15460 ire_type = IRE_LOCAL; 15461 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15462 if (ipif != NULL) 15463 ipif_refhold_locked(ipif); 15464 else if (error != NULL) 15465 *error = ENOMEM; 15466 mutex_exit(&ill->ill_lock); 15467 ill_refrele(ill); 15468 return (ipif); 15469 } 15470 15471 /* 15472 * This routine is called whenever a new address comes up on an ipif. If 15473 * we are configured to respond to address mask requests, then we are supposed 15474 * to broadcast an address mask reply at this time. This routine is also 15475 * called if we are already up, but a netmask change is made. This is legal 15476 * but might not make the system manager very popular. (May be called 15477 * as writer.) 15478 */ 15479 void 15480 ipif_mask_reply(ipif_t *ipif) 15481 { 15482 icmph_t *icmph; 15483 ipha_t *ipha; 15484 mblk_t *mp; 15485 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15486 15487 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15488 15489 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15490 return; 15491 15492 /* ICMP mask reply is IPv4 only */ 15493 ASSERT(!ipif->ipif_isv6); 15494 /* ICMP mask reply is not for a loopback interface */ 15495 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15496 15497 mp = allocb(REPLY_LEN, BPRI_HI); 15498 if (mp == NULL) 15499 return; 15500 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15501 15502 ipha = (ipha_t *)mp->b_rptr; 15503 bzero(ipha, REPLY_LEN); 15504 *ipha = icmp_ipha; 15505 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15506 ipha->ipha_src = ipif->ipif_src_addr; 15507 ipha->ipha_dst = ipif->ipif_brd_addr; 15508 ipha->ipha_length = htons(REPLY_LEN); 15509 ipha->ipha_ident = 0; 15510 15511 icmph = (icmph_t *)&ipha[1]; 15512 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15513 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15514 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15515 15516 put(ipif->ipif_wq, mp); 15517 15518 #undef REPLY_LEN 15519 } 15520 15521 /* 15522 * When the mtu in the ipif changes, we call this routine through ire_walk 15523 * to update all the relevant IREs. 15524 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15525 */ 15526 static void 15527 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15528 { 15529 ipif_t *ipif = (ipif_t *)ipif_arg; 15530 15531 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15532 return; 15533 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15534 } 15535 15536 /* 15537 * When the mtu in the ill changes, we call this routine through ire_walk 15538 * to update all the relevant IREs. 15539 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15540 */ 15541 void 15542 ill_mtu_change(ire_t *ire, char *ill_arg) 15543 { 15544 ill_t *ill = (ill_t *)ill_arg; 15545 15546 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15547 return; 15548 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15549 } 15550 15551 /* 15552 * Join the ipif specific multicast groups. 15553 * Must be called after a mapping has been set up in the resolver. (Always 15554 * called as writer.) 15555 */ 15556 void 15557 ipif_multicast_up(ipif_t *ipif) 15558 { 15559 int err; 15560 ill_t *ill; 15561 15562 ASSERT(IAM_WRITER_IPIF(ipif)); 15563 15564 ill = ipif->ipif_ill; 15565 15566 ip1dbg(("ipif_multicast_up\n")); 15567 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15568 return; 15569 15570 if (ipif->ipif_isv6) { 15571 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15572 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15573 15574 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15575 15576 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15577 return; 15578 15579 ip1dbg(("ipif_multicast_up - addmulti\n")); 15580 15581 /* 15582 * Join the all hosts multicast address. We skip this for 15583 * underlying IPMP interfaces since they should be invisible. 15584 */ 15585 if (!IS_UNDER_IPMP(ill)) { 15586 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15587 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15588 if (err != 0) { 15589 ip0dbg(("ipif_multicast_up: " 15590 "all_hosts_mcast failed %d\n", err)); 15591 return; 15592 } 15593 ipif->ipif_joined_allhosts = 1; 15594 } 15595 15596 /* 15597 * Enable multicast for the solicited node multicast address 15598 */ 15599 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15600 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15601 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15602 if (err != 0) { 15603 ip0dbg(("ipif_multicast_up: solicited MC" 15604 " failed %d\n", err)); 15605 if (ipif->ipif_joined_allhosts) { 15606 (void) ip_delmulti_v6(&v6allmc, ill, 15607 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15608 ipif->ipif_joined_allhosts = 0; 15609 } 15610 return; 15611 } 15612 } 15613 } else { 15614 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15615 return; 15616 15617 /* Join the all hosts multicast address */ 15618 ip1dbg(("ipif_multicast_up - addmulti\n")); 15619 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15620 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15621 if (err) { 15622 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15623 return; 15624 } 15625 } 15626 ipif->ipif_multicast_up = 1; 15627 } 15628 15629 /* 15630 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15631 * (Explicit memberships are blown away in ill_leave_multicast() when the 15632 * ill is brought down.) 15633 */ 15634 void 15635 ipif_multicast_down(ipif_t *ipif) 15636 { 15637 int err; 15638 15639 ASSERT(IAM_WRITER_IPIF(ipif)); 15640 15641 ip1dbg(("ipif_multicast_down\n")); 15642 if (!ipif->ipif_multicast_up) 15643 return; 15644 15645 ip1dbg(("ipif_multicast_down - delmulti\n")); 15646 15647 if (!ipif->ipif_isv6) { 15648 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15649 B_TRUE); 15650 if (err != 0) 15651 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15652 15653 ipif->ipif_multicast_up = 0; 15654 return; 15655 } 15656 15657 /* 15658 * Leave the all-hosts multicast address. 15659 */ 15660 if (ipif->ipif_joined_allhosts) { 15661 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15662 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15663 if (err != 0) { 15664 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15665 "failed %d\n", err)); 15666 } 15667 ipif->ipif_joined_allhosts = 0; 15668 } 15669 15670 /* 15671 * Disable multicast for the solicited node multicast address 15672 */ 15673 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15674 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15675 15676 ipv6_multi.s6_addr32[3] |= 15677 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15678 15679 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15680 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15681 if (err != 0) { 15682 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15683 err)); 15684 } 15685 } 15686 15687 ipif->ipif_multicast_up = 0; 15688 } 15689 15690 /* 15691 * Used when an interface comes up to recreate any extra routes on this 15692 * interface. 15693 */ 15694 static ire_t ** 15695 ipif_recover_ire(ipif_t *ipif) 15696 { 15697 mblk_t *mp; 15698 ire_t **ipif_saved_irep; 15699 ire_t **irep; 15700 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15701 15702 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15703 ipif->ipif_id)); 15704 15705 mutex_enter(&ipif->ipif_saved_ire_lock); 15706 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15707 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15708 if (ipif_saved_irep == NULL) { 15709 mutex_exit(&ipif->ipif_saved_ire_lock); 15710 return (NULL); 15711 } 15712 15713 irep = ipif_saved_irep; 15714 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15715 ire_t *ire; 15716 queue_t *rfq; 15717 queue_t *stq; 15718 ifrt_t *ifrt; 15719 uchar_t *src_addr; 15720 uchar_t *gateway_addr; 15721 ushort_t type; 15722 15723 /* 15724 * When the ire was initially created and then added in 15725 * ip_rt_add(), it was created either using ipif->ipif_net_type 15726 * in the case of a traditional interface route, or as one of 15727 * the IRE_OFFSUBNET types (with the exception of 15728 * IRE_HOST types ire which is created by icmp_redirect() and 15729 * which we don't need to save or recover). In the case where 15730 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15731 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15732 * to satisfy software like GateD and Sun Cluster which creates 15733 * routes using the the loopback interface's address as a 15734 * gateway. 15735 * 15736 * As ifrt->ifrt_type reflects the already updated ire_type, 15737 * ire_create() will be called in the same way here as 15738 * in ip_rt_add(), namely using ipif->ipif_net_type when 15739 * the route looks like a traditional interface route (where 15740 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15741 * the saved ifrt->ifrt_type. This means that in the case where 15742 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15743 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15744 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15745 */ 15746 ifrt = (ifrt_t *)mp->b_rptr; 15747 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15748 if (ifrt->ifrt_type & IRE_INTERFACE) { 15749 rfq = NULL; 15750 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15751 ? ipif->ipif_rq : ipif->ipif_wq; 15752 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15753 ? (uint8_t *)&ifrt->ifrt_src_addr 15754 : (uint8_t *)&ipif->ipif_src_addr; 15755 gateway_addr = NULL; 15756 type = ipif->ipif_net_type; 15757 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15758 /* Recover multiroute broadcast IRE. */ 15759 rfq = ipif->ipif_rq; 15760 stq = ipif->ipif_wq; 15761 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15762 ? (uint8_t *)&ifrt->ifrt_src_addr 15763 : (uint8_t *)&ipif->ipif_src_addr; 15764 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15765 type = ifrt->ifrt_type; 15766 } else { 15767 rfq = NULL; 15768 stq = NULL; 15769 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15770 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15771 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15772 type = ifrt->ifrt_type; 15773 } 15774 15775 /* 15776 * Create a copy of the IRE with the saved address and netmask. 15777 */ 15778 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15779 "0x%x/0x%x\n", 15780 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15781 ntohl(ifrt->ifrt_addr), 15782 ntohl(ifrt->ifrt_mask))); 15783 ire = ire_create( 15784 (uint8_t *)&ifrt->ifrt_addr, 15785 (uint8_t *)&ifrt->ifrt_mask, 15786 src_addr, 15787 gateway_addr, 15788 &ifrt->ifrt_max_frag, 15789 NULL, 15790 rfq, 15791 stq, 15792 type, 15793 ipif, 15794 0, 15795 0, 15796 0, 15797 ifrt->ifrt_flags, 15798 &ifrt->ifrt_iulp_info, 15799 NULL, 15800 NULL, 15801 ipst); 15802 15803 if (ire == NULL) { 15804 mutex_exit(&ipif->ipif_saved_ire_lock); 15805 kmem_free(ipif_saved_irep, 15806 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15807 return (NULL); 15808 } 15809 15810 /* 15811 * Some software (for example, GateD and Sun Cluster) attempts 15812 * to create (what amount to) IRE_PREFIX routes with the 15813 * loopback address as the gateway. This is primarily done to 15814 * set up prefixes with the RTF_REJECT flag set (for example, 15815 * when generating aggregate routes.) 15816 * 15817 * If the IRE type (as defined by ipif->ipif_net_type) is 15818 * IRE_LOOPBACK, then we map the request into a 15819 * IRE_IF_NORESOLVER. 15820 */ 15821 if (ipif->ipif_net_type == IRE_LOOPBACK) 15822 ire->ire_type = IRE_IF_NORESOLVER; 15823 /* 15824 * ire held by ire_add, will be refreled' towards the 15825 * the end of ipif_up_done 15826 */ 15827 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15828 *irep = ire; 15829 irep++; 15830 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15831 } 15832 mutex_exit(&ipif->ipif_saved_ire_lock); 15833 return (ipif_saved_irep); 15834 } 15835 15836 /* 15837 * Used to set the netmask and broadcast address to default values when the 15838 * interface is brought up. (Always called as writer.) 15839 */ 15840 static void 15841 ipif_set_default(ipif_t *ipif) 15842 { 15843 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15844 15845 if (!ipif->ipif_isv6) { 15846 /* 15847 * Interface holds an IPv4 address. Default 15848 * mask is the natural netmask. 15849 */ 15850 if (!ipif->ipif_net_mask) { 15851 ipaddr_t v4mask; 15852 15853 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15854 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15855 } 15856 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15857 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15858 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15859 } else { 15860 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15861 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15862 } 15863 /* 15864 * NOTE: SunOS 4.X does this even if the broadcast address 15865 * has been already set thus we do the same here. 15866 */ 15867 if (ipif->ipif_flags & IPIF_BROADCAST) { 15868 ipaddr_t v4addr; 15869 15870 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15871 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15872 } 15873 } else { 15874 /* 15875 * Interface holds an IPv6-only address. Default 15876 * mask is all-ones. 15877 */ 15878 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15879 ipif->ipif_v6net_mask = ipv6_all_ones; 15880 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15881 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15882 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15883 } else { 15884 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15885 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15886 } 15887 } 15888 } 15889 15890 /* 15891 * Return 0 if this address can be used as local address without causing 15892 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15893 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15894 * Note that the same IPv6 link-local address is allowed as long as the ills 15895 * are not on the same link. 15896 */ 15897 int 15898 ip_addr_availability_check(ipif_t *new_ipif) 15899 { 15900 in6_addr_t our_v6addr; 15901 ill_t *ill; 15902 ipif_t *ipif; 15903 ill_walk_context_t ctx; 15904 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15905 15906 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15907 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15908 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15909 15910 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15911 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15912 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15913 return (0); 15914 15915 our_v6addr = new_ipif->ipif_v6lcl_addr; 15916 15917 if (new_ipif->ipif_isv6) 15918 ill = ILL_START_WALK_V6(&ctx, ipst); 15919 else 15920 ill = ILL_START_WALK_V4(&ctx, ipst); 15921 15922 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15923 for (ipif = ill->ill_ipif; ipif != NULL; 15924 ipif = ipif->ipif_next) { 15925 if ((ipif == new_ipif) || 15926 !(ipif->ipif_flags & IPIF_UP) || 15927 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15928 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15929 &our_v6addr)) 15930 continue; 15931 15932 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15933 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15934 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15935 ipif->ipif_flags |= IPIF_UNNUMBERED; 15936 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15937 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15938 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15939 continue; 15940 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15941 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15942 continue; 15943 else if (new_ipif->ipif_ill == ill) 15944 return (EADDRINUSE); 15945 else 15946 return (EADDRNOTAVAIL); 15947 } 15948 } 15949 15950 return (0); 15951 } 15952 15953 /* 15954 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15955 * IREs for the ipif. 15956 * When the routine returns EINPROGRESS then mp has been consumed and 15957 * the ioctl will be acked from ip_rput_dlpi. 15958 */ 15959 int 15960 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15961 { 15962 ill_t *ill = ipif->ipif_ill; 15963 boolean_t isv6 = ipif->ipif_isv6; 15964 int err = 0; 15965 boolean_t success; 15966 uint_t ipif_orig_id; 15967 ip_stack_t *ipst = ill->ill_ipst; 15968 15969 ASSERT(IAM_WRITER_IPIF(ipif)); 15970 15971 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15972 15973 /* Shouldn't get here if it is already up. */ 15974 if (ipif->ipif_flags & IPIF_UP) 15975 return (EALREADY); 15976 15977 /* 15978 * If this is a request to bring up a data address on an interface 15979 * under IPMP, then move the address to its IPMP meta-interface and 15980 * try to bring it up. One complication is that the zeroth ipif for 15981 * an ill is special, in that every ill always has one, and that code 15982 * throughout IP deferences ill->ill_ipif without holding any locks. 15983 */ 15984 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15985 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15986 ipif_t *stubipif = NULL, *moveipif = NULL; 15987 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15988 15989 /* 15990 * The ipif being brought up should be quiesced. If it's not, 15991 * something has gone amiss and we need to bail out. (If it's 15992 * quiesced, we know it will remain so via IPIF_CHANGING.) 15993 */ 15994 mutex_enter(&ill->ill_lock); 15995 if (!ipif_is_quiescent(ipif)) { 15996 mutex_exit(&ill->ill_lock); 15997 return (EINVAL); 15998 } 15999 mutex_exit(&ill->ill_lock); 16000 16001 /* 16002 * If we're going to need to allocate ipifs, do it prior 16003 * to starting the move (and grabbing locks). 16004 */ 16005 if (ipif->ipif_id == 0) { 16006 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 16007 B_FALSE); 16008 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 16009 B_FALSE); 16010 if (moveipif == NULL || stubipif == NULL) { 16011 mi_free(moveipif); 16012 mi_free(stubipif); 16013 return (ENOMEM); 16014 } 16015 } 16016 16017 /* 16018 * Grab or transfer the ipif to move. During the move, keep 16019 * ill_g_lock held to prevent any ill walker threads from 16020 * seeing things in an inconsistent state. 16021 */ 16022 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16023 if (ipif->ipif_id != 0) { 16024 ipif_remove(ipif); 16025 } else { 16026 ipif_transfer(ipif, moveipif, stubipif); 16027 ipif = moveipif; 16028 } 16029 16030 /* 16031 * Place the ipif on the IPMP ill. If the zeroth ipif on 16032 * the IPMP ill is a stub (0.0.0.0 down address) then we 16033 * replace that one. Otherwise, pick the next available slot. 16034 */ 16035 ipif->ipif_ill = ipmp_ill; 16036 ipif_orig_id = ipif->ipif_id; 16037 16038 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 16039 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 16040 ipif = ipmp_ill->ill_ipif; 16041 } else { 16042 ipif->ipif_id = -1; 16043 if (ipif_insert(ipif, B_FALSE) != 0) { 16044 /* 16045 * No more available ipif_id's -- put it back 16046 * on the original ill and fail the operation. 16047 * Since we're writer on the ill, we can be 16048 * sure our old slot is still available. 16049 */ 16050 ipif->ipif_id = ipif_orig_id; 16051 ipif->ipif_ill = ill; 16052 if (ipif_orig_id == 0) { 16053 ipif_transfer(ipif, ill->ill_ipif, 16054 NULL); 16055 } else { 16056 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 16057 } 16058 rw_exit(&ipst->ips_ill_g_lock); 16059 return (ENOMEM); 16060 } 16061 } 16062 rw_exit(&ipst->ips_ill_g_lock); 16063 16064 /* 16065 * Tell SCTP that the ipif has moved. Note that even if we 16066 * had to allocate a new ipif, the original sequence id was 16067 * preserved and therefore SCTP won't know. 16068 */ 16069 sctp_move_ipif(ipif, ill, ipmp_ill); 16070 16071 /* 16072 * If the ipif being brought up was on slot zero, then we 16073 * first need to bring up the placeholder we stuck there. In 16074 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 16075 * to ipif_up() itself, if we successfully bring up the 16076 * placeholder, we'll check ill_move_ipif and bring it up too. 16077 */ 16078 if (ipif_orig_id == 0) { 16079 ASSERT(ill->ill_move_ipif == NULL); 16080 ill->ill_move_ipif = ipif; 16081 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 16082 ASSERT(ill->ill_move_ipif == NULL); 16083 if (err != EINPROGRESS) 16084 ill->ill_move_ipif = NULL; 16085 return (err); 16086 } 16087 16088 /* 16089 * Bring it up on the IPMP ill. 16090 */ 16091 return (ipif_up(ipif, q, mp)); 16092 } 16093 16094 /* Skip arp/ndp for any loopback interface. */ 16095 if (ill->ill_wq != NULL) { 16096 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16097 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 16098 16099 if (!ill->ill_dl_up) { 16100 /* 16101 * ill_dl_up is not yet set. i.e. we are yet to 16102 * DL_BIND with the driver and this is the first 16103 * logical interface on the ill to become "up". 16104 * Tell the driver to get going (via DL_BIND_REQ). 16105 * Note that changing "significant" IFF_ flags 16106 * address/netmask etc cause a down/up dance, but 16107 * does not cause an unbind (DL_UNBIND) with the driver 16108 */ 16109 return (ill_dl_up(ill, ipif, mp, q)); 16110 } 16111 16112 /* 16113 * ipif_resolver_up may end up sending an 16114 * AR_INTERFACE_UP message to ARP, which would, in 16115 * turn send a DLPI message to the driver. ioctls are 16116 * serialized and so we cannot send more than one 16117 * interface up message at a time. If ipif_resolver_up 16118 * does send an interface up message to ARP, we get 16119 * EINPROGRESS and we will complete in ip_arp_done. 16120 */ 16121 16122 ASSERT(connp != NULL || !CONN_Q(q)); 16123 if (connp != NULL) 16124 mutex_enter(&connp->conn_lock); 16125 mutex_enter(&ill->ill_lock); 16126 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16127 mutex_exit(&ill->ill_lock); 16128 if (connp != NULL) 16129 mutex_exit(&connp->conn_lock); 16130 if (!success) 16131 return (EINTR); 16132 16133 /* 16134 * Crank up the resolver. For IPv6, this cranks up the 16135 * external resolver if one is configured, but even if an 16136 * external resolver isn't configured, it must be called to 16137 * reset DAD state. For IPv6, if an external resolver is not 16138 * being used, ipif_resolver_up() will never return 16139 * EINPROGRESS, so we can always call ipif_ndp_up() here. 16140 * Note that if an external resolver is being used, there's no 16141 * need to call ipif_ndp_up() since it will do nothing. 16142 */ 16143 err = ipif_resolver_up(ipif, Res_act_initial); 16144 if (err == EINPROGRESS) { 16145 /* We will complete it in ip_arp_done() */ 16146 return (err); 16147 } 16148 16149 if (isv6 && err == 0) 16150 err = ipif_ndp_up(ipif, B_TRUE); 16151 16152 ASSERT(err != EINPROGRESS); 16153 mp = ipsq_pending_mp_get(ipsq, &connp); 16154 ASSERT(mp != NULL); 16155 if (err != 0) 16156 return (err); 16157 } else { 16158 /* 16159 * Interfaces without underlying hardware don't do duplicate 16160 * address detection. 16161 */ 16162 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16163 ipif->ipif_addr_ready = 1; 16164 } 16165 16166 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16167 if (err == 0 && ill->ill_move_ipif != NULL) { 16168 ipif = ill->ill_move_ipif; 16169 ill->ill_move_ipif = NULL; 16170 return (ipif_up(ipif, q, mp)); 16171 } 16172 return (err); 16173 } 16174 16175 /* 16176 * Perform a bind for the physical device. 16177 * When the routine returns EINPROGRESS then mp has been consumed and 16178 * the ioctl will be acked from ip_rput_dlpi. 16179 * Allocate an unbind message and save it until ipif_down. 16180 */ 16181 static int 16182 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16183 { 16184 areq_t *areq; 16185 mblk_t *areq_mp = NULL; 16186 mblk_t *bind_mp = NULL; 16187 mblk_t *unbind_mp = NULL; 16188 conn_t *connp; 16189 boolean_t success; 16190 uint16_t sap_addr; 16191 16192 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16193 ASSERT(IAM_WRITER_ILL(ill)); 16194 ASSERT(mp != NULL); 16195 16196 /* Create a resolver cookie for ARP */ 16197 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16198 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16199 if (areq_mp == NULL) 16200 return (ENOMEM); 16201 16202 freemsg(ill->ill_resolver_mp); 16203 ill->ill_resolver_mp = areq_mp; 16204 areq = (areq_t *)areq_mp->b_rptr; 16205 sap_addr = ill->ill_sap; 16206 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16207 } 16208 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16209 DL_BIND_REQ); 16210 if (bind_mp == NULL) 16211 goto bad; 16212 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16213 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16214 16215 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16216 if (unbind_mp == NULL) 16217 goto bad; 16218 16219 /* 16220 * Record state needed to complete this operation when the 16221 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16222 */ 16223 ASSERT(WR(q)->q_next == NULL); 16224 connp = Q_TO_CONN(q); 16225 16226 mutex_enter(&connp->conn_lock); 16227 mutex_enter(&ipif->ipif_ill->ill_lock); 16228 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16229 mutex_exit(&ipif->ipif_ill->ill_lock); 16230 mutex_exit(&connp->conn_lock); 16231 if (!success) 16232 goto bad; 16233 16234 /* 16235 * Save the unbind message for ill_dl_down(); it will be consumed when 16236 * the interface goes down. 16237 */ 16238 ASSERT(ill->ill_unbind_mp == NULL); 16239 ill->ill_unbind_mp = unbind_mp; 16240 16241 ill_dlpi_send(ill, bind_mp); 16242 /* Send down link-layer capabilities probe if not already done. */ 16243 ill_capability_probe(ill); 16244 16245 /* 16246 * Sysid used to rely on the fact that netboots set domainname 16247 * and the like. Now that miniroot boots aren't strictly netboots 16248 * and miniroot network configuration is driven from userland 16249 * these things still need to be set. This situation can be detected 16250 * by comparing the interface being configured here to the one 16251 * dhcifname was set to reference by the boot loader. Once sysid is 16252 * converted to use dhcp_ipc_getinfo() this call can go away. 16253 */ 16254 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16255 (strcmp(ill->ill_name, dhcifname) == 0) && 16256 (strlen(srpc_domain) == 0)) { 16257 if (dhcpinit() != 0) 16258 cmn_err(CE_WARN, "no cached dhcp response"); 16259 } 16260 16261 /* 16262 * This operation will complete in ip_rput_dlpi with either 16263 * a DL_BIND_ACK or DL_ERROR_ACK. 16264 */ 16265 return (EINPROGRESS); 16266 bad: 16267 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16268 16269 freemsg(bind_mp); 16270 freemsg(unbind_mp); 16271 return (ENOMEM); 16272 } 16273 16274 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16275 16276 /* 16277 * DLPI and ARP is up. 16278 * Create all the IREs associated with an interface bring up multicast. 16279 * Set the interface flag and finish other initialization 16280 * that potentially had to be differed to after DL_BIND_ACK. 16281 */ 16282 int 16283 ipif_up_done(ipif_t *ipif) 16284 { 16285 ire_t *ire_array[20]; 16286 ire_t **irep = ire_array; 16287 ire_t **irep1; 16288 ipaddr_t net_mask = 0; 16289 ipaddr_t subnet_mask, route_mask; 16290 ill_t *ill = ipif->ipif_ill; 16291 queue_t *stq; 16292 ipif_t *src_ipif; 16293 ipif_t *tmp_ipif; 16294 boolean_t flush_ire_cache = B_TRUE; 16295 int err = 0; 16296 ire_t **ipif_saved_irep = NULL; 16297 int ipif_saved_ire_cnt; 16298 int cnt; 16299 boolean_t src_ipif_held = B_FALSE; 16300 boolean_t loopback = B_FALSE; 16301 ip_stack_t *ipst = ill->ill_ipst; 16302 16303 ip1dbg(("ipif_up_done(%s:%u)\n", 16304 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16305 /* Check if this is a loopback interface */ 16306 if (ipif->ipif_ill->ill_wq == NULL) 16307 loopback = B_TRUE; 16308 16309 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16310 /* 16311 * If all other interfaces for this ill are down or DEPRECATED, 16312 * or otherwise unsuitable for source address selection, remove 16313 * any IRE_CACHE entries for this ill to make sure source 16314 * address selection gets to take this new ipif into account. 16315 * No need to hold ill_lock while traversing the ipif list since 16316 * we are writer 16317 */ 16318 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16319 tmp_ipif = tmp_ipif->ipif_next) { 16320 if (((tmp_ipif->ipif_flags & 16321 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16322 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16323 (tmp_ipif == ipif)) 16324 continue; 16325 /* first useable pre-existing interface */ 16326 flush_ire_cache = B_FALSE; 16327 break; 16328 } 16329 if (flush_ire_cache) 16330 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16331 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16332 16333 /* 16334 * Figure out which way the send-to queue should go. Only 16335 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16336 * should show up here. 16337 */ 16338 switch (ill->ill_net_type) { 16339 case IRE_IF_RESOLVER: 16340 stq = ill->ill_rq; 16341 break; 16342 case IRE_IF_NORESOLVER: 16343 case IRE_LOOPBACK: 16344 stq = ill->ill_wq; 16345 break; 16346 default: 16347 return (EINVAL); 16348 } 16349 16350 if (IS_LOOPBACK(ill)) { 16351 /* 16352 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16353 * ipif_lookup_on_name(), but in the case of zones we can have 16354 * several loopback addresses on lo0. So all the interfaces with 16355 * loopback addresses need to be marked IRE_LOOPBACK. 16356 */ 16357 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16358 htonl(INADDR_LOOPBACK)) 16359 ipif->ipif_ire_type = IRE_LOOPBACK; 16360 else 16361 ipif->ipif_ire_type = IRE_LOCAL; 16362 } 16363 16364 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16365 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16366 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16367 /* 16368 * Can't use our source address. Select a different 16369 * source address for the IRE_INTERFACE and IRE_LOCAL 16370 */ 16371 src_ipif = ipif_select_source(ipif->ipif_ill, 16372 ipif->ipif_subnet, ipif->ipif_zoneid); 16373 if (src_ipif == NULL) 16374 src_ipif = ipif; /* Last resort */ 16375 else 16376 src_ipif_held = B_TRUE; 16377 } else { 16378 src_ipif = ipif; 16379 } 16380 16381 /* Create all the IREs associated with this interface */ 16382 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16383 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16384 16385 /* 16386 * If we're on a labeled system then make sure that zone- 16387 * private addresses have proper remote host database entries. 16388 */ 16389 if (is_system_labeled() && 16390 ipif->ipif_ire_type != IRE_LOOPBACK && 16391 !tsol_check_interface_address(ipif)) 16392 return (EINVAL); 16393 16394 /* Register the source address for __sin6_src_id */ 16395 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16396 ipif->ipif_zoneid, ipst); 16397 if (err != 0) { 16398 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16399 return (err); 16400 } 16401 16402 /* If the interface address is set, create the local IRE. */ 16403 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16404 (void *)ipif, 16405 ipif->ipif_ire_type, 16406 ntohl(ipif->ipif_lcl_addr))); 16407 *irep++ = ire_create( 16408 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16409 (uchar_t *)&ip_g_all_ones, /* mask */ 16410 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16411 NULL, /* no gateway */ 16412 &ip_loopback_mtuplus, /* max frag size */ 16413 NULL, 16414 ipif->ipif_rq, /* recv-from queue */ 16415 NULL, /* no send-to queue */ 16416 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16417 ipif, 16418 0, 16419 0, 16420 0, 16421 (ipif->ipif_flags & IPIF_PRIVATE) ? 16422 RTF_PRIVATE : 0, 16423 &ire_uinfo_null, 16424 NULL, 16425 NULL, 16426 ipst); 16427 } else { 16428 ip1dbg(( 16429 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16430 ipif->ipif_ire_type, 16431 ntohl(ipif->ipif_lcl_addr), 16432 (uint_t)ipif->ipif_flags)); 16433 } 16434 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16435 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16436 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16437 } else { 16438 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16439 } 16440 16441 subnet_mask = ipif->ipif_net_mask; 16442 16443 /* 16444 * If mask was not specified, use natural netmask of 16445 * interface address. Also, store this mask back into the 16446 * ipif struct. 16447 */ 16448 if (subnet_mask == 0) { 16449 subnet_mask = net_mask; 16450 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16451 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16452 ipif->ipif_v6subnet); 16453 } 16454 16455 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16456 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16457 ipif->ipif_subnet != INADDR_ANY) { 16458 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16459 16460 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16461 route_mask = IP_HOST_MASK; 16462 } else { 16463 route_mask = subnet_mask; 16464 } 16465 16466 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16467 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16468 (void *)ipif, (void *)ill, 16469 ill->ill_net_type, 16470 ntohl(ipif->ipif_subnet))); 16471 *irep++ = ire_create( 16472 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16473 (uchar_t *)&route_mask, /* mask */ 16474 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16475 NULL, /* no gateway */ 16476 &ipif->ipif_mtu, /* max frag */ 16477 NULL, 16478 NULL, /* no recv queue */ 16479 stq, /* send-to queue */ 16480 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16481 ipif, 16482 0, 16483 0, 16484 0, 16485 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16486 &ire_uinfo_null, 16487 NULL, 16488 NULL, 16489 ipst); 16490 } 16491 16492 /* 16493 * Create any necessary broadcast IREs. 16494 */ 16495 if (ipif->ipif_flags & IPIF_BROADCAST) 16496 irep = ipif_create_bcast_ires(ipif, irep); 16497 16498 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16499 16500 /* If an earlier ire_create failed, get out now */ 16501 for (irep1 = irep; irep1 > ire_array; ) { 16502 irep1--; 16503 if (*irep1 == NULL) { 16504 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16505 err = ENOMEM; 16506 goto bad; 16507 } 16508 } 16509 16510 /* 16511 * Need to atomically check for IP address availability under 16512 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16513 * ills or new ipifs can be added while we are checking availability. 16514 */ 16515 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16516 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16517 /* Mark it up, and increment counters. */ 16518 ipif->ipif_flags |= IPIF_UP; 16519 ill->ill_ipif_up_count++; 16520 err = ip_addr_availability_check(ipif); 16521 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16522 rw_exit(&ipst->ips_ill_g_lock); 16523 16524 if (err != 0) { 16525 /* 16526 * Our address may already be up on the same ill. In this case, 16527 * the ARP entry for our ipif replaced the one for the other 16528 * ipif. So we don't want to delete it (otherwise the other ipif 16529 * would be unable to send packets). 16530 * ip_addr_availability_check() identifies this case for us and 16531 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16532 * which is the expected error code. 16533 */ 16534 if (err == EADDRINUSE) { 16535 freemsg(ipif->ipif_arp_del_mp); 16536 ipif->ipif_arp_del_mp = NULL; 16537 err = EADDRNOTAVAIL; 16538 } 16539 ill->ill_ipif_up_count--; 16540 ipif->ipif_flags &= ~IPIF_UP; 16541 goto bad; 16542 } 16543 16544 /* 16545 * Add in all newly created IREs. ire_create_bcast() has 16546 * already checked for duplicates of the IRE_BROADCAST type. 16547 */ 16548 for (irep1 = irep; irep1 > ire_array; ) { 16549 irep1--; 16550 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16551 /* 16552 * refheld by ire_add. refele towards the end of the func 16553 */ 16554 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16555 } 16556 16557 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16558 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16559 ipif_saved_irep = ipif_recover_ire(ipif); 16560 16561 if (!loopback) { 16562 /* 16563 * If the broadcast address has been set, make sure it makes 16564 * sense based on the interface address. 16565 * Only match on ill since we are sharing broadcast addresses. 16566 */ 16567 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16568 (ipif->ipif_flags & IPIF_BROADCAST)) { 16569 ire_t *ire; 16570 16571 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16572 IRE_BROADCAST, ipif, ALL_ZONES, 16573 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16574 16575 if (ire == NULL) { 16576 /* 16577 * If there isn't a matching broadcast IRE, 16578 * revert to the default for this netmask. 16579 */ 16580 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16581 mutex_enter(&ipif->ipif_ill->ill_lock); 16582 ipif_set_default(ipif); 16583 mutex_exit(&ipif->ipif_ill->ill_lock); 16584 } else { 16585 ire_refrele(ire); 16586 } 16587 } 16588 16589 } 16590 16591 if (ill->ill_need_recover_multicast) { 16592 /* 16593 * Need to recover all multicast memberships in the driver. 16594 * This had to be deferred until we had attached. The same 16595 * code exists in ipif_up_done_v6() to recover IPv6 16596 * memberships. 16597 * 16598 * Note that it would be preferable to unconditionally do the 16599 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16600 * that since ill_join_allmulti() depends on ill_dl_up being 16601 * set, and it is not set until we receive a DL_BIND_ACK after 16602 * having called ill_dl_up(). 16603 */ 16604 ill_recover_multicast(ill); 16605 } 16606 16607 if (ill->ill_ipif_up_count == 1) { 16608 /* 16609 * Since the interface is now up, it may now be active. 16610 */ 16611 if (IS_UNDER_IPMP(ill)) 16612 ipmp_ill_refresh_active(ill); 16613 16614 /* 16615 * If this is an IPMP interface, we may now be able to 16616 * establish ARP entries. 16617 */ 16618 if (IS_IPMP(ill)) 16619 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16620 } 16621 16622 /* Join the allhosts multicast address */ 16623 ipif_multicast_up(ipif); 16624 16625 /* 16626 * See if anybody else would benefit from our new ipif. 16627 */ 16628 if (!loopback && 16629 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16630 ill_update_source_selection(ill); 16631 } 16632 16633 for (irep1 = irep; irep1 > ire_array; ) { 16634 irep1--; 16635 if (*irep1 != NULL) { 16636 /* was held in ire_add */ 16637 ire_refrele(*irep1); 16638 } 16639 } 16640 16641 cnt = ipif_saved_ire_cnt; 16642 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16643 if (*irep1 != NULL) { 16644 /* was held in ire_add */ 16645 ire_refrele(*irep1); 16646 } 16647 } 16648 16649 if (!loopback && ipif->ipif_addr_ready) { 16650 /* Broadcast an address mask reply. */ 16651 ipif_mask_reply(ipif); 16652 } 16653 if (ipif_saved_irep != NULL) { 16654 kmem_free(ipif_saved_irep, 16655 ipif_saved_ire_cnt * sizeof (ire_t *)); 16656 } 16657 if (src_ipif_held) 16658 ipif_refrele(src_ipif); 16659 16660 /* 16661 * This had to be deferred until we had bound. Tell routing sockets and 16662 * others that this interface is up if it looks like the address has 16663 * been validated. Otherwise, if it isn't ready yet, wait for 16664 * duplicate address detection to do its thing. 16665 */ 16666 if (ipif->ipif_addr_ready) 16667 ipif_up_notify(ipif); 16668 return (0); 16669 16670 bad: 16671 ip1dbg(("ipif_up_done: FAILED \n")); 16672 16673 while (irep > ire_array) { 16674 irep--; 16675 if (*irep != NULL) 16676 ire_delete(*irep); 16677 } 16678 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16679 16680 if (ipif_saved_irep != NULL) { 16681 kmem_free(ipif_saved_irep, 16682 ipif_saved_ire_cnt * sizeof (ire_t *)); 16683 } 16684 if (src_ipif_held) 16685 ipif_refrele(src_ipif); 16686 16687 ipif_resolver_down(ipif); 16688 return (err); 16689 } 16690 16691 /* 16692 * Turn off the ARP with the ILLF_NOARP flag. 16693 */ 16694 static int 16695 ill_arp_off(ill_t *ill) 16696 { 16697 mblk_t *arp_off_mp = NULL; 16698 mblk_t *arp_on_mp = NULL; 16699 16700 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16701 16702 ASSERT(IAM_WRITER_ILL(ill)); 16703 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16704 16705 /* 16706 * If the on message is still around we've already done 16707 * an arp_off without doing an arp_on thus there is no 16708 * work needed. 16709 */ 16710 if (ill->ill_arp_on_mp != NULL) 16711 return (0); 16712 16713 /* 16714 * Allocate an ARP on message (to be saved) and an ARP off message 16715 */ 16716 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16717 if (!arp_off_mp) 16718 return (ENOMEM); 16719 16720 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16721 if (!arp_on_mp) 16722 goto failed; 16723 16724 ASSERT(ill->ill_arp_on_mp == NULL); 16725 ill->ill_arp_on_mp = arp_on_mp; 16726 16727 /* Send an AR_INTERFACE_OFF request */ 16728 putnext(ill->ill_rq, arp_off_mp); 16729 return (0); 16730 failed: 16731 16732 if (arp_off_mp) 16733 freemsg(arp_off_mp); 16734 return (ENOMEM); 16735 } 16736 16737 /* 16738 * Turn on ARP by turning off the ILLF_NOARP flag. 16739 */ 16740 static int 16741 ill_arp_on(ill_t *ill) 16742 { 16743 mblk_t *mp; 16744 16745 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16746 16747 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16748 16749 ASSERT(IAM_WRITER_ILL(ill)); 16750 /* 16751 * Send an AR_INTERFACE_ON request if we have already done 16752 * an arp_off (which allocated the message). 16753 */ 16754 if (ill->ill_arp_on_mp != NULL) { 16755 mp = ill->ill_arp_on_mp; 16756 ill->ill_arp_on_mp = NULL; 16757 putnext(ill->ill_rq, mp); 16758 } 16759 return (0); 16760 } 16761 16762 /* 16763 * Checks for availbility of a usable source address (if there is one) when the 16764 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16765 * this selection is done regardless of the destination. 16766 */ 16767 boolean_t 16768 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16769 { 16770 uint_t ifindex; 16771 ipif_t *ipif = NULL; 16772 ill_t *uill; 16773 boolean_t isv6; 16774 ip_stack_t *ipst = ill->ill_ipst; 16775 16776 ASSERT(ill != NULL); 16777 16778 isv6 = ill->ill_isv6; 16779 ifindex = ill->ill_usesrc_ifindex; 16780 if (ifindex != 0) { 16781 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16782 NULL, ipst); 16783 if (uill == NULL) 16784 return (NULL); 16785 mutex_enter(&uill->ill_lock); 16786 for (ipif = uill->ill_ipif; ipif != NULL; 16787 ipif = ipif->ipif_next) { 16788 if (!IPIF_CAN_LOOKUP(ipif)) 16789 continue; 16790 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16791 continue; 16792 if (!(ipif->ipif_flags & IPIF_UP)) 16793 continue; 16794 if (ipif->ipif_zoneid != zoneid) 16795 continue; 16796 if ((isv6 && 16797 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16798 (ipif->ipif_lcl_addr == INADDR_ANY)) 16799 continue; 16800 mutex_exit(&uill->ill_lock); 16801 ill_refrele(uill); 16802 return (B_TRUE); 16803 } 16804 mutex_exit(&uill->ill_lock); 16805 ill_refrele(uill); 16806 } 16807 return (B_FALSE); 16808 } 16809 16810 /* 16811 * IP source address type, sorted from worst to best. For a given type, 16812 * always prefer IP addresses on the same subnet. All-zones addresses are 16813 * suboptimal because they pose problems with unlabeled destinations. 16814 */ 16815 typedef enum { 16816 IPIF_NONE, 16817 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16818 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16819 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16820 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16821 IPIF_DIFFNET, /* normal and different subnet */ 16822 IPIF_SAMENET /* normal and same subnet */ 16823 } ipif_type_t; 16824 16825 /* 16826 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16827 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16828 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16829 * the first one, unless IPMP is used in which case we round-robin among them; 16830 * see below for more. 16831 * 16832 * Returns NULL if there is no suitable source address for the ill. 16833 * This only occurs when there is no valid source address for the ill. 16834 */ 16835 ipif_t * 16836 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16837 { 16838 ill_t *usill = NULL; 16839 ill_t *ipmp_ill = NULL; 16840 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16841 ipif_type_t type, best_type; 16842 tsol_tpc_t *src_rhtp, *dst_rhtp; 16843 ip_stack_t *ipst = ill->ill_ipst; 16844 boolean_t samenet; 16845 16846 if (ill->ill_usesrc_ifindex != 0) { 16847 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16848 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16849 if (usill != NULL) 16850 ill = usill; /* Select source from usesrc ILL */ 16851 else 16852 return (NULL); 16853 } 16854 16855 /* 16856 * Test addresses should never be used for source address selection, 16857 * so if we were passed one, switch to the IPMP meta-interface. 16858 */ 16859 if (IS_UNDER_IPMP(ill)) { 16860 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16861 ill = ipmp_ill; /* Select source from IPMP ill */ 16862 else 16863 return (NULL); 16864 } 16865 16866 /* 16867 * If we're dealing with an unlabeled destination on a labeled system, 16868 * make sure that we ignore source addresses that are incompatible with 16869 * the destination's default label. That destination's default label 16870 * must dominate the minimum label on the source address. 16871 */ 16872 dst_rhtp = NULL; 16873 if (is_system_labeled()) { 16874 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16875 if (dst_rhtp == NULL) 16876 return (NULL); 16877 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16878 TPC_RELE(dst_rhtp); 16879 dst_rhtp = NULL; 16880 } 16881 } 16882 16883 /* 16884 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16885 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16886 * After selecting the right ipif, under ill_lock make sure ipif is 16887 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16888 * we retry. Inside the loop we still need to check for CONDEMNED, 16889 * but not under a lock. 16890 */ 16891 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16892 retry: 16893 /* 16894 * For source address selection, we treat the ipif list as circular 16895 * and continue until we get back to where we started. This allows 16896 * IPMP to vary source address selection (which improves inbound load 16897 * spreading) by caching its last ending point and starting from 16898 * there. NOTE: we don't have to worry about ill_src_ipif changing 16899 * ills since that can't happen on the IPMP ill. 16900 */ 16901 start_ipif = ill->ill_ipif; 16902 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16903 start_ipif = ill->ill_src_ipif; 16904 16905 ipif = start_ipif; 16906 best_ipif = NULL; 16907 best_type = IPIF_NONE; 16908 do { 16909 if ((next_ipif = ipif->ipif_next) == NULL) 16910 next_ipif = ill->ill_ipif; 16911 16912 if (!IPIF_CAN_LOOKUP(ipif)) 16913 continue; 16914 /* Always skip NOLOCAL and ANYCAST interfaces */ 16915 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16916 continue; 16917 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16918 continue; 16919 if (ipif->ipif_zoneid != zoneid && 16920 ipif->ipif_zoneid != ALL_ZONES) 16921 continue; 16922 16923 /* 16924 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16925 * are not valid as source addresses. 16926 */ 16927 if (ipif->ipif_lcl_addr == INADDR_ANY) 16928 continue; 16929 16930 /* 16931 * Check compatibility of local address for destination's 16932 * default label if we're on a labeled system. Incompatible 16933 * addresses can't be used at all. 16934 */ 16935 if (dst_rhtp != NULL) { 16936 boolean_t incompat; 16937 16938 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16939 IPV4_VERSION, B_FALSE); 16940 if (src_rhtp == NULL) 16941 continue; 16942 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16943 src_rhtp->tpc_tp.tp_doi != 16944 dst_rhtp->tpc_tp.tp_doi || 16945 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16946 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16947 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16948 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16949 TPC_RELE(src_rhtp); 16950 if (incompat) 16951 continue; 16952 } 16953 16954 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16955 16956 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16957 type = samenet ? IPIF_SAMENET_DEPRECATED : 16958 IPIF_DIFFNET_DEPRECATED; 16959 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16960 type = samenet ? IPIF_SAMENET_ALLZONES : 16961 IPIF_DIFFNET_ALLZONES; 16962 } else { 16963 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16964 } 16965 16966 if (type > best_type) { 16967 best_type = type; 16968 best_ipif = ipif; 16969 if (best_type == IPIF_SAMENET) 16970 break; /* can't get better */ 16971 } 16972 } while ((ipif = next_ipif) != start_ipif); 16973 16974 if ((ipif = best_ipif) != NULL) { 16975 mutex_enter(&ipif->ipif_ill->ill_lock); 16976 if (!IPIF_CAN_LOOKUP(ipif)) { 16977 mutex_exit(&ipif->ipif_ill->ill_lock); 16978 goto retry; 16979 } 16980 ipif_refhold_locked(ipif); 16981 16982 /* 16983 * For IPMP, update the source ipif rotor to the next ipif, 16984 * provided we can look it up. (We must not use it if it's 16985 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16986 * ipif_free() checked ill_src_ipif.) 16987 */ 16988 if (IS_IPMP(ill) && ipif != NULL) { 16989 next_ipif = ipif->ipif_next; 16990 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16991 ill->ill_src_ipif = next_ipif; 16992 else 16993 ill->ill_src_ipif = NULL; 16994 } 16995 mutex_exit(&ipif->ipif_ill->ill_lock); 16996 } 16997 16998 rw_exit(&ipst->ips_ill_g_lock); 16999 if (usill != NULL) 17000 ill_refrele(usill); 17001 if (ipmp_ill != NULL) 17002 ill_refrele(ipmp_ill); 17003 if (dst_rhtp != NULL) 17004 TPC_RELE(dst_rhtp); 17005 17006 #ifdef DEBUG 17007 if (ipif == NULL) { 17008 char buf1[INET6_ADDRSTRLEN]; 17009 17010 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 17011 ill->ill_name, 17012 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 17013 } else { 17014 char buf1[INET6_ADDRSTRLEN]; 17015 char buf2[INET6_ADDRSTRLEN]; 17016 17017 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 17018 ipif->ipif_ill->ill_name, 17019 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 17020 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 17021 buf2, sizeof (buf2)))); 17022 } 17023 #endif /* DEBUG */ 17024 return (ipif); 17025 } 17026 17027 17028 /* 17029 * If old_ipif is not NULL, see if ipif was derived from old 17030 * ipif and if so, recreate the interface route by re-doing 17031 * source address selection. This happens when ipif_down -> 17032 * ipif_update_other_ipifs calls us. 17033 * 17034 * If old_ipif is NULL, just redo the source address selection 17035 * if needed. This happens when ipif_up_done calls us. 17036 */ 17037 static void 17038 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 17039 { 17040 ire_t *ire; 17041 ire_t *ipif_ire; 17042 queue_t *stq; 17043 ipif_t *nipif; 17044 ill_t *ill; 17045 boolean_t need_rele = B_FALSE; 17046 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17047 17048 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 17049 ASSERT(IAM_WRITER_IPIF(ipif)); 17050 17051 ill = ipif->ipif_ill; 17052 if (!(ipif->ipif_flags & 17053 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 17054 /* 17055 * Can't possibly have borrowed the source 17056 * from old_ipif. 17057 */ 17058 return; 17059 } 17060 17061 /* 17062 * Is there any work to be done? No work if the address 17063 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 17064 * ipif_select_source() does not borrow addresses from 17065 * NOLOCAL and ANYCAST interfaces). 17066 */ 17067 if ((old_ipif != NULL) && 17068 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 17069 (old_ipif->ipif_ill->ill_wq == NULL) || 17070 (old_ipif->ipif_flags & 17071 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 17072 return; 17073 } 17074 17075 /* 17076 * Perform the same checks as when creating the 17077 * IRE_INTERFACE in ipif_up_done. 17078 */ 17079 if (!(ipif->ipif_flags & IPIF_UP)) 17080 return; 17081 17082 if ((ipif->ipif_flags & IPIF_NOXMIT) || 17083 (ipif->ipif_subnet == INADDR_ANY)) 17084 return; 17085 17086 ipif_ire = ipif_to_ire(ipif); 17087 if (ipif_ire == NULL) 17088 return; 17089 17090 /* 17091 * We know that ipif uses some other source for its 17092 * IRE_INTERFACE. Is it using the source of this 17093 * old_ipif? 17094 */ 17095 if (old_ipif != NULL && 17096 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 17097 ire_refrele(ipif_ire); 17098 return; 17099 } 17100 if (ip_debug > 2) { 17101 /* ip1dbg */ 17102 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 17103 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 17104 } 17105 17106 stq = ipif_ire->ire_stq; 17107 17108 /* 17109 * Can't use our source address. Select a different 17110 * source address for the IRE_INTERFACE. 17111 */ 17112 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 17113 if (nipif == NULL) { 17114 /* Last resort - all ipif's have IPIF_NOLOCAL */ 17115 nipif = ipif; 17116 } else { 17117 need_rele = B_TRUE; 17118 } 17119 17120 ire = ire_create( 17121 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 17122 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 17123 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 17124 NULL, /* no gateway */ 17125 &ipif->ipif_mtu, /* max frag */ 17126 NULL, /* no src nce */ 17127 NULL, /* no recv from queue */ 17128 stq, /* send-to queue */ 17129 ill->ill_net_type, /* IF_[NO]RESOLVER */ 17130 ipif, 17131 0, 17132 0, 17133 0, 17134 0, 17135 &ire_uinfo_null, 17136 NULL, 17137 NULL, 17138 ipst); 17139 17140 if (ire != NULL) { 17141 ire_t *ret_ire; 17142 int error; 17143 17144 /* 17145 * We don't need ipif_ire anymore. We need to delete 17146 * before we add so that ire_add does not detect 17147 * duplicates. 17148 */ 17149 ire_delete(ipif_ire); 17150 ret_ire = ire; 17151 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 17152 ASSERT(error == 0); 17153 ASSERT(ire == ret_ire); 17154 /* Held in ire_add */ 17155 ire_refrele(ret_ire); 17156 } 17157 /* 17158 * Either we are falling through from above or could not 17159 * allocate a replacement. 17160 */ 17161 ire_refrele(ipif_ire); 17162 if (need_rele) 17163 ipif_refrele(nipif); 17164 } 17165 17166 /* 17167 * This old_ipif is going away. 17168 * 17169 * Determine if any other ipif's are using our address as 17170 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17171 * IPIF_DEPRECATED). 17172 * Find the IRE_INTERFACE for such ipifs and recreate them 17173 * to use an different source address following the rules in 17174 * ipif_up_done. 17175 */ 17176 static void 17177 ipif_update_other_ipifs(ipif_t *old_ipif) 17178 { 17179 ipif_t *ipif; 17180 ill_t *ill; 17181 char buf[INET6_ADDRSTRLEN]; 17182 17183 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17184 17185 ill = old_ipif->ipif_ill; 17186 17187 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17188 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17189 17190 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17191 if (ipif == old_ipif) 17192 continue; 17193 ipif_recreate_interface_routes(old_ipif, ipif); 17194 } 17195 } 17196 17197 /* ARGSUSED */ 17198 int 17199 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17200 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17201 { 17202 /* 17203 * ill_phyint_reinit merged the v4 and v6 into a single 17204 * ipsq. We might not have been able to complete the 17205 * operation in ipif_set_values, if we could not become 17206 * exclusive. If so restart it here. 17207 */ 17208 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17209 } 17210 17211 /* 17212 * Can operate on either a module or a driver queue. 17213 * Returns an error if not a module queue. 17214 */ 17215 /* ARGSUSED */ 17216 int 17217 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17218 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17219 { 17220 queue_t *q1 = q; 17221 char *cp; 17222 char interf_name[LIFNAMSIZ]; 17223 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17224 17225 if (q->q_next == NULL) { 17226 ip1dbg(( 17227 "if_unitsel: IF_UNITSEL: no q_next\n")); 17228 return (EINVAL); 17229 } 17230 17231 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17232 return (EALREADY); 17233 17234 do { 17235 q1 = q1->q_next; 17236 } while (q1->q_next); 17237 cp = q1->q_qinfo->qi_minfo->mi_idname; 17238 (void) sprintf(interf_name, "%s%d", cp, ppa); 17239 17240 /* 17241 * Here we are not going to delay the ioack until after 17242 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17243 * original ioctl message before sending the requests. 17244 */ 17245 return (ipif_set_values(q, mp, interf_name, &ppa)); 17246 } 17247 17248 /* ARGSUSED */ 17249 int 17250 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17251 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17252 { 17253 return (ENXIO); 17254 } 17255 17256 /* 17257 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17258 * minimum (but complete) set exist. This is necessary when adding or 17259 * removing an interface to/from an IPMP group, since interfaces in an 17260 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17261 * its test address subnets overlap with IPMP data addresses). It's also 17262 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17263 * interface when the nominated broadcast interface changes. 17264 */ 17265 void 17266 ill_refresh_bcast(ill_t *ill) 17267 { 17268 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17269 ire_t **irep; 17270 ipif_t *ipif; 17271 17272 ASSERT(!ill->ill_isv6); 17273 ASSERT(IAM_WRITER_ILL(ill)); 17274 17275 /* 17276 * Remove any old broadcast IREs. 17277 */ 17278 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17279 ill_broadcast_delete, ill, ill); 17280 17281 /* 17282 * Create new ones for any ipifs that are up and broadcast-capable. 17283 */ 17284 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17285 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17286 (IPIF_UP|IPIF_BROADCAST)) 17287 continue; 17288 17289 irep = ipif_create_bcast_ires(ipif, ire_array); 17290 while (irep-- > ire_array) { 17291 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17292 if (*irep != NULL) 17293 ire_refrele(*irep); 17294 } 17295 } 17296 } 17297 17298 /* 17299 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17300 * `irep'. Returns a pointer to the next free `irep' entry (just like 17301 * ire_check_and_create_bcast()). 17302 */ 17303 static ire_t ** 17304 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17305 { 17306 ipaddr_t addr; 17307 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17308 ipaddr_t subnetmask = ipif->ipif_net_mask; 17309 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17310 17311 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17312 17313 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17314 17315 if (ipif->ipif_lcl_addr == INADDR_ANY || 17316 (ipif->ipif_flags & IPIF_NOLOCAL)) 17317 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17318 17319 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17320 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17321 17322 /* 17323 * For backward compatibility, we create net broadcast IREs based on 17324 * the old "IP address class system", since some old machines only 17325 * respond to these class derived net broadcast. However, we must not 17326 * create these net broadcast IREs if the subnetmask is shorter than 17327 * the IP address class based derived netmask. Otherwise, we may 17328 * create a net broadcast address which is the same as an IP address 17329 * on the subnet -- and then TCP will refuse to talk to that address. 17330 */ 17331 if (netmask < subnetmask) { 17332 addr = netmask & ipif->ipif_subnet; 17333 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17334 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17335 flags); 17336 } 17337 17338 /* 17339 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17340 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17341 * created. Creating these broadcast IREs will only create confusion 17342 * as `addr' will be the same as the IP address. 17343 */ 17344 if (subnetmask != 0xFFFFFFFF) { 17345 addr = ipif->ipif_subnet; 17346 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17347 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17348 irep, flags); 17349 } 17350 17351 return (irep); 17352 } 17353 17354 /* 17355 * Broadcast IRE info structure used in the functions below. Since we 17356 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17357 */ 17358 typedef struct bcast_ireinfo { 17359 uchar_t bi_type; /* BCAST_* value from below */ 17360 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17361 bi_needrep:1, /* do we need to replace it? */ 17362 bi_haverep:1, /* have we replaced it? */ 17363 bi_pad:5; 17364 ipaddr_t bi_addr; /* IRE address */ 17365 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17366 } bcast_ireinfo_t; 17367 17368 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17369 17370 /* 17371 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17372 * return B_TRUE if it should immediately be used to recreate the IRE. 17373 */ 17374 static boolean_t 17375 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17376 { 17377 ipaddr_t addr; 17378 17379 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17380 17381 switch (bireinfop->bi_type) { 17382 case BCAST_NET: 17383 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17384 if (addr != bireinfop->bi_addr) 17385 return (B_FALSE); 17386 break; 17387 case BCAST_SUBNET: 17388 if (ipif->ipif_subnet != bireinfop->bi_addr) 17389 return (B_FALSE); 17390 break; 17391 } 17392 17393 bireinfop->bi_needrep = 1; 17394 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17395 if (bireinfop->bi_backup == NULL) 17396 bireinfop->bi_backup = ipif; 17397 return (B_FALSE); 17398 } 17399 return (B_TRUE); 17400 } 17401 17402 /* 17403 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17404 * them ala ire_check_and_create_bcast(). 17405 */ 17406 static ire_t ** 17407 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17408 { 17409 ipaddr_t mask, addr; 17410 17411 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17412 17413 addr = bireinfop->bi_addr; 17414 irep = ire_create_bcast(ipif, addr, irep); 17415 17416 switch (bireinfop->bi_type) { 17417 case BCAST_NET: 17418 mask = ip_net_mask(ipif->ipif_subnet); 17419 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17420 break; 17421 case BCAST_SUBNET: 17422 mask = ipif->ipif_net_mask; 17423 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17424 break; 17425 } 17426 17427 bireinfop->bi_haverep = 1; 17428 return (irep); 17429 } 17430 17431 /* 17432 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17433 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17434 * that are going away are still needed. If so, have ipif_create_bcast() 17435 * recreate them (except for the deprecated case, as explained below). 17436 */ 17437 static ire_t ** 17438 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17439 ire_t **irep) 17440 { 17441 int i; 17442 ipif_t *ipif; 17443 17444 ASSERT(!ill->ill_isv6); 17445 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17446 /* 17447 * Skip this ipif if it's (a) the one being taken down, (b) 17448 * not in the same zone, or (c) has no valid local address. 17449 */ 17450 if (ipif == test_ipif || 17451 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17452 ipif->ipif_subnet == 0 || 17453 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17454 (IPIF_UP|IPIF_BROADCAST)) 17455 continue; 17456 17457 /* 17458 * For each dying IRE that hasn't yet been replaced, see if 17459 * `ipif' needs it and whether the IRE should be recreated on 17460 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17461 * will return B_FALSE even if `ipif' needs the IRE on the 17462 * hopes that we'll later find a needy non-deprecated ipif. 17463 * However, the ipif is recorded in bi_backup for possible 17464 * subsequent use by ipif_check_bcast_ires(). 17465 */ 17466 for (i = 0; i < BCAST_COUNT; i++) { 17467 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17468 continue; 17469 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17470 continue; 17471 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17472 } 17473 17474 /* 17475 * If we've replaced all of the broadcast IREs that are going 17476 * to be taken down, we know we're done. 17477 */ 17478 for (i = 0; i < BCAST_COUNT; i++) { 17479 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17480 break; 17481 } 17482 if (i == BCAST_COUNT) 17483 break; 17484 } 17485 return (irep); 17486 } 17487 17488 /* 17489 * Check if `test_ipif' (which is going away) is associated with any existing 17490 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17491 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17492 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17493 * 17494 * This is necessary because broadcast IREs are shared. In particular, a 17495 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17496 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17497 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17498 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17499 * same zone, they will share the same set of broadcast IREs. 17500 * 17501 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17502 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17503 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17504 */ 17505 static void 17506 ipif_check_bcast_ires(ipif_t *test_ipif) 17507 { 17508 ill_t *ill = test_ipif->ipif_ill; 17509 ire_t *ire, *ire_array[12]; /* see note above */ 17510 ire_t **irep1, **irep = &ire_array[0]; 17511 uint_t i, willdie; 17512 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17513 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17514 17515 ASSERT(!test_ipif->ipif_isv6); 17516 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17517 17518 /* 17519 * No broadcast IREs for the LOOPBACK interface 17520 * or others such as point to point and IPIF_NOXMIT. 17521 */ 17522 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17523 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17524 return; 17525 17526 bzero(bireinfo, sizeof (bireinfo)); 17527 bireinfo[0].bi_type = BCAST_ALLZEROES; 17528 bireinfo[0].bi_addr = 0; 17529 17530 bireinfo[1].bi_type = BCAST_ALLONES; 17531 bireinfo[1].bi_addr = INADDR_BROADCAST; 17532 17533 bireinfo[2].bi_type = BCAST_NET; 17534 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17535 17536 if (test_ipif->ipif_net_mask != 0) 17537 mask = test_ipif->ipif_net_mask; 17538 bireinfo[3].bi_type = BCAST_SUBNET; 17539 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17540 17541 /* 17542 * Figure out what (if any) broadcast IREs will die as a result of 17543 * `test_ipif' going away. If none will die, we're done. 17544 */ 17545 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17546 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17547 test_ipif, ALL_ZONES, NULL, 17548 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17549 if (ire != NULL) { 17550 willdie++; 17551 bireinfo[i].bi_willdie = 1; 17552 ire_refrele(ire); 17553 } 17554 } 17555 17556 if (willdie == 0) 17557 return; 17558 17559 /* 17560 * Walk through all the ipifs that will be affected by the dying IREs, 17561 * and recreate the IREs as necessary. Note that all interfaces in an 17562 * IPMP illgrp share the same broadcast IREs, and thus the entire 17563 * illgrp must be walked, starting with the IPMP meta-interface (so 17564 * that broadcast IREs end up on it whenever possible). 17565 */ 17566 if (IS_UNDER_IPMP(ill)) 17567 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17568 17569 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17570 17571 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17572 ipmp_illgrp_t *illg = ill->ill_grp; 17573 17574 ill = list_head(&illg->ig_if); 17575 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17576 for (i = 0; i < BCAST_COUNT; i++) { 17577 if (bireinfo[i].bi_willdie && 17578 !bireinfo[i].bi_haverep) 17579 break; 17580 } 17581 if (i == BCAST_COUNT) 17582 break; 17583 17584 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17585 } 17586 } 17587 17588 /* 17589 * Scan through the set of broadcast IREs and see if there are any 17590 * that we need to replace that have not yet been replaced. If so, 17591 * replace them using the appropriate backup ipif. 17592 */ 17593 for (i = 0; i < BCAST_COUNT; i++) { 17594 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17595 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17596 &bireinfo[i], irep); 17597 } 17598 17599 /* 17600 * If we can't create all of them, don't add any of them. (Code in 17601 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17602 * non-loopback copy and loopback copy for a given address.) 17603 */ 17604 for (irep1 = irep; irep1 > ire_array; ) { 17605 irep1--; 17606 if (*irep1 == NULL) { 17607 ip0dbg(("ipif_check_bcast_ires: can't create " 17608 "IRE_BROADCAST, memory allocation failure\n")); 17609 while (irep > ire_array) { 17610 irep--; 17611 if (*irep != NULL) 17612 ire_delete(*irep); 17613 } 17614 return; 17615 } 17616 } 17617 17618 for (irep1 = irep; irep1 > ire_array; ) { 17619 irep1--; 17620 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17621 ire_refrele(*irep1); /* Held in ire_add */ 17622 } 17623 } 17624 17625 /* 17626 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17627 * from lifr_flags and the name from lifr_name. 17628 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17629 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17630 * Returns EINPROGRESS when mp has been consumed by queueing it on 17631 * ill_pending_mp and the ioctl will complete in ip_rput. 17632 * 17633 * Can operate on either a module or a driver queue. 17634 * Returns an error if not a module queue. 17635 */ 17636 /* ARGSUSED */ 17637 int 17638 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17639 ip_ioctl_cmd_t *ipip, void *if_req) 17640 { 17641 ill_t *ill = q->q_ptr; 17642 phyint_t *phyi; 17643 ip_stack_t *ipst; 17644 struct lifreq *lifr = if_req; 17645 17646 ASSERT(ipif != NULL); 17647 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17648 17649 if (q->q_next == NULL) { 17650 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17651 return (EINVAL); 17652 } 17653 17654 /* 17655 * If we are not writer on 'q' then this interface exists already 17656 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17657 * so return EALREADY. 17658 */ 17659 if (ill != ipif->ipif_ill) 17660 return (EALREADY); 17661 17662 if (ill->ill_name[0] != '\0') 17663 return (EALREADY); 17664 17665 /* 17666 * Set all the flags. Allows all kinds of override. Provide some 17667 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17668 * unless there is either multicast/broadcast support in the driver 17669 * or it is a pt-pt link. 17670 */ 17671 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17672 /* Meaningless to IP thus don't allow them to be set. */ 17673 ip1dbg(("ip_setname: EINVAL 1\n")); 17674 return (EINVAL); 17675 } 17676 17677 /* 17678 * If there's another ill already with the requested name, ensure 17679 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17680 * fuse together two unrelated ills, which will cause chaos. 17681 */ 17682 ipst = ill->ill_ipst; 17683 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17684 lifr->lifr_name, NULL); 17685 if (phyi != NULL) { 17686 ill_t *ill_mate = phyi->phyint_illv4; 17687 17688 if (ill_mate == NULL) 17689 ill_mate = phyi->phyint_illv6; 17690 ASSERT(ill_mate != NULL); 17691 17692 if (ill_mate->ill_media->ip_m_mac_type != 17693 ill->ill_media->ip_m_mac_type) { 17694 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17695 "use the same ill name on differing media\n")); 17696 return (EINVAL); 17697 } 17698 } 17699 17700 /* 17701 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17702 * ill_bcast_addr_length info. 17703 */ 17704 if (!ill->ill_needs_attach && 17705 ((lifr->lifr_flags & IFF_MULTICAST) && 17706 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17707 ill->ill_bcast_addr_length == 0)) { 17708 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17709 ip1dbg(("ip_setname: EINVAL 2\n")); 17710 return (EINVAL); 17711 } 17712 if ((lifr->lifr_flags & IFF_BROADCAST) && 17713 ((lifr->lifr_flags & IFF_IPV6) || 17714 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17715 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17716 ip1dbg(("ip_setname: EINVAL 3\n")); 17717 return (EINVAL); 17718 } 17719 if (lifr->lifr_flags & IFF_UP) { 17720 /* Can only be set with SIOCSLIFFLAGS */ 17721 ip1dbg(("ip_setname: EINVAL 4\n")); 17722 return (EINVAL); 17723 } 17724 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17725 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17726 ip1dbg(("ip_setname: EINVAL 5\n")); 17727 return (EINVAL); 17728 } 17729 /* 17730 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17731 */ 17732 if ((lifr->lifr_flags & IFF_XRESOLV) && 17733 !(lifr->lifr_flags & IFF_IPV6) && 17734 !(ipif->ipif_isv6)) { 17735 ip1dbg(("ip_setname: EINVAL 6\n")); 17736 return (EINVAL); 17737 } 17738 17739 /* 17740 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17741 * we have all the flags here. So, we assign rather than we OR. 17742 * We can't OR the flags here because we don't want to set 17743 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17744 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17745 * on lifr_flags value here. 17746 */ 17747 /* 17748 * This ill has not been inserted into the global list. 17749 * So we are still single threaded and don't need any lock 17750 */ 17751 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17752 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17753 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17754 17755 /* We started off as V4. */ 17756 if (ill->ill_flags & ILLF_IPV6) { 17757 ill->ill_phyint->phyint_illv6 = ill; 17758 ill->ill_phyint->phyint_illv4 = NULL; 17759 } 17760 17761 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17762 } 17763 17764 /* ARGSUSED */ 17765 int 17766 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17767 ip_ioctl_cmd_t *ipip, void *if_req) 17768 { 17769 /* 17770 * ill_phyint_reinit merged the v4 and v6 into a single 17771 * ipsq. We might not have been able to complete the 17772 * slifname in ipif_set_values, if we could not become 17773 * exclusive. If so restart it here 17774 */ 17775 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17776 } 17777 17778 /* 17779 * Return a pointer to the ipif which matches the index, IP version type and 17780 * zoneid. 17781 */ 17782 ipif_t * 17783 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17784 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17785 { 17786 ill_t *ill; 17787 ipif_t *ipif = NULL; 17788 17789 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17790 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17791 17792 if (err != NULL) 17793 *err = 0; 17794 17795 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17796 if (ill != NULL) { 17797 mutex_enter(&ill->ill_lock); 17798 for (ipif = ill->ill_ipif; ipif != NULL; 17799 ipif = ipif->ipif_next) { 17800 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17801 zoneid == ipif->ipif_zoneid || 17802 ipif->ipif_zoneid == ALL_ZONES)) { 17803 ipif_refhold_locked(ipif); 17804 break; 17805 } 17806 } 17807 mutex_exit(&ill->ill_lock); 17808 ill_refrele(ill); 17809 if (ipif == NULL && err != NULL) 17810 *err = ENXIO; 17811 } 17812 return (ipif); 17813 } 17814 17815 /* 17816 * We first need to ensure that the new index is unique, and 17817 * then carry the change across both v4 and v6 ill representation 17818 * of the physical interface. 17819 */ 17820 /* ARGSUSED */ 17821 int 17822 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17823 ip_ioctl_cmd_t *ipip, void *ifreq) 17824 { 17825 ill_t *ill; 17826 phyint_t *phyi; 17827 struct ifreq *ifr = (struct ifreq *)ifreq; 17828 struct lifreq *lifr = (struct lifreq *)ifreq; 17829 uint_t old_index, index; 17830 ill_t *ill_v4; 17831 ill_t *ill_v6; 17832 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17833 17834 if (ipip->ipi_cmd_type == IF_CMD) 17835 index = ifr->ifr_index; 17836 else 17837 index = lifr->lifr_index; 17838 17839 /* 17840 * Only allow on physical interface. Also, index zero is illegal. 17841 */ 17842 ill = ipif->ipif_ill; 17843 phyi = ill->ill_phyint; 17844 if (ipif->ipif_id != 0 || index == 0) { 17845 return (EINVAL); 17846 } 17847 17848 /* If the index is not changing, no work to do */ 17849 if (phyi->phyint_ifindex == index) 17850 return (0); 17851 17852 /* 17853 * Use ill_lookup_on_ifindex to determine if the 17854 * new index is unused and if so allow the change. 17855 */ 17856 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 17857 ipst); 17858 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 17859 ipst); 17860 if (ill_v6 != NULL || ill_v4 != NULL) { 17861 if (ill_v4 != NULL) 17862 ill_refrele(ill_v4); 17863 if (ill_v6 != NULL) 17864 ill_refrele(ill_v6); 17865 return (EBUSY); 17866 } 17867 17868 /* The new index is unused. Set it in the phyint. */ 17869 old_index = phyi->phyint_ifindex; 17870 phyi->phyint_ifindex = index; 17871 17872 /* Update SCTP's ILL list */ 17873 sctp_ill_reindex(ill, old_index); 17874 17875 /* Send the routing sockets message */ 17876 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17877 if (ILL_OTHER(ill)) 17878 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17879 17880 return (0); 17881 } 17882 17883 /* ARGSUSED */ 17884 int 17885 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17886 ip_ioctl_cmd_t *ipip, void *ifreq) 17887 { 17888 struct ifreq *ifr = (struct ifreq *)ifreq; 17889 struct lifreq *lifr = (struct lifreq *)ifreq; 17890 17891 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17892 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17893 /* Get the interface index */ 17894 if (ipip->ipi_cmd_type == IF_CMD) { 17895 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17896 } else { 17897 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17898 } 17899 return (0); 17900 } 17901 17902 /* ARGSUSED */ 17903 int 17904 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17905 ip_ioctl_cmd_t *ipip, void *ifreq) 17906 { 17907 struct lifreq *lifr = (struct lifreq *)ifreq; 17908 17909 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17910 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17911 /* Get the interface zone */ 17912 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17913 lifr->lifr_zoneid = ipif->ipif_zoneid; 17914 return (0); 17915 } 17916 17917 /* 17918 * Set the zoneid of an interface. 17919 */ 17920 /* ARGSUSED */ 17921 int 17922 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17923 ip_ioctl_cmd_t *ipip, void *ifreq) 17924 { 17925 struct lifreq *lifr = (struct lifreq *)ifreq; 17926 int err = 0; 17927 boolean_t need_up = B_FALSE; 17928 zone_t *zptr; 17929 zone_status_t status; 17930 zoneid_t zoneid; 17931 17932 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17933 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17934 if (!is_system_labeled()) 17935 return (ENOTSUP); 17936 zoneid = GLOBAL_ZONEID; 17937 } 17938 17939 /* cannot assign instance zero to a non-global zone */ 17940 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17941 return (ENOTSUP); 17942 17943 /* 17944 * Cannot assign to a zone that doesn't exist or is shutting down. In 17945 * the event of a race with the zone shutdown processing, since IP 17946 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17947 * interface will be cleaned up even if the zone is shut down 17948 * immediately after the status check. If the interface can't be brought 17949 * down right away, and the zone is shut down before the restart 17950 * function is called, we resolve the possible races by rechecking the 17951 * zone status in the restart function. 17952 */ 17953 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17954 return (EINVAL); 17955 status = zone_status_get(zptr); 17956 zone_rele(zptr); 17957 17958 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17959 return (EINVAL); 17960 17961 if (ipif->ipif_flags & IPIF_UP) { 17962 /* 17963 * If the interface is already marked up, 17964 * we call ipif_down which will take care 17965 * of ditching any IREs that have been set 17966 * up based on the old interface address. 17967 */ 17968 err = ipif_logical_down(ipif, q, mp); 17969 if (err == EINPROGRESS) 17970 return (err); 17971 ipif_down_tail(ipif); 17972 need_up = B_TRUE; 17973 } 17974 17975 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17976 return (err); 17977 } 17978 17979 static int 17980 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17981 queue_t *q, mblk_t *mp, boolean_t need_up) 17982 { 17983 int err = 0; 17984 ip_stack_t *ipst; 17985 17986 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17987 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17988 17989 if (CONN_Q(q)) 17990 ipst = CONNQ_TO_IPST(q); 17991 else 17992 ipst = ILLQ_TO_IPST(q); 17993 17994 /* 17995 * For exclusive stacks we don't allow a different zoneid than 17996 * global. 17997 */ 17998 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17999 zoneid != GLOBAL_ZONEID) 18000 return (EINVAL); 18001 18002 /* Set the new zone id. */ 18003 ipif->ipif_zoneid = zoneid; 18004 18005 /* Update sctp list */ 18006 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 18007 18008 if (need_up) { 18009 /* 18010 * Now bring the interface back up. If this 18011 * is the only IPIF for the ILL, ipif_up 18012 * will have to re-bind to the device, so 18013 * we may get back EINPROGRESS, in which 18014 * case, this IOCTL will get completed in 18015 * ip_rput_dlpi when we see the DL_BIND_ACK. 18016 */ 18017 err = ipif_up(ipif, q, mp); 18018 } 18019 return (err); 18020 } 18021 18022 /* ARGSUSED */ 18023 int 18024 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18025 ip_ioctl_cmd_t *ipip, void *if_req) 18026 { 18027 struct lifreq *lifr = (struct lifreq *)if_req; 18028 zoneid_t zoneid; 18029 zone_t *zptr; 18030 zone_status_t status; 18031 18032 ASSERT(ipif->ipif_id != 0); 18033 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 18034 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 18035 zoneid = GLOBAL_ZONEID; 18036 18037 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 18038 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18039 18040 /* 18041 * We recheck the zone status to resolve the following race condition: 18042 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 18043 * 2) hme0:1 is up and can't be brought down right away; 18044 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 18045 * 3) zone "myzone" is halted; the zone status switches to 18046 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 18047 * the interfaces to remove - hme0:1 is not returned because it's not 18048 * yet in "myzone", so it won't be removed; 18049 * 4) the restart function for SIOCSLIFZONE is called; without the 18050 * status check here, we would have hme0:1 in "myzone" after it's been 18051 * destroyed. 18052 * Note that if the status check fails, we need to bring the interface 18053 * back to its state prior to ip_sioctl_slifzone(), hence the call to 18054 * ipif_up_done[_v6](). 18055 */ 18056 status = ZONE_IS_UNINITIALIZED; 18057 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 18058 status = zone_status_get(zptr); 18059 zone_rele(zptr); 18060 } 18061 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 18062 if (ipif->ipif_isv6) { 18063 (void) ipif_up_done_v6(ipif); 18064 } else { 18065 (void) ipif_up_done(ipif); 18066 } 18067 return (EINVAL); 18068 } 18069 18070 ipif_down_tail(ipif); 18071 18072 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 18073 B_TRUE)); 18074 } 18075 18076 /* 18077 * Return the number of addresses on `ill' with one or more of the values 18078 * in `set' set and all of the values in `clear' clear. 18079 */ 18080 static uint_t 18081 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 18082 { 18083 ipif_t *ipif; 18084 uint_t cnt = 0; 18085 18086 ASSERT(IAM_WRITER_ILL(ill)); 18087 18088 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 18089 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 18090 cnt++; 18091 18092 return (cnt); 18093 } 18094 18095 /* 18096 * Return the number of migratable addresses on `ill' that are under 18097 * application control. 18098 */ 18099 uint_t 18100 ill_appaddr_cnt(const ill_t *ill) 18101 { 18102 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 18103 IPIF_NOFAILOVER)); 18104 } 18105 18106 /* 18107 * Return the number of point-to-point addresses on `ill'. 18108 */ 18109 uint_t 18110 ill_ptpaddr_cnt(const ill_t *ill) 18111 { 18112 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 18113 } 18114 18115 /* ARGSUSED */ 18116 int 18117 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18118 ip_ioctl_cmd_t *ipip, void *ifreq) 18119 { 18120 struct lifreq *lifr = ifreq; 18121 18122 ASSERT(q->q_next == NULL); 18123 ASSERT(CONN_Q(q)); 18124 18125 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 18126 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18127 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 18128 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 18129 18130 return (0); 18131 } 18132 18133 /* Find the previous ILL in this usesrc group */ 18134 static ill_t * 18135 ill_prev_usesrc(ill_t *uill) 18136 { 18137 ill_t *ill; 18138 18139 for (ill = uill->ill_usesrc_grp_next; 18140 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 18141 ill = ill->ill_usesrc_grp_next) 18142 /* do nothing */; 18143 return (ill); 18144 } 18145 18146 /* 18147 * Release all members of the usesrc group. This routine is called 18148 * from ill_delete when the interface being unplumbed is the 18149 * group head. 18150 */ 18151 static void 18152 ill_disband_usesrc_group(ill_t *uill) 18153 { 18154 ill_t *next_ill, *tmp_ill; 18155 ip_stack_t *ipst = uill->ill_ipst; 18156 18157 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18158 next_ill = uill->ill_usesrc_grp_next; 18159 18160 do { 18161 ASSERT(next_ill != NULL); 18162 tmp_ill = next_ill->ill_usesrc_grp_next; 18163 ASSERT(tmp_ill != NULL); 18164 next_ill->ill_usesrc_grp_next = NULL; 18165 next_ill->ill_usesrc_ifindex = 0; 18166 next_ill = tmp_ill; 18167 } while (next_ill->ill_usesrc_ifindex != 0); 18168 uill->ill_usesrc_grp_next = NULL; 18169 } 18170 18171 /* 18172 * Remove the client usesrc ILL from the list and relink to a new list 18173 */ 18174 int 18175 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18176 { 18177 ill_t *ill, *tmp_ill; 18178 ip_stack_t *ipst = ucill->ill_ipst; 18179 18180 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18181 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18182 18183 /* 18184 * Check if the usesrc client ILL passed in is not already 18185 * in use as a usesrc ILL i.e one whose source address is 18186 * in use OR a usesrc ILL is not already in use as a usesrc 18187 * client ILL 18188 */ 18189 if ((ucill->ill_usesrc_ifindex == 0) || 18190 (uill->ill_usesrc_ifindex != 0)) { 18191 return (-1); 18192 } 18193 18194 ill = ill_prev_usesrc(ucill); 18195 ASSERT(ill->ill_usesrc_grp_next != NULL); 18196 18197 /* Remove from the current list */ 18198 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18199 /* Only two elements in the list */ 18200 ASSERT(ill->ill_usesrc_ifindex == 0); 18201 ill->ill_usesrc_grp_next = NULL; 18202 } else { 18203 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18204 } 18205 18206 if (ifindex == 0) { 18207 ucill->ill_usesrc_ifindex = 0; 18208 ucill->ill_usesrc_grp_next = NULL; 18209 return (0); 18210 } 18211 18212 ucill->ill_usesrc_ifindex = ifindex; 18213 tmp_ill = uill->ill_usesrc_grp_next; 18214 uill->ill_usesrc_grp_next = ucill; 18215 ucill->ill_usesrc_grp_next = 18216 (tmp_ill != NULL) ? tmp_ill : uill; 18217 return (0); 18218 } 18219 18220 /* 18221 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18222 * ip.c for locking details. 18223 */ 18224 /* ARGSUSED */ 18225 int 18226 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18227 ip_ioctl_cmd_t *ipip, void *ifreq) 18228 { 18229 struct lifreq *lifr = (struct lifreq *)ifreq; 18230 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18231 ill_flag_changed = B_FALSE; 18232 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18233 int err = 0, ret; 18234 uint_t ifindex; 18235 ipsq_t *ipsq = NULL; 18236 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18237 18238 ASSERT(IAM_WRITER_IPIF(ipif)); 18239 ASSERT(q->q_next == NULL); 18240 ASSERT(CONN_Q(q)); 18241 18242 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18243 18244 ifindex = lifr->lifr_index; 18245 if (ifindex == 0) { 18246 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18247 /* non usesrc group interface, nothing to reset */ 18248 return (0); 18249 } 18250 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18251 /* valid reset request */ 18252 reset_flg = B_TRUE; 18253 } 18254 18255 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18256 ip_process_ioctl, &err, ipst); 18257 if (usesrc_ill == NULL) { 18258 return (err); 18259 } 18260 18261 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18262 NEW_OP, B_TRUE); 18263 if (ipsq == NULL) { 18264 err = EINPROGRESS; 18265 /* Operation enqueued on the ipsq of the usesrc ILL */ 18266 goto done; 18267 } 18268 18269 /* USESRC isn't currently supported with IPMP */ 18270 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18271 err = ENOTSUP; 18272 goto done; 18273 } 18274 18275 /* 18276 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18277 * used by IPMP underlying interfaces, but someone might think it's 18278 * more general and try to use it independently with VNI.) 18279 */ 18280 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18281 err = ENOTSUP; 18282 goto done; 18283 } 18284 18285 /* 18286 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18287 * already a client then return EINVAL 18288 */ 18289 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18290 err = EINVAL; 18291 goto done; 18292 } 18293 18294 /* 18295 * If the ill_usesrc_ifindex field is already set to what it needs to 18296 * be then this is a duplicate operation. 18297 */ 18298 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18299 err = 0; 18300 goto done; 18301 } 18302 18303 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18304 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18305 usesrc_ill->ill_isv6)); 18306 18307 /* 18308 * The next step ensures that no new ires will be created referencing 18309 * the client ill, until the ILL_CHANGING flag is cleared. Then 18310 * we go through an ire walk deleting all ire caches that reference 18311 * the client ill. New ires referencing the client ill that are added 18312 * to the ire table before the ILL_CHANGING flag is set, will be 18313 * cleaned up by the ire walk below. Attempt to add new ires referencing 18314 * the client ill while the ILL_CHANGING flag is set will be failed 18315 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18316 * checks (under the ill_g_usesrc_lock) that the ire being added 18317 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18318 * belong to the same usesrc group. 18319 */ 18320 mutex_enter(&usesrc_cli_ill->ill_lock); 18321 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18322 mutex_exit(&usesrc_cli_ill->ill_lock); 18323 ill_flag_changed = B_TRUE; 18324 18325 if (ipif->ipif_isv6) 18326 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18327 ALL_ZONES, ipst); 18328 else 18329 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18330 ALL_ZONES, ipst); 18331 18332 /* 18333 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18334 * and the ill_usesrc_ifindex fields 18335 */ 18336 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18337 18338 if (reset_flg) { 18339 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18340 if (ret != 0) { 18341 err = EINVAL; 18342 } 18343 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18344 goto done; 18345 } 18346 18347 /* 18348 * Four possibilities to consider: 18349 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18350 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18351 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18352 * 4. Both are part of their respective usesrc groups 18353 */ 18354 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18355 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18356 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18357 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18358 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18359 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18360 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18361 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18362 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18363 /* Insert at head of list */ 18364 usesrc_cli_ill->ill_usesrc_grp_next = 18365 usesrc_ill->ill_usesrc_grp_next; 18366 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18367 } else { 18368 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18369 ifindex); 18370 if (ret != 0) 18371 err = EINVAL; 18372 } 18373 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18374 18375 done: 18376 if (ill_flag_changed) { 18377 mutex_enter(&usesrc_cli_ill->ill_lock); 18378 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18379 mutex_exit(&usesrc_cli_ill->ill_lock); 18380 } 18381 if (ipsq != NULL) 18382 ipsq_exit(ipsq); 18383 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18384 ill_refrele(usesrc_ill); 18385 return (err); 18386 } 18387 18388 /* 18389 * comparison function used by avl. 18390 */ 18391 static int 18392 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18393 { 18394 18395 uint_t index; 18396 18397 ASSERT(phyip != NULL && index_ptr != NULL); 18398 18399 index = *((uint_t *)index_ptr); 18400 /* 18401 * let the phyint with the lowest index be on top. 18402 */ 18403 if (((phyint_t *)phyip)->phyint_ifindex < index) 18404 return (1); 18405 if (((phyint_t *)phyip)->phyint_ifindex > index) 18406 return (-1); 18407 return (0); 18408 } 18409 18410 /* 18411 * comparison function used by avl. 18412 */ 18413 static int 18414 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18415 { 18416 ill_t *ill; 18417 int res = 0; 18418 18419 ASSERT(phyip != NULL && name_ptr != NULL); 18420 18421 if (((phyint_t *)phyip)->phyint_illv4) 18422 ill = ((phyint_t *)phyip)->phyint_illv4; 18423 else 18424 ill = ((phyint_t *)phyip)->phyint_illv6; 18425 ASSERT(ill != NULL); 18426 18427 res = strcmp(ill->ill_name, (char *)name_ptr); 18428 if (res > 0) 18429 return (1); 18430 else if (res < 0) 18431 return (-1); 18432 return (0); 18433 } 18434 18435 /* 18436 * This function is called on the unplumb path via ill_glist_delete() when 18437 * there are no ills left on the phyint and thus the phyint can be freed. 18438 */ 18439 static void 18440 phyint_free(phyint_t *phyi) 18441 { 18442 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18443 18444 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18445 18446 /* 18447 * If this phyint was an IPMP meta-interface, blow away the group. 18448 * This is safe to do because all of the illgrps have already been 18449 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18450 * If we're cleaning up as a result of failed initialization, 18451 * phyint_grp may be NULL. 18452 */ 18453 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18454 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18455 ipmp_grp_destroy(phyi->phyint_grp); 18456 phyi->phyint_grp = NULL; 18457 rw_exit(&ipst->ips_ipmp_lock); 18458 } 18459 18460 /* 18461 * If this interface was under IPMP, take it out of the group. 18462 */ 18463 if (phyi->phyint_grp != NULL) 18464 ipmp_phyint_leave_grp(phyi); 18465 18466 /* 18467 * Delete the phyint and disassociate its ipsq. The ipsq itself 18468 * will be freed in ipsq_exit(). 18469 */ 18470 phyi->phyint_ipsq->ipsq_phyint = NULL; 18471 phyi->phyint_name[0] = '\0'; 18472 18473 mi_free(phyi); 18474 } 18475 18476 /* 18477 * Attach the ill to the phyint structure which can be shared by both 18478 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18479 * function is called from ipif_set_values and ill_lookup_on_name (for 18480 * loopback) where we know the name of the ill. We lookup the ill and if 18481 * there is one present already with the name use that phyint. Otherwise 18482 * reuse the one allocated by ill_init. 18483 */ 18484 static void 18485 ill_phyint_reinit(ill_t *ill) 18486 { 18487 boolean_t isv6 = ill->ill_isv6; 18488 phyint_t *phyi_old; 18489 phyint_t *phyi; 18490 avl_index_t where = 0; 18491 ill_t *ill_other = NULL; 18492 ip_stack_t *ipst = ill->ill_ipst; 18493 18494 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18495 18496 phyi_old = ill->ill_phyint; 18497 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18498 phyi_old->phyint_illv6 == NULL)); 18499 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18500 phyi_old->phyint_illv4 == NULL)); 18501 ASSERT(phyi_old->phyint_ifindex == 0); 18502 18503 /* 18504 * Now that our ill has a name, set it in the phyint. 18505 */ 18506 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18507 18508 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18509 ill->ill_name, &where); 18510 18511 /* 18512 * 1. We grabbed the ill_g_lock before inserting this ill into 18513 * the global list of ills. So no other thread could have located 18514 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18515 * 2. Now locate the other protocol instance of this ill. 18516 * 3. Now grab both ill locks in the right order, and the phyint lock of 18517 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18518 * of neither ill can change. 18519 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18520 * other ill. 18521 * 5. Release all locks. 18522 */ 18523 18524 /* 18525 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18526 * we are initializing IPv4. 18527 */ 18528 if (phyi != NULL) { 18529 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18530 ASSERT(ill_other->ill_phyint != NULL); 18531 ASSERT((isv6 && !ill_other->ill_isv6) || 18532 (!isv6 && ill_other->ill_isv6)); 18533 GRAB_ILL_LOCKS(ill, ill_other); 18534 /* 18535 * We are potentially throwing away phyint_flags which 18536 * could be different from the one that we obtain from 18537 * ill_other->ill_phyint. But it is okay as we are assuming 18538 * that the state maintained within IP is correct. 18539 */ 18540 mutex_enter(&phyi->phyint_lock); 18541 if (isv6) { 18542 ASSERT(phyi->phyint_illv6 == NULL); 18543 phyi->phyint_illv6 = ill; 18544 } else { 18545 ASSERT(phyi->phyint_illv4 == NULL); 18546 phyi->phyint_illv4 = ill; 18547 } 18548 18549 /* 18550 * Delete the old phyint and make its ipsq eligible 18551 * to be freed in ipsq_exit(). 18552 */ 18553 phyi_old->phyint_illv4 = NULL; 18554 phyi_old->phyint_illv6 = NULL; 18555 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18556 phyi_old->phyint_name[0] = '\0'; 18557 mi_free(phyi_old); 18558 } else { 18559 mutex_enter(&ill->ill_lock); 18560 /* 18561 * We don't need to acquire any lock, since 18562 * the ill is not yet visible globally and we 18563 * have not yet released the ill_g_lock. 18564 */ 18565 phyi = phyi_old; 18566 mutex_enter(&phyi->phyint_lock); 18567 /* XXX We need a recovery strategy here. */ 18568 if (!phyint_assign_ifindex(phyi, ipst)) 18569 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18570 18571 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18572 (void *)phyi, where); 18573 18574 (void) avl_find(&ipst->ips_phyint_g_list-> 18575 phyint_list_avl_by_index, 18576 &phyi->phyint_ifindex, &where); 18577 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18578 (void *)phyi, where); 18579 } 18580 18581 /* 18582 * Reassigning ill_phyint automatically reassigns the ipsq also. 18583 * pending mp is not affected because that is per ill basis. 18584 */ 18585 ill->ill_phyint = phyi; 18586 18587 /* 18588 * Now that the phyint's ifindex has been assigned, complete the 18589 * remaining 18590 */ 18591 18592 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18593 if (ill->ill_isv6) { 18594 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18595 ill->ill_phyint->phyint_ifindex; 18596 ill->ill_mcast_type = ipst->ips_mld_max_version; 18597 } else { 18598 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18599 } 18600 18601 /* 18602 * Generate an event within the hooks framework to indicate that 18603 * a new interface has just been added to IP. For this event to 18604 * be generated, the network interface must, at least, have an 18605 * ifindex assigned to it. 18606 * 18607 * This needs to be run inside the ill_g_lock perimeter to ensure 18608 * that the ordering of delivered events to listeners matches the 18609 * order of them in the kernel. 18610 * 18611 * This function could be called from ill_lookup_on_name. In that case 18612 * the interface is loopback "lo", which will not generate a NIC event. 18613 */ 18614 if (ill->ill_name_length <= 2 || 18615 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 18616 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18617 ill->ill_name_length); 18618 } 18619 RELEASE_ILL_LOCKS(ill, ill_other); 18620 mutex_exit(&phyi->phyint_lock); 18621 } 18622 18623 /* 18624 * Notify any downstream modules of the name of this interface. 18625 * An M_IOCTL is used even though we don't expect a successful reply. 18626 * Any reply message from the driver (presumably an M_IOCNAK) will 18627 * eventually get discarded somewhere upstream. The message format is 18628 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18629 * to IP. 18630 */ 18631 static void 18632 ip_ifname_notify(ill_t *ill, queue_t *q) 18633 { 18634 mblk_t *mp1, *mp2; 18635 struct iocblk *iocp; 18636 struct lifreq *lifr; 18637 18638 mp1 = mkiocb(SIOCSLIFNAME); 18639 if (mp1 == NULL) 18640 return; 18641 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18642 if (mp2 == NULL) { 18643 freeb(mp1); 18644 return; 18645 } 18646 18647 mp1->b_cont = mp2; 18648 iocp = (struct iocblk *)mp1->b_rptr; 18649 iocp->ioc_count = sizeof (struct lifreq); 18650 18651 lifr = (struct lifreq *)mp2->b_rptr; 18652 mp2->b_wptr += sizeof (struct lifreq); 18653 bzero(lifr, sizeof (struct lifreq)); 18654 18655 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18656 lifr->lifr_ppa = ill->ill_ppa; 18657 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18658 18659 putnext(q, mp1); 18660 } 18661 18662 static int 18663 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18664 { 18665 int err; 18666 ip_stack_t *ipst = ill->ill_ipst; 18667 phyint_t *phyi = ill->ill_phyint; 18668 18669 /* Set the obsolete NDD per-interface forwarding name. */ 18670 err = ill_set_ndd_name(ill); 18671 if (err != 0) { 18672 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18673 err); 18674 } 18675 18676 /* 18677 * Now that ill_name is set, the configuration for the IPMP 18678 * meta-interface can be performed. 18679 */ 18680 if (IS_IPMP(ill)) { 18681 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18682 /* 18683 * If phyi->phyint_grp is NULL, then this is the first IPMP 18684 * meta-interface and we need to create the IPMP group. 18685 */ 18686 if (phyi->phyint_grp == NULL) { 18687 /* 18688 * If someone has renamed another IPMP group to have 18689 * the same name as our interface, bail. 18690 */ 18691 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18692 rw_exit(&ipst->ips_ipmp_lock); 18693 return (EEXIST); 18694 } 18695 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18696 if (phyi->phyint_grp == NULL) { 18697 rw_exit(&ipst->ips_ipmp_lock); 18698 return (ENOMEM); 18699 } 18700 } 18701 rw_exit(&ipst->ips_ipmp_lock); 18702 } 18703 18704 /* Tell downstream modules where they are. */ 18705 ip_ifname_notify(ill, q); 18706 18707 /* 18708 * ill_dl_phys returns EINPROGRESS in the usual case. 18709 * Error cases are ENOMEM ... 18710 */ 18711 err = ill_dl_phys(ill, ipif, mp, q); 18712 18713 /* 18714 * If there is no IRE expiration timer running, get one started. 18715 * igmp and mld timers will be triggered by the first multicast 18716 */ 18717 if (ipst->ips_ip_ire_expire_id == 0) { 18718 /* 18719 * acquire the lock and check again. 18720 */ 18721 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18722 if (ipst->ips_ip_ire_expire_id == 0) { 18723 ipst->ips_ip_ire_expire_id = timeout( 18724 ip_trash_timer_expire, ipst, 18725 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18726 } 18727 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18728 } 18729 18730 if (ill->ill_isv6) { 18731 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18732 if (ipst->ips_mld_slowtimeout_id == 0) { 18733 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18734 (void *)ipst, 18735 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18736 } 18737 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18738 } else { 18739 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18740 if (ipst->ips_igmp_slowtimeout_id == 0) { 18741 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18742 (void *)ipst, 18743 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18744 } 18745 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18746 } 18747 18748 return (err); 18749 } 18750 18751 /* 18752 * Common routine for ppa and ifname setting. Should be called exclusive. 18753 * 18754 * Returns EINPROGRESS when mp has been consumed by queueing it on 18755 * ill_pending_mp and the ioctl will complete in ip_rput. 18756 * 18757 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18758 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18759 * For SLIFNAME, we pass these values back to the userland. 18760 */ 18761 static int 18762 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18763 { 18764 ill_t *ill; 18765 ipif_t *ipif; 18766 ipsq_t *ipsq; 18767 char *ppa_ptr; 18768 char *old_ptr; 18769 char old_char; 18770 int error; 18771 ip_stack_t *ipst; 18772 18773 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18774 ASSERT(q->q_next != NULL); 18775 ASSERT(interf_name != NULL); 18776 18777 ill = (ill_t *)q->q_ptr; 18778 ipst = ill->ill_ipst; 18779 18780 ASSERT(ill->ill_ipst != NULL); 18781 ASSERT(ill->ill_name[0] == '\0'); 18782 ASSERT(IAM_WRITER_ILL(ill)); 18783 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18784 ASSERT(ill->ill_ppa == UINT_MAX); 18785 18786 /* The ppa is sent down by ifconfig or is chosen */ 18787 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18788 return (EINVAL); 18789 } 18790 18791 /* 18792 * make sure ppa passed in is same as ppa in the name. 18793 * This check is not made when ppa == UINT_MAX in that case ppa 18794 * in the name could be anything. System will choose a ppa and 18795 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18796 */ 18797 if (*new_ppa_ptr != UINT_MAX) { 18798 /* stoi changes the pointer */ 18799 old_ptr = ppa_ptr; 18800 /* 18801 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18802 * (they don't have an externally visible ppa). We assign one 18803 * here so that we can manage the interface. Note that in 18804 * the past this value was always 0 for DLPI 1 drivers. 18805 */ 18806 if (*new_ppa_ptr == 0) 18807 *new_ppa_ptr = stoi(&old_ptr); 18808 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18809 return (EINVAL); 18810 } 18811 /* 18812 * terminate string before ppa 18813 * save char at that location. 18814 */ 18815 old_char = ppa_ptr[0]; 18816 ppa_ptr[0] = '\0'; 18817 18818 ill->ill_ppa = *new_ppa_ptr; 18819 /* 18820 * Finish as much work now as possible before calling ill_glist_insert 18821 * which makes the ill globally visible and also merges it with the 18822 * other protocol instance of this phyint. The remaining work is 18823 * done after entering the ipsq which may happen sometime later. 18824 * ill_set_ndd_name occurs after the ill has been made globally visible. 18825 */ 18826 ipif = ill->ill_ipif; 18827 18828 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18829 ipif_assign_seqid(ipif); 18830 18831 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18832 ill->ill_flags |= ILLF_IPV4; 18833 18834 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18835 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18836 18837 if (ill->ill_flags & ILLF_IPV6) { 18838 18839 ill->ill_isv6 = B_TRUE; 18840 if (ill->ill_rq != NULL) { 18841 ill->ill_rq->q_qinfo = &iprinitv6; 18842 ill->ill_wq->q_qinfo = &ipwinitv6; 18843 } 18844 18845 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18846 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18847 ipif->ipif_v6src_addr = ipv6_all_zeros; 18848 ipif->ipif_v6subnet = ipv6_all_zeros; 18849 ipif->ipif_v6net_mask = ipv6_all_zeros; 18850 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18851 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18852 /* 18853 * point-to-point or Non-mulicast capable 18854 * interfaces won't do NUD unless explicitly 18855 * configured to do so. 18856 */ 18857 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18858 !(ill->ill_flags & ILLF_MULTICAST)) { 18859 ill->ill_flags |= ILLF_NONUD; 18860 } 18861 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18862 if (ill->ill_flags & ILLF_NOARP) { 18863 /* 18864 * Note: xresolv interfaces will eventually need 18865 * NOARP set here as well, but that will require 18866 * those external resolvers to have some 18867 * knowledge of that flag and act appropriately. 18868 * Not to be changed at present. 18869 */ 18870 ill->ill_flags &= ~ILLF_NOARP; 18871 } 18872 /* 18873 * Set the ILLF_ROUTER flag according to the global 18874 * IPv6 forwarding policy. 18875 */ 18876 if (ipst->ips_ipv6_forward != 0) 18877 ill->ill_flags |= ILLF_ROUTER; 18878 } else if (ill->ill_flags & ILLF_IPV4) { 18879 ill->ill_isv6 = B_FALSE; 18880 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18881 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18882 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18883 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18884 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18885 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18886 /* 18887 * Set the ILLF_ROUTER flag according to the global 18888 * IPv4 forwarding policy. 18889 */ 18890 if (ipst->ips_ip_g_forward != 0) 18891 ill->ill_flags |= ILLF_ROUTER; 18892 } 18893 18894 ASSERT(ill->ill_phyint != NULL); 18895 18896 /* 18897 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18898 * be completed in ill_glist_insert -> ill_phyint_reinit 18899 */ 18900 if (!ill_allocate_mibs(ill)) 18901 return (ENOMEM); 18902 18903 /* 18904 * Pick a default sap until we get the DL_INFO_ACK back from 18905 * the driver. 18906 */ 18907 if (ill->ill_sap == 0) { 18908 if (ill->ill_isv6) 18909 ill->ill_sap = IP6_DL_SAP; 18910 else 18911 ill->ill_sap = IP_DL_SAP; 18912 } 18913 18914 ill->ill_ifname_pending = 1; 18915 ill->ill_ifname_pending_err = 0; 18916 18917 /* 18918 * When the first ipif comes up in ipif_up_done(), multicast groups 18919 * that were joined while this ill was not bound to the DLPI link need 18920 * to be recovered by ill_recover_multicast(). 18921 */ 18922 ill->ill_need_recover_multicast = 1; 18923 18924 ill_refhold(ill); 18925 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18926 if ((error = ill_glist_insert(ill, interf_name, 18927 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18928 ill->ill_ppa = UINT_MAX; 18929 ill->ill_name[0] = '\0'; 18930 /* 18931 * undo null termination done above. 18932 */ 18933 ppa_ptr[0] = old_char; 18934 rw_exit(&ipst->ips_ill_g_lock); 18935 ill_refrele(ill); 18936 return (error); 18937 } 18938 18939 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18940 18941 /* 18942 * When we return the buffer pointed to by interf_name should contain 18943 * the same name as in ill_name. 18944 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18945 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18946 * so copy full name and update the ppa ptr. 18947 * When ppa passed in != UINT_MAX all values are correct just undo 18948 * null termination, this saves a bcopy. 18949 */ 18950 if (*new_ppa_ptr == UINT_MAX) { 18951 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18952 *new_ppa_ptr = ill->ill_ppa; 18953 } else { 18954 /* 18955 * undo null termination done above. 18956 */ 18957 ppa_ptr[0] = old_char; 18958 } 18959 18960 /* Let SCTP know about this ILL */ 18961 sctp_update_ill(ill, SCTP_ILL_INSERT); 18962 18963 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18964 B_TRUE); 18965 18966 rw_exit(&ipst->ips_ill_g_lock); 18967 ill_refrele(ill); 18968 if (ipsq == NULL) 18969 return (EINPROGRESS); 18970 18971 /* 18972 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18973 */ 18974 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18975 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18976 else 18977 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18978 18979 error = ipif_set_values_tail(ill, ipif, mp, q); 18980 ipsq_exit(ipsq); 18981 if (error != 0 && error != EINPROGRESS) { 18982 /* 18983 * restore previous values 18984 */ 18985 ill->ill_isv6 = B_FALSE; 18986 } 18987 return (error); 18988 } 18989 18990 18991 void 18992 ipif_init(ip_stack_t *ipst) 18993 { 18994 int i; 18995 18996 for (i = 0; i < MAX_G_HEADS; i++) { 18997 ipst->ips_ill_g_heads[i].ill_g_list_head = 18998 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18999 ipst->ips_ill_g_heads[i].ill_g_list_tail = 19000 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 19001 } 19002 19003 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 19004 ill_phyint_compare_index, 19005 sizeof (phyint_t), 19006 offsetof(struct phyint, phyint_avl_by_index)); 19007 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 19008 ill_phyint_compare_name, 19009 sizeof (phyint_t), 19010 offsetof(struct phyint, phyint_avl_by_name)); 19011 } 19012 19013 /* 19014 * Lookup the ipif corresponding to the onlink destination address. For 19015 * point-to-point interfaces, it matches with remote endpoint destination 19016 * address. For point-to-multipoint interfaces it only tries to match the 19017 * destination with the interface's subnet address. The longest, most specific 19018 * match is found to take care of such rare network configurations like - 19019 * le0: 129.146.1.1/16 19020 * le1: 129.146.2.2/24 19021 * 19022 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 19023 * supported on underlying interfaces in an IPMP group, underlying interfaces 19024 * are ignored when looking up a match. (If we didn't ignore them, we'd 19025 * risk using a test address as a source for outgoing traffic.) 19026 */ 19027 ipif_t * 19028 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 19029 { 19030 ipif_t *ipif, *best_ipif; 19031 ill_t *ill; 19032 ill_walk_context_t ctx; 19033 19034 ASSERT(zoneid != ALL_ZONES); 19035 best_ipif = NULL; 19036 19037 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19038 ill = ILL_START_WALK_V4(&ctx, ipst); 19039 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19040 if (IS_UNDER_IPMP(ill)) 19041 continue; 19042 mutex_enter(&ill->ill_lock); 19043 for (ipif = ill->ill_ipif; ipif != NULL; 19044 ipif = ipif->ipif_next) { 19045 if (!IPIF_CAN_LOOKUP(ipif)) 19046 continue; 19047 if (ipif->ipif_zoneid != zoneid && 19048 ipif->ipif_zoneid != ALL_ZONES) 19049 continue; 19050 /* 19051 * Point-to-point case. Look for exact match with 19052 * destination address. 19053 */ 19054 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19055 if (ipif->ipif_pp_dst_addr == addr) { 19056 ipif_refhold_locked(ipif); 19057 mutex_exit(&ill->ill_lock); 19058 rw_exit(&ipst->ips_ill_g_lock); 19059 if (best_ipif != NULL) 19060 ipif_refrele(best_ipif); 19061 return (ipif); 19062 } 19063 } else if (ipif->ipif_subnet == (addr & 19064 ipif->ipif_net_mask)) { 19065 /* 19066 * Point-to-multipoint case. Looping through to 19067 * find the most specific match. If there are 19068 * multiple best match ipif's then prefer ipif's 19069 * that are UP. If there is only one best match 19070 * ipif and it is DOWN we must still return it. 19071 */ 19072 if ((best_ipif == NULL) || 19073 (ipif->ipif_net_mask > 19074 best_ipif->ipif_net_mask) || 19075 ((ipif->ipif_net_mask == 19076 best_ipif->ipif_net_mask) && 19077 ((ipif->ipif_flags & IPIF_UP) && 19078 (!(best_ipif->ipif_flags & IPIF_UP))))) { 19079 ipif_refhold_locked(ipif); 19080 mutex_exit(&ill->ill_lock); 19081 rw_exit(&ipst->ips_ill_g_lock); 19082 if (best_ipif != NULL) 19083 ipif_refrele(best_ipif); 19084 best_ipif = ipif; 19085 rw_enter(&ipst->ips_ill_g_lock, 19086 RW_READER); 19087 mutex_enter(&ill->ill_lock); 19088 } 19089 } 19090 } 19091 mutex_exit(&ill->ill_lock); 19092 } 19093 rw_exit(&ipst->ips_ill_g_lock); 19094 return (best_ipif); 19095 } 19096 19097 /* 19098 * Save enough information so that we can recreate the IRE if 19099 * the interface goes down and then up. 19100 */ 19101 static void 19102 ipif_save_ire(ipif_t *ipif, ire_t *ire) 19103 { 19104 mblk_t *save_mp; 19105 19106 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 19107 if (save_mp != NULL) { 19108 ifrt_t *ifrt; 19109 19110 save_mp->b_wptr += sizeof (ifrt_t); 19111 ifrt = (ifrt_t *)save_mp->b_rptr; 19112 bzero(ifrt, sizeof (ifrt_t)); 19113 ifrt->ifrt_type = ire->ire_type; 19114 ifrt->ifrt_addr = ire->ire_addr; 19115 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 19116 ifrt->ifrt_src_addr = ire->ire_src_addr; 19117 ifrt->ifrt_mask = ire->ire_mask; 19118 ifrt->ifrt_flags = ire->ire_flags; 19119 ifrt->ifrt_max_frag = ire->ire_max_frag; 19120 mutex_enter(&ipif->ipif_saved_ire_lock); 19121 save_mp->b_cont = ipif->ipif_saved_ire_mp; 19122 ipif->ipif_saved_ire_mp = save_mp; 19123 ipif->ipif_saved_ire_cnt++; 19124 mutex_exit(&ipif->ipif_saved_ire_lock); 19125 } 19126 } 19127 19128 static void 19129 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 19130 { 19131 mblk_t **mpp; 19132 mblk_t *mp; 19133 ifrt_t *ifrt; 19134 19135 /* Remove from ipif_saved_ire_mp list if it is there */ 19136 mutex_enter(&ipif->ipif_saved_ire_lock); 19137 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 19138 mpp = &(*mpp)->b_cont) { 19139 /* 19140 * On a given ipif, the triple of address, gateway and 19141 * mask is unique for each saved IRE (in the case of 19142 * ordinary interface routes, the gateway address is 19143 * all-zeroes). 19144 */ 19145 mp = *mpp; 19146 ifrt = (ifrt_t *)mp->b_rptr; 19147 if (ifrt->ifrt_addr == ire->ire_addr && 19148 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 19149 ifrt->ifrt_mask == ire->ire_mask) { 19150 *mpp = mp->b_cont; 19151 ipif->ipif_saved_ire_cnt--; 19152 freeb(mp); 19153 break; 19154 } 19155 } 19156 mutex_exit(&ipif->ipif_saved_ire_lock); 19157 } 19158 19159 /* 19160 * IP multirouting broadcast routes handling 19161 * Append CGTP broadcast IREs to regular ones created 19162 * at ifconfig time. 19163 */ 19164 static void 19165 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 19166 { 19167 ire_t *ire_prim; 19168 19169 ASSERT(ire != NULL); 19170 ASSERT(ire_dst != NULL); 19171 19172 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19173 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19174 if (ire_prim != NULL) { 19175 /* 19176 * We are in the special case of broadcasts for 19177 * CGTP. We add an IRE_BROADCAST that holds 19178 * the RTF_MULTIRT flag, the destination 19179 * address of ire_dst and the low level 19180 * info of ire_prim. In other words, CGTP 19181 * broadcast is added to the redundant ipif. 19182 */ 19183 ipif_t *ipif_prim; 19184 ire_t *bcast_ire; 19185 19186 ipif_prim = ire_prim->ire_ipif; 19187 19188 ip2dbg(("ip_cgtp_filter_bcast_add: " 19189 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19190 (void *)ire_dst, (void *)ire_prim, 19191 (void *)ipif_prim)); 19192 19193 bcast_ire = ire_create( 19194 (uchar_t *)&ire->ire_addr, 19195 (uchar_t *)&ip_g_all_ones, 19196 (uchar_t *)&ire_dst->ire_src_addr, 19197 (uchar_t *)&ire->ire_gateway_addr, 19198 &ipif_prim->ipif_mtu, 19199 NULL, 19200 ipif_prim->ipif_rq, 19201 ipif_prim->ipif_wq, 19202 IRE_BROADCAST, 19203 ipif_prim, 19204 0, 19205 0, 19206 0, 19207 ire->ire_flags, 19208 &ire_uinfo_null, 19209 NULL, 19210 NULL, 19211 ipst); 19212 19213 if (bcast_ire != NULL) { 19214 19215 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19216 B_FALSE) == 0) { 19217 ip2dbg(("ip_cgtp_filter_bcast_add: " 19218 "added bcast_ire %p\n", 19219 (void *)bcast_ire)); 19220 19221 ipif_save_ire(bcast_ire->ire_ipif, 19222 bcast_ire); 19223 ire_refrele(bcast_ire); 19224 } 19225 } 19226 ire_refrele(ire_prim); 19227 } 19228 } 19229 19230 19231 /* 19232 * IP multirouting broadcast routes handling 19233 * Remove the broadcast ire 19234 */ 19235 static void 19236 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19237 { 19238 ire_t *ire_dst; 19239 19240 ASSERT(ire != NULL); 19241 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19242 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19243 if (ire_dst != NULL) { 19244 ire_t *ire_prim; 19245 19246 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19247 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19248 if (ire_prim != NULL) { 19249 ipif_t *ipif_prim; 19250 ire_t *bcast_ire; 19251 19252 ipif_prim = ire_prim->ire_ipif; 19253 19254 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19255 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19256 (void *)ire_dst, (void *)ire_prim, 19257 (void *)ipif_prim)); 19258 19259 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19260 ire->ire_gateway_addr, 19261 IRE_BROADCAST, 19262 ipif_prim, ALL_ZONES, 19263 NULL, 19264 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19265 MATCH_IRE_MASK, ipst); 19266 19267 if (bcast_ire != NULL) { 19268 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19269 "looked up bcast_ire %p\n", 19270 (void *)bcast_ire)); 19271 ipif_remove_ire(bcast_ire->ire_ipif, 19272 bcast_ire); 19273 ire_delete(bcast_ire); 19274 ire_refrele(bcast_ire); 19275 } 19276 ire_refrele(ire_prim); 19277 } 19278 ire_refrele(ire_dst); 19279 } 19280 } 19281 19282 /* 19283 * IPsec hardware acceleration capabilities related functions. 19284 */ 19285 19286 /* 19287 * Free a per-ill IPsec capabilities structure. 19288 */ 19289 static void 19290 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19291 { 19292 if (capab->auth_hw_algs != NULL) 19293 kmem_free(capab->auth_hw_algs, capab->algs_size); 19294 if (capab->encr_hw_algs != NULL) 19295 kmem_free(capab->encr_hw_algs, capab->algs_size); 19296 if (capab->encr_algparm != NULL) 19297 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19298 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19299 } 19300 19301 /* 19302 * Allocate a new per-ill IPsec capabilities structure. This structure 19303 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19304 * an array which specifies, for each algorithm, whether this algorithm 19305 * is supported by the ill or not. 19306 */ 19307 static ill_ipsec_capab_t * 19308 ill_ipsec_capab_alloc(void) 19309 { 19310 ill_ipsec_capab_t *capab; 19311 uint_t nelems; 19312 19313 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19314 if (capab == NULL) 19315 return (NULL); 19316 19317 /* we need one bit per algorithm */ 19318 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19319 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19320 19321 /* allocate memory to store algorithm flags */ 19322 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19323 if (capab->encr_hw_algs == NULL) 19324 goto nomem; 19325 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19326 if (capab->auth_hw_algs == NULL) 19327 goto nomem; 19328 /* 19329 * Leave encr_algparm NULL for now since we won't need it half 19330 * the time 19331 */ 19332 return (capab); 19333 19334 nomem: 19335 ill_ipsec_capab_free(capab); 19336 return (NULL); 19337 } 19338 19339 /* 19340 * Resize capability array. Since we're exclusive, this is OK. 19341 */ 19342 static boolean_t 19343 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19344 { 19345 ipsec_capab_algparm_t *nalp, *oalp; 19346 uint32_t olen, nlen; 19347 19348 oalp = capab->encr_algparm; 19349 olen = capab->encr_algparm_size; 19350 19351 if (oalp != NULL) { 19352 if (algid < capab->encr_algparm_end) 19353 return (B_TRUE); 19354 } 19355 19356 nlen = (algid + 1) * sizeof (*nalp); 19357 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19358 if (nalp == NULL) 19359 return (B_FALSE); 19360 19361 if (oalp != NULL) { 19362 bcopy(oalp, nalp, olen); 19363 kmem_free(oalp, olen); 19364 } 19365 capab->encr_algparm = nalp; 19366 capab->encr_algparm_size = nlen; 19367 capab->encr_algparm_end = algid + 1; 19368 19369 return (B_TRUE); 19370 } 19371 19372 /* 19373 * Compare the capabilities of the specified ill with the protocol 19374 * and algorithms specified by the SA passed as argument. 19375 * If they match, returns B_TRUE, B_FALSE if they do not match. 19376 * 19377 * The ill can be passed as a pointer to it, or by specifying its index 19378 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19379 * 19380 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19381 * packet is eligible for hardware acceleration, and by 19382 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19383 * to a particular ill. 19384 */ 19385 boolean_t 19386 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19387 ipsa_t *sa, netstack_t *ns) 19388 { 19389 boolean_t sa_isv6; 19390 uint_t algid; 19391 struct ill_ipsec_capab_s *cpp; 19392 boolean_t need_refrele = B_FALSE; 19393 ip_stack_t *ipst = ns->netstack_ip; 19394 19395 if (ill == NULL) { 19396 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19397 NULL, NULL, NULL, ipst); 19398 if (ill == NULL) { 19399 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19400 return (B_FALSE); 19401 } 19402 need_refrele = B_TRUE; 19403 } 19404 19405 /* 19406 * Use the address length specified by the SA to determine 19407 * if it corresponds to a IPv6 address, and fail the matching 19408 * if the isv6 flag passed as argument does not match. 19409 * Note: this check is used for SADB capability checking before 19410 * sending SA information to an ill. 19411 */ 19412 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19413 if (sa_isv6 != ill_isv6) 19414 /* protocol mismatch */ 19415 goto done; 19416 19417 /* 19418 * Check if the ill supports the protocol, algorithm(s) and 19419 * key size(s) specified by the SA, and get the pointers to 19420 * the algorithms supported by the ill. 19421 */ 19422 switch (sa->ipsa_type) { 19423 19424 case SADB_SATYPE_ESP: 19425 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19426 /* ill does not support ESP acceleration */ 19427 goto done; 19428 cpp = ill->ill_ipsec_capab_esp; 19429 algid = sa->ipsa_auth_alg; 19430 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19431 goto done; 19432 algid = sa->ipsa_encr_alg; 19433 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19434 goto done; 19435 if (algid < cpp->encr_algparm_end) { 19436 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19437 if (sa->ipsa_encrkeybits < alp->minkeylen) 19438 goto done; 19439 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19440 goto done; 19441 } 19442 break; 19443 19444 case SADB_SATYPE_AH: 19445 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19446 /* ill does not support AH acceleration */ 19447 goto done; 19448 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19449 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19450 goto done; 19451 break; 19452 } 19453 19454 if (need_refrele) 19455 ill_refrele(ill); 19456 return (B_TRUE); 19457 done: 19458 if (need_refrele) 19459 ill_refrele(ill); 19460 return (B_FALSE); 19461 } 19462 19463 /* 19464 * Add a new ill to the list of IPsec capable ills. 19465 * Called from ill_capability_ipsec_ack() when an ACK was received 19466 * indicating that IPsec hardware processing was enabled for an ill. 19467 * 19468 * ill must point to the ill for which acceleration was enabled. 19469 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19470 */ 19471 static void 19472 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19473 { 19474 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19475 uint_t sa_type; 19476 uint_t ipproto; 19477 ip_stack_t *ipst = ill->ill_ipst; 19478 19479 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19480 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19481 19482 switch (dl_cap) { 19483 case DL_CAPAB_IPSEC_AH: 19484 sa_type = SADB_SATYPE_AH; 19485 ills = &ipst->ips_ipsec_capab_ills_ah; 19486 ipproto = IPPROTO_AH; 19487 break; 19488 case DL_CAPAB_IPSEC_ESP: 19489 sa_type = SADB_SATYPE_ESP; 19490 ills = &ipst->ips_ipsec_capab_ills_esp; 19491 ipproto = IPPROTO_ESP; 19492 break; 19493 } 19494 19495 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19496 19497 /* 19498 * Add ill index to list of hardware accelerators. If 19499 * already in list, do nothing. 19500 */ 19501 for (cur_ill = *ills; cur_ill != NULL && 19502 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19503 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19504 ; 19505 19506 if (cur_ill == NULL) { 19507 /* if this is a new entry for this ill */ 19508 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19509 if (new_ill == NULL) { 19510 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19511 return; 19512 } 19513 19514 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19515 new_ill->ill_isv6 = ill->ill_isv6; 19516 new_ill->next = *ills; 19517 *ills = new_ill; 19518 } else if (!sadb_resync) { 19519 /* not resync'ing SADB and an entry exists for this ill */ 19520 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19521 return; 19522 } 19523 19524 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19525 19526 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19527 /* 19528 * IPsec module for protocol loaded, initiate dump 19529 * of the SADB to this ill. 19530 */ 19531 sadb_ill_download(ill, sa_type); 19532 } 19533 19534 /* 19535 * Remove an ill from the list of IPsec capable ills. 19536 */ 19537 static void 19538 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19539 { 19540 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19541 ip_stack_t *ipst = ill->ill_ipst; 19542 19543 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19544 dl_cap == DL_CAPAB_IPSEC_ESP); 19545 19546 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19547 &ipst->ips_ipsec_capab_ills_esp; 19548 19549 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19550 19551 prev_ill = NULL; 19552 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19553 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19554 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19555 ; 19556 if (cur_ill == NULL) { 19557 /* entry not found */ 19558 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19559 return; 19560 } 19561 if (prev_ill == NULL) { 19562 /* entry at front of list */ 19563 *ills = NULL; 19564 } else { 19565 prev_ill->next = cur_ill->next; 19566 } 19567 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19568 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19569 } 19570 19571 /* 19572 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19573 * supporting the specified IPsec protocol acceleration. 19574 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19575 * We free the mblk and, if sa is non-null, release the held referece. 19576 */ 19577 void 19578 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19579 netstack_t *ns) 19580 { 19581 ipsec_capab_ill_t *ici, *cur_ici; 19582 ill_t *ill; 19583 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19584 ip_stack_t *ipst = ns->netstack_ip; 19585 19586 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19587 ipst->ips_ipsec_capab_ills_esp; 19588 19589 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19590 19591 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19592 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19593 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19594 19595 /* 19596 * Handle the case where the ill goes away while the SADB is 19597 * attempting to send messages. If it's going away, it's 19598 * nuking its shadow SADB, so we don't care.. 19599 */ 19600 19601 if (ill == NULL) 19602 continue; 19603 19604 if (sa != NULL) { 19605 /* 19606 * Make sure capabilities match before 19607 * sending SA to ill. 19608 */ 19609 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19610 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19611 ill_refrele(ill); 19612 continue; 19613 } 19614 19615 mutex_enter(&sa->ipsa_lock); 19616 sa->ipsa_flags |= IPSA_F_HW; 19617 mutex_exit(&sa->ipsa_lock); 19618 } 19619 19620 /* 19621 * Copy template message, and add it to the front 19622 * of the mblk ship list. We want to avoid holding 19623 * the ipsec_capab_ills_lock while sending the 19624 * message to the ills. 19625 * 19626 * The b_next and b_prev are temporarily used 19627 * to build a list of mblks to be sent down, and to 19628 * save the ill to which they must be sent. 19629 */ 19630 nmp = copymsg(mp); 19631 if (nmp == NULL) { 19632 ill_refrele(ill); 19633 continue; 19634 } 19635 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19636 nmp->b_next = mp_ship_list; 19637 mp_ship_list = nmp; 19638 nmp->b_prev = (mblk_t *)ill; 19639 } 19640 19641 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19642 19643 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19644 /* restore the mblk to a sane state */ 19645 next_mp = nmp->b_next; 19646 nmp->b_next = NULL; 19647 ill = (ill_t *)nmp->b_prev; 19648 nmp->b_prev = NULL; 19649 19650 ill_dlpi_send(ill, nmp); 19651 ill_refrele(ill); 19652 } 19653 19654 if (sa != NULL) 19655 IPSA_REFRELE(sa); 19656 freemsg(mp); 19657 } 19658 19659 /* 19660 * Derive an interface id from the link layer address. 19661 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19662 */ 19663 static boolean_t 19664 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19665 { 19666 char *addr; 19667 19668 if (ill->ill_phys_addr_length != ETHERADDRL) 19669 return (B_FALSE); 19670 19671 /* Form EUI-64 like address */ 19672 addr = (char *)&v6addr->s6_addr32[2]; 19673 bcopy(ill->ill_phys_addr, addr, 3); 19674 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19675 addr[3] = (char)0xff; 19676 addr[4] = (char)0xfe; 19677 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19678 return (B_TRUE); 19679 } 19680 19681 /* ARGSUSED */ 19682 static boolean_t 19683 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19684 { 19685 return (B_FALSE); 19686 } 19687 19688 typedef struct ipmp_ifcookie { 19689 uint32_t ic_hostid; 19690 char ic_ifname[LIFNAMSIZ]; 19691 char ic_zonename[ZONENAME_MAX]; 19692 } ipmp_ifcookie_t; 19693 19694 /* 19695 * Construct a pseudo-random interface ID for the IPMP interface that's both 19696 * predictable and (almost) guaranteed to be unique. 19697 */ 19698 static boolean_t 19699 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19700 { 19701 zone_t *zp; 19702 uint8_t *addr; 19703 uchar_t hash[16]; 19704 ulong_t hostid; 19705 MD5_CTX ctx; 19706 ipmp_ifcookie_t ic = { 0 }; 19707 19708 ASSERT(IS_IPMP(ill)); 19709 19710 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19711 ic.ic_hostid = htonl((uint32_t)hostid); 19712 19713 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19714 19715 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19716 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19717 zone_rele(zp); 19718 } 19719 19720 MD5Init(&ctx); 19721 MD5Update(&ctx, &ic, sizeof (ic)); 19722 MD5Final(hash, &ctx); 19723 19724 /* 19725 * Map the hash to an interface ID per the basic approach in RFC3041. 19726 */ 19727 addr = &v6addr->s6_addr8[8]; 19728 bcopy(hash + 8, addr, sizeof (uint64_t)); 19729 addr[0] &= ~0x2; /* set local bit */ 19730 19731 return (B_TRUE); 19732 } 19733 19734 /* ARGSUSED */ 19735 static boolean_t 19736 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19737 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19738 { 19739 /* 19740 * Multicast address mappings used over Ethernet/802.X. 19741 * This address is used as a base for mappings. 19742 */ 19743 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19744 0x00, 0x00, 0x00}; 19745 19746 /* 19747 * Extract low order 32 bits from IPv6 multicast address. 19748 * Or that into the link layer address, starting from the 19749 * second byte. 19750 */ 19751 *hw_start = 2; 19752 v6_extract_mask->s6_addr32[0] = 0; 19753 v6_extract_mask->s6_addr32[1] = 0; 19754 v6_extract_mask->s6_addr32[2] = 0; 19755 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19756 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19757 return (B_TRUE); 19758 } 19759 19760 /* 19761 * Indicate by return value whether multicast is supported. If not, 19762 * this code should not touch/change any parameters. 19763 */ 19764 /* ARGSUSED */ 19765 static boolean_t 19766 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19767 uint32_t *hw_start, ipaddr_t *extract_mask) 19768 { 19769 /* 19770 * Multicast address mappings used over Ethernet/802.X. 19771 * This address is used as a base for mappings. 19772 */ 19773 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19774 0x00, 0x00, 0x00 }; 19775 19776 if (phys_length != ETHERADDRL) 19777 return (B_FALSE); 19778 19779 *extract_mask = htonl(0x007fffff); 19780 *hw_start = 2; 19781 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19782 return (B_TRUE); 19783 } 19784 19785 /* 19786 * Derive IPoIB interface id from the link layer address. 19787 */ 19788 static boolean_t 19789 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19790 { 19791 char *addr; 19792 19793 if (ill->ill_phys_addr_length != 20) 19794 return (B_FALSE); 19795 addr = (char *)&v6addr->s6_addr32[2]; 19796 bcopy(ill->ill_phys_addr + 12, addr, 8); 19797 /* 19798 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19799 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19800 * rules. In these cases, the IBA considers these GUIDs to be in 19801 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19802 * required; vendors are required not to assign global EUI-64's 19803 * that differ only in u/l bit values, thus guaranteeing uniqueness 19804 * of the interface identifier. Whether the GUID is in modified 19805 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19806 * bit set to 1. 19807 */ 19808 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19809 return (B_TRUE); 19810 } 19811 19812 /* 19813 * Note on mapping from multicast IP addresses to IPoIB multicast link 19814 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19815 * The format of an IPoIB multicast address is: 19816 * 19817 * 4 byte QPN Scope Sign. Pkey 19818 * +--------------------------------------------+ 19819 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19820 * +--------------------------------------------+ 19821 * 19822 * The Scope and Pkey components are properties of the IBA port and 19823 * network interface. They can be ascertained from the broadcast address. 19824 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19825 */ 19826 19827 static boolean_t 19828 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19829 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19830 { 19831 /* 19832 * Base IPoIB IPv6 multicast address used for mappings. 19833 * Does not contain the IBA scope/Pkey values. 19834 */ 19835 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19836 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19837 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19838 19839 /* 19840 * Extract low order 80 bits from IPv6 multicast address. 19841 * Or that into the link layer address, starting from the 19842 * sixth byte. 19843 */ 19844 *hw_start = 6; 19845 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19846 19847 /* 19848 * Now fill in the IBA scope/Pkey values from the broadcast address. 19849 */ 19850 *(maddr + 5) = *(bphys_addr + 5); 19851 *(maddr + 8) = *(bphys_addr + 8); 19852 *(maddr + 9) = *(bphys_addr + 9); 19853 19854 v6_extract_mask->s6_addr32[0] = 0; 19855 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19856 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19857 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19858 return (B_TRUE); 19859 } 19860 19861 static boolean_t 19862 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19863 uint32_t *hw_start, ipaddr_t *extract_mask) 19864 { 19865 /* 19866 * Base IPoIB IPv4 multicast address used for mappings. 19867 * Does not contain the IBA scope/Pkey values. 19868 */ 19869 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19870 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19871 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19872 19873 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19874 return (B_FALSE); 19875 19876 /* 19877 * Extract low order 28 bits from IPv4 multicast address. 19878 * Or that into the link layer address, starting from the 19879 * sixteenth byte. 19880 */ 19881 *extract_mask = htonl(0x0fffffff); 19882 *hw_start = 16; 19883 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19884 19885 /* 19886 * Now fill in the IBA scope/Pkey values from the broadcast address. 19887 */ 19888 *(maddr + 5) = *(bphys_addr + 5); 19889 *(maddr + 8) = *(bphys_addr + 8); 19890 *(maddr + 9) = *(bphys_addr + 9); 19891 return (B_TRUE); 19892 } 19893 19894 /* 19895 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19896 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19897 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19898 * the link-local address is preferred. 19899 */ 19900 boolean_t 19901 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19902 { 19903 ipif_t *ipif; 19904 ipif_t *maybe_ipif = NULL; 19905 19906 mutex_enter(&ill->ill_lock); 19907 if (ill->ill_state_flags & ILL_CONDEMNED) { 19908 mutex_exit(&ill->ill_lock); 19909 if (ipifp != NULL) 19910 *ipifp = NULL; 19911 return (B_FALSE); 19912 } 19913 19914 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19915 if (!IPIF_CAN_LOOKUP(ipif)) 19916 continue; 19917 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19918 ipif->ipif_zoneid != ALL_ZONES) 19919 continue; 19920 if ((ipif->ipif_flags & flags) != flags) 19921 continue; 19922 19923 if (ipifp == NULL) { 19924 mutex_exit(&ill->ill_lock); 19925 ASSERT(maybe_ipif == NULL); 19926 return (B_TRUE); 19927 } 19928 if (!ill->ill_isv6 || 19929 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19930 ipif_refhold_locked(ipif); 19931 mutex_exit(&ill->ill_lock); 19932 *ipifp = ipif; 19933 return (B_TRUE); 19934 } 19935 if (maybe_ipif == NULL) 19936 maybe_ipif = ipif; 19937 } 19938 if (ipifp != NULL) { 19939 if (maybe_ipif != NULL) 19940 ipif_refhold_locked(maybe_ipif); 19941 *ipifp = maybe_ipif; 19942 } 19943 mutex_exit(&ill->ill_lock); 19944 return (maybe_ipif != NULL); 19945 } 19946 19947 /* 19948 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19949 * If a pointer to an ipif_t is returned then the caller will need to do 19950 * an ill_refrele(). 19951 */ 19952 ipif_t * 19953 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19954 ip_stack_t *ipst) 19955 { 19956 ipif_t *ipif; 19957 ill_t *ill; 19958 19959 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19960 ipst); 19961 if (ill == NULL) 19962 return (NULL); 19963 19964 mutex_enter(&ill->ill_lock); 19965 if (ill->ill_state_flags & ILL_CONDEMNED) { 19966 mutex_exit(&ill->ill_lock); 19967 ill_refrele(ill); 19968 return (NULL); 19969 } 19970 19971 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19972 if (!IPIF_CAN_LOOKUP(ipif)) 19973 continue; 19974 if (lifidx == ipif->ipif_id) { 19975 ipif_refhold_locked(ipif); 19976 break; 19977 } 19978 } 19979 19980 mutex_exit(&ill->ill_lock); 19981 ill_refrele(ill); 19982 return (ipif); 19983 } 19984 19985 /* 19986 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19987 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19988 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19989 * for details. 19990 */ 19991 void 19992 ill_fastpath_flush(ill_t *ill) 19993 { 19994 ip_stack_t *ipst = ill->ill_ipst; 19995 19996 nce_fastpath_list_dispatch(ill, NULL, NULL); 19997 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19998 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19999 } 20000 20001 /* 20002 * Set the physical address information for `ill' to the contents of the 20003 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 20004 * asynchronous if `ill' cannot immediately be quiesced -- in which case 20005 * EINPROGRESS will be returned. 20006 */ 20007 int 20008 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 20009 { 20010 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20011 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 20012 20013 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20014 20015 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 20016 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 20017 /* Changing DL_IPV6_TOKEN is not yet supported */ 20018 return (0); 20019 } 20020 20021 /* 20022 * We need to store up to two copies of `mp' in `ill'. Due to the 20023 * design of ipsq_pending_mp_add(), we can't pass them as separate 20024 * arguments to ill_set_phys_addr_tail(). Instead, chain them 20025 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 20026 */ 20027 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 20028 freemsg(mp); 20029 return (ENOMEM); 20030 } 20031 20032 ipsq_current_start(ipsq, ill->ill_ipif, 0); 20033 20034 /* 20035 * If we can quiesce the ill, then set the address. If not, then 20036 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 20037 */ 20038 ill_down_ipifs(ill); 20039 mutex_enter(&ill->ill_lock); 20040 if (!ill_is_quiescent(ill)) { 20041 /* call cannot fail since `conn_t *' argument is NULL */ 20042 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 20043 mp, ILL_DOWN); 20044 mutex_exit(&ill->ill_lock); 20045 return (EINPROGRESS); 20046 } 20047 mutex_exit(&ill->ill_lock); 20048 20049 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 20050 return (0); 20051 } 20052 20053 /* 20054 * Once the ill associated with `q' has quiesced, set its physical address 20055 * information to the values in `addrmp'. Note that two copies of `addrmp' 20056 * are passed (linked by b_cont), since we sometimes need to save two distinct 20057 * copies in the ill_t, and our context doesn't permit sleeping or allocation 20058 * failure (we'll free the other copy if it's not needed). Since the ill_t 20059 * is quiesced, we know any stale IREs with the old address information have 20060 * already been removed, so we don't need to call ill_fastpath_flush(). 20061 */ 20062 /* ARGSUSED */ 20063 static void 20064 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 20065 { 20066 ill_t *ill = q->q_ptr; 20067 mblk_t *addrmp2 = unlinkb(addrmp); 20068 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 20069 uint_t addrlen, addroff; 20070 20071 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20072 20073 addroff = dlindp->dl_addr_offset; 20074 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 20075 20076 switch (dlindp->dl_data) { 20077 case DL_IPV6_LINK_LAYER_ADDR: 20078 ill_set_ndmp(ill, addrmp, addroff, addrlen); 20079 freemsg(addrmp2); 20080 break; 20081 20082 case DL_CURR_PHYS_ADDR: 20083 freemsg(ill->ill_phys_addr_mp); 20084 ill->ill_phys_addr = addrmp->b_rptr + addroff; 20085 ill->ill_phys_addr_mp = addrmp; 20086 ill->ill_phys_addr_length = addrlen; 20087 20088 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 20089 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 20090 else 20091 freemsg(addrmp2); 20092 break; 20093 default: 20094 ASSERT(0); 20095 } 20096 20097 /* 20098 * If there are ipifs to bring up, ill_up_ipifs() will return 20099 * EINPROGRESS, and ipsq_current_finish() will be called by 20100 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20101 * brought up. 20102 */ 20103 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 20104 ipsq_current_finish(ipsq); 20105 } 20106 20107 /* 20108 * Helper routine for setting the ill_nd_lla fields. 20109 */ 20110 void 20111 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 20112 { 20113 freemsg(ill->ill_nd_lla_mp); 20114 ill->ill_nd_lla = ndmp->b_rptr + addroff; 20115 ill->ill_nd_lla_mp = ndmp; 20116 ill->ill_nd_lla_len = addrlen; 20117 } 20118 20119 major_t IP_MAJ; 20120 #define IP "ip" 20121 20122 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20123 #define UDPDEV "/devices/pseudo/udp@0:udp" 20124 20125 /* 20126 * Issue REMOVEIF ioctls to have the loopback interfaces 20127 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20128 * the former going away when the user-level processes in the zone 20129 * are killed * and the latter are cleaned up by the stream head 20130 * str_stack_shutdown callback that undoes all I_PLINKs. 20131 */ 20132 void 20133 ip_loopback_cleanup(ip_stack_t *ipst) 20134 { 20135 int error; 20136 ldi_handle_t lh = NULL; 20137 ldi_ident_t li = NULL; 20138 int rval; 20139 cred_t *cr; 20140 struct strioctl iocb; 20141 struct lifreq lifreq; 20142 20143 IP_MAJ = ddi_name_to_major(IP); 20144 20145 #ifdef NS_DEBUG 20146 (void) printf("ip_loopback_cleanup() stackid %d\n", 20147 ipst->ips_netstack->netstack_stackid); 20148 #endif 20149 20150 bzero(&lifreq, sizeof (lifreq)); 20151 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20152 20153 error = ldi_ident_from_major(IP_MAJ, &li); 20154 if (error) { 20155 #ifdef DEBUG 20156 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20157 error); 20158 #endif 20159 return; 20160 } 20161 20162 cr = zone_get_kcred(netstackid_to_zoneid( 20163 ipst->ips_netstack->netstack_stackid)); 20164 ASSERT(cr != NULL); 20165 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20166 if (error) { 20167 #ifdef DEBUG 20168 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20169 error); 20170 #endif 20171 goto out; 20172 } 20173 iocb.ic_cmd = SIOCLIFREMOVEIF; 20174 iocb.ic_timout = 15; 20175 iocb.ic_len = sizeof (lifreq); 20176 iocb.ic_dp = (char *)&lifreq; 20177 20178 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20179 /* LINTED - statement has no consequent */ 20180 if (error) { 20181 #ifdef NS_DEBUG 20182 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20183 "UDP6 error %d\n", error); 20184 #endif 20185 } 20186 (void) ldi_close(lh, FREAD|FWRITE, cr); 20187 lh = NULL; 20188 20189 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20190 if (error) { 20191 #ifdef NS_DEBUG 20192 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20193 error); 20194 #endif 20195 goto out; 20196 } 20197 20198 iocb.ic_cmd = SIOCLIFREMOVEIF; 20199 iocb.ic_timout = 15; 20200 iocb.ic_len = sizeof (lifreq); 20201 iocb.ic_dp = (char *)&lifreq; 20202 20203 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20204 /* LINTED - statement has no consequent */ 20205 if (error) { 20206 #ifdef NS_DEBUG 20207 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20208 "UDP error %d\n", error); 20209 #endif 20210 } 20211 (void) ldi_close(lh, FREAD|FWRITE, cr); 20212 lh = NULL; 20213 20214 out: 20215 /* Close layered handles */ 20216 if (lh) 20217 (void) ldi_close(lh, FREAD|FWRITE, cr); 20218 if (li) 20219 ldi_ident_release(li); 20220 20221 crfree(cr); 20222 } 20223 20224 /* 20225 * This needs to be in-sync with nic_event_t definition 20226 */ 20227 static const char * 20228 ill_hook_event2str(nic_event_t event) 20229 { 20230 switch (event) { 20231 case NE_PLUMB: 20232 return ("PLUMB"); 20233 case NE_UNPLUMB: 20234 return ("UNPLUMB"); 20235 case NE_UP: 20236 return ("UP"); 20237 case NE_DOWN: 20238 return ("DOWN"); 20239 case NE_ADDRESS_CHANGE: 20240 return ("ADDRESS_CHANGE"); 20241 case NE_LIF_UP: 20242 return ("LIF_UP"); 20243 case NE_LIF_DOWN: 20244 return ("LIF_DOWN"); 20245 default: 20246 return ("UNKNOWN"); 20247 } 20248 } 20249 20250 void 20251 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20252 nic_event_data_t data, size_t datalen) 20253 { 20254 ip_stack_t *ipst = ill->ill_ipst; 20255 hook_nic_event_int_t *info; 20256 const char *str = NULL; 20257 20258 /* create a new nic event info */ 20259 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20260 goto fail; 20261 20262 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20263 info->hnei_event.hne_lif = lif; 20264 info->hnei_event.hne_event = event; 20265 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20266 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20267 info->hnei_event.hne_data = NULL; 20268 info->hnei_event.hne_datalen = 0; 20269 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20270 20271 if (data != NULL && datalen != 0) { 20272 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20273 if (info->hnei_event.hne_data == NULL) 20274 goto fail; 20275 bcopy(data, info->hnei_event.hne_data, datalen); 20276 info->hnei_event.hne_datalen = datalen; 20277 } 20278 20279 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20280 DDI_NOSLEEP) == DDI_SUCCESS) 20281 return; 20282 20283 fail: 20284 if (info != NULL) { 20285 if (info->hnei_event.hne_data != NULL) { 20286 kmem_free(info->hnei_event.hne_data, 20287 info->hnei_event.hne_datalen); 20288 } 20289 kmem_free(info, sizeof (hook_nic_event_t)); 20290 } 20291 str = ill_hook_event2str(event); 20292 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20293 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20294 } 20295 20296 void 20297 ipif_up_notify(ipif_t *ipif) 20298 { 20299 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20300 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20301 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20302 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20303 NE_LIF_UP, NULL, 0); 20304 } 20305