1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The 512-byte leaf is broken into 32 16-byte chunks. 28 * chunk number n means l_chunk[n], even though the header precedes it. 29 * the names are stored null-terminated. 30 */ 31 32 #include <sys/zio.h> 33 #include <sys/spa.h> 34 #include <sys/dmu.h> 35 #include <sys/zfs_context.h> 36 #include <sys/fs/zfs.h> 37 #include <sys/zap.h> 38 #include <sys/zap_impl.h> 39 #include <sys/zap_leaf.h> 40 41 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 42 43 #define CHAIN_END 0xffff /* end of the chunk chain */ 44 45 /* half the (current) minimum block size */ 46 #define MAX_ARRAY_BYTES (8<<10) 47 48 #define LEAF_HASH(l, h) \ 49 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 50 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) 51 52 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 53 54 55 static void 56 zap_memset(void *a, int c, size_t n) 57 { 58 char *cp = a; 59 char *cpend = cp + n; 60 61 while (cp < cpend) 62 *cp++ = c; 63 } 64 65 static void 66 stv(int len, void *addr, uint64_t value) 67 { 68 switch (len) { 69 case 1: 70 *(uint8_t *)addr = value; 71 return; 72 case 2: 73 *(uint16_t *)addr = value; 74 return; 75 case 4: 76 *(uint32_t *)addr = value; 77 return; 78 case 8: 79 *(uint64_t *)addr = value; 80 return; 81 } 82 ASSERT(!"bad int len"); 83 } 84 85 static uint64_t 86 ldv(int len, const void *addr) 87 { 88 switch (len) { 89 case 1: 90 return (*(uint8_t *)addr); 91 case 2: 92 return (*(uint16_t *)addr); 93 case 4: 94 return (*(uint32_t *)addr); 95 case 8: 96 return (*(uint64_t *)addr); 97 } 98 ASSERT(!"bad int len"); 99 return (0xFEEDFACEDEADBEEFULL); 100 } 101 102 void 103 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 104 { 105 int i; 106 zap_leaf_t l; 107 l.l_bs = highbit(size)-1; 108 l.l_phys = buf; 109 110 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 111 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 112 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 113 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 114 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 115 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 116 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 117 118 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 119 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 120 121 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 122 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 123 struct zap_leaf_entry *le; 124 125 switch (lc->l_free.lf_type) { 126 case ZAP_CHUNK_ENTRY: 127 le = &lc->l_entry; 128 129 le->le_type = BSWAP_8(le->le_type); 130 le->le_int_size = BSWAP_8(le->le_int_size); 131 le->le_next = BSWAP_16(le->le_next); 132 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 133 le->le_name_length = BSWAP_16(le->le_name_length); 134 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 135 le->le_value_length = BSWAP_16(le->le_value_length); 136 le->le_cd = BSWAP_32(le->le_cd); 137 le->le_hash = BSWAP_64(le->le_hash); 138 break; 139 case ZAP_CHUNK_FREE: 140 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 141 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 142 break; 143 case ZAP_CHUNK_ARRAY: 144 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 145 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 146 /* la_array doesn't need swapping */ 147 break; 148 default: 149 ASSERT(!"bad leaf type"); 150 } 151 } 152 } 153 154 void 155 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 156 { 157 int i; 158 159 l->l_bs = highbit(l->l_dbuf->db_size)-1; 160 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); 161 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 162 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 163 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 164 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 165 } 166 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 167 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; 168 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 169 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 170 if (sort) 171 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 172 } 173 174 /* 175 * Routines which manipulate leaf chunks (l_chunk[]). 176 */ 177 178 static uint16_t 179 zap_leaf_chunk_alloc(zap_leaf_t *l) 180 { 181 int chunk; 182 183 ASSERT(l->l_phys->l_hdr.lh_nfree > 0); 184 185 chunk = l->l_phys->l_hdr.lh_freelist; 186 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 187 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 188 189 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 190 191 l->l_phys->l_hdr.lh_nfree--; 192 193 return (chunk); 194 } 195 196 static void 197 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 198 { 199 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 200 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 201 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 202 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 203 204 zlf->lf_type = ZAP_CHUNK_FREE; 205 zlf->lf_next = l->l_phys->l_hdr.lh_freelist; 206 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 207 l->l_phys->l_hdr.lh_freelist = chunk; 208 209 l->l_phys->l_hdr.lh_nfree++; 210 } 211 212 /* 213 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 214 */ 215 216 static uint16_t 217 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 218 int integer_size, int num_integers) 219 { 220 uint16_t chunk_head; 221 uint16_t *chunkp = &chunk_head; 222 int byten = 0; 223 uint64_t value; 224 int shift = (integer_size-1)*8; 225 int len = num_integers; 226 227 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 228 229 while (len > 0) { 230 uint16_t chunk = zap_leaf_chunk_alloc(l); 231 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 232 int i; 233 234 la->la_type = ZAP_CHUNK_ARRAY; 235 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 236 if (byten == 0) 237 value = ldv(integer_size, buf); 238 la->la_array[i] = value >> shift; 239 value <<= 8; 240 if (++byten == integer_size) { 241 byten = 0; 242 buf += integer_size; 243 if (--len == 0) 244 break; 245 } 246 } 247 248 *chunkp = chunk; 249 chunkp = &la->la_next; 250 } 251 *chunkp = CHAIN_END; 252 253 return (chunk_head); 254 } 255 256 static void 257 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 258 { 259 uint16_t chunk = *chunkp; 260 261 *chunkp = CHAIN_END; 262 263 while (chunk != CHAIN_END) { 264 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 265 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 266 ZAP_CHUNK_ARRAY); 267 zap_leaf_chunk_free(l, chunk); 268 chunk = nextchunk; 269 } 270 } 271 272 /* array_len and buf_len are in integers, not bytes */ 273 static void 274 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 275 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 276 void *buf) 277 { 278 int len = MIN(array_len, buf_len); 279 int byten = 0; 280 uint64_t value = 0; 281 char *p = buf; 282 283 ASSERT3U(array_int_len, <=, buf_int_len); 284 285 /* Fast path for one 8-byte integer */ 286 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 287 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 288 uint8_t *ip = la->la_array; 289 uint64_t *buf64 = buf; 290 291 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 292 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 293 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 294 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 295 return; 296 } 297 298 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 299 if (array_int_len == 1 && buf_int_len == 1 && 300 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 301 while (chunk != CHAIN_END) { 302 struct zap_leaf_array *la = 303 &ZAP_LEAF_CHUNK(l, chunk).l_array; 304 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); 305 p += ZAP_LEAF_ARRAY_BYTES; 306 chunk = la->la_next; 307 } 308 return; 309 } 310 311 while (len > 0) { 312 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 313 int i; 314 315 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 316 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 317 value = (value << 8) | la->la_array[i]; 318 byten++; 319 if (byten == array_int_len) { 320 stv(buf_int_len, p, value); 321 byten = 0; 322 len--; 323 if (len == 0) 324 return; 325 p += buf_int_len; 326 } 327 } 328 chunk = la->la_next; 329 } 330 } 331 332 /* 333 * array_len is actual len in bytes (not encoded le_value_length). 334 * namenorm is null-terminated. 335 */ 336 static boolean_t 337 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, int chunk, int array_len) 338 { 339 int bseen = 0; 340 341 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 342 uint64_t *thiskey; 343 boolean_t match; 344 345 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 346 thiskey = kmem_alloc(array_len * sizeof (*thiskey), KM_SLEEP); 347 348 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_len, 349 sizeof (*thiskey), array_len, thiskey); 350 match = bcmp(thiskey, zn->zn_key_orig, 351 array_len * sizeof (*thiskey)) == 0; 352 kmem_free(thiskey, array_len * sizeof (*thiskey)); 353 return (match); 354 } 355 356 if (zn->zn_matchtype == MT_FIRST) { 357 char *thisname = kmem_alloc(array_len, KM_SLEEP); 358 boolean_t match; 359 360 zap_leaf_array_read(l, chunk, sizeof (char), array_len, 361 sizeof (char), array_len, thisname); 362 match = zap_match(zn, thisname); 363 kmem_free(thisname, array_len); 364 return (match); 365 } 366 367 /* 368 * Fast path for exact matching. 369 * First check that the lengths match, so that we don't read 370 * past the end of the zn_key_orig array. 371 */ 372 if (array_len != zn->zn_key_orig_len) 373 return (B_FALSE); 374 while (bseen < array_len) { 375 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 376 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 377 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 378 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) 379 break; 380 chunk = la->la_next; 381 bseen += toread; 382 } 383 return (bseen == array_len); 384 } 385 386 /* 387 * Routines which manipulate leaf entries. 388 */ 389 390 int 391 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 392 { 393 uint16_t *chunkp; 394 struct zap_leaf_entry *le; 395 396 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 397 398 again: 399 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 400 *chunkp != CHAIN_END; chunkp = &le->le_next) { 401 uint16_t chunk = *chunkp; 402 le = ZAP_LEAF_ENTRY(l, chunk); 403 404 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 405 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 406 407 if (le->le_hash != zn->zn_hash) 408 continue; 409 410 /* 411 * NB: the entry chain is always sorted by cd on 412 * normalized zap objects, so this will find the 413 * lowest-cd match for MT_FIRST. 414 */ 415 ASSERT(zn->zn_matchtype == MT_EXACT || 416 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 417 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 418 le->le_name_length)) { 419 zeh->zeh_num_integers = le->le_value_length; 420 zeh->zeh_integer_size = le->le_int_size; 421 zeh->zeh_cd = le->le_cd; 422 zeh->zeh_hash = le->le_hash; 423 zeh->zeh_chunkp = chunkp; 424 zeh->zeh_leaf = l; 425 return (0); 426 } 427 } 428 429 /* 430 * NB: we could of course do this in one pass, but that would be 431 * a pain. We'll see if MT_BEST is even used much. 432 */ 433 if (zn->zn_matchtype == MT_BEST) { 434 zn->zn_matchtype = MT_FIRST; 435 goto again; 436 } 437 438 return (ENOENT); 439 } 440 441 /* Return (h1,cd1 >= h2,cd2) */ 442 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 444 445 int 446 zap_leaf_lookup_closest(zap_leaf_t *l, 447 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 448 { 449 uint16_t chunk; 450 uint64_t besth = -1ULL; 451 uint32_t bestcd = -1U; 452 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 453 uint16_t lh; 454 struct zap_leaf_entry *le; 455 456 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 457 458 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 459 for (chunk = l->l_phys->l_hash[lh]; 460 chunk != CHAIN_END; chunk = le->le_next) { 461 le = ZAP_LEAF_ENTRY(l, chunk); 462 463 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 464 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 465 466 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 467 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 468 ASSERT3U(bestlh, >=, lh); 469 bestlh = lh; 470 besth = le->le_hash; 471 bestcd = le->le_cd; 472 473 zeh->zeh_num_integers = le->le_value_length; 474 zeh->zeh_integer_size = le->le_int_size; 475 zeh->zeh_cd = le->le_cd; 476 zeh->zeh_hash = le->le_hash; 477 zeh->zeh_fakechunk = chunk; 478 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 479 zeh->zeh_leaf = l; 480 } 481 } 482 } 483 484 return (bestcd == -1U ? ENOENT : 0); 485 } 486 487 int 488 zap_entry_read(const zap_entry_handle_t *zeh, 489 uint8_t integer_size, uint64_t num_integers, void *buf) 490 { 491 struct zap_leaf_entry *le = 492 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 493 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 494 495 if (le->le_int_size > integer_size) 496 return (EINVAL); 497 498 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_int_size, 499 le->le_value_length, integer_size, num_integers, buf); 500 501 if (zeh->zeh_num_integers > num_integers) 502 return (EOVERFLOW); 503 return (0); 504 505 } 506 507 int 508 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 509 char *buf) 510 { 511 struct zap_leaf_entry *le = 512 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 513 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 514 515 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 516 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 517 le->le_name_length, 8, buflen / 8, buf); 518 } else { 519 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 520 le->le_name_length, 1, buflen, buf); 521 } 522 if (le->le_name_length > buflen) 523 return (EOVERFLOW); 524 return (0); 525 } 526 527 int 528 zap_entry_update(zap_entry_handle_t *zeh, 529 uint8_t integer_size, uint64_t num_integers, const void *buf) 530 { 531 int delta_chunks; 532 zap_leaf_t *l = zeh->zeh_leaf; 533 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 534 535 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 536 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size); 537 538 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) 539 return (EAGAIN); 540 541 /* 542 * We should search other chained leaves (via 543 * zap_entry_remove,create?) otherwise returning EAGAIN will 544 * just send us into an infinite loop if we have to chain 545 * another leaf block, rather than being able to split this 546 * block. 547 */ 548 549 zap_leaf_array_free(l, &le->le_value_chunk); 550 le->le_value_chunk = 551 zap_leaf_array_create(l, buf, integer_size, num_integers); 552 le->le_value_length = num_integers; 553 le->le_int_size = integer_size; 554 return (0); 555 } 556 557 void 558 zap_entry_remove(zap_entry_handle_t *zeh) 559 { 560 uint16_t entry_chunk; 561 struct zap_leaf_entry *le; 562 zap_leaf_t *l = zeh->zeh_leaf; 563 564 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 565 566 entry_chunk = *zeh->zeh_chunkp; 567 le = ZAP_LEAF_ENTRY(l, entry_chunk); 568 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 569 570 zap_leaf_array_free(l, &le->le_name_chunk); 571 zap_leaf_array_free(l, &le->le_value_chunk); 572 573 *zeh->zeh_chunkp = le->le_next; 574 zap_leaf_chunk_free(l, entry_chunk); 575 576 l->l_phys->l_hdr.lh_nentries--; 577 } 578 579 int 580 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 581 uint8_t integer_size, uint64_t num_integers, const void *buf, 582 zap_entry_handle_t *zeh) 583 { 584 uint16_t chunk; 585 uint16_t *chunkp; 586 struct zap_leaf_entry *le; 587 uint64_t valuelen; 588 int numchunks; 589 uint64_t h = zn->zn_hash; 590 591 valuelen = integer_size * num_integers; 592 593 numchunks = 1 + 594 ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_len * zn->zn_key_intlen) + 595 ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 596 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 597 return (E2BIG); 598 599 if (cd == ZAP_NEED_CD) { 600 /* find the lowest unused cd */ 601 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 602 cd = 0; 603 604 for (chunk = *LEAF_HASH_ENTPTR(l, h); 605 chunk != CHAIN_END; chunk = le->le_next) { 606 le = ZAP_LEAF_ENTRY(l, chunk); 607 if (le->le_cd > cd) 608 break; 609 if (le->le_hash == h) { 610 ASSERT3U(cd, ==, le->le_cd); 611 cd++; 612 } 613 } 614 } else { 615 /* old unsorted format; do it the O(n^2) way */ 616 for (cd = 0; ; cd++) { 617 for (chunk = *LEAF_HASH_ENTPTR(l, h); 618 chunk != CHAIN_END; chunk = le->le_next) { 619 le = ZAP_LEAF_ENTRY(l, chunk); 620 if (le->le_hash == h && 621 le->le_cd == cd) { 622 break; 623 } 624 } 625 /* If this cd is not in use, we are good. */ 626 if (chunk == CHAIN_END) 627 break; 628 } 629 } 630 /* 631 * We would run out of space in a block before we could 632 * store enough entries to run out of CD values. 633 */ 634 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 635 } 636 637 if (l->l_phys->l_hdr.lh_nfree < numchunks) 638 return (EAGAIN); 639 640 /* make the entry */ 641 chunk = zap_leaf_chunk_alloc(l); 642 le = ZAP_LEAF_ENTRY(l, chunk); 643 le->le_type = ZAP_CHUNK_ENTRY; 644 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 645 zn->zn_key_intlen, zn->zn_key_orig_len); 646 le->le_name_length = zn->zn_key_orig_len; 647 le->le_value_chunk = 648 zap_leaf_array_create(l, buf, integer_size, num_integers); 649 le->le_value_length = num_integers; 650 le->le_int_size = integer_size; 651 le->le_hash = h; 652 le->le_cd = cd; 653 654 /* link it into the hash chain */ 655 /* XXX if we did the search above, we could just use that */ 656 chunkp = zap_leaf_rehash_entry(l, chunk); 657 658 l->l_phys->l_hdr.lh_nentries++; 659 660 zeh->zeh_leaf = l; 661 zeh->zeh_num_integers = num_integers; 662 zeh->zeh_integer_size = le->le_int_size; 663 zeh->zeh_cd = le->le_cd; 664 zeh->zeh_hash = le->le_hash; 665 zeh->zeh_chunkp = chunkp; 666 667 return (0); 668 } 669 670 /* 671 * Determine if there is another entry with the same normalized form. 672 * For performance purposes, either zn or name must be provided (the 673 * other can be NULL). Note, there usually won't be any hash 674 * conflicts, in which case we don't need the concatenated/normalized 675 * form of the name. But all callers have one of these on hand anyway, 676 * so might as well take advantage. A cleaner but slower interface 677 * would accept neither argument, and compute the normalized name as 678 * needed (using zap_name_alloc(zap_entry_read_name(zeh))). 679 */ 680 boolean_t 681 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 682 const char *name, zap_t *zap) 683 { 684 uint64_t chunk; 685 struct zap_leaf_entry *le; 686 boolean_t allocdzn = B_FALSE; 687 688 if (zap->zap_normflags == 0) 689 return (B_FALSE); 690 691 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 692 chunk != CHAIN_END; chunk = le->le_next) { 693 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 694 if (le->le_hash != zeh->zeh_hash) 695 continue; 696 if (le->le_cd == zeh->zeh_cd) 697 continue; 698 699 if (zn == NULL) { 700 zn = zap_name_alloc(zap, name, MT_FIRST); 701 allocdzn = B_TRUE; 702 } 703 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 704 le->le_name_chunk, le->le_name_length)) { 705 if (allocdzn) 706 zap_name_free(zn); 707 return (B_TRUE); 708 } 709 } 710 if (allocdzn) 711 zap_name_free(zn); 712 return (B_FALSE); 713 } 714 715 /* 716 * Routines for transferring entries between leafs. 717 */ 718 719 static uint16_t * 720 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 721 { 722 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 723 struct zap_leaf_entry *le2; 724 uint16_t *chunkp; 725 726 /* 727 * keep the entry chain sorted by cd 728 * NB: this will not cause problems for unsorted leafs, though 729 * it is unnecessary there. 730 */ 731 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 732 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 733 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 734 if (le2->le_cd > le->le_cd) 735 break; 736 } 737 738 le->le_next = *chunkp; 739 *chunkp = entry; 740 return (chunkp); 741 } 742 743 static uint16_t 744 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 745 { 746 uint16_t new_chunk; 747 uint16_t *nchunkp = &new_chunk; 748 749 while (chunk != CHAIN_END) { 750 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 751 struct zap_leaf_array *nla = 752 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 753 struct zap_leaf_array *la = 754 &ZAP_LEAF_CHUNK(l, chunk).l_array; 755 int nextchunk = la->la_next; 756 757 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 758 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 759 760 *nla = *la; /* structure assignment */ 761 762 zap_leaf_chunk_free(l, chunk); 763 chunk = nextchunk; 764 *nchunkp = nchunk; 765 nchunkp = &nla->la_next; 766 } 767 *nchunkp = CHAIN_END; 768 return (new_chunk); 769 } 770 771 static void 772 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 773 { 774 struct zap_leaf_entry *le, *nle; 775 uint16_t chunk; 776 777 le = ZAP_LEAF_ENTRY(l, entry); 778 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 779 780 chunk = zap_leaf_chunk_alloc(nl); 781 nle = ZAP_LEAF_ENTRY(nl, chunk); 782 *nle = *le; /* structure assignment */ 783 784 (void) zap_leaf_rehash_entry(nl, chunk); 785 786 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 787 nle->le_value_chunk = 788 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 789 790 zap_leaf_chunk_free(l, entry); 791 792 l->l_phys->l_hdr.lh_nentries--; 793 nl->l_phys->l_hdr.lh_nentries++; 794 } 795 796 /* 797 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 798 */ 799 void 800 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 801 { 802 int i; 803 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; 804 805 /* set new prefix and prefix_len */ 806 l->l_phys->l_hdr.lh_prefix <<= 1; 807 l->l_phys->l_hdr.lh_prefix_len++; 808 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; 809 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 810 811 /* break existing hash chains */ 812 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 813 814 if (sort) 815 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 816 817 /* 818 * Transfer entries whose hash bit 'bit' is set to nl; rehash 819 * the remaining entries 820 * 821 * NB: We could find entries via the hashtable instead. That 822 * would be O(hashents+numents) rather than O(numblks+numents), 823 * but this accesses memory more sequentially, and when we're 824 * called, the block is usually pretty full. 825 */ 826 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 827 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 828 if (le->le_type != ZAP_CHUNK_ENTRY) 829 continue; 830 831 if (le->le_hash & (1ULL << bit)) 832 zap_leaf_transfer_entry(l, i, nl); 833 else 834 (void) zap_leaf_rehash_entry(l, i); 835 } 836 } 837 838 void 839 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 840 { 841 int i, n; 842 843 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 844 l->l_phys->l_hdr.lh_prefix_len; 845 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 846 zs->zs_leafs_with_2n_pointers[n]++; 847 848 849 n = l->l_phys->l_hdr.lh_nentries/5; 850 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 851 zs->zs_blocks_with_n5_entries[n]++; 852 853 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 854 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 855 (1<<FZAP_BLOCK_SHIFT(zap)); 856 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 857 zs->zs_blocks_n_tenths_full[n]++; 858 859 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 860 int nentries = 0; 861 int chunk = l->l_phys->l_hash[i]; 862 863 while (chunk != CHAIN_END) { 864 struct zap_leaf_entry *le = 865 ZAP_LEAF_ENTRY(l, chunk); 866 867 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_length) + 868 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * 869 le->le_int_size); 870 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 871 zs->zs_entries_using_n_chunks[n]++; 872 873 chunk = le->le_next; 874 nentries++; 875 } 876 877 n = nentries; 878 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 879 zs->zs_buckets_with_n_entries[n]++; 880 } 881 } 882