1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Virtual Device Labels 28 * --------------------- 29 * 30 * The vdev label serves several distinct purposes: 31 * 32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 33 * identity within the pool. 34 * 35 * 2. Verify that all the devices given in a configuration are present 36 * within the pool. 37 * 38 * 3. Determine the uberblock for the pool. 39 * 40 * 4. In case of an import operation, determine the configuration of the 41 * toplevel vdev of which it is a part. 42 * 43 * 5. If an import operation cannot find all the devices in the pool, 44 * provide enough information to the administrator to determine which 45 * devices are missing. 46 * 47 * It is important to note that while the kernel is responsible for writing the 48 * label, it only consumes the information in the first three cases. The 49 * latter information is only consumed in userland when determining the 50 * configuration to import a pool. 51 * 52 * 53 * Label Organization 54 * ------------------ 55 * 56 * Before describing the contents of the label, it's important to understand how 57 * the labels are written and updated with respect to the uberblock. 58 * 59 * When the pool configuration is altered, either because it was newly created 60 * or a device was added, we want to update all the labels such that we can deal 61 * with fatal failure at any point. To this end, each disk has two labels which 62 * are updated before and after the uberblock is synced. Assuming we have 63 * labels and an uberblock with the following transaction groups: 64 * 65 * L1 UB L2 66 * +------+ +------+ +------+ 67 * | | | | | | 68 * | t10 | | t10 | | t10 | 69 * | | | | | | 70 * +------+ +------+ +------+ 71 * 72 * In this stable state, the labels and the uberblock were all updated within 73 * the same transaction group (10). Each label is mirrored and checksummed, so 74 * that we can detect when we fail partway through writing the label. 75 * 76 * In order to identify which labels are valid, the labels are written in the 77 * following manner: 78 * 79 * 1. For each vdev, update 'L1' to the new label 80 * 2. Update the uberblock 81 * 3. For each vdev, update 'L2' to the new label 82 * 83 * Given arbitrary failure, we can determine the correct label to use based on 84 * the transaction group. If we fail after updating L1 but before updating the 85 * UB, we will notice that L1's transaction group is greater than the uberblock, 86 * so L2 must be valid. If we fail after writing the uberblock but before 87 * writing L2, we will notice that L2's transaction group is less than L1, and 88 * therefore L1 is valid. 89 * 90 * Another added complexity is that not every label is updated when the config 91 * is synced. If we add a single device, we do not want to have to re-write 92 * every label for every device in the pool. This means that both L1 and L2 may 93 * be older than the pool uberblock, because the necessary information is stored 94 * on another vdev. 95 * 96 * 97 * On-disk Format 98 * -------------- 99 * 100 * The vdev label consists of two distinct parts, and is wrapped within the 101 * vdev_label_t structure. The label includes 8k of padding to permit legacy 102 * VTOC disk labels, but is otherwise ignored. 103 * 104 * The first half of the label is a packed nvlist which contains pool wide 105 * properties, per-vdev properties, and configuration information. It is 106 * described in more detail below. 107 * 108 * The latter half of the label consists of a redundant array of uberblocks. 109 * These uberblocks are updated whenever a transaction group is committed, 110 * or when the configuration is updated. When a pool is loaded, we scan each 111 * vdev for the 'best' uberblock. 112 * 113 * 114 * Configuration Information 115 * ------------------------- 116 * 117 * The nvlist describing the pool and vdev contains the following elements: 118 * 119 * version ZFS on-disk version 120 * name Pool name 121 * state Pool state 122 * txg Transaction group in which this label was written 123 * pool_guid Unique identifier for this pool 124 * vdev_tree An nvlist describing vdev tree. 125 * 126 * Each leaf device label also contains the following: 127 * 128 * top_guid Unique ID for top-level vdev in which this is contained 129 * guid Unique ID for the leaf vdev 130 * 131 * The 'vs' configuration follows the format described in 'spa_config.c'. 132 */ 133 134 #include <sys/zfs_context.h> 135 #include <sys/spa.h> 136 #include <sys/spa_impl.h> 137 #include <sys/dmu.h> 138 #include <sys/zap.h> 139 #include <sys/vdev.h> 140 #include <sys/vdev_impl.h> 141 #include <sys/uberblock_impl.h> 142 #include <sys/metaslab.h> 143 #include <sys/zio.h> 144 #include <sys/fs/zfs.h> 145 146 /* 147 * Basic routines to read and write from a vdev label. 148 * Used throughout the rest of this file. 149 */ 150 uint64_t 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 152 { 153 ASSERT(offset < sizeof (vdev_label_t)); 154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 155 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 /* 161 * Returns back the vdev label associated with the passed in offset. 162 */ 163 int 164 vdev_label_number(uint64_t psize, uint64_t offset) 165 { 166 int l; 167 168 if (offset >= psize - VDEV_LABEL_END_SIZE) { 169 offset -= psize - VDEV_LABEL_END_SIZE; 170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 171 } 172 l = offset / sizeof (vdev_label_t); 173 return (l < VDEV_LABELS ? l : -1); 174 } 175 176 static void 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 181 SCL_STATE_ALL); 182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 188 } 189 190 static void 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 192 uint64_t size, zio_done_func_t *done, void *private, int flags) 193 { 194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 196 (SCL_CONFIG | SCL_STATE) && 197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 199 200 zio_nowait(zio_write_phys(zio, vd, 201 vdev_label_offset(vd->vdev_psize, l, offset), 202 size, buf, ZIO_CHECKSUM_LABEL, done, private, 203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 204 } 205 206 /* 207 * Generate the nvlist representing this vdev's config. 208 */ 209 nvlist_t * 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 211 boolean_t isspare, boolean_t isl2cache) 212 { 213 nvlist_t *nv = NULL; 214 215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 216 217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 218 vd->vdev_ops->vdev_op_type) == 0); 219 if (!isspare && !isl2cache) 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 221 == 0); 222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 223 224 if (vd->vdev_path != NULL) 225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 226 vd->vdev_path) == 0); 227 228 if (vd->vdev_devid != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 230 vd->vdev_devid) == 0); 231 232 if (vd->vdev_physpath != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath) == 0); 235 236 if (vd->vdev_nparity != 0) { 237 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 238 VDEV_TYPE_RAIDZ) == 0); 239 240 /* 241 * Make sure someone hasn't managed to sneak a fancy new vdev 242 * into a crufty old storage pool. 243 */ 244 ASSERT(vd->vdev_nparity == 1 || 245 (vd->vdev_nparity == 2 && 246 spa_version(spa) >= SPA_VERSION_RAID6)); 247 248 /* 249 * Note that we'll add the nparity tag even on storage pools 250 * that only support a single parity device -- older software 251 * will just ignore it. 252 */ 253 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 254 vd->vdev_nparity) == 0); 255 } 256 257 if (vd->vdev_wholedisk != -1ULL) 258 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 259 vd->vdev_wholedisk) == 0); 260 261 if (vd->vdev_not_present) 262 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 263 264 if (vd->vdev_isspare) 265 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 266 267 if (!isspare && !isl2cache && vd == vd->vdev_top) { 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 269 vd->vdev_ms_array) == 0); 270 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 271 vd->vdev_ms_shift) == 0); 272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 273 vd->vdev_ashift) == 0); 274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 275 vd->vdev_asize) == 0); 276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 277 vd->vdev_islog) == 0); 278 } 279 280 if (vd->vdev_dtl.smo_object != 0) 281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 282 vd->vdev_dtl.smo_object) == 0); 283 284 if (getstats) { 285 vdev_stat_t vs; 286 vdev_get_stats(vd, &vs); 287 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 288 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 289 } 290 291 if (!vd->vdev_ops->vdev_op_leaf) { 292 nvlist_t **child; 293 int c; 294 295 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 296 KM_SLEEP); 297 298 for (c = 0; c < vd->vdev_children; c++) 299 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 300 getstats, isspare, isl2cache); 301 302 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 303 child, vd->vdev_children) == 0); 304 305 for (c = 0; c < vd->vdev_children; c++) 306 nvlist_free(child[c]); 307 308 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 309 310 } else { 311 if (vd->vdev_offline && !vd->vdev_tmpoffline) 312 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 313 B_TRUE) == 0); 314 if (vd->vdev_faulted) 315 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 316 B_TRUE) == 0); 317 if (vd->vdev_degraded) 318 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 319 B_TRUE) == 0); 320 if (vd->vdev_removed) 321 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 322 B_TRUE) == 0); 323 if (vd->vdev_unspare) 324 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 325 B_TRUE) == 0); 326 } 327 328 return (nv); 329 } 330 331 nvlist_t * 332 vdev_label_read_config(vdev_t *vd) 333 { 334 spa_t *spa = vd->vdev_spa; 335 nvlist_t *config = NULL; 336 vdev_phys_t *vp; 337 zio_t *zio; 338 int flags = 339 ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 340 341 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 342 343 if (!vdev_readable(vd)) 344 return (NULL); 345 346 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 347 348 for (int l = 0; l < VDEV_LABELS; l++) { 349 350 zio = zio_root(spa, NULL, NULL, flags); 351 352 vdev_label_read(zio, vd, l, vp, 353 offsetof(vdev_label_t, vl_vdev_phys), 354 sizeof (vdev_phys_t), NULL, NULL, flags); 355 356 if (zio_wait(zio) == 0 && 357 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 358 &config, 0) == 0) 359 break; 360 361 if (config != NULL) { 362 nvlist_free(config); 363 config = NULL; 364 } 365 } 366 367 zio_buf_free(vp, sizeof (vdev_phys_t)); 368 369 return (config); 370 } 371 372 /* 373 * Determine if a device is in use. The 'spare_guid' parameter will be filled 374 * in with the device guid if this spare is active elsewhere on the system. 375 */ 376 static boolean_t 377 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 378 uint64_t *spare_guid, uint64_t *l2cache_guid) 379 { 380 spa_t *spa = vd->vdev_spa; 381 uint64_t state, pool_guid, device_guid, txg, spare_pool; 382 uint64_t vdtxg = 0; 383 nvlist_t *label; 384 385 if (spare_guid) 386 *spare_guid = 0ULL; 387 if (l2cache_guid) 388 *l2cache_guid = 0ULL; 389 390 /* 391 * Read the label, if any, and perform some basic sanity checks. 392 */ 393 if ((label = vdev_label_read_config(vd)) == NULL) 394 return (B_FALSE); 395 396 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 397 &vdtxg); 398 399 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 400 &state) != 0 || 401 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 402 &device_guid) != 0) { 403 nvlist_free(label); 404 return (B_FALSE); 405 } 406 407 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 408 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 409 &pool_guid) != 0 || 410 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 411 &txg) != 0)) { 412 nvlist_free(label); 413 return (B_FALSE); 414 } 415 416 nvlist_free(label); 417 418 /* 419 * Check to see if this device indeed belongs to the pool it claims to 420 * be a part of. The only way this is allowed is if the device is a hot 421 * spare (which we check for later on). 422 */ 423 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 424 !spa_guid_exists(pool_guid, device_guid) && 425 !spa_spare_exists(device_guid, NULL, NULL) && 426 !spa_l2cache_exists(device_guid, NULL)) 427 return (B_FALSE); 428 429 /* 430 * If the transaction group is zero, then this an initialized (but 431 * unused) label. This is only an error if the create transaction 432 * on-disk is the same as the one we're using now, in which case the 433 * user has attempted to add the same vdev multiple times in the same 434 * transaction. 435 */ 436 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 437 txg == 0 && vdtxg == crtxg) 438 return (B_TRUE); 439 440 /* 441 * Check to see if this is a spare device. We do an explicit check for 442 * spa_has_spare() here because it may be on our pending list of spares 443 * to add. We also check if it is an l2cache device. 444 */ 445 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 446 spa_has_spare(spa, device_guid)) { 447 if (spare_guid) 448 *spare_guid = device_guid; 449 450 switch (reason) { 451 case VDEV_LABEL_CREATE: 452 case VDEV_LABEL_L2CACHE: 453 return (B_TRUE); 454 455 case VDEV_LABEL_REPLACE: 456 return (!spa_has_spare(spa, device_guid) || 457 spare_pool != 0ULL); 458 459 case VDEV_LABEL_SPARE: 460 return (spa_has_spare(spa, device_guid)); 461 } 462 } 463 464 /* 465 * Check to see if this is an l2cache device. 466 */ 467 if (spa_l2cache_exists(device_guid, NULL)) 468 return (B_TRUE); 469 470 /* 471 * If the device is marked ACTIVE, then this device is in use by another 472 * pool on the system. 473 */ 474 return (state == POOL_STATE_ACTIVE); 475 } 476 477 /* 478 * Initialize a vdev label. We check to make sure each leaf device is not in 479 * use, and writable. We put down an initial label which we will later 480 * overwrite with a complete label. Note that it's important to do this 481 * sequentially, not in parallel, so that we catch cases of multiple use of the 482 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 483 * itself. 484 */ 485 int 486 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 487 { 488 spa_t *spa = vd->vdev_spa; 489 nvlist_t *label; 490 vdev_phys_t *vp; 491 vdev_boot_header_t *vb; 492 uberblock_t *ub; 493 zio_t *zio; 494 char *buf; 495 size_t buflen; 496 int error; 497 uint64_t spare_guid, l2cache_guid; 498 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 499 500 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 501 502 for (int c = 0; c < vd->vdev_children; c++) 503 if ((error = vdev_label_init(vd->vdev_child[c], 504 crtxg, reason)) != 0) 505 return (error); 506 507 if (!vd->vdev_ops->vdev_op_leaf) 508 return (0); 509 510 /* 511 * Dead vdevs cannot be initialized. 512 */ 513 if (vdev_is_dead(vd)) 514 return (EIO); 515 516 /* 517 * Determine if the vdev is in use. 518 */ 519 if (reason != VDEV_LABEL_REMOVE && 520 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 521 return (EBUSY); 522 523 /* 524 * If this is a request to add or replace a spare or l2cache device 525 * that is in use elsewhere on the system, then we must update the 526 * guid (which was initialized to a random value) to reflect the 527 * actual GUID (which is shared between multiple pools). 528 */ 529 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 530 spare_guid != 0ULL) { 531 uint64_t guid_delta = spare_guid - vd->vdev_guid; 532 533 vd->vdev_guid += guid_delta; 534 535 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 536 pvd->vdev_guid_sum += guid_delta; 537 538 /* 539 * If this is a replacement, then we want to fallthrough to the 540 * rest of the code. If we're adding a spare, then it's already 541 * labeled appropriately and we can just return. 542 */ 543 if (reason == VDEV_LABEL_SPARE) 544 return (0); 545 ASSERT(reason == VDEV_LABEL_REPLACE); 546 } 547 548 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 549 l2cache_guid != 0ULL) { 550 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 551 552 vd->vdev_guid += guid_delta; 553 554 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 555 pvd->vdev_guid_sum += guid_delta; 556 557 /* 558 * If this is a replacement, then we want to fallthrough to the 559 * rest of the code. If we're adding an l2cache, then it's 560 * already labeled appropriately and we can just return. 561 */ 562 if (reason == VDEV_LABEL_L2CACHE) 563 return (0); 564 ASSERT(reason == VDEV_LABEL_REPLACE); 565 } 566 567 /* 568 * Initialize its label. 569 */ 570 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 571 bzero(vp, sizeof (vdev_phys_t)); 572 573 /* 574 * Generate a label describing the pool and our top-level vdev. 575 * We mark it as being from txg 0 to indicate that it's not 576 * really part of an active pool just yet. The labels will 577 * be written again with a meaningful txg by spa_sync(). 578 */ 579 if (reason == VDEV_LABEL_SPARE || 580 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 581 /* 582 * For inactive hot spares, we generate a special label that 583 * identifies as a mutually shared hot spare. We write the 584 * label if we are adding a hot spare, or if we are removing an 585 * active hot spare (in which case we want to revert the 586 * labels). 587 */ 588 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 589 590 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 591 spa_version(spa)) == 0); 592 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 593 POOL_STATE_SPARE) == 0); 594 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 595 vd->vdev_guid) == 0); 596 } else if (reason == VDEV_LABEL_L2CACHE || 597 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 598 /* 599 * For level 2 ARC devices, add a special label. 600 */ 601 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 602 603 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 604 spa_version(spa)) == 0); 605 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 606 POOL_STATE_L2CACHE) == 0); 607 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 608 vd->vdev_guid) == 0); 609 } else { 610 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 611 612 /* 613 * Add our creation time. This allows us to detect multiple 614 * vdev uses as described above, and automatically expires if we 615 * fail. 616 */ 617 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 618 crtxg) == 0); 619 } 620 621 buf = vp->vp_nvlist; 622 buflen = sizeof (vp->vp_nvlist); 623 624 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 625 if (error != 0) { 626 nvlist_free(label); 627 zio_buf_free(vp, sizeof (vdev_phys_t)); 628 /* EFAULT means nvlist_pack ran out of room */ 629 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 630 } 631 632 /* 633 * Initialize boot block header. 634 */ 635 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 636 bzero(vb, sizeof (vdev_boot_header_t)); 637 vb->vb_magic = VDEV_BOOT_MAGIC; 638 vb->vb_version = VDEV_BOOT_VERSION; 639 vb->vb_offset = VDEV_BOOT_OFFSET; 640 vb->vb_size = VDEV_BOOT_SIZE; 641 642 /* 643 * Initialize uberblock template. 644 */ 645 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 646 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 647 *ub = spa->spa_uberblock; 648 ub->ub_txg = 0; 649 650 /* 651 * Write everything in parallel. 652 */ 653 zio = zio_root(spa, NULL, NULL, flags); 654 655 for (int l = 0; l < VDEV_LABELS; l++) { 656 657 vdev_label_write(zio, vd, l, vp, 658 offsetof(vdev_label_t, vl_vdev_phys), 659 sizeof (vdev_phys_t), NULL, NULL, flags); 660 661 vdev_label_write(zio, vd, l, vb, 662 offsetof(vdev_label_t, vl_boot_header), 663 sizeof (vdev_boot_header_t), NULL, NULL, flags); 664 665 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 666 vdev_label_write(zio, vd, l, ub, 667 VDEV_UBERBLOCK_OFFSET(vd, n), 668 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags); 669 } 670 } 671 672 error = zio_wait(zio); 673 674 nvlist_free(label); 675 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 676 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 677 zio_buf_free(vp, sizeof (vdev_phys_t)); 678 679 /* 680 * If this vdev hasn't been previously identified as a spare, then we 681 * mark it as such only if a) we are labeling it as a spare, or b) it 682 * exists as a spare elsewhere in the system. Do the same for 683 * level 2 ARC devices. 684 */ 685 if (error == 0 && !vd->vdev_isspare && 686 (reason == VDEV_LABEL_SPARE || 687 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 688 spa_spare_add(vd); 689 690 if (error == 0 && !vd->vdev_isl2cache && 691 (reason == VDEV_LABEL_L2CACHE || 692 spa_l2cache_exists(vd->vdev_guid, NULL))) 693 spa_l2cache_add(vd); 694 695 return (error); 696 } 697 698 /* 699 * ========================================================================== 700 * uberblock load/sync 701 * ========================================================================== 702 */ 703 704 /* 705 * For use by zdb and debugging purposes only 706 */ 707 uint64_t ub_max_txg = UINT64_MAX; 708 709 /* 710 * Consider the following situation: txg is safely synced to disk. We've 711 * written the first uberblock for txg + 1, and then we lose power. When we 712 * come back up, we fail to see the uberblock for txg + 1 because, say, 713 * it was on a mirrored device and the replica to which we wrote txg + 1 714 * is now offline. If we then make some changes and sync txg + 1, and then 715 * the missing replica comes back, then for a new seconds we'll have two 716 * conflicting uberblocks on disk with the same txg. The solution is simple: 717 * among uberblocks with equal txg, choose the one with the latest timestamp. 718 */ 719 static int 720 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 721 { 722 if (ub1->ub_txg < ub2->ub_txg) 723 return (-1); 724 if (ub1->ub_txg > ub2->ub_txg) 725 return (1); 726 727 if (ub1->ub_timestamp < ub2->ub_timestamp) 728 return (-1); 729 if (ub1->ub_timestamp > ub2->ub_timestamp) 730 return (1); 731 732 return (0); 733 } 734 735 static void 736 vdev_uberblock_load_done(zio_t *zio) 737 { 738 zio_t *rio = zio->io_private; 739 uberblock_t *ub = zio->io_data; 740 uberblock_t *ubbest = rio->io_private; 741 742 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 743 744 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 745 mutex_enter(&rio->io_lock); 746 if (ub->ub_txg <= ub_max_txg && 747 vdev_uberblock_compare(ub, ubbest) > 0) 748 *ubbest = *ub; 749 mutex_exit(&rio->io_lock); 750 } 751 752 zio_buf_free(zio->io_data, zio->io_size); 753 } 754 755 void 756 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 757 { 758 spa_t *spa = vd->vdev_spa; 759 vdev_t *rvd = spa->spa_root_vdev; 760 int flags = 761 ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 762 763 if (vd == rvd) { 764 ASSERT(zio == NULL); 765 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 766 zio = zio_root(spa, NULL, ubbest, flags); 767 bzero(ubbest, sizeof (uberblock_t)); 768 } 769 770 ASSERT(zio != NULL); 771 772 for (int c = 0; c < vd->vdev_children; c++) 773 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 774 775 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 776 for (int l = 0; l < VDEV_LABELS; l++) { 777 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 778 vdev_label_read(zio, vd, l, 779 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 780 VDEV_UBERBLOCK_OFFSET(vd, n), 781 VDEV_UBERBLOCK_SIZE(vd), 782 vdev_uberblock_load_done, zio, flags); 783 } 784 } 785 } 786 787 if (vd == rvd) { 788 (void) zio_wait(zio); 789 spa_config_exit(spa, SCL_ALL, FTAG); 790 } 791 } 792 793 /* 794 * On success, increment root zio's count of good writes. 795 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 796 */ 797 static void 798 vdev_uberblock_sync_done(zio_t *zio) 799 { 800 uint64_t *good_writes = zio->io_private; 801 802 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 803 atomic_add_64(good_writes, 1); 804 } 805 806 /* 807 * Write the uberblock to all labels of all leaves of the specified vdev. 808 */ 809 static void 810 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 811 { 812 uberblock_t *ubbuf; 813 int n; 814 815 for (int c = 0; c < vd->vdev_children; c++) 816 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 817 818 if (!vd->vdev_ops->vdev_op_leaf) 819 return; 820 821 if (!vdev_writeable(vd)) 822 return; 823 824 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 825 826 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 827 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 828 *ubbuf = *ub; 829 830 for (int l = 0; l < VDEV_LABELS; l++) 831 vdev_label_write(zio, vd, l, ubbuf, 832 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 833 vdev_uberblock_sync_done, zio->io_private, 834 flags | ZIO_FLAG_DONT_PROPAGATE); 835 836 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 837 } 838 839 int 840 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 841 { 842 spa_t *spa = svd[0]->vdev_spa; 843 zio_t *zio; 844 uint64_t good_writes = 0; 845 846 zio = zio_root(spa, NULL, &good_writes, flags); 847 848 for (int v = 0; v < svdcount; v++) 849 vdev_uberblock_sync(zio, ub, svd[v], flags); 850 851 (void) zio_wait(zio); 852 853 /* 854 * Flush the uberblocks to disk. This ensures that the odd labels 855 * are no longer needed (because the new uberblocks and the even 856 * labels are safely on disk), so it is safe to overwrite them. 857 */ 858 zio = zio_root(spa, NULL, NULL, flags); 859 860 for (int v = 0; v < svdcount; v++) 861 zio_flush(zio, svd[v]); 862 863 (void) zio_wait(zio); 864 865 return (good_writes >= 1 ? 0 : EIO); 866 } 867 868 /* 869 * On success, increment the count of good writes for our top-level vdev. 870 */ 871 static void 872 vdev_label_sync_done(zio_t *zio) 873 { 874 uint64_t *good_writes = zio->io_private; 875 876 if (zio->io_error == 0) 877 atomic_add_64(good_writes, 1); 878 } 879 880 /* 881 * If there weren't enough good writes, indicate failure to the parent. 882 */ 883 static void 884 vdev_label_sync_top_done(zio_t *zio) 885 { 886 uint64_t *good_writes = zio->io_private; 887 888 if (*good_writes == 0) 889 zio->io_error = EIO; 890 891 kmem_free(good_writes, sizeof (uint64_t)); 892 } 893 894 /* 895 * We ignore errors for log and cache devices, simply free the private data. 896 */ 897 static void 898 vdev_label_sync_ignore_done(zio_t *zio) 899 { 900 kmem_free(zio->io_private, sizeof (uint64_t)); 901 } 902 903 /* 904 * Write all even or odd labels to all leaves of the specified vdev. 905 */ 906 static void 907 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 908 { 909 nvlist_t *label; 910 vdev_phys_t *vp; 911 char *buf; 912 size_t buflen; 913 914 for (int c = 0; c < vd->vdev_children; c++) 915 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 916 917 if (!vd->vdev_ops->vdev_op_leaf) 918 return; 919 920 if (!vdev_writeable(vd)) 921 return; 922 923 /* 924 * Generate a label describing the top-level config to which we belong. 925 */ 926 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 927 928 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 929 bzero(vp, sizeof (vdev_phys_t)); 930 931 buf = vp->vp_nvlist; 932 buflen = sizeof (vp->vp_nvlist); 933 934 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 935 for (; l < VDEV_LABELS; l += 2) { 936 vdev_label_write(zio, vd, l, vp, 937 offsetof(vdev_label_t, vl_vdev_phys), 938 sizeof (vdev_phys_t), 939 vdev_label_sync_done, zio->io_private, 940 flags | ZIO_FLAG_DONT_PROPAGATE); 941 } 942 } 943 944 zio_buf_free(vp, sizeof (vdev_phys_t)); 945 nvlist_free(label); 946 } 947 948 int 949 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 950 { 951 list_t *dl = &spa->spa_config_dirty_list; 952 vdev_t *vd; 953 zio_t *zio; 954 int error; 955 956 /* 957 * Write the new labels to disk. 958 */ 959 zio = zio_root(spa, NULL, NULL, flags); 960 961 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 962 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 963 KM_SLEEP); 964 zio_t *vio = zio_null(zio, spa, 965 (vd->vdev_islog || vd->vdev_aux != NULL) ? 966 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 967 good_writes, flags); 968 vdev_label_sync(vio, vd, l, txg, flags); 969 zio_nowait(vio); 970 } 971 972 error = zio_wait(zio); 973 974 /* 975 * Flush the new labels to disk. 976 */ 977 zio = zio_root(spa, NULL, NULL, flags); 978 979 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 980 zio_flush(zio, vd); 981 982 (void) zio_wait(zio); 983 984 return (error); 985 } 986 987 /* 988 * Sync the uberblock and any changes to the vdev configuration. 989 * 990 * The order of operations is carefully crafted to ensure that 991 * if the system panics or loses power at any time, the state on disk 992 * is still transactionally consistent. The in-line comments below 993 * describe the failure semantics at each stage. 994 * 995 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 996 * at any time, you can just call it again, and it will resume its work. 997 */ 998 int 999 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1000 { 1001 spa_t *spa = svd[0]->vdev_spa; 1002 uberblock_t *ub = &spa->spa_uberblock; 1003 vdev_t *vd; 1004 zio_t *zio; 1005 int error; 1006 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1007 1008 ASSERT(ub->ub_txg <= txg); 1009 1010 /* 1011 * If this isn't a resync due to I/O errors, 1012 * and nothing changed in this transaction group, 1013 * and the vdev configuration hasn't changed, 1014 * then there's nothing to do. 1015 */ 1016 if (ub->ub_txg < txg && 1017 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1018 list_is_empty(&spa->spa_config_dirty_list)) 1019 return (0); 1020 1021 if (txg > spa_freeze_txg(spa)) 1022 return (0); 1023 1024 ASSERT(txg <= spa->spa_final_txg); 1025 1026 /* 1027 * Flush the write cache of every disk that's been written to 1028 * in this transaction group. This ensures that all blocks 1029 * written in this txg will be committed to stable storage 1030 * before any uberblock that references them. 1031 */ 1032 zio = zio_root(spa, NULL, NULL, flags); 1033 1034 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1035 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1036 zio_flush(zio, vd); 1037 1038 (void) zio_wait(zio); 1039 1040 /* 1041 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1042 * system dies in the middle of this process, that's OK: all of the 1043 * even labels that made it to disk will be newer than any uberblock, 1044 * and will therefore be considered invalid. The odd labels (L1, L3), 1045 * which have not yet been touched, will still be valid. We flush 1046 * the new labels to disk to ensure that all even-label updates 1047 * are committed to stable storage before the uberblock update. 1048 */ 1049 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1050 return (error); 1051 1052 /* 1053 * Sync the uberblocks to all vdevs in svd[]. 1054 * If the system dies in the middle of this step, there are two cases 1055 * to consider, and the on-disk state is consistent either way: 1056 * 1057 * (1) If none of the new uberblocks made it to disk, then the 1058 * previous uberblock will be the newest, and the odd labels 1059 * (which had not yet been touched) will be valid with respect 1060 * to that uberblock. 1061 * 1062 * (2) If one or more new uberblocks made it to disk, then they 1063 * will be the newest, and the even labels (which had all 1064 * been successfully committed) will be valid with respect 1065 * to the new uberblocks. 1066 */ 1067 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1068 return (error); 1069 1070 /* 1071 * Sync out odd labels for every dirty vdev. If the system dies 1072 * in the middle of this process, the even labels and the new 1073 * uberblocks will suffice to open the pool. The next time 1074 * the pool is opened, the first thing we'll do -- before any 1075 * user data is modified -- is mark every vdev dirty so that 1076 * all labels will be brought up to date. We flush the new labels 1077 * to disk to ensure that all odd-label updates are committed to 1078 * stable storage before the next transaction group begins. 1079 */ 1080 return (vdev_label_sync_list(spa, 1, txg, flags)); 1081 } 1082