1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/ddt.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/txg.h> 48 #include <sys/avl.h> 49 #include <sys/dmu_traverse.h> 50 #include <sys/dmu_objset.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dataset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/dsl_synctask.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/arc.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 /* 947 * Close the dsl pool. 948 */ 949 if (spa->spa_dsl_pool) { 950 dsl_pool_close(spa->spa_dsl_pool); 951 spa->spa_dsl_pool = NULL; 952 } 953 954 ddt_unload(spa); 955 956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 957 958 /* 959 * Drop and purge level 2 cache 960 */ 961 spa_l2cache_drop(spa); 962 963 /* 964 * Close all vdevs. 965 */ 966 if (spa->spa_root_vdev) 967 vdev_free(spa->spa_root_vdev); 968 ASSERT(spa->spa_root_vdev == NULL); 969 970 for (i = 0; i < spa->spa_spares.sav_count; i++) 971 vdev_free(spa->spa_spares.sav_vdevs[i]); 972 if (spa->spa_spares.sav_vdevs) { 973 kmem_free(spa->spa_spares.sav_vdevs, 974 spa->spa_spares.sav_count * sizeof (void *)); 975 spa->spa_spares.sav_vdevs = NULL; 976 } 977 if (spa->spa_spares.sav_config) { 978 nvlist_free(spa->spa_spares.sav_config); 979 spa->spa_spares.sav_config = NULL; 980 } 981 spa->spa_spares.sav_count = 0; 982 983 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 984 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 985 if (spa->spa_l2cache.sav_vdevs) { 986 kmem_free(spa->spa_l2cache.sav_vdevs, 987 spa->spa_l2cache.sav_count * sizeof (void *)); 988 spa->spa_l2cache.sav_vdevs = NULL; 989 } 990 if (spa->spa_l2cache.sav_config) { 991 nvlist_free(spa->spa_l2cache.sav_config); 992 spa->spa_l2cache.sav_config = NULL; 993 } 994 spa->spa_l2cache.sav_count = 0; 995 996 spa->spa_async_suspended = 0; 997 998 spa_config_exit(spa, SCL_ALL, FTAG); 999 } 1000 1001 /* 1002 * Load (or re-load) the current list of vdevs describing the active spares for 1003 * this pool. When this is called, we have some form of basic information in 1004 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1005 * then re-generate a more complete list including status information. 1006 */ 1007 static void 1008 spa_load_spares(spa_t *spa) 1009 { 1010 nvlist_t **spares; 1011 uint_t nspares; 1012 int i; 1013 vdev_t *vd, *tvd; 1014 1015 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1016 1017 /* 1018 * First, close and free any existing spare vdevs. 1019 */ 1020 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1021 vd = spa->spa_spares.sav_vdevs[i]; 1022 1023 /* Undo the call to spa_activate() below */ 1024 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1025 B_FALSE)) != NULL && tvd->vdev_isspare) 1026 spa_spare_remove(tvd); 1027 vdev_close(vd); 1028 vdev_free(vd); 1029 } 1030 1031 if (spa->spa_spares.sav_vdevs) 1032 kmem_free(spa->spa_spares.sav_vdevs, 1033 spa->spa_spares.sav_count * sizeof (void *)); 1034 1035 if (spa->spa_spares.sav_config == NULL) 1036 nspares = 0; 1037 else 1038 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1039 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1040 1041 spa->spa_spares.sav_count = (int)nspares; 1042 spa->spa_spares.sav_vdevs = NULL; 1043 1044 if (nspares == 0) 1045 return; 1046 1047 /* 1048 * Construct the array of vdevs, opening them to get status in the 1049 * process. For each spare, there is potentially two different vdev_t 1050 * structures associated with it: one in the list of spares (used only 1051 * for basic validation purposes) and one in the active vdev 1052 * configuration (if it's spared in). During this phase we open and 1053 * validate each vdev on the spare list. If the vdev also exists in the 1054 * active configuration, then we also mark this vdev as an active spare. 1055 */ 1056 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1057 KM_SLEEP); 1058 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1059 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1060 VDEV_ALLOC_SPARE) == 0); 1061 ASSERT(vd != NULL); 1062 1063 spa->spa_spares.sav_vdevs[i] = vd; 1064 1065 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1066 B_FALSE)) != NULL) { 1067 if (!tvd->vdev_isspare) 1068 spa_spare_add(tvd); 1069 1070 /* 1071 * We only mark the spare active if we were successfully 1072 * able to load the vdev. Otherwise, importing a pool 1073 * with a bad active spare would result in strange 1074 * behavior, because multiple pool would think the spare 1075 * is actively in use. 1076 * 1077 * There is a vulnerability here to an equally bizarre 1078 * circumstance, where a dead active spare is later 1079 * brought back to life (onlined or otherwise). Given 1080 * the rarity of this scenario, and the extra complexity 1081 * it adds, we ignore the possibility. 1082 */ 1083 if (!vdev_is_dead(tvd)) 1084 spa_spare_activate(tvd); 1085 } 1086 1087 vd->vdev_top = vd; 1088 vd->vdev_aux = &spa->spa_spares; 1089 1090 if (vdev_open(vd) != 0) 1091 continue; 1092 1093 if (vdev_validate_aux(vd) == 0) 1094 spa_spare_add(vd); 1095 } 1096 1097 /* 1098 * Recompute the stashed list of spares, with status information 1099 * this time. 1100 */ 1101 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1102 DATA_TYPE_NVLIST_ARRAY) == 0); 1103 1104 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1105 KM_SLEEP); 1106 for (i = 0; i < spa->spa_spares.sav_count; i++) 1107 spares[i] = vdev_config_generate(spa, 1108 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 1109 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1110 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1111 for (i = 0; i < spa->spa_spares.sav_count; i++) 1112 nvlist_free(spares[i]); 1113 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1114 } 1115 1116 /* 1117 * Load (or re-load) the current list of vdevs describing the active l2cache for 1118 * this pool. When this is called, we have some form of basic information in 1119 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1120 * then re-generate a more complete list including status information. 1121 * Devices which are already active have their details maintained, and are 1122 * not re-opened. 1123 */ 1124 static void 1125 spa_load_l2cache(spa_t *spa) 1126 { 1127 nvlist_t **l2cache; 1128 uint_t nl2cache; 1129 int i, j, oldnvdevs; 1130 uint64_t guid; 1131 vdev_t *vd, **oldvdevs, **newvdevs; 1132 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1133 1134 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1135 1136 if (sav->sav_config != NULL) { 1137 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1138 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1139 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1140 } else { 1141 nl2cache = 0; 1142 } 1143 1144 oldvdevs = sav->sav_vdevs; 1145 oldnvdevs = sav->sav_count; 1146 sav->sav_vdevs = NULL; 1147 sav->sav_count = 0; 1148 1149 /* 1150 * Process new nvlist of vdevs. 1151 */ 1152 for (i = 0; i < nl2cache; i++) { 1153 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1154 &guid) == 0); 1155 1156 newvdevs[i] = NULL; 1157 for (j = 0; j < oldnvdevs; j++) { 1158 vd = oldvdevs[j]; 1159 if (vd != NULL && guid == vd->vdev_guid) { 1160 /* 1161 * Retain previous vdev for add/remove ops. 1162 */ 1163 newvdevs[i] = vd; 1164 oldvdevs[j] = NULL; 1165 break; 1166 } 1167 } 1168 1169 if (newvdevs[i] == NULL) { 1170 /* 1171 * Create new vdev 1172 */ 1173 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1174 VDEV_ALLOC_L2CACHE) == 0); 1175 ASSERT(vd != NULL); 1176 newvdevs[i] = vd; 1177 1178 /* 1179 * Commit this vdev as an l2cache device, 1180 * even if it fails to open. 1181 */ 1182 spa_l2cache_add(vd); 1183 1184 vd->vdev_top = vd; 1185 vd->vdev_aux = sav; 1186 1187 spa_l2cache_activate(vd); 1188 1189 if (vdev_open(vd) != 0) 1190 continue; 1191 1192 (void) vdev_validate_aux(vd); 1193 1194 if (!vdev_is_dead(vd)) 1195 l2arc_add_vdev(spa, vd); 1196 } 1197 } 1198 1199 /* 1200 * Purge vdevs that were dropped 1201 */ 1202 for (i = 0; i < oldnvdevs; i++) { 1203 uint64_t pool; 1204 1205 vd = oldvdevs[i]; 1206 if (vd != NULL) { 1207 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1208 pool != 0ULL && l2arc_vdev_present(vd)) 1209 l2arc_remove_vdev(vd); 1210 (void) vdev_close(vd); 1211 spa_l2cache_remove(vd); 1212 } 1213 } 1214 1215 if (oldvdevs) 1216 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1217 1218 if (sav->sav_config == NULL) 1219 goto out; 1220 1221 sav->sav_vdevs = newvdevs; 1222 sav->sav_count = (int)nl2cache; 1223 1224 /* 1225 * Recompute the stashed list of l2cache devices, with status 1226 * information this time. 1227 */ 1228 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1229 DATA_TYPE_NVLIST_ARRAY) == 0); 1230 1231 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1232 for (i = 0; i < sav->sav_count; i++) 1233 l2cache[i] = vdev_config_generate(spa, 1234 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1235 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1236 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1237 out: 1238 for (i = 0; i < sav->sav_count; i++) 1239 nvlist_free(l2cache[i]); 1240 if (sav->sav_count) 1241 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1242 } 1243 1244 static int 1245 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1246 { 1247 dmu_buf_t *db; 1248 char *packed = NULL; 1249 size_t nvsize = 0; 1250 int error; 1251 *value = NULL; 1252 1253 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1254 nvsize = *(uint64_t *)db->db_data; 1255 dmu_buf_rele(db, FTAG); 1256 1257 packed = kmem_alloc(nvsize, KM_SLEEP); 1258 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1259 DMU_READ_PREFETCH); 1260 if (error == 0) 1261 error = nvlist_unpack(packed, nvsize, value, 0); 1262 kmem_free(packed, nvsize); 1263 1264 return (error); 1265 } 1266 1267 /* 1268 * Checks to see if the given vdev could not be opened, in which case we post a 1269 * sysevent to notify the autoreplace code that the device has been removed. 1270 */ 1271 static void 1272 spa_check_removed(vdev_t *vd) 1273 { 1274 for (int c = 0; c < vd->vdev_children; c++) 1275 spa_check_removed(vd->vdev_child[c]); 1276 1277 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1278 zfs_post_autoreplace(vd->vdev_spa, vd); 1279 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1280 } 1281 } 1282 1283 /* 1284 * Load the slog device state from the config object since it's possible 1285 * that the label does not contain the most up-to-date information. 1286 */ 1287 void 1288 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1289 { 1290 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1291 1292 /* 1293 * Load the original root vdev tree from the passed config. 1294 */ 1295 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1296 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1297 1298 for (int c = 0; c < rvd->vdev_children; c++) { 1299 vdev_t *cvd = rvd->vdev_child[c]; 1300 if (cvd->vdev_islog) 1301 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1302 } 1303 vdev_free(ovd); 1304 spa_config_exit(spa, SCL_ALL, FTAG); 1305 } 1306 1307 /* 1308 * Check for missing log devices 1309 */ 1310 int 1311 spa_check_logs(spa_t *spa) 1312 { 1313 switch (spa->spa_log_state) { 1314 case SPA_LOG_MISSING: 1315 /* need to recheck in case slog has been restored */ 1316 case SPA_LOG_UNKNOWN: 1317 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1318 DS_FIND_CHILDREN)) { 1319 spa_set_log_state(spa, SPA_LOG_MISSING); 1320 return (1); 1321 } 1322 break; 1323 } 1324 return (0); 1325 } 1326 1327 static boolean_t 1328 spa_passivate_log(spa_t *spa) 1329 { 1330 vdev_t *rvd = spa->spa_root_vdev; 1331 boolean_t slog_found = B_FALSE; 1332 1333 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1334 1335 if (!spa_has_slogs(spa)) 1336 return (B_FALSE); 1337 1338 for (int c = 0; c < rvd->vdev_children; c++) { 1339 vdev_t *tvd = rvd->vdev_child[c]; 1340 metaslab_group_t *mg = tvd->vdev_mg; 1341 1342 if (tvd->vdev_islog) { 1343 metaslab_group_passivate(mg); 1344 slog_found = B_TRUE; 1345 } 1346 } 1347 1348 return (slog_found); 1349 } 1350 1351 static void 1352 spa_activate_log(spa_t *spa) 1353 { 1354 vdev_t *rvd = spa->spa_root_vdev; 1355 1356 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1357 1358 for (int c = 0; c < rvd->vdev_children; c++) { 1359 vdev_t *tvd = rvd->vdev_child[c]; 1360 metaslab_group_t *mg = tvd->vdev_mg; 1361 1362 if (tvd->vdev_islog) 1363 metaslab_group_activate(mg); 1364 } 1365 } 1366 1367 int 1368 spa_offline_log(spa_t *spa) 1369 { 1370 int error = 0; 1371 1372 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1373 NULL, DS_FIND_CHILDREN)) == 0) { 1374 1375 /* 1376 * We successfully offlined the log device, sync out the 1377 * current txg so that the "stubby" block can be removed 1378 * by zil_sync(). 1379 */ 1380 txg_wait_synced(spa->spa_dsl_pool, 0); 1381 } 1382 return (error); 1383 } 1384 1385 static void 1386 spa_aux_check_removed(spa_aux_vdev_t *sav) 1387 { 1388 for (int i = 0; i < sav->sav_count; i++) 1389 spa_check_removed(sav->sav_vdevs[i]); 1390 } 1391 1392 void 1393 spa_claim_notify(zio_t *zio) 1394 { 1395 spa_t *spa = zio->io_spa; 1396 1397 if (zio->io_error) 1398 return; 1399 1400 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1401 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1402 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1403 mutex_exit(&spa->spa_props_lock); 1404 } 1405 1406 typedef struct spa_load_error { 1407 uint64_t sle_metadata_count; 1408 uint64_t sle_data_count; 1409 } spa_load_error_t; 1410 1411 static void 1412 spa_load_verify_done(zio_t *zio) 1413 { 1414 blkptr_t *bp = zio->io_bp; 1415 spa_load_error_t *sle = zio->io_private; 1416 dmu_object_type_t type = BP_GET_TYPE(bp); 1417 int error = zio->io_error; 1418 1419 if (error) { 1420 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1421 type != DMU_OT_INTENT_LOG) 1422 atomic_add_64(&sle->sle_metadata_count, 1); 1423 else 1424 atomic_add_64(&sle->sle_data_count, 1); 1425 } 1426 zio_data_buf_free(zio->io_data, zio->io_size); 1427 } 1428 1429 /*ARGSUSED*/ 1430 static int 1431 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1432 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1433 { 1434 if (bp != NULL) { 1435 zio_t *rio = arg; 1436 size_t size = BP_GET_PSIZE(bp); 1437 void *data = zio_data_buf_alloc(size); 1438 1439 zio_nowait(zio_read(rio, spa, bp, data, size, 1440 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1441 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1442 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1443 } 1444 return (0); 1445 } 1446 1447 static int 1448 spa_load_verify(spa_t *spa) 1449 { 1450 zio_t *rio; 1451 spa_load_error_t sle = { 0 }; 1452 zpool_rewind_policy_t policy; 1453 boolean_t verify_ok = B_FALSE; 1454 int error; 1455 1456 rio = zio_root(spa, NULL, &sle, 1457 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1458 1459 error = traverse_pool(spa, spa->spa_verify_min_txg, 1460 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1461 1462 (void) zio_wait(rio); 1463 1464 zpool_get_rewind_policy(spa->spa_config, &policy); 1465 1466 spa->spa_load_meta_errors = sle.sle_metadata_count; 1467 spa->spa_load_data_errors = sle.sle_data_count; 1468 1469 if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta && 1470 sle.sle_data_count <= policy.zrp_maxdata) { 1471 verify_ok = B_TRUE; 1472 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1473 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1474 } else { 1475 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1476 } 1477 1478 if (error) { 1479 if (error != ENXIO && error != EIO) 1480 error = EIO; 1481 return (error); 1482 } 1483 1484 return (verify_ok ? 0 : EIO); 1485 } 1486 1487 /* 1488 * Find a value in the pool props object. 1489 */ 1490 static void 1491 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1492 { 1493 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1494 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1495 } 1496 1497 /* 1498 * Find a value in the pool directory object. 1499 */ 1500 static int 1501 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1502 { 1503 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1504 name, sizeof (uint64_t), 1, val)); 1505 } 1506 1507 static int 1508 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1509 { 1510 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1511 return (err); 1512 } 1513 1514 /* 1515 * Fix up config after a partly-completed split. This is done with the 1516 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1517 * pool have that entry in their config, but only the splitting one contains 1518 * a list of all the guids of the vdevs that are being split off. 1519 * 1520 * This function determines what to do with that list: either rejoin 1521 * all the disks to the pool, or complete the splitting process. To attempt 1522 * the rejoin, each disk that is offlined is marked online again, and 1523 * we do a reopen() call. If the vdev label for every disk that was 1524 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1525 * then we call vdev_split() on each disk, and complete the split. 1526 * 1527 * Otherwise we leave the config alone, and rejoined to the original pool. 1528 */ 1529 static void 1530 spa_try_repair(spa_t *spa, nvlist_t *config) 1531 { 1532 uint_t extracted; 1533 uint64_t *glist; 1534 uint_t i, gcount; 1535 nvlist_t *nvl; 1536 vdev_t **vd; 1537 boolean_t attempt_reopen; 1538 1539 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1540 return; 1541 1542 /* check that the config is complete */ 1543 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1544 &glist, &gcount) != 0) 1545 return; 1546 1547 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1548 1549 /* attempt to online all the vdevs & validate */ 1550 attempt_reopen = B_TRUE; 1551 for (i = 0; i < gcount; i++) { 1552 if (glist[i] == 0) /* vdev is hole */ 1553 continue; 1554 1555 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1556 if (vd[i] == NULL) { 1557 /* 1558 * Don't bother attempting to reopen the disks; 1559 * just do the split. 1560 */ 1561 attempt_reopen = B_FALSE; 1562 } else { 1563 /* attempt to re-online it */ 1564 vd[i]->vdev_offline = B_FALSE; 1565 } 1566 } 1567 1568 if (attempt_reopen) { 1569 vdev_reopen(spa->spa_root_vdev); 1570 1571 /* check each device to see what state it's in */ 1572 for (extracted = 0, i = 0; i < gcount; i++) { 1573 if (vd[i] != NULL && 1574 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1575 break; 1576 ++extracted; 1577 } 1578 } 1579 1580 /* 1581 * If every disk has been moved to the new pool, or if we never 1582 * even attempted to look at them, then we split them off for 1583 * good. 1584 */ 1585 if (!attempt_reopen || gcount == extracted) { 1586 for (i = 0; i < gcount; i++) 1587 if (vd[i] != NULL) 1588 vdev_split(vd[i]); 1589 vdev_reopen(spa->spa_root_vdev); 1590 } 1591 1592 kmem_free(vd, gcount * sizeof (vdev_t *)); 1593 } 1594 1595 static int 1596 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1597 boolean_t mosconfig) 1598 { 1599 nvlist_t *config = spa->spa_config; 1600 char *ereport = FM_EREPORT_ZFS_POOL; 1601 int error; 1602 uint64_t pool_guid; 1603 nvlist_t *nvl; 1604 1605 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1606 return (EINVAL); 1607 1608 /* 1609 * Versioning wasn't explicitly added to the label until later, so if 1610 * it's not present treat it as the initial version. 1611 */ 1612 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1613 &spa->spa_ubsync.ub_version) != 0) 1614 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1615 1616 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1617 &spa->spa_config_txg); 1618 1619 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1620 spa_guid_exists(pool_guid, 0)) { 1621 error = EEXIST; 1622 } else { 1623 spa->spa_load_guid = pool_guid; 1624 1625 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1626 &nvl) == 0) { 1627 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1628 KM_SLEEP) == 0); 1629 } 1630 1631 error = spa_load_impl(spa, pool_guid, config, state, type, 1632 mosconfig, &ereport); 1633 } 1634 1635 spa->spa_minref = refcount_count(&spa->spa_refcount); 1636 if (error && error != EBADF) 1637 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1638 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1639 spa->spa_ena = 0; 1640 1641 return (error); 1642 } 1643 1644 /* 1645 * Load an existing storage pool, using the pool's builtin spa_config as a 1646 * source of configuration information. 1647 */ 1648 static int 1649 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1650 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1651 char **ereport) 1652 { 1653 int error = 0; 1654 nvlist_t *nvconfig, *nvroot = NULL; 1655 vdev_t *rvd; 1656 uberblock_t *ub = &spa->spa_uberblock; 1657 uint64_t config_cache_txg = spa->spa_config_txg; 1658 int orig_mode = spa->spa_mode; 1659 int parse; 1660 1661 /* 1662 * If this is an untrusted config, access the pool in read-only mode. 1663 * This prevents things like resilvering recently removed devices. 1664 */ 1665 if (!mosconfig) 1666 spa->spa_mode = FREAD; 1667 1668 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1669 1670 spa->spa_load_state = state; 1671 1672 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1673 return (EINVAL); 1674 1675 parse = (type == SPA_IMPORT_EXISTING ? 1676 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1677 1678 /* 1679 * Create "The Godfather" zio to hold all async IOs 1680 */ 1681 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1682 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1683 1684 /* 1685 * Parse the configuration into a vdev tree. We explicitly set the 1686 * value that will be returned by spa_version() since parsing the 1687 * configuration requires knowing the version number. 1688 */ 1689 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1690 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1691 spa_config_exit(spa, SCL_ALL, FTAG); 1692 1693 if (error != 0) 1694 return (error); 1695 1696 ASSERT(spa->spa_root_vdev == rvd); 1697 1698 if (type != SPA_IMPORT_ASSEMBLE) { 1699 ASSERT(spa_guid(spa) == pool_guid); 1700 } 1701 1702 /* 1703 * Try to open all vdevs, loading each label in the process. 1704 */ 1705 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1706 error = vdev_open(rvd); 1707 spa_config_exit(spa, SCL_ALL, FTAG); 1708 if (error != 0) 1709 return (error); 1710 1711 /* 1712 * We need to validate the vdev labels against the configuration that 1713 * we have in hand, which is dependent on the setting of mosconfig. If 1714 * mosconfig is true then we're validating the vdev labels based on 1715 * that config. Otherwise, we're validating against the cached config 1716 * (zpool.cache) that was read when we loaded the zfs module, and then 1717 * later we will recursively call spa_load() and validate against 1718 * the vdev config. 1719 * 1720 * If we're assembling a new pool that's been split off from an 1721 * existing pool, the labels haven't yet been updated so we skip 1722 * validation for now. 1723 */ 1724 if (type != SPA_IMPORT_ASSEMBLE) { 1725 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1726 error = vdev_validate(rvd); 1727 spa_config_exit(spa, SCL_ALL, FTAG); 1728 1729 if (error != 0) 1730 return (error); 1731 1732 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1733 return (ENXIO); 1734 } 1735 1736 /* 1737 * Find the best uberblock. 1738 */ 1739 vdev_uberblock_load(NULL, rvd, ub); 1740 1741 /* 1742 * If we weren't able to find a single valid uberblock, return failure. 1743 */ 1744 if (ub->ub_txg == 0) 1745 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1746 1747 /* 1748 * If the pool is newer than the code, we can't open it. 1749 */ 1750 if (ub->ub_version > SPA_VERSION) 1751 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1752 1753 /* 1754 * If the vdev guid sum doesn't match the uberblock, we have an 1755 * incomplete configuration. 1756 */ 1757 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1758 rvd->vdev_guid_sum != ub->ub_guid_sum) 1759 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1760 1761 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1762 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1763 spa_try_repair(spa, config); 1764 spa_config_exit(spa, SCL_ALL, FTAG); 1765 nvlist_free(spa->spa_config_splitting); 1766 spa->spa_config_splitting = NULL; 1767 } 1768 1769 /* 1770 * Initialize internal SPA structures. 1771 */ 1772 spa->spa_state = POOL_STATE_ACTIVE; 1773 spa->spa_ubsync = spa->spa_uberblock; 1774 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1775 TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE; 1776 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1777 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1778 spa->spa_claim_max_txg = spa->spa_first_txg; 1779 1780 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1781 if (error) 1782 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1783 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1784 1785 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1787 1788 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1789 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1790 1791 if (!mosconfig) { 1792 uint64_t hostid; 1793 1794 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1795 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1796 char *hostname; 1797 unsigned long myhostid = 0; 1798 1799 VERIFY(nvlist_lookup_string(nvconfig, 1800 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1801 1802 #ifdef _KERNEL 1803 myhostid = zone_get_hostid(NULL); 1804 #else /* _KERNEL */ 1805 /* 1806 * We're emulating the system's hostid in userland, so 1807 * we can't use zone_get_hostid(). 1808 */ 1809 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1810 #endif /* _KERNEL */ 1811 if (hostid != 0 && myhostid != 0 && 1812 hostid != myhostid) { 1813 cmn_err(CE_WARN, "pool '%s' could not be " 1814 "loaded as it was last accessed by " 1815 "another system (host: %s hostid: 0x%lx). " 1816 "See: http://www.sun.com/msg/ZFS-8000-EY", 1817 spa_name(spa), hostname, 1818 (unsigned long)hostid); 1819 return (EBADF); 1820 } 1821 } 1822 1823 spa_config_set(spa, nvconfig); 1824 spa_unload(spa); 1825 spa_deactivate(spa); 1826 spa_activate(spa, orig_mode); 1827 1828 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1829 } 1830 1831 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST, 1832 &spa->spa_deferred_bplist_obj) != 0) 1833 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1834 1835 /* 1836 * Load the bit that tells us to use the new accounting function 1837 * (raid-z deflation). If we have an older pool, this will not 1838 * be present. 1839 */ 1840 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1841 if (error != 0 && error != ENOENT) 1842 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1843 1844 /* 1845 * Load the persistent error log. If we have an older pool, this will 1846 * not be present. 1847 */ 1848 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1849 if (error != 0 && error != ENOENT) 1850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1851 1852 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1853 &spa->spa_errlog_scrub); 1854 if (error != 0 && error != ENOENT) 1855 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1856 1857 /* 1858 * Load the history object. If we have an older pool, this 1859 * will not be present. 1860 */ 1861 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1862 if (error != 0 && error != ENOENT) 1863 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1864 1865 /* 1866 * If we're assembling the pool from the split-off vdevs of 1867 * an existing pool, we don't want to attach the spares & cache 1868 * devices. 1869 */ 1870 1871 /* 1872 * Load any hot spares for this pool. 1873 */ 1874 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1875 if (error != 0 && error != ENOENT) 1876 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1877 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1878 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1879 if (load_nvlist(spa, spa->spa_spares.sav_object, 1880 &spa->spa_spares.sav_config) != 0) 1881 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1882 1883 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1884 spa_load_spares(spa); 1885 spa_config_exit(spa, SCL_ALL, FTAG); 1886 } else if (error == 0) { 1887 spa->spa_spares.sav_sync = B_TRUE; 1888 } 1889 1890 /* 1891 * Load any level 2 ARC devices for this pool. 1892 */ 1893 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1894 &spa->spa_l2cache.sav_object); 1895 if (error != 0 && error != ENOENT) 1896 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1897 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1898 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1899 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1900 &spa->spa_l2cache.sav_config) != 0) 1901 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1902 1903 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1904 spa_load_l2cache(spa); 1905 spa_config_exit(spa, SCL_ALL, FTAG); 1906 } else if (error == 0) { 1907 spa->spa_l2cache.sav_sync = B_TRUE; 1908 } 1909 1910 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1911 1912 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1913 if (error && error != ENOENT) 1914 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1915 1916 if (error == 0) { 1917 uint64_t autoreplace; 1918 1919 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1920 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1921 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1922 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1923 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1924 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1925 &spa->spa_dedup_ditto); 1926 1927 spa->spa_autoreplace = (autoreplace != 0); 1928 } 1929 1930 /* 1931 * If the 'autoreplace' property is set, then post a resource notifying 1932 * the ZFS DE that it should not issue any faults for unopenable 1933 * devices. We also iterate over the vdevs, and post a sysevent for any 1934 * unopenable vdevs so that the normal autoreplace handler can take 1935 * over. 1936 */ 1937 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1938 spa_check_removed(spa->spa_root_vdev); 1939 /* 1940 * For the import case, this is done in spa_import(), because 1941 * at this point we're using the spare definitions from 1942 * the MOS config, not necessarily from the userland config. 1943 */ 1944 if (state != SPA_LOAD_IMPORT) { 1945 spa_aux_check_removed(&spa->spa_spares); 1946 spa_aux_check_removed(&spa->spa_l2cache); 1947 } 1948 } 1949 1950 /* 1951 * Load the vdev state for all toplevel vdevs. 1952 */ 1953 vdev_load(rvd); 1954 1955 /* 1956 * Propagate the leaf DTLs we just loaded all the way up the tree. 1957 */ 1958 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1959 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1960 spa_config_exit(spa, SCL_ALL, FTAG); 1961 1962 /* 1963 * Check the state of the root vdev. If it can't be opened, it 1964 * indicates one or more toplevel vdevs are faulted. 1965 */ 1966 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1967 return (ENXIO); 1968 1969 /* 1970 * Load the DDTs (dedup tables). 1971 */ 1972 error = ddt_load(spa); 1973 if (error != 0) 1974 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1975 1976 spa_update_dspace(spa); 1977 1978 if (state != SPA_LOAD_TRYIMPORT) { 1979 error = spa_load_verify(spa); 1980 if (error) 1981 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 1982 error)); 1983 } 1984 1985 /* 1986 * Load the intent log state and check log integrity. If we're 1987 * assembling a pool from a split, the log is not transferred over. 1988 */ 1989 if (type != SPA_IMPORT_ASSEMBLE) { 1990 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 1991 &nvroot) == 0); 1992 spa_load_log_state(spa, nvroot); 1993 nvlist_free(nvconfig); 1994 1995 if (spa_check_logs(spa)) { 1996 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1997 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 1998 } 1999 } 2000 2001 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2002 spa->spa_load_max_txg == UINT64_MAX)) { 2003 dmu_tx_t *tx; 2004 int need_update = B_FALSE; 2005 2006 ASSERT(state != SPA_LOAD_TRYIMPORT); 2007 2008 /* 2009 * Claim log blocks that haven't been committed yet. 2010 * This must all happen in a single txg. 2011 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2012 * invoked from zil_claim_log_block()'s i/o done callback. 2013 * Price of rollback is that we abandon the log. 2014 */ 2015 spa->spa_claiming = B_TRUE; 2016 2017 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2018 spa_first_txg(spa)); 2019 (void) dmu_objset_find(spa_name(spa), 2020 zil_claim, tx, DS_FIND_CHILDREN); 2021 dmu_tx_commit(tx); 2022 2023 spa->spa_claiming = B_FALSE; 2024 2025 spa_set_log_state(spa, SPA_LOG_GOOD); 2026 spa->spa_sync_on = B_TRUE; 2027 txg_sync_start(spa->spa_dsl_pool); 2028 2029 /* 2030 * Wait for all claims to sync. We sync up to the highest 2031 * claimed log block birth time so that claimed log blocks 2032 * don't appear to be from the future. spa_claim_max_txg 2033 * will have been set for us by either zil_check_log_chain() 2034 * (invoked from spa_check_logs()) or zil_claim() above. 2035 */ 2036 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2037 2038 /* 2039 * If the config cache is stale, or we have uninitialized 2040 * metaslabs (see spa_vdev_add()), then update the config. 2041 * 2042 * If spa_load_verbatim is true, trust the current 2043 * in-core spa_config and update the disk labels. 2044 */ 2045 if (config_cache_txg != spa->spa_config_txg || 2046 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2047 state == SPA_LOAD_RECOVER) 2048 need_update = B_TRUE; 2049 2050 for (int c = 0; c < rvd->vdev_children; c++) 2051 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2052 need_update = B_TRUE; 2053 2054 /* 2055 * Update the config cache asychronously in case we're the 2056 * root pool, in which case the config cache isn't writable yet. 2057 */ 2058 if (need_update) 2059 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2060 2061 /* 2062 * Check all DTLs to see if anything needs resilvering. 2063 */ 2064 if (vdev_resilver_needed(rvd, NULL, NULL)) 2065 spa_async_request(spa, SPA_ASYNC_RESILVER); 2066 2067 /* 2068 * Delete any inconsistent datasets. 2069 */ 2070 (void) dmu_objset_find(spa_name(spa), 2071 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2072 2073 /* 2074 * Clean up any stale temporary dataset userrefs. 2075 */ 2076 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2077 } 2078 2079 return (0); 2080 } 2081 2082 static int 2083 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2084 { 2085 spa_unload(spa); 2086 spa_deactivate(spa); 2087 2088 spa->spa_load_max_txg--; 2089 2090 spa_activate(spa, spa_mode_global); 2091 spa_async_suspend(spa); 2092 2093 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2094 } 2095 2096 static int 2097 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2098 uint64_t max_request, boolean_t extreme) 2099 { 2100 nvlist_t *config = NULL; 2101 int load_error, rewind_error; 2102 uint64_t safe_rollback_txg; 2103 uint64_t min_txg; 2104 2105 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2106 spa->spa_load_max_txg = spa->spa_load_txg; 2107 spa_set_log_state(spa, SPA_LOG_CLEAR); 2108 } else { 2109 spa->spa_load_max_txg = max_request; 2110 } 2111 2112 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2113 mosconfig); 2114 if (load_error == 0) 2115 return (0); 2116 2117 if (spa->spa_root_vdev != NULL) 2118 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2119 2120 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2121 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2122 2123 /* specific txg requested */ 2124 if (spa->spa_load_max_txg != UINT64_MAX && !extreme) { 2125 nvlist_free(config); 2126 return (load_error); 2127 } 2128 2129 /* Price of rolling back is discarding txgs, including log */ 2130 if (state == SPA_LOAD_RECOVER) 2131 spa_set_log_state(spa, SPA_LOG_CLEAR); 2132 2133 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2134 safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE; 2135 2136 min_txg = extreme ? TXG_INITIAL : safe_rollback_txg; 2137 while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) { 2138 if (spa->spa_load_max_txg < safe_rollback_txg) 2139 spa->spa_extreme_rewind = B_TRUE; 2140 rewind_error = spa_load_retry(spa, state, mosconfig); 2141 } 2142 2143 if (config) 2144 spa_rewind_data_to_nvlist(spa, config); 2145 2146 spa->spa_extreme_rewind = B_FALSE; 2147 spa->spa_load_max_txg = UINT64_MAX; 2148 2149 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2150 spa_config_set(spa, config); 2151 2152 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2153 } 2154 2155 /* 2156 * Pool Open/Import 2157 * 2158 * The import case is identical to an open except that the configuration is sent 2159 * down from userland, instead of grabbed from the configuration cache. For the 2160 * case of an open, the pool configuration will exist in the 2161 * POOL_STATE_UNINITIALIZED state. 2162 * 2163 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2164 * the same time open the pool, without having to keep around the spa_t in some 2165 * ambiguous state. 2166 */ 2167 static int 2168 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2169 nvlist_t **config) 2170 { 2171 spa_t *spa; 2172 boolean_t norewind; 2173 boolean_t extreme; 2174 zpool_rewind_policy_t policy; 2175 spa_load_state_t state = SPA_LOAD_OPEN; 2176 int error; 2177 int locked = B_FALSE; 2178 2179 *spapp = NULL; 2180 2181 zpool_get_rewind_policy(nvpolicy, &policy); 2182 if (policy.zrp_request & ZPOOL_DO_REWIND) 2183 state = SPA_LOAD_RECOVER; 2184 norewind = (policy.zrp_request == ZPOOL_NO_REWIND); 2185 extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0); 2186 2187 /* 2188 * As disgusting as this is, we need to support recursive calls to this 2189 * function because dsl_dir_open() is called during spa_load(), and ends 2190 * up calling spa_open() again. The real fix is to figure out how to 2191 * avoid dsl_dir_open() calling this in the first place. 2192 */ 2193 if (mutex_owner(&spa_namespace_lock) != curthread) { 2194 mutex_enter(&spa_namespace_lock); 2195 locked = B_TRUE; 2196 } 2197 2198 if ((spa = spa_lookup(pool)) == NULL) { 2199 if (locked) 2200 mutex_exit(&spa_namespace_lock); 2201 return (ENOENT); 2202 } 2203 2204 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2205 2206 spa_activate(spa, spa_mode_global); 2207 2208 if (spa->spa_last_open_failed && norewind) { 2209 if (config != NULL && spa->spa_config) 2210 VERIFY(nvlist_dup(spa->spa_config, 2211 config, KM_SLEEP) == 0); 2212 spa_deactivate(spa); 2213 if (locked) 2214 mutex_exit(&spa_namespace_lock); 2215 return (spa->spa_last_open_failed); 2216 } 2217 2218 if (state != SPA_LOAD_RECOVER) 2219 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2220 2221 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2222 extreme); 2223 2224 if (error == EBADF) { 2225 /* 2226 * If vdev_validate() returns failure (indicated by 2227 * EBADF), it indicates that one of the vdevs indicates 2228 * that the pool has been exported or destroyed. If 2229 * this is the case, the config cache is out of sync and 2230 * we should remove the pool from the namespace. 2231 */ 2232 spa_unload(spa); 2233 spa_deactivate(spa); 2234 spa_config_sync(spa, B_TRUE, B_TRUE); 2235 spa_remove(spa); 2236 if (locked) 2237 mutex_exit(&spa_namespace_lock); 2238 return (ENOENT); 2239 } 2240 2241 if (error) { 2242 /* 2243 * We can't open the pool, but we still have useful 2244 * information: the state of each vdev after the 2245 * attempted vdev_open(). Return this to the user. 2246 */ 2247 if (config != NULL && spa->spa_config) 2248 VERIFY(nvlist_dup(spa->spa_config, config, 2249 KM_SLEEP) == 0); 2250 spa_unload(spa); 2251 spa_deactivate(spa); 2252 spa->spa_last_open_failed = error; 2253 if (locked) 2254 mutex_exit(&spa_namespace_lock); 2255 *spapp = NULL; 2256 return (error); 2257 } 2258 2259 } 2260 2261 spa_open_ref(spa, tag); 2262 2263 2264 if (config != NULL) 2265 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2266 2267 if (locked) { 2268 spa->spa_last_open_failed = 0; 2269 spa->spa_last_ubsync_txg = 0; 2270 spa->spa_load_txg = 0; 2271 mutex_exit(&spa_namespace_lock); 2272 } 2273 2274 *spapp = spa; 2275 2276 return (0); 2277 } 2278 2279 int 2280 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2281 nvlist_t **config) 2282 { 2283 return (spa_open_common(name, spapp, tag, policy, config)); 2284 } 2285 2286 int 2287 spa_open(const char *name, spa_t **spapp, void *tag) 2288 { 2289 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2290 } 2291 2292 /* 2293 * Lookup the given spa_t, incrementing the inject count in the process, 2294 * preventing it from being exported or destroyed. 2295 */ 2296 spa_t * 2297 spa_inject_addref(char *name) 2298 { 2299 spa_t *spa; 2300 2301 mutex_enter(&spa_namespace_lock); 2302 if ((spa = spa_lookup(name)) == NULL) { 2303 mutex_exit(&spa_namespace_lock); 2304 return (NULL); 2305 } 2306 spa->spa_inject_ref++; 2307 mutex_exit(&spa_namespace_lock); 2308 2309 return (spa); 2310 } 2311 2312 void 2313 spa_inject_delref(spa_t *spa) 2314 { 2315 mutex_enter(&spa_namespace_lock); 2316 spa->spa_inject_ref--; 2317 mutex_exit(&spa_namespace_lock); 2318 } 2319 2320 /* 2321 * Add spares device information to the nvlist. 2322 */ 2323 static void 2324 spa_add_spares(spa_t *spa, nvlist_t *config) 2325 { 2326 nvlist_t **spares; 2327 uint_t i, nspares; 2328 nvlist_t *nvroot; 2329 uint64_t guid; 2330 vdev_stat_t *vs; 2331 uint_t vsc; 2332 uint64_t pool; 2333 2334 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2335 2336 if (spa->spa_spares.sav_count == 0) 2337 return; 2338 2339 VERIFY(nvlist_lookup_nvlist(config, 2340 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2341 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2342 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2343 if (nspares != 0) { 2344 VERIFY(nvlist_add_nvlist_array(nvroot, 2345 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2346 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2347 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2348 2349 /* 2350 * Go through and find any spares which have since been 2351 * repurposed as an active spare. If this is the case, update 2352 * their status appropriately. 2353 */ 2354 for (i = 0; i < nspares; i++) { 2355 VERIFY(nvlist_lookup_uint64(spares[i], 2356 ZPOOL_CONFIG_GUID, &guid) == 0); 2357 if (spa_spare_exists(guid, &pool, NULL) && 2358 pool != 0ULL) { 2359 VERIFY(nvlist_lookup_uint64_array( 2360 spares[i], ZPOOL_CONFIG_STATS, 2361 (uint64_t **)&vs, &vsc) == 0); 2362 vs->vs_state = VDEV_STATE_CANT_OPEN; 2363 vs->vs_aux = VDEV_AUX_SPARED; 2364 } 2365 } 2366 } 2367 } 2368 2369 /* 2370 * Add l2cache device information to the nvlist, including vdev stats. 2371 */ 2372 static void 2373 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2374 { 2375 nvlist_t **l2cache; 2376 uint_t i, j, nl2cache; 2377 nvlist_t *nvroot; 2378 uint64_t guid; 2379 vdev_t *vd; 2380 vdev_stat_t *vs; 2381 uint_t vsc; 2382 2383 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2384 2385 if (spa->spa_l2cache.sav_count == 0) 2386 return; 2387 2388 VERIFY(nvlist_lookup_nvlist(config, 2389 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2390 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2391 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2392 if (nl2cache != 0) { 2393 VERIFY(nvlist_add_nvlist_array(nvroot, 2394 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2395 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2396 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2397 2398 /* 2399 * Update level 2 cache device stats. 2400 */ 2401 2402 for (i = 0; i < nl2cache; i++) { 2403 VERIFY(nvlist_lookup_uint64(l2cache[i], 2404 ZPOOL_CONFIG_GUID, &guid) == 0); 2405 2406 vd = NULL; 2407 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2408 if (guid == 2409 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2410 vd = spa->spa_l2cache.sav_vdevs[j]; 2411 break; 2412 } 2413 } 2414 ASSERT(vd != NULL); 2415 2416 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2417 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 2418 vdev_get_stats(vd, vs); 2419 } 2420 } 2421 } 2422 2423 int 2424 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2425 { 2426 int error; 2427 spa_t *spa; 2428 2429 *config = NULL; 2430 error = spa_open_common(name, &spa, FTAG, NULL, config); 2431 2432 if (spa != NULL) { 2433 /* 2434 * This still leaves a window of inconsistency where the spares 2435 * or l2cache devices could change and the config would be 2436 * self-inconsistent. 2437 */ 2438 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2439 2440 if (*config != NULL) { 2441 VERIFY(nvlist_add_uint64(*config, 2442 ZPOOL_CONFIG_ERRCOUNT, 2443 spa_get_errlog_size(spa)) == 0); 2444 2445 if (spa_suspended(spa)) 2446 VERIFY(nvlist_add_uint64(*config, 2447 ZPOOL_CONFIG_SUSPENDED, 2448 spa->spa_failmode) == 0); 2449 2450 spa_add_spares(spa, *config); 2451 spa_add_l2cache(spa, *config); 2452 } 2453 } 2454 2455 /* 2456 * We want to get the alternate root even for faulted pools, so we cheat 2457 * and call spa_lookup() directly. 2458 */ 2459 if (altroot) { 2460 if (spa == NULL) { 2461 mutex_enter(&spa_namespace_lock); 2462 spa = spa_lookup(name); 2463 if (spa) 2464 spa_altroot(spa, altroot, buflen); 2465 else 2466 altroot[0] = '\0'; 2467 spa = NULL; 2468 mutex_exit(&spa_namespace_lock); 2469 } else { 2470 spa_altroot(spa, altroot, buflen); 2471 } 2472 } 2473 2474 if (spa != NULL) { 2475 spa_config_exit(spa, SCL_CONFIG, FTAG); 2476 spa_close(spa, FTAG); 2477 } 2478 2479 return (error); 2480 } 2481 2482 /* 2483 * Validate that the auxiliary device array is well formed. We must have an 2484 * array of nvlists, each which describes a valid leaf vdev. If this is an 2485 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2486 * specified, as long as they are well-formed. 2487 */ 2488 static int 2489 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2490 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2491 vdev_labeltype_t label) 2492 { 2493 nvlist_t **dev; 2494 uint_t i, ndev; 2495 vdev_t *vd; 2496 int error; 2497 2498 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2499 2500 /* 2501 * It's acceptable to have no devs specified. 2502 */ 2503 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2504 return (0); 2505 2506 if (ndev == 0) 2507 return (EINVAL); 2508 2509 /* 2510 * Make sure the pool is formatted with a version that supports this 2511 * device type. 2512 */ 2513 if (spa_version(spa) < version) 2514 return (ENOTSUP); 2515 2516 /* 2517 * Set the pending device list so we correctly handle device in-use 2518 * checking. 2519 */ 2520 sav->sav_pending = dev; 2521 sav->sav_npending = ndev; 2522 2523 for (i = 0; i < ndev; i++) { 2524 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2525 mode)) != 0) 2526 goto out; 2527 2528 if (!vd->vdev_ops->vdev_op_leaf) { 2529 vdev_free(vd); 2530 error = EINVAL; 2531 goto out; 2532 } 2533 2534 /* 2535 * The L2ARC currently only supports disk devices in 2536 * kernel context. For user-level testing, we allow it. 2537 */ 2538 #ifdef _KERNEL 2539 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2540 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2541 error = ENOTBLK; 2542 goto out; 2543 } 2544 #endif 2545 vd->vdev_top = vd; 2546 2547 if ((error = vdev_open(vd)) == 0 && 2548 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2549 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2550 vd->vdev_guid) == 0); 2551 } 2552 2553 vdev_free(vd); 2554 2555 if (error && 2556 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2557 goto out; 2558 else 2559 error = 0; 2560 } 2561 2562 out: 2563 sav->sav_pending = NULL; 2564 sav->sav_npending = 0; 2565 return (error); 2566 } 2567 2568 static int 2569 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2570 { 2571 int error; 2572 2573 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2574 2575 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2576 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2577 VDEV_LABEL_SPARE)) != 0) { 2578 return (error); 2579 } 2580 2581 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2582 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2583 VDEV_LABEL_L2CACHE)); 2584 } 2585 2586 static void 2587 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2588 const char *config) 2589 { 2590 int i; 2591 2592 if (sav->sav_config != NULL) { 2593 nvlist_t **olddevs; 2594 uint_t oldndevs; 2595 nvlist_t **newdevs; 2596 2597 /* 2598 * Generate new dev list by concatentating with the 2599 * current dev list. 2600 */ 2601 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2602 &olddevs, &oldndevs) == 0); 2603 2604 newdevs = kmem_alloc(sizeof (void *) * 2605 (ndevs + oldndevs), KM_SLEEP); 2606 for (i = 0; i < oldndevs; i++) 2607 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2608 KM_SLEEP) == 0); 2609 for (i = 0; i < ndevs; i++) 2610 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2611 KM_SLEEP) == 0); 2612 2613 VERIFY(nvlist_remove(sav->sav_config, config, 2614 DATA_TYPE_NVLIST_ARRAY) == 0); 2615 2616 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2617 config, newdevs, ndevs + oldndevs) == 0); 2618 for (i = 0; i < oldndevs + ndevs; i++) 2619 nvlist_free(newdevs[i]); 2620 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2621 } else { 2622 /* 2623 * Generate a new dev list. 2624 */ 2625 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2626 KM_SLEEP) == 0); 2627 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2628 devs, ndevs) == 0); 2629 } 2630 } 2631 2632 /* 2633 * Stop and drop level 2 ARC devices 2634 */ 2635 void 2636 spa_l2cache_drop(spa_t *spa) 2637 { 2638 vdev_t *vd; 2639 int i; 2640 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2641 2642 for (i = 0; i < sav->sav_count; i++) { 2643 uint64_t pool; 2644 2645 vd = sav->sav_vdevs[i]; 2646 ASSERT(vd != NULL); 2647 2648 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2649 pool != 0ULL && l2arc_vdev_present(vd)) 2650 l2arc_remove_vdev(vd); 2651 if (vd->vdev_isl2cache) 2652 spa_l2cache_remove(vd); 2653 vdev_clear_stats(vd); 2654 (void) vdev_close(vd); 2655 } 2656 } 2657 2658 /* 2659 * Pool Creation 2660 */ 2661 int 2662 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2663 const char *history_str, nvlist_t *zplprops) 2664 { 2665 spa_t *spa; 2666 char *altroot = NULL; 2667 vdev_t *rvd; 2668 dsl_pool_t *dp; 2669 dmu_tx_t *tx; 2670 int error = 0; 2671 uint64_t txg = TXG_INITIAL; 2672 nvlist_t **spares, **l2cache; 2673 uint_t nspares, nl2cache; 2674 uint64_t version; 2675 2676 /* 2677 * If this pool already exists, return failure. 2678 */ 2679 mutex_enter(&spa_namespace_lock); 2680 if (spa_lookup(pool) != NULL) { 2681 mutex_exit(&spa_namespace_lock); 2682 return (EEXIST); 2683 } 2684 2685 /* 2686 * Allocate a new spa_t structure. 2687 */ 2688 (void) nvlist_lookup_string(props, 2689 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2690 spa = spa_add(pool, NULL, altroot); 2691 spa_activate(spa, spa_mode_global); 2692 2693 if (props && (error = spa_prop_validate(spa, props))) { 2694 spa_deactivate(spa); 2695 spa_remove(spa); 2696 mutex_exit(&spa_namespace_lock); 2697 return (error); 2698 } 2699 2700 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2701 &version) != 0) 2702 version = SPA_VERSION; 2703 ASSERT(version <= SPA_VERSION); 2704 2705 spa->spa_first_txg = txg; 2706 spa->spa_uberblock.ub_txg = txg - 1; 2707 spa->spa_uberblock.ub_version = version; 2708 spa->spa_ubsync = spa->spa_uberblock; 2709 2710 /* 2711 * Create "The Godfather" zio to hold all async IOs 2712 */ 2713 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2714 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2715 2716 /* 2717 * Create the root vdev. 2718 */ 2719 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2720 2721 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2722 2723 ASSERT(error != 0 || rvd != NULL); 2724 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2725 2726 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2727 error = EINVAL; 2728 2729 if (error == 0 && 2730 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2731 (error = spa_validate_aux(spa, nvroot, txg, 2732 VDEV_ALLOC_ADD)) == 0) { 2733 for (int c = 0; c < rvd->vdev_children; c++) { 2734 vdev_metaslab_set_size(rvd->vdev_child[c]); 2735 vdev_expand(rvd->vdev_child[c], txg); 2736 } 2737 } 2738 2739 spa_config_exit(spa, SCL_ALL, FTAG); 2740 2741 if (error != 0) { 2742 spa_unload(spa); 2743 spa_deactivate(spa); 2744 spa_remove(spa); 2745 mutex_exit(&spa_namespace_lock); 2746 return (error); 2747 } 2748 2749 /* 2750 * Get the list of spares, if specified. 2751 */ 2752 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2753 &spares, &nspares) == 0) { 2754 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2755 KM_SLEEP) == 0); 2756 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2757 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2758 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2759 spa_load_spares(spa); 2760 spa_config_exit(spa, SCL_ALL, FTAG); 2761 spa->spa_spares.sav_sync = B_TRUE; 2762 } 2763 2764 /* 2765 * Get the list of level 2 cache devices, if specified. 2766 */ 2767 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2768 &l2cache, &nl2cache) == 0) { 2769 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2770 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2771 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2772 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2773 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2774 spa_load_l2cache(spa); 2775 spa_config_exit(spa, SCL_ALL, FTAG); 2776 spa->spa_l2cache.sav_sync = B_TRUE; 2777 } 2778 2779 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2780 spa->spa_meta_objset = dp->dp_meta_objset; 2781 2782 /* 2783 * Create DDTs (dedup tables). 2784 */ 2785 ddt_create(spa); 2786 2787 spa_update_dspace(spa); 2788 2789 tx = dmu_tx_create_assigned(dp, txg); 2790 2791 /* 2792 * Create the pool config object. 2793 */ 2794 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2795 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2796 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2797 2798 if (zap_add(spa->spa_meta_objset, 2799 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2800 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2801 cmn_err(CE_PANIC, "failed to add pool config"); 2802 } 2803 2804 /* Newly created pools with the right version are always deflated. */ 2805 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2806 spa->spa_deflate = TRUE; 2807 if (zap_add(spa->spa_meta_objset, 2808 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2809 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2810 cmn_err(CE_PANIC, "failed to add deflate"); 2811 } 2812 } 2813 2814 /* 2815 * Create the deferred-free bplist object. Turn off compression 2816 * because sync-to-convergence takes longer if the blocksize 2817 * keeps changing. 2818 */ 2819 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2820 1 << 14, tx); 2821 dmu_object_set_compress(spa->spa_meta_objset, 2822 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2823 2824 if (zap_add(spa->spa_meta_objset, 2825 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2826 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2827 cmn_err(CE_PANIC, "failed to add bplist"); 2828 } 2829 2830 /* 2831 * Create the pool's history object. 2832 */ 2833 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2834 spa_history_create_obj(spa, tx); 2835 2836 /* 2837 * Set pool properties. 2838 */ 2839 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2840 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2841 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2842 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2843 2844 if (props != NULL) { 2845 spa_configfile_set(spa, props, B_FALSE); 2846 spa_sync_props(spa, props, CRED(), tx); 2847 } 2848 2849 dmu_tx_commit(tx); 2850 2851 spa->spa_sync_on = B_TRUE; 2852 txg_sync_start(spa->spa_dsl_pool); 2853 2854 /* 2855 * We explicitly wait for the first transaction to complete so that our 2856 * bean counters are appropriately updated. 2857 */ 2858 txg_wait_synced(spa->spa_dsl_pool, txg); 2859 2860 spa_config_sync(spa, B_FALSE, B_TRUE); 2861 2862 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2863 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2864 spa_history_log_version(spa, LOG_POOL_CREATE); 2865 2866 spa->spa_minref = refcount_count(&spa->spa_refcount); 2867 2868 mutex_exit(&spa_namespace_lock); 2869 2870 return (0); 2871 } 2872 2873 #ifdef _KERNEL 2874 /* 2875 * Get the root pool information from the root disk, then import the root pool 2876 * during the system boot up time. 2877 */ 2878 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2879 2880 static nvlist_t * 2881 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2882 { 2883 nvlist_t *config; 2884 nvlist_t *nvtop, *nvroot; 2885 uint64_t pgid; 2886 2887 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2888 return (NULL); 2889 2890 /* 2891 * Add this top-level vdev to the child array. 2892 */ 2893 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2894 &nvtop) == 0); 2895 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2896 &pgid) == 0); 2897 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2898 2899 /* 2900 * Put this pool's top-level vdevs into a root vdev. 2901 */ 2902 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2903 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2904 VDEV_TYPE_ROOT) == 0); 2905 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2906 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2907 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2908 &nvtop, 1) == 0); 2909 2910 /* 2911 * Replace the existing vdev_tree with the new root vdev in 2912 * this pool's configuration (remove the old, add the new). 2913 */ 2914 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2915 nvlist_free(nvroot); 2916 return (config); 2917 } 2918 2919 /* 2920 * Walk the vdev tree and see if we can find a device with "better" 2921 * configuration. A configuration is "better" if the label on that 2922 * device has a more recent txg. 2923 */ 2924 static void 2925 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2926 { 2927 for (int c = 0; c < vd->vdev_children; c++) 2928 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2929 2930 if (vd->vdev_ops->vdev_op_leaf) { 2931 nvlist_t *label; 2932 uint64_t label_txg; 2933 2934 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2935 &label) != 0) 2936 return; 2937 2938 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2939 &label_txg) == 0); 2940 2941 /* 2942 * Do we have a better boot device? 2943 */ 2944 if (label_txg > *txg) { 2945 *txg = label_txg; 2946 *avd = vd; 2947 } 2948 nvlist_free(label); 2949 } 2950 } 2951 2952 /* 2953 * Import a root pool. 2954 * 2955 * For x86. devpath_list will consist of devid and/or physpath name of 2956 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2957 * The GRUB "findroot" command will return the vdev we should boot. 2958 * 2959 * For Sparc, devpath_list consists the physpath name of the booting device 2960 * no matter the rootpool is a single device pool or a mirrored pool. 2961 * e.g. 2962 * "/pci@1f,0/ide@d/disk@0,0:a" 2963 */ 2964 int 2965 spa_import_rootpool(char *devpath, char *devid) 2966 { 2967 spa_t *spa; 2968 vdev_t *rvd, *bvd, *avd = NULL; 2969 nvlist_t *config, *nvtop; 2970 uint64_t guid, txg; 2971 char *pname; 2972 int error; 2973 2974 /* 2975 * Read the label from the boot device and generate a configuration. 2976 */ 2977 config = spa_generate_rootconf(devpath, devid, &guid); 2978 #if defined(_OBP) && defined(_KERNEL) 2979 if (config == NULL) { 2980 if (strstr(devpath, "/iscsi/ssd") != NULL) { 2981 /* iscsi boot */ 2982 get_iscsi_bootpath_phy(devpath); 2983 config = spa_generate_rootconf(devpath, devid, &guid); 2984 } 2985 } 2986 #endif 2987 if (config == NULL) { 2988 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 2989 devpath); 2990 return (EIO); 2991 } 2992 2993 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 2994 &pname) == 0); 2995 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2996 2997 mutex_enter(&spa_namespace_lock); 2998 if ((spa = spa_lookup(pname)) != NULL) { 2999 /* 3000 * Remove the existing root pool from the namespace so that we 3001 * can replace it with the correct config we just read in. 3002 */ 3003 spa_remove(spa); 3004 } 3005 3006 spa = spa_add(pname, config, NULL); 3007 spa->spa_is_root = B_TRUE; 3008 spa->spa_load_verbatim = B_TRUE; 3009 3010 /* 3011 * Build up a vdev tree based on the boot device's label config. 3012 */ 3013 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3014 &nvtop) == 0); 3015 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3016 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3017 VDEV_ALLOC_ROOTPOOL); 3018 spa_config_exit(spa, SCL_ALL, FTAG); 3019 if (error) { 3020 mutex_exit(&spa_namespace_lock); 3021 nvlist_free(config); 3022 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3023 pname); 3024 return (error); 3025 } 3026 3027 /* 3028 * Get the boot vdev. 3029 */ 3030 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3031 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3032 (u_longlong_t)guid); 3033 error = ENOENT; 3034 goto out; 3035 } 3036 3037 /* 3038 * Determine if there is a better boot device. 3039 */ 3040 avd = bvd; 3041 spa_alt_rootvdev(rvd, &avd, &txg); 3042 if (avd != bvd) { 3043 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3044 "try booting from '%s'", avd->vdev_path); 3045 error = EINVAL; 3046 goto out; 3047 } 3048 3049 /* 3050 * If the boot device is part of a spare vdev then ensure that 3051 * we're booting off the active spare. 3052 */ 3053 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3054 !bvd->vdev_isspare) { 3055 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3056 "try booting from '%s'", 3057 bvd->vdev_parent->vdev_child[1]->vdev_path); 3058 error = EINVAL; 3059 goto out; 3060 } 3061 3062 error = 0; 3063 spa_history_log_version(spa, LOG_POOL_IMPORT); 3064 out: 3065 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3066 vdev_free(rvd); 3067 spa_config_exit(spa, SCL_ALL, FTAG); 3068 mutex_exit(&spa_namespace_lock); 3069 3070 nvlist_free(config); 3071 return (error); 3072 } 3073 3074 #endif 3075 3076 /* 3077 * Take a pool and insert it into the namespace as if it had been loaded at 3078 * boot. 3079 */ 3080 int 3081 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3082 { 3083 spa_t *spa; 3084 zpool_rewind_policy_t policy; 3085 char *altroot = NULL; 3086 3087 mutex_enter(&spa_namespace_lock); 3088 if (spa_lookup(pool) != NULL) { 3089 mutex_exit(&spa_namespace_lock); 3090 return (EEXIST); 3091 } 3092 3093 (void) nvlist_lookup_string(props, 3094 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3095 spa = spa_add(pool, config, altroot); 3096 3097 zpool_get_rewind_policy(config, &policy); 3098 spa->spa_load_max_txg = policy.zrp_txg; 3099 3100 spa->spa_load_verbatim = B_TRUE; 3101 3102 if (props != NULL) 3103 spa_configfile_set(spa, props, B_FALSE); 3104 3105 spa_config_sync(spa, B_FALSE, B_TRUE); 3106 3107 mutex_exit(&spa_namespace_lock); 3108 spa_history_log_version(spa, LOG_POOL_IMPORT); 3109 3110 return (0); 3111 } 3112 3113 /* 3114 * Import a non-root pool into the system. 3115 */ 3116 int 3117 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3118 { 3119 spa_t *spa; 3120 char *altroot = NULL; 3121 spa_load_state_t state = SPA_LOAD_IMPORT; 3122 zpool_rewind_policy_t policy; 3123 int error; 3124 nvlist_t *nvroot; 3125 nvlist_t **spares, **l2cache; 3126 uint_t nspares, nl2cache; 3127 3128 /* 3129 * If a pool with this name exists, return failure. 3130 */ 3131 mutex_enter(&spa_namespace_lock); 3132 if (spa_lookup(pool) != NULL) { 3133 mutex_exit(&spa_namespace_lock); 3134 return (EEXIST); 3135 } 3136 3137 zpool_get_rewind_policy(config, &policy); 3138 if (policy.zrp_request & ZPOOL_DO_REWIND) 3139 state = SPA_LOAD_RECOVER; 3140 3141 /* 3142 * Create and initialize the spa structure. 3143 */ 3144 (void) nvlist_lookup_string(props, 3145 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3146 spa = spa_add(pool, config, altroot); 3147 spa_activate(spa, spa_mode_global); 3148 3149 /* 3150 * Don't start async tasks until we know everything is healthy. 3151 */ 3152 spa_async_suspend(spa); 3153 3154 /* 3155 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3156 * because the user-supplied config is actually the one to trust when 3157 * doing an import. 3158 */ 3159 if (state != SPA_LOAD_RECOVER) 3160 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3161 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3162 ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0)); 3163 3164 /* 3165 * Propagate anything learned about failing or best txgs 3166 * back to caller 3167 */ 3168 spa_rewind_data_to_nvlist(spa, config); 3169 3170 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3171 /* 3172 * Toss any existing sparelist, as it doesn't have any validity 3173 * anymore, and conflicts with spa_has_spare(). 3174 */ 3175 if (spa->spa_spares.sav_config) { 3176 nvlist_free(spa->spa_spares.sav_config); 3177 spa->spa_spares.sav_config = NULL; 3178 spa_load_spares(spa); 3179 } 3180 if (spa->spa_l2cache.sav_config) { 3181 nvlist_free(spa->spa_l2cache.sav_config); 3182 spa->spa_l2cache.sav_config = NULL; 3183 spa_load_l2cache(spa); 3184 } 3185 3186 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3187 &nvroot) == 0); 3188 if (error == 0) 3189 error = spa_validate_aux(spa, nvroot, -1ULL, 3190 VDEV_ALLOC_SPARE); 3191 if (error == 0) 3192 error = spa_validate_aux(spa, nvroot, -1ULL, 3193 VDEV_ALLOC_L2CACHE); 3194 spa_config_exit(spa, SCL_ALL, FTAG); 3195 3196 if (props != NULL) 3197 spa_configfile_set(spa, props, B_FALSE); 3198 3199 if (error != 0 || (props && spa_writeable(spa) && 3200 (error = spa_prop_set(spa, props)))) { 3201 spa_unload(spa); 3202 spa_deactivate(spa); 3203 spa_remove(spa); 3204 mutex_exit(&spa_namespace_lock); 3205 return (error); 3206 } 3207 3208 spa_async_resume(spa); 3209 3210 /* 3211 * Override any spares and level 2 cache devices as specified by 3212 * the user, as these may have correct device names/devids, etc. 3213 */ 3214 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3215 &spares, &nspares) == 0) { 3216 if (spa->spa_spares.sav_config) 3217 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3218 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3219 else 3220 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3221 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3222 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3223 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3224 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3225 spa_load_spares(spa); 3226 spa_config_exit(spa, SCL_ALL, FTAG); 3227 spa->spa_spares.sav_sync = B_TRUE; 3228 } 3229 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3230 &l2cache, &nl2cache) == 0) { 3231 if (spa->spa_l2cache.sav_config) 3232 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3233 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3234 else 3235 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3236 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3237 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3238 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3239 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3240 spa_load_l2cache(spa); 3241 spa_config_exit(spa, SCL_ALL, FTAG); 3242 spa->spa_l2cache.sav_sync = B_TRUE; 3243 } 3244 3245 /* 3246 * Check for any removed devices. 3247 */ 3248 if (spa->spa_autoreplace) { 3249 spa_aux_check_removed(&spa->spa_spares); 3250 spa_aux_check_removed(&spa->spa_l2cache); 3251 } 3252 3253 if (spa_writeable(spa)) { 3254 /* 3255 * Update the config cache to include the newly-imported pool. 3256 */ 3257 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3258 } 3259 3260 /* 3261 * It's possible that the pool was expanded while it was exported. 3262 * We kick off an async task to handle this for us. 3263 */ 3264 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3265 3266 mutex_exit(&spa_namespace_lock); 3267 spa_history_log_version(spa, LOG_POOL_IMPORT); 3268 3269 return (0); 3270 } 3271 3272 nvlist_t * 3273 spa_tryimport(nvlist_t *tryconfig) 3274 { 3275 nvlist_t *config = NULL; 3276 char *poolname; 3277 spa_t *spa; 3278 uint64_t state; 3279 int error; 3280 3281 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3282 return (NULL); 3283 3284 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3285 return (NULL); 3286 3287 /* 3288 * Create and initialize the spa structure. 3289 */ 3290 mutex_enter(&spa_namespace_lock); 3291 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3292 spa_activate(spa, FREAD); 3293 3294 /* 3295 * Pass off the heavy lifting to spa_load(). 3296 * Pass TRUE for mosconfig because the user-supplied config 3297 * is actually the one to trust when doing an import. 3298 */ 3299 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3300 3301 /* 3302 * If 'tryconfig' was at least parsable, return the current config. 3303 */ 3304 if (spa->spa_root_vdev != NULL) { 3305 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3306 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3307 poolname) == 0); 3308 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3309 state) == 0); 3310 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3311 spa->spa_uberblock.ub_timestamp) == 0); 3312 3313 /* 3314 * If the bootfs property exists on this pool then we 3315 * copy it out so that external consumers can tell which 3316 * pools are bootable. 3317 */ 3318 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3319 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3320 3321 /* 3322 * We have to play games with the name since the 3323 * pool was opened as TRYIMPORT_NAME. 3324 */ 3325 if (dsl_dsobj_to_dsname(spa_name(spa), 3326 spa->spa_bootfs, tmpname) == 0) { 3327 char *cp; 3328 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3329 3330 cp = strchr(tmpname, '/'); 3331 if (cp == NULL) { 3332 (void) strlcpy(dsname, tmpname, 3333 MAXPATHLEN); 3334 } else { 3335 (void) snprintf(dsname, MAXPATHLEN, 3336 "%s/%s", poolname, ++cp); 3337 } 3338 VERIFY(nvlist_add_string(config, 3339 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3340 kmem_free(dsname, MAXPATHLEN); 3341 } 3342 kmem_free(tmpname, MAXPATHLEN); 3343 } 3344 3345 /* 3346 * Add the list of hot spares and level 2 cache devices. 3347 */ 3348 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3349 spa_add_spares(spa, config); 3350 spa_add_l2cache(spa, config); 3351 spa_config_exit(spa, SCL_CONFIG, FTAG); 3352 } 3353 3354 spa_unload(spa); 3355 spa_deactivate(spa); 3356 spa_remove(spa); 3357 mutex_exit(&spa_namespace_lock); 3358 3359 return (config); 3360 } 3361 3362 /* 3363 * Pool export/destroy 3364 * 3365 * The act of destroying or exporting a pool is very simple. We make sure there 3366 * is no more pending I/O and any references to the pool are gone. Then, we 3367 * update the pool state and sync all the labels to disk, removing the 3368 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3369 * we don't sync the labels or remove the configuration cache. 3370 */ 3371 static int 3372 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3373 boolean_t force, boolean_t hardforce) 3374 { 3375 spa_t *spa; 3376 3377 if (oldconfig) 3378 *oldconfig = NULL; 3379 3380 if (!(spa_mode_global & FWRITE)) 3381 return (EROFS); 3382 3383 mutex_enter(&spa_namespace_lock); 3384 if ((spa = spa_lookup(pool)) == NULL) { 3385 mutex_exit(&spa_namespace_lock); 3386 return (ENOENT); 3387 } 3388 3389 /* 3390 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3391 * reacquire the namespace lock, and see if we can export. 3392 */ 3393 spa_open_ref(spa, FTAG); 3394 mutex_exit(&spa_namespace_lock); 3395 spa_async_suspend(spa); 3396 mutex_enter(&spa_namespace_lock); 3397 spa_close(spa, FTAG); 3398 3399 /* 3400 * The pool will be in core if it's openable, 3401 * in which case we can modify its state. 3402 */ 3403 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3404 /* 3405 * Objsets may be open only because they're dirty, so we 3406 * have to force it to sync before checking spa_refcnt. 3407 */ 3408 txg_wait_synced(spa->spa_dsl_pool, 0); 3409 3410 /* 3411 * A pool cannot be exported or destroyed if there are active 3412 * references. If we are resetting a pool, allow references by 3413 * fault injection handlers. 3414 */ 3415 if (!spa_refcount_zero(spa) || 3416 (spa->spa_inject_ref != 0 && 3417 new_state != POOL_STATE_UNINITIALIZED)) { 3418 spa_async_resume(spa); 3419 mutex_exit(&spa_namespace_lock); 3420 return (EBUSY); 3421 } 3422 3423 /* 3424 * A pool cannot be exported if it has an active shared spare. 3425 * This is to prevent other pools stealing the active spare 3426 * from an exported pool. At user's own will, such pool can 3427 * be forcedly exported. 3428 */ 3429 if (!force && new_state == POOL_STATE_EXPORTED && 3430 spa_has_active_shared_spare(spa)) { 3431 spa_async_resume(spa); 3432 mutex_exit(&spa_namespace_lock); 3433 return (EXDEV); 3434 } 3435 3436 /* 3437 * We want this to be reflected on every label, 3438 * so mark them all dirty. spa_unload() will do the 3439 * final sync that pushes these changes out. 3440 */ 3441 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3442 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3443 spa->spa_state = new_state; 3444 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 3445 vdev_config_dirty(spa->spa_root_vdev); 3446 spa_config_exit(spa, SCL_ALL, FTAG); 3447 } 3448 } 3449 3450 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3451 3452 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3453 spa_unload(spa); 3454 spa_deactivate(spa); 3455 } 3456 3457 if (oldconfig && spa->spa_config) 3458 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3459 3460 if (new_state != POOL_STATE_UNINITIALIZED) { 3461 if (!hardforce) 3462 spa_config_sync(spa, B_TRUE, B_TRUE); 3463 spa_remove(spa); 3464 } 3465 mutex_exit(&spa_namespace_lock); 3466 3467 return (0); 3468 } 3469 3470 /* 3471 * Destroy a storage pool. 3472 */ 3473 int 3474 spa_destroy(char *pool) 3475 { 3476 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3477 B_FALSE, B_FALSE)); 3478 } 3479 3480 /* 3481 * Export a storage pool. 3482 */ 3483 int 3484 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3485 boolean_t hardforce) 3486 { 3487 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3488 force, hardforce)); 3489 } 3490 3491 /* 3492 * Similar to spa_export(), this unloads the spa_t without actually removing it 3493 * from the namespace in any way. 3494 */ 3495 int 3496 spa_reset(char *pool) 3497 { 3498 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3499 B_FALSE, B_FALSE)); 3500 } 3501 3502 /* 3503 * ========================================================================== 3504 * Device manipulation 3505 * ========================================================================== 3506 */ 3507 3508 /* 3509 * Add a device to a storage pool. 3510 */ 3511 int 3512 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3513 { 3514 uint64_t txg, id; 3515 int error; 3516 vdev_t *rvd = spa->spa_root_vdev; 3517 vdev_t *vd, *tvd; 3518 nvlist_t **spares, **l2cache; 3519 uint_t nspares, nl2cache; 3520 3521 txg = spa_vdev_enter(spa); 3522 3523 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3524 VDEV_ALLOC_ADD)) != 0) 3525 return (spa_vdev_exit(spa, NULL, txg, error)); 3526 3527 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3528 3529 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3530 &nspares) != 0) 3531 nspares = 0; 3532 3533 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3534 &nl2cache) != 0) 3535 nl2cache = 0; 3536 3537 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3538 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3539 3540 if (vd->vdev_children != 0 && 3541 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3542 return (spa_vdev_exit(spa, vd, txg, error)); 3543 3544 /* 3545 * We must validate the spares and l2cache devices after checking the 3546 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3547 */ 3548 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3549 return (spa_vdev_exit(spa, vd, txg, error)); 3550 3551 /* 3552 * Transfer each new top-level vdev from vd to rvd. 3553 */ 3554 for (int c = 0; c < vd->vdev_children; c++) { 3555 3556 /* 3557 * Set the vdev id to the first hole, if one exists. 3558 */ 3559 for (id = 0; id < rvd->vdev_children; id++) { 3560 if (rvd->vdev_child[id]->vdev_ishole) { 3561 vdev_free(rvd->vdev_child[id]); 3562 break; 3563 } 3564 } 3565 tvd = vd->vdev_child[c]; 3566 vdev_remove_child(vd, tvd); 3567 tvd->vdev_id = id; 3568 vdev_add_child(rvd, tvd); 3569 vdev_config_dirty(tvd); 3570 } 3571 3572 if (nspares != 0) { 3573 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3574 ZPOOL_CONFIG_SPARES); 3575 spa_load_spares(spa); 3576 spa->spa_spares.sav_sync = B_TRUE; 3577 } 3578 3579 if (nl2cache != 0) { 3580 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3581 ZPOOL_CONFIG_L2CACHE); 3582 spa_load_l2cache(spa); 3583 spa->spa_l2cache.sav_sync = B_TRUE; 3584 } 3585 3586 /* 3587 * We have to be careful when adding new vdevs to an existing pool. 3588 * If other threads start allocating from these vdevs before we 3589 * sync the config cache, and we lose power, then upon reboot we may 3590 * fail to open the pool because there are DVAs that the config cache 3591 * can't translate. Therefore, we first add the vdevs without 3592 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3593 * and then let spa_config_update() initialize the new metaslabs. 3594 * 3595 * spa_load() checks for added-but-not-initialized vdevs, so that 3596 * if we lose power at any point in this sequence, the remaining 3597 * steps will be completed the next time we load the pool. 3598 */ 3599 (void) spa_vdev_exit(spa, vd, txg, 0); 3600 3601 mutex_enter(&spa_namespace_lock); 3602 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3603 mutex_exit(&spa_namespace_lock); 3604 3605 return (0); 3606 } 3607 3608 /* 3609 * Attach a device to a mirror. The arguments are the path to any device 3610 * in the mirror, and the nvroot for the new device. If the path specifies 3611 * a device that is not mirrored, we automatically insert the mirror vdev. 3612 * 3613 * If 'replacing' is specified, the new device is intended to replace the 3614 * existing device; in this case the two devices are made into their own 3615 * mirror using the 'replacing' vdev, which is functionally identical to 3616 * the mirror vdev (it actually reuses all the same ops) but has a few 3617 * extra rules: you can't attach to it after it's been created, and upon 3618 * completion of resilvering, the first disk (the one being replaced) 3619 * is automatically detached. 3620 */ 3621 int 3622 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3623 { 3624 uint64_t txg, open_txg; 3625 vdev_t *rvd = spa->spa_root_vdev; 3626 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3627 vdev_ops_t *pvops; 3628 char *oldvdpath, *newvdpath; 3629 int newvd_isspare; 3630 int error; 3631 3632 txg = spa_vdev_enter(spa); 3633 3634 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3635 3636 if (oldvd == NULL) 3637 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3638 3639 if (!oldvd->vdev_ops->vdev_op_leaf) 3640 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3641 3642 pvd = oldvd->vdev_parent; 3643 3644 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3645 VDEV_ALLOC_ADD)) != 0) 3646 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3647 3648 if (newrootvd->vdev_children != 1) 3649 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3650 3651 newvd = newrootvd->vdev_child[0]; 3652 3653 if (!newvd->vdev_ops->vdev_op_leaf) 3654 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3655 3656 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3657 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3658 3659 /* 3660 * Spares can't replace logs 3661 */ 3662 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3663 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3664 3665 if (!replacing) { 3666 /* 3667 * For attach, the only allowable parent is a mirror or the root 3668 * vdev. 3669 */ 3670 if (pvd->vdev_ops != &vdev_mirror_ops && 3671 pvd->vdev_ops != &vdev_root_ops) 3672 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3673 3674 pvops = &vdev_mirror_ops; 3675 } else { 3676 /* 3677 * Active hot spares can only be replaced by inactive hot 3678 * spares. 3679 */ 3680 if (pvd->vdev_ops == &vdev_spare_ops && 3681 pvd->vdev_child[1] == oldvd && 3682 !spa_has_spare(spa, newvd->vdev_guid)) 3683 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3684 3685 /* 3686 * If the source is a hot spare, and the parent isn't already a 3687 * spare, then we want to create a new hot spare. Otherwise, we 3688 * want to create a replacing vdev. The user is not allowed to 3689 * attach to a spared vdev child unless the 'isspare' state is 3690 * the same (spare replaces spare, non-spare replaces 3691 * non-spare). 3692 */ 3693 if (pvd->vdev_ops == &vdev_replacing_ops) 3694 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3695 else if (pvd->vdev_ops == &vdev_spare_ops && 3696 newvd->vdev_isspare != oldvd->vdev_isspare) 3697 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3698 else if (pvd->vdev_ops != &vdev_spare_ops && 3699 newvd->vdev_isspare) 3700 pvops = &vdev_spare_ops; 3701 else 3702 pvops = &vdev_replacing_ops; 3703 } 3704 3705 /* 3706 * Make sure the new device is big enough. 3707 */ 3708 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3709 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3710 3711 /* 3712 * The new device cannot have a higher alignment requirement 3713 * than the top-level vdev. 3714 */ 3715 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3716 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3717 3718 /* 3719 * If this is an in-place replacement, update oldvd's path and devid 3720 * to make it distinguishable from newvd, and unopenable from now on. 3721 */ 3722 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3723 spa_strfree(oldvd->vdev_path); 3724 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3725 KM_SLEEP); 3726 (void) sprintf(oldvd->vdev_path, "%s/%s", 3727 newvd->vdev_path, "old"); 3728 if (oldvd->vdev_devid != NULL) { 3729 spa_strfree(oldvd->vdev_devid); 3730 oldvd->vdev_devid = NULL; 3731 } 3732 } 3733 3734 /* 3735 * If the parent is not a mirror, or if we're replacing, insert the new 3736 * mirror/replacing/spare vdev above oldvd. 3737 */ 3738 if (pvd->vdev_ops != pvops) 3739 pvd = vdev_add_parent(oldvd, pvops); 3740 3741 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3742 ASSERT(pvd->vdev_ops == pvops); 3743 ASSERT(oldvd->vdev_parent == pvd); 3744 3745 /* 3746 * Extract the new device from its root and add it to pvd. 3747 */ 3748 vdev_remove_child(newrootvd, newvd); 3749 newvd->vdev_id = pvd->vdev_children; 3750 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3751 vdev_add_child(pvd, newvd); 3752 3753 tvd = newvd->vdev_top; 3754 ASSERT(pvd->vdev_top == tvd); 3755 ASSERT(tvd->vdev_parent == rvd); 3756 3757 vdev_config_dirty(tvd); 3758 3759 /* 3760 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3761 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3762 */ 3763 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3764 3765 vdev_dtl_dirty(newvd, DTL_MISSING, 3766 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3767 3768 if (newvd->vdev_isspare) { 3769 spa_spare_activate(newvd); 3770 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3771 } 3772 3773 oldvdpath = spa_strdup(oldvd->vdev_path); 3774 newvdpath = spa_strdup(newvd->vdev_path); 3775 newvd_isspare = newvd->vdev_isspare; 3776 3777 /* 3778 * Mark newvd's DTL dirty in this txg. 3779 */ 3780 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3781 3782 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3783 3784 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3785 CRED(), "%s vdev=%s %s vdev=%s", 3786 replacing && newvd_isspare ? "spare in" : 3787 replacing ? "replace" : "attach", newvdpath, 3788 replacing ? "for" : "to", oldvdpath); 3789 3790 spa_strfree(oldvdpath); 3791 spa_strfree(newvdpath); 3792 3793 /* 3794 * Kick off a resilver to update newvd. 3795 */ 3796 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3797 3798 return (0); 3799 } 3800 3801 /* 3802 * Detach a device from a mirror or replacing vdev. 3803 * If 'replace_done' is specified, only detach if the parent 3804 * is a replacing vdev. 3805 */ 3806 int 3807 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3808 { 3809 uint64_t txg; 3810 int error; 3811 vdev_t *rvd = spa->spa_root_vdev; 3812 vdev_t *vd, *pvd, *cvd, *tvd; 3813 boolean_t unspare = B_FALSE; 3814 uint64_t unspare_guid; 3815 size_t len; 3816 char *vdpath; 3817 3818 txg = spa_vdev_enter(spa); 3819 3820 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3821 3822 if (vd == NULL) 3823 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3824 3825 if (!vd->vdev_ops->vdev_op_leaf) 3826 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3827 3828 pvd = vd->vdev_parent; 3829 3830 /* 3831 * If the parent/child relationship is not as expected, don't do it. 3832 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3833 * vdev that's replacing B with C. The user's intent in replacing 3834 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3835 * the replace by detaching C, the expected behavior is to end up 3836 * M(A,B). But suppose that right after deciding to detach C, 3837 * the replacement of B completes. We would have M(A,C), and then 3838 * ask to detach C, which would leave us with just A -- not what 3839 * the user wanted. To prevent this, we make sure that the 3840 * parent/child relationship hasn't changed -- in this example, 3841 * that C's parent is still the replacing vdev R. 3842 */ 3843 if (pvd->vdev_guid != pguid && pguid != 0) 3844 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3845 3846 /* 3847 * If replace_done is specified, only remove this device if it's 3848 * the first child of a replacing vdev. For the 'spare' vdev, either 3849 * disk can be removed. 3850 */ 3851 if (replace_done) { 3852 if (pvd->vdev_ops == &vdev_replacing_ops) { 3853 if (vd->vdev_id != 0) 3854 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3855 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3856 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3857 } 3858 } 3859 3860 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3861 spa_version(spa) >= SPA_VERSION_SPARES); 3862 3863 /* 3864 * Only mirror, replacing, and spare vdevs support detach. 3865 */ 3866 if (pvd->vdev_ops != &vdev_replacing_ops && 3867 pvd->vdev_ops != &vdev_mirror_ops && 3868 pvd->vdev_ops != &vdev_spare_ops) 3869 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3870 3871 /* 3872 * If this device has the only valid copy of some data, 3873 * we cannot safely detach it. 3874 */ 3875 if (vdev_dtl_required(vd)) 3876 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3877 3878 ASSERT(pvd->vdev_children >= 2); 3879 3880 /* 3881 * If we are detaching the second disk from a replacing vdev, then 3882 * check to see if we changed the original vdev's path to have "/old" 3883 * at the end in spa_vdev_attach(). If so, undo that change now. 3884 */ 3885 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3886 pvd->vdev_child[0]->vdev_path != NULL && 3887 pvd->vdev_child[1]->vdev_path != NULL) { 3888 ASSERT(pvd->vdev_child[1] == vd); 3889 cvd = pvd->vdev_child[0]; 3890 len = strlen(vd->vdev_path); 3891 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3892 strcmp(cvd->vdev_path + len, "/old") == 0) { 3893 spa_strfree(cvd->vdev_path); 3894 cvd->vdev_path = spa_strdup(vd->vdev_path); 3895 } 3896 } 3897 3898 /* 3899 * If we are detaching the original disk from a spare, then it implies 3900 * that the spare should become a real disk, and be removed from the 3901 * active spare list for the pool. 3902 */ 3903 if (pvd->vdev_ops == &vdev_spare_ops && 3904 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3905 unspare = B_TRUE; 3906 3907 /* 3908 * Erase the disk labels so the disk can be used for other things. 3909 * This must be done after all other error cases are handled, 3910 * but before we disembowel vd (so we can still do I/O to it). 3911 * But if we can't do it, don't treat the error as fatal -- 3912 * it may be that the unwritability of the disk is the reason 3913 * it's being detached! 3914 */ 3915 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3916 3917 /* 3918 * Remove vd from its parent and compact the parent's children. 3919 */ 3920 vdev_remove_child(pvd, vd); 3921 vdev_compact_children(pvd); 3922 3923 /* 3924 * Remember one of the remaining children so we can get tvd below. 3925 */ 3926 cvd = pvd->vdev_child[0]; 3927 3928 /* 3929 * If we need to remove the remaining child from the list of hot spares, 3930 * do it now, marking the vdev as no longer a spare in the process. 3931 * We must do this before vdev_remove_parent(), because that can 3932 * change the GUID if it creates a new toplevel GUID. For a similar 3933 * reason, we must remove the spare now, in the same txg as the detach; 3934 * otherwise someone could attach a new sibling, change the GUID, and 3935 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3936 */ 3937 if (unspare) { 3938 ASSERT(cvd->vdev_isspare); 3939 spa_spare_remove(cvd); 3940 unspare_guid = cvd->vdev_guid; 3941 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3942 } 3943 3944 /* 3945 * If the parent mirror/replacing vdev only has one child, 3946 * the parent is no longer needed. Remove it from the tree. 3947 */ 3948 if (pvd->vdev_children == 1) 3949 vdev_remove_parent(cvd); 3950 3951 /* 3952 * We don't set tvd until now because the parent we just removed 3953 * may have been the previous top-level vdev. 3954 */ 3955 tvd = cvd->vdev_top; 3956 ASSERT(tvd->vdev_parent == rvd); 3957 3958 /* 3959 * Reevaluate the parent vdev state. 3960 */ 3961 vdev_propagate_state(cvd); 3962 3963 /* 3964 * If the 'autoexpand' property is set on the pool then automatically 3965 * try to expand the size of the pool. For example if the device we 3966 * just detached was smaller than the others, it may be possible to 3967 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3968 * first so that we can obtain the updated sizes of the leaf vdevs. 3969 */ 3970 if (spa->spa_autoexpand) { 3971 vdev_reopen(tvd); 3972 vdev_expand(tvd, txg); 3973 } 3974 3975 vdev_config_dirty(tvd); 3976 3977 /* 3978 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3979 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3980 * But first make sure we're not on any *other* txg's DTL list, to 3981 * prevent vd from being accessed after it's freed. 3982 */ 3983 vdpath = spa_strdup(vd->vdev_path); 3984 for (int t = 0; t < TXG_SIZE; t++) 3985 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3986 vd->vdev_detached = B_TRUE; 3987 vdev_dirty(tvd, VDD_DTL, vd, txg); 3988 3989 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3990 3991 error = spa_vdev_exit(spa, vd, txg, 0); 3992 3993 spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(), 3994 "vdev=%s", vdpath); 3995 spa_strfree(vdpath); 3996 3997 /* 3998 * If this was the removal of the original device in a hot spare vdev, 3999 * then we want to go through and remove the device from the hot spare 4000 * list of every other pool. 4001 */ 4002 if (unspare) { 4003 spa_t *myspa = spa; 4004 spa = NULL; 4005 mutex_enter(&spa_namespace_lock); 4006 while ((spa = spa_next(spa)) != NULL) { 4007 if (spa->spa_state != POOL_STATE_ACTIVE) 4008 continue; 4009 if (spa == myspa) 4010 continue; 4011 spa_open_ref(spa, FTAG); 4012 mutex_exit(&spa_namespace_lock); 4013 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4014 mutex_enter(&spa_namespace_lock); 4015 spa_close(spa, FTAG); 4016 } 4017 mutex_exit(&spa_namespace_lock); 4018 } 4019 4020 return (error); 4021 } 4022 4023 /* 4024 * Split a set of devices from their mirrors, and create a new pool from them. 4025 */ 4026 int 4027 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4028 nvlist_t *props, boolean_t exp) 4029 { 4030 int error = 0; 4031 uint64_t txg, *glist; 4032 spa_t *newspa; 4033 uint_t c, children, lastlog; 4034 nvlist_t **child, *nvl, *tmp; 4035 dmu_tx_t *tx; 4036 char *altroot = NULL; 4037 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4038 boolean_t activate_slog; 4039 4040 if (!spa_writeable(spa)) 4041 return (EROFS); 4042 4043 txg = spa_vdev_enter(spa); 4044 4045 /* clear the log and flush everything up to now */ 4046 activate_slog = spa_passivate_log(spa); 4047 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4048 error = spa_offline_log(spa); 4049 txg = spa_vdev_config_enter(spa); 4050 4051 if (activate_slog) 4052 spa_activate_log(spa); 4053 4054 if (error != 0) 4055 return (spa_vdev_exit(spa, NULL, txg, error)); 4056 4057 /* check new spa name before going any further */ 4058 if (spa_lookup(newname) != NULL) 4059 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4060 4061 /* 4062 * scan through all the children to ensure they're all mirrors 4063 */ 4064 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4065 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4066 &children) != 0) 4067 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4068 4069 /* first, check to ensure we've got the right child count */ 4070 rvd = spa->spa_root_vdev; 4071 lastlog = 0; 4072 for (c = 0; c < rvd->vdev_children; c++) { 4073 vdev_t *vd = rvd->vdev_child[c]; 4074 4075 /* don't count the holes & logs as children */ 4076 if (vd->vdev_islog || vd->vdev_ishole) { 4077 if (lastlog == 0) 4078 lastlog = c; 4079 continue; 4080 } 4081 4082 lastlog = 0; 4083 } 4084 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4085 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4086 4087 /* next, ensure no spare or cache devices are part of the split */ 4088 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4089 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4090 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4091 4092 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4093 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4094 4095 /* then, loop over each vdev and validate it */ 4096 for (c = 0; c < children; c++) { 4097 uint64_t is_hole = 0; 4098 4099 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4100 &is_hole); 4101 4102 if (is_hole != 0) { 4103 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4104 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4105 continue; 4106 } else { 4107 error = EINVAL; 4108 break; 4109 } 4110 } 4111 4112 /* which disk is going to be split? */ 4113 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4114 &glist[c]) != 0) { 4115 error = EINVAL; 4116 break; 4117 } 4118 4119 /* look it up in the spa */ 4120 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4121 if (vml[c] == NULL) { 4122 error = ENODEV; 4123 break; 4124 } 4125 4126 /* make sure there's nothing stopping the split */ 4127 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4128 vml[c]->vdev_islog || 4129 vml[c]->vdev_ishole || 4130 vml[c]->vdev_isspare || 4131 vml[c]->vdev_isl2cache || 4132 !vdev_writeable(vml[c]) || 4133 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4134 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4135 error = EINVAL; 4136 break; 4137 } 4138 4139 if (vdev_dtl_required(vml[c])) { 4140 error = EBUSY; 4141 break; 4142 } 4143 4144 /* we need certain info from the top level */ 4145 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4146 vml[c]->vdev_top->vdev_ms_array) == 0); 4147 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4148 vml[c]->vdev_top->vdev_ms_shift) == 0); 4149 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4150 vml[c]->vdev_top->vdev_asize) == 0); 4151 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4152 vml[c]->vdev_top->vdev_ashift) == 0); 4153 } 4154 4155 if (error != 0) { 4156 kmem_free(vml, children * sizeof (vdev_t *)); 4157 kmem_free(glist, children * sizeof (uint64_t)); 4158 return (spa_vdev_exit(spa, NULL, txg, error)); 4159 } 4160 4161 /* stop writers from using the disks */ 4162 for (c = 0; c < children; c++) { 4163 if (vml[c] != NULL) 4164 vml[c]->vdev_offline = B_TRUE; 4165 } 4166 vdev_reopen(spa->spa_root_vdev); 4167 4168 /* 4169 * Temporarily record the splitting vdevs in the spa config. This 4170 * will disappear once the config is regenerated. 4171 */ 4172 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4173 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4174 glist, children) == 0); 4175 kmem_free(glist, children * sizeof (uint64_t)); 4176 4177 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4178 nvl) == 0); 4179 spa->spa_config_splitting = nvl; 4180 vdev_config_dirty(spa->spa_root_vdev); 4181 4182 /* configure and create the new pool */ 4183 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4184 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4185 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4186 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4187 spa_version(spa)) == 0); 4188 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4189 spa->spa_config_txg) == 0); 4190 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4191 spa_generate_guid(NULL)) == 0); 4192 (void) nvlist_lookup_string(props, 4193 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4194 4195 newspa = spa_add(newname, config, altroot); 4196 mutex_enter(&newspa->spa_vdev_top_lock); 4197 newspa->spa_config_txg = spa->spa_config_txg; 4198 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4199 4200 /* release the spa config lock, retaining the namespace lock */ 4201 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4202 4203 if (zio_injection_enabled) 4204 zio_handle_panic_injection(spa, FTAG, 1); 4205 4206 spa_activate(newspa, spa_mode_global); 4207 spa_async_suspend(newspa); 4208 4209 /* create the new pool from the disks of the original pool */ 4210 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4211 if (error) 4212 goto out; 4213 4214 /* if that worked, generate a real config for the new pool */ 4215 if (newspa->spa_root_vdev != NULL) { 4216 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4217 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4218 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4219 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4220 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4221 B_TRUE)); 4222 } 4223 4224 /* set the props */ 4225 if (props != NULL) { 4226 spa_configfile_set(newspa, props, B_FALSE); 4227 error = spa_prop_set(newspa, props); 4228 if (error) 4229 goto out; 4230 } 4231 4232 /* flush everything */ 4233 txg = spa_vdev_config_enter(newspa); 4234 vdev_config_dirty(newspa->spa_root_vdev); 4235 spa_config_sync(newspa, B_FALSE, B_TRUE); 4236 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4237 mutex_exit(&newspa->spa_vdev_top_lock); 4238 4239 if (zio_injection_enabled) 4240 zio_handle_panic_injection(spa, FTAG, 2); 4241 4242 spa_async_resume(newspa); 4243 4244 /* finally, update the original pool's config */ 4245 txg = spa_vdev_config_enter(spa); 4246 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4247 error = dmu_tx_assign(tx, TXG_WAIT); 4248 if (error != 0) 4249 dmu_tx_abort(tx); 4250 for (c = 0; c < children; c++) { 4251 if (vml[c] != NULL) { 4252 vdev_split(vml[c]); 4253 if (error == 0) 4254 spa_history_internal_log(LOG_POOL_VDEV_DETACH, 4255 spa, tx, CRED(), "vdev=%s", 4256 vml[c]->vdev_path); 4257 vdev_free(vml[c]); 4258 } 4259 } 4260 vdev_config_dirty(spa->spa_root_vdev); 4261 spa->spa_config_splitting = NULL; 4262 nvlist_free(nvl); 4263 if (error == 0) 4264 dmu_tx_commit(tx); 4265 (void) spa_vdev_exit(spa, NULL, txg, 0); 4266 4267 if (zio_injection_enabled) 4268 zio_handle_panic_injection(spa, FTAG, 3); 4269 4270 /* split is complete; log a history record */ 4271 spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(), 4272 "split new pool %s from pool %s", newname, spa_name(spa)); 4273 4274 kmem_free(vml, children * sizeof (vdev_t *)); 4275 4276 /* if we're not going to mount the filesystems in userland, export */ 4277 if (exp) 4278 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4279 B_FALSE, B_FALSE); 4280 4281 return (error); 4282 4283 out: 4284 mutex_exit(&newspa->spa_vdev_top_lock); 4285 spa_unload(newspa); 4286 spa_deactivate(newspa); 4287 spa_remove(newspa); 4288 4289 txg = spa_vdev_config_enter(spa); 4290 nvlist_free(spa->spa_config_splitting); 4291 spa->spa_config_splitting = NULL; 4292 (void) spa_vdev_exit(spa, NULL, txg, 0); 4293 4294 kmem_free(vml, children * sizeof (vdev_t *)); 4295 return (error); 4296 } 4297 4298 static nvlist_t * 4299 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4300 { 4301 for (int i = 0; i < count; i++) { 4302 uint64_t guid; 4303 4304 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4305 &guid) == 0); 4306 4307 if (guid == target_guid) 4308 return (nvpp[i]); 4309 } 4310 4311 return (NULL); 4312 } 4313 4314 static void 4315 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4316 nvlist_t *dev_to_remove) 4317 { 4318 nvlist_t **newdev = NULL; 4319 4320 if (count > 1) 4321 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4322 4323 for (int i = 0, j = 0; i < count; i++) { 4324 if (dev[i] == dev_to_remove) 4325 continue; 4326 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4327 } 4328 4329 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4330 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4331 4332 for (int i = 0; i < count - 1; i++) 4333 nvlist_free(newdev[i]); 4334 4335 if (count > 1) 4336 kmem_free(newdev, (count - 1) * sizeof (void *)); 4337 } 4338 4339 /* 4340 * Removing a device from the vdev namespace requires several steps 4341 * and can take a significant amount of time. As a result we use 4342 * the spa_vdev_config_[enter/exit] functions which allow us to 4343 * grab and release the spa_config_lock while still holding the namespace 4344 * lock. During each step the configuration is synced out. 4345 */ 4346 4347 /* 4348 * Evacuate the device. 4349 */ 4350 int 4351 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4352 { 4353 int error = 0; 4354 uint64_t txg; 4355 4356 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4358 ASSERT(vd == vd->vdev_top); 4359 4360 /* 4361 * Evacuate the device. We don't hold the config lock as writer 4362 * since we need to do I/O but we do keep the 4363 * spa_namespace_lock held. Once this completes the device 4364 * should no longer have any blocks allocated on it. 4365 */ 4366 if (vd->vdev_islog) { 4367 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 4368 NULL, DS_FIND_CHILDREN); 4369 } else { 4370 error = ENOTSUP; /* until we have bp rewrite */ 4371 } 4372 4373 txg_wait_synced(spa_get_dsl(spa), 0); 4374 4375 if (error) 4376 return (error); 4377 4378 /* 4379 * The evacuation succeeded. Remove any remaining MOS metadata 4380 * associated with this vdev, and wait for these changes to sync. 4381 */ 4382 txg = spa_vdev_config_enter(spa); 4383 vd->vdev_removing = B_TRUE; 4384 vdev_dirty(vd, 0, NULL, txg); 4385 vdev_config_dirty(vd); 4386 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4387 4388 return (0); 4389 } 4390 4391 /* 4392 * Complete the removal by cleaning up the namespace. 4393 */ 4394 void 4395 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4396 { 4397 vdev_t *rvd = spa->spa_root_vdev; 4398 uint64_t id = vd->vdev_id; 4399 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4400 4401 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4402 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4403 ASSERT(vd == vd->vdev_top); 4404 4405 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4406 4407 if (list_link_active(&vd->vdev_state_dirty_node)) 4408 vdev_state_clean(vd); 4409 if (list_link_active(&vd->vdev_config_dirty_node)) 4410 vdev_config_clean(vd); 4411 4412 vdev_free(vd); 4413 4414 if (last_vdev) { 4415 vdev_compact_children(rvd); 4416 } else { 4417 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4418 vdev_add_child(rvd, vd); 4419 } 4420 vdev_config_dirty(rvd); 4421 4422 /* 4423 * Reassess the health of our root vdev. 4424 */ 4425 vdev_reopen(rvd); 4426 } 4427 4428 /* 4429 * Remove a device from the pool. Currently, this supports removing only hot 4430 * spares, slogs, and level 2 ARC devices. 4431 */ 4432 int 4433 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4434 { 4435 vdev_t *vd; 4436 metaslab_group_t *mg; 4437 nvlist_t **spares, **l2cache, *nv; 4438 uint64_t txg = 0; 4439 uint_t nspares, nl2cache; 4440 int error = 0; 4441 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4442 4443 if (!locked) 4444 txg = spa_vdev_enter(spa); 4445 4446 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4447 4448 if (spa->spa_spares.sav_vdevs != NULL && 4449 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4450 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4451 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4452 /* 4453 * Only remove the hot spare if it's not currently in use 4454 * in this pool. 4455 */ 4456 if (vd == NULL || unspare) { 4457 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4458 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4459 spa_load_spares(spa); 4460 spa->spa_spares.sav_sync = B_TRUE; 4461 } else { 4462 error = EBUSY; 4463 } 4464 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4465 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4466 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4467 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4468 /* 4469 * Cache devices can always be removed. 4470 */ 4471 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4472 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4473 spa_load_l2cache(spa); 4474 spa->spa_l2cache.sav_sync = B_TRUE; 4475 } else if (vd != NULL && vd->vdev_islog) { 4476 ASSERT(!locked); 4477 ASSERT(vd == vd->vdev_top); 4478 4479 /* 4480 * XXX - Once we have bp-rewrite this should 4481 * become the common case. 4482 */ 4483 4484 mg = vd->vdev_mg; 4485 4486 /* 4487 * Stop allocating from this vdev. 4488 */ 4489 metaslab_group_passivate(mg); 4490 4491 /* 4492 * Wait for the youngest allocations and frees to sync, 4493 * and then wait for the deferral of those frees to finish. 4494 */ 4495 spa_vdev_config_exit(spa, NULL, 4496 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4497 4498 /* 4499 * Attempt to evacuate the vdev. 4500 */ 4501 error = spa_vdev_remove_evacuate(spa, vd); 4502 4503 txg = spa_vdev_config_enter(spa); 4504 4505 /* 4506 * If we couldn't evacuate the vdev, unwind. 4507 */ 4508 if (error) { 4509 metaslab_group_activate(mg); 4510 return (spa_vdev_exit(spa, NULL, txg, error)); 4511 } 4512 4513 /* 4514 * Clean up the vdev namespace. 4515 */ 4516 spa_vdev_remove_from_namespace(spa, vd); 4517 4518 } else if (vd != NULL) { 4519 /* 4520 * Normal vdevs cannot be removed (yet). 4521 */ 4522 error = ENOTSUP; 4523 } else { 4524 /* 4525 * There is no vdev of any kind with the specified guid. 4526 */ 4527 error = ENOENT; 4528 } 4529 4530 if (!locked) 4531 return (spa_vdev_exit(spa, NULL, txg, error)); 4532 4533 return (error); 4534 } 4535 4536 /* 4537 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4538 * current spared, so we can detach it. 4539 */ 4540 static vdev_t * 4541 spa_vdev_resilver_done_hunt(vdev_t *vd) 4542 { 4543 vdev_t *newvd, *oldvd; 4544 4545 for (int c = 0; c < vd->vdev_children; c++) { 4546 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4547 if (oldvd != NULL) 4548 return (oldvd); 4549 } 4550 4551 /* 4552 * Check for a completed replacement. 4553 */ 4554 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4555 oldvd = vd->vdev_child[0]; 4556 newvd = vd->vdev_child[1]; 4557 4558 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4559 !vdev_dtl_required(oldvd)) 4560 return (oldvd); 4561 } 4562 4563 /* 4564 * Check for a completed resilver with the 'unspare' flag set. 4565 */ 4566 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4567 newvd = vd->vdev_child[0]; 4568 oldvd = vd->vdev_child[1]; 4569 4570 if (newvd->vdev_unspare && 4571 vdev_dtl_empty(newvd, DTL_MISSING) && 4572 !vdev_dtl_required(oldvd)) { 4573 newvd->vdev_unspare = 0; 4574 return (oldvd); 4575 } 4576 } 4577 4578 return (NULL); 4579 } 4580 4581 static void 4582 spa_vdev_resilver_done(spa_t *spa) 4583 { 4584 vdev_t *vd, *pvd, *ppvd; 4585 uint64_t guid, sguid, pguid, ppguid; 4586 4587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4588 4589 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4590 pvd = vd->vdev_parent; 4591 ppvd = pvd->vdev_parent; 4592 guid = vd->vdev_guid; 4593 pguid = pvd->vdev_guid; 4594 ppguid = ppvd->vdev_guid; 4595 sguid = 0; 4596 /* 4597 * If we have just finished replacing a hot spared device, then 4598 * we need to detach the parent's first child (the original hot 4599 * spare) as well. 4600 */ 4601 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4602 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4603 ASSERT(ppvd->vdev_children == 2); 4604 sguid = ppvd->vdev_child[1]->vdev_guid; 4605 } 4606 spa_config_exit(spa, SCL_ALL, FTAG); 4607 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4608 return; 4609 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4610 return; 4611 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4612 } 4613 4614 spa_config_exit(spa, SCL_ALL, FTAG); 4615 } 4616 4617 /* 4618 * Update the stored path or FRU for this vdev. 4619 */ 4620 int 4621 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4622 boolean_t ispath) 4623 { 4624 vdev_t *vd; 4625 4626 spa_vdev_state_enter(spa, SCL_ALL); 4627 4628 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4629 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4630 4631 if (!vd->vdev_ops->vdev_op_leaf) 4632 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4633 4634 if (ispath) { 4635 spa_strfree(vd->vdev_path); 4636 vd->vdev_path = spa_strdup(value); 4637 } else { 4638 if (vd->vdev_fru != NULL) 4639 spa_strfree(vd->vdev_fru); 4640 vd->vdev_fru = spa_strdup(value); 4641 } 4642 4643 return (spa_vdev_state_exit(spa, vd, 0)); 4644 } 4645 4646 int 4647 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4648 { 4649 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4650 } 4651 4652 int 4653 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4654 { 4655 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4656 } 4657 4658 /* 4659 * ========================================================================== 4660 * SPA Scrubbing 4661 * ========================================================================== 4662 */ 4663 4664 int 4665 spa_scrub(spa_t *spa, pool_scrub_type_t type) 4666 { 4667 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4668 4669 if ((uint_t)type >= POOL_SCRUB_TYPES) 4670 return (ENOTSUP); 4671 4672 /* 4673 * If a resilver was requested, but there is no DTL on a 4674 * writeable leaf device, we have nothing to do. 4675 */ 4676 if (type == POOL_SCRUB_RESILVER && 4677 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4678 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4679 return (0); 4680 } 4681 4682 if (type == POOL_SCRUB_EVERYTHING && 4683 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 4684 spa->spa_dsl_pool->dp_scrub_isresilver) 4685 return (EBUSY); 4686 4687 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 4688 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 4689 } else if (type == POOL_SCRUB_NONE) { 4690 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 4691 } else { 4692 return (EINVAL); 4693 } 4694 } 4695 4696 /* 4697 * ========================================================================== 4698 * SPA async task processing 4699 * ========================================================================== 4700 */ 4701 4702 static void 4703 spa_async_remove(spa_t *spa, vdev_t *vd) 4704 { 4705 if (vd->vdev_remove_wanted) { 4706 vd->vdev_remove_wanted = 0; 4707 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4708 4709 /* 4710 * We want to clear the stats, but we don't want to do a full 4711 * vdev_clear() as that will cause us to throw away 4712 * degraded/faulted state as well as attempt to reopen the 4713 * device, all of which is a waste. 4714 */ 4715 vd->vdev_stat.vs_read_errors = 0; 4716 vd->vdev_stat.vs_write_errors = 0; 4717 vd->vdev_stat.vs_checksum_errors = 0; 4718 4719 vdev_state_dirty(vd->vdev_top); 4720 } 4721 4722 for (int c = 0; c < vd->vdev_children; c++) 4723 spa_async_remove(spa, vd->vdev_child[c]); 4724 } 4725 4726 static void 4727 spa_async_probe(spa_t *spa, vdev_t *vd) 4728 { 4729 if (vd->vdev_probe_wanted) { 4730 vd->vdev_probe_wanted = 0; 4731 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4732 } 4733 4734 for (int c = 0; c < vd->vdev_children; c++) 4735 spa_async_probe(spa, vd->vdev_child[c]); 4736 } 4737 4738 static void 4739 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4740 { 4741 sysevent_id_t eid; 4742 nvlist_t *attr; 4743 char *physpath; 4744 4745 if (!spa->spa_autoexpand) 4746 return; 4747 4748 for (int c = 0; c < vd->vdev_children; c++) { 4749 vdev_t *cvd = vd->vdev_child[c]; 4750 spa_async_autoexpand(spa, cvd); 4751 } 4752 4753 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4754 return; 4755 4756 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4757 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4758 4759 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4760 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4761 4762 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4763 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4764 4765 nvlist_free(attr); 4766 kmem_free(physpath, MAXPATHLEN); 4767 } 4768 4769 static void 4770 spa_async_thread(spa_t *spa) 4771 { 4772 int tasks; 4773 4774 ASSERT(spa->spa_sync_on); 4775 4776 mutex_enter(&spa->spa_async_lock); 4777 tasks = spa->spa_async_tasks; 4778 spa->spa_async_tasks = 0; 4779 mutex_exit(&spa->spa_async_lock); 4780 4781 /* 4782 * See if the config needs to be updated. 4783 */ 4784 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4785 uint64_t old_space, new_space; 4786 4787 mutex_enter(&spa_namespace_lock); 4788 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4789 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4790 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4791 mutex_exit(&spa_namespace_lock); 4792 4793 /* 4794 * If the pool grew as a result of the config update, 4795 * then log an internal history event. 4796 */ 4797 if (new_space != old_space) { 4798 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 4799 spa, NULL, CRED(), 4800 "pool '%s' size: %llu(+%llu)", 4801 spa_name(spa), new_space, new_space - old_space); 4802 } 4803 } 4804 4805 /* 4806 * See if any devices need to be marked REMOVED. 4807 */ 4808 if (tasks & SPA_ASYNC_REMOVE) { 4809 spa_vdev_state_enter(spa, SCL_NONE); 4810 spa_async_remove(spa, spa->spa_root_vdev); 4811 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4812 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4813 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4814 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4815 (void) spa_vdev_state_exit(spa, NULL, 0); 4816 } 4817 4818 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4819 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4820 spa_async_autoexpand(spa, spa->spa_root_vdev); 4821 spa_config_exit(spa, SCL_CONFIG, FTAG); 4822 } 4823 4824 /* 4825 * See if any devices need to be probed. 4826 */ 4827 if (tasks & SPA_ASYNC_PROBE) { 4828 spa_vdev_state_enter(spa, SCL_NONE); 4829 spa_async_probe(spa, spa->spa_root_vdev); 4830 (void) spa_vdev_state_exit(spa, NULL, 0); 4831 } 4832 4833 /* 4834 * If any devices are done replacing, detach them. 4835 */ 4836 if (tasks & SPA_ASYNC_RESILVER_DONE) 4837 spa_vdev_resilver_done(spa); 4838 4839 /* 4840 * Kick off a resilver. 4841 */ 4842 if (tasks & SPA_ASYNC_RESILVER) 4843 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 4844 4845 /* 4846 * Let the world know that we're done. 4847 */ 4848 mutex_enter(&spa->spa_async_lock); 4849 spa->spa_async_thread = NULL; 4850 cv_broadcast(&spa->spa_async_cv); 4851 mutex_exit(&spa->spa_async_lock); 4852 thread_exit(); 4853 } 4854 4855 void 4856 spa_async_suspend(spa_t *spa) 4857 { 4858 mutex_enter(&spa->spa_async_lock); 4859 spa->spa_async_suspended++; 4860 while (spa->spa_async_thread != NULL) 4861 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4862 mutex_exit(&spa->spa_async_lock); 4863 } 4864 4865 void 4866 spa_async_resume(spa_t *spa) 4867 { 4868 mutex_enter(&spa->spa_async_lock); 4869 ASSERT(spa->spa_async_suspended != 0); 4870 spa->spa_async_suspended--; 4871 mutex_exit(&spa->spa_async_lock); 4872 } 4873 4874 static void 4875 spa_async_dispatch(spa_t *spa) 4876 { 4877 mutex_enter(&spa->spa_async_lock); 4878 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4879 spa->spa_async_thread == NULL && 4880 rootdir != NULL && !vn_is_readonly(rootdir)) 4881 spa->spa_async_thread = thread_create(NULL, 0, 4882 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4883 mutex_exit(&spa->spa_async_lock); 4884 } 4885 4886 void 4887 spa_async_request(spa_t *spa, int task) 4888 { 4889 mutex_enter(&spa->spa_async_lock); 4890 spa->spa_async_tasks |= task; 4891 mutex_exit(&spa->spa_async_lock); 4892 } 4893 4894 /* 4895 * ========================================================================== 4896 * SPA syncing routines 4897 * ========================================================================== 4898 */ 4899 static void 4900 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4901 { 4902 blkptr_t blk; 4903 uint64_t itor = 0; 4904 uint8_t c = 1; 4905 4906 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4907 ASSERT(blk.blk_birth < txg); 4908 zio_free(spa, txg, &blk); 4909 } 4910 4911 bplist_vacate(bpl, tx); 4912 4913 /* 4914 * Pre-dirty the first block so we sync to convergence faster. 4915 * (Usually only the first block is needed.) 4916 */ 4917 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4918 } 4919 4920 static void 4921 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4922 { 4923 zio_t *zio = arg; 4924 4925 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4926 zio->io_flags)); 4927 } 4928 4929 static void 4930 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4931 { 4932 char *packed = NULL; 4933 size_t bufsize; 4934 size_t nvsize = 0; 4935 dmu_buf_t *db; 4936 4937 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4938 4939 /* 4940 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4941 * information. This avoids the dbuf_will_dirty() path and 4942 * saves us a pre-read to get data we don't actually care about. 4943 */ 4944 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4945 packed = kmem_alloc(bufsize, KM_SLEEP); 4946 4947 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4948 KM_SLEEP) == 0); 4949 bzero(packed + nvsize, bufsize - nvsize); 4950 4951 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4952 4953 kmem_free(packed, bufsize); 4954 4955 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 4956 dmu_buf_will_dirty(db, tx); 4957 *(uint64_t *)db->db_data = nvsize; 4958 dmu_buf_rele(db, FTAG); 4959 } 4960 4961 static void 4962 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 4963 const char *config, const char *entry) 4964 { 4965 nvlist_t *nvroot; 4966 nvlist_t **list; 4967 int i; 4968 4969 if (!sav->sav_sync) 4970 return; 4971 4972 /* 4973 * Update the MOS nvlist describing the list of available devices. 4974 * spa_validate_aux() will have already made sure this nvlist is 4975 * valid and the vdevs are labeled appropriately. 4976 */ 4977 if (sav->sav_object == 0) { 4978 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 4979 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 4980 sizeof (uint64_t), tx); 4981 VERIFY(zap_update(spa->spa_meta_objset, 4982 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 4983 &sav->sav_object, tx) == 0); 4984 } 4985 4986 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4987 if (sav->sav_count == 0) { 4988 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 4989 } else { 4990 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 4991 for (i = 0; i < sav->sav_count; i++) 4992 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 4993 B_FALSE, B_FALSE, B_TRUE); 4994 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 4995 sav->sav_count) == 0); 4996 for (i = 0; i < sav->sav_count; i++) 4997 nvlist_free(list[i]); 4998 kmem_free(list, sav->sav_count * sizeof (void *)); 4999 } 5000 5001 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5002 nvlist_free(nvroot); 5003 5004 sav->sav_sync = B_FALSE; 5005 } 5006 5007 static void 5008 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5009 { 5010 nvlist_t *config; 5011 5012 if (list_is_empty(&spa->spa_config_dirty_list)) 5013 return; 5014 5015 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5016 5017 config = spa_config_generate(spa, spa->spa_root_vdev, 5018 dmu_tx_get_txg(tx), B_FALSE); 5019 5020 spa_config_exit(spa, SCL_STATE, FTAG); 5021 5022 if (spa->spa_config_syncing) 5023 nvlist_free(spa->spa_config_syncing); 5024 spa->spa_config_syncing = config; 5025 5026 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5027 } 5028 5029 /* 5030 * Set zpool properties. 5031 */ 5032 static void 5033 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 5034 { 5035 spa_t *spa = arg1; 5036 objset_t *mos = spa->spa_meta_objset; 5037 nvlist_t *nvp = arg2; 5038 nvpair_t *elem; 5039 uint64_t intval; 5040 char *strval; 5041 zpool_prop_t prop; 5042 const char *propname; 5043 zprop_type_t proptype; 5044 5045 mutex_enter(&spa->spa_props_lock); 5046 5047 elem = NULL; 5048 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5049 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5050 case ZPOOL_PROP_VERSION: 5051 /* 5052 * Only set version for non-zpool-creation cases 5053 * (set/import). spa_create() needs special care 5054 * for version setting. 5055 */ 5056 if (tx->tx_txg != TXG_INITIAL) { 5057 VERIFY(nvpair_value_uint64(elem, 5058 &intval) == 0); 5059 ASSERT(intval <= SPA_VERSION); 5060 ASSERT(intval >= spa_version(spa)); 5061 spa->spa_uberblock.ub_version = intval; 5062 vdev_config_dirty(spa->spa_root_vdev); 5063 } 5064 break; 5065 5066 case ZPOOL_PROP_ALTROOT: 5067 /* 5068 * 'altroot' is a non-persistent property. It should 5069 * have been set temporarily at creation or import time. 5070 */ 5071 ASSERT(spa->spa_root != NULL); 5072 break; 5073 5074 case ZPOOL_PROP_CACHEFILE: 5075 /* 5076 * 'cachefile' is also a non-persisitent property. 5077 */ 5078 break; 5079 default: 5080 /* 5081 * Set pool property values in the poolprops mos object. 5082 */ 5083 if (spa->spa_pool_props_object == 0) { 5084 VERIFY((spa->spa_pool_props_object = 5085 zap_create(mos, DMU_OT_POOL_PROPS, 5086 DMU_OT_NONE, 0, tx)) > 0); 5087 5088 VERIFY(zap_update(mos, 5089 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5090 8, 1, &spa->spa_pool_props_object, tx) 5091 == 0); 5092 } 5093 5094 /* normalize the property name */ 5095 propname = zpool_prop_to_name(prop); 5096 proptype = zpool_prop_get_type(prop); 5097 5098 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5099 ASSERT(proptype == PROP_TYPE_STRING); 5100 VERIFY(nvpair_value_string(elem, &strval) == 0); 5101 VERIFY(zap_update(mos, 5102 spa->spa_pool_props_object, propname, 5103 1, strlen(strval) + 1, strval, tx) == 0); 5104 5105 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5106 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5107 5108 if (proptype == PROP_TYPE_INDEX) { 5109 const char *unused; 5110 VERIFY(zpool_prop_index_to_string( 5111 prop, intval, &unused) == 0); 5112 } 5113 VERIFY(zap_update(mos, 5114 spa->spa_pool_props_object, propname, 5115 8, 1, &intval, tx) == 0); 5116 } else { 5117 ASSERT(0); /* not allowed */ 5118 } 5119 5120 switch (prop) { 5121 case ZPOOL_PROP_DELEGATION: 5122 spa->spa_delegation = intval; 5123 break; 5124 case ZPOOL_PROP_BOOTFS: 5125 spa->spa_bootfs = intval; 5126 break; 5127 case ZPOOL_PROP_FAILUREMODE: 5128 spa->spa_failmode = intval; 5129 break; 5130 case ZPOOL_PROP_AUTOEXPAND: 5131 spa->spa_autoexpand = intval; 5132 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5133 break; 5134 case ZPOOL_PROP_DEDUPDITTO: 5135 spa->spa_dedup_ditto = intval; 5136 break; 5137 default: 5138 break; 5139 } 5140 } 5141 5142 /* log internal history if this is not a zpool create */ 5143 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5144 tx->tx_txg != TXG_INITIAL) { 5145 spa_history_internal_log(LOG_POOL_PROPSET, 5146 spa, tx, cr, "%s %lld %s", 5147 nvpair_name(elem), intval, spa_name(spa)); 5148 } 5149 } 5150 5151 mutex_exit(&spa->spa_props_lock); 5152 } 5153 5154 /* 5155 * Sync the specified transaction group. New blocks may be dirtied as 5156 * part of the process, so we iterate until it converges. 5157 */ 5158 void 5159 spa_sync(spa_t *spa, uint64_t txg) 5160 { 5161 dsl_pool_t *dp = spa->spa_dsl_pool; 5162 objset_t *mos = spa->spa_meta_objset; 5163 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 5164 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5165 vdev_t *rvd = spa->spa_root_vdev; 5166 vdev_t *vd; 5167 dmu_tx_t *tx; 5168 int error; 5169 5170 /* 5171 * Lock out configuration changes. 5172 */ 5173 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5174 5175 spa->spa_syncing_txg = txg; 5176 spa->spa_sync_pass = 0; 5177 5178 /* 5179 * If there are any pending vdev state changes, convert them 5180 * into config changes that go out with this transaction group. 5181 */ 5182 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5183 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5184 /* 5185 * We need the write lock here because, for aux vdevs, 5186 * calling vdev_config_dirty() modifies sav_config. 5187 * This is ugly and will become unnecessary when we 5188 * eliminate the aux vdev wart by integrating all vdevs 5189 * into the root vdev tree. 5190 */ 5191 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5192 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5193 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5194 vdev_state_clean(vd); 5195 vdev_config_dirty(vd); 5196 } 5197 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5198 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5199 } 5200 spa_config_exit(spa, SCL_STATE, FTAG); 5201 5202 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 5203 5204 tx = dmu_tx_create_assigned(dp, txg); 5205 5206 /* 5207 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5208 * set spa_deflate if we have no raid-z vdevs. 5209 */ 5210 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5211 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5212 int i; 5213 5214 for (i = 0; i < rvd->vdev_children; i++) { 5215 vd = rvd->vdev_child[i]; 5216 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5217 break; 5218 } 5219 if (i == rvd->vdev_children) { 5220 spa->spa_deflate = TRUE; 5221 VERIFY(0 == zap_add(spa->spa_meta_objset, 5222 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5223 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5224 } 5225 } 5226 5227 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5228 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5229 dsl_pool_create_origin(dp, tx); 5230 5231 /* Keeping the origin open increases spa_minref */ 5232 spa->spa_minref += 3; 5233 } 5234 5235 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5236 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5237 dsl_pool_upgrade_clones(dp, tx); 5238 } 5239 5240 /* 5241 * If anything has changed in this txg, push the deferred frees 5242 * from the previous txg. If not, leave them alone so that we 5243 * don't generate work on an otherwise idle system. 5244 */ 5245 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5246 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5247 !txg_list_empty(&dp->dp_sync_tasks, txg)) 5248 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 5249 5250 /* 5251 * Iterate to convergence. 5252 */ 5253 do { 5254 int pass = ++spa->spa_sync_pass; 5255 5256 spa_sync_config_object(spa, tx); 5257 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5258 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5259 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5260 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5261 spa_errlog_sync(spa, txg); 5262 dsl_pool_sync(dp, txg); 5263 5264 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5265 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5266 bplist_sync(free_bpl, spa_sync_free, zio, tx); 5267 VERIFY(zio_wait(zio) == 0); 5268 } else { 5269 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 5270 } 5271 5272 ddt_sync(spa, txg); 5273 5274 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5275 vdev_sync(vd, txg); 5276 5277 } while (dmu_objset_is_dirty(mos, txg)); 5278 5279 ASSERT(free_bpl->bpl_queue == NULL); 5280 5281 bplist_close(defer_bpl); 5282 5283 /* 5284 * Rewrite the vdev configuration (which includes the uberblock) 5285 * to commit the transaction group. 5286 * 5287 * If there are no dirty vdevs, we sync the uberblock to a few 5288 * random top-level vdevs that are known to be visible in the 5289 * config cache (see spa_vdev_add() for a complete description). 5290 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5291 */ 5292 for (;;) { 5293 /* 5294 * We hold SCL_STATE to prevent vdev open/close/etc. 5295 * while we're attempting to write the vdev labels. 5296 */ 5297 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5298 5299 if (list_is_empty(&spa->spa_config_dirty_list)) { 5300 vdev_t *svd[SPA_DVAS_PER_BP]; 5301 int svdcount = 0; 5302 int children = rvd->vdev_children; 5303 int c0 = spa_get_random(children); 5304 5305 for (int c = 0; c < children; c++) { 5306 vd = rvd->vdev_child[(c0 + c) % children]; 5307 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5308 continue; 5309 svd[svdcount++] = vd; 5310 if (svdcount == SPA_DVAS_PER_BP) 5311 break; 5312 } 5313 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5314 if (error != 0) 5315 error = vdev_config_sync(svd, svdcount, txg, 5316 B_TRUE); 5317 } else { 5318 error = vdev_config_sync(rvd->vdev_child, 5319 rvd->vdev_children, txg, B_FALSE); 5320 if (error != 0) 5321 error = vdev_config_sync(rvd->vdev_child, 5322 rvd->vdev_children, txg, B_TRUE); 5323 } 5324 5325 spa_config_exit(spa, SCL_STATE, FTAG); 5326 5327 if (error == 0) 5328 break; 5329 zio_suspend(spa, NULL); 5330 zio_resume_wait(spa); 5331 } 5332 dmu_tx_commit(tx); 5333 5334 /* 5335 * Clear the dirty config list. 5336 */ 5337 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5338 vdev_config_clean(vd); 5339 5340 /* 5341 * Now that the new config has synced transactionally, 5342 * let it become visible to the config cache. 5343 */ 5344 if (spa->spa_config_syncing != NULL) { 5345 spa_config_set(spa, spa->spa_config_syncing); 5346 spa->spa_config_txg = txg; 5347 spa->spa_config_syncing = NULL; 5348 } 5349 5350 spa->spa_ubsync = spa->spa_uberblock; 5351 5352 dsl_pool_sync_done(dp, txg); 5353 5354 /* 5355 * Update usable space statistics. 5356 */ 5357 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5358 vdev_sync_done(vd, txg); 5359 5360 spa_update_dspace(spa); 5361 5362 /* 5363 * It had better be the case that we didn't dirty anything 5364 * since vdev_config_sync(). 5365 */ 5366 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5367 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5368 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5369 ASSERT(defer_bpl->bpl_queue == NULL); 5370 ASSERT(free_bpl->bpl_queue == NULL); 5371 5372 spa->spa_sync_pass = 0; 5373 5374 spa_config_exit(spa, SCL_CONFIG, FTAG); 5375 5376 spa_handle_ignored_writes(spa); 5377 5378 /* 5379 * If any async tasks have been requested, kick them off. 5380 */ 5381 spa_async_dispatch(spa); 5382 } 5383 5384 /* 5385 * Sync all pools. We don't want to hold the namespace lock across these 5386 * operations, so we take a reference on the spa_t and drop the lock during the 5387 * sync. 5388 */ 5389 void 5390 spa_sync_allpools(void) 5391 { 5392 spa_t *spa = NULL; 5393 mutex_enter(&spa_namespace_lock); 5394 while ((spa = spa_next(spa)) != NULL) { 5395 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5396 continue; 5397 spa_open_ref(spa, FTAG); 5398 mutex_exit(&spa_namespace_lock); 5399 txg_wait_synced(spa_get_dsl(spa), 0); 5400 mutex_enter(&spa_namespace_lock); 5401 spa_close(spa, FTAG); 5402 } 5403 mutex_exit(&spa_namespace_lock); 5404 } 5405 5406 /* 5407 * ========================================================================== 5408 * Miscellaneous routines 5409 * ========================================================================== 5410 */ 5411 5412 /* 5413 * Remove all pools in the system. 5414 */ 5415 void 5416 spa_evict_all(void) 5417 { 5418 spa_t *spa; 5419 5420 /* 5421 * Remove all cached state. All pools should be closed now, 5422 * so every spa in the AVL tree should be unreferenced. 5423 */ 5424 mutex_enter(&spa_namespace_lock); 5425 while ((spa = spa_next(NULL)) != NULL) { 5426 /* 5427 * Stop async tasks. The async thread may need to detach 5428 * a device that's been replaced, which requires grabbing 5429 * spa_namespace_lock, so we must drop it here. 5430 */ 5431 spa_open_ref(spa, FTAG); 5432 mutex_exit(&spa_namespace_lock); 5433 spa_async_suspend(spa); 5434 mutex_enter(&spa_namespace_lock); 5435 spa_close(spa, FTAG); 5436 5437 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5438 spa_unload(spa); 5439 spa_deactivate(spa); 5440 } 5441 spa_remove(spa); 5442 } 5443 mutex_exit(&spa_namespace_lock); 5444 } 5445 5446 vdev_t * 5447 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5448 { 5449 vdev_t *vd; 5450 int i; 5451 5452 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5453 return (vd); 5454 5455 if (aux) { 5456 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5457 vd = spa->spa_l2cache.sav_vdevs[i]; 5458 if (vd->vdev_guid == guid) 5459 return (vd); 5460 } 5461 5462 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5463 vd = spa->spa_spares.sav_vdevs[i]; 5464 if (vd->vdev_guid == guid) 5465 return (vd); 5466 } 5467 } 5468 5469 return (NULL); 5470 } 5471 5472 void 5473 spa_upgrade(spa_t *spa, uint64_t version) 5474 { 5475 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5476 5477 /* 5478 * This should only be called for a non-faulted pool, and since a 5479 * future version would result in an unopenable pool, this shouldn't be 5480 * possible. 5481 */ 5482 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5483 ASSERT(version >= spa->spa_uberblock.ub_version); 5484 5485 spa->spa_uberblock.ub_version = version; 5486 vdev_config_dirty(spa->spa_root_vdev); 5487 5488 spa_config_exit(spa, SCL_ALL, FTAG); 5489 5490 txg_wait_synced(spa_get_dsl(spa), 0); 5491 } 5492 5493 boolean_t 5494 spa_has_spare(spa_t *spa, uint64_t guid) 5495 { 5496 int i; 5497 uint64_t spareguid; 5498 spa_aux_vdev_t *sav = &spa->spa_spares; 5499 5500 for (i = 0; i < sav->sav_count; i++) 5501 if (sav->sav_vdevs[i]->vdev_guid == guid) 5502 return (B_TRUE); 5503 5504 for (i = 0; i < sav->sav_npending; i++) { 5505 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5506 &spareguid) == 0 && spareguid == guid) 5507 return (B_TRUE); 5508 } 5509 5510 return (B_FALSE); 5511 } 5512 5513 /* 5514 * Check if a pool has an active shared spare device. 5515 * Note: reference count of an active spare is 2, as a spare and as a replace 5516 */ 5517 static boolean_t 5518 spa_has_active_shared_spare(spa_t *spa) 5519 { 5520 int i, refcnt; 5521 uint64_t pool; 5522 spa_aux_vdev_t *sav = &spa->spa_spares; 5523 5524 for (i = 0; i < sav->sav_count; i++) { 5525 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5526 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5527 refcnt > 2) 5528 return (B_TRUE); 5529 } 5530 5531 return (B_FALSE); 5532 } 5533 5534 /* 5535 * Post a sysevent corresponding to the given event. The 'name' must be one of 5536 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5537 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5538 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5539 * or zdb as real changes. 5540 */ 5541 void 5542 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5543 { 5544 #ifdef _KERNEL 5545 sysevent_t *ev; 5546 sysevent_attr_list_t *attr = NULL; 5547 sysevent_value_t value; 5548 sysevent_id_t eid; 5549 5550 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5551 SE_SLEEP); 5552 5553 value.value_type = SE_DATA_TYPE_STRING; 5554 value.value.sv_string = spa_name(spa); 5555 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5556 goto done; 5557 5558 value.value_type = SE_DATA_TYPE_UINT64; 5559 value.value.sv_uint64 = spa_guid(spa); 5560 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5561 goto done; 5562 5563 if (vd) { 5564 value.value_type = SE_DATA_TYPE_UINT64; 5565 value.value.sv_uint64 = vd->vdev_guid; 5566 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5567 SE_SLEEP) != 0) 5568 goto done; 5569 5570 if (vd->vdev_path) { 5571 value.value_type = SE_DATA_TYPE_STRING; 5572 value.value.sv_string = vd->vdev_path; 5573 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5574 &value, SE_SLEEP) != 0) 5575 goto done; 5576 } 5577 } 5578 5579 if (sysevent_attach_attributes(ev, attr) != 0) 5580 goto done; 5581 attr = NULL; 5582 5583 (void) log_sysevent(ev, SE_SLEEP, &eid); 5584 5585 done: 5586 if (attr) 5587 sysevent_free_attr(attr); 5588 sysevent_free(ev); 5589 #endif 5590 } 5591