1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #ifdef _KERNEL 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <sys/mntent.h> 38 #include <sys/mkdev.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/zfs_i18n.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 66 /* 67 * Functions needed for userland (ie: libzpool) are not put under 68 * #ifdef_KERNEL; the rest of the functions have dependencies 69 * (such as VFS logic) that will not compile easily in userland. 70 */ 71 #ifdef _KERNEL 72 struct kmem_cache *znode_cache = NULL; 73 74 /*ARGSUSED*/ 75 static void 76 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 77 { 78 znode_t *zp = user_ptr; 79 vnode_t *vp = ZTOV(zp); 80 81 mutex_enter(&zp->z_lock); 82 zp->z_dbuf = NULL; 83 if (vp->v_count == 0) { 84 mutex_exit(&zp->z_lock); 85 vn_invalid(vp); 86 zfs_znode_free(zp); 87 } else { 88 mutex_exit(&zp->z_lock); 89 } 90 } 91 92 /*ARGSUSED*/ 93 static int 94 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 95 { 96 znode_t *zp = buf; 97 98 zp->z_vnode = vn_alloc(KM_SLEEP); 99 zp->z_vnode->v_data = (caddr_t)zp; 100 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 101 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 102 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 103 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 104 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 105 106 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 107 avl_create(&zp->z_range_avl, zfs_range_compare, 108 sizeof (rl_t), offsetof(rl_t, r_node)); 109 110 zp->z_dbuf = NULL; 111 zp->z_dirlocks = 0; 112 return (0); 113 } 114 115 /*ARGSUSED*/ 116 static void 117 zfs_znode_cache_destructor(void *buf, void *cdarg) 118 { 119 znode_t *zp = buf; 120 121 ASSERT(zp->z_dirlocks == 0); 122 mutex_destroy(&zp->z_lock); 123 rw_destroy(&zp->z_map_lock); 124 rw_destroy(&zp->z_parent_lock); 125 rw_destroy(&zp->z_name_lock); 126 mutex_destroy(&zp->z_acl_lock); 127 avl_destroy(&zp->z_range_avl); 128 mutex_destroy(&zp->z_range_lock); 129 130 ASSERT(zp->z_dbuf == NULL); 131 ASSERT(ZTOV(zp)->v_count == 0); 132 vn_free(ZTOV(zp)); 133 } 134 135 void 136 zfs_znode_init(void) 137 { 138 /* 139 * Initialize zcache 140 */ 141 ASSERT(znode_cache == NULL); 142 znode_cache = kmem_cache_create("zfs_znode_cache", 143 sizeof (znode_t), 0, zfs_znode_cache_constructor, 144 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 145 } 146 147 void 148 zfs_znode_fini(void) 149 { 150 /* 151 * Cleanup vfs & vnode ops 152 */ 153 zfs_remove_op_tables(); 154 155 /* 156 * Cleanup zcache 157 */ 158 if (znode_cache) 159 kmem_cache_destroy(znode_cache); 160 znode_cache = NULL; 161 } 162 163 struct vnodeops *zfs_dvnodeops; 164 struct vnodeops *zfs_fvnodeops; 165 struct vnodeops *zfs_symvnodeops; 166 struct vnodeops *zfs_xdvnodeops; 167 struct vnodeops *zfs_evnodeops; 168 169 void 170 zfs_remove_op_tables() 171 { 172 /* 173 * Remove vfs ops 174 */ 175 ASSERT(zfsfstype); 176 (void) vfs_freevfsops_by_type(zfsfstype); 177 zfsfstype = 0; 178 179 /* 180 * Remove vnode ops 181 */ 182 if (zfs_dvnodeops) 183 vn_freevnodeops(zfs_dvnodeops); 184 if (zfs_fvnodeops) 185 vn_freevnodeops(zfs_fvnodeops); 186 if (zfs_symvnodeops) 187 vn_freevnodeops(zfs_symvnodeops); 188 if (zfs_xdvnodeops) 189 vn_freevnodeops(zfs_xdvnodeops); 190 if (zfs_evnodeops) 191 vn_freevnodeops(zfs_evnodeops); 192 193 zfs_dvnodeops = NULL; 194 zfs_fvnodeops = NULL; 195 zfs_symvnodeops = NULL; 196 zfs_xdvnodeops = NULL; 197 zfs_evnodeops = NULL; 198 } 199 200 extern const fs_operation_def_t zfs_dvnodeops_template[]; 201 extern const fs_operation_def_t zfs_fvnodeops_template[]; 202 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 203 extern const fs_operation_def_t zfs_symvnodeops_template[]; 204 extern const fs_operation_def_t zfs_evnodeops_template[]; 205 206 int 207 zfs_create_op_tables() 208 { 209 int error; 210 211 /* 212 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 213 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 214 * In this case we just return as the ops vectors are already set up. 215 */ 216 if (zfs_dvnodeops) 217 return (0); 218 219 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 220 &zfs_dvnodeops); 221 if (error) 222 return (error); 223 224 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 225 &zfs_fvnodeops); 226 if (error) 227 return (error); 228 229 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 230 &zfs_symvnodeops); 231 if (error) 232 return (error); 233 234 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 235 &zfs_xdvnodeops); 236 if (error) 237 return (error); 238 239 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 240 &zfs_evnodeops); 241 242 return (error); 243 } 244 245 /* 246 * zfs_init_fs - Initialize the zfsvfs struct and the file system 247 * incore "master" object. Verify version compatibility. 248 */ 249 int 250 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 251 { 252 extern int zfsfstype; 253 254 objset_t *os = zfsvfs->z_os; 255 int i, error; 256 dmu_object_info_t doi; 257 uint64_t fsid_guid; 258 259 *zpp = NULL; 260 261 /* 262 * XXX - hack to auto-create the pool root filesystem at 263 * the first attempted mount. 264 */ 265 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 266 dmu_tx_t *tx = dmu_tx_create(os); 267 uint64_t zpl_version; 268 269 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 270 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 271 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 272 error = dmu_tx_assign(tx, TXG_WAIT); 273 ASSERT3U(error, ==, 0); 274 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 275 zpl_version = ZPL_VERSION; 276 else 277 zpl_version = ZPL_VERSION_FUID - 1; 278 zfs_create_fs(os, cr, zpl_version, 0, tx); 279 dmu_tx_commit(tx); 280 } 281 282 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 283 &zfsvfs->z_version); 284 if (error) { 285 return (error); 286 } else if (zfsvfs->z_version > ZPL_VERSION) { 287 (void) printf("Mismatched versions: File system " 288 "is version %lld on-disk format, which is " 289 "incompatible with this software version %lld!", 290 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 291 return (ENOTSUP); 292 } 293 294 /* 295 * The fsid is 64 bits, composed of an 8-bit fs type, which 296 * separates our fsid from any other filesystem types, and a 297 * 56-bit objset unique ID. The objset unique ID is unique to 298 * all objsets open on this system, provided by unique_create(). 299 * The 8-bit fs type must be put in the low bits of fsid[1] 300 * because that's where other Solaris filesystems put it. 301 */ 302 fsid_guid = dmu_objset_fsid_guid(os); 303 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 304 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 305 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 306 zfsfstype & 0xFF; 307 308 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 309 &zfsvfs->z_root); 310 if (error) 311 return (error); 312 ASSERT(zfsvfs->z_root != 0); 313 314 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 315 &zfsvfs->z_unlinkedobj); 316 if (error) 317 return (error); 318 319 /* 320 * Initialize zget mutex's 321 */ 322 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 323 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 324 325 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 326 if (error) { 327 /* 328 * On error, we destroy the mutexes here since it's not 329 * possible for the caller to determine if the mutexes were 330 * initialized properly. 331 */ 332 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 333 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 334 return (error); 335 } 336 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 337 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 338 &zfsvfs->z_fuid_obj); 339 if (error == ENOENT) 340 error = 0; 341 342 return (0); 343 } 344 345 /* 346 * define a couple of values we need available 347 * for both 64 and 32 bit environments. 348 */ 349 #ifndef NBITSMINOR64 350 #define NBITSMINOR64 32 351 #endif 352 #ifndef MAXMAJ64 353 #define MAXMAJ64 0xffffffffUL 354 #endif 355 #ifndef MAXMIN64 356 #define MAXMIN64 0xffffffffUL 357 #endif 358 359 /* 360 * Create special expldev for ZFS private use. 361 * Can't use standard expldev since it doesn't do 362 * what we want. The standard expldev() takes a 363 * dev32_t in LP64 and expands it to a long dev_t. 364 * We need an interface that takes a dev32_t in ILP32 365 * and expands it to a long dev_t. 366 */ 367 static uint64_t 368 zfs_expldev(dev_t dev) 369 { 370 #ifndef _LP64 371 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 372 return (((uint64_t)major << NBITSMINOR64) | 373 ((minor_t)dev & MAXMIN32)); 374 #else 375 return (dev); 376 #endif 377 } 378 379 /* 380 * Special cmpldev for ZFS private use. 381 * Can't use standard cmpldev since it takes 382 * a long dev_t and compresses it to dev32_t in 383 * LP64. We need to do a compaction of a long dev_t 384 * to a dev32_t in ILP32. 385 */ 386 dev_t 387 zfs_cmpldev(uint64_t dev) 388 { 389 #ifndef _LP64 390 minor_t minor = (minor_t)dev & MAXMIN64; 391 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 392 393 if (major > MAXMAJ32 || minor > MAXMIN32) 394 return (NODEV32); 395 396 return (((dev32_t)major << NBITSMINOR32) | minor); 397 #else 398 return (dev); 399 #endif 400 } 401 402 static void 403 zfs_znode_dmu_init(znode_t *zp, dmu_buf_t *db) 404 { 405 znode_t *nzp; 406 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 407 408 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp))); 409 410 mutex_enter(&zp->z_lock); 411 412 ASSERT(zp->z_dbuf == NULL); 413 zp->z_dbuf = db; 414 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_pageout_func); 415 416 /* 417 * there should be no 418 * concurrent zgets on this object. 419 */ 420 if (nzp != NULL) 421 panic("existing znode %p for dbuf %p", nzp, db); 422 423 /* 424 * Slap on VROOT if we are the root znode 425 */ 426 if (zp->z_id == zfsvfs->z_root) 427 ZTOV(zp)->v_flag |= VROOT; 428 429 mutex_exit(&zp->z_lock); 430 vn_exists(ZTOV(zp)); 431 } 432 433 static void 434 zfs_znode_dmu_fini(znode_t *zp) 435 { 436 dmu_buf_t *db = zp->z_dbuf; 437 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp))); 438 ASSERT(zp->z_dbuf != NULL); 439 zp->z_dbuf = NULL; 440 dmu_buf_rele(db, NULL); 441 } 442 443 /* 444 * Construct a new znode/vnode and intialize. 445 * 446 * This does not do a call to dmu_set_user() that is 447 * up to the caller to do, in case you don't want to 448 * return the znode 449 */ 450 static znode_t * 451 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 452 { 453 znode_t *zp; 454 vnode_t *vp; 455 456 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 457 458 ASSERT(zp->z_dirlocks == NULL); 459 ASSERT(zp->z_dbuf == NULL); 460 461 zp->z_phys = NULL; 462 zp->z_zfsvfs = zfsvfs; 463 zp->z_unlinked = 0; 464 zp->z_atime_dirty = 0; 465 zp->z_mapcnt = 0; 466 zp->z_last_itx = 0; 467 zp->z_id = db->db_object; 468 zp->z_blksz = blksz; 469 zp->z_seq = 0x7A4653; 470 zp->z_sync_cnt = 0; 471 472 vp = ZTOV(zp); 473 vn_reinit(vp); 474 475 zfs_znode_dmu_init(zp, db); 476 477 zp->z_gen = zp->z_phys->zp_gen; 478 479 mutex_enter(&zfsvfs->z_znodes_lock); 480 list_insert_tail(&zfsvfs->z_all_znodes, zp); 481 mutex_exit(&zfsvfs->z_znodes_lock); 482 483 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 484 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 485 486 switch (vp->v_type) { 487 case VDIR: 488 if (zp->z_phys->zp_flags & ZFS_XATTR) { 489 vn_setops(vp, zfs_xdvnodeops); 490 vp->v_flag |= V_XATTRDIR; 491 } else { 492 vn_setops(vp, zfs_dvnodeops); 493 } 494 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 495 break; 496 case VBLK: 497 case VCHR: 498 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 499 /*FALLTHROUGH*/ 500 case VFIFO: 501 case VSOCK: 502 case VDOOR: 503 vn_setops(vp, zfs_fvnodeops); 504 break; 505 case VREG: 506 vp->v_flag |= VMODSORT; 507 vn_setops(vp, zfs_fvnodeops); 508 break; 509 case VLNK: 510 vn_setops(vp, zfs_symvnodeops); 511 break; 512 default: 513 vn_setops(vp, zfs_evnodeops); 514 break; 515 } 516 517 /* it can be NULL from zfs_create_fs */ 518 if (zfsvfs->z_vfs) 519 VFS_HOLD(zfsvfs->z_vfs); 520 return (zp); 521 } 522 523 /* 524 * Create a new DMU object to hold a zfs znode. 525 * 526 * IN: dzp - parent directory for new znode 527 * vap - file attributes for new znode 528 * tx - dmu transaction id for zap operations 529 * cr - credentials of caller 530 * flag - flags: 531 * IS_ROOT_NODE - new object will be root 532 * IS_XATTR - new object is an attribute 533 * IS_REPLAY - intent log replay 534 * bonuslen - length of bonus buffer 535 * setaclp - File/Dir initial ACL 536 * fuidp - Tracks fuid allocation. 537 * 538 * OUT: zpp - allocated znode 539 * 540 */ 541 void 542 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 543 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 544 zfs_fuid_info_t **fuidp) 545 { 546 dmu_buf_t *db; 547 znode_phys_t *pzp; 548 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 549 timestruc_t now; 550 uint64_t gen, obj; 551 int err; 552 553 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 554 555 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 556 obj = vap->va_nodeid; 557 flag |= IS_REPLAY; 558 now = vap->va_ctime; /* see zfs_replay_create() */ 559 gen = vap->va_nblocks; /* ditto */ 560 } else { 561 obj = 0; 562 gethrestime(&now); 563 gen = dmu_tx_get_txg(tx); 564 } 565 566 /* 567 * Create a new DMU object. 568 */ 569 /* 570 * There's currently no mechanism for pre-reading the blocks that will 571 * be to needed allocate a new object, so we accept the small chance 572 * that there will be an i/o error and we will fail one of the 573 * assertions below. 574 */ 575 if (vap->va_type == VDIR) { 576 if (flag & IS_REPLAY) { 577 err = zap_create_claim_norm(zfsvfs->z_os, obj, 578 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 579 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 580 ASSERT3U(err, ==, 0); 581 } else { 582 obj = zap_create_norm(zfsvfs->z_os, 583 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 584 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 585 } 586 } else { 587 if (flag & IS_REPLAY) { 588 err = dmu_object_claim(zfsvfs->z_os, obj, 589 DMU_OT_PLAIN_FILE_CONTENTS, 0, 590 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 591 ASSERT3U(err, ==, 0); 592 } else { 593 obj = dmu_object_alloc(zfsvfs->z_os, 594 DMU_OT_PLAIN_FILE_CONTENTS, 0, 595 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 596 } 597 } 598 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 599 dmu_buf_will_dirty(db, tx); 600 601 /* 602 * Initialize the znode physical data to zero. 603 */ 604 ASSERT(db->db_size >= sizeof (znode_phys_t)); 605 bzero(db->db_data, db->db_size); 606 pzp = db->db_data; 607 608 /* 609 * If this is the root, fix up the half-initialized parent pointer 610 * to reference the just-allocated physical data area. 611 */ 612 if (flag & IS_ROOT_NODE) { 613 dzp->z_phys = pzp; 614 dzp->z_id = obj; 615 } 616 617 /* 618 * If parent is an xattr, so am I. 619 */ 620 if (dzp->z_phys->zp_flags & ZFS_XATTR) 621 flag |= IS_XATTR; 622 623 if (vap->va_type == VBLK || vap->va_type == VCHR) { 624 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 625 } 626 627 if (zfsvfs->z_use_fuids) 628 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 629 630 if (vap->va_type == VDIR) { 631 pzp->zp_size = 2; /* contents ("." and "..") */ 632 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 633 } 634 635 pzp->zp_parent = dzp->z_id; 636 if (flag & IS_XATTR) 637 pzp->zp_flags |= ZFS_XATTR; 638 639 pzp->zp_gen = gen; 640 641 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 642 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 643 644 if (vap->va_mask & AT_ATIME) { 645 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 646 } else { 647 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 648 } 649 650 if (vap->va_mask & AT_MTIME) { 651 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 652 } else { 653 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 654 } 655 656 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 657 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj) 658 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 659 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 660 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 661 } 662 663 void 664 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 665 { 666 xoptattr_t *xoap; 667 668 xoap = xva_getxoptattr(xvap); 669 ASSERT(xoap); 670 671 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 672 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 673 XVA_SET_RTN(xvap, XAT_CREATETIME); 674 } 675 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 676 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 677 XVA_SET_RTN(xvap, XAT_READONLY); 678 } 679 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 680 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 681 XVA_SET_RTN(xvap, XAT_HIDDEN); 682 } 683 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 684 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 685 XVA_SET_RTN(xvap, XAT_SYSTEM); 686 } 687 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 688 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 689 XVA_SET_RTN(xvap, XAT_ARCHIVE); 690 } 691 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 692 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 693 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 694 } 695 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 696 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 697 XVA_SET_RTN(xvap, XAT_NOUNLINK); 698 } 699 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 700 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 701 XVA_SET_RTN(xvap, XAT_APPENDONLY); 702 } 703 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 704 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 705 XVA_SET_RTN(xvap, XAT_NODUMP); 706 } 707 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 708 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 709 XVA_SET_RTN(xvap, XAT_OPAQUE); 710 } 711 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 712 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 713 xoap->xoa_av_quarantined); 714 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 715 } 716 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 717 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 718 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 719 } 720 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 721 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 722 sizeof (xoap->xoa_av_scanstamp)); 723 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 724 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 725 } 726 } 727 728 int 729 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 730 { 731 dmu_object_info_t doi; 732 dmu_buf_t *db; 733 znode_t *zp; 734 int err; 735 736 *zpp = NULL; 737 738 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 739 740 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 741 if (err) { 742 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 743 return (err); 744 } 745 746 dmu_object_info_from_db(db, &doi); 747 if (doi.doi_bonus_type != DMU_OT_ZNODE || 748 doi.doi_bonus_size < sizeof (znode_phys_t)) { 749 dmu_buf_rele(db, NULL); 750 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 751 return (EINVAL); 752 } 753 754 zp = dmu_buf_get_user(db); 755 if (zp != NULL) { 756 mutex_enter(&zp->z_lock); 757 758 /* 759 * Since we do immediate eviction of the z_dbuf, we 760 * should never find a dbuf with a znode that doesn't 761 * know about the dbuf. 762 */ 763 ASSERT3P(zp->z_dbuf, ==, db); 764 ASSERT3U(zp->z_id, ==, obj_num); 765 if (zp->z_unlinked) { 766 err = ENOENT; 767 } else { 768 VN_HOLD(ZTOV(zp)); 769 *zpp = zp; 770 err = 0; 771 } 772 dmu_buf_rele(db, NULL); 773 mutex_exit(&zp->z_lock); 774 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 775 return (err); 776 } 777 778 /* 779 * Not found create new znode/vnode 780 */ 781 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 782 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 783 *zpp = zp; 784 return (0); 785 } 786 787 int 788 zfs_rezget(znode_t *zp) 789 { 790 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 791 dmu_object_info_t doi; 792 dmu_buf_t *db; 793 uint64_t obj_num = zp->z_id; 794 int err; 795 796 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 797 798 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 799 if (err) { 800 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 801 return (err); 802 } 803 804 dmu_object_info_from_db(db, &doi); 805 if (doi.doi_bonus_type != DMU_OT_ZNODE || 806 doi.doi_bonus_size < sizeof (znode_phys_t)) { 807 dmu_buf_rele(db, NULL); 808 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 809 return (EINVAL); 810 } 811 812 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 813 dmu_buf_rele(db, NULL); 814 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 815 return (EIO); 816 } 817 818 zfs_znode_dmu_init(zp, db); 819 zp->z_unlinked = (zp->z_phys->zp_links == 0); 820 821 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 822 823 return (0); 824 } 825 826 void 827 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 828 { 829 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 830 uint64_t obj = zp->z_id; 831 832 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 833 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 834 VERIFY(0 == dmu_object_free(zfsvfs->z_os, 835 zp->z_phys->zp_acl.z_acl_extern_obj, tx)); 836 } 837 VERIFY(0 == dmu_object_free(zfsvfs->z_os, obj, tx)); 838 zfs_znode_dmu_fini(zp); 839 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 840 } 841 842 void 843 zfs_zinactive(znode_t *zp) 844 { 845 vnode_t *vp = ZTOV(zp); 846 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 847 uint64_t z_id = zp->z_id; 848 849 ASSERT(zp->z_dbuf && zp->z_phys); 850 851 /* 852 * Don't allow a zfs_zget() while were trying to release this znode 853 */ 854 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 855 856 mutex_enter(&zp->z_lock); 857 mutex_enter(&vp->v_lock); 858 vp->v_count--; 859 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 860 /* 861 * If the hold count is greater than zero, somebody has 862 * obtained a new reference on this znode while we were 863 * processing it here, so we are done. If we still have 864 * mapped pages then we are also done, since we don't 865 * want to inactivate the znode until the pages get pushed. 866 * 867 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 868 * this seems like it would leave the znode hanging with 869 * no chance to go inactive... 870 */ 871 mutex_exit(&vp->v_lock); 872 mutex_exit(&zp->z_lock); 873 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 874 return; 875 } 876 mutex_exit(&vp->v_lock); 877 878 /* 879 * If this was the last reference to a file with no links, 880 * remove the file from the file system. 881 */ 882 if (zp->z_unlinked) { 883 mutex_exit(&zp->z_lock); 884 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 885 zfs_rmnode(zp); 886 VFS_RELE(zfsvfs->z_vfs); 887 return; 888 } 889 mutex_exit(&zp->z_lock); 890 zfs_znode_dmu_fini(zp); 891 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 892 /* it can be NULL from zfs_create_fs */ 893 if (zfsvfs->z_vfs) 894 VFS_RELE(zfsvfs->z_vfs); 895 } 896 897 void 898 zfs_znode_free(znode_t *zp) 899 { 900 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 901 902 mutex_enter(&zfsvfs->z_znodes_lock); 903 list_remove(&zfsvfs->z_all_znodes, zp); 904 mutex_exit(&zfsvfs->z_znodes_lock); 905 906 kmem_cache_free(znode_cache, zp); 907 } 908 909 void 910 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 911 { 912 timestruc_t now; 913 914 ASSERT(MUTEX_HELD(&zp->z_lock)); 915 916 gethrestime(&now); 917 918 if (tx) { 919 dmu_buf_will_dirty(zp->z_dbuf, tx); 920 zp->z_atime_dirty = 0; 921 zp->z_seq++; 922 } else { 923 zp->z_atime_dirty = 1; 924 } 925 926 if (flag & AT_ATIME) 927 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 928 929 if (flag & AT_MTIME) { 930 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 931 if (zp->z_zfsvfs->z_use_fuids) 932 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 933 } 934 935 if (flag & AT_CTIME) { 936 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 937 if (zp->z_zfsvfs->z_use_fuids) 938 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 939 } 940 } 941 942 /* 943 * Update the requested znode timestamps with the current time. 944 * If we are in a transaction, then go ahead and mark the znode 945 * dirty in the transaction so the timestamps will go to disk. 946 * Otherwise, we will get pushed next time the znode is updated 947 * in a transaction, or when this znode eventually goes inactive. 948 * 949 * Why is this OK? 950 * 1 - Only the ACCESS time is ever updated outside of a transaction. 951 * 2 - Multiple consecutive updates will be collapsed into a single 952 * znode update by the transaction grouping semantics of the DMU. 953 */ 954 void 955 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 956 { 957 mutex_enter(&zp->z_lock); 958 zfs_time_stamper_locked(zp, flag, tx); 959 mutex_exit(&zp->z_lock); 960 } 961 962 /* 963 * Grow the block size for a file. 964 * 965 * IN: zp - znode of file to free data in. 966 * size - requested block size 967 * tx - open transaction. 968 * 969 * NOTE: this function assumes that the znode is write locked. 970 */ 971 void 972 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 973 { 974 int error; 975 u_longlong_t dummy; 976 977 if (size <= zp->z_blksz) 978 return; 979 /* 980 * If the file size is already greater than the current blocksize, 981 * we will not grow. If there is more than one block in a file, 982 * the blocksize cannot change. 983 */ 984 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 985 return; 986 987 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 988 size, 0, tx); 989 if (error == ENOTSUP) 990 return; 991 ASSERT3U(error, ==, 0); 992 993 /* What blocksize did we actually get? */ 994 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 995 } 996 997 /* 998 * This is a dummy interface used when pvn_vplist_dirty() should *not* 999 * be calling back into the fs for a putpage(). E.g.: when truncating 1000 * a file, the pages being "thrown away* don't need to be written out. 1001 */ 1002 /* ARGSUSED */ 1003 static int 1004 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1005 int flags, cred_t *cr) 1006 { 1007 ASSERT(0); 1008 return (0); 1009 } 1010 1011 /* 1012 * Free space in a file. 1013 * 1014 * IN: zp - znode of file to free data in. 1015 * off - start of section to free. 1016 * len - length of section to free (0 => to EOF). 1017 * flag - current file open mode flags. 1018 * 1019 * RETURN: 0 if success 1020 * error code if failure 1021 */ 1022 int 1023 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1024 { 1025 vnode_t *vp = ZTOV(zp); 1026 dmu_tx_t *tx; 1027 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1028 zilog_t *zilog = zfsvfs->z_log; 1029 rl_t *rl; 1030 uint64_t end = off + len; 1031 uint64_t size, new_blksz; 1032 uint64_t pflags = zp->z_phys->zp_flags; 1033 int error; 1034 1035 if ((pflags & (ZFS_IMMUTABLE|ZFS_READONLY)) || 1036 off < zp->z_phys->zp_size && (pflags & ZFS_APPENDONLY)) 1037 return (EPERM); 1038 1039 if (ZTOV(zp)->v_type == VFIFO) 1040 return (0); 1041 1042 /* 1043 * If we will change zp_size then lock the whole file, 1044 * otherwise just lock the range being freed. 1045 */ 1046 if (len == 0 || off + len > zp->z_phys->zp_size) { 1047 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1048 } else { 1049 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1050 /* recheck, in case zp_size changed */ 1051 if (off + len > zp->z_phys->zp_size) { 1052 /* lost race: file size changed, lock whole file */ 1053 zfs_range_unlock(rl); 1054 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1055 } 1056 } 1057 1058 /* 1059 * Nothing to do if file already at desired length. 1060 */ 1061 size = zp->z_phys->zp_size; 1062 if (len == 0 && size == off && off != 0) { 1063 zfs_range_unlock(rl); 1064 return (0); 1065 } 1066 1067 /* 1068 * Check for any locks in the region to be freed. 1069 */ 1070 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1071 uint64_t start = off; 1072 uint64_t extent = len; 1073 1074 if (off > size) { 1075 start = size; 1076 extent += off - size; 1077 } else if (len == 0) { 1078 extent = size - off; 1079 } 1080 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 1081 zfs_range_unlock(rl); 1082 return (error); 1083 } 1084 } 1085 1086 tx = dmu_tx_create(zfsvfs->z_os); 1087 dmu_tx_hold_bonus(tx, zp->z_id); 1088 new_blksz = 0; 1089 if (end > size && 1090 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1091 /* 1092 * We are growing the file past the current block size. 1093 */ 1094 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1095 ASSERT(!ISP2(zp->z_blksz)); 1096 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 1097 } else { 1098 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1099 } 1100 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 1101 } else if (off < size) { 1102 /* 1103 * If len == 0, we are truncating the file. 1104 */ 1105 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 1106 } 1107 1108 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1109 if (error) { 1110 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 1111 dmu_tx_wait(tx); 1112 dmu_tx_abort(tx); 1113 zfs_range_unlock(rl); 1114 return (error); 1115 } 1116 1117 if (new_blksz) 1118 zfs_grow_blocksize(zp, new_blksz, tx); 1119 1120 if (end > size || len == 0) 1121 zp->z_phys->zp_size = end; 1122 1123 if (off < size) { 1124 objset_t *os = zfsvfs->z_os; 1125 uint64_t rlen = len; 1126 1127 if (len == 0) 1128 rlen = -1; 1129 else if (end > size) 1130 rlen = size - off; 1131 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1132 } 1133 1134 if (log) { 1135 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1136 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1137 } 1138 1139 zfs_range_unlock(rl); 1140 1141 dmu_tx_commit(tx); 1142 1143 /* 1144 * Clear any mapped pages in the truncated region. This has to 1145 * happen outside of the transaction to avoid the possibility of 1146 * a deadlock with someone trying to push a page that we are 1147 * about to invalidate. 1148 */ 1149 rw_enter(&zp->z_map_lock, RW_WRITER); 1150 if (off < size && vn_has_cached_data(vp)) { 1151 page_t *pp; 1152 uint64_t start = off & PAGEMASK; 1153 int poff = off & PAGEOFFSET; 1154 1155 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1156 /* 1157 * We need to zero a partial page. 1158 */ 1159 pagezero(pp, poff, PAGESIZE - poff); 1160 start += PAGESIZE; 1161 page_unlock(pp); 1162 } 1163 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1164 B_INVAL | B_TRUNC, NULL); 1165 ASSERT(error == 0); 1166 } 1167 rw_exit(&zp->z_map_lock); 1168 1169 return (0); 1170 } 1171 1172 void 1173 zfs_create_fs(objset_t *os, cred_t *cr, uint64_t version, 1174 int norm, dmu_tx_t *tx) 1175 { 1176 zfsvfs_t zfsvfs; 1177 uint64_t moid, doid; 1178 int error; 1179 znode_t *rootzp = NULL; 1180 vnode_t *vp; 1181 vattr_t vattr; 1182 znode_t *zp; 1183 1184 /* 1185 * First attempt to create master node. 1186 */ 1187 /* 1188 * In an empty objset, there are no blocks to read and thus 1189 * there can be no i/o errors (which we assert below). 1190 */ 1191 moid = MASTER_NODE_OBJ; 1192 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1193 DMU_OT_NONE, 0, tx); 1194 ASSERT(error == 0); 1195 1196 /* 1197 * Set starting attributes. 1198 */ 1199 1200 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1201 ASSERT(error == 0); 1202 1203 /* 1204 * Create a delete queue. 1205 */ 1206 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1207 1208 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1209 ASSERT(error == 0); 1210 1211 /* 1212 * Create root znode. Create minimal znode/vnode/zfsvfs 1213 * to allow zfs_mknode to work. 1214 */ 1215 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1216 vattr.va_type = VDIR; 1217 vattr.va_mode = S_IFDIR|0755; 1218 vattr.va_uid = crgetuid(cr); 1219 vattr.va_gid = crgetgid(cr); 1220 1221 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1222 rootzp->z_zfsvfs = &zfsvfs; 1223 rootzp->z_unlinked = 0; 1224 rootzp->z_atime_dirty = 0; 1225 1226 vp = ZTOV(rootzp); 1227 vn_reinit(vp); 1228 vp->v_type = VDIR; 1229 1230 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1231 1232 zfsvfs.z_os = os; 1233 zfsvfs.z_assign = TXG_NOWAIT; 1234 zfsvfs.z_parent = &zfsvfs; 1235 zfsvfs.z_version = version; 1236 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1237 zfsvfs.z_norm = norm; 1238 1239 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1240 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1241 offsetof(znode_t, z_link_node)); 1242 1243 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, 1244 &zp, 0, NULL, NULL); 1245 VN_RELE(ZTOV(zp)); 1246 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1247 ASSERT(error == 0); 1248 1249 ZTOV(rootzp)->v_count = 0; 1250 kmem_cache_free(znode_cache, rootzp); 1251 } 1252 1253 #endif /* _KERNEL */ 1254 /* 1255 * Given an object number, return its parent object number and whether 1256 * or not the object is an extended attribute directory. 1257 */ 1258 static int 1259 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1260 { 1261 dmu_buf_t *db; 1262 dmu_object_info_t doi; 1263 znode_phys_t *zp; 1264 int error; 1265 1266 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1267 return (error); 1268 1269 dmu_object_info_from_db(db, &doi); 1270 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1271 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1272 dmu_buf_rele(db, FTAG); 1273 return (EINVAL); 1274 } 1275 1276 zp = db->db_data; 1277 *pobjp = zp->zp_parent; 1278 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1279 S_ISDIR(zp->zp_mode); 1280 dmu_buf_rele(db, FTAG); 1281 1282 return (0); 1283 } 1284 1285 int 1286 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1287 { 1288 char *path = buf + len - 1; 1289 int error; 1290 1291 *path = '\0'; 1292 1293 for (;;) { 1294 uint64_t pobj; 1295 char component[MAXNAMELEN + 2]; 1296 size_t complen; 1297 int is_xattrdir; 1298 1299 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1300 &is_xattrdir)) != 0) 1301 break; 1302 1303 if (pobj == obj) { 1304 if (path[0] != '/') 1305 *--path = '/'; 1306 break; 1307 } 1308 1309 component[0] = '/'; 1310 if (is_xattrdir) { 1311 (void) sprintf(component + 1, "<xattrdir>"); 1312 } else { 1313 error = zap_value_search(osp, pobj, obj, 1314 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1315 if (error != 0) 1316 break; 1317 } 1318 1319 complen = strlen(component); 1320 path -= complen; 1321 ASSERT(path >= buf); 1322 bcopy(component, path, complen); 1323 obj = pobj; 1324 } 1325 1326 if (error == 0) 1327 (void) memmove(buf, path, buf + len - path); 1328 return (error); 1329 } 1330