1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * 105 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 106 * as they can span dmu_tx_assign() calls. 107 * 108 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 109 * This is critical because we don't want to block while holding locks. 110 * Note, in particular, that if a lock is sometimes acquired before 111 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 112 * use a non-blocking assign can deadlock the system. The scenario: 113 * 114 * Thread A has grabbed a lock before calling dmu_tx_assign(). 115 * Thread B is in an already-assigned tx, and blocks for this lock. 116 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 117 * forever, because the previous txg can't quiesce until B's tx commits. 118 * 119 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 120 * then drop all locks, call dmu_tx_wait(), and try again. 121 * 122 * (5) If the operation succeeded, generate the intent log entry for it 123 * before dropping locks. This ensures that the ordering of events 124 * in the intent log matches the order in which they actually occurred. 125 * During ZIL replay the zfs_log_* functions will update the sequence 126 * number to indicate the zil transaction has replayed. 127 * 128 * (6) At the end of each vnode op, the DMU tx must always commit, 129 * regardless of whether there were any errors. 130 * 131 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 132 * to ensure that synchronous semantics are provided when necessary. 133 * 134 * In general, this is how things should be ordered in each vnode op: 135 * 136 * ZFS_ENTER(zfsvfs); // exit if unmounted 137 * top: 138 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 139 * rw_enter(...); // grab any other locks you need 140 * tx = dmu_tx_create(...); // get DMU tx 141 * dmu_tx_hold_*(); // hold each object you might modify 142 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 143 * if (error) { 144 * rw_exit(...); // drop locks 145 * zfs_dirent_unlock(dl); // unlock directory entry 146 * VN_RELE(...); // release held vnodes 147 * if (error == ERESTART) { 148 * dmu_tx_wait(tx); 149 * dmu_tx_abort(tx); 150 * goto top; 151 * } 152 * dmu_tx_abort(tx); // abort DMU tx 153 * ZFS_EXIT(zfsvfs); // finished in zfs 154 * return (error); // really out of space 155 * } 156 * error = do_real_work(); // do whatever this VOP does 157 * if (error == 0) 158 * zfs_log_*(...); // on success, make ZIL entry 159 * dmu_tx_commit(tx); // commit DMU tx -- error or not 160 * rw_exit(...); // drop locks 161 * zfs_dirent_unlock(dl); // unlock directory entry 162 * VN_RELE(...); // release held vnodes 163 * zil_commit(zilog, seq, foid); // synchronous when necessary 164 * ZFS_EXIT(zfsvfs); // finished in zfs 165 * return (error); // done, report error 166 */ 167 168 /* ARGSUSED */ 169 static int 170 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 171 { 172 znode_t *zp = VTOZ(*vpp); 173 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 174 175 ZFS_ENTER(zfsvfs); 176 ZFS_VERIFY_ZP(zp); 177 178 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 179 ((flag & FAPPEND) == 0)) { 180 ZFS_EXIT(zfsvfs); 181 return (EPERM); 182 } 183 184 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 185 ZTOV(zp)->v_type == VREG && 186 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 187 zp->z_phys->zp_size > 0) { 188 if (fs_vscan(*vpp, cr, 0) != 0) { 189 ZFS_EXIT(zfsvfs); 190 return (EACCES); 191 } 192 } 193 194 /* Keep a count of the synchronous opens in the znode */ 195 if (flag & (FSYNC | FDSYNC)) 196 atomic_inc_32(&zp->z_sync_cnt); 197 198 ZFS_EXIT(zfsvfs); 199 return (0); 200 } 201 202 /* ARGSUSED */ 203 static int 204 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 205 caller_context_t *ct) 206 { 207 znode_t *zp = VTOZ(vp); 208 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 209 210 ZFS_ENTER(zfsvfs); 211 ZFS_VERIFY_ZP(zp); 212 213 /* Decrement the synchronous opens in the znode */ 214 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 215 atomic_dec_32(&zp->z_sync_cnt); 216 217 /* 218 * Clean up any locks held by this process on the vp. 219 */ 220 cleanlocks(vp, ddi_get_pid(), 0); 221 cleanshares(vp, ddi_get_pid()); 222 223 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 224 ZTOV(zp)->v_type == VREG && 225 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 226 zp->z_phys->zp_size > 0) 227 VERIFY(fs_vscan(vp, cr, 1) == 0); 228 229 ZFS_EXIT(zfsvfs); 230 return (0); 231 } 232 233 /* 234 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 235 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 236 */ 237 static int 238 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 239 { 240 znode_t *zp = VTOZ(vp); 241 uint64_t noff = (uint64_t)*off; /* new offset */ 242 uint64_t file_sz; 243 int error; 244 boolean_t hole; 245 246 file_sz = zp->z_phys->zp_size; 247 if (noff >= file_sz) { 248 return (ENXIO); 249 } 250 251 if (cmd == _FIO_SEEK_HOLE) 252 hole = B_TRUE; 253 else 254 hole = B_FALSE; 255 256 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 257 258 /* end of file? */ 259 if ((error == ESRCH) || (noff > file_sz)) { 260 /* 261 * Handle the virtual hole at the end of file. 262 */ 263 if (hole) { 264 *off = file_sz; 265 return (0); 266 } 267 return (ENXIO); 268 } 269 270 if (noff < *off) 271 return (error); 272 *off = noff; 273 return (error); 274 } 275 276 /* ARGSUSED */ 277 static int 278 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 279 int *rvalp, caller_context_t *ct) 280 { 281 offset_t off; 282 int error; 283 zfsvfs_t *zfsvfs; 284 znode_t *zp; 285 286 switch (com) { 287 case _FIOFFS: 288 return (zfs_sync(vp->v_vfsp, 0, cred)); 289 290 /* 291 * The following two ioctls are used by bfu. Faking out, 292 * necessary to avoid bfu errors. 293 */ 294 case _FIOGDIO: 295 case _FIOSDIO: 296 return (0); 297 298 case _FIO_SEEK_DATA: 299 case _FIO_SEEK_HOLE: 300 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 301 return (EFAULT); 302 303 zp = VTOZ(vp); 304 zfsvfs = zp->z_zfsvfs; 305 ZFS_ENTER(zfsvfs); 306 ZFS_VERIFY_ZP(zp); 307 308 /* offset parameter is in/out */ 309 error = zfs_holey(vp, com, &off); 310 ZFS_EXIT(zfsvfs); 311 if (error) 312 return (error); 313 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 314 return (EFAULT); 315 return (0); 316 } 317 return (ENOTTY); 318 } 319 320 /* 321 * Utility functions to map and unmap a single physical page. These 322 * are used to manage the mappable copies of ZFS file data, and therefore 323 * do not update ref/mod bits. 324 */ 325 caddr_t 326 zfs_map_page(page_t *pp, enum seg_rw rw) 327 { 328 if (kpm_enable) 329 return (hat_kpm_mapin(pp, 0)); 330 ASSERT(rw == S_READ || rw == S_WRITE); 331 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 332 (caddr_t)-1)); 333 } 334 335 void 336 zfs_unmap_page(page_t *pp, caddr_t addr) 337 { 338 if (kpm_enable) { 339 hat_kpm_mapout(pp, 0, addr); 340 } else { 341 ppmapout(addr); 342 } 343 } 344 345 /* 346 * When a file is memory mapped, we must keep the IO data synchronized 347 * between the DMU cache and the memory mapped pages. What this means: 348 * 349 * On Write: If we find a memory mapped page, we write to *both* 350 * the page and the dmu buffer. 351 * 352 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 353 * the file is memory mapped. 354 */ 355 static int 356 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 357 { 358 znode_t *zp = VTOZ(vp); 359 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 360 int64_t start, off; 361 int len = nbytes; 362 int error = 0; 363 364 start = uio->uio_loffset; 365 off = start & PAGEOFFSET; 366 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 367 page_t *pp; 368 uint64_t bytes = MIN(PAGESIZE - off, len); 369 uint64_t woff = uio->uio_loffset; 370 371 /* 372 * We don't want a new page to "appear" in the middle of 373 * the file update (because it may not get the write 374 * update data), so we grab a lock to block 375 * zfs_getpage(). 376 */ 377 rw_enter(&zp->z_map_lock, RW_WRITER); 378 if (pp = page_lookup(vp, start, SE_SHARED)) { 379 caddr_t va; 380 381 rw_exit(&zp->z_map_lock); 382 va = zfs_map_page(pp, S_WRITE); 383 error = uiomove(va+off, bytes, UIO_WRITE, uio); 384 if (error == 0) { 385 dmu_write(zfsvfs->z_os, zp->z_id, 386 woff, bytes, va+off, tx); 387 } 388 zfs_unmap_page(pp, va); 389 page_unlock(pp); 390 } else { 391 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 392 uio, bytes, tx); 393 rw_exit(&zp->z_map_lock); 394 } 395 len -= bytes; 396 off = 0; 397 if (error) 398 break; 399 } 400 return (error); 401 } 402 403 /* 404 * When a file is memory mapped, we must keep the IO data synchronized 405 * between the DMU cache and the memory mapped pages. What this means: 406 * 407 * On Read: We "read" preferentially from memory mapped pages, 408 * else we default from the dmu buffer. 409 * 410 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 411 * the file is memory mapped. 412 */ 413 static int 414 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 415 { 416 znode_t *zp = VTOZ(vp); 417 objset_t *os = zp->z_zfsvfs->z_os; 418 int64_t start, off; 419 int len = nbytes; 420 int error = 0; 421 422 start = uio->uio_loffset; 423 off = start & PAGEOFFSET; 424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 425 page_t *pp; 426 uint64_t bytes = MIN(PAGESIZE - off, len); 427 428 if (pp = page_lookup(vp, start, SE_SHARED)) { 429 caddr_t va; 430 431 va = zfs_map_page(pp, S_READ); 432 error = uiomove(va + off, bytes, UIO_READ, uio); 433 zfs_unmap_page(pp, va); 434 page_unlock(pp); 435 } else { 436 error = dmu_read_uio(os, zp->z_id, uio, bytes); 437 } 438 len -= bytes; 439 off = 0; 440 if (error) 441 break; 442 } 443 return (error); 444 } 445 446 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 447 448 /* 449 * Read bytes from specified file into supplied buffer. 450 * 451 * IN: vp - vnode of file to be read from. 452 * uio - structure supplying read location, range info, 453 * and return buffer. 454 * ioflag - SYNC flags; used to provide FRSYNC semantics. 455 * cr - credentials of caller. 456 * ct - caller context 457 * 458 * OUT: uio - updated offset and range, buffer filled. 459 * 460 * RETURN: 0 if success 461 * error code if failure 462 * 463 * Side Effects: 464 * vp - atime updated if byte count > 0 465 */ 466 /* ARGSUSED */ 467 static int 468 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 469 { 470 znode_t *zp = VTOZ(vp); 471 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 472 objset_t *os; 473 ssize_t n, nbytes; 474 int error; 475 rl_t *rl; 476 477 ZFS_ENTER(zfsvfs); 478 ZFS_VERIFY_ZP(zp); 479 os = zfsvfs->z_os; 480 481 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 482 ZFS_EXIT(zfsvfs); 483 return (EACCES); 484 } 485 486 /* 487 * Validate file offset 488 */ 489 if (uio->uio_loffset < (offset_t)0) { 490 ZFS_EXIT(zfsvfs); 491 return (EINVAL); 492 } 493 494 /* 495 * Fasttrack empty reads 496 */ 497 if (uio->uio_resid == 0) { 498 ZFS_EXIT(zfsvfs); 499 return (0); 500 } 501 502 /* 503 * Check for mandatory locks 504 */ 505 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 506 if (error = chklock(vp, FREAD, 507 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 508 ZFS_EXIT(zfsvfs); 509 return (error); 510 } 511 } 512 513 /* 514 * If we're in FRSYNC mode, sync out this znode before reading it. 515 */ 516 if (ioflag & FRSYNC) 517 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 518 519 /* 520 * Lock the range against changes. 521 */ 522 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 523 524 /* 525 * If we are reading past end-of-file we can skip 526 * to the end; but we might still need to set atime. 527 */ 528 if (uio->uio_loffset >= zp->z_phys->zp_size) { 529 error = 0; 530 goto out; 531 } 532 533 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 534 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 535 536 while (n > 0) { 537 nbytes = MIN(n, zfs_read_chunk_size - 538 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 539 540 if (vn_has_cached_data(vp)) 541 error = mappedread(vp, nbytes, uio); 542 else 543 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 544 if (error) { 545 /* convert checksum errors into IO errors */ 546 if (error == ECKSUM) 547 error = EIO; 548 break; 549 } 550 551 n -= nbytes; 552 } 553 554 out: 555 zfs_range_unlock(rl); 556 557 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 558 ZFS_EXIT(zfsvfs); 559 return (error); 560 } 561 562 /* 563 * Write the bytes to a file. 564 * 565 * IN: vp - vnode of file to be written to. 566 * uio - structure supplying write location, range info, 567 * and data buffer. 568 * ioflag - FAPPEND flag set if in append mode. 569 * cr - credentials of caller. 570 * ct - caller context (NFS/CIFS fem monitor only) 571 * 572 * OUT: uio - updated offset and range. 573 * 574 * RETURN: 0 if success 575 * error code if failure 576 * 577 * Timestamps: 578 * vp - ctime|mtime updated if byte count > 0 579 */ 580 /* ARGSUSED */ 581 static int 582 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 583 { 584 znode_t *zp = VTOZ(vp); 585 rlim64_t limit = uio->uio_llimit; 586 ssize_t start_resid = uio->uio_resid; 587 ssize_t tx_bytes; 588 uint64_t end_size; 589 dmu_tx_t *tx; 590 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 591 zilog_t *zilog; 592 offset_t woff; 593 ssize_t n, nbytes; 594 rl_t *rl; 595 int max_blksz = zfsvfs->z_max_blksz; 596 uint64_t pflags; 597 int error; 598 599 /* 600 * Fasttrack empty write 601 */ 602 n = start_resid; 603 if (n == 0) 604 return (0); 605 606 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 607 limit = MAXOFFSET_T; 608 609 ZFS_ENTER(zfsvfs); 610 ZFS_VERIFY_ZP(zp); 611 612 /* 613 * If immutable or not appending then return EPERM 614 */ 615 pflags = zp->z_phys->zp_flags; 616 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 617 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 618 (uio->uio_loffset < zp->z_phys->zp_size))) { 619 ZFS_EXIT(zfsvfs); 620 return (EPERM); 621 } 622 623 zilog = zfsvfs->z_log; 624 625 /* 626 * Pre-fault the pages to ensure slow (eg NFS) pages 627 * don't hold up txg. 628 */ 629 uio_prefaultpages(n, uio); 630 631 /* 632 * If in append mode, set the io offset pointer to eof. 633 */ 634 if (ioflag & FAPPEND) { 635 /* 636 * Range lock for a file append: 637 * The value for the start of range will be determined by 638 * zfs_range_lock() (to guarantee append semantics). 639 * If this write will cause the block size to increase, 640 * zfs_range_lock() will lock the entire file, so we must 641 * later reduce the range after we grow the block size. 642 */ 643 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 644 if (rl->r_len == UINT64_MAX) { 645 /* overlocked, zp_size can't change */ 646 woff = uio->uio_loffset = zp->z_phys->zp_size; 647 } else { 648 woff = uio->uio_loffset = rl->r_off; 649 } 650 } else { 651 woff = uio->uio_loffset; 652 /* 653 * Validate file offset 654 */ 655 if (woff < 0) { 656 ZFS_EXIT(zfsvfs); 657 return (EINVAL); 658 } 659 660 /* 661 * If we need to grow the block size then zfs_range_lock() 662 * will lock a wider range than we request here. 663 * Later after growing the block size we reduce the range. 664 */ 665 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 666 } 667 668 if (woff >= limit) { 669 zfs_range_unlock(rl); 670 ZFS_EXIT(zfsvfs); 671 return (EFBIG); 672 } 673 674 if ((woff + n) > limit || woff > (limit - n)) 675 n = limit - woff; 676 677 /* 678 * Check for mandatory locks 679 */ 680 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 681 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 682 zfs_range_unlock(rl); 683 ZFS_EXIT(zfsvfs); 684 return (error); 685 } 686 end_size = MAX(zp->z_phys->zp_size, woff + n); 687 688 /* 689 * Write the file in reasonable size chunks. Each chunk is written 690 * in a separate transaction; this keeps the intent log records small 691 * and allows us to do more fine-grained space accounting. 692 */ 693 while (n > 0) { 694 /* 695 * Start a transaction. 696 */ 697 woff = uio->uio_loffset; 698 tx = dmu_tx_create(zfsvfs->z_os); 699 dmu_tx_hold_bonus(tx, zp->z_id); 700 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 701 error = dmu_tx_assign(tx, TXG_NOWAIT); 702 if (error) { 703 if (error == ERESTART) { 704 dmu_tx_wait(tx); 705 dmu_tx_abort(tx); 706 continue; 707 } 708 dmu_tx_abort(tx); 709 break; 710 } 711 712 /* 713 * If zfs_range_lock() over-locked we grow the blocksize 714 * and then reduce the lock range. This will only happen 715 * on the first iteration since zfs_range_reduce() will 716 * shrink down r_len to the appropriate size. 717 */ 718 if (rl->r_len == UINT64_MAX) { 719 uint64_t new_blksz; 720 721 if (zp->z_blksz > max_blksz) { 722 ASSERT(!ISP2(zp->z_blksz)); 723 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 724 } else { 725 new_blksz = MIN(end_size, max_blksz); 726 } 727 zfs_grow_blocksize(zp, new_blksz, tx); 728 zfs_range_reduce(rl, woff, n); 729 } 730 731 /* 732 * XXX - should we really limit each write to z_max_blksz? 733 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 734 */ 735 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 736 rw_enter(&zp->z_map_lock, RW_READER); 737 738 tx_bytes = uio->uio_resid; 739 if (vn_has_cached_data(vp)) { 740 rw_exit(&zp->z_map_lock); 741 error = mappedwrite(vp, nbytes, uio, tx); 742 } else { 743 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 744 uio, nbytes, tx); 745 rw_exit(&zp->z_map_lock); 746 } 747 tx_bytes -= uio->uio_resid; 748 749 /* 750 * If we made no progress, we're done. If we made even 751 * partial progress, update the znode and ZIL accordingly. 752 */ 753 if (tx_bytes == 0) { 754 dmu_tx_commit(tx); 755 ASSERT(error != 0); 756 break; 757 } 758 759 /* 760 * Clear Set-UID/Set-GID bits on successful write if not 761 * privileged and at least one of the excute bits is set. 762 * 763 * It would be nice to to this after all writes have 764 * been done, but that would still expose the ISUID/ISGID 765 * to another app after the partial write is committed. 766 * 767 * Note: we don't call zfs_fuid_map_id() here because 768 * user 0 is not an ephemeral uid. 769 */ 770 mutex_enter(&zp->z_acl_lock); 771 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 772 (S_IXUSR >> 6))) != 0 && 773 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 774 secpolicy_vnode_setid_retain(cr, 775 (zp->z_phys->zp_mode & S_ISUID) != 0 && 776 zp->z_phys->zp_uid == 0) != 0) { 777 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 778 } 779 mutex_exit(&zp->z_acl_lock); 780 781 /* 782 * Update time stamp. NOTE: This marks the bonus buffer as 783 * dirty, so we don't have to do it again for zp_size. 784 */ 785 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 786 787 /* 788 * Update the file size (zp_size) if it has changed; 789 * account for possible concurrent updates. 790 */ 791 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 792 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 793 uio->uio_loffset); 794 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 795 dmu_tx_commit(tx); 796 797 if (error != 0) 798 break; 799 ASSERT(tx_bytes == nbytes); 800 n -= nbytes; 801 } 802 803 zfs_range_unlock(rl); 804 805 /* 806 * If we're in replay mode, or we made no progress, return error. 807 * Otherwise, it's at least a partial write, so it's successful. 808 */ 809 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 810 ZFS_EXIT(zfsvfs); 811 return (error); 812 } 813 814 if (ioflag & (FSYNC | FDSYNC)) 815 zil_commit(zilog, zp->z_last_itx, zp->z_id); 816 817 ZFS_EXIT(zfsvfs); 818 return (0); 819 } 820 821 void 822 zfs_get_done(dmu_buf_t *db, void *vzgd) 823 { 824 zgd_t *zgd = (zgd_t *)vzgd; 825 rl_t *rl = zgd->zgd_rl; 826 vnode_t *vp = ZTOV(rl->r_zp); 827 828 dmu_buf_rele(db, vzgd); 829 zfs_range_unlock(rl); 830 VN_RELE(vp); 831 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 832 kmem_free(zgd, sizeof (zgd_t)); 833 } 834 835 /* 836 * Get data to generate a TX_WRITE intent log record. 837 */ 838 int 839 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 840 { 841 zfsvfs_t *zfsvfs = arg; 842 objset_t *os = zfsvfs->z_os; 843 znode_t *zp; 844 uint64_t off = lr->lr_offset; 845 dmu_buf_t *db; 846 rl_t *rl; 847 zgd_t *zgd; 848 int dlen = lr->lr_length; /* length of user data */ 849 int error = 0; 850 851 ASSERT(zio); 852 ASSERT(dlen != 0); 853 854 /* 855 * Nothing to do if the file has been removed 856 */ 857 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 858 return (ENOENT); 859 if (zp->z_unlinked) { 860 VN_RELE(ZTOV(zp)); 861 return (ENOENT); 862 } 863 864 /* 865 * Write records come in two flavors: immediate and indirect. 866 * For small writes it's cheaper to store the data with the 867 * log record (immediate); for large writes it's cheaper to 868 * sync the data and get a pointer to it (indirect) so that 869 * we don't have to write the data twice. 870 */ 871 if (buf != NULL) { /* immediate write */ 872 rl = zfs_range_lock(zp, off, dlen, RL_READER); 873 /* test for truncation needs to be done while range locked */ 874 if (off >= zp->z_phys->zp_size) { 875 error = ENOENT; 876 goto out; 877 } 878 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 879 } else { /* indirect write */ 880 uint64_t boff; /* block starting offset */ 881 882 /* 883 * Have to lock the whole block to ensure when it's 884 * written out and it's checksum is being calculated 885 * that no one can change the data. We need to re-check 886 * blocksize after we get the lock in case it's changed! 887 */ 888 for (;;) { 889 if (ISP2(zp->z_blksz)) { 890 boff = P2ALIGN_TYPED(off, zp->z_blksz, 891 uint64_t); 892 } else { 893 boff = 0; 894 } 895 dlen = zp->z_blksz; 896 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 897 if (zp->z_blksz == dlen) 898 break; 899 zfs_range_unlock(rl); 900 } 901 /* test for truncation needs to be done while range locked */ 902 if (off >= zp->z_phys->zp_size) { 903 error = ENOENT; 904 goto out; 905 } 906 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 907 zgd->zgd_rl = rl; 908 zgd->zgd_zilog = zfsvfs->z_log; 909 zgd->zgd_bp = &lr->lr_blkptr; 910 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 911 ASSERT(boff == db->db_offset); 912 lr->lr_blkoff = off - boff; 913 error = dmu_sync(zio, db, &lr->lr_blkptr, 914 lr->lr_common.lrc_txg, zfs_get_done, zgd); 915 ASSERT((error && error != EINPROGRESS) || 916 lr->lr_length <= zp->z_blksz); 917 if (error == 0) 918 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 919 /* 920 * If we get EINPROGRESS, then we need to wait for a 921 * write IO initiated by dmu_sync() to complete before 922 * we can release this dbuf. We will finish everything 923 * up in the zfs_get_done() callback. 924 */ 925 if (error == EINPROGRESS) 926 return (0); 927 dmu_buf_rele(db, zgd); 928 kmem_free(zgd, sizeof (zgd_t)); 929 } 930 out: 931 zfs_range_unlock(rl); 932 VN_RELE(ZTOV(zp)); 933 return (error); 934 } 935 936 /*ARGSUSED*/ 937 static int 938 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 939 caller_context_t *ct) 940 { 941 znode_t *zp = VTOZ(vp); 942 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 943 int error; 944 945 ZFS_ENTER(zfsvfs); 946 ZFS_VERIFY_ZP(zp); 947 948 if (flag & V_ACE_MASK) 949 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 950 else 951 error = zfs_zaccess_rwx(zp, mode, flag, cr); 952 953 ZFS_EXIT(zfsvfs); 954 return (error); 955 } 956 957 /* 958 * Lookup an entry in a directory, or an extended attribute directory. 959 * If it exists, return a held vnode reference for it. 960 * 961 * IN: dvp - vnode of directory to search. 962 * nm - name of entry to lookup. 963 * pnp - full pathname to lookup [UNUSED]. 964 * flags - LOOKUP_XATTR set if looking for an attribute. 965 * rdir - root directory vnode [UNUSED]. 966 * cr - credentials of caller. 967 * ct - caller context 968 * direntflags - directory lookup flags 969 * realpnp - returned pathname. 970 * 971 * OUT: vpp - vnode of located entry, NULL if not found. 972 * 973 * RETURN: 0 if success 974 * error code if failure 975 * 976 * Timestamps: 977 * NA 978 */ 979 /* ARGSUSED */ 980 static int 981 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 982 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 983 int *direntflags, pathname_t *realpnp) 984 { 985 znode_t *zdp = VTOZ(dvp); 986 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 987 int error; 988 989 ZFS_ENTER(zfsvfs); 990 ZFS_VERIFY_ZP(zdp); 991 992 *vpp = NULL; 993 994 if (flags & LOOKUP_XATTR) { 995 /* 996 * If the xattr property is off, refuse the lookup request. 997 */ 998 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 999 ZFS_EXIT(zfsvfs); 1000 return (EINVAL); 1001 } 1002 1003 /* 1004 * We don't allow recursive attributes.. 1005 * Maybe someday we will. 1006 */ 1007 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1008 ZFS_EXIT(zfsvfs); 1009 return (EINVAL); 1010 } 1011 1012 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1013 ZFS_EXIT(zfsvfs); 1014 return (error); 1015 } 1016 1017 /* 1018 * Do we have permission to get into attribute directory? 1019 */ 1020 1021 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1022 B_FALSE, cr)) { 1023 VN_RELE(*vpp); 1024 *vpp = NULL; 1025 } 1026 1027 ZFS_EXIT(zfsvfs); 1028 return (error); 1029 } 1030 1031 if (dvp->v_type != VDIR) { 1032 ZFS_EXIT(zfsvfs); 1033 return (ENOTDIR); 1034 } 1035 1036 /* 1037 * Check accessibility of directory. 1038 */ 1039 1040 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1041 ZFS_EXIT(zfsvfs); 1042 return (error); 1043 } 1044 1045 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1046 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1047 ZFS_EXIT(zfsvfs); 1048 return (EILSEQ); 1049 } 1050 1051 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1052 if (error == 0) { 1053 /* 1054 * Convert device special files 1055 */ 1056 if (IS_DEVVP(*vpp)) { 1057 vnode_t *svp; 1058 1059 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1060 VN_RELE(*vpp); 1061 if (svp == NULL) 1062 error = ENOSYS; 1063 else 1064 *vpp = svp; 1065 } 1066 } 1067 1068 ZFS_EXIT(zfsvfs); 1069 return (error); 1070 } 1071 1072 /* 1073 * Attempt to create a new entry in a directory. If the entry 1074 * already exists, truncate the file if permissible, else return 1075 * an error. Return the vp of the created or trunc'd file. 1076 * 1077 * IN: dvp - vnode of directory to put new file entry in. 1078 * name - name of new file entry. 1079 * vap - attributes of new file. 1080 * excl - flag indicating exclusive or non-exclusive mode. 1081 * mode - mode to open file with. 1082 * cr - credentials of caller. 1083 * flag - large file flag [UNUSED]. 1084 * ct - caller context 1085 * vsecp - ACL to be set 1086 * 1087 * OUT: vpp - vnode of created or trunc'd entry. 1088 * 1089 * RETURN: 0 if success 1090 * error code if failure 1091 * 1092 * Timestamps: 1093 * dvp - ctime|mtime updated if new entry created 1094 * vp - ctime|mtime always, atime if new 1095 */ 1096 1097 /* ARGSUSED */ 1098 static int 1099 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1100 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1101 vsecattr_t *vsecp) 1102 { 1103 znode_t *zp, *dzp = VTOZ(dvp); 1104 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1105 zilog_t *zilog; 1106 objset_t *os; 1107 zfs_dirlock_t *dl; 1108 dmu_tx_t *tx; 1109 int error; 1110 zfs_acl_t *aclp = NULL; 1111 zfs_fuid_info_t *fuidp = NULL; 1112 ksid_t *ksid; 1113 uid_t uid; 1114 gid_t gid = crgetgid(cr); 1115 1116 /* 1117 * If we have an ephemeral id, ACL, or XVATTR then 1118 * make sure file system is at proper version 1119 */ 1120 1121 ksid = crgetsid(cr, KSID_OWNER); 1122 if (ksid) 1123 uid = ksid_getid(ksid); 1124 else 1125 uid = crgetuid(cr); 1126 1127 if (zfsvfs->z_use_fuids == B_FALSE && 1128 (vsecp || (vap->va_mask & AT_XVATTR) || 1129 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1130 return (EINVAL); 1131 1132 ZFS_ENTER(zfsvfs); 1133 ZFS_VERIFY_ZP(dzp); 1134 os = zfsvfs->z_os; 1135 zilog = zfsvfs->z_log; 1136 1137 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1138 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1139 ZFS_EXIT(zfsvfs); 1140 return (EILSEQ); 1141 } 1142 1143 if (vap->va_mask & AT_XVATTR) { 1144 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1145 crgetuid(cr), cr, vap->va_type)) != 0) { 1146 ZFS_EXIT(zfsvfs); 1147 return (error); 1148 } 1149 } 1150 top: 1151 *vpp = NULL; 1152 1153 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1154 vap->va_mode &= ~VSVTX; 1155 1156 if (*name == '\0') { 1157 /* 1158 * Null component name refers to the directory itself. 1159 */ 1160 VN_HOLD(dvp); 1161 zp = dzp; 1162 dl = NULL; 1163 error = 0; 1164 } else { 1165 /* possible VN_HOLD(zp) */ 1166 int zflg = 0; 1167 1168 if (flag & FIGNORECASE) 1169 zflg |= ZCILOOK; 1170 1171 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1172 NULL, NULL); 1173 if (error) { 1174 if (strcmp(name, "..") == 0) 1175 error = EISDIR; 1176 ZFS_EXIT(zfsvfs); 1177 if (aclp) 1178 zfs_acl_free(aclp); 1179 return (error); 1180 } 1181 } 1182 if (vsecp && aclp == NULL) { 1183 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1184 if (error) { 1185 ZFS_EXIT(zfsvfs); 1186 if (dl) 1187 zfs_dirent_unlock(dl); 1188 return (error); 1189 } 1190 } 1191 1192 if (zp == NULL) { 1193 uint64_t txtype; 1194 1195 /* 1196 * Create a new file object and update the directory 1197 * to reference it. 1198 */ 1199 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1200 goto out; 1201 } 1202 1203 /* 1204 * We only support the creation of regular files in 1205 * extended attribute directories. 1206 */ 1207 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1208 (vap->va_type != VREG)) { 1209 error = EINVAL; 1210 goto out; 1211 } 1212 1213 tx = dmu_tx_create(os); 1214 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1215 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) || 1216 IS_EPHEMERAL(gid)) { 1217 if (zfsvfs->z_fuid_obj == 0) { 1218 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1219 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1220 FUID_SIZE_ESTIMATE(zfsvfs)); 1221 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1222 FALSE, NULL); 1223 } else { 1224 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1225 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1226 FUID_SIZE_ESTIMATE(zfsvfs)); 1227 } 1228 } 1229 dmu_tx_hold_bonus(tx, dzp->z_id); 1230 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1231 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1232 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1233 0, SPA_MAXBLOCKSIZE); 1234 } 1235 error = dmu_tx_assign(tx, TXG_NOWAIT); 1236 if (error) { 1237 zfs_dirent_unlock(dl); 1238 if (error == ERESTART) { 1239 dmu_tx_wait(tx); 1240 dmu_tx_abort(tx); 1241 goto top; 1242 } 1243 dmu_tx_abort(tx); 1244 ZFS_EXIT(zfsvfs); 1245 if (aclp) 1246 zfs_acl_free(aclp); 1247 return (error); 1248 } 1249 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1250 (void) zfs_link_create(dl, zp, tx, ZNEW); 1251 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1252 if (flag & FIGNORECASE) 1253 txtype |= TX_CI; 1254 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1255 vsecp, fuidp, vap); 1256 if (fuidp) 1257 zfs_fuid_info_free(fuidp); 1258 dmu_tx_commit(tx); 1259 } else { 1260 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1261 1262 /* 1263 * A directory entry already exists for this name. 1264 */ 1265 /* 1266 * Can't truncate an existing file if in exclusive mode. 1267 */ 1268 if (excl == EXCL) { 1269 error = EEXIST; 1270 goto out; 1271 } 1272 /* 1273 * Can't open a directory for writing. 1274 */ 1275 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1276 error = EISDIR; 1277 goto out; 1278 } 1279 /* 1280 * Verify requested access to file. 1281 */ 1282 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1283 goto out; 1284 } 1285 1286 mutex_enter(&dzp->z_lock); 1287 dzp->z_seq++; 1288 mutex_exit(&dzp->z_lock); 1289 1290 /* 1291 * Truncate regular files if requested. 1292 */ 1293 if ((ZTOV(zp)->v_type == VREG) && 1294 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1295 /* we can't hold any locks when calling zfs_freesp() */ 1296 zfs_dirent_unlock(dl); 1297 dl = NULL; 1298 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1299 if (error == 0) { 1300 vnevent_create(ZTOV(zp), ct); 1301 } 1302 } 1303 } 1304 out: 1305 1306 if (dl) 1307 zfs_dirent_unlock(dl); 1308 1309 if (error) { 1310 if (zp) 1311 VN_RELE(ZTOV(zp)); 1312 } else { 1313 *vpp = ZTOV(zp); 1314 /* 1315 * If vnode is for a device return a specfs vnode instead. 1316 */ 1317 if (IS_DEVVP(*vpp)) { 1318 struct vnode *svp; 1319 1320 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1321 VN_RELE(*vpp); 1322 if (svp == NULL) { 1323 error = ENOSYS; 1324 } 1325 *vpp = svp; 1326 } 1327 } 1328 if (aclp) 1329 zfs_acl_free(aclp); 1330 1331 ZFS_EXIT(zfsvfs); 1332 return (error); 1333 } 1334 1335 /* 1336 * Remove an entry from a directory. 1337 * 1338 * IN: dvp - vnode of directory to remove entry from. 1339 * name - name of entry to remove. 1340 * cr - credentials of caller. 1341 * ct - caller context 1342 * flags - case flags 1343 * 1344 * RETURN: 0 if success 1345 * error code if failure 1346 * 1347 * Timestamps: 1348 * dvp - ctime|mtime 1349 * vp - ctime (if nlink > 0) 1350 */ 1351 /*ARGSUSED*/ 1352 static int 1353 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1354 int flags) 1355 { 1356 znode_t *zp, *dzp = VTOZ(dvp); 1357 znode_t *xzp = NULL; 1358 vnode_t *vp; 1359 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1360 zilog_t *zilog; 1361 uint64_t acl_obj, xattr_obj; 1362 zfs_dirlock_t *dl; 1363 dmu_tx_t *tx; 1364 boolean_t may_delete_now, delete_now = FALSE; 1365 boolean_t unlinked, toobig = FALSE; 1366 uint64_t txtype; 1367 pathname_t *realnmp = NULL; 1368 pathname_t realnm; 1369 int error; 1370 int zflg = ZEXISTS; 1371 1372 ZFS_ENTER(zfsvfs); 1373 ZFS_VERIFY_ZP(dzp); 1374 zilog = zfsvfs->z_log; 1375 1376 if (flags & FIGNORECASE) { 1377 zflg |= ZCILOOK; 1378 pn_alloc(&realnm); 1379 realnmp = &realnm; 1380 } 1381 1382 top: 1383 /* 1384 * Attempt to lock directory; fail if entry doesn't exist. 1385 */ 1386 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1387 NULL, realnmp)) { 1388 if (realnmp) 1389 pn_free(realnmp); 1390 ZFS_EXIT(zfsvfs); 1391 return (error); 1392 } 1393 1394 vp = ZTOV(zp); 1395 1396 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1397 goto out; 1398 } 1399 1400 /* 1401 * Need to use rmdir for removing directories. 1402 */ 1403 if (vp->v_type == VDIR) { 1404 error = EPERM; 1405 goto out; 1406 } 1407 1408 vnevent_remove(vp, dvp, name, ct); 1409 1410 if (realnmp) 1411 dnlc_remove(dvp, realnmp->pn_buf); 1412 else 1413 dnlc_remove(dvp, name); 1414 1415 mutex_enter(&vp->v_lock); 1416 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1417 mutex_exit(&vp->v_lock); 1418 1419 /* 1420 * We may delete the znode now, or we may put it in the unlinked set; 1421 * it depends on whether we're the last link, and on whether there are 1422 * other holds on the vnode. So we dmu_tx_hold() the right things to 1423 * allow for either case. 1424 */ 1425 tx = dmu_tx_create(zfsvfs->z_os); 1426 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1427 dmu_tx_hold_bonus(tx, zp->z_id); 1428 if (may_delete_now) { 1429 toobig = 1430 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1431 /* if the file is too big, only hold_free a token amount */ 1432 dmu_tx_hold_free(tx, zp->z_id, 0, 1433 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1434 } 1435 1436 /* are there any extended attributes? */ 1437 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1438 /* XXX - do we need this if we are deleting? */ 1439 dmu_tx_hold_bonus(tx, xattr_obj); 1440 } 1441 1442 /* are there any additional acls */ 1443 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1444 may_delete_now) 1445 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1446 1447 /* charge as an update -- would be nice not to charge at all */ 1448 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1449 1450 error = dmu_tx_assign(tx, TXG_NOWAIT); 1451 if (error) { 1452 zfs_dirent_unlock(dl); 1453 VN_RELE(vp); 1454 if (error == ERESTART) { 1455 dmu_tx_wait(tx); 1456 dmu_tx_abort(tx); 1457 goto top; 1458 } 1459 if (realnmp) 1460 pn_free(realnmp); 1461 dmu_tx_abort(tx); 1462 ZFS_EXIT(zfsvfs); 1463 return (error); 1464 } 1465 1466 /* 1467 * Remove the directory entry. 1468 */ 1469 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1470 1471 if (error) { 1472 dmu_tx_commit(tx); 1473 goto out; 1474 } 1475 1476 if (unlinked) { 1477 mutex_enter(&vp->v_lock); 1478 delete_now = may_delete_now && !toobig && 1479 vp->v_count == 1 && !vn_has_cached_data(vp) && 1480 zp->z_phys->zp_xattr == xattr_obj && 1481 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1482 mutex_exit(&vp->v_lock); 1483 } 1484 1485 if (delete_now) { 1486 if (zp->z_phys->zp_xattr) { 1487 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1488 ASSERT3U(error, ==, 0); 1489 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1490 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1491 mutex_enter(&xzp->z_lock); 1492 xzp->z_unlinked = 1; 1493 xzp->z_phys->zp_links = 0; 1494 mutex_exit(&xzp->z_lock); 1495 zfs_unlinked_add(xzp, tx); 1496 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1497 } 1498 mutex_enter(&zp->z_lock); 1499 mutex_enter(&vp->v_lock); 1500 vp->v_count--; 1501 ASSERT3U(vp->v_count, ==, 0); 1502 mutex_exit(&vp->v_lock); 1503 mutex_exit(&zp->z_lock); 1504 zfs_znode_delete(zp, tx); 1505 } else if (unlinked) { 1506 zfs_unlinked_add(zp, tx); 1507 } 1508 1509 txtype = TX_REMOVE; 1510 if (flags & FIGNORECASE) 1511 txtype |= TX_CI; 1512 zfs_log_remove(zilog, tx, txtype, dzp, name); 1513 1514 dmu_tx_commit(tx); 1515 out: 1516 if (realnmp) 1517 pn_free(realnmp); 1518 1519 zfs_dirent_unlock(dl); 1520 1521 if (!delete_now) { 1522 VN_RELE(vp); 1523 } else if (xzp) { 1524 /* this rele is delayed to prevent nesting transactions */ 1525 VN_RELE(ZTOV(xzp)); 1526 } 1527 1528 ZFS_EXIT(zfsvfs); 1529 return (error); 1530 } 1531 1532 /* 1533 * Create a new directory and insert it into dvp using the name 1534 * provided. Return a pointer to the inserted directory. 1535 * 1536 * IN: dvp - vnode of directory to add subdir to. 1537 * dirname - name of new directory. 1538 * vap - attributes of new directory. 1539 * cr - credentials of caller. 1540 * ct - caller context 1541 * vsecp - ACL to be set 1542 * 1543 * OUT: vpp - vnode of created directory. 1544 * 1545 * RETURN: 0 if success 1546 * error code if failure 1547 * 1548 * Timestamps: 1549 * dvp - ctime|mtime updated 1550 * vp - ctime|mtime|atime updated 1551 */ 1552 /*ARGSUSED*/ 1553 static int 1554 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1555 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1556 { 1557 znode_t *zp, *dzp = VTOZ(dvp); 1558 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1559 zilog_t *zilog; 1560 zfs_dirlock_t *dl; 1561 uint64_t txtype; 1562 dmu_tx_t *tx; 1563 int error; 1564 zfs_acl_t *aclp = NULL; 1565 zfs_fuid_info_t *fuidp = NULL; 1566 int zf = ZNEW; 1567 ksid_t *ksid; 1568 uid_t uid; 1569 gid_t gid = crgetgid(cr); 1570 1571 ASSERT(vap->va_type == VDIR); 1572 1573 /* 1574 * If we have an ephemeral id, ACL, or XVATTR then 1575 * make sure file system is at proper version 1576 */ 1577 1578 ksid = crgetsid(cr, KSID_OWNER); 1579 if (ksid) 1580 uid = ksid_getid(ksid); 1581 else 1582 uid = crgetuid(cr); 1583 if (zfsvfs->z_use_fuids == B_FALSE && 1584 (vsecp || (vap->va_mask & AT_XVATTR) || 1585 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1586 return (EINVAL); 1587 1588 ZFS_ENTER(zfsvfs); 1589 ZFS_VERIFY_ZP(dzp); 1590 zilog = zfsvfs->z_log; 1591 1592 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1593 ZFS_EXIT(zfsvfs); 1594 return (EINVAL); 1595 } 1596 1597 if (zfsvfs->z_utf8 && u8_validate(dirname, 1598 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1599 ZFS_EXIT(zfsvfs); 1600 return (EILSEQ); 1601 } 1602 if (flags & FIGNORECASE) 1603 zf |= ZCILOOK; 1604 1605 if (vap->va_mask & AT_XVATTR) 1606 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1607 crgetuid(cr), cr, vap->va_type)) != 0) { 1608 ZFS_EXIT(zfsvfs); 1609 return (error); 1610 } 1611 1612 /* 1613 * First make sure the new directory doesn't exist. 1614 */ 1615 top: 1616 *vpp = NULL; 1617 1618 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1619 NULL, NULL)) { 1620 ZFS_EXIT(zfsvfs); 1621 return (error); 1622 } 1623 1624 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1625 zfs_dirent_unlock(dl); 1626 ZFS_EXIT(zfsvfs); 1627 return (error); 1628 } 1629 1630 if (vsecp && aclp == NULL) { 1631 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1632 if (error) { 1633 zfs_dirent_unlock(dl); 1634 ZFS_EXIT(zfsvfs); 1635 return (error); 1636 } 1637 } 1638 /* 1639 * Add a new entry to the directory. 1640 */ 1641 tx = dmu_tx_create(zfsvfs->z_os); 1642 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1643 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1644 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(uid) || 1645 IS_EPHEMERAL(gid)) { 1646 if (zfsvfs->z_fuid_obj == 0) { 1647 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1648 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1649 FUID_SIZE_ESTIMATE(zfsvfs)); 1650 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1651 } else { 1652 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1653 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1654 FUID_SIZE_ESTIMATE(zfsvfs)); 1655 } 1656 } 1657 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1658 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1659 0, SPA_MAXBLOCKSIZE); 1660 error = dmu_tx_assign(tx, TXG_NOWAIT); 1661 if (error) { 1662 zfs_dirent_unlock(dl); 1663 if (error == ERESTART) { 1664 dmu_tx_wait(tx); 1665 dmu_tx_abort(tx); 1666 goto top; 1667 } 1668 dmu_tx_abort(tx); 1669 ZFS_EXIT(zfsvfs); 1670 if (aclp) 1671 zfs_acl_free(aclp); 1672 return (error); 1673 } 1674 1675 /* 1676 * Create new node. 1677 */ 1678 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1679 1680 if (aclp) 1681 zfs_acl_free(aclp); 1682 1683 /* 1684 * Now put new name in parent dir. 1685 */ 1686 (void) zfs_link_create(dl, zp, tx, ZNEW); 1687 1688 *vpp = ZTOV(zp); 1689 1690 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1691 if (flags & FIGNORECASE) 1692 txtype |= TX_CI; 1693 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1694 1695 if (fuidp) 1696 zfs_fuid_info_free(fuidp); 1697 dmu_tx_commit(tx); 1698 1699 zfs_dirent_unlock(dl); 1700 1701 ZFS_EXIT(zfsvfs); 1702 return (0); 1703 } 1704 1705 /* 1706 * Remove a directory subdir entry. If the current working 1707 * directory is the same as the subdir to be removed, the 1708 * remove will fail. 1709 * 1710 * IN: dvp - vnode of directory to remove from. 1711 * name - name of directory to be removed. 1712 * cwd - vnode of current working directory. 1713 * cr - credentials of caller. 1714 * ct - caller context 1715 * flags - case flags 1716 * 1717 * RETURN: 0 if success 1718 * error code if failure 1719 * 1720 * Timestamps: 1721 * dvp - ctime|mtime updated 1722 */ 1723 /*ARGSUSED*/ 1724 static int 1725 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1726 caller_context_t *ct, int flags) 1727 { 1728 znode_t *dzp = VTOZ(dvp); 1729 znode_t *zp; 1730 vnode_t *vp; 1731 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1732 zilog_t *zilog; 1733 zfs_dirlock_t *dl; 1734 dmu_tx_t *tx; 1735 int error; 1736 int zflg = ZEXISTS; 1737 1738 ZFS_ENTER(zfsvfs); 1739 ZFS_VERIFY_ZP(dzp); 1740 zilog = zfsvfs->z_log; 1741 1742 if (flags & FIGNORECASE) 1743 zflg |= ZCILOOK; 1744 top: 1745 zp = NULL; 1746 1747 /* 1748 * Attempt to lock directory; fail if entry doesn't exist. 1749 */ 1750 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1751 NULL, NULL)) { 1752 ZFS_EXIT(zfsvfs); 1753 return (error); 1754 } 1755 1756 vp = ZTOV(zp); 1757 1758 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1759 goto out; 1760 } 1761 1762 if (vp->v_type != VDIR) { 1763 error = ENOTDIR; 1764 goto out; 1765 } 1766 1767 if (vp == cwd) { 1768 error = EINVAL; 1769 goto out; 1770 } 1771 1772 vnevent_rmdir(vp, dvp, name, ct); 1773 1774 /* 1775 * Grab a lock on the directory to make sure that noone is 1776 * trying to add (or lookup) entries while we are removing it. 1777 */ 1778 rw_enter(&zp->z_name_lock, RW_WRITER); 1779 1780 /* 1781 * Grab a lock on the parent pointer to make sure we play well 1782 * with the treewalk and directory rename code. 1783 */ 1784 rw_enter(&zp->z_parent_lock, RW_WRITER); 1785 1786 tx = dmu_tx_create(zfsvfs->z_os); 1787 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1788 dmu_tx_hold_bonus(tx, zp->z_id); 1789 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1790 error = dmu_tx_assign(tx, TXG_NOWAIT); 1791 if (error) { 1792 rw_exit(&zp->z_parent_lock); 1793 rw_exit(&zp->z_name_lock); 1794 zfs_dirent_unlock(dl); 1795 VN_RELE(vp); 1796 if (error == ERESTART) { 1797 dmu_tx_wait(tx); 1798 dmu_tx_abort(tx); 1799 goto top; 1800 } 1801 dmu_tx_abort(tx); 1802 ZFS_EXIT(zfsvfs); 1803 return (error); 1804 } 1805 1806 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1807 1808 if (error == 0) { 1809 uint64_t txtype = TX_RMDIR; 1810 if (flags & FIGNORECASE) 1811 txtype |= TX_CI; 1812 zfs_log_remove(zilog, tx, txtype, dzp, name); 1813 } 1814 1815 dmu_tx_commit(tx); 1816 1817 rw_exit(&zp->z_parent_lock); 1818 rw_exit(&zp->z_name_lock); 1819 out: 1820 zfs_dirent_unlock(dl); 1821 1822 VN_RELE(vp); 1823 1824 ZFS_EXIT(zfsvfs); 1825 return (error); 1826 } 1827 1828 /* 1829 * Read as many directory entries as will fit into the provided 1830 * buffer from the given directory cursor position (specified in 1831 * the uio structure. 1832 * 1833 * IN: vp - vnode of directory to read. 1834 * uio - structure supplying read location, range info, 1835 * and return buffer. 1836 * cr - credentials of caller. 1837 * ct - caller context 1838 * flags - case flags 1839 * 1840 * OUT: uio - updated offset and range, buffer filled. 1841 * eofp - set to true if end-of-file detected. 1842 * 1843 * RETURN: 0 if success 1844 * error code if failure 1845 * 1846 * Timestamps: 1847 * vp - atime updated 1848 * 1849 * Note that the low 4 bits of the cookie returned by zap is always zero. 1850 * This allows us to use the low range for "special" directory entries: 1851 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1852 * we use the offset 2 for the '.zfs' directory. 1853 */ 1854 /* ARGSUSED */ 1855 static int 1856 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1857 caller_context_t *ct, int flags) 1858 { 1859 znode_t *zp = VTOZ(vp); 1860 iovec_t *iovp; 1861 edirent_t *eodp; 1862 dirent64_t *odp; 1863 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1864 objset_t *os; 1865 caddr_t outbuf; 1866 size_t bufsize; 1867 zap_cursor_t zc; 1868 zap_attribute_t zap; 1869 uint_t bytes_wanted; 1870 uint64_t offset; /* must be unsigned; checks for < 1 */ 1871 int local_eof; 1872 int outcount; 1873 int error; 1874 uint8_t prefetch; 1875 boolean_t check_sysattrs; 1876 1877 ZFS_ENTER(zfsvfs); 1878 ZFS_VERIFY_ZP(zp); 1879 1880 /* 1881 * If we are not given an eof variable, 1882 * use a local one. 1883 */ 1884 if (eofp == NULL) 1885 eofp = &local_eof; 1886 1887 /* 1888 * Check for valid iov_len. 1889 */ 1890 if (uio->uio_iov->iov_len <= 0) { 1891 ZFS_EXIT(zfsvfs); 1892 return (EINVAL); 1893 } 1894 1895 /* 1896 * Quit if directory has been removed (posix) 1897 */ 1898 if ((*eofp = zp->z_unlinked) != 0) { 1899 ZFS_EXIT(zfsvfs); 1900 return (0); 1901 } 1902 1903 error = 0; 1904 os = zfsvfs->z_os; 1905 offset = uio->uio_loffset; 1906 prefetch = zp->z_zn_prefetch; 1907 1908 /* 1909 * Initialize the iterator cursor. 1910 */ 1911 if (offset <= 3) { 1912 /* 1913 * Start iteration from the beginning of the directory. 1914 */ 1915 zap_cursor_init(&zc, os, zp->z_id); 1916 } else { 1917 /* 1918 * The offset is a serialized cursor. 1919 */ 1920 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1921 } 1922 1923 /* 1924 * Get space to change directory entries into fs independent format. 1925 */ 1926 iovp = uio->uio_iov; 1927 bytes_wanted = iovp->iov_len; 1928 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1929 bufsize = bytes_wanted; 1930 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1931 odp = (struct dirent64 *)outbuf; 1932 } else { 1933 bufsize = bytes_wanted; 1934 odp = (struct dirent64 *)iovp->iov_base; 1935 } 1936 eodp = (struct edirent *)odp; 1937 1938 /* 1939 * If this VFS supports the system attribute view interface; and 1940 * we're looking at an extended attribute directory; and we care 1941 * about normalization conflicts on this vfs; then we must check 1942 * for normalization conflicts with the sysattr name space. 1943 */ 1944 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 1945 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1946 (flags & V_RDDIR_ENTFLAGS); 1947 1948 /* 1949 * Transform to file-system independent format 1950 */ 1951 outcount = 0; 1952 while (outcount < bytes_wanted) { 1953 ino64_t objnum; 1954 ushort_t reclen; 1955 off64_t *next; 1956 1957 /* 1958 * Special case `.', `..', and `.zfs'. 1959 */ 1960 if (offset == 0) { 1961 (void) strcpy(zap.za_name, "."); 1962 zap.za_normalization_conflict = 0; 1963 objnum = zp->z_id; 1964 } else if (offset == 1) { 1965 (void) strcpy(zap.za_name, ".."); 1966 zap.za_normalization_conflict = 0; 1967 objnum = zp->z_phys->zp_parent; 1968 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1969 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1970 zap.za_normalization_conflict = 0; 1971 objnum = ZFSCTL_INO_ROOT; 1972 } else { 1973 /* 1974 * Grab next entry. 1975 */ 1976 if (error = zap_cursor_retrieve(&zc, &zap)) { 1977 if ((*eofp = (error == ENOENT)) != 0) 1978 break; 1979 else 1980 goto update; 1981 } 1982 1983 if (zap.za_integer_length != 8 || 1984 zap.za_num_integers != 1) { 1985 cmn_err(CE_WARN, "zap_readdir: bad directory " 1986 "entry, obj = %lld, offset = %lld\n", 1987 (u_longlong_t)zp->z_id, 1988 (u_longlong_t)offset); 1989 error = ENXIO; 1990 goto update; 1991 } 1992 1993 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1994 /* 1995 * MacOS X can extract the object type here such as: 1996 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1997 */ 1998 1999 if (check_sysattrs && !zap.za_normalization_conflict) { 2000 zap.za_normalization_conflict = 2001 xattr_sysattr_casechk(zap.za_name); 2002 } 2003 } 2004 2005 if (flags & V_RDDIR_ENTFLAGS) 2006 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2007 else 2008 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2009 2010 /* 2011 * Will this entry fit in the buffer? 2012 */ 2013 if (outcount + reclen > bufsize) { 2014 /* 2015 * Did we manage to fit anything in the buffer? 2016 */ 2017 if (!outcount) { 2018 error = EINVAL; 2019 goto update; 2020 } 2021 break; 2022 } 2023 if (flags & V_RDDIR_ENTFLAGS) { 2024 /* 2025 * Add extended flag entry: 2026 */ 2027 eodp->ed_ino = objnum; 2028 eodp->ed_reclen = reclen; 2029 /* NOTE: ed_off is the offset for the *next* entry */ 2030 next = &(eodp->ed_off); 2031 eodp->ed_eflags = zap.za_normalization_conflict ? 2032 ED_CASE_CONFLICT : 0; 2033 (void) strncpy(eodp->ed_name, zap.za_name, 2034 EDIRENT_NAMELEN(reclen)); 2035 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2036 } else { 2037 /* 2038 * Add normal entry: 2039 */ 2040 odp->d_ino = objnum; 2041 odp->d_reclen = reclen; 2042 /* NOTE: d_off is the offset for the *next* entry */ 2043 next = &(odp->d_off); 2044 (void) strncpy(odp->d_name, zap.za_name, 2045 DIRENT64_NAMELEN(reclen)); 2046 odp = (dirent64_t *)((intptr_t)odp + reclen); 2047 } 2048 outcount += reclen; 2049 2050 ASSERT(outcount <= bufsize); 2051 2052 /* Prefetch znode */ 2053 if (prefetch) 2054 dmu_prefetch(os, objnum, 0, 0); 2055 2056 /* 2057 * Move to the next entry, fill in the previous offset. 2058 */ 2059 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2060 zap_cursor_advance(&zc); 2061 offset = zap_cursor_serialize(&zc); 2062 } else { 2063 offset += 1; 2064 } 2065 *next = offset; 2066 } 2067 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2068 2069 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2070 iovp->iov_base += outcount; 2071 iovp->iov_len -= outcount; 2072 uio->uio_resid -= outcount; 2073 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2074 /* 2075 * Reset the pointer. 2076 */ 2077 offset = uio->uio_loffset; 2078 } 2079 2080 update: 2081 zap_cursor_fini(&zc); 2082 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2083 kmem_free(outbuf, bufsize); 2084 2085 if (error == ENOENT) 2086 error = 0; 2087 2088 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2089 2090 uio->uio_loffset = offset; 2091 ZFS_EXIT(zfsvfs); 2092 return (error); 2093 } 2094 2095 ulong_t zfs_fsync_sync_cnt = 4; 2096 2097 static int 2098 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2099 { 2100 znode_t *zp = VTOZ(vp); 2101 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2102 2103 /* 2104 * Regardless of whether this is required for standards conformance, 2105 * this is the logical behavior when fsync() is called on a file with 2106 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2107 * going to be pushed out as part of the zil_commit(). 2108 */ 2109 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2110 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2111 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2112 2113 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2114 2115 ZFS_ENTER(zfsvfs); 2116 ZFS_VERIFY_ZP(zp); 2117 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2118 ZFS_EXIT(zfsvfs); 2119 return (0); 2120 } 2121 2122 2123 /* 2124 * Get the requested file attributes and place them in the provided 2125 * vattr structure. 2126 * 2127 * IN: vp - vnode of file. 2128 * vap - va_mask identifies requested attributes. 2129 * If AT_XVATTR set, then optional attrs are requested 2130 * flags - ATTR_NOACLCHECK (CIFS server context) 2131 * cr - credentials of caller. 2132 * ct - caller context 2133 * 2134 * OUT: vap - attribute values. 2135 * 2136 * RETURN: 0 (always succeeds) 2137 */ 2138 /* ARGSUSED */ 2139 static int 2140 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2141 caller_context_t *ct) 2142 { 2143 znode_t *zp = VTOZ(vp); 2144 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2145 znode_phys_t *pzp; 2146 int error = 0; 2147 uint64_t links; 2148 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2149 xoptattr_t *xoap = NULL; 2150 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2151 2152 ZFS_ENTER(zfsvfs); 2153 ZFS_VERIFY_ZP(zp); 2154 pzp = zp->z_phys; 2155 2156 mutex_enter(&zp->z_lock); 2157 2158 /* 2159 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2160 * Also, if we are the owner don't bother, since owner should 2161 * always be allowed to read basic attributes of file. 2162 */ 2163 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2164 (pzp->zp_uid != crgetuid(cr))) { 2165 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2166 skipaclchk, cr)) { 2167 mutex_exit(&zp->z_lock); 2168 ZFS_EXIT(zfsvfs); 2169 return (error); 2170 } 2171 } 2172 2173 /* 2174 * Return all attributes. It's cheaper to provide the answer 2175 * than to determine whether we were asked the question. 2176 */ 2177 2178 vap->va_type = vp->v_type; 2179 vap->va_mode = pzp->zp_mode & MODEMASK; 2180 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2181 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2182 vap->va_nodeid = zp->z_id; 2183 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2184 links = pzp->zp_links + 1; 2185 else 2186 links = pzp->zp_links; 2187 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2188 vap->va_size = pzp->zp_size; 2189 vap->va_rdev = vp->v_rdev; 2190 vap->va_seq = zp->z_seq; 2191 2192 /* 2193 * Add in any requested optional attributes and the create time. 2194 * Also set the corresponding bits in the returned attribute bitmap. 2195 */ 2196 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2197 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2198 xoap->xoa_archive = 2199 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2200 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2201 } 2202 2203 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2204 xoap->xoa_readonly = 2205 ((pzp->zp_flags & ZFS_READONLY) != 0); 2206 XVA_SET_RTN(xvap, XAT_READONLY); 2207 } 2208 2209 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2210 xoap->xoa_system = 2211 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2212 XVA_SET_RTN(xvap, XAT_SYSTEM); 2213 } 2214 2215 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2216 xoap->xoa_hidden = 2217 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2218 XVA_SET_RTN(xvap, XAT_HIDDEN); 2219 } 2220 2221 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2222 xoap->xoa_nounlink = 2223 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2224 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2225 } 2226 2227 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2228 xoap->xoa_immutable = 2229 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2230 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2231 } 2232 2233 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2234 xoap->xoa_appendonly = 2235 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2236 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2237 } 2238 2239 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2240 xoap->xoa_nodump = 2241 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2242 XVA_SET_RTN(xvap, XAT_NODUMP); 2243 } 2244 2245 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2246 xoap->xoa_opaque = 2247 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2248 XVA_SET_RTN(xvap, XAT_OPAQUE); 2249 } 2250 2251 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2252 xoap->xoa_av_quarantined = 2253 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2254 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2255 } 2256 2257 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2258 xoap->xoa_av_modified = 2259 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2260 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2261 } 2262 2263 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2264 vp->v_type == VREG && 2265 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2266 size_t len; 2267 dmu_object_info_t doi; 2268 2269 /* 2270 * Only VREG files have anti-virus scanstamps, so we 2271 * won't conflict with symlinks in the bonus buffer. 2272 */ 2273 dmu_object_info_from_db(zp->z_dbuf, &doi); 2274 len = sizeof (xoap->xoa_av_scanstamp) + 2275 sizeof (znode_phys_t); 2276 if (len <= doi.doi_bonus_size) { 2277 /* 2278 * pzp points to the start of the 2279 * znode_phys_t. pzp + 1 points to the 2280 * first byte after the znode_phys_t. 2281 */ 2282 (void) memcpy(xoap->xoa_av_scanstamp, 2283 pzp + 1, 2284 sizeof (xoap->xoa_av_scanstamp)); 2285 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2286 } 2287 } 2288 2289 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2290 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2291 XVA_SET_RTN(xvap, XAT_CREATETIME); 2292 } 2293 } 2294 2295 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2296 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2297 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2298 2299 mutex_exit(&zp->z_lock); 2300 2301 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2302 2303 if (zp->z_blksz == 0) { 2304 /* 2305 * Block size hasn't been set; suggest maximal I/O transfers. 2306 */ 2307 vap->va_blksize = zfsvfs->z_max_blksz; 2308 } 2309 2310 ZFS_EXIT(zfsvfs); 2311 return (0); 2312 } 2313 2314 /* 2315 * Set the file attributes to the values contained in the 2316 * vattr structure. 2317 * 2318 * IN: vp - vnode of file to be modified. 2319 * vap - new attribute values. 2320 * If AT_XVATTR set, then optional attrs are being set 2321 * flags - ATTR_UTIME set if non-default time values provided. 2322 * - ATTR_NOACLCHECK (CIFS context only). 2323 * cr - credentials of caller. 2324 * ct - caller context 2325 * 2326 * RETURN: 0 if success 2327 * error code if failure 2328 * 2329 * Timestamps: 2330 * vp - ctime updated, mtime updated if size changed. 2331 */ 2332 /* ARGSUSED */ 2333 static int 2334 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2335 caller_context_t *ct) 2336 { 2337 znode_t *zp = VTOZ(vp); 2338 znode_phys_t *pzp; 2339 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2340 zilog_t *zilog; 2341 dmu_tx_t *tx; 2342 vattr_t oldva; 2343 xvattr_t tmpxvattr; 2344 uint_t mask = vap->va_mask; 2345 uint_t saved_mask; 2346 int trim_mask = 0; 2347 uint64_t new_mode; 2348 znode_t *attrzp; 2349 int need_policy = FALSE; 2350 int err; 2351 zfs_fuid_info_t *fuidp = NULL; 2352 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2353 xoptattr_t *xoap; 2354 zfs_acl_t *aclp = NULL; 2355 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2356 2357 if (mask == 0) 2358 return (0); 2359 2360 if (mask & AT_NOSET) 2361 return (EINVAL); 2362 2363 ZFS_ENTER(zfsvfs); 2364 ZFS_VERIFY_ZP(zp); 2365 2366 pzp = zp->z_phys; 2367 zilog = zfsvfs->z_log; 2368 2369 /* 2370 * Make sure that if we have ephemeral uid/gid or xvattr specified 2371 * that file system is at proper version level 2372 */ 2373 2374 if (zfsvfs->z_use_fuids == B_FALSE && 2375 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2376 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2377 (mask & AT_XVATTR))) { 2378 ZFS_EXIT(zfsvfs); 2379 return (EINVAL); 2380 } 2381 2382 if (mask & AT_SIZE && vp->v_type == VDIR) { 2383 ZFS_EXIT(zfsvfs); 2384 return (EISDIR); 2385 } 2386 2387 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2388 ZFS_EXIT(zfsvfs); 2389 return (EINVAL); 2390 } 2391 2392 /* 2393 * If this is an xvattr_t, then get a pointer to the structure of 2394 * optional attributes. If this is NULL, then we have a vattr_t. 2395 */ 2396 xoap = xva_getxoptattr(xvap); 2397 2398 xva_init(&tmpxvattr); 2399 2400 /* 2401 * Immutable files can only alter immutable bit and atime 2402 */ 2403 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2404 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2405 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2406 ZFS_EXIT(zfsvfs); 2407 return (EPERM); 2408 } 2409 2410 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2411 ZFS_EXIT(zfsvfs); 2412 return (EPERM); 2413 } 2414 2415 /* 2416 * Verify timestamps doesn't overflow 32 bits. 2417 * ZFS can handle large timestamps, but 32bit syscalls can't 2418 * handle times greater than 2039. This check should be removed 2419 * once large timestamps are fully supported. 2420 */ 2421 if (mask & (AT_ATIME | AT_MTIME)) { 2422 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2423 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2424 ZFS_EXIT(zfsvfs); 2425 return (EOVERFLOW); 2426 } 2427 } 2428 2429 top: 2430 attrzp = NULL; 2431 2432 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2433 ZFS_EXIT(zfsvfs); 2434 return (EROFS); 2435 } 2436 2437 /* 2438 * First validate permissions 2439 */ 2440 2441 if (mask & AT_SIZE) { 2442 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2443 if (err) { 2444 ZFS_EXIT(zfsvfs); 2445 return (err); 2446 } 2447 /* 2448 * XXX - Note, we are not providing any open 2449 * mode flags here (like FNDELAY), so we may 2450 * block if there are locks present... this 2451 * should be addressed in openat(). 2452 */ 2453 /* XXX - would it be OK to generate a log record here? */ 2454 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2455 if (err) { 2456 ZFS_EXIT(zfsvfs); 2457 return (err); 2458 } 2459 } 2460 2461 if (mask & (AT_ATIME|AT_MTIME) || 2462 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2463 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2464 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2465 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2466 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2467 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2468 skipaclchk, cr); 2469 2470 if (mask & (AT_UID|AT_GID)) { 2471 int idmask = (mask & (AT_UID|AT_GID)); 2472 int take_owner; 2473 int take_group; 2474 2475 /* 2476 * NOTE: even if a new mode is being set, 2477 * we may clear S_ISUID/S_ISGID bits. 2478 */ 2479 2480 if (!(mask & AT_MODE)) 2481 vap->va_mode = pzp->zp_mode; 2482 2483 /* 2484 * Take ownership or chgrp to group we are a member of 2485 */ 2486 2487 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2488 take_group = (mask & AT_GID) && 2489 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2490 2491 /* 2492 * If both AT_UID and AT_GID are set then take_owner and 2493 * take_group must both be set in order to allow taking 2494 * ownership. 2495 * 2496 * Otherwise, send the check through secpolicy_vnode_setattr() 2497 * 2498 */ 2499 2500 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2501 ((idmask == AT_UID) && take_owner) || 2502 ((idmask == AT_GID) && take_group)) { 2503 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2504 skipaclchk, cr) == 0) { 2505 /* 2506 * Remove setuid/setgid for non-privileged users 2507 */ 2508 secpolicy_setid_clear(vap, cr); 2509 trim_mask = (mask & (AT_UID|AT_GID)); 2510 } else { 2511 need_policy = TRUE; 2512 } 2513 } else { 2514 need_policy = TRUE; 2515 } 2516 } 2517 2518 mutex_enter(&zp->z_lock); 2519 oldva.va_mode = pzp->zp_mode; 2520 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2521 if (mask & AT_XVATTR) { 2522 /* 2523 * Update xvattr mask to include only those attributes 2524 * that are actually changing. 2525 * 2526 * the bits will be restored prior to actually setting 2527 * the attributes so the caller thinks they were set. 2528 */ 2529 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2530 if (xoap->xoa_appendonly != 2531 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2532 need_policy = TRUE; 2533 } else { 2534 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2535 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2536 } 2537 } 2538 2539 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2540 if (xoap->xoa_nounlink != 2541 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2542 need_policy = TRUE; 2543 } else { 2544 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2545 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2546 } 2547 } 2548 2549 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2550 if (xoap->xoa_immutable != 2551 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2552 need_policy = TRUE; 2553 } else { 2554 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2555 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2556 } 2557 } 2558 2559 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2560 if (xoap->xoa_nodump != 2561 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2562 need_policy = TRUE; 2563 } else { 2564 XVA_CLR_REQ(xvap, XAT_NODUMP); 2565 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2566 } 2567 } 2568 2569 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2570 if (xoap->xoa_av_modified != 2571 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2572 need_policy = TRUE; 2573 } else { 2574 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2575 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2576 } 2577 } 2578 2579 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2580 if ((vp->v_type != VREG && 2581 xoap->xoa_av_quarantined) || 2582 xoap->xoa_av_quarantined != 2583 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2584 need_policy = TRUE; 2585 } else { 2586 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2587 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2588 } 2589 } 2590 2591 if (need_policy == FALSE && 2592 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2593 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2594 need_policy = TRUE; 2595 } 2596 } 2597 2598 mutex_exit(&zp->z_lock); 2599 2600 if (mask & AT_MODE) { 2601 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2602 err = secpolicy_setid_setsticky_clear(vp, vap, 2603 &oldva, cr); 2604 if (err) { 2605 ZFS_EXIT(zfsvfs); 2606 return (err); 2607 } 2608 trim_mask |= AT_MODE; 2609 } else { 2610 need_policy = TRUE; 2611 } 2612 } 2613 2614 if (need_policy) { 2615 /* 2616 * If trim_mask is set then take ownership 2617 * has been granted or write_acl is present and user 2618 * has the ability to modify mode. In that case remove 2619 * UID|GID and or MODE from mask so that 2620 * secpolicy_vnode_setattr() doesn't revoke it. 2621 */ 2622 2623 if (trim_mask) { 2624 saved_mask = vap->va_mask; 2625 vap->va_mask &= ~trim_mask; 2626 } 2627 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2628 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2629 if (err) { 2630 ZFS_EXIT(zfsvfs); 2631 return (err); 2632 } 2633 2634 if (trim_mask) 2635 vap->va_mask |= saved_mask; 2636 } 2637 2638 /* 2639 * secpolicy_vnode_setattr, or take ownership may have 2640 * changed va_mask 2641 */ 2642 mask = vap->va_mask; 2643 2644 tx = dmu_tx_create(zfsvfs->z_os); 2645 dmu_tx_hold_bonus(tx, zp->z_id); 2646 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2647 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2648 if (zfsvfs->z_fuid_obj == 0) { 2649 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2650 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2651 FUID_SIZE_ESTIMATE(zfsvfs)); 2652 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2653 } else { 2654 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2655 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2656 FUID_SIZE_ESTIMATE(zfsvfs)); 2657 } 2658 } 2659 2660 if (mask & AT_MODE) { 2661 uint64_t pmode = pzp->zp_mode; 2662 2663 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2664 2665 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2666 dmu_tx_abort(tx); 2667 ZFS_EXIT(zfsvfs); 2668 return (err); 2669 } 2670 if (pzp->zp_acl.z_acl_extern_obj) { 2671 /* Are we upgrading ACL from old V0 format to new V1 */ 2672 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2673 pzp->zp_acl.z_acl_version == 2674 ZFS_ACL_VERSION_INITIAL) { 2675 dmu_tx_hold_free(tx, 2676 pzp->zp_acl.z_acl_extern_obj, 0, 2677 DMU_OBJECT_END); 2678 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2679 0, aclp->z_acl_bytes); 2680 } else { 2681 dmu_tx_hold_write(tx, 2682 pzp->zp_acl.z_acl_extern_obj, 0, 2683 aclp->z_acl_bytes); 2684 } 2685 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2686 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2687 0, aclp->z_acl_bytes); 2688 } 2689 } 2690 2691 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2692 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2693 if (err) { 2694 dmu_tx_abort(tx); 2695 ZFS_EXIT(zfsvfs); 2696 if (aclp) 2697 zfs_acl_free(aclp); 2698 return (err); 2699 } 2700 dmu_tx_hold_bonus(tx, attrzp->z_id); 2701 } 2702 2703 err = dmu_tx_assign(tx, TXG_NOWAIT); 2704 if (err) { 2705 if (attrzp) 2706 VN_RELE(ZTOV(attrzp)); 2707 2708 if (aclp) { 2709 zfs_acl_free(aclp); 2710 aclp = NULL; 2711 } 2712 2713 if (err == ERESTART) { 2714 dmu_tx_wait(tx); 2715 dmu_tx_abort(tx); 2716 goto top; 2717 } 2718 dmu_tx_abort(tx); 2719 ZFS_EXIT(zfsvfs); 2720 return (err); 2721 } 2722 2723 dmu_buf_will_dirty(zp->z_dbuf, tx); 2724 2725 /* 2726 * Set each attribute requested. 2727 * We group settings according to the locks they need to acquire. 2728 * 2729 * Note: you cannot set ctime directly, although it will be 2730 * updated as a side-effect of calling this function. 2731 */ 2732 2733 mutex_enter(&zp->z_lock); 2734 2735 if (mask & AT_MODE) { 2736 mutex_enter(&zp->z_acl_lock); 2737 zp->z_phys->zp_mode = new_mode; 2738 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2739 ASSERT3U(err, ==, 0); 2740 mutex_exit(&zp->z_acl_lock); 2741 } 2742 2743 if (attrzp) 2744 mutex_enter(&attrzp->z_lock); 2745 2746 if (mask & AT_UID) { 2747 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2748 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2749 if (attrzp) { 2750 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2751 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2752 } 2753 } 2754 2755 if (mask & AT_GID) { 2756 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2757 cr, ZFS_GROUP, tx, &fuidp); 2758 if (attrzp) 2759 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2760 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2761 } 2762 2763 if (aclp) 2764 zfs_acl_free(aclp); 2765 2766 if (attrzp) 2767 mutex_exit(&attrzp->z_lock); 2768 2769 if (mask & AT_ATIME) 2770 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2771 2772 if (mask & AT_MTIME) 2773 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2774 2775 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2776 if (mask & AT_SIZE) 2777 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2778 else if (mask != 0) 2779 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2780 /* 2781 * Do this after setting timestamps to prevent timestamp 2782 * update from toggling bit 2783 */ 2784 2785 if (xoap && (mask & AT_XVATTR)) { 2786 2787 /* 2788 * restore trimmed off masks 2789 * so that return masks can be set for caller. 2790 */ 2791 2792 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2793 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2794 } 2795 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2796 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2797 } 2798 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2799 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2800 } 2801 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2802 XVA_SET_REQ(xvap, XAT_NODUMP); 2803 } 2804 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2805 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2806 } 2807 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2808 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2809 } 2810 2811 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2812 size_t len; 2813 dmu_object_info_t doi; 2814 2815 ASSERT(vp->v_type == VREG); 2816 2817 /* Grow the bonus buffer if necessary. */ 2818 dmu_object_info_from_db(zp->z_dbuf, &doi); 2819 len = sizeof (xoap->xoa_av_scanstamp) + 2820 sizeof (znode_phys_t); 2821 if (len > doi.doi_bonus_size) 2822 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2823 } 2824 zfs_xvattr_set(zp, xvap); 2825 } 2826 2827 if (mask != 0) 2828 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2829 2830 if (fuidp) 2831 zfs_fuid_info_free(fuidp); 2832 mutex_exit(&zp->z_lock); 2833 2834 if (attrzp) 2835 VN_RELE(ZTOV(attrzp)); 2836 2837 dmu_tx_commit(tx); 2838 2839 ZFS_EXIT(zfsvfs); 2840 return (err); 2841 } 2842 2843 typedef struct zfs_zlock { 2844 krwlock_t *zl_rwlock; /* lock we acquired */ 2845 znode_t *zl_znode; /* znode we held */ 2846 struct zfs_zlock *zl_next; /* next in list */ 2847 } zfs_zlock_t; 2848 2849 /* 2850 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2851 */ 2852 static void 2853 zfs_rename_unlock(zfs_zlock_t **zlpp) 2854 { 2855 zfs_zlock_t *zl; 2856 2857 while ((zl = *zlpp) != NULL) { 2858 if (zl->zl_znode != NULL) 2859 VN_RELE(ZTOV(zl->zl_znode)); 2860 rw_exit(zl->zl_rwlock); 2861 *zlpp = zl->zl_next; 2862 kmem_free(zl, sizeof (*zl)); 2863 } 2864 } 2865 2866 /* 2867 * Search back through the directory tree, using the ".." entries. 2868 * Lock each directory in the chain to prevent concurrent renames. 2869 * Fail any attempt to move a directory into one of its own descendants. 2870 * XXX - z_parent_lock can overlap with map or grow locks 2871 */ 2872 static int 2873 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2874 { 2875 zfs_zlock_t *zl; 2876 znode_t *zp = tdzp; 2877 uint64_t rootid = zp->z_zfsvfs->z_root; 2878 uint64_t *oidp = &zp->z_id; 2879 krwlock_t *rwlp = &szp->z_parent_lock; 2880 krw_t rw = RW_WRITER; 2881 2882 /* 2883 * First pass write-locks szp and compares to zp->z_id. 2884 * Later passes read-lock zp and compare to zp->z_parent. 2885 */ 2886 do { 2887 if (!rw_tryenter(rwlp, rw)) { 2888 /* 2889 * Another thread is renaming in this path. 2890 * Note that if we are a WRITER, we don't have any 2891 * parent_locks held yet. 2892 */ 2893 if (rw == RW_READER && zp->z_id > szp->z_id) { 2894 /* 2895 * Drop our locks and restart 2896 */ 2897 zfs_rename_unlock(&zl); 2898 *zlpp = NULL; 2899 zp = tdzp; 2900 oidp = &zp->z_id; 2901 rwlp = &szp->z_parent_lock; 2902 rw = RW_WRITER; 2903 continue; 2904 } else { 2905 /* 2906 * Wait for other thread to drop its locks 2907 */ 2908 rw_enter(rwlp, rw); 2909 } 2910 } 2911 2912 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2913 zl->zl_rwlock = rwlp; 2914 zl->zl_znode = NULL; 2915 zl->zl_next = *zlpp; 2916 *zlpp = zl; 2917 2918 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2919 return (EINVAL); 2920 2921 if (*oidp == rootid) /* We've hit the top */ 2922 return (0); 2923 2924 if (rw == RW_READER) { /* i.e. not the first pass */ 2925 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2926 if (error) 2927 return (error); 2928 zl->zl_znode = zp; 2929 } 2930 oidp = &zp->z_phys->zp_parent; 2931 rwlp = &zp->z_parent_lock; 2932 rw = RW_READER; 2933 2934 } while (zp->z_id != sdzp->z_id); 2935 2936 return (0); 2937 } 2938 2939 /* 2940 * Move an entry from the provided source directory to the target 2941 * directory. Change the entry name as indicated. 2942 * 2943 * IN: sdvp - Source directory containing the "old entry". 2944 * snm - Old entry name. 2945 * tdvp - Target directory to contain the "new entry". 2946 * tnm - New entry name. 2947 * cr - credentials of caller. 2948 * ct - caller context 2949 * flags - case flags 2950 * 2951 * RETURN: 0 if success 2952 * error code if failure 2953 * 2954 * Timestamps: 2955 * sdvp,tdvp - ctime|mtime updated 2956 */ 2957 /*ARGSUSED*/ 2958 static int 2959 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2960 caller_context_t *ct, int flags) 2961 { 2962 znode_t *tdzp, *szp, *tzp; 2963 znode_t *sdzp = VTOZ(sdvp); 2964 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2965 zilog_t *zilog; 2966 vnode_t *realvp; 2967 zfs_dirlock_t *sdl, *tdl; 2968 dmu_tx_t *tx; 2969 zfs_zlock_t *zl; 2970 int cmp, serr, terr; 2971 int error = 0; 2972 int zflg = 0; 2973 2974 ZFS_ENTER(zfsvfs); 2975 ZFS_VERIFY_ZP(sdzp); 2976 zilog = zfsvfs->z_log; 2977 2978 /* 2979 * Make sure we have the real vp for the target directory. 2980 */ 2981 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2982 tdvp = realvp; 2983 2984 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2985 ZFS_EXIT(zfsvfs); 2986 return (EXDEV); 2987 } 2988 2989 tdzp = VTOZ(tdvp); 2990 ZFS_VERIFY_ZP(tdzp); 2991 if (zfsvfs->z_utf8 && u8_validate(tnm, 2992 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2993 ZFS_EXIT(zfsvfs); 2994 return (EILSEQ); 2995 } 2996 2997 if (flags & FIGNORECASE) 2998 zflg |= ZCILOOK; 2999 3000 top: 3001 szp = NULL; 3002 tzp = NULL; 3003 zl = NULL; 3004 3005 /* 3006 * This is to prevent the creation of links into attribute space 3007 * by renaming a linked file into/outof an attribute directory. 3008 * See the comment in zfs_link() for why this is considered bad. 3009 */ 3010 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3011 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3012 ZFS_EXIT(zfsvfs); 3013 return (EINVAL); 3014 } 3015 3016 /* 3017 * Lock source and target directory entries. To prevent deadlock, 3018 * a lock ordering must be defined. We lock the directory with 3019 * the smallest object id first, or if it's a tie, the one with 3020 * the lexically first name. 3021 */ 3022 if (sdzp->z_id < tdzp->z_id) { 3023 cmp = -1; 3024 } else if (sdzp->z_id > tdzp->z_id) { 3025 cmp = 1; 3026 } else { 3027 /* 3028 * First compare the two name arguments without 3029 * considering any case folding. 3030 */ 3031 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3032 3033 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3034 ASSERT(error == 0 || !zfsvfs->z_utf8); 3035 if (cmp == 0) { 3036 /* 3037 * POSIX: "If the old argument and the new argument 3038 * both refer to links to the same existing file, 3039 * the rename() function shall return successfully 3040 * and perform no other action." 3041 */ 3042 ZFS_EXIT(zfsvfs); 3043 return (0); 3044 } 3045 /* 3046 * If the file system is case-folding, then we may 3047 * have some more checking to do. A case-folding file 3048 * system is either supporting mixed case sensitivity 3049 * access or is completely case-insensitive. Note 3050 * that the file system is always case preserving. 3051 * 3052 * In mixed sensitivity mode case sensitive behavior 3053 * is the default. FIGNORECASE must be used to 3054 * explicitly request case insensitive behavior. 3055 * 3056 * If the source and target names provided differ only 3057 * by case (e.g., a request to rename 'tim' to 'Tim'), 3058 * we will treat this as a special case in the 3059 * case-insensitive mode: as long as the source name 3060 * is an exact match, we will allow this to proceed as 3061 * a name-change request. 3062 */ 3063 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3064 (zfsvfs->z_case == ZFS_CASE_MIXED && 3065 flags & FIGNORECASE)) && 3066 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3067 &error) == 0) { 3068 /* 3069 * case preserving rename request, require exact 3070 * name matches 3071 */ 3072 zflg |= ZCIEXACT; 3073 zflg &= ~ZCILOOK; 3074 } 3075 } 3076 3077 if (cmp < 0) { 3078 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3079 ZEXISTS | zflg, NULL, NULL); 3080 terr = zfs_dirent_lock(&tdl, 3081 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3082 } else { 3083 terr = zfs_dirent_lock(&tdl, 3084 tdzp, tnm, &tzp, zflg, NULL, NULL); 3085 serr = zfs_dirent_lock(&sdl, 3086 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3087 NULL, NULL); 3088 } 3089 3090 if (serr) { 3091 /* 3092 * Source entry invalid or not there. 3093 */ 3094 if (!terr) { 3095 zfs_dirent_unlock(tdl); 3096 if (tzp) 3097 VN_RELE(ZTOV(tzp)); 3098 } 3099 if (strcmp(snm, "..") == 0) 3100 serr = EINVAL; 3101 ZFS_EXIT(zfsvfs); 3102 return (serr); 3103 } 3104 if (terr) { 3105 zfs_dirent_unlock(sdl); 3106 VN_RELE(ZTOV(szp)); 3107 if (strcmp(tnm, "..") == 0) 3108 terr = EINVAL; 3109 ZFS_EXIT(zfsvfs); 3110 return (terr); 3111 } 3112 3113 /* 3114 * Must have write access at the source to remove the old entry 3115 * and write access at the target to create the new entry. 3116 * Note that if target and source are the same, this can be 3117 * done in a single check. 3118 */ 3119 3120 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3121 goto out; 3122 3123 if (ZTOV(szp)->v_type == VDIR) { 3124 /* 3125 * Check to make sure rename is valid. 3126 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3127 */ 3128 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3129 goto out; 3130 } 3131 3132 /* 3133 * Does target exist? 3134 */ 3135 if (tzp) { 3136 /* 3137 * Source and target must be the same type. 3138 */ 3139 if (ZTOV(szp)->v_type == VDIR) { 3140 if (ZTOV(tzp)->v_type != VDIR) { 3141 error = ENOTDIR; 3142 goto out; 3143 } 3144 } else { 3145 if (ZTOV(tzp)->v_type == VDIR) { 3146 error = EISDIR; 3147 goto out; 3148 } 3149 } 3150 /* 3151 * POSIX dictates that when the source and target 3152 * entries refer to the same file object, rename 3153 * must do nothing and exit without error. 3154 */ 3155 if (szp->z_id == tzp->z_id) { 3156 error = 0; 3157 goto out; 3158 } 3159 } 3160 3161 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3162 if (tzp) 3163 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3164 3165 /* 3166 * notify the target directory if it is not the same 3167 * as source directory. 3168 */ 3169 if (tdvp != sdvp) { 3170 vnevent_rename_dest_dir(tdvp, ct); 3171 } 3172 3173 tx = dmu_tx_create(zfsvfs->z_os); 3174 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3175 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3176 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3177 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3178 if (sdzp != tdzp) 3179 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3180 if (tzp) 3181 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3182 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3183 error = dmu_tx_assign(tx, TXG_NOWAIT); 3184 if (error) { 3185 if (zl != NULL) 3186 zfs_rename_unlock(&zl); 3187 zfs_dirent_unlock(sdl); 3188 zfs_dirent_unlock(tdl); 3189 VN_RELE(ZTOV(szp)); 3190 if (tzp) 3191 VN_RELE(ZTOV(tzp)); 3192 if (error == ERESTART) { 3193 dmu_tx_wait(tx); 3194 dmu_tx_abort(tx); 3195 goto top; 3196 } 3197 dmu_tx_abort(tx); 3198 ZFS_EXIT(zfsvfs); 3199 return (error); 3200 } 3201 3202 if (tzp) /* Attempt to remove the existing target */ 3203 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3204 3205 if (error == 0) { 3206 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3207 if (error == 0) { 3208 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3209 3210 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3211 ASSERT(error == 0); 3212 3213 zfs_log_rename(zilog, tx, 3214 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3215 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3216 3217 /* Update path information for the target vnode */ 3218 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3219 } 3220 } 3221 3222 dmu_tx_commit(tx); 3223 out: 3224 if (zl != NULL) 3225 zfs_rename_unlock(&zl); 3226 3227 zfs_dirent_unlock(sdl); 3228 zfs_dirent_unlock(tdl); 3229 3230 VN_RELE(ZTOV(szp)); 3231 if (tzp) 3232 VN_RELE(ZTOV(tzp)); 3233 3234 ZFS_EXIT(zfsvfs); 3235 return (error); 3236 } 3237 3238 /* 3239 * Insert the indicated symbolic reference entry into the directory. 3240 * 3241 * IN: dvp - Directory to contain new symbolic link. 3242 * link - Name for new symlink entry. 3243 * vap - Attributes of new entry. 3244 * target - Target path of new symlink. 3245 * cr - credentials of caller. 3246 * ct - caller context 3247 * flags - case flags 3248 * 3249 * RETURN: 0 if success 3250 * error code if failure 3251 * 3252 * Timestamps: 3253 * dvp - ctime|mtime updated 3254 */ 3255 /*ARGSUSED*/ 3256 static int 3257 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3258 caller_context_t *ct, int flags) 3259 { 3260 znode_t *zp, *dzp = VTOZ(dvp); 3261 zfs_dirlock_t *dl; 3262 dmu_tx_t *tx; 3263 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3264 zilog_t *zilog; 3265 int len = strlen(link); 3266 int error; 3267 int zflg = ZNEW; 3268 zfs_fuid_info_t *fuidp = NULL; 3269 3270 ASSERT(vap->va_type == VLNK); 3271 3272 ZFS_ENTER(zfsvfs); 3273 ZFS_VERIFY_ZP(dzp); 3274 zilog = zfsvfs->z_log; 3275 3276 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3277 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3278 ZFS_EXIT(zfsvfs); 3279 return (EILSEQ); 3280 } 3281 if (flags & FIGNORECASE) 3282 zflg |= ZCILOOK; 3283 top: 3284 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3285 ZFS_EXIT(zfsvfs); 3286 return (error); 3287 } 3288 3289 if (len > MAXPATHLEN) { 3290 ZFS_EXIT(zfsvfs); 3291 return (ENAMETOOLONG); 3292 } 3293 3294 /* 3295 * Attempt to lock directory; fail if entry already exists. 3296 */ 3297 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3298 if (error) { 3299 ZFS_EXIT(zfsvfs); 3300 return (error); 3301 } 3302 3303 tx = dmu_tx_create(zfsvfs->z_os); 3304 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3305 dmu_tx_hold_bonus(tx, dzp->z_id); 3306 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3307 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3308 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3309 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3310 if (zfsvfs->z_fuid_obj == 0) { 3311 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3312 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3313 FUID_SIZE_ESTIMATE(zfsvfs)); 3314 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3315 } else { 3316 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3317 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3318 FUID_SIZE_ESTIMATE(zfsvfs)); 3319 } 3320 } 3321 error = dmu_tx_assign(tx, TXG_NOWAIT); 3322 if (error) { 3323 zfs_dirent_unlock(dl); 3324 if (error == ERESTART) { 3325 dmu_tx_wait(tx); 3326 dmu_tx_abort(tx); 3327 goto top; 3328 } 3329 dmu_tx_abort(tx); 3330 ZFS_EXIT(zfsvfs); 3331 return (error); 3332 } 3333 3334 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3335 3336 /* 3337 * Create a new object for the symlink. 3338 * Put the link content into bonus buffer if it will fit; 3339 * otherwise, store it just like any other file data. 3340 */ 3341 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3342 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3343 if (len != 0) 3344 bcopy(link, zp->z_phys + 1, len); 3345 } else { 3346 dmu_buf_t *dbp; 3347 3348 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3349 /* 3350 * Nothing can access the znode yet so no locking needed 3351 * for growing the znode's blocksize. 3352 */ 3353 zfs_grow_blocksize(zp, len, tx); 3354 3355 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3356 zp->z_id, 0, FTAG, &dbp)); 3357 dmu_buf_will_dirty(dbp, tx); 3358 3359 ASSERT3U(len, <=, dbp->db_size); 3360 bcopy(link, dbp->db_data, len); 3361 dmu_buf_rele(dbp, FTAG); 3362 } 3363 zp->z_phys->zp_size = len; 3364 3365 /* 3366 * Insert the new object into the directory. 3367 */ 3368 (void) zfs_link_create(dl, zp, tx, ZNEW); 3369 out: 3370 if (error == 0) { 3371 uint64_t txtype = TX_SYMLINK; 3372 if (flags & FIGNORECASE) 3373 txtype |= TX_CI; 3374 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3375 } 3376 if (fuidp) 3377 zfs_fuid_info_free(fuidp); 3378 3379 dmu_tx_commit(tx); 3380 3381 zfs_dirent_unlock(dl); 3382 3383 VN_RELE(ZTOV(zp)); 3384 3385 ZFS_EXIT(zfsvfs); 3386 return (error); 3387 } 3388 3389 /* 3390 * Return, in the buffer contained in the provided uio structure, 3391 * the symbolic path referred to by vp. 3392 * 3393 * IN: vp - vnode of symbolic link. 3394 * uoip - structure to contain the link path. 3395 * cr - credentials of caller. 3396 * ct - caller context 3397 * 3398 * OUT: uio - structure to contain the link path. 3399 * 3400 * RETURN: 0 if success 3401 * error code if failure 3402 * 3403 * Timestamps: 3404 * vp - atime updated 3405 */ 3406 /* ARGSUSED */ 3407 static int 3408 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3409 { 3410 znode_t *zp = VTOZ(vp); 3411 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3412 size_t bufsz; 3413 int error; 3414 3415 ZFS_ENTER(zfsvfs); 3416 ZFS_VERIFY_ZP(zp); 3417 3418 bufsz = (size_t)zp->z_phys->zp_size; 3419 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3420 error = uiomove(zp->z_phys + 1, 3421 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3422 } else { 3423 dmu_buf_t *dbp; 3424 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3425 if (error) { 3426 ZFS_EXIT(zfsvfs); 3427 return (error); 3428 } 3429 error = uiomove(dbp->db_data, 3430 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3431 dmu_buf_rele(dbp, FTAG); 3432 } 3433 3434 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3435 ZFS_EXIT(zfsvfs); 3436 return (error); 3437 } 3438 3439 /* 3440 * Insert a new entry into directory tdvp referencing svp. 3441 * 3442 * IN: tdvp - Directory to contain new entry. 3443 * svp - vnode of new entry. 3444 * name - name of new entry. 3445 * cr - credentials of caller. 3446 * ct - caller context 3447 * 3448 * RETURN: 0 if success 3449 * error code if failure 3450 * 3451 * Timestamps: 3452 * tdvp - ctime|mtime updated 3453 * svp - ctime updated 3454 */ 3455 /* ARGSUSED */ 3456 static int 3457 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3458 caller_context_t *ct, int flags) 3459 { 3460 znode_t *dzp = VTOZ(tdvp); 3461 znode_t *tzp, *szp; 3462 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3463 zilog_t *zilog; 3464 zfs_dirlock_t *dl; 3465 dmu_tx_t *tx; 3466 vnode_t *realvp; 3467 int error; 3468 int zf = ZNEW; 3469 uid_t owner; 3470 3471 ASSERT(tdvp->v_type == VDIR); 3472 3473 ZFS_ENTER(zfsvfs); 3474 ZFS_VERIFY_ZP(dzp); 3475 zilog = zfsvfs->z_log; 3476 3477 if (VOP_REALVP(svp, &realvp, ct) == 0) 3478 svp = realvp; 3479 3480 if (svp->v_vfsp != tdvp->v_vfsp) { 3481 ZFS_EXIT(zfsvfs); 3482 return (EXDEV); 3483 } 3484 szp = VTOZ(svp); 3485 ZFS_VERIFY_ZP(szp); 3486 3487 if (zfsvfs->z_utf8 && u8_validate(name, 3488 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3489 ZFS_EXIT(zfsvfs); 3490 return (EILSEQ); 3491 } 3492 if (flags & FIGNORECASE) 3493 zf |= ZCILOOK; 3494 3495 top: 3496 /* 3497 * We do not support links between attributes and non-attributes 3498 * because of the potential security risk of creating links 3499 * into "normal" file space in order to circumvent restrictions 3500 * imposed in attribute space. 3501 */ 3502 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3503 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3504 ZFS_EXIT(zfsvfs); 3505 return (EINVAL); 3506 } 3507 3508 /* 3509 * POSIX dictates that we return EPERM here. 3510 * Better choices include ENOTSUP or EISDIR. 3511 */ 3512 if (svp->v_type == VDIR) { 3513 ZFS_EXIT(zfsvfs); 3514 return (EPERM); 3515 } 3516 3517 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3518 if (owner != crgetuid(cr) && 3519 secpolicy_basic_link(cr) != 0) { 3520 ZFS_EXIT(zfsvfs); 3521 return (EPERM); 3522 } 3523 3524 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3525 ZFS_EXIT(zfsvfs); 3526 return (error); 3527 } 3528 3529 /* 3530 * Attempt to lock directory; fail if entry already exists. 3531 */ 3532 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3533 if (error) { 3534 ZFS_EXIT(zfsvfs); 3535 return (error); 3536 } 3537 3538 tx = dmu_tx_create(zfsvfs->z_os); 3539 dmu_tx_hold_bonus(tx, szp->z_id); 3540 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3541 error = dmu_tx_assign(tx, TXG_NOWAIT); 3542 if (error) { 3543 zfs_dirent_unlock(dl); 3544 if (error == ERESTART) { 3545 dmu_tx_wait(tx); 3546 dmu_tx_abort(tx); 3547 goto top; 3548 } 3549 dmu_tx_abort(tx); 3550 ZFS_EXIT(zfsvfs); 3551 return (error); 3552 } 3553 3554 error = zfs_link_create(dl, szp, tx, 0); 3555 3556 if (error == 0) { 3557 uint64_t txtype = TX_LINK; 3558 if (flags & FIGNORECASE) 3559 txtype |= TX_CI; 3560 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3561 } 3562 3563 dmu_tx_commit(tx); 3564 3565 zfs_dirent_unlock(dl); 3566 3567 if (error == 0) { 3568 vnevent_link(svp, ct); 3569 } 3570 3571 ZFS_EXIT(zfsvfs); 3572 return (error); 3573 } 3574 3575 /* 3576 * zfs_null_putapage() is used when the file system has been force 3577 * unmounted. It just drops the pages. 3578 */ 3579 /* ARGSUSED */ 3580 static int 3581 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3582 size_t *lenp, int flags, cred_t *cr) 3583 { 3584 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3585 return (0); 3586 } 3587 3588 /* 3589 * Push a page out to disk, klustering if possible. 3590 * 3591 * IN: vp - file to push page to. 3592 * pp - page to push. 3593 * flags - additional flags. 3594 * cr - credentials of caller. 3595 * 3596 * OUT: offp - start of range pushed. 3597 * lenp - len of range pushed. 3598 * 3599 * RETURN: 0 if success 3600 * error code if failure 3601 * 3602 * NOTE: callers must have locked the page to be pushed. On 3603 * exit, the page (and all other pages in the kluster) must be 3604 * unlocked. 3605 */ 3606 /* ARGSUSED */ 3607 static int 3608 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3609 size_t *lenp, int flags, cred_t *cr) 3610 { 3611 znode_t *zp = VTOZ(vp); 3612 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3613 zilog_t *zilog = zfsvfs->z_log; 3614 dmu_tx_t *tx; 3615 rl_t *rl; 3616 u_offset_t off, koff; 3617 size_t len, klen; 3618 uint64_t filesz; 3619 int err; 3620 3621 filesz = zp->z_phys->zp_size; 3622 off = pp->p_offset; 3623 len = PAGESIZE; 3624 /* 3625 * If our blocksize is bigger than the page size, try to kluster 3626 * multiple pages so that we write a full block (thus avoiding 3627 * a read-modify-write). 3628 */ 3629 if (off < filesz && zp->z_blksz > PAGESIZE) { 3630 if (!ISP2(zp->z_blksz)) { 3631 /* Only one block in the file. */ 3632 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3633 koff = 0; 3634 } else { 3635 klen = zp->z_blksz; 3636 koff = P2ALIGN(off, (u_offset_t)klen); 3637 } 3638 ASSERT(koff <= filesz); 3639 if (koff + klen > filesz) 3640 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3641 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3642 } 3643 ASSERT3U(btop(len), ==, btopr(len)); 3644 top: 3645 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3646 /* 3647 * Can't push pages past end-of-file. 3648 */ 3649 filesz = zp->z_phys->zp_size; 3650 if (off >= filesz) { 3651 /* ignore all pages */ 3652 err = 0; 3653 goto out; 3654 } else if (off + len > filesz) { 3655 int npages = btopr(filesz - off); 3656 page_t *trunc; 3657 3658 page_list_break(&pp, &trunc, npages); 3659 /* ignore pages past end of file */ 3660 if (trunc) 3661 pvn_write_done(trunc, flags); 3662 len = filesz - off; 3663 } 3664 3665 tx = dmu_tx_create(zfsvfs->z_os); 3666 dmu_tx_hold_write(tx, zp->z_id, off, len); 3667 dmu_tx_hold_bonus(tx, zp->z_id); 3668 err = dmu_tx_assign(tx, TXG_NOWAIT); 3669 if (err != 0) { 3670 if (err == ERESTART) { 3671 zfs_range_unlock(rl); 3672 dmu_tx_wait(tx); 3673 dmu_tx_abort(tx); 3674 err = 0; 3675 goto top; 3676 } 3677 dmu_tx_abort(tx); 3678 goto out; 3679 } 3680 3681 if (zp->z_blksz <= PAGESIZE) { 3682 caddr_t va = zfs_map_page(pp, S_READ); 3683 ASSERT3U(len, <=, PAGESIZE); 3684 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3685 zfs_unmap_page(pp, va); 3686 } else { 3687 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3688 } 3689 3690 if (err == 0) { 3691 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3692 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3693 dmu_tx_commit(tx); 3694 } 3695 3696 out: 3697 zfs_range_unlock(rl); 3698 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3699 if (offp) 3700 *offp = off; 3701 if (lenp) 3702 *lenp = len; 3703 3704 return (err); 3705 } 3706 3707 /* 3708 * Copy the portion of the file indicated from pages into the file. 3709 * The pages are stored in a page list attached to the files vnode. 3710 * 3711 * IN: vp - vnode of file to push page data to. 3712 * off - position in file to put data. 3713 * len - amount of data to write. 3714 * flags - flags to control the operation. 3715 * cr - credentials of caller. 3716 * ct - caller context. 3717 * 3718 * RETURN: 0 if success 3719 * error code if failure 3720 * 3721 * Timestamps: 3722 * vp - ctime|mtime updated 3723 */ 3724 /*ARGSUSED*/ 3725 static int 3726 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3727 caller_context_t *ct) 3728 { 3729 znode_t *zp = VTOZ(vp); 3730 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3731 page_t *pp; 3732 size_t io_len; 3733 u_offset_t io_off; 3734 uint64_t filesz; 3735 int error = 0; 3736 3737 ZFS_ENTER(zfsvfs); 3738 ZFS_VERIFY_ZP(zp); 3739 3740 if (len == 0) { 3741 /* 3742 * Search the entire vp list for pages >= off. 3743 */ 3744 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3745 flags, cr); 3746 goto out; 3747 } 3748 3749 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3750 if (off > filesz) { 3751 /* past end of file */ 3752 ZFS_EXIT(zfsvfs); 3753 return (0); 3754 } 3755 3756 len = MIN(len, filesz - off); 3757 3758 for (io_off = off; io_off < off + len; io_off += io_len) { 3759 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3760 pp = page_lookup(vp, io_off, 3761 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3762 } else { 3763 pp = page_lookup_nowait(vp, io_off, 3764 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3765 } 3766 3767 if (pp != NULL && pvn_getdirty(pp, flags)) { 3768 int err; 3769 3770 /* 3771 * Found a dirty page to push 3772 */ 3773 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3774 if (err) 3775 error = err; 3776 } else { 3777 io_len = PAGESIZE; 3778 } 3779 } 3780 out: 3781 if ((flags & B_ASYNC) == 0) 3782 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3783 ZFS_EXIT(zfsvfs); 3784 return (error); 3785 } 3786 3787 /*ARGSUSED*/ 3788 void 3789 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3790 { 3791 znode_t *zp = VTOZ(vp); 3792 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3793 int error; 3794 3795 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3796 if (zp->z_dbuf == NULL) { 3797 /* 3798 * The fs has been unmounted, or we did a 3799 * suspend/resume and this file no longer exists. 3800 */ 3801 if (vn_has_cached_data(vp)) { 3802 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3803 B_INVAL, cr); 3804 } 3805 3806 mutex_enter(&zp->z_lock); 3807 vp->v_count = 0; /* count arrives as 1 */ 3808 mutex_exit(&zp->z_lock); 3809 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3810 zfs_znode_free(zp); 3811 return; 3812 } 3813 3814 /* 3815 * Attempt to push any data in the page cache. If this fails 3816 * we will get kicked out later in zfs_zinactive(). 3817 */ 3818 if (vn_has_cached_data(vp)) { 3819 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3820 cr); 3821 } 3822 3823 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3824 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3825 3826 dmu_tx_hold_bonus(tx, zp->z_id); 3827 error = dmu_tx_assign(tx, TXG_WAIT); 3828 if (error) { 3829 dmu_tx_abort(tx); 3830 } else { 3831 dmu_buf_will_dirty(zp->z_dbuf, tx); 3832 mutex_enter(&zp->z_lock); 3833 zp->z_atime_dirty = 0; 3834 mutex_exit(&zp->z_lock); 3835 dmu_tx_commit(tx); 3836 } 3837 } 3838 3839 zfs_zinactive(zp); 3840 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3841 } 3842 3843 /* 3844 * Bounds-check the seek operation. 3845 * 3846 * IN: vp - vnode seeking within 3847 * ooff - old file offset 3848 * noffp - pointer to new file offset 3849 * ct - caller context 3850 * 3851 * RETURN: 0 if success 3852 * EINVAL if new offset invalid 3853 */ 3854 /* ARGSUSED */ 3855 static int 3856 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3857 caller_context_t *ct) 3858 { 3859 if (vp->v_type == VDIR) 3860 return (0); 3861 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3862 } 3863 3864 /* 3865 * Pre-filter the generic locking function to trap attempts to place 3866 * a mandatory lock on a memory mapped file. 3867 */ 3868 static int 3869 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3870 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3871 { 3872 znode_t *zp = VTOZ(vp); 3873 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3874 int error; 3875 3876 ZFS_ENTER(zfsvfs); 3877 ZFS_VERIFY_ZP(zp); 3878 3879 /* 3880 * We are following the UFS semantics with respect to mapcnt 3881 * here: If we see that the file is mapped already, then we will 3882 * return an error, but we don't worry about races between this 3883 * function and zfs_map(). 3884 */ 3885 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3886 ZFS_EXIT(zfsvfs); 3887 return (EAGAIN); 3888 } 3889 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3890 ZFS_EXIT(zfsvfs); 3891 return (error); 3892 } 3893 3894 /* 3895 * If we can't find a page in the cache, we will create a new page 3896 * and fill it with file data. For efficiency, we may try to fill 3897 * multiple pages at once (klustering). 3898 */ 3899 static int 3900 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3901 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3902 { 3903 znode_t *zp = VTOZ(vp); 3904 page_t *pp, *cur_pp; 3905 objset_t *os = zp->z_zfsvfs->z_os; 3906 caddr_t va; 3907 u_offset_t io_off, total; 3908 uint64_t oid = zp->z_id; 3909 size_t io_len; 3910 uint64_t filesz; 3911 int err; 3912 3913 /* 3914 * If we are only asking for a single page don't bother klustering. 3915 */ 3916 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3917 if (off >= filesz) 3918 return (EFAULT); 3919 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3920 io_off = off; 3921 io_len = PAGESIZE; 3922 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3923 } else { 3924 /* 3925 * Try to fill a kluster of pages (a blocks worth). 3926 */ 3927 size_t klen; 3928 u_offset_t koff; 3929 3930 if (!ISP2(zp->z_blksz)) { 3931 /* Only one block in the file. */ 3932 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3933 koff = 0; 3934 } else { 3935 /* 3936 * It would be ideal to align our offset to the 3937 * blocksize but doing so has resulted in some 3938 * strange application crashes. For now, we 3939 * leave the offset as is and only adjust the 3940 * length if we are off the end of the file. 3941 */ 3942 koff = off; 3943 klen = plsz; 3944 } 3945 ASSERT(koff <= filesz); 3946 if (koff + klen > filesz) 3947 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3948 ASSERT3U(off, >=, koff); 3949 ASSERT3U(off, <, koff + klen); 3950 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3951 &io_len, koff, klen, 0); 3952 } 3953 if (pp == NULL) { 3954 /* 3955 * Some other thread entered the page before us. 3956 * Return to zfs_getpage to retry the lookup. 3957 */ 3958 *pl = NULL; 3959 return (0); 3960 } 3961 3962 /* 3963 * Fill the pages in the kluster. 3964 */ 3965 cur_pp = pp; 3966 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3967 ASSERT3U(io_off, ==, cur_pp->p_offset); 3968 va = zfs_map_page(cur_pp, S_WRITE); 3969 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3970 zfs_unmap_page(cur_pp, va); 3971 if (err) { 3972 /* On error, toss the entire kluster */ 3973 pvn_read_done(pp, B_ERROR); 3974 /* convert checksum errors into IO errors */ 3975 if (err == ECKSUM) 3976 err = EIO; 3977 return (err); 3978 } 3979 cur_pp = cur_pp->p_next; 3980 } 3981 out: 3982 /* 3983 * Fill in the page list array from the kluster. If 3984 * there are too many pages in the kluster, return 3985 * as many pages as possible starting from the desired 3986 * offset `off'. 3987 * NOTE: the page list will always be null terminated. 3988 */ 3989 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3990 3991 return (0); 3992 } 3993 3994 /* 3995 * Return pointers to the pages for the file region [off, off + len] 3996 * in the pl array. If plsz is greater than len, this function may 3997 * also return page pointers from before or after the specified 3998 * region (i.e. some region [off', off' + plsz]). These additional 3999 * pages are only returned if they are already in the cache, or were 4000 * created as part of a klustered read. 4001 * 4002 * IN: vp - vnode of file to get data from. 4003 * off - position in file to get data from. 4004 * len - amount of data to retrieve. 4005 * plsz - length of provided page list. 4006 * seg - segment to obtain pages for. 4007 * addr - virtual address of fault. 4008 * rw - mode of created pages. 4009 * cr - credentials of caller. 4010 * ct - caller context. 4011 * 4012 * OUT: protp - protection mode of created pages. 4013 * pl - list of pages created. 4014 * 4015 * RETURN: 0 if success 4016 * error code if failure 4017 * 4018 * Timestamps: 4019 * vp - atime updated 4020 */ 4021 /* ARGSUSED */ 4022 static int 4023 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4024 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4025 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4026 { 4027 znode_t *zp = VTOZ(vp); 4028 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4029 page_t *pp, **pl0 = pl; 4030 int need_unlock = 0, err = 0; 4031 offset_t orig_off; 4032 4033 ZFS_ENTER(zfsvfs); 4034 ZFS_VERIFY_ZP(zp); 4035 4036 if (protp) 4037 *protp = PROT_ALL; 4038 4039 /* no faultahead (for now) */ 4040 if (pl == NULL) { 4041 ZFS_EXIT(zfsvfs); 4042 return (0); 4043 } 4044 4045 /* can't fault past EOF */ 4046 if (off >= zp->z_phys->zp_size) { 4047 ZFS_EXIT(zfsvfs); 4048 return (EFAULT); 4049 } 4050 orig_off = off; 4051 4052 /* 4053 * If we already own the lock, then we must be page faulting 4054 * in the middle of a write to this file (i.e., we are writing 4055 * to this file using data from a mapped region of the file). 4056 */ 4057 if (rw_owner(&zp->z_map_lock) != curthread) { 4058 rw_enter(&zp->z_map_lock, RW_WRITER); 4059 need_unlock = TRUE; 4060 } 4061 4062 /* 4063 * Loop through the requested range [off, off + len] looking 4064 * for pages. If we don't find a page, we will need to create 4065 * a new page and fill it with data from the file. 4066 */ 4067 while (len > 0) { 4068 if (plsz < PAGESIZE) 4069 break; 4070 if (pp = page_lookup(vp, off, SE_SHARED)) { 4071 *pl++ = pp; 4072 off += PAGESIZE; 4073 addr += PAGESIZE; 4074 len -= PAGESIZE; 4075 plsz -= PAGESIZE; 4076 } else { 4077 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 4078 if (err) 4079 goto out; 4080 /* 4081 * klustering may have changed our region 4082 * to be block aligned. 4083 */ 4084 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 4085 int delta = off - pp->p_offset; 4086 len += delta; 4087 off -= delta; 4088 addr -= delta; 4089 } 4090 while (*pl) { 4091 pl++; 4092 off += PAGESIZE; 4093 addr += PAGESIZE; 4094 plsz -= PAGESIZE; 4095 if (len > PAGESIZE) 4096 len -= PAGESIZE; 4097 else 4098 len = 0; 4099 } 4100 } 4101 } 4102 4103 /* 4104 * Fill out the page array with any pages already in the cache. 4105 */ 4106 while (plsz > 0) { 4107 pp = page_lookup_nowait(vp, off, SE_SHARED); 4108 if (pp == NULL) 4109 break; 4110 *pl++ = pp; 4111 off += PAGESIZE; 4112 plsz -= PAGESIZE; 4113 } 4114 4115 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4116 out: 4117 /* 4118 * We can't grab the range lock for the page as reader which would 4119 * stop truncation as this leads to deadlock. So we need to recheck 4120 * the file size. 4121 */ 4122 if (orig_off >= zp->z_phys->zp_size) 4123 err = EFAULT; 4124 if (err) { 4125 /* 4126 * Release any pages we have previously locked. 4127 */ 4128 while (pl > pl0) 4129 page_unlock(*--pl); 4130 } 4131 4132 *pl = NULL; 4133 4134 if (need_unlock) 4135 rw_exit(&zp->z_map_lock); 4136 4137 ZFS_EXIT(zfsvfs); 4138 return (err); 4139 } 4140 4141 /* 4142 * Request a memory map for a section of a file. This code interacts 4143 * with common code and the VM system as follows: 4144 * 4145 * common code calls mmap(), which ends up in smmap_common() 4146 * 4147 * this calls VOP_MAP(), which takes you into (say) zfs 4148 * 4149 * zfs_map() calls as_map(), passing segvn_create() as the callback 4150 * 4151 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4152 * 4153 * zfs_addmap() updates z_mapcnt 4154 */ 4155 /*ARGSUSED*/ 4156 static int 4157 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4158 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4159 caller_context_t *ct) 4160 { 4161 znode_t *zp = VTOZ(vp); 4162 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4163 segvn_crargs_t vn_a; 4164 int error; 4165 4166 ZFS_ENTER(zfsvfs); 4167 ZFS_VERIFY_ZP(zp); 4168 4169 if ((prot & PROT_WRITE) && 4170 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4171 ZFS_APPENDONLY))) { 4172 ZFS_EXIT(zfsvfs); 4173 return (EPERM); 4174 } 4175 4176 if ((prot & (PROT_READ | PROT_EXEC)) && 4177 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4178 ZFS_EXIT(zfsvfs); 4179 return (EACCES); 4180 } 4181 4182 if (vp->v_flag & VNOMAP) { 4183 ZFS_EXIT(zfsvfs); 4184 return (ENOSYS); 4185 } 4186 4187 if (off < 0 || len > MAXOFFSET_T - off) { 4188 ZFS_EXIT(zfsvfs); 4189 return (ENXIO); 4190 } 4191 4192 if (vp->v_type != VREG) { 4193 ZFS_EXIT(zfsvfs); 4194 return (ENODEV); 4195 } 4196 4197 /* 4198 * If file is locked, disallow mapping. 4199 */ 4200 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4201 ZFS_EXIT(zfsvfs); 4202 return (EAGAIN); 4203 } 4204 4205 as_rangelock(as); 4206 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4207 if (error != 0) { 4208 as_rangeunlock(as); 4209 ZFS_EXIT(zfsvfs); 4210 return (error); 4211 } 4212 4213 vn_a.vp = vp; 4214 vn_a.offset = (u_offset_t)off; 4215 vn_a.type = flags & MAP_TYPE; 4216 vn_a.prot = prot; 4217 vn_a.maxprot = maxprot; 4218 vn_a.cred = cr; 4219 vn_a.amp = NULL; 4220 vn_a.flags = flags & ~MAP_TYPE; 4221 vn_a.szc = 0; 4222 vn_a.lgrp_mem_policy_flags = 0; 4223 4224 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4225 4226 as_rangeunlock(as); 4227 ZFS_EXIT(zfsvfs); 4228 return (error); 4229 } 4230 4231 /* ARGSUSED */ 4232 static int 4233 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4234 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4235 caller_context_t *ct) 4236 { 4237 uint64_t pages = btopr(len); 4238 4239 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4240 return (0); 4241 } 4242 4243 /* 4244 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4245 * more accurate mtime for the associated file. Since we don't have a way of 4246 * detecting when the data was actually modified, we have to resort to 4247 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4248 * last page is pushed. The problem occurs when the msync() call is omitted, 4249 * which by far the most common case: 4250 * 4251 * open() 4252 * mmap() 4253 * <modify memory> 4254 * munmap() 4255 * close() 4256 * <time lapse> 4257 * putpage() via fsflush 4258 * 4259 * If we wait until fsflush to come along, we can have a modification time that 4260 * is some arbitrary point in the future. In order to prevent this in the 4261 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4262 * torn down. 4263 */ 4264 /* ARGSUSED */ 4265 static int 4266 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4267 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4268 caller_context_t *ct) 4269 { 4270 uint64_t pages = btopr(len); 4271 4272 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4273 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4274 4275 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4276 vn_has_cached_data(vp)) 4277 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4278 4279 return (0); 4280 } 4281 4282 /* 4283 * Free or allocate space in a file. Currently, this function only 4284 * supports the `F_FREESP' command. However, this command is somewhat 4285 * misnamed, as its functionality includes the ability to allocate as 4286 * well as free space. 4287 * 4288 * IN: vp - vnode of file to free data in. 4289 * cmd - action to take (only F_FREESP supported). 4290 * bfp - section of file to free/alloc. 4291 * flag - current file open mode flags. 4292 * offset - current file offset. 4293 * cr - credentials of caller [UNUSED]. 4294 * ct - caller context. 4295 * 4296 * RETURN: 0 if success 4297 * error code if failure 4298 * 4299 * Timestamps: 4300 * vp - ctime|mtime updated 4301 */ 4302 /* ARGSUSED */ 4303 static int 4304 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4305 offset_t offset, cred_t *cr, caller_context_t *ct) 4306 { 4307 znode_t *zp = VTOZ(vp); 4308 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4309 uint64_t off, len; 4310 int error; 4311 4312 ZFS_ENTER(zfsvfs); 4313 ZFS_VERIFY_ZP(zp); 4314 4315 if (cmd != F_FREESP) { 4316 ZFS_EXIT(zfsvfs); 4317 return (EINVAL); 4318 } 4319 4320 if (error = convoff(vp, bfp, 0, offset)) { 4321 ZFS_EXIT(zfsvfs); 4322 return (error); 4323 } 4324 4325 if (bfp->l_len < 0) { 4326 ZFS_EXIT(zfsvfs); 4327 return (EINVAL); 4328 } 4329 4330 off = bfp->l_start; 4331 len = bfp->l_len; /* 0 means from off to end of file */ 4332 4333 error = zfs_freesp(zp, off, len, flag, TRUE); 4334 4335 ZFS_EXIT(zfsvfs); 4336 return (error); 4337 } 4338 4339 /*ARGSUSED*/ 4340 static int 4341 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4342 { 4343 znode_t *zp = VTOZ(vp); 4344 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4345 uint32_t gen; 4346 uint64_t object = zp->z_id; 4347 zfid_short_t *zfid; 4348 int size, i; 4349 4350 ZFS_ENTER(zfsvfs); 4351 ZFS_VERIFY_ZP(zp); 4352 gen = (uint32_t)zp->z_gen; 4353 4354 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4355 if (fidp->fid_len < size) { 4356 fidp->fid_len = size; 4357 ZFS_EXIT(zfsvfs); 4358 return (ENOSPC); 4359 } 4360 4361 zfid = (zfid_short_t *)fidp; 4362 4363 zfid->zf_len = size; 4364 4365 for (i = 0; i < sizeof (zfid->zf_object); i++) 4366 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4367 4368 /* Must have a non-zero generation number to distinguish from .zfs */ 4369 if (gen == 0) 4370 gen = 1; 4371 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4372 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4373 4374 if (size == LONG_FID_LEN) { 4375 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4376 zfid_long_t *zlfid; 4377 4378 zlfid = (zfid_long_t *)fidp; 4379 4380 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4381 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4382 4383 /* XXX - this should be the generation number for the objset */ 4384 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4385 zlfid->zf_setgen[i] = 0; 4386 } 4387 4388 ZFS_EXIT(zfsvfs); 4389 return (0); 4390 } 4391 4392 static int 4393 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4394 caller_context_t *ct) 4395 { 4396 znode_t *zp, *xzp; 4397 zfsvfs_t *zfsvfs; 4398 zfs_dirlock_t *dl; 4399 int error; 4400 4401 switch (cmd) { 4402 case _PC_LINK_MAX: 4403 *valp = ULONG_MAX; 4404 return (0); 4405 4406 case _PC_FILESIZEBITS: 4407 *valp = 64; 4408 return (0); 4409 4410 case _PC_XATTR_EXISTS: 4411 zp = VTOZ(vp); 4412 zfsvfs = zp->z_zfsvfs; 4413 ZFS_ENTER(zfsvfs); 4414 ZFS_VERIFY_ZP(zp); 4415 *valp = 0; 4416 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4417 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4418 if (error == 0) { 4419 zfs_dirent_unlock(dl); 4420 if (!zfs_dirempty(xzp)) 4421 *valp = 1; 4422 VN_RELE(ZTOV(xzp)); 4423 } else if (error == ENOENT) { 4424 /* 4425 * If there aren't extended attributes, it's the 4426 * same as having zero of them. 4427 */ 4428 error = 0; 4429 } 4430 ZFS_EXIT(zfsvfs); 4431 return (error); 4432 4433 case _PC_SATTR_ENABLED: 4434 case _PC_SATTR_EXISTS: 4435 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4436 (vp->v_type == VREG || vp->v_type == VDIR); 4437 return (0); 4438 4439 case _PC_ACL_ENABLED: 4440 *valp = _ACL_ACE_ENABLED; 4441 return (0); 4442 4443 case _PC_MIN_HOLE_SIZE: 4444 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4445 return (0); 4446 4447 default: 4448 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4449 } 4450 } 4451 4452 /*ARGSUSED*/ 4453 static int 4454 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4455 caller_context_t *ct) 4456 { 4457 znode_t *zp = VTOZ(vp); 4458 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4459 int error; 4460 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4461 4462 ZFS_ENTER(zfsvfs); 4463 ZFS_VERIFY_ZP(zp); 4464 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4465 ZFS_EXIT(zfsvfs); 4466 4467 return (error); 4468 } 4469 4470 /*ARGSUSED*/ 4471 static int 4472 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4473 caller_context_t *ct) 4474 { 4475 znode_t *zp = VTOZ(vp); 4476 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4477 int error; 4478 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4479 4480 ZFS_ENTER(zfsvfs); 4481 ZFS_VERIFY_ZP(zp); 4482 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4483 ZFS_EXIT(zfsvfs); 4484 return (error); 4485 } 4486 4487 /* 4488 * Predeclare these here so that the compiler assumes that 4489 * this is an "old style" function declaration that does 4490 * not include arguments => we won't get type mismatch errors 4491 * in the initializations that follow. 4492 */ 4493 static int zfs_inval(); 4494 static int zfs_isdir(); 4495 4496 static int 4497 zfs_inval() 4498 { 4499 return (EINVAL); 4500 } 4501 4502 static int 4503 zfs_isdir() 4504 { 4505 return (EISDIR); 4506 } 4507 /* 4508 * Directory vnode operations template 4509 */ 4510 vnodeops_t *zfs_dvnodeops; 4511 const fs_operation_def_t zfs_dvnodeops_template[] = { 4512 VOPNAME_OPEN, { .vop_open = zfs_open }, 4513 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4514 VOPNAME_READ, { .error = zfs_isdir }, 4515 VOPNAME_WRITE, { .error = zfs_isdir }, 4516 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4517 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4518 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4519 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4520 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4521 VOPNAME_CREATE, { .vop_create = zfs_create }, 4522 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4523 VOPNAME_LINK, { .vop_link = zfs_link }, 4524 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4525 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4526 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4527 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4528 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4529 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4530 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4531 VOPNAME_FID, { .vop_fid = zfs_fid }, 4532 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4533 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4534 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4535 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4536 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4537 NULL, NULL 4538 }; 4539 4540 /* 4541 * Regular file vnode operations template 4542 */ 4543 vnodeops_t *zfs_fvnodeops; 4544 const fs_operation_def_t zfs_fvnodeops_template[] = { 4545 VOPNAME_OPEN, { .vop_open = zfs_open }, 4546 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4547 VOPNAME_READ, { .vop_read = zfs_read }, 4548 VOPNAME_WRITE, { .vop_write = zfs_write }, 4549 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4550 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4551 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4552 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4553 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4554 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4555 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4556 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4557 VOPNAME_FID, { .vop_fid = zfs_fid }, 4558 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4559 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4560 VOPNAME_SPACE, { .vop_space = zfs_space }, 4561 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4562 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4563 VOPNAME_MAP, { .vop_map = zfs_map }, 4564 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4565 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4566 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4567 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4568 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4569 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4570 NULL, NULL 4571 }; 4572 4573 /* 4574 * Symbolic link vnode operations template 4575 */ 4576 vnodeops_t *zfs_symvnodeops; 4577 const fs_operation_def_t zfs_symvnodeops_template[] = { 4578 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4579 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4580 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4581 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4582 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4583 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4584 VOPNAME_FID, { .vop_fid = zfs_fid }, 4585 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4586 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4587 NULL, NULL 4588 }; 4589 4590 /* 4591 * Extended attribute directory vnode operations template 4592 * This template is identical to the directory vnodes 4593 * operation template except for restricted operations: 4594 * VOP_MKDIR() 4595 * VOP_SYMLINK() 4596 * Note that there are other restrictions embedded in: 4597 * zfs_create() - restrict type to VREG 4598 * zfs_link() - no links into/out of attribute space 4599 * zfs_rename() - no moves into/out of attribute space 4600 */ 4601 vnodeops_t *zfs_xdvnodeops; 4602 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4603 VOPNAME_OPEN, { .vop_open = zfs_open }, 4604 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4605 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4606 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4607 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4608 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4609 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4610 VOPNAME_CREATE, { .vop_create = zfs_create }, 4611 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4612 VOPNAME_LINK, { .vop_link = zfs_link }, 4613 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4614 VOPNAME_MKDIR, { .error = zfs_inval }, 4615 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4616 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4617 VOPNAME_SYMLINK, { .error = zfs_inval }, 4618 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4619 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4620 VOPNAME_FID, { .vop_fid = zfs_fid }, 4621 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4622 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4623 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4624 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4625 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4626 NULL, NULL 4627 }; 4628 4629 /* 4630 * Error vnode operations template 4631 */ 4632 vnodeops_t *zfs_evnodeops; 4633 const fs_operation_def_t zfs_evnodeops_template[] = { 4634 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4635 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4636 NULL, NULL 4637 }; 4638