1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 */ 31 32 /* 33 * SPA: Storage Pool Allocator 34 * 35 * This file contains all the routines used when modifying on-disk SPA state. 36 * This includes opening, importing, destroying, exporting a pool, and syncing a 37 * pool. 38 */ 39 40 #include <sys/zfs_context.h> 41 #include <sys/fm/fs/zfs.h> 42 #include <sys/spa_impl.h> 43 #include <sys/zio.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/dmu.h> 46 #include <sys/dmu_tx.h> 47 #include <sys/zap.h> 48 #include <sys/zil.h> 49 #include <sys/ddt.h> 50 #include <sys/vdev_impl.h> 51 #include <sys/metaslab.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/uberblock_impl.h> 54 #include <sys/txg.h> 55 #include <sys/avl.h> 56 #include <sys/dmu_traverse.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/unique.h> 59 #include <sys/dsl_pool.h> 60 #include <sys/dsl_dataset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_prop.h> 63 #include <sys/dsl_synctask.h> 64 #include <sys/fs/zfs.h> 65 #include <sys/arc.h> 66 #include <sys/callb.h> 67 #include <sys/systeminfo.h> 68 #include <sys/spa_boot.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/dsl_scan.h> 71 #include <sys/zfeature.h> 72 #include <sys/dsl_destroy.h> 73 74 #ifdef _KERNEL 75 #include <sys/bootprops.h> 76 #include <sys/callb.h> 77 #include <sys/cpupart.h> 78 #include <sys/pool.h> 79 #include <sys/sysdc.h> 80 #include <sys/zone.h> 81 #endif /* _KERNEL */ 82 83 #include "zfs_prop.h" 84 #include "zfs_comutil.h" 85 86 /* 87 * The interval, in seconds, at which failed configuration cache file writes 88 * should be retried. 89 */ 90 static int zfs_ccw_retry_interval = 300; 91 92 typedef enum zti_modes { 93 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 94 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 95 ZTI_MODE_NULL, /* don't create a taskq */ 96 ZTI_NMODES 97 } zti_modes_t; 98 99 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 100 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 101 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 102 103 #define ZTI_N(n) ZTI_P(n, 1) 104 #define ZTI_ONE ZTI_N(1) 105 106 typedef struct zio_taskq_info { 107 zti_modes_t zti_mode; 108 uint_t zti_value; 109 uint_t zti_count; 110 } zio_taskq_info_t; 111 112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 113 "issue", "issue_high", "intr", "intr_high" 114 }; 115 116 /* 117 * This table defines the taskq settings for each ZFS I/O type. When 118 * initializing a pool, we use this table to create an appropriately sized 119 * taskq. Some operations are low volume and therefore have a small, static 120 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 121 * macros. Other operations process a large amount of data; the ZTI_BATCH 122 * macro causes us to create a taskq oriented for throughput. Some operations 123 * are so high frequency and short-lived that the taskq itself can become a a 124 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 125 * additional degree of parallelism specified by the number of threads per- 126 * taskq and the number of taskqs; when dispatching an event in this case, the 127 * particular taskq is chosen at random. 128 * 129 * The different taskq priorities are to handle the different contexts (issue 130 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 131 * need to be handled with minimum delay. 132 */ 133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 134 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 136 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 137 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 138 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 141 }; 142 143 static void spa_sync_version(void *arg, dmu_tx_t *tx); 144 static void spa_sync_props(void *arg, dmu_tx_t *tx); 145 static boolean_t spa_has_active_shared_spare(spa_t *spa); 146 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 148 char **ereport); 149 static void spa_vdev_resilver_done(spa_t *spa); 150 151 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 152 id_t zio_taskq_psrset_bind = PS_NONE; 153 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 154 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 155 156 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 157 extern int zfs_sync_pass_deferred_free; 158 159 /* 160 * This (illegal) pool name is used when temporarily importing a spa_t in order 161 * to get the vdev stats associated with the imported devices. 162 */ 163 #define TRYIMPORT_NAME "$import" 164 165 /* 166 * ========================================================================== 167 * SPA properties routines 168 * ========================================================================== 169 */ 170 171 /* 172 * Add a (source=src, propname=propval) list to an nvlist. 173 */ 174 static void 175 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 176 uint64_t intval, zprop_source_t src) 177 { 178 const char *propname = zpool_prop_to_name(prop); 179 nvlist_t *propval; 180 181 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 182 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 183 184 if (strval != NULL) 185 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 186 else 187 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 188 189 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 190 nvlist_free(propval); 191 } 192 193 /* 194 * Get property values from the spa configuration. 195 */ 196 static void 197 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 198 { 199 vdev_t *rvd = spa->spa_root_vdev; 200 dsl_pool_t *pool = spa->spa_dsl_pool; 201 uint64_t size, alloc, cap, version; 202 zprop_source_t src = ZPROP_SRC_NONE; 203 spa_config_dirent_t *dp; 204 metaslab_class_t *mc = spa_normal_class(spa); 205 206 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 207 208 if (rvd != NULL) { 209 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 210 size = metaslab_class_get_space(spa_normal_class(spa)); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 215 size - alloc, src); 216 217 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 218 metaslab_class_fragmentation(mc), src); 219 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 220 metaslab_class_expandable_space(mc), src); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 222 (spa_mode(spa) == FREAD), src); 223 224 cap = (size == 0) ? 0 : (alloc * 100 / size); 225 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 226 227 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 228 ddt_get_pool_dedup_ratio(spa), src); 229 230 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 231 rvd->vdev_state, src); 232 233 version = spa_version(spa); 234 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 235 src = ZPROP_SRC_DEFAULT; 236 else 237 src = ZPROP_SRC_LOCAL; 238 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 239 } 240 241 if (pool != NULL) { 242 /* 243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 244 * when opening pools before this version freedir will be NULL. 245 */ 246 if (pool->dp_free_dir != NULL) { 247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 248 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 249 src); 250 } else { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 252 NULL, 0, src); 253 } 254 255 if (pool->dp_leak_dir != NULL) { 256 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 257 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 258 src); 259 } else { 260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 261 NULL, 0, src); 262 } 263 } 264 265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 266 267 if (spa->spa_comment != NULL) { 268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 269 0, ZPROP_SRC_LOCAL); 270 } 271 272 if (spa->spa_root != NULL) 273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 274 0, ZPROP_SRC_LOCAL); 275 276 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 278 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 279 } else { 280 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 281 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 282 } 283 284 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 285 if (dp->scd_path == NULL) { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 287 "none", 0, ZPROP_SRC_LOCAL); 288 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 289 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 290 dp->scd_path, 0, ZPROP_SRC_LOCAL); 291 } 292 } 293 } 294 295 /* 296 * Get zpool property values. 297 */ 298 int 299 spa_prop_get(spa_t *spa, nvlist_t **nvp) 300 { 301 objset_t *mos = spa->spa_meta_objset; 302 zap_cursor_t zc; 303 zap_attribute_t za; 304 int err; 305 306 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 307 308 mutex_enter(&spa->spa_props_lock); 309 310 /* 311 * Get properties from the spa config. 312 */ 313 spa_prop_get_config(spa, nvp); 314 315 /* If no pool property object, no more prop to get. */ 316 if (mos == NULL || spa->spa_pool_props_object == 0) { 317 mutex_exit(&spa->spa_props_lock); 318 return (0); 319 } 320 321 /* 322 * Get properties from the MOS pool property object. 323 */ 324 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 325 (err = zap_cursor_retrieve(&zc, &za)) == 0; 326 zap_cursor_advance(&zc)) { 327 uint64_t intval = 0; 328 char *strval = NULL; 329 zprop_source_t src = ZPROP_SRC_DEFAULT; 330 zpool_prop_t prop; 331 332 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 333 continue; 334 335 switch (za.za_integer_length) { 336 case 8: 337 /* integer property */ 338 if (za.za_first_integer != 339 zpool_prop_default_numeric(prop)) 340 src = ZPROP_SRC_LOCAL; 341 342 if (prop == ZPOOL_PROP_BOOTFS) { 343 dsl_pool_t *dp; 344 dsl_dataset_t *ds = NULL; 345 346 dp = spa_get_dsl(spa); 347 dsl_pool_config_enter(dp, FTAG); 348 if (err = dsl_dataset_hold_obj(dp, 349 za.za_first_integer, FTAG, &ds)) { 350 dsl_pool_config_exit(dp, FTAG); 351 break; 352 } 353 354 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 355 KM_SLEEP); 356 dsl_dataset_name(ds, strval); 357 dsl_dataset_rele(ds, FTAG); 358 dsl_pool_config_exit(dp, FTAG); 359 } else { 360 strval = NULL; 361 intval = za.za_first_integer; 362 } 363 364 spa_prop_add_list(*nvp, prop, strval, intval, src); 365 366 if (strval != NULL) 367 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 368 369 break; 370 371 case 1: 372 /* string property */ 373 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 374 err = zap_lookup(mos, spa->spa_pool_props_object, 375 za.za_name, 1, za.za_num_integers, strval); 376 if (err) { 377 kmem_free(strval, za.za_num_integers); 378 break; 379 } 380 spa_prop_add_list(*nvp, prop, strval, 0, src); 381 kmem_free(strval, za.za_num_integers); 382 break; 383 384 default: 385 break; 386 } 387 } 388 zap_cursor_fini(&zc); 389 mutex_exit(&spa->spa_props_lock); 390 out: 391 if (err && err != ENOENT) { 392 nvlist_free(*nvp); 393 *nvp = NULL; 394 return (err); 395 } 396 397 return (0); 398 } 399 400 /* 401 * Validate the given pool properties nvlist and modify the list 402 * for the property values to be set. 403 */ 404 static int 405 spa_prop_validate(spa_t *spa, nvlist_t *props) 406 { 407 nvpair_t *elem; 408 int error = 0, reset_bootfs = 0; 409 uint64_t objnum = 0; 410 boolean_t has_feature = B_FALSE; 411 412 elem = NULL; 413 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 414 uint64_t intval; 415 char *strval, *slash, *check, *fname; 416 const char *propname = nvpair_name(elem); 417 zpool_prop_t prop = zpool_name_to_prop(propname); 418 419 switch (prop) { 420 case ZPROP_INVAL: 421 if (!zpool_prop_feature(propname)) { 422 error = SET_ERROR(EINVAL); 423 break; 424 } 425 426 /* 427 * Sanitize the input. 428 */ 429 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 430 error = SET_ERROR(EINVAL); 431 break; 432 } 433 434 if (nvpair_value_uint64(elem, &intval) != 0) { 435 error = SET_ERROR(EINVAL); 436 break; 437 } 438 439 if (intval != 0) { 440 error = SET_ERROR(EINVAL); 441 break; 442 } 443 444 fname = strchr(propname, '@') + 1; 445 if (zfeature_lookup_name(fname, NULL) != 0) { 446 error = SET_ERROR(EINVAL); 447 break; 448 } 449 450 has_feature = B_TRUE; 451 break; 452 453 case ZPOOL_PROP_VERSION: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && 456 (intval < spa_version(spa) || 457 intval > SPA_VERSION_BEFORE_FEATURES || 458 has_feature)) 459 error = SET_ERROR(EINVAL); 460 break; 461 462 case ZPOOL_PROP_DELEGATION: 463 case ZPOOL_PROP_AUTOREPLACE: 464 case ZPOOL_PROP_LISTSNAPS: 465 case ZPOOL_PROP_AUTOEXPAND: 466 error = nvpair_value_uint64(elem, &intval); 467 if (!error && intval > 1) 468 error = SET_ERROR(EINVAL); 469 break; 470 471 case ZPOOL_PROP_BOOTFS: 472 /* 473 * If the pool version is less than SPA_VERSION_BOOTFS, 474 * or the pool is still being created (version == 0), 475 * the bootfs property cannot be set. 476 */ 477 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 478 error = SET_ERROR(ENOTSUP); 479 break; 480 } 481 482 /* 483 * Make sure the vdev config is bootable 484 */ 485 if (!vdev_is_bootable(spa->spa_root_vdev)) { 486 error = SET_ERROR(ENOTSUP); 487 break; 488 } 489 490 reset_bootfs = 1; 491 492 error = nvpair_value_string(elem, &strval); 493 494 if (!error) { 495 objset_t *os; 496 uint64_t propval; 497 498 if (strval == NULL || strval[0] == '\0') { 499 objnum = zpool_prop_default_numeric( 500 ZPOOL_PROP_BOOTFS); 501 break; 502 } 503 504 if (error = dmu_objset_hold(strval, FTAG, &os)) 505 break; 506 507 /* 508 * Must be ZPL, and its property settings 509 * must be supported by GRUB (compression 510 * is not gzip, and large blocks are not used). 511 */ 512 513 if (dmu_objset_type(os) != DMU_OST_ZFS) { 514 error = SET_ERROR(ENOTSUP); 515 } else if ((error = 516 dsl_prop_get_int_ds(dmu_objset_ds(os), 517 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 518 &propval)) == 0 && 519 !BOOTFS_COMPRESS_VALID(propval)) { 520 error = SET_ERROR(ENOTSUP); 521 } else { 522 objnum = dmu_objset_id(os); 523 } 524 dmu_objset_rele(os, FTAG); 525 } 526 break; 527 528 case ZPOOL_PROP_FAILUREMODE: 529 error = nvpair_value_uint64(elem, &intval); 530 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 531 intval > ZIO_FAILURE_MODE_PANIC)) 532 error = SET_ERROR(EINVAL); 533 534 /* 535 * This is a special case which only occurs when 536 * the pool has completely failed. This allows 537 * the user to change the in-core failmode property 538 * without syncing it out to disk (I/Os might 539 * currently be blocked). We do this by returning 540 * EIO to the caller (spa_prop_set) to trick it 541 * into thinking we encountered a property validation 542 * error. 543 */ 544 if (!error && spa_suspended(spa)) { 545 spa->spa_failmode = intval; 546 error = SET_ERROR(EIO); 547 } 548 break; 549 550 case ZPOOL_PROP_CACHEFILE: 551 if ((error = nvpair_value_string(elem, &strval)) != 0) 552 break; 553 554 if (strval[0] == '\0') 555 break; 556 557 if (strcmp(strval, "none") == 0) 558 break; 559 560 if (strval[0] != '/') { 561 error = SET_ERROR(EINVAL); 562 break; 563 } 564 565 slash = strrchr(strval, '/'); 566 ASSERT(slash != NULL); 567 568 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 569 strcmp(slash, "/..") == 0) 570 error = SET_ERROR(EINVAL); 571 break; 572 573 case ZPOOL_PROP_COMMENT: 574 if ((error = nvpair_value_string(elem, &strval)) != 0) 575 break; 576 for (check = strval; *check != '\0'; check++) { 577 /* 578 * The kernel doesn't have an easy isprint() 579 * check. For this kernel check, we merely 580 * check ASCII apart from DEL. Fix this if 581 * there is an easy-to-use kernel isprint(). 582 */ 583 if (*check >= 0x7f) { 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 } 588 if (strlen(strval) > ZPROP_MAX_COMMENT) 589 error = E2BIG; 590 break; 591 592 case ZPOOL_PROP_DEDUPDITTO: 593 if (spa_version(spa) < SPA_VERSION_DEDUP) 594 error = SET_ERROR(ENOTSUP); 595 else 596 error = nvpair_value_uint64(elem, &intval); 597 if (error == 0 && 598 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 599 error = SET_ERROR(EINVAL); 600 break; 601 } 602 603 if (error) 604 break; 605 } 606 607 if (!error && reset_bootfs) { 608 error = nvlist_remove(props, 609 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 610 611 if (!error) { 612 error = nvlist_add_uint64(props, 613 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 614 } 615 } 616 617 return (error); 618 } 619 620 void 621 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 622 { 623 char *cachefile; 624 spa_config_dirent_t *dp; 625 626 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 627 &cachefile) != 0) 628 return; 629 630 dp = kmem_alloc(sizeof (spa_config_dirent_t), 631 KM_SLEEP); 632 633 if (cachefile[0] == '\0') 634 dp->scd_path = spa_strdup(spa_config_path); 635 else if (strcmp(cachefile, "none") == 0) 636 dp->scd_path = NULL; 637 else 638 dp->scd_path = spa_strdup(cachefile); 639 640 list_insert_head(&spa->spa_config_list, dp); 641 if (need_sync) 642 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 643 } 644 645 int 646 spa_prop_set(spa_t *spa, nvlist_t *nvp) 647 { 648 int error; 649 nvpair_t *elem = NULL; 650 boolean_t need_sync = B_FALSE; 651 652 if ((error = spa_prop_validate(spa, nvp)) != 0) 653 return (error); 654 655 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 656 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 657 658 if (prop == ZPOOL_PROP_CACHEFILE || 659 prop == ZPOOL_PROP_ALTROOT || 660 prop == ZPOOL_PROP_READONLY) 661 continue; 662 663 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 664 uint64_t ver; 665 666 if (prop == ZPOOL_PROP_VERSION) { 667 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 668 } else { 669 ASSERT(zpool_prop_feature(nvpair_name(elem))); 670 ver = SPA_VERSION_FEATURES; 671 need_sync = B_TRUE; 672 } 673 674 /* Save time if the version is already set. */ 675 if (ver == spa_version(spa)) 676 continue; 677 678 /* 679 * In addition to the pool directory object, we might 680 * create the pool properties object, the features for 681 * read object, the features for write object, or the 682 * feature descriptions object. 683 */ 684 error = dsl_sync_task(spa->spa_name, NULL, 685 spa_sync_version, &ver, 686 6, ZFS_SPACE_CHECK_RESERVED); 687 if (error) 688 return (error); 689 continue; 690 } 691 692 need_sync = B_TRUE; 693 break; 694 } 695 696 if (need_sync) { 697 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 698 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 699 } 700 701 return (0); 702 } 703 704 /* 705 * If the bootfs property value is dsobj, clear it. 706 */ 707 void 708 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 709 { 710 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 711 VERIFY(zap_remove(spa->spa_meta_objset, 712 spa->spa_pool_props_object, 713 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 714 spa->spa_bootfs = 0; 715 } 716 } 717 718 /*ARGSUSED*/ 719 static int 720 spa_change_guid_check(void *arg, dmu_tx_t *tx) 721 { 722 uint64_t *newguid = arg; 723 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 724 vdev_t *rvd = spa->spa_root_vdev; 725 uint64_t vdev_state; 726 727 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 728 vdev_state = rvd->vdev_state; 729 spa_config_exit(spa, SCL_STATE, FTAG); 730 731 if (vdev_state != VDEV_STATE_HEALTHY) 732 return (SET_ERROR(ENXIO)); 733 734 ASSERT3U(spa_guid(spa), !=, *newguid); 735 736 return (0); 737 } 738 739 static void 740 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 741 { 742 uint64_t *newguid = arg; 743 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 744 uint64_t oldguid; 745 vdev_t *rvd = spa->spa_root_vdev; 746 747 oldguid = spa_guid(spa); 748 749 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 750 rvd->vdev_guid = *newguid; 751 rvd->vdev_guid_sum += (*newguid - oldguid); 752 vdev_config_dirty(rvd); 753 spa_config_exit(spa, SCL_STATE, FTAG); 754 755 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 756 oldguid, *newguid); 757 } 758 759 /* 760 * Change the GUID for the pool. This is done so that we can later 761 * re-import a pool built from a clone of our own vdevs. We will modify 762 * the root vdev's guid, our own pool guid, and then mark all of our 763 * vdevs dirty. Note that we must make sure that all our vdevs are 764 * online when we do this, or else any vdevs that weren't present 765 * would be orphaned from our pool. We are also going to issue a 766 * sysevent to update any watchers. 767 */ 768 int 769 spa_change_guid(spa_t *spa) 770 { 771 int error; 772 uint64_t guid; 773 774 mutex_enter(&spa->spa_vdev_top_lock); 775 mutex_enter(&spa_namespace_lock); 776 guid = spa_generate_guid(NULL); 777 778 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 779 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 780 781 if (error == 0) { 782 spa_config_sync(spa, B_FALSE, B_TRUE); 783 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 784 } 785 786 mutex_exit(&spa_namespace_lock); 787 mutex_exit(&spa->spa_vdev_top_lock); 788 789 return (error); 790 } 791 792 /* 793 * ========================================================================== 794 * SPA state manipulation (open/create/destroy/import/export) 795 * ========================================================================== 796 */ 797 798 static int 799 spa_error_entry_compare(const void *a, const void *b) 800 { 801 spa_error_entry_t *sa = (spa_error_entry_t *)a; 802 spa_error_entry_t *sb = (spa_error_entry_t *)b; 803 int ret; 804 805 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 806 sizeof (zbookmark_phys_t)); 807 808 if (ret < 0) 809 return (-1); 810 else if (ret > 0) 811 return (1); 812 else 813 return (0); 814 } 815 816 /* 817 * Utility function which retrieves copies of the current logs and 818 * re-initializes them in the process. 819 */ 820 void 821 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 822 { 823 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 824 825 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 826 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 827 828 avl_create(&spa->spa_errlist_scrub, 829 spa_error_entry_compare, sizeof (spa_error_entry_t), 830 offsetof(spa_error_entry_t, se_avl)); 831 avl_create(&spa->spa_errlist_last, 832 spa_error_entry_compare, sizeof (spa_error_entry_t), 833 offsetof(spa_error_entry_t, se_avl)); 834 } 835 836 static void 837 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 838 { 839 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 840 enum zti_modes mode = ztip->zti_mode; 841 uint_t value = ztip->zti_value; 842 uint_t count = ztip->zti_count; 843 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 844 char name[32]; 845 uint_t flags = 0; 846 boolean_t batch = B_FALSE; 847 848 if (mode == ZTI_MODE_NULL) { 849 tqs->stqs_count = 0; 850 tqs->stqs_taskq = NULL; 851 return; 852 } 853 854 ASSERT3U(count, >, 0); 855 856 tqs->stqs_count = count; 857 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 858 859 switch (mode) { 860 case ZTI_MODE_FIXED: 861 ASSERT3U(value, >=, 1); 862 value = MAX(value, 1); 863 break; 864 865 case ZTI_MODE_BATCH: 866 batch = B_TRUE; 867 flags |= TASKQ_THREADS_CPU_PCT; 868 value = zio_taskq_batch_pct; 869 break; 870 871 default: 872 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 873 "spa_activate()", 874 zio_type_name[t], zio_taskq_types[q], mode, value); 875 break; 876 } 877 878 for (uint_t i = 0; i < count; i++) { 879 taskq_t *tq; 880 881 if (count > 1) { 882 (void) snprintf(name, sizeof (name), "%s_%s_%u", 883 zio_type_name[t], zio_taskq_types[q], i); 884 } else { 885 (void) snprintf(name, sizeof (name), "%s_%s", 886 zio_type_name[t], zio_taskq_types[q]); 887 } 888 889 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 890 if (batch) 891 flags |= TASKQ_DC_BATCH; 892 893 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 894 spa->spa_proc, zio_taskq_basedc, flags); 895 } else { 896 pri_t pri = maxclsyspri; 897 /* 898 * The write issue taskq can be extremely CPU 899 * intensive. Run it at slightly lower priority 900 * than the other taskqs. 901 */ 902 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 903 pri--; 904 905 tq = taskq_create_proc(name, value, pri, 50, 906 INT_MAX, spa->spa_proc, flags); 907 } 908 909 tqs->stqs_taskq[i] = tq; 910 } 911 } 912 913 static void 914 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 915 { 916 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 917 918 if (tqs->stqs_taskq == NULL) { 919 ASSERT0(tqs->stqs_count); 920 return; 921 } 922 923 for (uint_t i = 0; i < tqs->stqs_count; i++) { 924 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 925 taskq_destroy(tqs->stqs_taskq[i]); 926 } 927 928 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 929 tqs->stqs_taskq = NULL; 930 } 931 932 /* 933 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 934 * Note that a type may have multiple discrete taskqs to avoid lock contention 935 * on the taskq itself. In that case we choose which taskq at random by using 936 * the low bits of gethrtime(). 937 */ 938 void 939 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 940 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 941 { 942 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 943 taskq_t *tq; 944 945 ASSERT3P(tqs->stqs_taskq, !=, NULL); 946 ASSERT3U(tqs->stqs_count, !=, 0); 947 948 if (tqs->stqs_count == 1) { 949 tq = tqs->stqs_taskq[0]; 950 } else { 951 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 952 } 953 954 taskq_dispatch_ent(tq, func, arg, flags, ent); 955 } 956 957 static void 958 spa_create_zio_taskqs(spa_t *spa) 959 { 960 for (int t = 0; t < ZIO_TYPES; t++) { 961 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 962 spa_taskqs_init(spa, t, q); 963 } 964 } 965 } 966 967 #ifdef _KERNEL 968 static void 969 spa_thread(void *arg) 970 { 971 callb_cpr_t cprinfo; 972 973 spa_t *spa = arg; 974 user_t *pu = PTOU(curproc); 975 976 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 977 spa->spa_name); 978 979 ASSERT(curproc != &p0); 980 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 981 "zpool-%s", spa->spa_name); 982 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 983 984 /* bind this thread to the requested psrset */ 985 if (zio_taskq_psrset_bind != PS_NONE) { 986 pool_lock(); 987 mutex_enter(&cpu_lock); 988 mutex_enter(&pidlock); 989 mutex_enter(&curproc->p_lock); 990 991 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 992 0, NULL, NULL) == 0) { 993 curthread->t_bind_pset = zio_taskq_psrset_bind; 994 } else { 995 cmn_err(CE_WARN, 996 "Couldn't bind process for zfs pool \"%s\" to " 997 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 998 } 999 1000 mutex_exit(&curproc->p_lock); 1001 mutex_exit(&pidlock); 1002 mutex_exit(&cpu_lock); 1003 pool_unlock(); 1004 } 1005 1006 if (zio_taskq_sysdc) { 1007 sysdc_thread_enter(curthread, 100, 0); 1008 } 1009 1010 spa->spa_proc = curproc; 1011 spa->spa_did = curthread->t_did; 1012 1013 spa_create_zio_taskqs(spa); 1014 1015 mutex_enter(&spa->spa_proc_lock); 1016 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1017 1018 spa->spa_proc_state = SPA_PROC_ACTIVE; 1019 cv_broadcast(&spa->spa_proc_cv); 1020 1021 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1022 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1023 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1024 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1025 1026 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1027 spa->spa_proc_state = SPA_PROC_GONE; 1028 spa->spa_proc = &p0; 1029 cv_broadcast(&spa->spa_proc_cv); 1030 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1031 1032 mutex_enter(&curproc->p_lock); 1033 lwp_exit(); 1034 } 1035 #endif 1036 1037 /* 1038 * Activate an uninitialized pool. 1039 */ 1040 static void 1041 spa_activate(spa_t *spa, int mode) 1042 { 1043 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1044 1045 spa->spa_state = POOL_STATE_ACTIVE; 1046 spa->spa_mode = mode; 1047 1048 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1049 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1050 1051 /* Try to create a covering process */ 1052 mutex_enter(&spa->spa_proc_lock); 1053 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1054 ASSERT(spa->spa_proc == &p0); 1055 spa->spa_did = 0; 1056 1057 /* Only create a process if we're going to be around a while. */ 1058 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1059 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1060 NULL, 0) == 0) { 1061 spa->spa_proc_state = SPA_PROC_CREATED; 1062 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1063 cv_wait(&spa->spa_proc_cv, 1064 &spa->spa_proc_lock); 1065 } 1066 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1067 ASSERT(spa->spa_proc != &p0); 1068 ASSERT(spa->spa_did != 0); 1069 } else { 1070 #ifdef _KERNEL 1071 cmn_err(CE_WARN, 1072 "Couldn't create process for zfs pool \"%s\"\n", 1073 spa->spa_name); 1074 #endif 1075 } 1076 } 1077 mutex_exit(&spa->spa_proc_lock); 1078 1079 /* If we didn't create a process, we need to create our taskqs. */ 1080 if (spa->spa_proc == &p0) { 1081 spa_create_zio_taskqs(spa); 1082 } 1083 1084 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1085 offsetof(vdev_t, vdev_config_dirty_node)); 1086 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1087 offsetof(objset_t, os_evicting_node)); 1088 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1089 offsetof(vdev_t, vdev_state_dirty_node)); 1090 1091 txg_list_create(&spa->spa_vdev_txg_list, 1092 offsetof(struct vdev, vdev_txg_node)); 1093 1094 avl_create(&spa->spa_errlist_scrub, 1095 spa_error_entry_compare, sizeof (spa_error_entry_t), 1096 offsetof(spa_error_entry_t, se_avl)); 1097 avl_create(&spa->spa_errlist_last, 1098 spa_error_entry_compare, sizeof (spa_error_entry_t), 1099 offsetof(spa_error_entry_t, se_avl)); 1100 } 1101 1102 /* 1103 * Opposite of spa_activate(). 1104 */ 1105 static void 1106 spa_deactivate(spa_t *spa) 1107 { 1108 ASSERT(spa->spa_sync_on == B_FALSE); 1109 ASSERT(spa->spa_dsl_pool == NULL); 1110 ASSERT(spa->spa_root_vdev == NULL); 1111 ASSERT(spa->spa_async_zio_root == NULL); 1112 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1113 1114 spa_evicting_os_wait(spa); 1115 1116 txg_list_destroy(&spa->spa_vdev_txg_list); 1117 1118 list_destroy(&spa->spa_config_dirty_list); 1119 list_destroy(&spa->spa_evicting_os_list); 1120 list_destroy(&spa->spa_state_dirty_list); 1121 1122 for (int t = 0; t < ZIO_TYPES; t++) { 1123 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1124 spa_taskqs_fini(spa, t, q); 1125 } 1126 } 1127 1128 metaslab_class_destroy(spa->spa_normal_class); 1129 spa->spa_normal_class = NULL; 1130 1131 metaslab_class_destroy(spa->spa_log_class); 1132 spa->spa_log_class = NULL; 1133 1134 /* 1135 * If this was part of an import or the open otherwise failed, we may 1136 * still have errors left in the queues. Empty them just in case. 1137 */ 1138 spa_errlog_drain(spa); 1139 1140 avl_destroy(&spa->spa_errlist_scrub); 1141 avl_destroy(&spa->spa_errlist_last); 1142 1143 spa->spa_state = POOL_STATE_UNINITIALIZED; 1144 1145 mutex_enter(&spa->spa_proc_lock); 1146 if (spa->spa_proc_state != SPA_PROC_NONE) { 1147 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1148 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1149 cv_broadcast(&spa->spa_proc_cv); 1150 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1151 ASSERT(spa->spa_proc != &p0); 1152 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1153 } 1154 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1155 spa->spa_proc_state = SPA_PROC_NONE; 1156 } 1157 ASSERT(spa->spa_proc == &p0); 1158 mutex_exit(&spa->spa_proc_lock); 1159 1160 /* 1161 * We want to make sure spa_thread() has actually exited the ZFS 1162 * module, so that the module can't be unloaded out from underneath 1163 * it. 1164 */ 1165 if (spa->spa_did != 0) { 1166 thread_join(spa->spa_did); 1167 spa->spa_did = 0; 1168 } 1169 } 1170 1171 /* 1172 * Verify a pool configuration, and construct the vdev tree appropriately. This 1173 * will create all the necessary vdevs in the appropriate layout, with each vdev 1174 * in the CLOSED state. This will prep the pool before open/creation/import. 1175 * All vdev validation is done by the vdev_alloc() routine. 1176 */ 1177 static int 1178 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1179 uint_t id, int atype) 1180 { 1181 nvlist_t **child; 1182 uint_t children; 1183 int error; 1184 1185 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1186 return (error); 1187 1188 if ((*vdp)->vdev_ops->vdev_op_leaf) 1189 return (0); 1190 1191 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1192 &child, &children); 1193 1194 if (error == ENOENT) 1195 return (0); 1196 1197 if (error) { 1198 vdev_free(*vdp); 1199 *vdp = NULL; 1200 return (SET_ERROR(EINVAL)); 1201 } 1202 1203 for (int c = 0; c < children; c++) { 1204 vdev_t *vd; 1205 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1206 atype)) != 0) { 1207 vdev_free(*vdp); 1208 *vdp = NULL; 1209 return (error); 1210 } 1211 } 1212 1213 ASSERT(*vdp != NULL); 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * Opposite of spa_load(). 1220 */ 1221 static void 1222 spa_unload(spa_t *spa) 1223 { 1224 int i; 1225 1226 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1227 1228 /* 1229 * Stop async tasks. 1230 */ 1231 spa_async_suspend(spa); 1232 1233 /* 1234 * Stop syncing. 1235 */ 1236 if (spa->spa_sync_on) { 1237 txg_sync_stop(spa->spa_dsl_pool); 1238 spa->spa_sync_on = B_FALSE; 1239 } 1240 1241 /* 1242 * Wait for any outstanding async I/O to complete. 1243 */ 1244 if (spa->spa_async_zio_root != NULL) { 1245 for (int i = 0; i < max_ncpus; i++) 1246 (void) zio_wait(spa->spa_async_zio_root[i]); 1247 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1248 spa->spa_async_zio_root = NULL; 1249 } 1250 1251 bpobj_close(&spa->spa_deferred_bpobj); 1252 1253 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1254 1255 /* 1256 * Close all vdevs. 1257 */ 1258 if (spa->spa_root_vdev) 1259 vdev_free(spa->spa_root_vdev); 1260 ASSERT(spa->spa_root_vdev == NULL); 1261 1262 /* 1263 * Close the dsl pool. 1264 */ 1265 if (spa->spa_dsl_pool) { 1266 dsl_pool_close(spa->spa_dsl_pool); 1267 spa->spa_dsl_pool = NULL; 1268 spa->spa_meta_objset = NULL; 1269 } 1270 1271 ddt_unload(spa); 1272 1273 1274 /* 1275 * Drop and purge level 2 cache 1276 */ 1277 spa_l2cache_drop(spa); 1278 1279 for (i = 0; i < spa->spa_spares.sav_count; i++) 1280 vdev_free(spa->spa_spares.sav_vdevs[i]); 1281 if (spa->spa_spares.sav_vdevs) { 1282 kmem_free(spa->spa_spares.sav_vdevs, 1283 spa->spa_spares.sav_count * sizeof (void *)); 1284 spa->spa_spares.sav_vdevs = NULL; 1285 } 1286 if (spa->spa_spares.sav_config) { 1287 nvlist_free(spa->spa_spares.sav_config); 1288 spa->spa_spares.sav_config = NULL; 1289 } 1290 spa->spa_spares.sav_count = 0; 1291 1292 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1293 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1294 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1295 } 1296 if (spa->spa_l2cache.sav_vdevs) { 1297 kmem_free(spa->spa_l2cache.sav_vdevs, 1298 spa->spa_l2cache.sav_count * sizeof (void *)); 1299 spa->spa_l2cache.sav_vdevs = NULL; 1300 } 1301 if (spa->spa_l2cache.sav_config) { 1302 nvlist_free(spa->spa_l2cache.sav_config); 1303 spa->spa_l2cache.sav_config = NULL; 1304 } 1305 spa->spa_l2cache.sav_count = 0; 1306 1307 spa->spa_async_suspended = 0; 1308 1309 if (spa->spa_comment != NULL) { 1310 spa_strfree(spa->spa_comment); 1311 spa->spa_comment = NULL; 1312 } 1313 1314 spa_config_exit(spa, SCL_ALL, FTAG); 1315 } 1316 1317 /* 1318 * Load (or re-load) the current list of vdevs describing the active spares for 1319 * this pool. When this is called, we have some form of basic information in 1320 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1321 * then re-generate a more complete list including status information. 1322 */ 1323 static void 1324 spa_load_spares(spa_t *spa) 1325 { 1326 nvlist_t **spares; 1327 uint_t nspares; 1328 int i; 1329 vdev_t *vd, *tvd; 1330 1331 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1332 1333 /* 1334 * First, close and free any existing spare vdevs. 1335 */ 1336 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1337 vd = spa->spa_spares.sav_vdevs[i]; 1338 1339 /* Undo the call to spa_activate() below */ 1340 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1341 B_FALSE)) != NULL && tvd->vdev_isspare) 1342 spa_spare_remove(tvd); 1343 vdev_close(vd); 1344 vdev_free(vd); 1345 } 1346 1347 if (spa->spa_spares.sav_vdevs) 1348 kmem_free(spa->spa_spares.sav_vdevs, 1349 spa->spa_spares.sav_count * sizeof (void *)); 1350 1351 if (spa->spa_spares.sav_config == NULL) 1352 nspares = 0; 1353 else 1354 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1355 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1356 1357 spa->spa_spares.sav_count = (int)nspares; 1358 spa->spa_spares.sav_vdevs = NULL; 1359 1360 if (nspares == 0) 1361 return; 1362 1363 /* 1364 * Construct the array of vdevs, opening them to get status in the 1365 * process. For each spare, there is potentially two different vdev_t 1366 * structures associated with it: one in the list of spares (used only 1367 * for basic validation purposes) and one in the active vdev 1368 * configuration (if it's spared in). During this phase we open and 1369 * validate each vdev on the spare list. If the vdev also exists in the 1370 * active configuration, then we also mark this vdev as an active spare. 1371 */ 1372 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1373 KM_SLEEP); 1374 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1375 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1376 VDEV_ALLOC_SPARE) == 0); 1377 ASSERT(vd != NULL); 1378 1379 spa->spa_spares.sav_vdevs[i] = vd; 1380 1381 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1382 B_FALSE)) != NULL) { 1383 if (!tvd->vdev_isspare) 1384 spa_spare_add(tvd); 1385 1386 /* 1387 * We only mark the spare active if we were successfully 1388 * able to load the vdev. Otherwise, importing a pool 1389 * with a bad active spare would result in strange 1390 * behavior, because multiple pool would think the spare 1391 * is actively in use. 1392 * 1393 * There is a vulnerability here to an equally bizarre 1394 * circumstance, where a dead active spare is later 1395 * brought back to life (onlined or otherwise). Given 1396 * the rarity of this scenario, and the extra complexity 1397 * it adds, we ignore the possibility. 1398 */ 1399 if (!vdev_is_dead(tvd)) 1400 spa_spare_activate(tvd); 1401 } 1402 1403 vd->vdev_top = vd; 1404 vd->vdev_aux = &spa->spa_spares; 1405 1406 if (vdev_open(vd) != 0) 1407 continue; 1408 1409 if (vdev_validate_aux(vd) == 0) 1410 spa_spare_add(vd); 1411 } 1412 1413 /* 1414 * Recompute the stashed list of spares, with status information 1415 * this time. 1416 */ 1417 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1418 DATA_TYPE_NVLIST_ARRAY) == 0); 1419 1420 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1421 KM_SLEEP); 1422 for (i = 0; i < spa->spa_spares.sav_count; i++) 1423 spares[i] = vdev_config_generate(spa, 1424 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1425 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1426 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1427 for (i = 0; i < spa->spa_spares.sav_count; i++) 1428 nvlist_free(spares[i]); 1429 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1430 } 1431 1432 /* 1433 * Load (or re-load) the current list of vdevs describing the active l2cache for 1434 * this pool. When this is called, we have some form of basic information in 1435 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1436 * then re-generate a more complete list including status information. 1437 * Devices which are already active have their details maintained, and are 1438 * not re-opened. 1439 */ 1440 static void 1441 spa_load_l2cache(spa_t *spa) 1442 { 1443 nvlist_t **l2cache; 1444 uint_t nl2cache; 1445 int i, j, oldnvdevs; 1446 uint64_t guid; 1447 vdev_t *vd, **oldvdevs, **newvdevs; 1448 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1449 1450 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1451 1452 if (sav->sav_config != NULL) { 1453 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1454 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1455 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1456 } else { 1457 nl2cache = 0; 1458 newvdevs = NULL; 1459 } 1460 1461 oldvdevs = sav->sav_vdevs; 1462 oldnvdevs = sav->sav_count; 1463 sav->sav_vdevs = NULL; 1464 sav->sav_count = 0; 1465 1466 /* 1467 * Process new nvlist of vdevs. 1468 */ 1469 for (i = 0; i < nl2cache; i++) { 1470 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1471 &guid) == 0); 1472 1473 newvdevs[i] = NULL; 1474 for (j = 0; j < oldnvdevs; j++) { 1475 vd = oldvdevs[j]; 1476 if (vd != NULL && guid == vd->vdev_guid) { 1477 /* 1478 * Retain previous vdev for add/remove ops. 1479 */ 1480 newvdevs[i] = vd; 1481 oldvdevs[j] = NULL; 1482 break; 1483 } 1484 } 1485 1486 if (newvdevs[i] == NULL) { 1487 /* 1488 * Create new vdev 1489 */ 1490 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1491 VDEV_ALLOC_L2CACHE) == 0); 1492 ASSERT(vd != NULL); 1493 newvdevs[i] = vd; 1494 1495 /* 1496 * Commit this vdev as an l2cache device, 1497 * even if it fails to open. 1498 */ 1499 spa_l2cache_add(vd); 1500 1501 vd->vdev_top = vd; 1502 vd->vdev_aux = sav; 1503 1504 spa_l2cache_activate(vd); 1505 1506 if (vdev_open(vd) != 0) 1507 continue; 1508 1509 (void) vdev_validate_aux(vd); 1510 1511 if (!vdev_is_dead(vd)) { 1512 boolean_t do_rebuild = B_FALSE; 1513 1514 (void) nvlist_lookup_boolean_value(l2cache[i], 1515 ZPOOL_CONFIG_L2CACHE_PERSISTENT, 1516 &do_rebuild); 1517 l2arc_add_vdev(spa, vd, do_rebuild); 1518 } 1519 } 1520 } 1521 1522 /* 1523 * Purge vdevs that were dropped 1524 */ 1525 for (i = 0; i < oldnvdevs; i++) { 1526 uint64_t pool; 1527 1528 vd = oldvdevs[i]; 1529 if (vd != NULL) { 1530 ASSERT(vd->vdev_isl2cache); 1531 1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1533 pool != 0ULL && l2arc_vdev_present(vd)) 1534 l2arc_remove_vdev(vd); 1535 vdev_clear_stats(vd); 1536 vdev_free(vd); 1537 } 1538 } 1539 1540 if (oldvdevs) 1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1542 1543 if (sav->sav_config == NULL) 1544 goto out; 1545 1546 sav->sav_vdevs = newvdevs; 1547 sav->sav_count = (int)nl2cache; 1548 1549 /* 1550 * Recompute the stashed list of l2cache devices, with status 1551 * information this time. 1552 */ 1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1554 DATA_TYPE_NVLIST_ARRAY) == 0); 1555 1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1557 for (i = 0; i < sav->sav_count; i++) 1558 l2cache[i] = vdev_config_generate(spa, 1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1562 out: 1563 for (i = 0; i < sav->sav_count; i++) 1564 nvlist_free(l2cache[i]); 1565 if (sav->sav_count) 1566 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1567 } 1568 1569 static int 1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1571 { 1572 dmu_buf_t *db; 1573 char *packed = NULL; 1574 size_t nvsize = 0; 1575 int error; 1576 *value = NULL; 1577 1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1579 if (error != 0) 1580 return (error); 1581 1582 nvsize = *(uint64_t *)db->db_data; 1583 dmu_buf_rele(db, FTAG); 1584 1585 packed = kmem_alloc(nvsize, KM_SLEEP); 1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1587 DMU_READ_PREFETCH); 1588 if (error == 0) 1589 error = nvlist_unpack(packed, nvsize, value, 0); 1590 kmem_free(packed, nvsize); 1591 1592 return (error); 1593 } 1594 1595 /* 1596 * Checks to see if the given vdev could not be opened, in which case we post a 1597 * sysevent to notify the autoreplace code that the device has been removed. 1598 */ 1599 static void 1600 spa_check_removed(vdev_t *vd) 1601 { 1602 for (int c = 0; c < vd->vdev_children; c++) 1603 spa_check_removed(vd->vdev_child[c]); 1604 1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1606 !vd->vdev_ishole) { 1607 zfs_post_autoreplace(vd->vdev_spa, vd); 1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1609 } 1610 } 1611 1612 /* 1613 * Validate the current config against the MOS config 1614 */ 1615 static boolean_t 1616 spa_config_valid(spa_t *spa, nvlist_t *config) 1617 { 1618 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1619 nvlist_t *nv; 1620 1621 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1622 1623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1624 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1625 1626 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1627 1628 /* 1629 * If we're doing a normal import, then build up any additional 1630 * diagnostic information about missing devices in this config. 1631 * We'll pass this up to the user for further processing. 1632 */ 1633 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1634 nvlist_t **child, *nv; 1635 uint64_t idx = 0; 1636 1637 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1638 KM_SLEEP); 1639 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1640 1641 for (int c = 0; c < rvd->vdev_children; c++) { 1642 vdev_t *tvd = rvd->vdev_child[c]; 1643 vdev_t *mtvd = mrvd->vdev_child[c]; 1644 1645 if (tvd->vdev_ops == &vdev_missing_ops && 1646 mtvd->vdev_ops != &vdev_missing_ops && 1647 mtvd->vdev_islog) 1648 child[idx++] = vdev_config_generate(spa, mtvd, 1649 B_FALSE, 0); 1650 } 1651 1652 if (idx) { 1653 VERIFY(nvlist_add_nvlist_array(nv, 1654 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1655 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1656 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1657 1658 for (int i = 0; i < idx; i++) 1659 nvlist_free(child[i]); 1660 } 1661 nvlist_free(nv); 1662 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1663 } 1664 1665 /* 1666 * Compare the root vdev tree with the information we have 1667 * from the MOS config (mrvd). Check each top-level vdev 1668 * with the corresponding MOS config top-level (mtvd). 1669 */ 1670 for (int c = 0; c < rvd->vdev_children; c++) { 1671 vdev_t *tvd = rvd->vdev_child[c]; 1672 vdev_t *mtvd = mrvd->vdev_child[c]; 1673 1674 /* 1675 * Resolve any "missing" vdevs in the current configuration. 1676 * If we find that the MOS config has more accurate information 1677 * about the top-level vdev then use that vdev instead. 1678 */ 1679 if (tvd->vdev_ops == &vdev_missing_ops && 1680 mtvd->vdev_ops != &vdev_missing_ops) { 1681 1682 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1683 continue; 1684 1685 /* 1686 * Device specific actions. 1687 */ 1688 if (mtvd->vdev_islog) { 1689 spa_set_log_state(spa, SPA_LOG_CLEAR); 1690 } else { 1691 /* 1692 * XXX - once we have 'readonly' pool 1693 * support we should be able to handle 1694 * missing data devices by transitioning 1695 * the pool to readonly. 1696 */ 1697 continue; 1698 } 1699 1700 /* 1701 * Swap the missing vdev with the data we were 1702 * able to obtain from the MOS config. 1703 */ 1704 vdev_remove_child(rvd, tvd); 1705 vdev_remove_child(mrvd, mtvd); 1706 1707 vdev_add_child(rvd, mtvd); 1708 vdev_add_child(mrvd, tvd); 1709 1710 spa_config_exit(spa, SCL_ALL, FTAG); 1711 vdev_load(mtvd); 1712 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1713 1714 vdev_reopen(rvd); 1715 } else if (mtvd->vdev_islog) { 1716 /* 1717 * Load the slog device's state from the MOS config 1718 * since it's possible that the label does not 1719 * contain the most up-to-date information. 1720 */ 1721 vdev_load_log_state(tvd, mtvd); 1722 vdev_reopen(tvd); 1723 } 1724 } 1725 vdev_free(mrvd); 1726 spa_config_exit(spa, SCL_ALL, FTAG); 1727 1728 /* 1729 * Ensure we were able to validate the config. 1730 */ 1731 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1732 } 1733 1734 /* 1735 * Check for missing log devices 1736 */ 1737 static boolean_t 1738 spa_check_logs(spa_t *spa) 1739 { 1740 boolean_t rv = B_FALSE; 1741 dsl_pool_t *dp = spa_get_dsl(spa); 1742 1743 switch (spa->spa_log_state) { 1744 case SPA_LOG_MISSING: 1745 /* need to recheck in case slog has been restored */ 1746 case SPA_LOG_UNKNOWN: 1747 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1748 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1749 if (rv) 1750 spa_set_log_state(spa, SPA_LOG_MISSING); 1751 break; 1752 } 1753 return (rv); 1754 } 1755 1756 static boolean_t 1757 spa_passivate_log(spa_t *spa) 1758 { 1759 vdev_t *rvd = spa->spa_root_vdev; 1760 boolean_t slog_found = B_FALSE; 1761 1762 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1763 1764 if (!spa_has_slogs(spa)) 1765 return (B_FALSE); 1766 1767 for (int c = 0; c < rvd->vdev_children; c++) { 1768 vdev_t *tvd = rvd->vdev_child[c]; 1769 metaslab_group_t *mg = tvd->vdev_mg; 1770 1771 if (tvd->vdev_islog) { 1772 metaslab_group_passivate(mg); 1773 slog_found = B_TRUE; 1774 } 1775 } 1776 1777 return (slog_found); 1778 } 1779 1780 static void 1781 spa_activate_log(spa_t *spa) 1782 { 1783 vdev_t *rvd = spa->spa_root_vdev; 1784 1785 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1786 1787 for (int c = 0; c < rvd->vdev_children; c++) { 1788 vdev_t *tvd = rvd->vdev_child[c]; 1789 metaslab_group_t *mg = tvd->vdev_mg; 1790 1791 if (tvd->vdev_islog) 1792 metaslab_group_activate(mg); 1793 } 1794 } 1795 1796 int 1797 spa_offline_log(spa_t *spa) 1798 { 1799 int error; 1800 1801 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1802 NULL, DS_FIND_CHILDREN); 1803 if (error == 0) { 1804 /* 1805 * We successfully offlined the log device, sync out the 1806 * current txg so that the "stubby" block can be removed 1807 * by zil_sync(). 1808 */ 1809 txg_wait_synced(spa->spa_dsl_pool, 0); 1810 } 1811 return (error); 1812 } 1813 1814 static void 1815 spa_aux_check_removed(spa_aux_vdev_t *sav) 1816 { 1817 for (int i = 0; i < sav->sav_count; i++) 1818 spa_check_removed(sav->sav_vdevs[i]); 1819 } 1820 1821 void 1822 spa_claim_notify(zio_t *zio) 1823 { 1824 spa_t *spa = zio->io_spa; 1825 1826 if (zio->io_error) 1827 return; 1828 1829 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1830 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1831 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1832 mutex_exit(&spa->spa_props_lock); 1833 } 1834 1835 typedef struct spa_load_error { 1836 uint64_t sle_meta_count; 1837 uint64_t sle_data_count; 1838 } spa_load_error_t; 1839 1840 static void 1841 spa_load_verify_done(zio_t *zio) 1842 { 1843 blkptr_t *bp = zio->io_bp; 1844 spa_load_error_t *sle = zio->io_private; 1845 dmu_object_type_t type = BP_GET_TYPE(bp); 1846 int error = zio->io_error; 1847 spa_t *spa = zio->io_spa; 1848 1849 if (error) { 1850 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1851 type != DMU_OT_INTENT_LOG) 1852 atomic_inc_64(&sle->sle_meta_count); 1853 else 1854 atomic_inc_64(&sle->sle_data_count); 1855 } 1856 zio_data_buf_free(zio->io_data, zio->io_size); 1857 1858 mutex_enter(&spa->spa_scrub_lock); 1859 spa->spa_scrub_inflight--; 1860 cv_broadcast(&spa->spa_scrub_io_cv); 1861 mutex_exit(&spa->spa_scrub_lock); 1862 } 1863 1864 /* 1865 * Maximum number of concurrent scrub i/os to create while verifying 1866 * a pool while importing it. 1867 */ 1868 int spa_load_verify_maxinflight = 10000; 1869 boolean_t spa_load_verify_metadata = B_TRUE; 1870 boolean_t spa_load_verify_data = B_TRUE; 1871 1872 /*ARGSUSED*/ 1873 static int 1874 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1875 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1876 { 1877 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1878 return (0); 1879 /* 1880 * Note: normally this routine will not be called if 1881 * spa_load_verify_metadata is not set. However, it may be useful 1882 * to manually set the flag after the traversal has begun. 1883 */ 1884 if (!spa_load_verify_metadata) 1885 return (0); 1886 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1887 return (0); 1888 1889 zio_t *rio = arg; 1890 size_t size = BP_GET_PSIZE(bp); 1891 void *data = zio_data_buf_alloc(size); 1892 1893 mutex_enter(&spa->spa_scrub_lock); 1894 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1895 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1896 spa->spa_scrub_inflight++; 1897 mutex_exit(&spa->spa_scrub_lock); 1898 1899 zio_nowait(zio_read(rio, spa, bp, data, size, 1900 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1901 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1902 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1903 return (0); 1904 } 1905 1906 static int 1907 spa_load_verify(spa_t *spa) 1908 { 1909 zio_t *rio; 1910 spa_load_error_t sle = { 0 }; 1911 zpool_rewind_policy_t policy; 1912 boolean_t verify_ok = B_FALSE; 1913 int error = 0; 1914 1915 zpool_get_rewind_policy(spa->spa_config, &policy); 1916 1917 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1918 return (0); 1919 1920 rio = zio_root(spa, NULL, &sle, 1921 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1922 1923 if (spa_load_verify_metadata) { 1924 error = traverse_pool(spa, spa->spa_verify_min_txg, 1925 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1926 spa_load_verify_cb, rio); 1927 } 1928 1929 (void) zio_wait(rio); 1930 1931 spa->spa_load_meta_errors = sle.sle_meta_count; 1932 spa->spa_load_data_errors = sle.sle_data_count; 1933 1934 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1935 sle.sle_data_count <= policy.zrp_maxdata) { 1936 int64_t loss = 0; 1937 1938 verify_ok = B_TRUE; 1939 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1940 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1941 1942 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1943 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1944 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1945 VERIFY(nvlist_add_int64(spa->spa_load_info, 1946 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1947 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1948 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1949 } else { 1950 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1951 } 1952 1953 if (error) { 1954 if (error != ENXIO && error != EIO) 1955 error = SET_ERROR(EIO); 1956 return (error); 1957 } 1958 1959 return (verify_ok ? 0 : EIO); 1960 } 1961 1962 /* 1963 * Find a value in the pool props object. 1964 */ 1965 static void 1966 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1967 { 1968 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1969 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1970 } 1971 1972 /* 1973 * Find a value in the pool directory object. 1974 */ 1975 static int 1976 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1977 { 1978 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1979 name, sizeof (uint64_t), 1, val)); 1980 } 1981 1982 static int 1983 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1984 { 1985 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1986 return (err); 1987 } 1988 1989 /* 1990 * Fix up config after a partly-completed split. This is done with the 1991 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1992 * pool have that entry in their config, but only the splitting one contains 1993 * a list of all the guids of the vdevs that are being split off. 1994 * 1995 * This function determines what to do with that list: either rejoin 1996 * all the disks to the pool, or complete the splitting process. To attempt 1997 * the rejoin, each disk that is offlined is marked online again, and 1998 * we do a reopen() call. If the vdev label for every disk that was 1999 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2000 * then we call vdev_split() on each disk, and complete the split. 2001 * 2002 * Otherwise we leave the config alone, with all the vdevs in place in 2003 * the original pool. 2004 */ 2005 static void 2006 spa_try_repair(spa_t *spa, nvlist_t *config) 2007 { 2008 uint_t extracted; 2009 uint64_t *glist; 2010 uint_t i, gcount; 2011 nvlist_t *nvl; 2012 vdev_t **vd; 2013 boolean_t attempt_reopen; 2014 2015 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2016 return; 2017 2018 /* check that the config is complete */ 2019 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2020 &glist, &gcount) != 0) 2021 return; 2022 2023 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2024 2025 /* attempt to online all the vdevs & validate */ 2026 attempt_reopen = B_TRUE; 2027 for (i = 0; i < gcount; i++) { 2028 if (glist[i] == 0) /* vdev is hole */ 2029 continue; 2030 2031 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2032 if (vd[i] == NULL) { 2033 /* 2034 * Don't bother attempting to reopen the disks; 2035 * just do the split. 2036 */ 2037 attempt_reopen = B_FALSE; 2038 } else { 2039 /* attempt to re-online it */ 2040 vd[i]->vdev_offline = B_FALSE; 2041 } 2042 } 2043 2044 if (attempt_reopen) { 2045 vdev_reopen(spa->spa_root_vdev); 2046 2047 /* check each device to see what state it's in */ 2048 for (extracted = 0, i = 0; i < gcount; i++) { 2049 if (vd[i] != NULL && 2050 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2051 break; 2052 ++extracted; 2053 } 2054 } 2055 2056 /* 2057 * If every disk has been moved to the new pool, or if we never 2058 * even attempted to look at them, then we split them off for 2059 * good. 2060 */ 2061 if (!attempt_reopen || gcount == extracted) { 2062 for (i = 0; i < gcount; i++) 2063 if (vd[i] != NULL) 2064 vdev_split(vd[i]); 2065 vdev_reopen(spa->spa_root_vdev); 2066 } 2067 2068 kmem_free(vd, gcount * sizeof (vdev_t *)); 2069 } 2070 2071 static int 2072 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2073 boolean_t mosconfig) 2074 { 2075 nvlist_t *config = spa->spa_config; 2076 char *ereport = FM_EREPORT_ZFS_POOL; 2077 char *comment; 2078 int error; 2079 uint64_t pool_guid; 2080 nvlist_t *nvl; 2081 2082 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2083 return (SET_ERROR(EINVAL)); 2084 2085 ASSERT(spa->spa_comment == NULL); 2086 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2087 spa->spa_comment = spa_strdup(comment); 2088 2089 /* 2090 * Versioning wasn't explicitly added to the label until later, so if 2091 * it's not present treat it as the initial version. 2092 */ 2093 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2094 &spa->spa_ubsync.ub_version) != 0) 2095 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2096 2097 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2098 &spa->spa_config_txg); 2099 2100 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2101 spa_guid_exists(pool_guid, 0)) { 2102 error = SET_ERROR(EEXIST); 2103 } else { 2104 spa->spa_config_guid = pool_guid; 2105 2106 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2107 &nvl) == 0) { 2108 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2109 KM_SLEEP) == 0); 2110 } 2111 2112 nvlist_free(spa->spa_load_info); 2113 spa->spa_load_info = fnvlist_alloc(); 2114 2115 gethrestime(&spa->spa_loaded_ts); 2116 error = spa_load_impl(spa, pool_guid, config, state, type, 2117 mosconfig, &ereport); 2118 } 2119 2120 /* 2121 * Don't count references from objsets that are already closed 2122 * and are making their way through the eviction process. 2123 */ 2124 spa_evicting_os_wait(spa); 2125 spa->spa_minref = refcount_count(&spa->spa_refcount); 2126 if (error) { 2127 if (error != EEXIST) { 2128 spa->spa_loaded_ts.tv_sec = 0; 2129 spa->spa_loaded_ts.tv_nsec = 0; 2130 } 2131 if (error != EBADF) { 2132 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2133 } 2134 } 2135 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2136 spa->spa_ena = 0; 2137 2138 return (error); 2139 } 2140 2141 /* 2142 * Load an existing storage pool, using the pool's builtin spa_config as a 2143 * source of configuration information. 2144 */ 2145 static int 2146 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2148 char **ereport) 2149 { 2150 int error = 0; 2151 nvlist_t *nvroot = NULL; 2152 nvlist_t *label; 2153 vdev_t *rvd; 2154 uberblock_t *ub = &spa->spa_uberblock; 2155 uint64_t children, config_cache_txg = spa->spa_config_txg; 2156 int orig_mode = spa->spa_mode; 2157 int parse; 2158 uint64_t obj; 2159 boolean_t missing_feat_write = B_FALSE; 2160 2161 /* 2162 * If this is an untrusted config, access the pool in read-only mode. 2163 * This prevents things like resilvering recently removed devices. 2164 */ 2165 if (!mosconfig) 2166 spa->spa_mode = FREAD; 2167 2168 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2169 2170 spa->spa_load_state = state; 2171 2172 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2173 return (SET_ERROR(EINVAL)); 2174 2175 parse = (type == SPA_IMPORT_EXISTING ? 2176 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2177 2178 /* 2179 * Create "The Godfather" zio to hold all async IOs 2180 */ 2181 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2182 KM_SLEEP); 2183 for (int i = 0; i < max_ncpus; i++) { 2184 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2185 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2186 ZIO_FLAG_GODFATHER); 2187 } 2188 2189 /* 2190 * Parse the configuration into a vdev tree. We explicitly set the 2191 * value that will be returned by spa_version() since parsing the 2192 * configuration requires knowing the version number. 2193 */ 2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2195 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2196 spa_config_exit(spa, SCL_ALL, FTAG); 2197 2198 if (error != 0) 2199 return (error); 2200 2201 ASSERT(spa->spa_root_vdev == rvd); 2202 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2203 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2204 2205 if (type != SPA_IMPORT_ASSEMBLE) { 2206 ASSERT(spa_guid(spa) == pool_guid); 2207 } 2208 2209 /* 2210 * Try to open all vdevs, loading each label in the process. 2211 */ 2212 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2213 error = vdev_open(rvd); 2214 spa_config_exit(spa, SCL_ALL, FTAG); 2215 if (error != 0) 2216 return (error); 2217 2218 /* 2219 * We need to validate the vdev labels against the configuration that 2220 * we have in hand, which is dependent on the setting of mosconfig. If 2221 * mosconfig is true then we're validating the vdev labels based on 2222 * that config. Otherwise, we're validating against the cached config 2223 * (zpool.cache) that was read when we loaded the zfs module, and then 2224 * later we will recursively call spa_load() and validate against 2225 * the vdev config. 2226 * 2227 * If we're assembling a new pool that's been split off from an 2228 * existing pool, the labels haven't yet been updated so we skip 2229 * validation for now. 2230 */ 2231 if (type != SPA_IMPORT_ASSEMBLE) { 2232 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2233 error = vdev_validate(rvd, mosconfig); 2234 spa_config_exit(spa, SCL_ALL, FTAG); 2235 2236 if (error != 0) 2237 return (error); 2238 2239 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2240 return (SET_ERROR(ENXIO)); 2241 } 2242 2243 /* 2244 * Find the best uberblock. 2245 */ 2246 vdev_uberblock_load(rvd, ub, &label); 2247 2248 /* 2249 * If we weren't able to find a single valid uberblock, return failure. 2250 */ 2251 if (ub->ub_txg == 0) { 2252 nvlist_free(label); 2253 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2254 } 2255 2256 /* 2257 * If the pool has an unsupported version we can't open it. 2258 */ 2259 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2260 nvlist_free(label); 2261 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2262 } 2263 2264 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2265 nvlist_t *features; 2266 2267 /* 2268 * If we weren't able to find what's necessary for reading the 2269 * MOS in the label, return failure. 2270 */ 2271 if (label == NULL || nvlist_lookup_nvlist(label, 2272 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2273 nvlist_free(label); 2274 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2275 ENXIO)); 2276 } 2277 2278 /* 2279 * Update our in-core representation with the definitive values 2280 * from the label. 2281 */ 2282 nvlist_free(spa->spa_label_features); 2283 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2284 } 2285 2286 nvlist_free(label); 2287 2288 /* 2289 * Look through entries in the label nvlist's features_for_read. If 2290 * there is a feature listed there which we don't understand then we 2291 * cannot open a pool. 2292 */ 2293 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2294 nvlist_t *unsup_feat; 2295 2296 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2297 0); 2298 2299 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2300 NULL); nvp != NULL; 2301 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2302 if (!zfeature_is_supported(nvpair_name(nvp))) { 2303 VERIFY(nvlist_add_string(unsup_feat, 2304 nvpair_name(nvp), "") == 0); 2305 } 2306 } 2307 2308 if (!nvlist_empty(unsup_feat)) { 2309 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2310 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2311 nvlist_free(unsup_feat); 2312 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2313 ENOTSUP)); 2314 } 2315 2316 nvlist_free(unsup_feat); 2317 } 2318 2319 /* 2320 * If the vdev guid sum doesn't match the uberblock, we have an 2321 * incomplete configuration. We first check to see if the pool 2322 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2323 * If it is, defer the vdev_guid_sum check till later so we 2324 * can handle missing vdevs. 2325 */ 2326 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2327 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2328 rvd->vdev_guid_sum != ub->ub_guid_sum) 2329 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2330 2331 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2332 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2333 spa_try_repair(spa, config); 2334 spa_config_exit(spa, SCL_ALL, FTAG); 2335 nvlist_free(spa->spa_config_splitting); 2336 spa->spa_config_splitting = NULL; 2337 } 2338 2339 /* 2340 * Initialize internal SPA structures. 2341 */ 2342 spa->spa_state = POOL_STATE_ACTIVE; 2343 spa->spa_ubsync = spa->spa_uberblock; 2344 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2345 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2346 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2347 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2348 spa->spa_claim_max_txg = spa->spa_first_txg; 2349 spa->spa_prev_software_version = ub->ub_software_version; 2350 2351 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2352 if (error) 2353 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2354 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2355 2356 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2358 2359 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2360 boolean_t missing_feat_read = B_FALSE; 2361 nvlist_t *unsup_feat, *enabled_feat; 2362 2363 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2364 &spa->spa_feat_for_read_obj) != 0) { 2365 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2366 } 2367 2368 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2369 &spa->spa_feat_for_write_obj) != 0) { 2370 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2371 } 2372 2373 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2374 &spa->spa_feat_desc_obj) != 0) { 2375 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2376 } 2377 2378 enabled_feat = fnvlist_alloc(); 2379 unsup_feat = fnvlist_alloc(); 2380 2381 if (!spa_features_check(spa, B_FALSE, 2382 unsup_feat, enabled_feat)) 2383 missing_feat_read = B_TRUE; 2384 2385 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2386 if (!spa_features_check(spa, B_TRUE, 2387 unsup_feat, enabled_feat)) { 2388 missing_feat_write = B_TRUE; 2389 } 2390 } 2391 2392 fnvlist_add_nvlist(spa->spa_load_info, 2393 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2394 2395 if (!nvlist_empty(unsup_feat)) { 2396 fnvlist_add_nvlist(spa->spa_load_info, 2397 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2398 } 2399 2400 fnvlist_free(enabled_feat); 2401 fnvlist_free(unsup_feat); 2402 2403 if (!missing_feat_read) { 2404 fnvlist_add_boolean(spa->spa_load_info, 2405 ZPOOL_CONFIG_CAN_RDONLY); 2406 } 2407 2408 /* 2409 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2410 * twofold: to determine whether the pool is available for 2411 * import in read-write mode and (if it is not) whether the 2412 * pool is available for import in read-only mode. If the pool 2413 * is available for import in read-write mode, it is displayed 2414 * as available in userland; if it is not available for import 2415 * in read-only mode, it is displayed as unavailable in 2416 * userland. If the pool is available for import in read-only 2417 * mode but not read-write mode, it is displayed as unavailable 2418 * in userland with a special note that the pool is actually 2419 * available for open in read-only mode. 2420 * 2421 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2422 * missing a feature for write, we must first determine whether 2423 * the pool can be opened read-only before returning to 2424 * userland in order to know whether to display the 2425 * abovementioned note. 2426 */ 2427 if (missing_feat_read || (missing_feat_write && 2428 spa_writeable(spa))) { 2429 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2430 ENOTSUP)); 2431 } 2432 2433 /* 2434 * Load refcounts for ZFS features from disk into an in-memory 2435 * cache during SPA initialization. 2436 */ 2437 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2438 uint64_t refcount; 2439 2440 error = feature_get_refcount_from_disk(spa, 2441 &spa_feature_table[i], &refcount); 2442 if (error == 0) { 2443 spa->spa_feat_refcount_cache[i] = refcount; 2444 } else if (error == ENOTSUP) { 2445 spa->spa_feat_refcount_cache[i] = 2446 SPA_FEATURE_DISABLED; 2447 } else { 2448 return (spa_vdev_err(rvd, 2449 VDEV_AUX_CORRUPT_DATA, EIO)); 2450 } 2451 } 2452 } 2453 2454 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2455 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2456 &spa->spa_feat_enabled_txg_obj) != 0) 2457 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2458 } 2459 2460 spa->spa_is_initializing = B_TRUE; 2461 error = dsl_pool_open(spa->spa_dsl_pool); 2462 spa->spa_is_initializing = B_FALSE; 2463 if (error != 0) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 2466 if (!mosconfig) { 2467 uint64_t hostid; 2468 nvlist_t *policy = NULL, *nvconfig; 2469 2470 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2471 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2472 2473 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2474 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2475 char *hostname; 2476 unsigned long myhostid = 0; 2477 2478 VERIFY(nvlist_lookup_string(nvconfig, 2479 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2480 2481 #ifdef _KERNEL 2482 myhostid = zone_get_hostid(NULL); 2483 #else /* _KERNEL */ 2484 /* 2485 * We're emulating the system's hostid in userland, so 2486 * we can't use zone_get_hostid(). 2487 */ 2488 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2489 #endif /* _KERNEL */ 2490 if (hostid != 0 && myhostid != 0 && 2491 hostid != myhostid) { 2492 nvlist_free(nvconfig); 2493 cmn_err(CE_WARN, "pool '%s' could not be " 2494 "loaded as it was last accessed by " 2495 "another system (host: %s hostid: 0x%lx). " 2496 "See: http://illumos.org/msg/ZFS-8000-EY", 2497 spa_name(spa), hostname, 2498 (unsigned long)hostid); 2499 return (SET_ERROR(EBADF)); 2500 } 2501 } 2502 if (nvlist_lookup_nvlist(spa->spa_config, 2503 ZPOOL_REWIND_POLICY, &policy) == 0) 2504 VERIFY(nvlist_add_nvlist(nvconfig, 2505 ZPOOL_REWIND_POLICY, policy) == 0); 2506 2507 spa_config_set(spa, nvconfig); 2508 spa_unload(spa); 2509 spa_deactivate(spa); 2510 spa_activate(spa, orig_mode); 2511 2512 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2513 } 2514 2515 /* Grab the secret checksum salt from the MOS. */ 2516 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2517 DMU_POOL_CHECKSUM_SALT, 1, 2518 sizeof (spa->spa_cksum_salt.zcs_bytes), 2519 spa->spa_cksum_salt.zcs_bytes); 2520 if (error == ENOENT) { 2521 /* Generate a new salt for subsequent use */ 2522 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2523 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2524 } else if (error != 0) { 2525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2526 } 2527 2528 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2529 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2530 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2531 if (error != 0) 2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2533 2534 /* 2535 * Load the bit that tells us to use the new accounting function 2536 * (raid-z deflation). If we have an older pool, this will not 2537 * be present. 2538 */ 2539 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2540 if (error != 0 && error != ENOENT) 2541 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2542 2543 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2544 &spa->spa_creation_version); 2545 if (error != 0 && error != ENOENT) 2546 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2547 2548 /* 2549 * Load the persistent error log. If we have an older pool, this will 2550 * not be present. 2551 */ 2552 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2553 if (error != 0 && error != ENOENT) 2554 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2555 2556 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2557 &spa->spa_errlog_scrub); 2558 if (error != 0 && error != ENOENT) 2559 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2560 2561 /* 2562 * Load the history object. If we have an older pool, this 2563 * will not be present. 2564 */ 2565 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2566 if (error != 0 && error != ENOENT) 2567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2568 2569 /* 2570 * If we're assembling the pool from the split-off vdevs of 2571 * an existing pool, we don't want to attach the spares & cache 2572 * devices. 2573 */ 2574 2575 /* 2576 * Load any hot spares for this pool. 2577 */ 2578 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2579 if (error != 0 && error != ENOENT) 2580 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2581 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2582 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2583 if (load_nvlist(spa, spa->spa_spares.sav_object, 2584 &spa->spa_spares.sav_config) != 0) 2585 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2586 2587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2588 spa_load_spares(spa); 2589 spa_config_exit(spa, SCL_ALL, FTAG); 2590 } else if (error == 0) { 2591 spa->spa_spares.sav_sync = B_TRUE; 2592 } 2593 2594 /* 2595 * Load any level 2 ARC devices for this pool. 2596 */ 2597 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2598 &spa->spa_l2cache.sav_object); 2599 if (error != 0 && error != ENOENT) 2600 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2601 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2602 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2603 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2604 &spa->spa_l2cache.sav_config) != 0) 2605 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2606 2607 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2608 spa_load_l2cache(spa); 2609 spa_config_exit(spa, SCL_ALL, FTAG); 2610 } else if (error == 0) { 2611 spa->spa_l2cache.sav_sync = B_TRUE; 2612 } 2613 2614 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2615 2616 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2617 if (error && error != ENOENT) 2618 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2619 2620 if (error == 0) { 2621 uint64_t autoreplace; 2622 2623 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2624 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2625 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2626 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2627 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2628 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2629 &spa->spa_dedup_ditto); 2630 2631 spa->spa_autoreplace = (autoreplace != 0); 2632 } 2633 2634 /* 2635 * If the 'autoreplace' property is set, then post a resource notifying 2636 * the ZFS DE that it should not issue any faults for unopenable 2637 * devices. We also iterate over the vdevs, and post a sysevent for any 2638 * unopenable vdevs so that the normal autoreplace handler can take 2639 * over. 2640 */ 2641 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2642 spa_check_removed(spa->spa_root_vdev); 2643 /* 2644 * For the import case, this is done in spa_import(), because 2645 * at this point we're using the spare definitions from 2646 * the MOS config, not necessarily from the userland config. 2647 */ 2648 if (state != SPA_LOAD_IMPORT) { 2649 spa_aux_check_removed(&spa->spa_spares); 2650 spa_aux_check_removed(&spa->spa_l2cache); 2651 } 2652 } 2653 2654 /* 2655 * Load the vdev state for all toplevel vdevs. 2656 */ 2657 vdev_load(rvd); 2658 2659 /* 2660 * Propagate the leaf DTLs we just loaded all the way up the tree. 2661 */ 2662 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2663 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2664 spa_config_exit(spa, SCL_ALL, FTAG); 2665 2666 /* 2667 * Load the DDTs (dedup tables). 2668 */ 2669 error = ddt_load(spa); 2670 if (error != 0) 2671 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2672 2673 spa_update_dspace(spa); 2674 2675 /* 2676 * Validate the config, using the MOS config to fill in any 2677 * information which might be missing. If we fail to validate 2678 * the config then declare the pool unfit for use. If we're 2679 * assembling a pool from a split, the log is not transferred 2680 * over. 2681 */ 2682 if (type != SPA_IMPORT_ASSEMBLE) { 2683 nvlist_t *nvconfig; 2684 2685 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2686 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2687 2688 if (!spa_config_valid(spa, nvconfig)) { 2689 nvlist_free(nvconfig); 2690 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2691 ENXIO)); 2692 } 2693 nvlist_free(nvconfig); 2694 2695 /* 2696 * Now that we've validated the config, check the state of the 2697 * root vdev. If it can't be opened, it indicates one or 2698 * more toplevel vdevs are faulted. 2699 */ 2700 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2701 return (SET_ERROR(ENXIO)); 2702 2703 if (spa_writeable(spa) && spa_check_logs(spa)) { 2704 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2705 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2706 } 2707 } 2708 2709 if (missing_feat_write) { 2710 ASSERT(state == SPA_LOAD_TRYIMPORT); 2711 2712 /* 2713 * At this point, we know that we can open the pool in 2714 * read-only mode but not read-write mode. We now have enough 2715 * information and can return to userland. 2716 */ 2717 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2718 } 2719 2720 /* 2721 * We've successfully opened the pool, verify that we're ready 2722 * to start pushing transactions. 2723 */ 2724 if (state != SPA_LOAD_TRYIMPORT) { 2725 if (error = spa_load_verify(spa)) 2726 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2727 error)); 2728 } 2729 2730 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2731 spa->spa_load_max_txg == UINT64_MAX)) { 2732 dmu_tx_t *tx; 2733 int need_update = B_FALSE; 2734 dsl_pool_t *dp = spa_get_dsl(spa); 2735 2736 ASSERT(state != SPA_LOAD_TRYIMPORT); 2737 2738 /* 2739 * Claim log blocks that haven't been committed yet. 2740 * This must all happen in a single txg. 2741 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2742 * invoked from zil_claim_log_block()'s i/o done callback. 2743 * Price of rollback is that we abandon the log. 2744 */ 2745 spa->spa_claiming = B_TRUE; 2746 2747 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2748 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2749 zil_claim, tx, DS_FIND_CHILDREN); 2750 dmu_tx_commit(tx); 2751 2752 spa->spa_claiming = B_FALSE; 2753 2754 spa_set_log_state(spa, SPA_LOG_GOOD); 2755 spa->spa_sync_on = B_TRUE; 2756 txg_sync_start(spa->spa_dsl_pool); 2757 2758 /* 2759 * Wait for all claims to sync. We sync up to the highest 2760 * claimed log block birth time so that claimed log blocks 2761 * don't appear to be from the future. spa_claim_max_txg 2762 * will have been set for us by either zil_check_log_chain() 2763 * (invoked from spa_check_logs()) or zil_claim() above. 2764 */ 2765 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2766 2767 /* 2768 * If the config cache is stale, or we have uninitialized 2769 * metaslabs (see spa_vdev_add()), then update the config. 2770 * 2771 * If this is a verbatim import, trust the current 2772 * in-core spa_config and update the disk labels. 2773 */ 2774 if (config_cache_txg != spa->spa_config_txg || 2775 state == SPA_LOAD_IMPORT || 2776 state == SPA_LOAD_RECOVER || 2777 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2778 need_update = B_TRUE; 2779 2780 for (int c = 0; c < rvd->vdev_children; c++) 2781 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2782 need_update = B_TRUE; 2783 2784 /* 2785 * Update the config cache asychronously in case we're the 2786 * root pool, in which case the config cache isn't writable yet. 2787 */ 2788 if (need_update) 2789 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2790 2791 /* 2792 * Check all DTLs to see if anything needs resilvering. 2793 */ 2794 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2795 vdev_resilver_needed(rvd, NULL, NULL)) 2796 spa_async_request(spa, SPA_ASYNC_RESILVER); 2797 2798 /* 2799 * Log the fact that we booted up (so that we can detect if 2800 * we rebooted in the middle of an operation). 2801 */ 2802 spa_history_log_version(spa, "open"); 2803 2804 /* 2805 * Delete any inconsistent datasets. 2806 */ 2807 (void) dmu_objset_find(spa_name(spa), 2808 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2809 2810 /* 2811 * Clean up any stale temporary dataset userrefs. 2812 */ 2813 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2814 } 2815 2816 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2817 2818 return (0); 2819 } 2820 2821 static int 2822 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2823 { 2824 int mode = spa->spa_mode; 2825 2826 spa_unload(spa); 2827 spa_deactivate(spa); 2828 2829 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2830 2831 spa_activate(spa, mode); 2832 spa_async_suspend(spa); 2833 2834 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2835 } 2836 2837 /* 2838 * If spa_load() fails this function will try loading prior txg's. If 2839 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2840 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2841 * function will not rewind the pool and will return the same error as 2842 * spa_load(). 2843 */ 2844 static int 2845 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2846 uint64_t max_request, int rewind_flags) 2847 { 2848 nvlist_t *loadinfo = NULL; 2849 nvlist_t *config = NULL; 2850 int load_error, rewind_error; 2851 uint64_t safe_rewind_txg; 2852 uint64_t min_txg; 2853 2854 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2855 spa->spa_load_max_txg = spa->spa_load_txg; 2856 spa_set_log_state(spa, SPA_LOG_CLEAR); 2857 } else { 2858 spa->spa_load_max_txg = max_request; 2859 if (max_request != UINT64_MAX) 2860 spa->spa_extreme_rewind = B_TRUE; 2861 } 2862 2863 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2864 mosconfig); 2865 if (load_error == 0) 2866 return (0); 2867 2868 if (spa->spa_root_vdev != NULL) 2869 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2870 2871 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2872 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2873 2874 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2875 nvlist_free(config); 2876 return (load_error); 2877 } 2878 2879 if (state == SPA_LOAD_RECOVER) { 2880 /* Price of rolling back is discarding txgs, including log */ 2881 spa_set_log_state(spa, SPA_LOG_CLEAR); 2882 } else { 2883 /* 2884 * If we aren't rolling back save the load info from our first 2885 * import attempt so that we can restore it after attempting 2886 * to rewind. 2887 */ 2888 loadinfo = spa->spa_load_info; 2889 spa->spa_load_info = fnvlist_alloc(); 2890 } 2891 2892 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2893 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2894 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2895 TXG_INITIAL : safe_rewind_txg; 2896 2897 /* 2898 * Continue as long as we're finding errors, we're still within 2899 * the acceptable rewind range, and we're still finding uberblocks 2900 */ 2901 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2902 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2903 if (spa->spa_load_max_txg < safe_rewind_txg) 2904 spa->spa_extreme_rewind = B_TRUE; 2905 rewind_error = spa_load_retry(spa, state, mosconfig); 2906 } 2907 2908 spa->spa_extreme_rewind = B_FALSE; 2909 spa->spa_load_max_txg = UINT64_MAX; 2910 2911 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2912 spa_config_set(spa, config); 2913 2914 if (state == SPA_LOAD_RECOVER) { 2915 ASSERT3P(loadinfo, ==, NULL); 2916 return (rewind_error); 2917 } else { 2918 /* Store the rewind info as part of the initial load info */ 2919 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2920 spa->spa_load_info); 2921 2922 /* Restore the initial load info */ 2923 fnvlist_free(spa->spa_load_info); 2924 spa->spa_load_info = loadinfo; 2925 2926 return (load_error); 2927 } 2928 } 2929 2930 /* 2931 * Pool Open/Import 2932 * 2933 * The import case is identical to an open except that the configuration is sent 2934 * down from userland, instead of grabbed from the configuration cache. For the 2935 * case of an open, the pool configuration will exist in the 2936 * POOL_STATE_UNINITIALIZED state. 2937 * 2938 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2939 * the same time open the pool, without having to keep around the spa_t in some 2940 * ambiguous state. 2941 */ 2942 static int 2943 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2944 nvlist_t **config) 2945 { 2946 spa_t *spa; 2947 spa_load_state_t state = SPA_LOAD_OPEN; 2948 int error; 2949 int locked = B_FALSE; 2950 2951 *spapp = NULL; 2952 2953 /* 2954 * As disgusting as this is, we need to support recursive calls to this 2955 * function because dsl_dir_open() is called during spa_load(), and ends 2956 * up calling spa_open() again. The real fix is to figure out how to 2957 * avoid dsl_dir_open() calling this in the first place. 2958 */ 2959 if (mutex_owner(&spa_namespace_lock) != curthread) { 2960 mutex_enter(&spa_namespace_lock); 2961 locked = B_TRUE; 2962 } 2963 2964 if ((spa = spa_lookup(pool)) == NULL) { 2965 if (locked) 2966 mutex_exit(&spa_namespace_lock); 2967 return (SET_ERROR(ENOENT)); 2968 } 2969 2970 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2971 zpool_rewind_policy_t policy; 2972 2973 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2974 &policy); 2975 if (policy.zrp_request & ZPOOL_DO_REWIND) 2976 state = SPA_LOAD_RECOVER; 2977 2978 spa_activate(spa, spa_mode_global); 2979 2980 if (state != SPA_LOAD_RECOVER) 2981 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2982 2983 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2984 policy.zrp_request); 2985 2986 if (error == EBADF) { 2987 /* 2988 * If vdev_validate() returns failure (indicated by 2989 * EBADF), it indicates that one of the vdevs indicates 2990 * that the pool has been exported or destroyed. If 2991 * this is the case, the config cache is out of sync and 2992 * we should remove the pool from the namespace. 2993 */ 2994 spa_unload(spa); 2995 spa_deactivate(spa); 2996 spa_config_sync(spa, B_TRUE, B_TRUE); 2997 spa_remove(spa); 2998 if (locked) 2999 mutex_exit(&spa_namespace_lock); 3000 return (SET_ERROR(ENOENT)); 3001 } 3002 3003 if (error) { 3004 /* 3005 * We can't open the pool, but we still have useful 3006 * information: the state of each vdev after the 3007 * attempted vdev_open(). Return this to the user. 3008 */ 3009 if (config != NULL && spa->spa_config) { 3010 VERIFY(nvlist_dup(spa->spa_config, config, 3011 KM_SLEEP) == 0); 3012 VERIFY(nvlist_add_nvlist(*config, 3013 ZPOOL_CONFIG_LOAD_INFO, 3014 spa->spa_load_info) == 0); 3015 } 3016 spa_unload(spa); 3017 spa_deactivate(spa); 3018 spa->spa_last_open_failed = error; 3019 if (locked) 3020 mutex_exit(&spa_namespace_lock); 3021 *spapp = NULL; 3022 return (error); 3023 } 3024 } 3025 3026 spa_open_ref(spa, tag); 3027 3028 if (config != NULL) 3029 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3030 3031 /* 3032 * If we've recovered the pool, pass back any information we 3033 * gathered while doing the load. 3034 */ 3035 if (state == SPA_LOAD_RECOVER) { 3036 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3037 spa->spa_load_info) == 0); 3038 } 3039 3040 if (locked) { 3041 spa->spa_last_open_failed = 0; 3042 spa->spa_last_ubsync_txg = 0; 3043 spa->spa_load_txg = 0; 3044 mutex_exit(&spa_namespace_lock); 3045 } 3046 3047 *spapp = spa; 3048 3049 return (0); 3050 } 3051 3052 int 3053 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3054 nvlist_t **config) 3055 { 3056 return (spa_open_common(name, spapp, tag, policy, config)); 3057 } 3058 3059 int 3060 spa_open(const char *name, spa_t **spapp, void *tag) 3061 { 3062 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3063 } 3064 3065 /* 3066 * Lookup the given spa_t, incrementing the inject count in the process, 3067 * preventing it from being exported or destroyed. 3068 */ 3069 spa_t * 3070 spa_inject_addref(char *name) 3071 { 3072 spa_t *spa; 3073 3074 mutex_enter(&spa_namespace_lock); 3075 if ((spa = spa_lookup(name)) == NULL) { 3076 mutex_exit(&spa_namespace_lock); 3077 return (NULL); 3078 } 3079 spa->spa_inject_ref++; 3080 mutex_exit(&spa_namespace_lock); 3081 3082 return (spa); 3083 } 3084 3085 void 3086 spa_inject_delref(spa_t *spa) 3087 { 3088 mutex_enter(&spa_namespace_lock); 3089 spa->spa_inject_ref--; 3090 mutex_exit(&spa_namespace_lock); 3091 } 3092 3093 /* 3094 * Add spares device information to the nvlist. 3095 */ 3096 static void 3097 spa_add_spares(spa_t *spa, nvlist_t *config) 3098 { 3099 nvlist_t **spares; 3100 uint_t i, nspares; 3101 nvlist_t *nvroot; 3102 uint64_t guid; 3103 vdev_stat_t *vs; 3104 uint_t vsc; 3105 uint64_t pool; 3106 3107 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3108 3109 if (spa->spa_spares.sav_count == 0) 3110 return; 3111 3112 VERIFY(nvlist_lookup_nvlist(config, 3113 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3114 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3115 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3116 if (nspares != 0) { 3117 VERIFY(nvlist_add_nvlist_array(nvroot, 3118 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3119 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3120 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3121 3122 /* 3123 * Go through and find any spares which have since been 3124 * repurposed as an active spare. If this is the case, update 3125 * their status appropriately. 3126 */ 3127 for (i = 0; i < nspares; i++) { 3128 VERIFY(nvlist_lookup_uint64(spares[i], 3129 ZPOOL_CONFIG_GUID, &guid) == 0); 3130 if (spa_spare_exists(guid, &pool, NULL) && 3131 pool != 0ULL) { 3132 VERIFY(nvlist_lookup_uint64_array( 3133 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3134 (uint64_t **)&vs, &vsc) == 0); 3135 vs->vs_state = VDEV_STATE_CANT_OPEN; 3136 vs->vs_aux = VDEV_AUX_SPARED; 3137 } 3138 } 3139 } 3140 } 3141 3142 /* 3143 * Add l2cache device information to the nvlist, including vdev stats. 3144 */ 3145 static void 3146 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3147 { 3148 nvlist_t **l2cache; 3149 uint_t i, j, nl2cache; 3150 nvlist_t *nvroot; 3151 uint64_t guid; 3152 vdev_t *vd; 3153 vdev_stat_t *vs; 3154 uint_t vsc; 3155 3156 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3157 3158 if (spa->spa_l2cache.sav_count == 0) 3159 return; 3160 3161 VERIFY(nvlist_lookup_nvlist(config, 3162 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3163 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3164 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3165 if (nl2cache != 0) { 3166 VERIFY(nvlist_add_nvlist_array(nvroot, 3167 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3168 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3169 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3170 3171 /* 3172 * Update level 2 cache device stats. 3173 */ 3174 3175 for (i = 0; i < nl2cache; i++) { 3176 VERIFY(nvlist_lookup_uint64(l2cache[i], 3177 ZPOOL_CONFIG_GUID, &guid) == 0); 3178 3179 vd = NULL; 3180 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3181 if (guid == 3182 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3183 vd = spa->spa_l2cache.sav_vdevs[j]; 3184 break; 3185 } 3186 } 3187 ASSERT(vd != NULL); 3188 3189 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3190 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3191 == 0); 3192 vdev_get_stats(vd, vs); 3193 } 3194 } 3195 } 3196 3197 static void 3198 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3199 { 3200 nvlist_t *features; 3201 zap_cursor_t zc; 3202 zap_attribute_t za; 3203 3204 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3205 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3206 3207 if (spa->spa_feat_for_read_obj != 0) { 3208 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3209 spa->spa_feat_for_read_obj); 3210 zap_cursor_retrieve(&zc, &za) == 0; 3211 zap_cursor_advance(&zc)) { 3212 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3213 za.za_num_integers == 1); 3214 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3215 za.za_first_integer)); 3216 } 3217 zap_cursor_fini(&zc); 3218 } 3219 3220 if (spa->spa_feat_for_write_obj != 0) { 3221 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3222 spa->spa_feat_for_write_obj); 3223 zap_cursor_retrieve(&zc, &za) == 0; 3224 zap_cursor_advance(&zc)) { 3225 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3226 za.za_num_integers == 1); 3227 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3228 za.za_first_integer)); 3229 } 3230 zap_cursor_fini(&zc); 3231 } 3232 3233 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3234 features) == 0); 3235 nvlist_free(features); 3236 } 3237 3238 int 3239 spa_get_stats(const char *name, nvlist_t **config, 3240 char *altroot, size_t buflen) 3241 { 3242 int error; 3243 spa_t *spa; 3244 3245 *config = NULL; 3246 error = spa_open_common(name, &spa, FTAG, NULL, config); 3247 3248 if (spa != NULL) { 3249 /* 3250 * This still leaves a window of inconsistency where the spares 3251 * or l2cache devices could change and the config would be 3252 * self-inconsistent. 3253 */ 3254 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3255 3256 if (*config != NULL) { 3257 uint64_t loadtimes[2]; 3258 3259 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3260 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3261 VERIFY(nvlist_add_uint64_array(*config, 3262 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3263 3264 VERIFY(nvlist_add_uint64(*config, 3265 ZPOOL_CONFIG_ERRCOUNT, 3266 spa_get_errlog_size(spa)) == 0); 3267 3268 if (spa_suspended(spa)) 3269 VERIFY(nvlist_add_uint64(*config, 3270 ZPOOL_CONFIG_SUSPENDED, 3271 spa->spa_failmode) == 0); 3272 3273 spa_add_spares(spa, *config); 3274 spa_add_l2cache(spa, *config); 3275 spa_add_feature_stats(spa, *config); 3276 } 3277 } 3278 3279 /* 3280 * We want to get the alternate root even for faulted pools, so we cheat 3281 * and call spa_lookup() directly. 3282 */ 3283 if (altroot) { 3284 if (spa == NULL) { 3285 mutex_enter(&spa_namespace_lock); 3286 spa = spa_lookup(name); 3287 if (spa) 3288 spa_altroot(spa, altroot, buflen); 3289 else 3290 altroot[0] = '\0'; 3291 spa = NULL; 3292 mutex_exit(&spa_namespace_lock); 3293 } else { 3294 spa_altroot(spa, altroot, buflen); 3295 } 3296 } 3297 3298 if (spa != NULL) { 3299 spa_config_exit(spa, SCL_CONFIG, FTAG); 3300 spa_close(spa, FTAG); 3301 } 3302 3303 return (error); 3304 } 3305 3306 /* 3307 * Validate that the auxiliary device array is well formed. We must have an 3308 * array of nvlists, each which describes a valid leaf vdev. If this is an 3309 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3310 * specified, as long as they are well-formed. 3311 */ 3312 static int 3313 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3314 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3315 vdev_labeltype_t label) 3316 { 3317 nvlist_t **dev; 3318 uint_t i, ndev; 3319 vdev_t *vd; 3320 int error; 3321 3322 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3323 3324 /* 3325 * It's acceptable to have no devs specified. 3326 */ 3327 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3328 return (0); 3329 3330 if (ndev == 0) 3331 return (SET_ERROR(EINVAL)); 3332 3333 /* 3334 * Make sure the pool is formatted with a version that supports this 3335 * device type. 3336 */ 3337 if (spa_version(spa) < version) 3338 return (SET_ERROR(ENOTSUP)); 3339 3340 /* 3341 * Set the pending device list so we correctly handle device in-use 3342 * checking. 3343 */ 3344 sav->sav_pending = dev; 3345 sav->sav_npending = ndev; 3346 3347 for (i = 0; i < ndev; i++) { 3348 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3349 mode)) != 0) 3350 goto out; 3351 3352 if (!vd->vdev_ops->vdev_op_leaf) { 3353 vdev_free(vd); 3354 error = SET_ERROR(EINVAL); 3355 goto out; 3356 } 3357 3358 /* 3359 * The L2ARC currently only supports disk devices in 3360 * kernel context. For user-level testing, we allow it. 3361 */ 3362 #ifdef _KERNEL 3363 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3364 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3365 error = SET_ERROR(ENOTBLK); 3366 vdev_free(vd); 3367 goto out; 3368 } 3369 #endif 3370 vd->vdev_top = vd; 3371 3372 if ((error = vdev_open(vd)) == 0 && 3373 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3374 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3375 vd->vdev_guid) == 0); 3376 } 3377 3378 vdev_free(vd); 3379 3380 if (error && 3381 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3382 goto out; 3383 else 3384 error = 0; 3385 } 3386 3387 out: 3388 sav->sav_pending = NULL; 3389 sav->sav_npending = 0; 3390 return (error); 3391 } 3392 3393 static int 3394 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3395 { 3396 int error; 3397 3398 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3399 3400 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3401 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3402 VDEV_LABEL_SPARE)) != 0) { 3403 return (error); 3404 } 3405 3406 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3407 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3408 VDEV_LABEL_L2CACHE)); 3409 } 3410 3411 static void 3412 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3413 const char *config) 3414 { 3415 int i; 3416 3417 if (sav->sav_config != NULL) { 3418 nvlist_t **olddevs; 3419 uint_t oldndevs; 3420 nvlist_t **newdevs; 3421 3422 /* 3423 * Generate new dev list by concatentating with the 3424 * current dev list. 3425 */ 3426 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3427 &olddevs, &oldndevs) == 0); 3428 3429 newdevs = kmem_alloc(sizeof (void *) * 3430 (ndevs + oldndevs), KM_SLEEP); 3431 for (i = 0; i < oldndevs; i++) 3432 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3433 KM_SLEEP) == 0); 3434 for (i = 0; i < ndevs; i++) 3435 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3436 KM_SLEEP) == 0); 3437 3438 VERIFY(nvlist_remove(sav->sav_config, config, 3439 DATA_TYPE_NVLIST_ARRAY) == 0); 3440 3441 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3442 config, newdevs, ndevs + oldndevs) == 0); 3443 for (i = 0; i < oldndevs + ndevs; i++) 3444 nvlist_free(newdevs[i]); 3445 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3446 } else { 3447 /* 3448 * Generate a new dev list. 3449 */ 3450 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3451 KM_SLEEP) == 0); 3452 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3453 devs, ndevs) == 0); 3454 } 3455 } 3456 3457 /* 3458 * Stop and drop level 2 ARC devices 3459 */ 3460 void 3461 spa_l2cache_drop(spa_t *spa) 3462 { 3463 vdev_t *vd; 3464 int i; 3465 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3466 3467 for (i = 0; i < sav->sav_count; i++) { 3468 uint64_t pool; 3469 3470 vd = sav->sav_vdevs[i]; 3471 ASSERT(vd != NULL); 3472 3473 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3474 pool != 0ULL && l2arc_vdev_present(vd)) 3475 l2arc_remove_vdev(vd); 3476 } 3477 } 3478 3479 /* 3480 * Pool Creation 3481 */ 3482 int 3483 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3484 nvlist_t *zplprops) 3485 { 3486 spa_t *spa; 3487 char *altroot = NULL; 3488 vdev_t *rvd; 3489 dsl_pool_t *dp; 3490 dmu_tx_t *tx; 3491 int error = 0; 3492 uint64_t txg = TXG_INITIAL; 3493 nvlist_t **spares, **l2cache; 3494 uint_t nspares, nl2cache; 3495 uint64_t version, obj; 3496 boolean_t has_features; 3497 3498 /* 3499 * If this pool already exists, return failure. 3500 */ 3501 mutex_enter(&spa_namespace_lock); 3502 if (spa_lookup(pool) != NULL) { 3503 mutex_exit(&spa_namespace_lock); 3504 return (SET_ERROR(EEXIST)); 3505 } 3506 3507 /* 3508 * Allocate a new spa_t structure. 3509 */ 3510 (void) nvlist_lookup_string(props, 3511 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3512 spa = spa_add(pool, NULL, altroot); 3513 spa_activate(spa, spa_mode_global); 3514 3515 if (props && (error = spa_prop_validate(spa, props))) { 3516 spa_deactivate(spa); 3517 spa_remove(spa); 3518 mutex_exit(&spa_namespace_lock); 3519 return (error); 3520 } 3521 3522 has_features = B_FALSE; 3523 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3524 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3525 if (zpool_prop_feature(nvpair_name(elem))) 3526 has_features = B_TRUE; 3527 } 3528 3529 if (has_features || nvlist_lookup_uint64(props, 3530 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3531 version = SPA_VERSION; 3532 } 3533 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3534 3535 spa->spa_first_txg = txg; 3536 spa->spa_uberblock.ub_txg = txg - 1; 3537 spa->spa_uberblock.ub_version = version; 3538 spa->spa_ubsync = spa->spa_uberblock; 3539 3540 /* 3541 * Create "The Godfather" zio to hold all async IOs 3542 */ 3543 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3544 KM_SLEEP); 3545 for (int i = 0; i < max_ncpus; i++) { 3546 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3547 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3548 ZIO_FLAG_GODFATHER); 3549 } 3550 3551 /* 3552 * Create the root vdev. 3553 */ 3554 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3555 3556 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3557 3558 ASSERT(error != 0 || rvd != NULL); 3559 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3560 3561 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3562 error = SET_ERROR(EINVAL); 3563 3564 if (error == 0 && 3565 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3566 (error = spa_validate_aux(spa, nvroot, txg, 3567 VDEV_ALLOC_ADD)) == 0) { 3568 for (int c = 0; c < rvd->vdev_children; c++) { 3569 vdev_metaslab_set_size(rvd->vdev_child[c]); 3570 vdev_expand(rvd->vdev_child[c], txg); 3571 } 3572 } 3573 3574 spa_config_exit(spa, SCL_ALL, FTAG); 3575 3576 if (error != 0) { 3577 spa_unload(spa); 3578 spa_deactivate(spa); 3579 spa_remove(spa); 3580 mutex_exit(&spa_namespace_lock); 3581 return (error); 3582 } 3583 3584 /* 3585 * Get the list of spares, if specified. 3586 */ 3587 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3588 &spares, &nspares) == 0) { 3589 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3590 KM_SLEEP) == 0); 3591 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3592 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3593 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3594 spa_load_spares(spa); 3595 spa_config_exit(spa, SCL_ALL, FTAG); 3596 spa->spa_spares.sav_sync = B_TRUE; 3597 } 3598 3599 /* 3600 * Get the list of level 2 cache devices, if specified. 3601 */ 3602 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3603 &l2cache, &nl2cache) == 0) { 3604 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3605 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3606 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3607 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3608 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3609 spa_load_l2cache(spa); 3610 spa_config_exit(spa, SCL_ALL, FTAG); 3611 spa->spa_l2cache.sav_sync = B_TRUE; 3612 } 3613 3614 spa->spa_is_initializing = B_TRUE; 3615 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3616 spa->spa_meta_objset = dp->dp_meta_objset; 3617 spa->spa_is_initializing = B_FALSE; 3618 3619 /* 3620 * Create DDTs (dedup tables). 3621 */ 3622 ddt_create(spa); 3623 3624 spa_update_dspace(spa); 3625 3626 tx = dmu_tx_create_assigned(dp, txg); 3627 3628 /* 3629 * Create the pool config object. 3630 */ 3631 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3632 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3633 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3634 3635 if (zap_add(spa->spa_meta_objset, 3636 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3637 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3638 cmn_err(CE_PANIC, "failed to add pool config"); 3639 } 3640 3641 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3642 spa_feature_create_zap_objects(spa, tx); 3643 3644 if (zap_add(spa->spa_meta_objset, 3645 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3646 sizeof (uint64_t), 1, &version, tx) != 0) { 3647 cmn_err(CE_PANIC, "failed to add pool version"); 3648 } 3649 3650 /* Newly created pools with the right version are always deflated. */ 3651 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3652 spa->spa_deflate = TRUE; 3653 if (zap_add(spa->spa_meta_objset, 3654 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3655 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3656 cmn_err(CE_PANIC, "failed to add deflate"); 3657 } 3658 } 3659 3660 /* 3661 * Create the deferred-free bpobj. Turn off compression 3662 * because sync-to-convergence takes longer if the blocksize 3663 * keeps changing. 3664 */ 3665 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3666 dmu_object_set_compress(spa->spa_meta_objset, obj, 3667 ZIO_COMPRESS_OFF, tx); 3668 if (zap_add(spa->spa_meta_objset, 3669 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3670 sizeof (uint64_t), 1, &obj, tx) != 0) { 3671 cmn_err(CE_PANIC, "failed to add bpobj"); 3672 } 3673 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3674 spa->spa_meta_objset, obj)); 3675 3676 /* 3677 * Create the pool's history object. 3678 */ 3679 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3680 spa_history_create_obj(spa, tx); 3681 3682 /* 3683 * Generate some random noise for salted checksums to operate on. 3684 */ 3685 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3686 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3687 3688 /* 3689 * Set pool properties. 3690 */ 3691 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3692 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3693 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3694 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3695 3696 if (props != NULL) { 3697 spa_configfile_set(spa, props, B_FALSE); 3698 spa_sync_props(props, tx); 3699 } 3700 3701 dmu_tx_commit(tx); 3702 3703 spa->spa_sync_on = B_TRUE; 3704 txg_sync_start(spa->spa_dsl_pool); 3705 3706 /* 3707 * We explicitly wait for the first transaction to complete so that our 3708 * bean counters are appropriately updated. 3709 */ 3710 txg_wait_synced(spa->spa_dsl_pool, txg); 3711 3712 spa_config_sync(spa, B_FALSE, B_TRUE); 3713 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3714 3715 spa_history_log_version(spa, "create"); 3716 3717 /* 3718 * Don't count references from objsets that are already closed 3719 * and are making their way through the eviction process. 3720 */ 3721 spa_evicting_os_wait(spa); 3722 spa->spa_minref = refcount_count(&spa->spa_refcount); 3723 3724 mutex_exit(&spa_namespace_lock); 3725 3726 return (0); 3727 } 3728 3729 #ifdef _KERNEL 3730 /* 3731 * Get the root pool information from the root disk, then import the root pool 3732 * during the system boot up time. 3733 */ 3734 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3735 3736 static nvlist_t * 3737 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3738 { 3739 nvlist_t *config; 3740 nvlist_t *nvtop, *nvroot; 3741 uint64_t pgid; 3742 3743 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3744 return (NULL); 3745 3746 /* 3747 * Add this top-level vdev to the child array. 3748 */ 3749 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3750 &nvtop) == 0); 3751 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3752 &pgid) == 0); 3753 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3754 3755 /* 3756 * Put this pool's top-level vdevs into a root vdev. 3757 */ 3758 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3759 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3760 VDEV_TYPE_ROOT) == 0); 3761 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3762 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3763 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3764 &nvtop, 1) == 0); 3765 3766 /* 3767 * Replace the existing vdev_tree with the new root vdev in 3768 * this pool's configuration (remove the old, add the new). 3769 */ 3770 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3771 nvlist_free(nvroot); 3772 return (config); 3773 } 3774 3775 /* 3776 * Walk the vdev tree and see if we can find a device with "better" 3777 * configuration. A configuration is "better" if the label on that 3778 * device has a more recent txg. 3779 */ 3780 static void 3781 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3782 { 3783 for (int c = 0; c < vd->vdev_children; c++) 3784 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3785 3786 if (vd->vdev_ops->vdev_op_leaf) { 3787 nvlist_t *label; 3788 uint64_t label_txg; 3789 3790 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3791 &label) != 0) 3792 return; 3793 3794 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3795 &label_txg) == 0); 3796 3797 /* 3798 * Do we have a better boot device? 3799 */ 3800 if (label_txg > *txg) { 3801 *txg = label_txg; 3802 *avd = vd; 3803 } 3804 nvlist_free(label); 3805 } 3806 } 3807 3808 /* 3809 * Import a root pool. 3810 * 3811 * For x86. devpath_list will consist of devid and/or physpath name of 3812 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3813 * The GRUB "findroot" command will return the vdev we should boot. 3814 * 3815 * For Sparc, devpath_list consists the physpath name of the booting device 3816 * no matter the rootpool is a single device pool or a mirrored pool. 3817 * e.g. 3818 * "/pci@1f,0/ide@d/disk@0,0:a" 3819 */ 3820 int 3821 spa_import_rootpool(char *devpath, char *devid) 3822 { 3823 spa_t *spa; 3824 vdev_t *rvd, *bvd, *avd = NULL; 3825 nvlist_t *config, *nvtop; 3826 uint64_t guid, txg; 3827 char *pname; 3828 int error; 3829 3830 /* 3831 * Read the label from the boot device and generate a configuration. 3832 */ 3833 config = spa_generate_rootconf(devpath, devid, &guid); 3834 #if defined(_OBP) && defined(_KERNEL) 3835 if (config == NULL) { 3836 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3837 /* iscsi boot */ 3838 get_iscsi_bootpath_phy(devpath); 3839 config = spa_generate_rootconf(devpath, devid, &guid); 3840 } 3841 } 3842 #endif 3843 if (config == NULL) { 3844 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3845 devpath); 3846 return (SET_ERROR(EIO)); 3847 } 3848 3849 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3850 &pname) == 0); 3851 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3852 3853 mutex_enter(&spa_namespace_lock); 3854 if ((spa = spa_lookup(pname)) != NULL) { 3855 /* 3856 * Remove the existing root pool from the namespace so that we 3857 * can replace it with the correct config we just read in. 3858 */ 3859 spa_remove(spa); 3860 } 3861 3862 spa = spa_add(pname, config, NULL); 3863 spa->spa_is_root = B_TRUE; 3864 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3865 3866 /* 3867 * Build up a vdev tree based on the boot device's label config. 3868 */ 3869 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3870 &nvtop) == 0); 3871 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3872 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3873 VDEV_ALLOC_ROOTPOOL); 3874 spa_config_exit(spa, SCL_ALL, FTAG); 3875 if (error) { 3876 mutex_exit(&spa_namespace_lock); 3877 nvlist_free(config); 3878 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3879 pname); 3880 return (error); 3881 } 3882 3883 /* 3884 * Get the boot vdev. 3885 */ 3886 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3887 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3888 (u_longlong_t)guid); 3889 error = SET_ERROR(ENOENT); 3890 goto out; 3891 } 3892 3893 /* 3894 * Determine if there is a better boot device. 3895 */ 3896 avd = bvd; 3897 spa_alt_rootvdev(rvd, &avd, &txg); 3898 if (avd != bvd) { 3899 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3900 "try booting from '%s'", avd->vdev_path); 3901 error = SET_ERROR(EINVAL); 3902 goto out; 3903 } 3904 3905 /* 3906 * If the boot device is part of a spare vdev then ensure that 3907 * we're booting off the active spare. 3908 */ 3909 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3910 !bvd->vdev_isspare) { 3911 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3912 "try booting from '%s'", 3913 bvd->vdev_parent-> 3914 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3915 error = SET_ERROR(EINVAL); 3916 goto out; 3917 } 3918 3919 error = 0; 3920 out: 3921 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3922 vdev_free(rvd); 3923 spa_config_exit(spa, SCL_ALL, FTAG); 3924 mutex_exit(&spa_namespace_lock); 3925 3926 nvlist_free(config); 3927 return (error); 3928 } 3929 3930 #endif 3931 3932 /* 3933 * Import a non-root pool into the system. 3934 */ 3935 int 3936 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3937 { 3938 spa_t *spa; 3939 char *altroot = NULL; 3940 spa_load_state_t state = SPA_LOAD_IMPORT; 3941 zpool_rewind_policy_t policy; 3942 uint64_t mode = spa_mode_global; 3943 uint64_t readonly = B_FALSE; 3944 int error; 3945 nvlist_t *nvroot; 3946 nvlist_t **spares, **l2cache; 3947 uint_t nspares, nl2cache; 3948 3949 /* 3950 * If a pool with this name exists, return failure. 3951 */ 3952 mutex_enter(&spa_namespace_lock); 3953 if (spa_lookup(pool) != NULL) { 3954 mutex_exit(&spa_namespace_lock); 3955 return (SET_ERROR(EEXIST)); 3956 } 3957 3958 /* 3959 * Create and initialize the spa structure. 3960 */ 3961 (void) nvlist_lookup_string(props, 3962 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3963 (void) nvlist_lookup_uint64(props, 3964 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3965 if (readonly) 3966 mode = FREAD; 3967 spa = spa_add(pool, config, altroot); 3968 spa->spa_import_flags = flags; 3969 3970 /* 3971 * Verbatim import - Take a pool and insert it into the namespace 3972 * as if it had been loaded at boot. 3973 */ 3974 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3975 if (props != NULL) 3976 spa_configfile_set(spa, props, B_FALSE); 3977 3978 spa_config_sync(spa, B_FALSE, B_TRUE); 3979 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 3980 3981 mutex_exit(&spa_namespace_lock); 3982 return (0); 3983 } 3984 3985 spa_activate(spa, mode); 3986 3987 /* 3988 * Don't start async tasks until we know everything is healthy. 3989 */ 3990 spa_async_suspend(spa); 3991 3992 zpool_get_rewind_policy(config, &policy); 3993 if (policy.zrp_request & ZPOOL_DO_REWIND) 3994 state = SPA_LOAD_RECOVER; 3995 3996 /* 3997 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3998 * because the user-supplied config is actually the one to trust when 3999 * doing an import. 4000 */ 4001 if (state != SPA_LOAD_RECOVER) 4002 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4003 4004 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4005 policy.zrp_request); 4006 4007 /* 4008 * Propagate anything learned while loading the pool and pass it 4009 * back to caller (i.e. rewind info, missing devices, etc). 4010 */ 4011 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4012 spa->spa_load_info) == 0); 4013 4014 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4015 /* 4016 * Toss any existing sparelist, as it doesn't have any validity 4017 * anymore, and conflicts with spa_has_spare(). 4018 */ 4019 if (spa->spa_spares.sav_config) { 4020 nvlist_free(spa->spa_spares.sav_config); 4021 spa->spa_spares.sav_config = NULL; 4022 spa_load_spares(spa); 4023 } 4024 if (spa->spa_l2cache.sav_config) { 4025 nvlist_free(spa->spa_l2cache.sav_config); 4026 spa->spa_l2cache.sav_config = NULL; 4027 spa_load_l2cache(spa); 4028 } 4029 4030 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4031 &nvroot) == 0); 4032 if (error == 0) 4033 error = spa_validate_aux(spa, nvroot, -1ULL, 4034 VDEV_ALLOC_SPARE); 4035 if (error == 0) 4036 error = spa_validate_aux(spa, nvroot, -1ULL, 4037 VDEV_ALLOC_L2CACHE); 4038 spa_config_exit(spa, SCL_ALL, FTAG); 4039 4040 if (props != NULL) 4041 spa_configfile_set(spa, props, B_FALSE); 4042 4043 if (error != 0 || (props && spa_writeable(spa) && 4044 (error = spa_prop_set(spa, props)))) { 4045 spa_unload(spa); 4046 spa_deactivate(spa); 4047 spa_remove(spa); 4048 mutex_exit(&spa_namespace_lock); 4049 return (error); 4050 } 4051 4052 spa_async_resume(spa); 4053 4054 /* 4055 * Override any spares and level 2 cache devices as specified by 4056 * the user, as these may have correct device names/devids, etc. 4057 */ 4058 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4059 &spares, &nspares) == 0) { 4060 if (spa->spa_spares.sav_config) 4061 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4062 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4063 else 4064 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4065 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4066 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4067 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4068 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4069 spa_load_spares(spa); 4070 spa_config_exit(spa, SCL_ALL, FTAG); 4071 spa->spa_spares.sav_sync = B_TRUE; 4072 } 4073 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4074 &l2cache, &nl2cache) == 0) { 4075 if (spa->spa_l2cache.sav_config) 4076 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4077 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4078 else 4079 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4080 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4081 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4082 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4083 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4084 spa_load_l2cache(spa); 4085 spa_config_exit(spa, SCL_ALL, FTAG); 4086 spa->spa_l2cache.sav_sync = B_TRUE; 4087 } 4088 4089 /* 4090 * Check for any removed devices. 4091 */ 4092 if (spa->spa_autoreplace) { 4093 spa_aux_check_removed(&spa->spa_spares); 4094 spa_aux_check_removed(&spa->spa_l2cache); 4095 } 4096 4097 if (spa_writeable(spa)) { 4098 /* 4099 * Update the config cache to include the newly-imported pool. 4100 */ 4101 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4102 } 4103 4104 /* 4105 * It's possible that the pool was expanded while it was exported. 4106 * We kick off an async task to handle this for us. 4107 */ 4108 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4109 4110 spa_history_log_version(spa, "import"); 4111 4112 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4113 4114 mutex_exit(&spa_namespace_lock); 4115 4116 return (0); 4117 } 4118 4119 nvlist_t * 4120 spa_tryimport(nvlist_t *tryconfig) 4121 { 4122 nvlist_t *config = NULL; 4123 char *poolname; 4124 spa_t *spa; 4125 uint64_t state; 4126 int error; 4127 4128 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4129 return (NULL); 4130 4131 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4132 return (NULL); 4133 4134 /* 4135 * Create and initialize the spa structure. 4136 */ 4137 mutex_enter(&spa_namespace_lock); 4138 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4139 spa_activate(spa, FREAD); 4140 4141 /* 4142 * Pass off the heavy lifting to spa_load(). 4143 * Pass TRUE for mosconfig because the user-supplied config 4144 * is actually the one to trust when doing an import. 4145 */ 4146 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4147 4148 /* 4149 * If 'tryconfig' was at least parsable, return the current config. 4150 */ 4151 if (spa->spa_root_vdev != NULL) { 4152 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4153 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4154 poolname) == 0); 4155 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4156 state) == 0); 4157 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4158 spa->spa_uberblock.ub_timestamp) == 0); 4159 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4160 spa->spa_load_info) == 0); 4161 4162 /* 4163 * If the bootfs property exists on this pool then we 4164 * copy it out so that external consumers can tell which 4165 * pools are bootable. 4166 */ 4167 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4168 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4169 4170 /* 4171 * We have to play games with the name since the 4172 * pool was opened as TRYIMPORT_NAME. 4173 */ 4174 if (dsl_dsobj_to_dsname(spa_name(spa), 4175 spa->spa_bootfs, tmpname) == 0) { 4176 char *cp; 4177 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4178 4179 cp = strchr(tmpname, '/'); 4180 if (cp == NULL) { 4181 (void) strlcpy(dsname, tmpname, 4182 MAXPATHLEN); 4183 } else { 4184 (void) snprintf(dsname, MAXPATHLEN, 4185 "%s/%s", poolname, ++cp); 4186 } 4187 VERIFY(nvlist_add_string(config, 4188 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4189 kmem_free(dsname, MAXPATHLEN); 4190 } 4191 kmem_free(tmpname, MAXPATHLEN); 4192 } 4193 4194 /* 4195 * Add the list of hot spares and level 2 cache devices. 4196 */ 4197 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4198 spa_add_spares(spa, config); 4199 spa_add_l2cache(spa, config); 4200 spa_config_exit(spa, SCL_CONFIG, FTAG); 4201 } 4202 4203 spa_unload(spa); 4204 spa_deactivate(spa); 4205 spa_remove(spa); 4206 mutex_exit(&spa_namespace_lock); 4207 4208 return (config); 4209 } 4210 4211 /* 4212 * Pool export/destroy 4213 * 4214 * The act of destroying or exporting a pool is very simple. We make sure there 4215 * is no more pending I/O and any references to the pool are gone. Then, we 4216 * update the pool state and sync all the labels to disk, removing the 4217 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4218 * we don't sync the labels or remove the configuration cache. 4219 */ 4220 static int 4221 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4222 boolean_t force, boolean_t hardforce) 4223 { 4224 spa_t *spa; 4225 4226 if (oldconfig) 4227 *oldconfig = NULL; 4228 4229 if (!(spa_mode_global & FWRITE)) 4230 return (SET_ERROR(EROFS)); 4231 4232 mutex_enter(&spa_namespace_lock); 4233 if ((spa = spa_lookup(pool)) == NULL) { 4234 mutex_exit(&spa_namespace_lock); 4235 return (SET_ERROR(ENOENT)); 4236 } 4237 4238 /* 4239 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4240 * reacquire the namespace lock, and see if we can export. 4241 */ 4242 spa_open_ref(spa, FTAG); 4243 mutex_exit(&spa_namespace_lock); 4244 spa_async_suspend(spa); 4245 mutex_enter(&spa_namespace_lock); 4246 spa_close(spa, FTAG); 4247 4248 /* 4249 * The pool will be in core if it's openable, 4250 * in which case we can modify its state. 4251 */ 4252 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4253 /* 4254 * Objsets may be open only because they're dirty, so we 4255 * have to force it to sync before checking spa_refcnt. 4256 */ 4257 txg_wait_synced(spa->spa_dsl_pool, 0); 4258 spa_evicting_os_wait(spa); 4259 4260 /* 4261 * A pool cannot be exported or destroyed if there are active 4262 * references. If we are resetting a pool, allow references by 4263 * fault injection handlers. 4264 */ 4265 if (!spa_refcount_zero(spa) || 4266 (spa->spa_inject_ref != 0 && 4267 new_state != POOL_STATE_UNINITIALIZED)) { 4268 spa_async_resume(spa); 4269 mutex_exit(&spa_namespace_lock); 4270 return (SET_ERROR(EBUSY)); 4271 } 4272 4273 /* 4274 * A pool cannot be exported if it has an active shared spare. 4275 * This is to prevent other pools stealing the active spare 4276 * from an exported pool. At user's own will, such pool can 4277 * be forcedly exported. 4278 */ 4279 if (!force && new_state == POOL_STATE_EXPORTED && 4280 spa_has_active_shared_spare(spa)) { 4281 spa_async_resume(spa); 4282 mutex_exit(&spa_namespace_lock); 4283 return (SET_ERROR(EXDEV)); 4284 } 4285 4286 /* 4287 * We want this to be reflected on every label, 4288 * so mark them all dirty. spa_unload() will do the 4289 * final sync that pushes these changes out. 4290 */ 4291 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4292 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4293 spa->spa_state = new_state; 4294 spa->spa_final_txg = spa_last_synced_txg(spa) + 4295 TXG_DEFER_SIZE + 1; 4296 vdev_config_dirty(spa->spa_root_vdev); 4297 spa_config_exit(spa, SCL_ALL, FTAG); 4298 } 4299 } 4300 4301 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4302 4303 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4304 spa_unload(spa); 4305 spa_deactivate(spa); 4306 } 4307 4308 if (oldconfig && spa->spa_config) 4309 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4310 4311 if (new_state != POOL_STATE_UNINITIALIZED) { 4312 if (!hardforce) 4313 spa_config_sync(spa, B_TRUE, B_TRUE); 4314 spa_remove(spa); 4315 } 4316 mutex_exit(&spa_namespace_lock); 4317 4318 return (0); 4319 } 4320 4321 /* 4322 * Destroy a storage pool. 4323 */ 4324 int 4325 spa_destroy(char *pool) 4326 { 4327 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4328 B_FALSE, B_FALSE)); 4329 } 4330 4331 /* 4332 * Export a storage pool. 4333 */ 4334 int 4335 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4336 boolean_t hardforce) 4337 { 4338 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4339 force, hardforce)); 4340 } 4341 4342 /* 4343 * Similar to spa_export(), this unloads the spa_t without actually removing it 4344 * from the namespace in any way. 4345 */ 4346 int 4347 spa_reset(char *pool) 4348 { 4349 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4350 B_FALSE, B_FALSE)); 4351 } 4352 4353 /* 4354 * ========================================================================== 4355 * Device manipulation 4356 * ========================================================================== 4357 */ 4358 4359 /* 4360 * Add a device to a storage pool. 4361 */ 4362 int 4363 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4364 { 4365 uint64_t txg, id; 4366 int error; 4367 vdev_t *rvd = spa->spa_root_vdev; 4368 vdev_t *vd, *tvd; 4369 nvlist_t **spares, **l2cache; 4370 uint_t nspares, nl2cache; 4371 4372 ASSERT(spa_writeable(spa)); 4373 4374 txg = spa_vdev_enter(spa); 4375 4376 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4377 VDEV_ALLOC_ADD)) != 0) 4378 return (spa_vdev_exit(spa, NULL, txg, error)); 4379 4380 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4381 4382 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4383 &nspares) != 0) 4384 nspares = 0; 4385 4386 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4387 &nl2cache) != 0) 4388 nl2cache = 0; 4389 4390 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4391 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4392 4393 if (vd->vdev_children != 0 && 4394 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4395 return (spa_vdev_exit(spa, vd, txg, error)); 4396 4397 /* 4398 * We must validate the spares and l2cache devices after checking the 4399 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4400 */ 4401 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4402 return (spa_vdev_exit(spa, vd, txg, error)); 4403 4404 /* 4405 * Transfer each new top-level vdev from vd to rvd. 4406 */ 4407 for (int c = 0; c < vd->vdev_children; c++) { 4408 4409 /* 4410 * Set the vdev id to the first hole, if one exists. 4411 */ 4412 for (id = 0; id < rvd->vdev_children; id++) { 4413 if (rvd->vdev_child[id]->vdev_ishole) { 4414 vdev_free(rvd->vdev_child[id]); 4415 break; 4416 } 4417 } 4418 tvd = vd->vdev_child[c]; 4419 vdev_remove_child(vd, tvd); 4420 tvd->vdev_id = id; 4421 vdev_add_child(rvd, tvd); 4422 vdev_config_dirty(tvd); 4423 } 4424 4425 if (nspares != 0) { 4426 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4427 ZPOOL_CONFIG_SPARES); 4428 spa_load_spares(spa); 4429 spa->spa_spares.sav_sync = B_TRUE; 4430 } 4431 4432 if (nl2cache != 0) { 4433 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4434 ZPOOL_CONFIG_L2CACHE); 4435 spa_load_l2cache(spa); 4436 spa->spa_l2cache.sav_sync = B_TRUE; 4437 } 4438 4439 /* 4440 * We have to be careful when adding new vdevs to an existing pool. 4441 * If other threads start allocating from these vdevs before we 4442 * sync the config cache, and we lose power, then upon reboot we may 4443 * fail to open the pool because there are DVAs that the config cache 4444 * can't translate. Therefore, we first add the vdevs without 4445 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4446 * and then let spa_config_update() initialize the new metaslabs. 4447 * 4448 * spa_load() checks for added-but-not-initialized vdevs, so that 4449 * if we lose power at any point in this sequence, the remaining 4450 * steps will be completed the next time we load the pool. 4451 */ 4452 (void) spa_vdev_exit(spa, vd, txg, 0); 4453 4454 mutex_enter(&spa_namespace_lock); 4455 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4456 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4457 mutex_exit(&spa_namespace_lock); 4458 4459 return (0); 4460 } 4461 4462 /* 4463 * Attach a device to a mirror. The arguments are the path to any device 4464 * in the mirror, and the nvroot for the new device. If the path specifies 4465 * a device that is not mirrored, we automatically insert the mirror vdev. 4466 * 4467 * If 'replacing' is specified, the new device is intended to replace the 4468 * existing device; in this case the two devices are made into their own 4469 * mirror using the 'replacing' vdev, which is functionally identical to 4470 * the mirror vdev (it actually reuses all the same ops) but has a few 4471 * extra rules: you can't attach to it after it's been created, and upon 4472 * completion of resilvering, the first disk (the one being replaced) 4473 * is automatically detached. 4474 */ 4475 int 4476 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4477 { 4478 uint64_t txg, dtl_max_txg; 4479 vdev_t *rvd = spa->spa_root_vdev; 4480 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4481 vdev_ops_t *pvops; 4482 char *oldvdpath, *newvdpath; 4483 int newvd_isspare; 4484 int error; 4485 4486 ASSERT(spa_writeable(spa)); 4487 4488 txg = spa_vdev_enter(spa); 4489 4490 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4491 4492 if (oldvd == NULL) 4493 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4494 4495 if (!oldvd->vdev_ops->vdev_op_leaf) 4496 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4497 4498 pvd = oldvd->vdev_parent; 4499 4500 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4501 VDEV_ALLOC_ATTACH)) != 0) 4502 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4503 4504 if (newrootvd->vdev_children != 1) 4505 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4506 4507 newvd = newrootvd->vdev_child[0]; 4508 4509 if (!newvd->vdev_ops->vdev_op_leaf) 4510 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4511 4512 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4513 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4514 4515 /* 4516 * Spares can't replace logs 4517 */ 4518 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4519 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4520 4521 if (!replacing) { 4522 /* 4523 * For attach, the only allowable parent is a mirror or the root 4524 * vdev. 4525 */ 4526 if (pvd->vdev_ops != &vdev_mirror_ops && 4527 pvd->vdev_ops != &vdev_root_ops) 4528 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4529 4530 pvops = &vdev_mirror_ops; 4531 } else { 4532 /* 4533 * Active hot spares can only be replaced by inactive hot 4534 * spares. 4535 */ 4536 if (pvd->vdev_ops == &vdev_spare_ops && 4537 oldvd->vdev_isspare && 4538 !spa_has_spare(spa, newvd->vdev_guid)) 4539 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4540 4541 /* 4542 * If the source is a hot spare, and the parent isn't already a 4543 * spare, then we want to create a new hot spare. Otherwise, we 4544 * want to create a replacing vdev. The user is not allowed to 4545 * attach to a spared vdev child unless the 'isspare' state is 4546 * the same (spare replaces spare, non-spare replaces 4547 * non-spare). 4548 */ 4549 if (pvd->vdev_ops == &vdev_replacing_ops && 4550 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4551 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4552 } else if (pvd->vdev_ops == &vdev_spare_ops && 4553 newvd->vdev_isspare != oldvd->vdev_isspare) { 4554 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4555 } 4556 4557 if (newvd->vdev_isspare) 4558 pvops = &vdev_spare_ops; 4559 else 4560 pvops = &vdev_replacing_ops; 4561 } 4562 4563 /* 4564 * Make sure the new device is big enough. 4565 */ 4566 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4567 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4568 4569 /* 4570 * The new device cannot have a higher alignment requirement 4571 * than the top-level vdev. 4572 */ 4573 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4574 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4575 4576 /* 4577 * If this is an in-place replacement, update oldvd's path and devid 4578 * to make it distinguishable from newvd, and unopenable from now on. 4579 */ 4580 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4581 spa_strfree(oldvd->vdev_path); 4582 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4583 KM_SLEEP); 4584 (void) sprintf(oldvd->vdev_path, "%s/%s", 4585 newvd->vdev_path, "old"); 4586 if (oldvd->vdev_devid != NULL) { 4587 spa_strfree(oldvd->vdev_devid); 4588 oldvd->vdev_devid = NULL; 4589 } 4590 } 4591 4592 /* mark the device being resilvered */ 4593 newvd->vdev_resilver_txg = txg; 4594 4595 /* 4596 * If the parent is not a mirror, or if we're replacing, insert the new 4597 * mirror/replacing/spare vdev above oldvd. 4598 */ 4599 if (pvd->vdev_ops != pvops) 4600 pvd = vdev_add_parent(oldvd, pvops); 4601 4602 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4603 ASSERT(pvd->vdev_ops == pvops); 4604 ASSERT(oldvd->vdev_parent == pvd); 4605 4606 /* 4607 * Extract the new device from its root and add it to pvd. 4608 */ 4609 vdev_remove_child(newrootvd, newvd); 4610 newvd->vdev_id = pvd->vdev_children; 4611 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4612 vdev_add_child(pvd, newvd); 4613 4614 tvd = newvd->vdev_top; 4615 ASSERT(pvd->vdev_top == tvd); 4616 ASSERT(tvd->vdev_parent == rvd); 4617 4618 vdev_config_dirty(tvd); 4619 4620 /* 4621 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4622 * for any dmu_sync-ed blocks. It will propagate upward when 4623 * spa_vdev_exit() calls vdev_dtl_reassess(). 4624 */ 4625 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4626 4627 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4628 dtl_max_txg - TXG_INITIAL); 4629 4630 if (newvd->vdev_isspare) { 4631 spa_spare_activate(newvd); 4632 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4633 } 4634 4635 oldvdpath = spa_strdup(oldvd->vdev_path); 4636 newvdpath = spa_strdup(newvd->vdev_path); 4637 newvd_isspare = newvd->vdev_isspare; 4638 4639 /* 4640 * Mark newvd's DTL dirty in this txg. 4641 */ 4642 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4643 4644 /* 4645 * Schedule the resilver to restart in the future. We do this to 4646 * ensure that dmu_sync-ed blocks have been stitched into the 4647 * respective datasets. 4648 */ 4649 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4650 4651 if (spa->spa_bootfs) 4652 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4653 4654 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4655 4656 /* 4657 * Commit the config 4658 */ 4659 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4660 4661 spa_history_log_internal(spa, "vdev attach", NULL, 4662 "%s vdev=%s %s vdev=%s", 4663 replacing && newvd_isspare ? "spare in" : 4664 replacing ? "replace" : "attach", newvdpath, 4665 replacing ? "for" : "to", oldvdpath); 4666 4667 spa_strfree(oldvdpath); 4668 spa_strfree(newvdpath); 4669 4670 return (0); 4671 } 4672 4673 /* 4674 * Detach a device from a mirror or replacing vdev. 4675 * 4676 * If 'replace_done' is specified, only detach if the parent 4677 * is a replacing vdev. 4678 */ 4679 int 4680 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4681 { 4682 uint64_t txg; 4683 int error; 4684 vdev_t *rvd = spa->spa_root_vdev; 4685 vdev_t *vd, *pvd, *cvd, *tvd; 4686 boolean_t unspare = B_FALSE; 4687 uint64_t unspare_guid = 0; 4688 char *vdpath; 4689 4690 ASSERT(spa_writeable(spa)); 4691 4692 txg = spa_vdev_enter(spa); 4693 4694 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4695 4696 if (vd == NULL) 4697 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4698 4699 if (!vd->vdev_ops->vdev_op_leaf) 4700 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4701 4702 pvd = vd->vdev_parent; 4703 4704 /* 4705 * If the parent/child relationship is not as expected, don't do it. 4706 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4707 * vdev that's replacing B with C. The user's intent in replacing 4708 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4709 * the replace by detaching C, the expected behavior is to end up 4710 * M(A,B). But suppose that right after deciding to detach C, 4711 * the replacement of B completes. We would have M(A,C), and then 4712 * ask to detach C, which would leave us with just A -- not what 4713 * the user wanted. To prevent this, we make sure that the 4714 * parent/child relationship hasn't changed -- in this example, 4715 * that C's parent is still the replacing vdev R. 4716 */ 4717 if (pvd->vdev_guid != pguid && pguid != 0) 4718 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4719 4720 /* 4721 * Only 'replacing' or 'spare' vdevs can be replaced. 4722 */ 4723 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4724 pvd->vdev_ops != &vdev_spare_ops) 4725 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4726 4727 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4728 spa_version(spa) >= SPA_VERSION_SPARES); 4729 4730 /* 4731 * Only mirror, replacing, and spare vdevs support detach. 4732 */ 4733 if (pvd->vdev_ops != &vdev_replacing_ops && 4734 pvd->vdev_ops != &vdev_mirror_ops && 4735 pvd->vdev_ops != &vdev_spare_ops) 4736 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4737 4738 /* 4739 * If this device has the only valid copy of some data, 4740 * we cannot safely detach it. 4741 */ 4742 if (vdev_dtl_required(vd)) 4743 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4744 4745 ASSERT(pvd->vdev_children >= 2); 4746 4747 /* 4748 * If we are detaching the second disk from a replacing vdev, then 4749 * check to see if we changed the original vdev's path to have "/old" 4750 * at the end in spa_vdev_attach(). If so, undo that change now. 4751 */ 4752 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4753 vd->vdev_path != NULL) { 4754 size_t len = strlen(vd->vdev_path); 4755 4756 for (int c = 0; c < pvd->vdev_children; c++) { 4757 cvd = pvd->vdev_child[c]; 4758 4759 if (cvd == vd || cvd->vdev_path == NULL) 4760 continue; 4761 4762 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4763 strcmp(cvd->vdev_path + len, "/old") == 0) { 4764 spa_strfree(cvd->vdev_path); 4765 cvd->vdev_path = spa_strdup(vd->vdev_path); 4766 break; 4767 } 4768 } 4769 } 4770 4771 /* 4772 * If we are detaching the original disk from a spare, then it implies 4773 * that the spare should become a real disk, and be removed from the 4774 * active spare list for the pool. 4775 */ 4776 if (pvd->vdev_ops == &vdev_spare_ops && 4777 vd->vdev_id == 0 && 4778 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4779 unspare = B_TRUE; 4780 4781 /* 4782 * Erase the disk labels so the disk can be used for other things. 4783 * This must be done after all other error cases are handled, 4784 * but before we disembowel vd (so we can still do I/O to it). 4785 * But if we can't do it, don't treat the error as fatal -- 4786 * it may be that the unwritability of the disk is the reason 4787 * it's being detached! 4788 */ 4789 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4790 4791 /* 4792 * Remove vd from its parent and compact the parent's children. 4793 */ 4794 vdev_remove_child(pvd, vd); 4795 vdev_compact_children(pvd); 4796 4797 /* 4798 * Remember one of the remaining children so we can get tvd below. 4799 */ 4800 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4801 4802 /* 4803 * If we need to remove the remaining child from the list of hot spares, 4804 * do it now, marking the vdev as no longer a spare in the process. 4805 * We must do this before vdev_remove_parent(), because that can 4806 * change the GUID if it creates a new toplevel GUID. For a similar 4807 * reason, we must remove the spare now, in the same txg as the detach; 4808 * otherwise someone could attach a new sibling, change the GUID, and 4809 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4810 */ 4811 if (unspare) { 4812 ASSERT(cvd->vdev_isspare); 4813 spa_spare_remove(cvd); 4814 unspare_guid = cvd->vdev_guid; 4815 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4816 cvd->vdev_unspare = B_TRUE; 4817 } 4818 4819 /* 4820 * If the parent mirror/replacing vdev only has one child, 4821 * the parent is no longer needed. Remove it from the tree. 4822 */ 4823 if (pvd->vdev_children == 1) { 4824 if (pvd->vdev_ops == &vdev_spare_ops) 4825 cvd->vdev_unspare = B_FALSE; 4826 vdev_remove_parent(cvd); 4827 } 4828 4829 4830 /* 4831 * We don't set tvd until now because the parent we just removed 4832 * may have been the previous top-level vdev. 4833 */ 4834 tvd = cvd->vdev_top; 4835 ASSERT(tvd->vdev_parent == rvd); 4836 4837 /* 4838 * Reevaluate the parent vdev state. 4839 */ 4840 vdev_propagate_state(cvd); 4841 4842 /* 4843 * If the 'autoexpand' property is set on the pool then automatically 4844 * try to expand the size of the pool. For example if the device we 4845 * just detached was smaller than the others, it may be possible to 4846 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4847 * first so that we can obtain the updated sizes of the leaf vdevs. 4848 */ 4849 if (spa->spa_autoexpand) { 4850 vdev_reopen(tvd); 4851 vdev_expand(tvd, txg); 4852 } 4853 4854 vdev_config_dirty(tvd); 4855 4856 /* 4857 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4858 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4859 * But first make sure we're not on any *other* txg's DTL list, to 4860 * prevent vd from being accessed after it's freed. 4861 */ 4862 vdpath = spa_strdup(vd->vdev_path); 4863 for (int t = 0; t < TXG_SIZE; t++) 4864 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4865 vd->vdev_detached = B_TRUE; 4866 vdev_dirty(tvd, VDD_DTL, vd, txg); 4867 4868 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4869 4870 /* hang on to the spa before we release the lock */ 4871 spa_open_ref(spa, FTAG); 4872 4873 error = spa_vdev_exit(spa, vd, txg, 0); 4874 4875 spa_history_log_internal(spa, "detach", NULL, 4876 "vdev=%s", vdpath); 4877 spa_strfree(vdpath); 4878 4879 /* 4880 * If this was the removal of the original device in a hot spare vdev, 4881 * then we want to go through and remove the device from the hot spare 4882 * list of every other pool. 4883 */ 4884 if (unspare) { 4885 spa_t *altspa = NULL; 4886 4887 mutex_enter(&spa_namespace_lock); 4888 while ((altspa = spa_next(altspa)) != NULL) { 4889 if (altspa->spa_state != POOL_STATE_ACTIVE || 4890 altspa == spa) 4891 continue; 4892 4893 spa_open_ref(altspa, FTAG); 4894 mutex_exit(&spa_namespace_lock); 4895 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4896 mutex_enter(&spa_namespace_lock); 4897 spa_close(altspa, FTAG); 4898 } 4899 mutex_exit(&spa_namespace_lock); 4900 4901 /* search the rest of the vdevs for spares to remove */ 4902 spa_vdev_resilver_done(spa); 4903 } 4904 4905 /* all done with the spa; OK to release */ 4906 mutex_enter(&spa_namespace_lock); 4907 spa_close(spa, FTAG); 4908 mutex_exit(&spa_namespace_lock); 4909 4910 return (error); 4911 } 4912 4913 /* 4914 * Split a set of devices from their mirrors, and create a new pool from them. 4915 */ 4916 int 4917 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4918 nvlist_t *props, boolean_t exp) 4919 { 4920 int error = 0; 4921 uint64_t txg, *glist; 4922 spa_t *newspa; 4923 uint_t c, children, lastlog; 4924 nvlist_t **child, *nvl, *tmp; 4925 dmu_tx_t *tx; 4926 char *altroot = NULL; 4927 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4928 boolean_t activate_slog; 4929 4930 ASSERT(spa_writeable(spa)); 4931 4932 txg = spa_vdev_enter(spa); 4933 4934 /* clear the log and flush everything up to now */ 4935 activate_slog = spa_passivate_log(spa); 4936 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4937 error = spa_offline_log(spa); 4938 txg = spa_vdev_config_enter(spa); 4939 4940 if (activate_slog) 4941 spa_activate_log(spa); 4942 4943 if (error != 0) 4944 return (spa_vdev_exit(spa, NULL, txg, error)); 4945 4946 /* check new spa name before going any further */ 4947 if (spa_lookup(newname) != NULL) 4948 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4949 4950 /* 4951 * scan through all the children to ensure they're all mirrors 4952 */ 4953 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4954 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4955 &children) != 0) 4956 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4957 4958 /* first, check to ensure we've got the right child count */ 4959 rvd = spa->spa_root_vdev; 4960 lastlog = 0; 4961 for (c = 0; c < rvd->vdev_children; c++) { 4962 vdev_t *vd = rvd->vdev_child[c]; 4963 4964 /* don't count the holes & logs as children */ 4965 if (vd->vdev_islog || vd->vdev_ishole) { 4966 if (lastlog == 0) 4967 lastlog = c; 4968 continue; 4969 } 4970 4971 lastlog = 0; 4972 } 4973 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4974 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4975 4976 /* next, ensure no spare or cache devices are part of the split */ 4977 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4978 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4979 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4980 4981 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4982 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4983 4984 /* then, loop over each vdev and validate it */ 4985 for (c = 0; c < children; c++) { 4986 uint64_t is_hole = 0; 4987 4988 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4989 &is_hole); 4990 4991 if (is_hole != 0) { 4992 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4993 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4994 continue; 4995 } else { 4996 error = SET_ERROR(EINVAL); 4997 break; 4998 } 4999 } 5000 5001 /* which disk is going to be split? */ 5002 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5003 &glist[c]) != 0) { 5004 error = SET_ERROR(EINVAL); 5005 break; 5006 } 5007 5008 /* look it up in the spa */ 5009 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5010 if (vml[c] == NULL) { 5011 error = SET_ERROR(ENODEV); 5012 break; 5013 } 5014 5015 /* make sure there's nothing stopping the split */ 5016 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5017 vml[c]->vdev_islog || 5018 vml[c]->vdev_ishole || 5019 vml[c]->vdev_isspare || 5020 vml[c]->vdev_isl2cache || 5021 !vdev_writeable(vml[c]) || 5022 vml[c]->vdev_children != 0 || 5023 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5024 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5025 error = SET_ERROR(EINVAL); 5026 break; 5027 } 5028 5029 if (vdev_dtl_required(vml[c])) { 5030 error = SET_ERROR(EBUSY); 5031 break; 5032 } 5033 5034 /* we need certain info from the top level */ 5035 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5036 vml[c]->vdev_top->vdev_ms_array) == 0); 5037 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5038 vml[c]->vdev_top->vdev_ms_shift) == 0); 5039 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5040 vml[c]->vdev_top->vdev_asize) == 0); 5041 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5042 vml[c]->vdev_top->vdev_ashift) == 0); 5043 } 5044 5045 if (error != 0) { 5046 kmem_free(vml, children * sizeof (vdev_t *)); 5047 kmem_free(glist, children * sizeof (uint64_t)); 5048 return (spa_vdev_exit(spa, NULL, txg, error)); 5049 } 5050 5051 /* stop writers from using the disks */ 5052 for (c = 0; c < children; c++) { 5053 if (vml[c] != NULL) 5054 vml[c]->vdev_offline = B_TRUE; 5055 } 5056 vdev_reopen(spa->spa_root_vdev); 5057 5058 /* 5059 * Temporarily record the splitting vdevs in the spa config. This 5060 * will disappear once the config is regenerated. 5061 */ 5062 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5063 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5064 glist, children) == 0); 5065 kmem_free(glist, children * sizeof (uint64_t)); 5066 5067 mutex_enter(&spa->spa_props_lock); 5068 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5069 nvl) == 0); 5070 mutex_exit(&spa->spa_props_lock); 5071 spa->spa_config_splitting = nvl; 5072 vdev_config_dirty(spa->spa_root_vdev); 5073 5074 /* configure and create the new pool */ 5075 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5076 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5077 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5078 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5079 spa_version(spa)) == 0); 5080 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5081 spa->spa_config_txg) == 0); 5082 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5083 spa_generate_guid(NULL)) == 0); 5084 (void) nvlist_lookup_string(props, 5085 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5086 5087 /* add the new pool to the namespace */ 5088 newspa = spa_add(newname, config, altroot); 5089 newspa->spa_config_txg = spa->spa_config_txg; 5090 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5091 5092 /* release the spa config lock, retaining the namespace lock */ 5093 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5094 5095 if (zio_injection_enabled) 5096 zio_handle_panic_injection(spa, FTAG, 1); 5097 5098 spa_activate(newspa, spa_mode_global); 5099 spa_async_suspend(newspa); 5100 5101 /* create the new pool from the disks of the original pool */ 5102 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5103 if (error) 5104 goto out; 5105 5106 /* if that worked, generate a real config for the new pool */ 5107 if (newspa->spa_root_vdev != NULL) { 5108 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5109 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5110 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5111 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5112 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5113 B_TRUE)); 5114 } 5115 5116 /* set the props */ 5117 if (props != NULL) { 5118 spa_configfile_set(newspa, props, B_FALSE); 5119 error = spa_prop_set(newspa, props); 5120 if (error) 5121 goto out; 5122 } 5123 5124 /* flush everything */ 5125 txg = spa_vdev_config_enter(newspa); 5126 vdev_config_dirty(newspa->spa_root_vdev); 5127 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5128 5129 if (zio_injection_enabled) 5130 zio_handle_panic_injection(spa, FTAG, 2); 5131 5132 spa_async_resume(newspa); 5133 5134 /* finally, update the original pool's config */ 5135 txg = spa_vdev_config_enter(spa); 5136 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5137 error = dmu_tx_assign(tx, TXG_WAIT); 5138 if (error != 0) 5139 dmu_tx_abort(tx); 5140 for (c = 0; c < children; c++) { 5141 if (vml[c] != NULL) { 5142 vdev_split(vml[c]); 5143 if (error == 0) 5144 spa_history_log_internal(spa, "detach", tx, 5145 "vdev=%s", vml[c]->vdev_path); 5146 vdev_free(vml[c]); 5147 } 5148 } 5149 vdev_config_dirty(spa->spa_root_vdev); 5150 spa->spa_config_splitting = NULL; 5151 nvlist_free(nvl); 5152 if (error == 0) 5153 dmu_tx_commit(tx); 5154 (void) spa_vdev_exit(spa, NULL, txg, 0); 5155 5156 if (zio_injection_enabled) 5157 zio_handle_panic_injection(spa, FTAG, 3); 5158 5159 /* split is complete; log a history record */ 5160 spa_history_log_internal(newspa, "split", NULL, 5161 "from pool %s", spa_name(spa)); 5162 5163 kmem_free(vml, children * sizeof (vdev_t *)); 5164 5165 /* if we're not going to mount the filesystems in userland, export */ 5166 if (exp) 5167 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5168 B_FALSE, B_FALSE); 5169 5170 return (error); 5171 5172 out: 5173 spa_unload(newspa); 5174 spa_deactivate(newspa); 5175 spa_remove(newspa); 5176 5177 txg = spa_vdev_config_enter(spa); 5178 5179 /* re-online all offlined disks */ 5180 for (c = 0; c < children; c++) { 5181 if (vml[c] != NULL) 5182 vml[c]->vdev_offline = B_FALSE; 5183 } 5184 vdev_reopen(spa->spa_root_vdev); 5185 5186 nvlist_free(spa->spa_config_splitting); 5187 spa->spa_config_splitting = NULL; 5188 (void) spa_vdev_exit(spa, NULL, txg, error); 5189 5190 kmem_free(vml, children * sizeof (vdev_t *)); 5191 return (error); 5192 } 5193 5194 static nvlist_t * 5195 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5196 { 5197 for (int i = 0; i < count; i++) { 5198 uint64_t guid; 5199 5200 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5201 &guid) == 0); 5202 5203 if (guid == target_guid) 5204 return (nvpp[i]); 5205 } 5206 5207 return (NULL); 5208 } 5209 5210 static void 5211 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5212 nvlist_t *dev_to_remove) 5213 { 5214 nvlist_t **newdev = NULL; 5215 5216 if (count > 1) 5217 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5218 5219 for (int i = 0, j = 0; i < count; i++) { 5220 if (dev[i] == dev_to_remove) 5221 continue; 5222 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5223 } 5224 5225 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5226 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5227 5228 for (int i = 0; i < count - 1; i++) 5229 nvlist_free(newdev[i]); 5230 5231 if (count > 1) 5232 kmem_free(newdev, (count - 1) * sizeof (void *)); 5233 } 5234 5235 /* 5236 * Evacuate the device. 5237 */ 5238 static int 5239 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5240 { 5241 uint64_t txg; 5242 int error = 0; 5243 5244 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5245 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5246 ASSERT(vd == vd->vdev_top); 5247 5248 /* 5249 * Evacuate the device. We don't hold the config lock as writer 5250 * since we need to do I/O but we do keep the 5251 * spa_namespace_lock held. Once this completes the device 5252 * should no longer have any blocks allocated on it. 5253 */ 5254 if (vd->vdev_islog) { 5255 if (vd->vdev_stat.vs_alloc != 0) 5256 error = spa_offline_log(spa); 5257 } else { 5258 error = SET_ERROR(ENOTSUP); 5259 } 5260 5261 if (error) 5262 return (error); 5263 5264 /* 5265 * The evacuation succeeded. Remove any remaining MOS metadata 5266 * associated with this vdev, and wait for these changes to sync. 5267 */ 5268 ASSERT0(vd->vdev_stat.vs_alloc); 5269 txg = spa_vdev_config_enter(spa); 5270 vd->vdev_removing = B_TRUE; 5271 vdev_dirty_leaves(vd, VDD_DTL, txg); 5272 vdev_config_dirty(vd); 5273 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5274 5275 return (0); 5276 } 5277 5278 /* 5279 * Complete the removal by cleaning up the namespace. 5280 */ 5281 static void 5282 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5283 { 5284 vdev_t *rvd = spa->spa_root_vdev; 5285 uint64_t id = vd->vdev_id; 5286 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5287 5288 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5289 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5290 ASSERT(vd == vd->vdev_top); 5291 5292 /* 5293 * Only remove any devices which are empty. 5294 */ 5295 if (vd->vdev_stat.vs_alloc != 0) 5296 return; 5297 5298 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5299 5300 if (list_link_active(&vd->vdev_state_dirty_node)) 5301 vdev_state_clean(vd); 5302 if (list_link_active(&vd->vdev_config_dirty_node)) 5303 vdev_config_clean(vd); 5304 5305 vdev_free(vd); 5306 5307 if (last_vdev) { 5308 vdev_compact_children(rvd); 5309 } else { 5310 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5311 vdev_add_child(rvd, vd); 5312 } 5313 vdev_config_dirty(rvd); 5314 5315 /* 5316 * Reassess the health of our root vdev. 5317 */ 5318 vdev_reopen(rvd); 5319 } 5320 5321 /* 5322 * Remove a device from the pool - 5323 * 5324 * Removing a device from the vdev namespace requires several steps 5325 * and can take a significant amount of time. As a result we use 5326 * the spa_vdev_config_[enter/exit] functions which allow us to 5327 * grab and release the spa_config_lock while still holding the namespace 5328 * lock. During each step the configuration is synced out. 5329 * 5330 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5331 * devices. 5332 */ 5333 int 5334 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5335 { 5336 vdev_t *vd; 5337 metaslab_group_t *mg; 5338 nvlist_t **spares, **l2cache, *nv; 5339 uint64_t txg = 0; 5340 uint_t nspares, nl2cache; 5341 int error = 0; 5342 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5343 5344 ASSERT(spa_writeable(spa)); 5345 5346 if (!locked) 5347 txg = spa_vdev_enter(spa); 5348 5349 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5350 5351 if (spa->spa_spares.sav_vdevs != NULL && 5352 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5353 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5354 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5355 /* 5356 * Only remove the hot spare if it's not currently in use 5357 * in this pool. 5358 */ 5359 if (vd == NULL || unspare) { 5360 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5361 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5362 spa_load_spares(spa); 5363 spa->spa_spares.sav_sync = B_TRUE; 5364 } else { 5365 error = SET_ERROR(EBUSY); 5366 } 5367 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5368 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5369 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5370 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5371 /* 5372 * Cache devices can always be removed. 5373 */ 5374 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5375 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5376 spa_load_l2cache(spa); 5377 spa->spa_l2cache.sav_sync = B_TRUE; 5378 } else if (vd != NULL && vd->vdev_islog) { 5379 ASSERT(!locked); 5380 ASSERT(vd == vd->vdev_top); 5381 5382 mg = vd->vdev_mg; 5383 5384 /* 5385 * Stop allocating from this vdev. 5386 */ 5387 metaslab_group_passivate(mg); 5388 5389 /* 5390 * Wait for the youngest allocations and frees to sync, 5391 * and then wait for the deferral of those frees to finish. 5392 */ 5393 spa_vdev_config_exit(spa, NULL, 5394 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5395 5396 /* 5397 * Attempt to evacuate the vdev. 5398 */ 5399 error = spa_vdev_remove_evacuate(spa, vd); 5400 5401 txg = spa_vdev_config_enter(spa); 5402 5403 /* 5404 * If we couldn't evacuate the vdev, unwind. 5405 */ 5406 if (error) { 5407 metaslab_group_activate(mg); 5408 return (spa_vdev_exit(spa, NULL, txg, error)); 5409 } 5410 5411 /* 5412 * Clean up the vdev namespace. 5413 */ 5414 spa_vdev_remove_from_namespace(spa, vd); 5415 5416 } else if (vd != NULL) { 5417 /* 5418 * Normal vdevs cannot be removed (yet). 5419 */ 5420 error = SET_ERROR(ENOTSUP); 5421 } else { 5422 /* 5423 * There is no vdev of any kind with the specified guid. 5424 */ 5425 error = SET_ERROR(ENOENT); 5426 } 5427 5428 if (!locked) 5429 return (spa_vdev_exit(spa, NULL, txg, error)); 5430 5431 return (error); 5432 } 5433 5434 /* 5435 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5436 * currently spared, so we can detach it. 5437 */ 5438 static vdev_t * 5439 spa_vdev_resilver_done_hunt(vdev_t *vd) 5440 { 5441 vdev_t *newvd, *oldvd; 5442 5443 for (int c = 0; c < vd->vdev_children; c++) { 5444 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5445 if (oldvd != NULL) 5446 return (oldvd); 5447 } 5448 5449 /* 5450 * Check for a completed replacement. We always consider the first 5451 * vdev in the list to be the oldest vdev, and the last one to be 5452 * the newest (see spa_vdev_attach() for how that works). In 5453 * the case where the newest vdev is faulted, we will not automatically 5454 * remove it after a resilver completes. This is OK as it will require 5455 * user intervention to determine which disk the admin wishes to keep. 5456 */ 5457 if (vd->vdev_ops == &vdev_replacing_ops) { 5458 ASSERT(vd->vdev_children > 1); 5459 5460 newvd = vd->vdev_child[vd->vdev_children - 1]; 5461 oldvd = vd->vdev_child[0]; 5462 5463 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5464 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5465 !vdev_dtl_required(oldvd)) 5466 return (oldvd); 5467 } 5468 5469 /* 5470 * Check for a completed resilver with the 'unspare' flag set. 5471 */ 5472 if (vd->vdev_ops == &vdev_spare_ops) { 5473 vdev_t *first = vd->vdev_child[0]; 5474 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5475 5476 if (last->vdev_unspare) { 5477 oldvd = first; 5478 newvd = last; 5479 } else if (first->vdev_unspare) { 5480 oldvd = last; 5481 newvd = first; 5482 } else { 5483 oldvd = NULL; 5484 } 5485 5486 if (oldvd != NULL && 5487 vdev_dtl_empty(newvd, DTL_MISSING) && 5488 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5489 !vdev_dtl_required(oldvd)) 5490 return (oldvd); 5491 5492 /* 5493 * If there are more than two spares attached to a disk, 5494 * and those spares are not required, then we want to 5495 * attempt to free them up now so that they can be used 5496 * by other pools. Once we're back down to a single 5497 * disk+spare, we stop removing them. 5498 */ 5499 if (vd->vdev_children > 2) { 5500 newvd = vd->vdev_child[1]; 5501 5502 if (newvd->vdev_isspare && last->vdev_isspare && 5503 vdev_dtl_empty(last, DTL_MISSING) && 5504 vdev_dtl_empty(last, DTL_OUTAGE) && 5505 !vdev_dtl_required(newvd)) 5506 return (newvd); 5507 } 5508 } 5509 5510 return (NULL); 5511 } 5512 5513 static void 5514 spa_vdev_resilver_done(spa_t *spa) 5515 { 5516 vdev_t *vd, *pvd, *ppvd; 5517 uint64_t guid, sguid, pguid, ppguid; 5518 5519 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5520 5521 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5522 pvd = vd->vdev_parent; 5523 ppvd = pvd->vdev_parent; 5524 guid = vd->vdev_guid; 5525 pguid = pvd->vdev_guid; 5526 ppguid = ppvd->vdev_guid; 5527 sguid = 0; 5528 /* 5529 * If we have just finished replacing a hot spared device, then 5530 * we need to detach the parent's first child (the original hot 5531 * spare) as well. 5532 */ 5533 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5534 ppvd->vdev_children == 2) { 5535 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5536 sguid = ppvd->vdev_child[1]->vdev_guid; 5537 } 5538 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5539 5540 spa_config_exit(spa, SCL_ALL, FTAG); 5541 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5542 return; 5543 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5544 return; 5545 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5546 } 5547 5548 spa_config_exit(spa, SCL_ALL, FTAG); 5549 } 5550 5551 /* 5552 * Update the stored path or FRU for this vdev. 5553 */ 5554 int 5555 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5556 boolean_t ispath) 5557 { 5558 vdev_t *vd; 5559 boolean_t sync = B_FALSE; 5560 5561 ASSERT(spa_writeable(spa)); 5562 5563 spa_vdev_state_enter(spa, SCL_ALL); 5564 5565 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5566 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5567 5568 if (!vd->vdev_ops->vdev_op_leaf) 5569 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5570 5571 if (ispath) { 5572 if (strcmp(value, vd->vdev_path) != 0) { 5573 spa_strfree(vd->vdev_path); 5574 vd->vdev_path = spa_strdup(value); 5575 sync = B_TRUE; 5576 } 5577 } else { 5578 if (vd->vdev_fru == NULL) { 5579 vd->vdev_fru = spa_strdup(value); 5580 sync = B_TRUE; 5581 } else if (strcmp(value, vd->vdev_fru) != 0) { 5582 spa_strfree(vd->vdev_fru); 5583 vd->vdev_fru = spa_strdup(value); 5584 sync = B_TRUE; 5585 } 5586 } 5587 5588 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5589 } 5590 5591 int 5592 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5593 { 5594 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5595 } 5596 5597 int 5598 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5599 { 5600 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5601 } 5602 5603 /* 5604 * ========================================================================== 5605 * SPA Scanning 5606 * ========================================================================== 5607 */ 5608 5609 int 5610 spa_scan_stop(spa_t *spa) 5611 { 5612 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5613 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5614 return (SET_ERROR(EBUSY)); 5615 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5616 } 5617 5618 int 5619 spa_scan(spa_t *spa, pool_scan_func_t func) 5620 { 5621 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5622 5623 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5624 return (SET_ERROR(ENOTSUP)); 5625 5626 /* 5627 * If a resilver was requested, but there is no DTL on a 5628 * writeable leaf device, we have nothing to do. 5629 */ 5630 if (func == POOL_SCAN_RESILVER && 5631 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5632 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5633 return (0); 5634 } 5635 5636 return (dsl_scan(spa->spa_dsl_pool, func)); 5637 } 5638 5639 /* 5640 * ========================================================================== 5641 * SPA async task processing 5642 * ========================================================================== 5643 */ 5644 5645 static void 5646 spa_async_remove(spa_t *spa, vdev_t *vd) 5647 { 5648 if (vd->vdev_remove_wanted) { 5649 vd->vdev_remove_wanted = B_FALSE; 5650 vd->vdev_delayed_close = B_FALSE; 5651 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5652 5653 /* 5654 * We want to clear the stats, but we don't want to do a full 5655 * vdev_clear() as that will cause us to throw away 5656 * degraded/faulted state as well as attempt to reopen the 5657 * device, all of which is a waste. 5658 */ 5659 vd->vdev_stat.vs_read_errors = 0; 5660 vd->vdev_stat.vs_write_errors = 0; 5661 vd->vdev_stat.vs_checksum_errors = 0; 5662 5663 vdev_state_dirty(vd->vdev_top); 5664 } 5665 5666 for (int c = 0; c < vd->vdev_children; c++) 5667 spa_async_remove(spa, vd->vdev_child[c]); 5668 } 5669 5670 static void 5671 spa_async_probe(spa_t *spa, vdev_t *vd) 5672 { 5673 if (vd->vdev_probe_wanted) { 5674 vd->vdev_probe_wanted = B_FALSE; 5675 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5676 } 5677 5678 for (int c = 0; c < vd->vdev_children; c++) 5679 spa_async_probe(spa, vd->vdev_child[c]); 5680 } 5681 5682 static void 5683 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5684 { 5685 sysevent_id_t eid; 5686 nvlist_t *attr; 5687 char *physpath; 5688 5689 if (!spa->spa_autoexpand) 5690 return; 5691 5692 for (int c = 0; c < vd->vdev_children; c++) { 5693 vdev_t *cvd = vd->vdev_child[c]; 5694 spa_async_autoexpand(spa, cvd); 5695 } 5696 5697 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5698 return; 5699 5700 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5701 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5702 5703 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5704 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5705 5706 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5707 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5708 5709 nvlist_free(attr); 5710 kmem_free(physpath, MAXPATHLEN); 5711 } 5712 5713 static void 5714 spa_async_thread(spa_t *spa) 5715 { 5716 int tasks; 5717 5718 ASSERT(spa->spa_sync_on); 5719 5720 mutex_enter(&spa->spa_async_lock); 5721 tasks = spa->spa_async_tasks; 5722 spa->spa_async_tasks = 0; 5723 mutex_exit(&spa->spa_async_lock); 5724 5725 /* 5726 * See if the config needs to be updated. 5727 */ 5728 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5729 uint64_t old_space, new_space; 5730 5731 mutex_enter(&spa_namespace_lock); 5732 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5733 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5734 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5735 mutex_exit(&spa_namespace_lock); 5736 5737 /* 5738 * If the pool grew as a result of the config update, 5739 * then log an internal history event. 5740 */ 5741 if (new_space != old_space) { 5742 spa_history_log_internal(spa, "vdev online", NULL, 5743 "pool '%s' size: %llu(+%llu)", 5744 spa_name(spa), new_space, new_space - old_space); 5745 } 5746 } 5747 5748 /* 5749 * See if any devices need to be marked REMOVED. 5750 */ 5751 if (tasks & SPA_ASYNC_REMOVE) { 5752 spa_vdev_state_enter(spa, SCL_NONE); 5753 spa_async_remove(spa, spa->spa_root_vdev); 5754 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5755 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5756 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5757 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5758 (void) spa_vdev_state_exit(spa, NULL, 0); 5759 } 5760 5761 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5762 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5763 spa_async_autoexpand(spa, spa->spa_root_vdev); 5764 spa_config_exit(spa, SCL_CONFIG, FTAG); 5765 } 5766 5767 /* 5768 * See if any devices need to be probed. 5769 */ 5770 if (tasks & SPA_ASYNC_PROBE) { 5771 spa_vdev_state_enter(spa, SCL_NONE); 5772 spa_async_probe(spa, spa->spa_root_vdev); 5773 (void) spa_vdev_state_exit(spa, NULL, 0); 5774 } 5775 5776 /* 5777 * If any devices are done replacing, detach them. 5778 */ 5779 if (tasks & SPA_ASYNC_RESILVER_DONE) 5780 spa_vdev_resilver_done(spa); 5781 5782 /* 5783 * Kick off a resilver. 5784 */ 5785 if (tasks & SPA_ASYNC_RESILVER) 5786 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5787 5788 /* 5789 * Kick off L2 cache rebuilding. 5790 */ 5791 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) 5792 l2arc_spa_rebuild_start(spa); 5793 5794 /* 5795 * Let the world know that we're done. 5796 */ 5797 mutex_enter(&spa->spa_async_lock); 5798 spa->spa_async_thread = NULL; 5799 cv_broadcast(&spa->spa_async_cv); 5800 mutex_exit(&spa->spa_async_lock); 5801 thread_exit(); 5802 } 5803 5804 void 5805 spa_async_suspend(spa_t *spa) 5806 { 5807 mutex_enter(&spa->spa_async_lock); 5808 spa->spa_async_suspended++; 5809 while (spa->spa_async_thread != NULL) 5810 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5811 mutex_exit(&spa->spa_async_lock); 5812 } 5813 5814 void 5815 spa_async_resume(spa_t *spa) 5816 { 5817 mutex_enter(&spa->spa_async_lock); 5818 ASSERT(spa->spa_async_suspended != 0); 5819 spa->spa_async_suspended--; 5820 mutex_exit(&spa->spa_async_lock); 5821 } 5822 5823 static boolean_t 5824 spa_async_tasks_pending(spa_t *spa) 5825 { 5826 uint_t non_config_tasks; 5827 uint_t config_task; 5828 boolean_t config_task_suspended; 5829 5830 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5831 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5832 if (spa->spa_ccw_fail_time == 0) { 5833 config_task_suspended = B_FALSE; 5834 } else { 5835 config_task_suspended = 5836 (gethrtime() - spa->spa_ccw_fail_time) < 5837 (zfs_ccw_retry_interval * NANOSEC); 5838 } 5839 5840 return (non_config_tasks || (config_task && !config_task_suspended)); 5841 } 5842 5843 static void 5844 spa_async_dispatch(spa_t *spa) 5845 { 5846 mutex_enter(&spa->spa_async_lock); 5847 if (spa_async_tasks_pending(spa) && 5848 !spa->spa_async_suspended && 5849 spa->spa_async_thread == NULL && 5850 rootdir != NULL) 5851 spa->spa_async_thread = thread_create(NULL, 0, 5852 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5853 mutex_exit(&spa->spa_async_lock); 5854 } 5855 5856 void 5857 spa_async_request(spa_t *spa, int task) 5858 { 5859 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5860 mutex_enter(&spa->spa_async_lock); 5861 spa->spa_async_tasks |= task; 5862 mutex_exit(&spa->spa_async_lock); 5863 } 5864 5865 /* 5866 * ========================================================================== 5867 * SPA syncing routines 5868 * ========================================================================== 5869 */ 5870 5871 static int 5872 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5873 { 5874 bpobj_t *bpo = arg; 5875 bpobj_enqueue(bpo, bp, tx); 5876 return (0); 5877 } 5878 5879 static int 5880 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5881 { 5882 zio_t *zio = arg; 5883 5884 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5885 zio->io_flags)); 5886 return (0); 5887 } 5888 5889 /* 5890 * Note: this simple function is not inlined to make it easier to dtrace the 5891 * amount of time spent syncing frees. 5892 */ 5893 static void 5894 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5895 { 5896 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5897 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5898 VERIFY(zio_wait(zio) == 0); 5899 } 5900 5901 /* 5902 * Note: this simple function is not inlined to make it easier to dtrace the 5903 * amount of time spent syncing deferred frees. 5904 */ 5905 static void 5906 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5907 { 5908 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5909 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5910 spa_free_sync_cb, zio, tx), ==, 0); 5911 VERIFY0(zio_wait(zio)); 5912 } 5913 5914 5915 static void 5916 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5917 { 5918 char *packed = NULL; 5919 size_t bufsize; 5920 size_t nvsize = 0; 5921 dmu_buf_t *db; 5922 5923 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5924 5925 /* 5926 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5927 * information. This avoids the dmu_buf_will_dirty() path and 5928 * saves us a pre-read to get data we don't actually care about. 5929 */ 5930 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5931 packed = kmem_alloc(bufsize, KM_SLEEP); 5932 5933 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5934 KM_SLEEP) == 0); 5935 bzero(packed + nvsize, bufsize - nvsize); 5936 5937 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5938 5939 kmem_free(packed, bufsize); 5940 5941 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5942 dmu_buf_will_dirty(db, tx); 5943 *(uint64_t *)db->db_data = nvsize; 5944 dmu_buf_rele(db, FTAG); 5945 } 5946 5947 static void 5948 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5949 const char *config, const char *entry) 5950 { 5951 nvlist_t *nvroot; 5952 nvlist_t **list; 5953 int i; 5954 5955 if (!sav->sav_sync) 5956 return; 5957 5958 /* 5959 * Update the MOS nvlist describing the list of available devices. 5960 * spa_validate_aux() will have already made sure this nvlist is 5961 * valid and the vdevs are labeled appropriately. 5962 */ 5963 if (sav->sav_object == 0) { 5964 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5965 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5966 sizeof (uint64_t), tx); 5967 VERIFY(zap_update(spa->spa_meta_objset, 5968 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5969 &sav->sav_object, tx) == 0); 5970 } 5971 5972 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5973 if (sav->sav_count == 0) { 5974 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5975 } else { 5976 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5977 for (i = 0; i < sav->sav_count; i++) 5978 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5979 B_FALSE, VDEV_CONFIG_L2CACHE); 5980 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5981 sav->sav_count) == 0); 5982 for (i = 0; i < sav->sav_count; i++) 5983 nvlist_free(list[i]); 5984 kmem_free(list, sav->sav_count * sizeof (void *)); 5985 } 5986 5987 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5988 nvlist_free(nvroot); 5989 5990 sav->sav_sync = B_FALSE; 5991 } 5992 5993 static void 5994 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5995 { 5996 nvlist_t *config; 5997 5998 if (list_is_empty(&spa->spa_config_dirty_list)) 5999 return; 6000 6001 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6002 6003 config = spa_config_generate(spa, spa->spa_root_vdev, 6004 dmu_tx_get_txg(tx), B_FALSE); 6005 6006 /* 6007 * If we're upgrading the spa version then make sure that 6008 * the config object gets updated with the correct version. 6009 */ 6010 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6011 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6012 spa->spa_uberblock.ub_version); 6013 6014 spa_config_exit(spa, SCL_STATE, FTAG); 6015 6016 nvlist_free(spa->spa_config_syncing); 6017 spa->spa_config_syncing = config; 6018 6019 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6020 } 6021 6022 static void 6023 spa_sync_version(void *arg, dmu_tx_t *tx) 6024 { 6025 uint64_t *versionp = arg; 6026 uint64_t version = *versionp; 6027 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6028 6029 /* 6030 * Setting the version is special cased when first creating the pool. 6031 */ 6032 ASSERT(tx->tx_txg != TXG_INITIAL); 6033 6034 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6035 ASSERT(version >= spa_version(spa)); 6036 6037 spa->spa_uberblock.ub_version = version; 6038 vdev_config_dirty(spa->spa_root_vdev); 6039 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6040 } 6041 6042 /* 6043 * Set zpool properties. 6044 */ 6045 static void 6046 spa_sync_props(void *arg, dmu_tx_t *tx) 6047 { 6048 nvlist_t *nvp = arg; 6049 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6050 objset_t *mos = spa->spa_meta_objset; 6051 nvpair_t *elem = NULL; 6052 6053 mutex_enter(&spa->spa_props_lock); 6054 6055 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6056 uint64_t intval; 6057 char *strval, *fname; 6058 zpool_prop_t prop; 6059 const char *propname; 6060 zprop_type_t proptype; 6061 spa_feature_t fid; 6062 6063 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6064 case ZPROP_INVAL: 6065 /* 6066 * We checked this earlier in spa_prop_validate(). 6067 */ 6068 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6069 6070 fname = strchr(nvpair_name(elem), '@') + 1; 6071 VERIFY0(zfeature_lookup_name(fname, &fid)); 6072 6073 spa_feature_enable(spa, fid, tx); 6074 spa_history_log_internal(spa, "set", tx, 6075 "%s=enabled", nvpair_name(elem)); 6076 break; 6077 6078 case ZPOOL_PROP_VERSION: 6079 intval = fnvpair_value_uint64(elem); 6080 /* 6081 * The version is synced seperatly before other 6082 * properties and should be correct by now. 6083 */ 6084 ASSERT3U(spa_version(spa), >=, intval); 6085 break; 6086 6087 case ZPOOL_PROP_ALTROOT: 6088 /* 6089 * 'altroot' is a non-persistent property. It should 6090 * have been set temporarily at creation or import time. 6091 */ 6092 ASSERT(spa->spa_root != NULL); 6093 break; 6094 6095 case ZPOOL_PROP_READONLY: 6096 case ZPOOL_PROP_CACHEFILE: 6097 /* 6098 * 'readonly' and 'cachefile' are also non-persisitent 6099 * properties. 6100 */ 6101 break; 6102 case ZPOOL_PROP_COMMENT: 6103 strval = fnvpair_value_string(elem); 6104 if (spa->spa_comment != NULL) 6105 spa_strfree(spa->spa_comment); 6106 spa->spa_comment = spa_strdup(strval); 6107 /* 6108 * We need to dirty the configuration on all the vdevs 6109 * so that their labels get updated. It's unnecessary 6110 * to do this for pool creation since the vdev's 6111 * configuratoin has already been dirtied. 6112 */ 6113 if (tx->tx_txg != TXG_INITIAL) 6114 vdev_config_dirty(spa->spa_root_vdev); 6115 spa_history_log_internal(spa, "set", tx, 6116 "%s=%s", nvpair_name(elem), strval); 6117 break; 6118 default: 6119 /* 6120 * Set pool property values in the poolprops mos object. 6121 */ 6122 if (spa->spa_pool_props_object == 0) { 6123 spa->spa_pool_props_object = 6124 zap_create_link(mos, DMU_OT_POOL_PROPS, 6125 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6126 tx); 6127 } 6128 6129 /* normalize the property name */ 6130 propname = zpool_prop_to_name(prop); 6131 proptype = zpool_prop_get_type(prop); 6132 6133 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6134 ASSERT(proptype == PROP_TYPE_STRING); 6135 strval = fnvpair_value_string(elem); 6136 VERIFY0(zap_update(mos, 6137 spa->spa_pool_props_object, propname, 6138 1, strlen(strval) + 1, strval, tx)); 6139 spa_history_log_internal(spa, "set", tx, 6140 "%s=%s", nvpair_name(elem), strval); 6141 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6142 intval = fnvpair_value_uint64(elem); 6143 6144 if (proptype == PROP_TYPE_INDEX) { 6145 const char *unused; 6146 VERIFY0(zpool_prop_index_to_string( 6147 prop, intval, &unused)); 6148 } 6149 VERIFY0(zap_update(mos, 6150 spa->spa_pool_props_object, propname, 6151 8, 1, &intval, tx)); 6152 spa_history_log_internal(spa, "set", tx, 6153 "%s=%lld", nvpair_name(elem), intval); 6154 } else { 6155 ASSERT(0); /* not allowed */ 6156 } 6157 6158 switch (prop) { 6159 case ZPOOL_PROP_DELEGATION: 6160 spa->spa_delegation = intval; 6161 break; 6162 case ZPOOL_PROP_BOOTFS: 6163 spa->spa_bootfs = intval; 6164 break; 6165 case ZPOOL_PROP_FAILUREMODE: 6166 spa->spa_failmode = intval; 6167 break; 6168 case ZPOOL_PROP_AUTOEXPAND: 6169 spa->spa_autoexpand = intval; 6170 if (tx->tx_txg != TXG_INITIAL) 6171 spa_async_request(spa, 6172 SPA_ASYNC_AUTOEXPAND); 6173 break; 6174 case ZPOOL_PROP_DEDUPDITTO: 6175 spa->spa_dedup_ditto = intval; 6176 break; 6177 default: 6178 break; 6179 } 6180 } 6181 6182 } 6183 6184 mutex_exit(&spa->spa_props_lock); 6185 } 6186 6187 /* 6188 * Perform one-time upgrade on-disk changes. spa_version() does not 6189 * reflect the new version this txg, so there must be no changes this 6190 * txg to anything that the upgrade code depends on after it executes. 6191 * Therefore this must be called after dsl_pool_sync() does the sync 6192 * tasks. 6193 */ 6194 static void 6195 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6196 { 6197 dsl_pool_t *dp = spa->spa_dsl_pool; 6198 6199 ASSERT(spa->spa_sync_pass == 1); 6200 6201 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6202 6203 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6204 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6205 dsl_pool_create_origin(dp, tx); 6206 6207 /* Keeping the origin open increases spa_minref */ 6208 spa->spa_minref += 3; 6209 } 6210 6211 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6212 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6213 dsl_pool_upgrade_clones(dp, tx); 6214 } 6215 6216 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6217 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6218 dsl_pool_upgrade_dir_clones(dp, tx); 6219 6220 /* Keeping the freedir open increases spa_minref */ 6221 spa->spa_minref += 3; 6222 } 6223 6224 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6225 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6226 spa_feature_create_zap_objects(spa, tx); 6227 } 6228 6229 /* 6230 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6231 * when possibility to use lz4 compression for metadata was added 6232 * Old pools that have this feature enabled must be upgraded to have 6233 * this feature active 6234 */ 6235 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6236 boolean_t lz4_en = spa_feature_is_enabled(spa, 6237 SPA_FEATURE_LZ4_COMPRESS); 6238 boolean_t lz4_ac = spa_feature_is_active(spa, 6239 SPA_FEATURE_LZ4_COMPRESS); 6240 6241 if (lz4_en && !lz4_ac) 6242 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6243 } 6244 6245 /* 6246 * If we haven't written the salt, do so now. Note that the 6247 * feature may not be activated yet, but that's fine since 6248 * the presence of this ZAP entry is backwards compatible. 6249 */ 6250 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6251 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6252 VERIFY0(zap_add(spa->spa_meta_objset, 6253 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6254 sizeof (spa->spa_cksum_salt.zcs_bytes), 6255 spa->spa_cksum_salt.zcs_bytes, tx)); 6256 } 6257 6258 rrw_exit(&dp->dp_config_rwlock, FTAG); 6259 } 6260 6261 /* 6262 * Sync the specified transaction group. New blocks may be dirtied as 6263 * part of the process, so we iterate until it converges. 6264 */ 6265 void 6266 spa_sync(spa_t *spa, uint64_t txg) 6267 { 6268 dsl_pool_t *dp = spa->spa_dsl_pool; 6269 objset_t *mos = spa->spa_meta_objset; 6270 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6271 vdev_t *rvd = spa->spa_root_vdev; 6272 vdev_t *vd; 6273 dmu_tx_t *tx; 6274 int error; 6275 6276 VERIFY(spa_writeable(spa)); 6277 6278 /* 6279 * Lock out configuration changes. 6280 */ 6281 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6282 6283 spa->spa_syncing_txg = txg; 6284 spa->spa_sync_pass = 0; 6285 6286 /* 6287 * If there are any pending vdev state changes, convert them 6288 * into config changes that go out with this transaction group. 6289 */ 6290 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6291 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6292 /* 6293 * We need the write lock here because, for aux vdevs, 6294 * calling vdev_config_dirty() modifies sav_config. 6295 * This is ugly and will become unnecessary when we 6296 * eliminate the aux vdev wart by integrating all vdevs 6297 * into the root vdev tree. 6298 */ 6299 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6300 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6301 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6302 vdev_state_clean(vd); 6303 vdev_config_dirty(vd); 6304 } 6305 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6306 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6307 } 6308 spa_config_exit(spa, SCL_STATE, FTAG); 6309 6310 tx = dmu_tx_create_assigned(dp, txg); 6311 6312 spa->spa_sync_starttime = gethrtime(); 6313 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6314 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6315 6316 /* 6317 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6318 * set spa_deflate if we have no raid-z vdevs. 6319 */ 6320 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6321 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6322 int i; 6323 6324 for (i = 0; i < rvd->vdev_children; i++) { 6325 vd = rvd->vdev_child[i]; 6326 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6327 break; 6328 } 6329 if (i == rvd->vdev_children) { 6330 spa->spa_deflate = TRUE; 6331 VERIFY(0 == zap_add(spa->spa_meta_objset, 6332 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6333 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6334 } 6335 } 6336 6337 /* 6338 * Iterate to convergence. 6339 */ 6340 do { 6341 int pass = ++spa->spa_sync_pass; 6342 6343 spa_sync_config_object(spa, tx); 6344 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6345 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6346 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6347 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6348 spa_errlog_sync(spa, txg); 6349 dsl_pool_sync(dp, txg); 6350 6351 if (pass < zfs_sync_pass_deferred_free) { 6352 spa_sync_frees(spa, free_bpl, tx); 6353 } else { 6354 /* 6355 * We can not defer frees in pass 1, because 6356 * we sync the deferred frees later in pass 1. 6357 */ 6358 ASSERT3U(pass, >, 1); 6359 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6360 &spa->spa_deferred_bpobj, tx); 6361 } 6362 6363 ddt_sync(spa, txg); 6364 dsl_scan_sync(dp, tx); 6365 6366 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6367 vdev_sync(vd, txg); 6368 6369 if (pass == 1) { 6370 spa_sync_upgrades(spa, tx); 6371 ASSERT3U(txg, >=, 6372 spa->spa_uberblock.ub_rootbp.blk_birth); 6373 /* 6374 * Note: We need to check if the MOS is dirty 6375 * because we could have marked the MOS dirty 6376 * without updating the uberblock (e.g. if we 6377 * have sync tasks but no dirty user data). We 6378 * need to check the uberblock's rootbp because 6379 * it is updated if we have synced out dirty 6380 * data (though in this case the MOS will most 6381 * likely also be dirty due to second order 6382 * effects, we don't want to rely on that here). 6383 */ 6384 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6385 !dmu_objset_is_dirty(mos, txg)) { 6386 /* 6387 * Nothing changed on the first pass, 6388 * therefore this TXG is a no-op. Avoid 6389 * syncing deferred frees, so that we 6390 * can keep this TXG as a no-op. 6391 */ 6392 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6393 txg)); 6394 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6395 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6396 break; 6397 } 6398 spa_sync_deferred_frees(spa, tx); 6399 } 6400 6401 } while (dmu_objset_is_dirty(mos, txg)); 6402 6403 /* 6404 * Rewrite the vdev configuration (which includes the uberblock) 6405 * to commit the transaction group. 6406 * 6407 * If there are no dirty vdevs, we sync the uberblock to a few 6408 * random top-level vdevs that are known to be visible in the 6409 * config cache (see spa_vdev_add() for a complete description). 6410 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6411 */ 6412 for (;;) { 6413 /* 6414 * We hold SCL_STATE to prevent vdev open/close/etc. 6415 * while we're attempting to write the vdev labels. 6416 */ 6417 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6418 6419 if (list_is_empty(&spa->spa_config_dirty_list)) { 6420 vdev_t *svd[SPA_DVAS_PER_BP]; 6421 int svdcount = 0; 6422 int children = rvd->vdev_children; 6423 int c0 = spa_get_random(children); 6424 6425 for (int c = 0; c < children; c++) { 6426 vd = rvd->vdev_child[(c0 + c) % children]; 6427 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6428 continue; 6429 svd[svdcount++] = vd; 6430 if (svdcount == SPA_DVAS_PER_BP) 6431 break; 6432 } 6433 error = vdev_config_sync(svd, svdcount, txg); 6434 } else { 6435 error = vdev_config_sync(rvd->vdev_child, 6436 rvd->vdev_children, txg); 6437 } 6438 6439 if (error == 0) 6440 spa->spa_last_synced_guid = rvd->vdev_guid; 6441 6442 spa_config_exit(spa, SCL_STATE, FTAG); 6443 6444 if (error == 0) 6445 break; 6446 zio_suspend(spa, NULL); 6447 zio_resume_wait(spa); 6448 } 6449 dmu_tx_commit(tx); 6450 6451 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6452 6453 /* 6454 * Clear the dirty config list. 6455 */ 6456 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6457 vdev_config_clean(vd); 6458 6459 /* 6460 * Now that the new config has synced transactionally, 6461 * let it become visible to the config cache. 6462 */ 6463 if (spa->spa_config_syncing != NULL) { 6464 spa_config_set(spa, spa->spa_config_syncing); 6465 spa->spa_config_txg = txg; 6466 spa->spa_config_syncing = NULL; 6467 } 6468 6469 spa->spa_ubsync = spa->spa_uberblock; 6470 6471 dsl_pool_sync_done(dp, txg); 6472 6473 /* 6474 * Update usable space statistics. 6475 */ 6476 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6477 vdev_sync_done(vd, txg); 6478 6479 spa_update_dspace(spa); 6480 6481 /* 6482 * It had better be the case that we didn't dirty anything 6483 * since vdev_config_sync(). 6484 */ 6485 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6486 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6487 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6488 6489 spa->spa_sync_pass = 0; 6490 6491 spa_config_exit(spa, SCL_CONFIG, FTAG); 6492 6493 spa_handle_ignored_writes(spa); 6494 6495 /* 6496 * If any async tasks have been requested, kick them off. 6497 */ 6498 spa_async_dispatch(spa); 6499 } 6500 6501 /* 6502 * Sync all pools. We don't want to hold the namespace lock across these 6503 * operations, so we take a reference on the spa_t and drop the lock during the 6504 * sync. 6505 */ 6506 void 6507 spa_sync_allpools(void) 6508 { 6509 spa_t *spa = NULL; 6510 mutex_enter(&spa_namespace_lock); 6511 while ((spa = spa_next(spa)) != NULL) { 6512 if (spa_state(spa) != POOL_STATE_ACTIVE || 6513 !spa_writeable(spa) || spa_suspended(spa)) 6514 continue; 6515 spa_open_ref(spa, FTAG); 6516 mutex_exit(&spa_namespace_lock); 6517 txg_wait_synced(spa_get_dsl(spa), 0); 6518 mutex_enter(&spa_namespace_lock); 6519 spa_close(spa, FTAG); 6520 } 6521 mutex_exit(&spa_namespace_lock); 6522 } 6523 6524 /* 6525 * ========================================================================== 6526 * Miscellaneous routines 6527 * ========================================================================== 6528 */ 6529 6530 /* 6531 * Remove all pools in the system. 6532 */ 6533 void 6534 spa_evict_all(void) 6535 { 6536 spa_t *spa; 6537 6538 /* 6539 * Remove all cached state. All pools should be closed now, 6540 * so every spa in the AVL tree should be unreferenced. 6541 */ 6542 mutex_enter(&spa_namespace_lock); 6543 while ((spa = spa_next(NULL)) != NULL) { 6544 /* 6545 * Stop async tasks. The async thread may need to detach 6546 * a device that's been replaced, which requires grabbing 6547 * spa_namespace_lock, so we must drop it here. 6548 */ 6549 spa_open_ref(spa, FTAG); 6550 mutex_exit(&spa_namespace_lock); 6551 spa_async_suspend(spa); 6552 mutex_enter(&spa_namespace_lock); 6553 spa_close(spa, FTAG); 6554 6555 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6556 spa_unload(spa); 6557 spa_deactivate(spa); 6558 } 6559 spa_remove(spa); 6560 } 6561 mutex_exit(&spa_namespace_lock); 6562 } 6563 6564 vdev_t * 6565 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6566 { 6567 vdev_t *vd; 6568 int i; 6569 6570 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6571 return (vd); 6572 6573 if (aux) { 6574 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6575 vd = spa->spa_l2cache.sav_vdevs[i]; 6576 if (vd->vdev_guid == guid) 6577 return (vd); 6578 } 6579 6580 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6581 vd = spa->spa_spares.sav_vdevs[i]; 6582 if (vd->vdev_guid == guid) 6583 return (vd); 6584 } 6585 } 6586 6587 return (NULL); 6588 } 6589 6590 void 6591 spa_upgrade(spa_t *spa, uint64_t version) 6592 { 6593 ASSERT(spa_writeable(spa)); 6594 6595 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6596 6597 /* 6598 * This should only be called for a non-faulted pool, and since a 6599 * future version would result in an unopenable pool, this shouldn't be 6600 * possible. 6601 */ 6602 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6603 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6604 6605 spa->spa_uberblock.ub_version = version; 6606 vdev_config_dirty(spa->spa_root_vdev); 6607 6608 spa_config_exit(spa, SCL_ALL, FTAG); 6609 6610 txg_wait_synced(spa_get_dsl(spa), 0); 6611 } 6612 6613 boolean_t 6614 spa_has_spare(spa_t *spa, uint64_t guid) 6615 { 6616 int i; 6617 uint64_t spareguid; 6618 spa_aux_vdev_t *sav = &spa->spa_spares; 6619 6620 for (i = 0; i < sav->sav_count; i++) 6621 if (sav->sav_vdevs[i]->vdev_guid == guid) 6622 return (B_TRUE); 6623 6624 for (i = 0; i < sav->sav_npending; i++) { 6625 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6626 &spareguid) == 0 && spareguid == guid) 6627 return (B_TRUE); 6628 } 6629 6630 return (B_FALSE); 6631 } 6632 6633 /* 6634 * Check if a pool has an active shared spare device. 6635 * Note: reference count of an active spare is 2, as a spare and as a replace 6636 */ 6637 static boolean_t 6638 spa_has_active_shared_spare(spa_t *spa) 6639 { 6640 int i, refcnt; 6641 uint64_t pool; 6642 spa_aux_vdev_t *sav = &spa->spa_spares; 6643 6644 for (i = 0; i < sav->sav_count; i++) { 6645 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6646 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6647 refcnt > 2) 6648 return (B_TRUE); 6649 } 6650 6651 return (B_FALSE); 6652 } 6653 6654 /* 6655 * Post a sysevent corresponding to the given event. The 'name' must be one of 6656 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6657 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6658 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6659 * or zdb as real changes. 6660 */ 6661 void 6662 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6663 { 6664 #ifdef _KERNEL 6665 sysevent_t *ev; 6666 sysevent_attr_list_t *attr = NULL; 6667 sysevent_value_t value; 6668 sysevent_id_t eid; 6669 6670 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6671 SE_SLEEP); 6672 6673 value.value_type = SE_DATA_TYPE_STRING; 6674 value.value.sv_string = spa_name(spa); 6675 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6676 goto done; 6677 6678 value.value_type = SE_DATA_TYPE_UINT64; 6679 value.value.sv_uint64 = spa_guid(spa); 6680 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6681 goto done; 6682 6683 if (vd) { 6684 value.value_type = SE_DATA_TYPE_UINT64; 6685 value.value.sv_uint64 = vd->vdev_guid; 6686 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6687 SE_SLEEP) != 0) 6688 goto done; 6689 6690 if (vd->vdev_path) { 6691 value.value_type = SE_DATA_TYPE_STRING; 6692 value.value.sv_string = vd->vdev_path; 6693 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6694 &value, SE_SLEEP) != 0) 6695 goto done; 6696 } 6697 } 6698 6699 if (sysevent_attach_attributes(ev, attr) != 0) 6700 goto done; 6701 attr = NULL; 6702 6703 (void) log_sysevent(ev, SE_SLEEP, &eid); 6704 6705 done: 6706 if (attr) 6707 sysevent_free_attr(attr); 6708 sysevent_free(ev); 6709 #endif 6710 } 6711