1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* Tunable via /etc/system; used only by admin/install */ 76 int nfs_global_client_only; 77 78 /* 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same 80 * number of entries as and parallel to the vfssw table. (Arguably, it could 81 * be part of the vfssw table.) Once it's initialized, it's accessed using 82 * the same fstype index that is used to index into the vfssw table. 83 */ 84 vopstats_t **vopstats_fstype; 85 86 /* vopstats initialization template used for fast initialization via bcopy() */ 87 static vopstats_t *vs_templatep; 88 89 /* Kmem cache handle for vsk_anchor_t allocations */ 90 kmem_cache_t *vsk_anchor_cache; 91 92 /* file events cleanup routine */ 93 extern void free_fopdata(vnode_t *); 94 95 /* 96 * Root of AVL tree for the kstats associated with vopstats. Lock protects 97 * updates to vsktat_tree. 98 */ 99 avl_tree_t vskstat_tree; 100 kmutex_t vskstat_tree_lock; 101 102 /* Global variable which enables/disables the vopstats collection */ 103 int vopstats_enabled = 1; 104 105 /* 106 * forward declarations for internal vnode specific data (vsd) 107 */ 108 static void *vsd_realloc(void *, size_t, size_t); 109 110 /* 111 * VSD -- VNODE SPECIFIC DATA 112 * The v_data pointer is typically used by a file system to store a 113 * pointer to the file system's private node (e.g. ufs inode, nfs rnode). 114 * However, there are times when additional project private data needs 115 * to be stored separately from the data (node) pointed to by v_data. 116 * This additional data could be stored by the file system itself or 117 * by a completely different kernel entity. VSD provides a way for 118 * callers to obtain a key and store a pointer to private data associated 119 * with a vnode. 120 * 121 * Callers are responsible for protecting the vsd by holding v_lock 122 * for calls to vsd_set() and vsd_get(). 123 */ 124 125 /* 126 * vsd_lock protects: 127 * vsd_nkeys - creation and deletion of vsd keys 128 * vsd_list - insertion and deletion of vsd_node in the vsd_list 129 * vsd_destructor - adding and removing destructors to the list 130 */ 131 static kmutex_t vsd_lock; 132 static uint_t vsd_nkeys; /* size of destructor array */ 133 /* list of vsd_node's */ 134 static list_t *vsd_list = NULL; 135 /* per-key destructor funcs */ 136 static void (**vsd_destructor)(void *); 137 138 /* 139 * The following is the common set of actions needed to update the 140 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 141 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 142 * recording of the bytes transferred. Since the code is similar 143 * but small, it is nearly a duplicate. Consequently any changes 144 * to one may need to be reflected in the other. 145 * Rundown of the variables: 146 * vp - Pointer to the vnode 147 * counter - Partial name structure member to update in vopstats for counts 148 * bytecounter - Partial name structure member to update in vopstats for bytes 149 * bytesval - Value to update in vopstats for bytes 150 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 151 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 152 */ 153 154 #define VOPSTATS_UPDATE(vp, counter) { \ 155 vfs_t *vfsp = (vp)->v_vfsp; \ 156 if (vfsp && vfsp->vfs_implp && \ 157 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 158 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 159 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 160 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 161 size_t, uint64_t *); \ 162 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 163 (*stataddr)++; \ 164 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 165 vsp->n##counter.value.ui64++; \ 166 } \ 167 } \ 168 } 169 170 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 171 vfs_t *vfsp = (vp)->v_vfsp; \ 172 if (vfsp && vfsp->vfs_implp && \ 173 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 174 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 175 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 176 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 177 size_t, uint64_t *); \ 178 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 179 (*stataddr)++; \ 180 vsp->bytecounter.value.ui64 += bytesval; \ 181 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 182 vsp->n##counter.value.ui64++; \ 183 vsp->bytecounter.value.ui64 += bytesval; \ 184 } \ 185 } \ 186 } 187 188 /* 189 * If the filesystem does not support XIDs map credential 190 * If the vfsp is NULL, perhaps we should also map? 191 */ 192 #define VOPXID_MAP_CR(vp, cr) { \ 193 vfs_t *vfsp = (vp)->v_vfsp; \ 194 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 195 cr = crgetmapped(cr); \ 196 } 197 198 /* 199 * Convert stat(2) formats to vnode types and vice versa. (Knows about 200 * numerical order of S_IFMT and vnode types.) 201 */ 202 enum vtype iftovt_tab[] = { 203 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 204 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 205 }; 206 207 ushort_t vttoif_tab[] = { 208 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 209 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 210 }; 211 212 /* 213 * The system vnode cache. 214 */ 215 216 kmem_cache_t *vn_cache; 217 218 219 /* 220 * Vnode operations vector. 221 */ 222 223 static const fs_operation_trans_def_t vn_ops_table[] = { 224 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 225 fs_nosys, fs_nosys, 226 227 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 228 fs_nosys, fs_nosys, 229 230 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 231 fs_nosys, fs_nosys, 232 233 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 234 fs_nosys, fs_nosys, 235 236 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 237 fs_nosys, fs_nosys, 238 239 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 240 fs_setfl, fs_nosys, 241 242 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 243 fs_nosys, fs_nosys, 244 245 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 246 fs_nosys, fs_nosys, 247 248 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 249 fs_nosys, fs_nosys, 250 251 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 252 fs_nosys, fs_nosys, 253 254 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 255 fs_nosys, fs_nosys, 256 257 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 258 fs_nosys, fs_nosys, 259 260 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 261 fs_nosys, fs_nosys, 262 263 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 264 fs_nosys, fs_nosys, 265 266 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 267 fs_nosys, fs_nosys, 268 269 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 270 fs_nosys, fs_nosys, 271 272 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 273 fs_nosys, fs_nosys, 274 275 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 276 fs_nosys, fs_nosys, 277 278 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 279 fs_nosys, fs_nosys, 280 281 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 282 fs_nosys, fs_nosys, 283 284 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 285 fs_nosys, fs_nosys, 286 287 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 288 fs_nosys, fs_nosys, 289 290 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 291 fs_rwlock, fs_rwlock, 292 293 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 294 (fs_generic_func_p) fs_rwunlock, 295 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 296 297 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 298 fs_nosys, fs_nosys, 299 300 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 301 fs_cmp, fs_cmp, /* no errors allowed */ 302 303 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 304 fs_frlock, fs_nosys, 305 306 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 307 fs_nosys, fs_nosys, 308 309 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 310 fs_nosys, fs_nosys, 311 312 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 313 fs_nosys, fs_nosys, 314 315 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 316 fs_nosys, fs_nosys, 317 318 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 319 (fs_generic_func_p) fs_nosys_map, 320 (fs_generic_func_p) fs_nosys_map, 321 322 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 323 (fs_generic_func_p) fs_nosys_addmap, 324 (fs_generic_func_p) fs_nosys_addmap, 325 326 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 327 fs_nosys, fs_nosys, 328 329 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 330 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 331 332 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 333 fs_nosys, fs_nosys, 334 335 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 336 fs_pathconf, fs_nosys, 337 338 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 339 fs_nosys, fs_nosys, 340 341 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 342 fs_nosys, fs_nosys, 343 344 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 345 (fs_generic_func_p) fs_dispose, 346 (fs_generic_func_p) fs_nodispose, 347 348 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 349 fs_nosys, fs_nosys, 350 351 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 352 fs_fab_acl, fs_nosys, 353 354 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 355 fs_shrlock, fs_nosys, 356 357 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 358 (fs_generic_func_p) fs_vnevent_nosupport, 359 (fs_generic_func_p) fs_vnevent_nosupport, 360 361 NULL, 0, NULL, NULL 362 }; 363 364 /* 365 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 366 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 367 * kstat name. 368 */ 369 static int 370 vska_compar(const void *n1, const void *n2) 371 { 372 int ret; 373 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 374 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 375 376 if (p1 < p2) { 377 ret = -1; 378 } else if (p1 > p2) { 379 ret = 1; 380 } else { 381 ret = 0; 382 } 383 384 return (ret); 385 } 386 387 /* 388 * Used to create a single template which will be bcopy()ed to a newly 389 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 390 */ 391 static vopstats_t * 392 create_vopstats_template() 393 { 394 vopstats_t *vsp; 395 396 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 397 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 398 399 /* VOP_OPEN */ 400 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 401 /* VOP_CLOSE */ 402 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 403 /* VOP_READ I/O */ 404 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 405 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 406 /* VOP_WRITE I/O */ 407 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 408 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 409 /* VOP_IOCTL */ 410 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 411 /* VOP_SETFL */ 412 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 413 /* VOP_GETATTR */ 414 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 415 /* VOP_SETATTR */ 416 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 417 /* VOP_ACCESS */ 418 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 419 /* VOP_LOOKUP */ 420 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 421 /* VOP_CREATE */ 422 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 423 /* VOP_REMOVE */ 424 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 425 /* VOP_LINK */ 426 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 427 /* VOP_RENAME */ 428 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 429 /* VOP_MKDIR */ 430 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 431 /* VOP_RMDIR */ 432 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 433 /* VOP_READDIR I/O */ 434 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 435 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 436 KSTAT_DATA_UINT64); 437 /* VOP_SYMLINK */ 438 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 439 /* VOP_READLINK */ 440 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 441 /* VOP_FSYNC */ 442 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 443 /* VOP_INACTIVE */ 444 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 445 /* VOP_FID */ 446 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 447 /* VOP_RWLOCK */ 448 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 449 /* VOP_RWUNLOCK */ 450 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 451 /* VOP_SEEK */ 452 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 453 /* VOP_CMP */ 454 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 455 /* VOP_FRLOCK */ 456 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 457 /* VOP_SPACE */ 458 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 459 /* VOP_REALVP */ 460 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 461 /* VOP_GETPAGE */ 462 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 463 /* VOP_PUTPAGE */ 464 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 465 /* VOP_MAP */ 466 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 467 /* VOP_ADDMAP */ 468 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 469 /* VOP_DELMAP */ 470 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 471 /* VOP_POLL */ 472 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 473 /* VOP_DUMP */ 474 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 475 /* VOP_PATHCONF */ 476 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 477 /* VOP_PAGEIO */ 478 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 479 /* VOP_DUMPCTL */ 480 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 481 /* VOP_DISPOSE */ 482 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 483 /* VOP_SETSECATTR */ 484 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 485 /* VOP_GETSECATTR */ 486 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 487 /* VOP_SHRLOCK */ 488 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 489 /* VOP_VNEVENT */ 490 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 491 492 return (vsp); 493 } 494 495 /* 496 * Creates a kstat structure associated with a vopstats structure. 497 */ 498 kstat_t * 499 new_vskstat(char *ksname, vopstats_t *vsp) 500 { 501 kstat_t *ksp; 502 503 if (!vopstats_enabled) { 504 return (NULL); 505 } 506 507 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 508 sizeof (vopstats_t)/sizeof (kstat_named_t), 509 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 510 if (ksp) { 511 ksp->ks_data = vsp; 512 kstat_install(ksp); 513 } 514 515 return (ksp); 516 } 517 518 /* 519 * Called from vfsinit() to initialize the support mechanisms for vopstats 520 */ 521 void 522 vopstats_startup() 523 { 524 if (!vopstats_enabled) 525 return; 526 527 /* 528 * Creates the AVL tree which holds per-vfs vopstat anchors. This 529 * is necessary since we need to check if a kstat exists before we 530 * attempt to create it. Also, initialize its lock. 531 */ 532 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 533 offsetof(vsk_anchor_t, vsk_node)); 534 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 535 536 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 537 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 538 NULL, NULL, 0); 539 540 /* 541 * Set up the array of pointers for the vopstats-by-FS-type. 542 * The entries will be allocated/initialized as each file system 543 * goes through modload/mod_installfs. 544 */ 545 vopstats_fstype = (vopstats_t **)kmem_zalloc( 546 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 547 548 /* Set up the global vopstats initialization template */ 549 vs_templatep = create_vopstats_template(); 550 } 551 552 /* 553 * We need to have the all of the counters zeroed. 554 * The initialization of the vopstats_t includes on the order of 555 * 50 calls to kstat_named_init(). Rather that do that on every call, 556 * we do it once in a template (vs_templatep) then bcopy it over. 557 */ 558 void 559 initialize_vopstats(vopstats_t *vsp) 560 { 561 if (vsp == NULL) 562 return; 563 564 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 565 } 566 567 /* 568 * If possible, determine which vopstats by fstype to use and 569 * return a pointer to the caller. 570 */ 571 vopstats_t * 572 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 573 { 574 int fstype = 0; /* Index into vfssw[] */ 575 vopstats_t *vsp = NULL; 576 577 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 578 !vopstats_enabled) 579 return (NULL); 580 /* 581 * Set up the fstype. We go to so much trouble because all versions 582 * of NFS use the same fstype in their vfs even though they have 583 * distinct entries in the vfssw[] table. 584 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 585 */ 586 if (vswp) { 587 fstype = vswp - vfssw; /* Gets us the index */ 588 } else { 589 fstype = vfsp->vfs_fstype; 590 } 591 592 /* 593 * Point to the per-fstype vopstats. The only valid values are 594 * non-zero positive values less than the number of vfssw[] table 595 * entries. 596 */ 597 if (fstype > 0 && fstype < nfstype) { 598 vsp = vopstats_fstype[fstype]; 599 } 600 601 return (vsp); 602 } 603 604 /* 605 * Generate a kstat name, create the kstat structure, and allocate a 606 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 607 * to the caller. This must only be called from a mount. 608 */ 609 vsk_anchor_t * 610 get_vskstat_anchor(vfs_t *vfsp) 611 { 612 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 613 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 614 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 615 kstat_t *ksp; /* Ptr to new kstat */ 616 avl_index_t where; /* Location in the AVL tree */ 617 618 if (vfsp == NULL || vfsp->vfs_implp == NULL || 619 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 620 return (NULL); 621 622 /* Need to get the fsid to build a kstat name */ 623 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 624 /* Create a name for our kstats based on fsid */ 625 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 626 VOPSTATS_STR, statvfsbuf.f_fsid); 627 628 /* Allocate and initialize the vsk_anchor_t */ 629 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 630 bzero(vskp, sizeof (*vskp)); 631 vskp->vsk_fsid = statvfsbuf.f_fsid; 632 633 mutex_enter(&vskstat_tree_lock); 634 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 635 avl_insert(&vskstat_tree, vskp, where); 636 mutex_exit(&vskstat_tree_lock); 637 638 /* 639 * Now that we've got the anchor in the AVL 640 * tree, we can create the kstat. 641 */ 642 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 643 if (ksp) { 644 vskp->vsk_ksp = ksp; 645 } 646 } else { 647 /* Oops, found one! Release memory and lock. */ 648 mutex_exit(&vskstat_tree_lock); 649 kmem_cache_free(vsk_anchor_cache, vskp); 650 vskp = NULL; 651 } 652 } 653 return (vskp); 654 } 655 656 /* 657 * We're in the process of tearing down the vfs and need to cleanup 658 * the data structures associated with the vopstats. Must only be called 659 * from dounmount(). 660 */ 661 void 662 teardown_vopstats(vfs_t *vfsp) 663 { 664 vsk_anchor_t *vskap; 665 avl_index_t where; 666 667 if (vfsp == NULL || vfsp->vfs_implp == NULL || 668 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 669 return; 670 671 /* This is a safe check since VFS_STATS must be set (see above) */ 672 if ((vskap = vfsp->vfs_vskap) == NULL) 673 return; 674 675 /* Whack the pointer right away */ 676 vfsp->vfs_vskap = NULL; 677 678 /* Lock the tree, remove the node, and delete the kstat */ 679 mutex_enter(&vskstat_tree_lock); 680 if (avl_find(&vskstat_tree, vskap, &where)) { 681 avl_remove(&vskstat_tree, vskap); 682 } 683 684 if (vskap->vsk_ksp) { 685 kstat_delete(vskap->vsk_ksp); 686 } 687 mutex_exit(&vskstat_tree_lock); 688 689 kmem_cache_free(vsk_anchor_cache, vskap); 690 } 691 692 /* 693 * Read or write a vnode. Called from kernel code. 694 */ 695 int 696 vn_rdwr( 697 enum uio_rw rw, 698 struct vnode *vp, 699 caddr_t base, 700 ssize_t len, 701 offset_t offset, 702 enum uio_seg seg, 703 int ioflag, 704 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 705 cred_t *cr, 706 ssize_t *residp) 707 { 708 struct uio uio; 709 struct iovec iov; 710 int error; 711 int in_crit = 0; 712 713 if (rw == UIO_WRITE && ISROFILE(vp)) 714 return (EROFS); 715 716 if (len < 0) 717 return (EIO); 718 719 VOPXID_MAP_CR(vp, cr); 720 721 iov.iov_base = base; 722 iov.iov_len = len; 723 uio.uio_iov = &iov; 724 uio.uio_iovcnt = 1; 725 uio.uio_loffset = offset; 726 uio.uio_segflg = (short)seg; 727 uio.uio_resid = len; 728 uio.uio_llimit = ulimit; 729 730 /* 731 * We have to enter the critical region before calling VOP_RWLOCK 732 * to avoid a deadlock with ufs. 733 */ 734 if (nbl_need_check(vp)) { 735 int svmand; 736 737 nbl_start_crit(vp, RW_READER); 738 in_crit = 1; 739 error = nbl_svmand(vp, cr, &svmand); 740 if (error != 0) 741 goto done; 742 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 743 uio.uio_offset, uio.uio_resid, svmand)) { 744 error = EACCES; 745 goto done; 746 } 747 } 748 749 (void) VOP_RWLOCK(vp, 750 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 751 if (rw == UIO_WRITE) { 752 uio.uio_fmode = FWRITE; 753 uio.uio_extflg = UIO_COPY_DEFAULT; 754 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 755 } else { 756 uio.uio_fmode = FREAD; 757 uio.uio_extflg = UIO_COPY_CACHED; 758 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 759 } 760 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 761 NULL); 762 if (residp) 763 *residp = uio.uio_resid; 764 else if (uio.uio_resid) 765 error = EIO; 766 767 done: 768 if (in_crit) 769 nbl_end_crit(vp); 770 return (error); 771 } 772 773 /* 774 * Release a vnode. Call VOP_INACTIVE on last reference or 775 * decrement reference count. 776 * 777 * To avoid race conditions, the v_count is left at 1 for 778 * the call to VOP_INACTIVE. This prevents another thread 779 * from reclaiming and releasing the vnode *before* the 780 * VOP_INACTIVE routine has a chance to destroy the vnode. 781 * We can't have more than 1 thread calling VOP_INACTIVE 782 * on a vnode. 783 */ 784 void 785 vn_rele(vnode_t *vp) 786 { 787 if (vp->v_count == 0) 788 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 789 mutex_enter(&vp->v_lock); 790 if (vp->v_count == 1) { 791 mutex_exit(&vp->v_lock); 792 VOP_INACTIVE(vp, CRED()); 793 } else { 794 vp->v_count--; 795 mutex_exit(&vp->v_lock); 796 } 797 } 798 799 /* 800 * Like vn_rele() except that it clears v_stream under v_lock. 801 * This is used by sockfs when it dismantels the association between 802 * the sockfs node and the vnode in the underlaying file system. 803 * v_lock has to be held to prevent a thread coming through the lookupname 804 * path from accessing a stream head that is going away. 805 */ 806 void 807 vn_rele_stream(vnode_t *vp) 808 { 809 if (vp->v_count == 0) 810 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 811 mutex_enter(&vp->v_lock); 812 vp->v_stream = NULL; 813 if (vp->v_count == 1) { 814 mutex_exit(&vp->v_lock); 815 VOP_INACTIVE(vp, CRED()); 816 } else { 817 vp->v_count--; 818 mutex_exit(&vp->v_lock); 819 } 820 } 821 822 int 823 vn_open( 824 char *pnamep, 825 enum uio_seg seg, 826 int filemode, 827 int createmode, 828 struct vnode **vpp, 829 enum create crwhy, 830 mode_t umask) 831 { 832 return (vn_openat(pnamep, seg, filemode, 833 createmode, vpp, crwhy, umask, NULL)); 834 } 835 836 837 /* 838 * Open/create a vnode. 839 * This may be callable by the kernel, the only known use 840 * of user context being that the current user credentials 841 * are used for permissions. crwhy is defined iff filemode & FCREAT. 842 */ 843 int 844 vn_openat( 845 char *pnamep, 846 enum uio_seg seg, 847 int filemode, 848 int createmode, 849 struct vnode **vpp, 850 enum create crwhy, 851 mode_t umask, 852 struct vnode *startvp) 853 { 854 struct vnode *vp; 855 int mode; 856 int error; 857 int in_crit = 0; 858 struct vattr vattr; 859 enum symfollow follow; 860 int estale_retry = 0; 861 862 mode = 0; 863 if (filemode & FREAD) 864 mode |= VREAD; 865 if (filemode & (FWRITE|FTRUNC)) 866 mode |= VWRITE; 867 868 /* symlink interpretation */ 869 if (filemode & FNOFOLLOW) 870 follow = NO_FOLLOW; 871 else 872 follow = FOLLOW; 873 874 top: 875 if (filemode & FCREAT) { 876 enum vcexcl excl; 877 878 /* 879 * Wish to create a file. 880 */ 881 vattr.va_type = VREG; 882 vattr.va_mode = createmode; 883 vattr.va_mask = AT_TYPE|AT_MODE; 884 if (filemode & FTRUNC) { 885 vattr.va_size = 0; 886 vattr.va_mask |= AT_SIZE; 887 } 888 if (filemode & FEXCL) 889 excl = EXCL; 890 else 891 excl = NONEXCL; 892 893 if (error = 894 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 895 (filemode & ~(FTRUNC|FEXCL)), umask, startvp)) 896 return (error); 897 } else { 898 /* 899 * Wish to open a file. Just look it up. 900 */ 901 if (error = lookupnameat(pnamep, seg, follow, 902 NULLVPP, &vp, startvp)) { 903 if ((error == ESTALE) && 904 fs_need_estale_retry(estale_retry++)) 905 goto top; 906 return (error); 907 } 908 909 /* 910 * Get the attributes to check whether file is large. 911 * We do this only if the FOFFMAX flag is not set and 912 * only for regular files. 913 */ 914 915 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 916 vattr.va_mask = AT_SIZE; 917 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 918 goto out; 919 } 920 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 921 /* 922 * Large File API - regular open fails 923 * if FOFFMAX flag is set in file mode 924 */ 925 error = EOVERFLOW; 926 goto out; 927 } 928 } 929 /* 930 * Can't write directories, active texts, or 931 * read-only filesystems. Can't truncate files 932 * on which mandatory locking is in effect. 933 */ 934 if (filemode & (FWRITE|FTRUNC)) { 935 /* 936 * Allow writable directory if VDIROPEN flag is set. 937 */ 938 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 939 error = EISDIR; 940 goto out; 941 } 942 if (ISROFILE(vp)) { 943 error = EROFS; 944 goto out; 945 } 946 /* 947 * Can't truncate files on which mandatory locking 948 * or non-blocking mandatory locking is in effect. 949 */ 950 if (filemode & FTRUNC) { 951 vnode_t *rvp; 952 953 if (VOP_REALVP(vp, &rvp) != 0) 954 rvp = vp; 955 if (nbl_need_check(vp)) { 956 nbl_start_crit(vp, RW_READER); 957 in_crit = 1; 958 vattr.va_mask = AT_MODE|AT_SIZE; 959 if ((error = VOP_GETATTR(vp, &vattr, 0, 960 CRED())) == 0) { 961 if (rvp->v_filocks != NULL) 962 if (MANDLOCK(vp, 963 vattr.va_mode)) 964 error = EAGAIN; 965 if (!error) { 966 if (nbl_conflict(vp, 967 NBL_WRITE, 0, 968 vattr.va_size, 0)) 969 error = EACCES; 970 } 971 } 972 } else if (rvp->v_filocks != NULL) { 973 vattr.va_mask = AT_MODE; 974 if ((error = VOP_GETATTR(vp, &vattr, 975 0, CRED())) == 0 && MANDLOCK(vp, 976 vattr.va_mode)) 977 error = EAGAIN; 978 } 979 } 980 if (error) 981 goto out; 982 } 983 /* 984 * Check permissions. 985 */ 986 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 987 goto out; 988 } 989 990 /* 991 * Do remaining checks for FNOFOLLOW and FNOLINKS. 992 */ 993 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 994 error = ELOOP; 995 goto out; 996 } 997 if (filemode & FNOLINKS) { 998 vattr.va_mask = AT_NLINK; 999 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1000 goto out; 1001 } 1002 if (vattr.va_nlink != 1) { 1003 error = EMLINK; 1004 goto out; 1005 } 1006 } 1007 1008 /* 1009 * Opening a socket corresponding to the AF_UNIX pathname 1010 * in the filesystem name space is not supported. 1011 * However, VSOCK nodes in namefs are supported in order 1012 * to make fattach work for sockets. 1013 * 1014 * XXX This uses VOP_REALVP to distinguish between 1015 * an unopened namefs node (where VOP_REALVP returns a 1016 * different VSOCK vnode) and a VSOCK created by vn_create 1017 * in some file system (where VOP_REALVP would never return 1018 * a different vnode). 1019 */ 1020 if (vp->v_type == VSOCK) { 1021 struct vnode *nvp; 1022 1023 error = VOP_REALVP(vp, &nvp); 1024 if (error != 0 || nvp == NULL || nvp == vp || 1025 nvp->v_type != VSOCK) { 1026 error = EOPNOTSUPP; 1027 goto out; 1028 } 1029 } 1030 /* 1031 * Do opening protocol. 1032 */ 1033 error = VOP_OPEN(&vp, filemode, CRED()); 1034 /* 1035 * Truncate if required. 1036 */ 1037 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 1038 vattr.va_size = 0; 1039 vattr.va_mask = AT_SIZE; 1040 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1041 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 1042 } 1043 out: 1044 ASSERT(vp->v_count > 0); 1045 1046 if (in_crit) { 1047 nbl_end_crit(vp); 1048 in_crit = 0; 1049 } 1050 if (error) { 1051 /* 1052 * The following clause was added to handle a problem 1053 * with NFS consistency. It is possible that a lookup 1054 * of the file to be opened succeeded, but the file 1055 * itself doesn't actually exist on the server. This 1056 * is chiefly due to the DNLC containing an entry for 1057 * the file which has been removed on the server. In 1058 * this case, we just start over. If there was some 1059 * other cause for the ESTALE error, then the lookup 1060 * of the file will fail and the error will be returned 1061 * above instead of looping around from here. 1062 */ 1063 VN_RELE(vp); 1064 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1065 goto top; 1066 } else 1067 *vpp = vp; 1068 return (error); 1069 } 1070 1071 int 1072 vn_create( 1073 char *pnamep, 1074 enum uio_seg seg, 1075 struct vattr *vap, 1076 enum vcexcl excl, 1077 int mode, 1078 struct vnode **vpp, 1079 enum create why, 1080 int flag, 1081 mode_t umask) 1082 { 1083 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 1084 why, flag, umask, NULL)); 1085 } 1086 1087 /* 1088 * Create a vnode (makenode). 1089 */ 1090 int 1091 vn_createat( 1092 char *pnamep, 1093 enum uio_seg seg, 1094 struct vattr *vap, 1095 enum vcexcl excl, 1096 int mode, 1097 struct vnode **vpp, 1098 enum create why, 1099 int flag, 1100 mode_t umask, 1101 struct vnode *startvp) 1102 { 1103 struct vnode *dvp; /* ptr to parent dir vnode */ 1104 struct vnode *vp = NULL; 1105 struct pathname pn; 1106 int error; 1107 int in_crit = 0; 1108 struct vattr vattr; 1109 enum symfollow follow; 1110 int estale_retry = 0; 1111 1112 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1113 1114 /* symlink interpretation */ 1115 if ((flag & FNOFOLLOW) || excl == EXCL) 1116 follow = NO_FOLLOW; 1117 else 1118 follow = FOLLOW; 1119 flag &= ~(FNOFOLLOW|FNOLINKS); 1120 1121 top: 1122 /* 1123 * Lookup directory. 1124 * If new object is a file, call lower level to create it. 1125 * Note that it is up to the lower level to enforce exclusive 1126 * creation, if the file is already there. 1127 * This allows the lower level to do whatever 1128 * locking or protocol that is needed to prevent races. 1129 * If the new object is directory call lower level to make 1130 * the new directory, with "." and "..". 1131 */ 1132 if (error = pn_get(pnamep, seg, &pn)) 1133 return (error); 1134 #ifdef C2_AUDIT 1135 if (audit_active) 1136 audit_vncreate_start(); 1137 #endif /* C2_AUDIT */ 1138 dvp = NULL; 1139 *vpp = NULL; 1140 /* 1141 * lookup will find the parent directory for the vnode. 1142 * When it is done the pn holds the name of the entry 1143 * in the directory. 1144 * If this is a non-exclusive create we also find the node itself. 1145 */ 1146 error = lookuppnat(&pn, NULL, follow, &dvp, 1147 (excl == EXCL) ? NULLVPP : vpp, startvp); 1148 if (error) { 1149 pn_free(&pn); 1150 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1151 goto top; 1152 if (why == CRMKDIR && error == EINVAL) 1153 error = EEXIST; /* SVID */ 1154 return (error); 1155 } 1156 1157 if (why != CRMKNOD) 1158 vap->va_mode &= ~VSVTX; 1159 1160 /* 1161 * If default ACLs are defined for the directory don't apply the 1162 * umask if umask is passed. 1163 */ 1164 1165 if (umask) { 1166 1167 vsecattr_t vsec; 1168 1169 vsec.vsa_aclcnt = 0; 1170 vsec.vsa_aclentp = NULL; 1171 vsec.vsa_dfaclcnt = 0; 1172 vsec.vsa_dfaclentp = NULL; 1173 vsec.vsa_mask = VSA_DFACLCNT; 1174 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 1175 /* 1176 * If error is ENOSYS then treat it as no error 1177 * Don't want to force all file systems to support 1178 * aclent_t style of ACL's. 1179 */ 1180 if (error == ENOSYS) 1181 error = 0; 1182 if (error) { 1183 if (*vpp != NULL) 1184 VN_RELE(*vpp); 1185 goto out; 1186 } else { 1187 /* 1188 * Apply the umask if no default ACLs. 1189 */ 1190 if (vsec.vsa_dfaclcnt == 0) 1191 vap->va_mode &= ~umask; 1192 1193 /* 1194 * VOP_GETSECATTR() may have allocated memory for 1195 * ACLs we didn't request, so double-check and 1196 * free it if necessary. 1197 */ 1198 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1199 kmem_free((caddr_t)vsec.vsa_aclentp, 1200 vsec.vsa_aclcnt * sizeof (aclent_t)); 1201 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1202 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1203 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1204 } 1205 } 1206 1207 /* 1208 * In general we want to generate EROFS if the file system is 1209 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1210 * documents the open system call, and it says that O_CREAT has no 1211 * effect if the file already exists. Bug 1119649 states 1212 * that open(path, O_CREAT, ...) fails when attempting to open an 1213 * existing file on a read only file system. Thus, the first part 1214 * of the following if statement has 3 checks: 1215 * if the file exists && 1216 * it is being open with write access && 1217 * the file system is read only 1218 * then generate EROFS 1219 */ 1220 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1221 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1222 if (*vpp) 1223 VN_RELE(*vpp); 1224 error = EROFS; 1225 } else if (excl == NONEXCL && *vpp != NULL) { 1226 vnode_t *rvp; 1227 1228 /* 1229 * File already exists. If a mandatory lock has been 1230 * applied, return error. 1231 */ 1232 vp = *vpp; 1233 if (VOP_REALVP(vp, &rvp) != 0) 1234 rvp = vp; 1235 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1236 nbl_start_crit(vp, RW_READER); 1237 in_crit = 1; 1238 } 1239 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1240 vattr.va_mask = AT_MODE|AT_SIZE; 1241 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 1242 goto out; 1243 } 1244 if (MANDLOCK(vp, vattr.va_mode)) { 1245 error = EAGAIN; 1246 goto out; 1247 } 1248 /* 1249 * File cannot be truncated if non-blocking mandatory 1250 * locks are currently on the file. 1251 */ 1252 if ((vap->va_mask & AT_SIZE) && in_crit) { 1253 u_offset_t offset; 1254 ssize_t length; 1255 1256 offset = vap->va_size > vattr.va_size ? 1257 vattr.va_size : vap->va_size; 1258 length = vap->va_size > vattr.va_size ? 1259 vap->va_size - vattr.va_size : 1260 vattr.va_size - vap->va_size; 1261 if (nbl_conflict(vp, NBL_WRITE, offset, 1262 length, 0)) { 1263 error = EACCES; 1264 goto out; 1265 } 1266 } 1267 } 1268 1269 /* 1270 * If the file is the root of a VFS, we've crossed a 1271 * mount point and the "containing" directory that we 1272 * acquired above (dvp) is irrelevant because it's in 1273 * a different file system. We apply VOP_CREATE to the 1274 * target itself instead of to the containing directory 1275 * and supply a null path name to indicate (conventionally) 1276 * the node itself as the "component" of interest. 1277 * 1278 * The intercession of the file system is necessary to 1279 * ensure that the appropriate permission checks are 1280 * done. 1281 */ 1282 if (vp->v_flag & VROOT) { 1283 ASSERT(why != CRMKDIR); 1284 error = 1285 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 1286 flag); 1287 /* 1288 * If the create succeeded, it will have created 1289 * a new reference to the vnode. Give up the 1290 * original reference. The assertion should not 1291 * get triggered because NBMAND locks only apply to 1292 * VREG files. And if in_crit is non-zero for some 1293 * reason, detect that here, rather than when we 1294 * deference a null vp. 1295 */ 1296 ASSERT(in_crit == 0); 1297 VN_RELE(vp); 1298 vp = NULL; 1299 goto out; 1300 } 1301 1302 /* 1303 * Large File API - non-large open (FOFFMAX flag not set) 1304 * of regular file fails if the file size exceeds MAXOFF32_T. 1305 */ 1306 if (why != CRMKDIR && 1307 !(flag & FOFFMAX) && 1308 (vp->v_type == VREG)) { 1309 vattr.va_mask = AT_SIZE; 1310 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1311 goto out; 1312 } 1313 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1314 error = EOVERFLOW; 1315 goto out; 1316 } 1317 } 1318 } 1319 1320 if (error == 0) { 1321 /* 1322 * Call mkdir() if specified, otherwise create(). 1323 */ 1324 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1325 1326 if (why == CRMKDIR) 1327 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 1328 else if (!must_be_dir) 1329 error = VOP_CREATE(dvp, pn.pn_path, vap, 1330 excl, mode, vpp, CRED(), flag); 1331 else 1332 error = ENOTDIR; 1333 } 1334 1335 out: 1336 1337 #ifdef C2_AUDIT 1338 if (audit_active) 1339 audit_vncreate_finish(*vpp, error); 1340 #endif /* C2_AUDIT */ 1341 if (in_crit) { 1342 nbl_end_crit(vp); 1343 in_crit = 0; 1344 } 1345 if (vp != NULL) { 1346 VN_RELE(vp); 1347 vp = NULL; 1348 } 1349 pn_free(&pn); 1350 VN_RELE(dvp); 1351 /* 1352 * The following clause was added to handle a problem 1353 * with NFS consistency. It is possible that a lookup 1354 * of the file to be created succeeded, but the file 1355 * itself doesn't actually exist on the server. This 1356 * is chiefly due to the DNLC containing an entry for 1357 * the file which has been removed on the server. In 1358 * this case, we just start over. If there was some 1359 * other cause for the ESTALE error, then the lookup 1360 * of the file will fail and the error will be returned 1361 * above instead of looping around from here. 1362 */ 1363 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1364 goto top; 1365 return (error); 1366 } 1367 1368 int 1369 vn_link(char *from, char *to, enum uio_seg seg) 1370 { 1371 struct vnode *fvp; /* from vnode ptr */ 1372 struct vnode *tdvp; /* to directory vnode ptr */ 1373 struct pathname pn; 1374 int error; 1375 struct vattr vattr; 1376 dev_t fsid; 1377 int estale_retry = 0; 1378 1379 top: 1380 fvp = tdvp = NULL; 1381 if (error = pn_get(to, seg, &pn)) 1382 return (error); 1383 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1384 goto out; 1385 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1386 goto out; 1387 /* 1388 * Make sure both source vnode and target directory vnode are 1389 * in the same vfs and that it is writeable. 1390 */ 1391 vattr.va_mask = AT_FSID; 1392 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 1393 goto out; 1394 fsid = vattr.va_fsid; 1395 vattr.va_mask = AT_FSID; 1396 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 1397 goto out; 1398 if (fsid != vattr.va_fsid) { 1399 error = EXDEV; 1400 goto out; 1401 } 1402 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1403 error = EROFS; 1404 goto out; 1405 } 1406 /* 1407 * Do the link. 1408 */ 1409 (void) pn_fixslash(&pn); 1410 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 1411 out: 1412 pn_free(&pn); 1413 if (fvp) 1414 VN_RELE(fvp); 1415 if (tdvp) 1416 VN_RELE(tdvp); 1417 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1418 goto top; 1419 return (error); 1420 } 1421 1422 int 1423 vn_rename(char *from, char *to, enum uio_seg seg) 1424 { 1425 return (vn_renameat(NULL, from, NULL, to, seg)); 1426 } 1427 1428 int 1429 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1430 char *tname, enum uio_seg seg) 1431 { 1432 int error; 1433 struct vattr vattr; 1434 struct pathname fpn; /* from pathname */ 1435 struct pathname tpn; /* to pathname */ 1436 dev_t fsid; 1437 int in_crit = 0; 1438 vnode_t *fromvp, *fvp; 1439 vnode_t *tovp; 1440 int estale_retry = 0; 1441 1442 top: 1443 fvp = fromvp = tovp = NULL; 1444 /* 1445 * Get to and from pathnames. 1446 */ 1447 if (error = pn_get(fname, seg, &fpn)) 1448 return (error); 1449 if (error = pn_get(tname, seg, &tpn)) { 1450 pn_free(&fpn); 1451 return (error); 1452 } 1453 1454 /* 1455 * First we need to resolve the correct directories 1456 * The passed in directories may only be a starting point, 1457 * but we need the real directories the file(s) live in. 1458 * For example the fname may be something like usr/lib/sparc 1459 * and we were passed in the / directory, but we need to 1460 * use the lib directory for the rename. 1461 */ 1462 1463 #ifdef C2_AUDIT 1464 if (audit_active) 1465 audit_setfsat_path(1); 1466 #endif /* C2_AUDIT */ 1467 /* 1468 * Lookup to and from directories. 1469 */ 1470 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1471 goto out; 1472 } 1473 1474 /* 1475 * Make sure there is an entry. 1476 */ 1477 if (fvp == NULL) { 1478 error = ENOENT; 1479 goto out; 1480 } 1481 1482 #ifdef C2_AUDIT 1483 if (audit_active) 1484 audit_setfsat_path(3); 1485 #endif /* C2_AUDIT */ 1486 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1487 goto out; 1488 } 1489 1490 /* 1491 * Make sure both the from vnode directory and the to directory 1492 * are in the same vfs and the to directory is writable. 1493 * We check fsid's, not vfs pointers, so loopback fs works. 1494 */ 1495 if (fromvp != tovp) { 1496 vattr.va_mask = AT_FSID; 1497 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1498 goto out; 1499 fsid = vattr.va_fsid; 1500 vattr.va_mask = AT_FSID; 1501 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1502 goto out; 1503 if (fsid != vattr.va_fsid) { 1504 error = EXDEV; 1505 goto out; 1506 } 1507 } 1508 1509 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1510 error = EROFS; 1511 goto out; 1512 } 1513 1514 if (nbl_need_check(fvp)) { 1515 nbl_start_crit(fvp, RW_READER); 1516 in_crit = 1; 1517 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1518 error = EACCES; 1519 goto out; 1520 } 1521 } 1522 1523 /* 1524 * Do the rename. 1525 */ 1526 (void) pn_fixslash(&tpn); 1527 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1528 1529 out: 1530 pn_free(&fpn); 1531 pn_free(&tpn); 1532 if (in_crit) { 1533 nbl_end_crit(fvp); 1534 in_crit = 0; 1535 } 1536 if (fromvp) 1537 VN_RELE(fromvp); 1538 if (tovp) 1539 VN_RELE(tovp); 1540 if (fvp) 1541 VN_RELE(fvp); 1542 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1543 goto top; 1544 return (error); 1545 } 1546 1547 /* 1548 * Remove a file or directory. 1549 */ 1550 int 1551 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1552 { 1553 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1554 } 1555 1556 int 1557 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1558 { 1559 struct vnode *vp; /* entry vnode */ 1560 struct vnode *dvp; /* ptr to parent dir vnode */ 1561 struct vnode *coveredvp; 1562 struct pathname pn; /* name of entry */ 1563 enum vtype vtype; 1564 int error; 1565 struct vfs *vfsp; 1566 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1567 int in_crit = 0; 1568 int estale_retry = 0; 1569 1570 top: 1571 if (error = pn_get(fnamep, seg, &pn)) 1572 return (error); 1573 dvp = vp = NULL; 1574 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1575 pn_free(&pn); 1576 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1577 goto top; 1578 return (error); 1579 } 1580 1581 /* 1582 * Make sure there is an entry. 1583 */ 1584 if (vp == NULL) { 1585 error = ENOENT; 1586 goto out; 1587 } 1588 1589 vfsp = vp->v_vfsp; 1590 dvfsp = dvp->v_vfsp; 1591 1592 /* 1593 * If the named file is the root of a mounted filesystem, fail, 1594 * unless it's marked unlinkable. In that case, unmount the 1595 * filesystem and proceed to unlink the covered vnode. (If the 1596 * covered vnode is a directory, use rmdir instead of unlink, 1597 * to avoid file system corruption.) 1598 */ 1599 if (vp->v_flag & VROOT) { 1600 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) { 1601 error = EBUSY; 1602 goto out; 1603 } 1604 1605 /* 1606 * Namefs specific code starts here. 1607 */ 1608 1609 if (dirflag == RMDIRECTORY) { 1610 /* 1611 * User called rmdir(2) on a file that has 1612 * been namefs mounted on top of. Since 1613 * namefs doesn't allow directories to 1614 * be mounted on other files we know 1615 * vp is not of type VDIR so fail to operation. 1616 */ 1617 error = ENOTDIR; 1618 goto out; 1619 } 1620 1621 /* 1622 * If VROOT is still set after grabbing vp->v_lock, 1623 * noone has finished nm_unmount so far and coveredvp 1624 * is valid. 1625 * If we manage to grab vn_vfswlock(coveredvp) before releasing 1626 * vp->v_lock, any race window is eliminated. 1627 */ 1628 1629 mutex_enter(&vp->v_lock); 1630 if ((vp->v_flag & VROOT) == 0) { 1631 /* Someone beat us to the unmount */ 1632 mutex_exit(&vp->v_lock); 1633 error = EBUSY; 1634 goto out; 1635 } 1636 vfsp = vp->v_vfsp; 1637 coveredvp = vfsp->vfs_vnodecovered; 1638 ASSERT(coveredvp); 1639 /* 1640 * Note: Implementation of vn_vfswlock shows that ordering of 1641 * v_lock / vn_vfswlock is not an issue here. 1642 */ 1643 error = vn_vfswlock(coveredvp); 1644 mutex_exit(&vp->v_lock); 1645 1646 if (error) 1647 goto out; 1648 1649 VN_HOLD(coveredvp); 1650 VN_RELE(vp); 1651 error = dounmount(vfsp, 0, CRED()); 1652 1653 /* 1654 * Unmounted the namefs file system; now get 1655 * the object it was mounted over. 1656 */ 1657 vp = coveredvp; 1658 /* 1659 * If namefs was mounted over a directory, then 1660 * we want to use rmdir() instead of unlink(). 1661 */ 1662 if (vp->v_type == VDIR) 1663 dirflag = RMDIRECTORY; 1664 1665 if (error) 1666 goto out; 1667 } 1668 1669 /* 1670 * Make sure filesystem is writeable. 1671 * We check the parent directory's vfs in case this is an lofs vnode. 1672 */ 1673 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1674 error = EROFS; 1675 goto out; 1676 } 1677 1678 vtype = vp->v_type; 1679 1680 /* 1681 * If there is the possibility of an nbmand share reservation, make 1682 * sure it's okay to remove the file. Keep a reference to the 1683 * vnode, so that we can exit the nbl critical region after 1684 * calling VOP_REMOVE. 1685 * If there is no possibility of an nbmand share reservation, 1686 * release the vnode reference now. Filesystems like NFS may 1687 * behave differently if there is an extra reference, so get rid of 1688 * this one. Fortunately, we can't have nbmand mounts on NFS 1689 * filesystems. 1690 */ 1691 if (nbl_need_check(vp)) { 1692 nbl_start_crit(vp, RW_READER); 1693 in_crit = 1; 1694 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1695 error = EACCES; 1696 goto out; 1697 } 1698 } else { 1699 VN_RELE(vp); 1700 vp = NULL; 1701 } 1702 1703 if (dirflag == RMDIRECTORY) { 1704 /* 1705 * Caller is using rmdir(2), which can only be applied to 1706 * directories. 1707 */ 1708 if (vtype != VDIR) { 1709 error = ENOTDIR; 1710 } else { 1711 vnode_t *cwd; 1712 proc_t *pp = curproc; 1713 1714 mutex_enter(&pp->p_lock); 1715 cwd = PTOU(pp)->u_cdir; 1716 VN_HOLD(cwd); 1717 mutex_exit(&pp->p_lock); 1718 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1719 VN_RELE(cwd); 1720 } 1721 } else { 1722 /* 1723 * Unlink(2) can be applied to anything. 1724 */ 1725 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1726 } 1727 1728 out: 1729 pn_free(&pn); 1730 if (in_crit) { 1731 nbl_end_crit(vp); 1732 in_crit = 0; 1733 } 1734 if (vp != NULL) 1735 VN_RELE(vp); 1736 if (dvp != NULL) 1737 VN_RELE(dvp); 1738 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1739 goto top; 1740 return (error); 1741 } 1742 1743 /* 1744 * Utility function to compare equality of vnodes. 1745 * Compare the underlying real vnodes, if there are underlying vnodes. 1746 * This is a more thorough comparison than the VN_CMP() macro provides. 1747 */ 1748 int 1749 vn_compare(vnode_t *vp1, vnode_t *vp2) 1750 { 1751 vnode_t *realvp; 1752 1753 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1754 vp1 = realvp; 1755 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1756 vp2 = realvp; 1757 return (VN_CMP(vp1, vp2)); 1758 } 1759 1760 /* 1761 * The number of locks to hash into. This value must be a power 1762 * of 2 minus 1 and should probably also be prime. 1763 */ 1764 #define NUM_BUCKETS 1023 1765 1766 struct vn_vfslocks_bucket { 1767 kmutex_t vb_lock; 1768 vn_vfslocks_entry_t *vb_list; 1769 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1770 }; 1771 1772 /* 1773 * Total number of buckets will be NUM_BUCKETS + 1 . 1774 */ 1775 1776 #pragma align 64(vn_vfslocks_buckets) 1777 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1778 1779 #define VN_VFSLOCKS_SHIFT 9 1780 1781 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1782 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1783 1784 /* 1785 * vn_vfslocks_getlock() uses an HASH scheme to generate 1786 * rwstlock using vfs/vnode pointer passed to it. 1787 * 1788 * vn_vfslocks_rele() releases a reference in the 1789 * HASH table which allows the entry allocated by 1790 * vn_vfslocks_getlock() to be freed at a later 1791 * stage when the refcount drops to zero. 1792 */ 1793 1794 vn_vfslocks_entry_t * 1795 vn_vfslocks_getlock(void *vfsvpptr) 1796 { 1797 struct vn_vfslocks_bucket *bp; 1798 vn_vfslocks_entry_t *vep; 1799 vn_vfslocks_entry_t *tvep; 1800 1801 ASSERT(vfsvpptr != NULL); 1802 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1803 1804 mutex_enter(&bp->vb_lock); 1805 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1806 if (vep->ve_vpvfs == vfsvpptr) { 1807 vep->ve_refcnt++; 1808 mutex_exit(&bp->vb_lock); 1809 return (vep); 1810 } 1811 } 1812 mutex_exit(&bp->vb_lock); 1813 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1814 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1815 vep->ve_vpvfs = (char *)vfsvpptr; 1816 vep->ve_refcnt = 1; 1817 mutex_enter(&bp->vb_lock); 1818 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1819 if (tvep->ve_vpvfs == vfsvpptr) { 1820 tvep->ve_refcnt++; 1821 mutex_exit(&bp->vb_lock); 1822 1823 /* 1824 * There is already an entry in the hash 1825 * destroy what we just allocated. 1826 */ 1827 rwst_destroy(&vep->ve_lock); 1828 kmem_free(vep, sizeof (*vep)); 1829 return (tvep); 1830 } 1831 } 1832 vep->ve_next = bp->vb_list; 1833 bp->vb_list = vep; 1834 mutex_exit(&bp->vb_lock); 1835 return (vep); 1836 } 1837 1838 void 1839 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1840 { 1841 struct vn_vfslocks_bucket *bp; 1842 vn_vfslocks_entry_t *vep; 1843 vn_vfslocks_entry_t *pvep; 1844 1845 ASSERT(vepent != NULL); 1846 ASSERT(vepent->ve_vpvfs != NULL); 1847 1848 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1849 1850 mutex_enter(&bp->vb_lock); 1851 vepent->ve_refcnt--; 1852 1853 if ((int32_t)vepent->ve_refcnt < 0) 1854 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1855 1856 if (vepent->ve_refcnt == 0) { 1857 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1858 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1859 if (bp->vb_list == vep) 1860 bp->vb_list = vep->ve_next; 1861 else { 1862 /* LINTED */ 1863 pvep->ve_next = vep->ve_next; 1864 } 1865 mutex_exit(&bp->vb_lock); 1866 rwst_destroy(&vep->ve_lock); 1867 kmem_free(vep, sizeof (*vep)); 1868 return; 1869 } 1870 pvep = vep; 1871 } 1872 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1873 } 1874 mutex_exit(&bp->vb_lock); 1875 } 1876 1877 /* 1878 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1879 * lock protecting the v_vfsmountedhere field. 1880 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1881 * except that it blocks to acquire the lock VVFSLOCK. 1882 * 1883 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1884 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1885 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1886 */ 1887 int 1888 vn_vfswlock_wait(vnode_t *vp) 1889 { 1890 int retval; 1891 vn_vfslocks_entry_t *vpvfsentry; 1892 ASSERT(vp != NULL); 1893 1894 vpvfsentry = vn_vfslocks_getlock(vp); 1895 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1896 1897 if (retval == EINTR) { 1898 vn_vfslocks_rele(vpvfsentry); 1899 return (EINTR); 1900 } 1901 return (retval); 1902 } 1903 1904 int 1905 vn_vfsrlock_wait(vnode_t *vp) 1906 { 1907 int retval; 1908 vn_vfslocks_entry_t *vpvfsentry; 1909 ASSERT(vp != NULL); 1910 1911 vpvfsentry = vn_vfslocks_getlock(vp); 1912 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1913 1914 if (retval == EINTR) { 1915 vn_vfslocks_rele(vpvfsentry); 1916 return (EINTR); 1917 } 1918 1919 return (retval); 1920 } 1921 1922 1923 /* 1924 * vn_vfswlock is used to implement a lock which is logically a writers lock 1925 * protecting the v_vfsmountedhere field. 1926 */ 1927 int 1928 vn_vfswlock(vnode_t *vp) 1929 { 1930 vn_vfslocks_entry_t *vpvfsentry; 1931 1932 /* 1933 * If vp is NULL then somebody is trying to lock the covered vnode 1934 * of /. (vfs_vnodecovered is NULL for /). This situation will 1935 * only happen when unmounting /. Since that operation will fail 1936 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1937 */ 1938 if (vp == NULL) 1939 return (EBUSY); 1940 1941 vpvfsentry = vn_vfslocks_getlock(vp); 1942 1943 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1944 return (0); 1945 1946 vn_vfslocks_rele(vpvfsentry); 1947 return (EBUSY); 1948 } 1949 1950 int 1951 vn_vfsrlock(vnode_t *vp) 1952 { 1953 vn_vfslocks_entry_t *vpvfsentry; 1954 1955 /* 1956 * If vp is NULL then somebody is trying to lock the covered vnode 1957 * of /. (vfs_vnodecovered is NULL for /). This situation will 1958 * only happen when unmounting /. Since that operation will fail 1959 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1960 */ 1961 if (vp == NULL) 1962 return (EBUSY); 1963 1964 vpvfsentry = vn_vfslocks_getlock(vp); 1965 1966 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1967 return (0); 1968 1969 vn_vfslocks_rele(vpvfsentry); 1970 return (EBUSY); 1971 } 1972 1973 void 1974 vn_vfsunlock(vnode_t *vp) 1975 { 1976 vn_vfslocks_entry_t *vpvfsentry; 1977 1978 /* 1979 * ve_refcnt needs to be decremented twice. 1980 * 1. To release refernce after a call to vn_vfslocks_getlock() 1981 * 2. To release the reference from the locking routines like 1982 * vn_vfsrlock/vn_vfswlock etc,. 1983 */ 1984 vpvfsentry = vn_vfslocks_getlock(vp); 1985 vn_vfslocks_rele(vpvfsentry); 1986 1987 rwst_exit(&vpvfsentry->ve_lock); 1988 vn_vfslocks_rele(vpvfsentry); 1989 } 1990 1991 int 1992 vn_vfswlock_held(vnode_t *vp) 1993 { 1994 int held; 1995 vn_vfslocks_entry_t *vpvfsentry; 1996 1997 ASSERT(vp != NULL); 1998 1999 vpvfsentry = vn_vfslocks_getlock(vp); 2000 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 2001 2002 vn_vfslocks_rele(vpvfsentry); 2003 return (held); 2004 } 2005 2006 2007 int 2008 vn_make_ops( 2009 const char *name, /* Name of file system */ 2010 const fs_operation_def_t *templ, /* Operation specification */ 2011 vnodeops_t **actual) /* Return the vnodeops */ 2012 { 2013 int unused_ops; 2014 int error; 2015 2016 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 2017 2018 (*actual)->vnop_name = name; 2019 2020 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 2021 if (error) { 2022 kmem_free(*actual, sizeof (vnodeops_t)); 2023 } 2024 2025 #if DEBUG 2026 if (unused_ops != 0) 2027 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 2028 "but not used", name, unused_ops); 2029 #endif 2030 2031 return (error); 2032 } 2033 2034 /* 2035 * Free the vnodeops created as a result of vn_make_ops() 2036 */ 2037 void 2038 vn_freevnodeops(vnodeops_t *vnops) 2039 { 2040 kmem_free(vnops, sizeof (vnodeops_t)); 2041 } 2042 2043 /* 2044 * Vnode cache. 2045 */ 2046 2047 /* ARGSUSED */ 2048 static int 2049 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 2050 { 2051 struct vnode *vp; 2052 2053 vp = buf; 2054 2055 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 2056 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 2057 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 2058 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 2059 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2060 vp->v_path = NULL; 2061 vp->v_mpssdata = NULL; 2062 vp->v_vsd = NULL; 2063 vp->v_fopdata = NULL; 2064 2065 return (0); 2066 } 2067 2068 /* ARGSUSED */ 2069 static void 2070 vn_cache_destructor(void *buf, void *cdrarg) 2071 { 2072 struct vnode *vp; 2073 2074 vp = buf; 2075 2076 rw_destroy(&vp->v_mslock); 2077 rw_destroy(&vp->v_nbllock); 2078 cv_destroy(&vp->v_cv); 2079 mutex_destroy(&vp->v_lock); 2080 } 2081 2082 void 2083 vn_create_cache(void) 2084 { 2085 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 2086 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2087 NULL, 0); 2088 } 2089 2090 void 2091 vn_destroy_cache(void) 2092 { 2093 kmem_cache_destroy(vn_cache); 2094 } 2095 2096 /* 2097 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2098 * cached by the file system and vnodes remain associated. 2099 */ 2100 void 2101 vn_recycle(vnode_t *vp) 2102 { 2103 ASSERT(vp->v_pages == NULL); 2104 2105 /* 2106 * XXX - This really belongs in vn_reinit(), but we have some issues 2107 * with the counts. Best to have it here for clean initialization. 2108 */ 2109 vp->v_rdcnt = 0; 2110 vp->v_wrcnt = 0; 2111 vp->v_mmap_read = 0; 2112 vp->v_mmap_write = 0; 2113 2114 /* 2115 * If FEM was in use, make sure everything gets cleaned up 2116 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2117 * constructor. 2118 */ 2119 if (vp->v_femhead) { 2120 /* XXX - There should be a free_femhead() that does all this */ 2121 ASSERT(vp->v_femhead->femh_list == NULL); 2122 mutex_destroy(&vp->v_femhead->femh_lock); 2123 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2124 vp->v_femhead = NULL; 2125 } 2126 if (vp->v_path) { 2127 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2128 vp->v_path = NULL; 2129 } 2130 2131 if (vp->v_fopdata != NULL) { 2132 free_fopdata(vp); 2133 } 2134 vp->v_mpssdata = NULL; 2135 vsd_free(vp); 2136 } 2137 2138 /* 2139 * Used to reset the vnode fields including those that are directly accessible 2140 * as well as those which require an accessor function. 2141 * 2142 * Does not initialize: 2143 * synchronization objects: v_lock, v_nbllock, v_cv 2144 * v_data (since FS-nodes and vnodes point to each other and should 2145 * be updated simultaneously) 2146 * v_op (in case someone needs to make a VOP call on this object) 2147 */ 2148 void 2149 vn_reinit(vnode_t *vp) 2150 { 2151 vp->v_count = 1; 2152 vp->v_vfsp = NULL; 2153 vp->v_stream = NULL; 2154 vp->v_vfsmountedhere = NULL; 2155 vp->v_flag = 0; 2156 vp->v_type = VNON; 2157 vp->v_rdev = NODEV; 2158 2159 vp->v_filocks = NULL; 2160 vp->v_shrlocks = NULL; 2161 vp->v_pages = NULL; 2162 vp->v_npages = 0; 2163 vp->v_msnpages = 0; 2164 vp->v_scanfront = NULL; 2165 vp->v_scanback = NULL; 2166 2167 vp->v_locality = NULL; 2168 vp->v_scantime = 0; 2169 vp->v_mset = 0; 2170 vp->v_msflags = 0; 2171 vp->v_msnext = NULL; 2172 vp->v_msprev = NULL; 2173 2174 /* Handles v_femhead, v_path, and the r/w/map counts */ 2175 vn_recycle(vp); 2176 } 2177 2178 vnode_t * 2179 vn_alloc(int kmflag) 2180 { 2181 vnode_t *vp; 2182 2183 vp = kmem_cache_alloc(vn_cache, kmflag); 2184 2185 if (vp != NULL) { 2186 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2187 vp->v_fopdata = NULL; 2188 vn_reinit(vp); 2189 } 2190 2191 return (vp); 2192 } 2193 2194 void 2195 vn_free(vnode_t *vp) 2196 { 2197 /* 2198 * Some file systems call vn_free() with v_count of zero, 2199 * some with v_count of 1. In any case, the value should 2200 * never be anything else. 2201 */ 2202 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2203 if (vp->v_path != NULL) { 2204 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2205 vp->v_path = NULL; 2206 } 2207 2208 /* If FEM was in use, make sure everything gets cleaned up */ 2209 if (vp->v_femhead) { 2210 /* XXX - There should be a free_femhead() that does all this */ 2211 ASSERT(vp->v_femhead->femh_list == NULL); 2212 mutex_destroy(&vp->v_femhead->femh_lock); 2213 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2214 vp->v_femhead = NULL; 2215 } 2216 2217 if (vp->v_fopdata != NULL) { 2218 free_fopdata(vp); 2219 } 2220 vp->v_mpssdata = NULL; 2221 vsd_free(vp); 2222 kmem_cache_free(vn_cache, vp); 2223 } 2224 2225 /* 2226 * vnode status changes, should define better states than 1, 0. 2227 */ 2228 void 2229 vn_reclaim(vnode_t *vp) 2230 { 2231 vfs_t *vfsp = vp->v_vfsp; 2232 2233 if (vfsp == NULL || 2234 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2235 return; 2236 } 2237 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2238 } 2239 2240 void 2241 vn_idle(vnode_t *vp) 2242 { 2243 vfs_t *vfsp = vp->v_vfsp; 2244 2245 if (vfsp == NULL || 2246 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2247 return; 2248 } 2249 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2250 } 2251 void 2252 vn_exists(vnode_t *vp) 2253 { 2254 vfs_t *vfsp = vp->v_vfsp; 2255 2256 if (vfsp == NULL || 2257 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2258 return; 2259 } 2260 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2261 } 2262 2263 void 2264 vn_invalid(vnode_t *vp) 2265 { 2266 vfs_t *vfsp = vp->v_vfsp; 2267 2268 if (vfsp == NULL || 2269 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2270 return; 2271 } 2272 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2273 } 2274 2275 /* Vnode event notification */ 2276 2277 int 2278 vnevent_support(vnode_t *vp) 2279 { 2280 if (vp == NULL) 2281 return (EINVAL); 2282 2283 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL)); 2284 } 2285 2286 void 2287 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name) 2288 { 2289 if (vp == NULL || vp->v_femhead == NULL) { 2290 return; 2291 } 2292 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name); 2293 } 2294 2295 void 2296 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name) 2297 { 2298 if (vp == NULL || vp->v_femhead == NULL) { 2299 return; 2300 } 2301 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name); 2302 } 2303 2304 void 2305 vnevent_rename_dest_dir(vnode_t *vp) 2306 { 2307 if (vp == NULL || vp->v_femhead == NULL) { 2308 return; 2309 } 2310 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL); 2311 } 2312 2313 void 2314 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name) 2315 { 2316 if (vp == NULL || vp->v_femhead == NULL) { 2317 return; 2318 } 2319 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name); 2320 } 2321 2322 void 2323 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name) 2324 { 2325 if (vp == NULL || vp->v_femhead == NULL) { 2326 return; 2327 } 2328 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name); 2329 } 2330 2331 void 2332 vnevent_create(vnode_t *vp) 2333 { 2334 if (vp == NULL || vp->v_femhead == NULL) { 2335 return; 2336 } 2337 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL); 2338 } 2339 2340 void 2341 vnevent_link(vnode_t *vp) 2342 { 2343 if (vp == NULL || vp->v_femhead == NULL) { 2344 return; 2345 } 2346 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL); 2347 } 2348 2349 void 2350 vnevent_mountedover(vnode_t *vp) 2351 { 2352 if (vp == NULL || vp->v_femhead == NULL) { 2353 return; 2354 } 2355 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL); 2356 } 2357 2358 /* 2359 * Vnode accessors. 2360 */ 2361 2362 int 2363 vn_is_readonly(vnode_t *vp) 2364 { 2365 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2366 } 2367 2368 int 2369 vn_has_flocks(vnode_t *vp) 2370 { 2371 return (vp->v_filocks != NULL); 2372 } 2373 2374 int 2375 vn_has_mandatory_locks(vnode_t *vp, int mode) 2376 { 2377 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2378 } 2379 2380 int 2381 vn_has_cached_data(vnode_t *vp) 2382 { 2383 return (vp->v_pages != NULL); 2384 } 2385 2386 /* 2387 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2388 * zone_enter(2). 2389 */ 2390 int 2391 vn_can_change_zones(vnode_t *vp) 2392 { 2393 struct vfssw *vswp; 2394 int allow = 1; 2395 vnode_t *rvp; 2396 2397 if (nfs_global_client_only != 0) 2398 return (1); 2399 2400 /* 2401 * We always want to look at the underlying vnode if there is one. 2402 */ 2403 if (VOP_REALVP(vp, &rvp) != 0) 2404 rvp = vp; 2405 /* 2406 * Some pseudo filesystems (including doorfs) don't actually register 2407 * their vfsops_t, so the following may return NULL; we happily let 2408 * such vnodes switch zones. 2409 */ 2410 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2411 if (vswp != NULL) { 2412 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2413 allow = 0; 2414 vfs_unrefvfssw(vswp); 2415 } 2416 return (allow); 2417 } 2418 2419 /* 2420 * Return nonzero if the vnode is a mount point, zero if not. 2421 */ 2422 int 2423 vn_ismntpt(vnode_t *vp) 2424 { 2425 return (vp->v_vfsmountedhere != NULL); 2426 } 2427 2428 /* Retrieve the vfs (if any) mounted on this vnode */ 2429 vfs_t * 2430 vn_mountedvfs(vnode_t *vp) 2431 { 2432 return (vp->v_vfsmountedhere); 2433 } 2434 2435 /* 2436 * vn_is_opened() checks whether a particular file is opened and 2437 * whether the open is for read and/or write. 2438 * 2439 * Vnode counts are only kept on regular files (v_type=VREG). 2440 */ 2441 int 2442 vn_is_opened( 2443 vnode_t *vp, 2444 v_mode_t mode) 2445 { 2446 2447 ASSERT(vp != NULL); 2448 2449 switch (mode) { 2450 case V_WRITE: 2451 if (vp->v_wrcnt) 2452 return (V_TRUE); 2453 break; 2454 case V_RDANDWR: 2455 if (vp->v_rdcnt && vp->v_wrcnt) 2456 return (V_TRUE); 2457 break; 2458 case V_RDORWR: 2459 if (vp->v_rdcnt || vp->v_wrcnt) 2460 return (V_TRUE); 2461 break; 2462 case V_READ: 2463 if (vp->v_rdcnt) 2464 return (V_TRUE); 2465 break; 2466 } 2467 2468 return (V_FALSE); 2469 } 2470 2471 /* 2472 * vn_is_mapped() checks whether a particular file is mapped and whether 2473 * the file is mapped read and/or write. 2474 */ 2475 int 2476 vn_is_mapped( 2477 vnode_t *vp, 2478 v_mode_t mode) 2479 { 2480 2481 ASSERT(vp != NULL); 2482 2483 #if !defined(_LP64) 2484 switch (mode) { 2485 /* 2486 * The atomic_add_64_nv functions force atomicity in the 2487 * case of 32 bit architectures. Otherwise the 64 bit values 2488 * require two fetches. The value of the fields may be 2489 * (potentially) changed between the first fetch and the 2490 * second 2491 */ 2492 case V_WRITE: 2493 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2494 return (V_TRUE); 2495 break; 2496 case V_RDANDWR: 2497 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2498 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2499 return (V_TRUE); 2500 break; 2501 case V_RDORWR: 2502 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2503 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2504 return (V_TRUE); 2505 break; 2506 case V_READ: 2507 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2508 return (V_TRUE); 2509 break; 2510 } 2511 #else 2512 switch (mode) { 2513 case V_WRITE: 2514 if (vp->v_mmap_write) 2515 return (V_TRUE); 2516 break; 2517 case V_RDANDWR: 2518 if (vp->v_mmap_read && vp->v_mmap_write) 2519 return (V_TRUE); 2520 break; 2521 case V_RDORWR: 2522 if (vp->v_mmap_read || vp->v_mmap_write) 2523 return (V_TRUE); 2524 break; 2525 case V_READ: 2526 if (vp->v_mmap_read) 2527 return (V_TRUE); 2528 break; 2529 } 2530 #endif 2531 2532 return (V_FALSE); 2533 } 2534 2535 /* 2536 * Set the operations vector for a vnode. 2537 * 2538 * FEM ensures that the v_femhead pointer is filled in before the 2539 * v_op pointer is changed. This means that if the v_femhead pointer 2540 * is NULL, and the v_op field hasn't changed since before which checked 2541 * the v_femhead pointer; then our update is ok - we are not racing with 2542 * FEM. 2543 */ 2544 void 2545 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2546 { 2547 vnodeops_t *op; 2548 2549 ASSERT(vp != NULL); 2550 ASSERT(vnodeops != NULL); 2551 2552 op = vp->v_op; 2553 membar_consumer(); 2554 /* 2555 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2556 * compare-and-swap on vp->v_op. If either fails, then FEM is 2557 * in effect on the vnode and we need to have FEM deal with it. 2558 */ 2559 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2560 fem_setvnops(vp, vnodeops); 2561 } 2562 } 2563 2564 /* 2565 * Retrieve the operations vector for a vnode 2566 * As with vn_setops(above); make sure we aren't racing with FEM. 2567 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2568 * make sense to the callers of this routine. 2569 */ 2570 vnodeops_t * 2571 vn_getops(vnode_t *vp) 2572 { 2573 vnodeops_t *op; 2574 2575 ASSERT(vp != NULL); 2576 2577 op = vp->v_op; 2578 membar_consumer(); 2579 if (vp->v_femhead == NULL && op == vp->v_op) { 2580 return (op); 2581 } else { 2582 return (fem_getvnops(vp)); 2583 } 2584 } 2585 2586 /* 2587 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2588 * Returns zero (0) if not. 2589 */ 2590 int 2591 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2592 { 2593 return (vn_getops(vp) == vnodeops); 2594 } 2595 2596 /* 2597 * Returns non-zero (1) if the specified operation matches the 2598 * corresponding operation for that the vnode. 2599 * Returns zero (0) if not. 2600 */ 2601 2602 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2603 2604 int 2605 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2606 { 2607 const fs_operation_trans_def_t *otdp; 2608 fs_generic_func_p *loc = NULL; 2609 vnodeops_t *vop = vn_getops(vp); 2610 2611 ASSERT(vopname != NULL); 2612 2613 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2614 if (MATCHNAME(otdp->name, vopname)) { 2615 loc = (fs_generic_func_p *) 2616 ((char *)(vop) + otdp->offset); 2617 break; 2618 } 2619 } 2620 2621 return ((loc != NULL) && (*loc == funcp)); 2622 } 2623 2624 /* 2625 * fs_new_caller_id() needs to return a unique ID on a given local system. 2626 * The IDs do not need to survive across reboots. These are primarily 2627 * used so that (FEM) monitors can detect particular callers (such as 2628 * the NFS server) to a given vnode/vfs operation. 2629 */ 2630 u_longlong_t 2631 fs_new_caller_id() 2632 { 2633 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2634 2635 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2636 } 2637 2638 /* 2639 * Given a starting vnode and a path, updates the path in the target vnode in 2640 * a safe manner. If the vnode already has path information embedded, then the 2641 * cached path is left untouched. 2642 */ 2643 2644 size_t max_vnode_path = 4 * MAXPATHLEN; 2645 2646 void 2647 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2648 const char *path, size_t plen) 2649 { 2650 char *rpath; 2651 vnode_t *base; 2652 size_t rpathlen, rpathalloc; 2653 int doslash = 1; 2654 2655 if (*path == '/') { 2656 base = rootvp; 2657 path++; 2658 plen--; 2659 } else { 2660 base = startvp; 2661 } 2662 2663 /* 2664 * We cannot grab base->v_lock while we hold vp->v_lock because of 2665 * the potential for deadlock. 2666 */ 2667 mutex_enter(&base->v_lock); 2668 if (base->v_path == NULL) { 2669 mutex_exit(&base->v_lock); 2670 return; 2671 } 2672 2673 rpathlen = strlen(base->v_path); 2674 rpathalloc = rpathlen + plen + 1; 2675 /* Avoid adding a slash if there's already one there */ 2676 if (base->v_path[rpathlen-1] == '/') 2677 doslash = 0; 2678 else 2679 rpathalloc++; 2680 2681 /* 2682 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2683 * so we must do this dance. If, by chance, something changes the path, 2684 * just give up since there is no real harm. 2685 */ 2686 mutex_exit(&base->v_lock); 2687 2688 /* Paths should stay within reason */ 2689 if (rpathalloc > max_vnode_path) 2690 return; 2691 2692 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2693 2694 mutex_enter(&base->v_lock); 2695 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2696 mutex_exit(&base->v_lock); 2697 kmem_free(rpath, rpathalloc); 2698 return; 2699 } 2700 bcopy(base->v_path, rpath, rpathlen); 2701 mutex_exit(&base->v_lock); 2702 2703 if (doslash) 2704 rpath[rpathlen++] = '/'; 2705 bcopy(path, rpath + rpathlen, plen); 2706 rpath[rpathlen + plen] = '\0'; 2707 2708 mutex_enter(&vp->v_lock); 2709 if (vp->v_path != NULL) { 2710 mutex_exit(&vp->v_lock); 2711 kmem_free(rpath, rpathalloc); 2712 } else { 2713 vp->v_path = rpath; 2714 mutex_exit(&vp->v_lock); 2715 } 2716 } 2717 2718 /* 2719 * Sets the path to the vnode to be the given string, regardless of current 2720 * context. The string must be a complete path from rootdir. This is only used 2721 * by fsop_root() for setting the path based on the mountpoint. 2722 */ 2723 void 2724 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2725 { 2726 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2727 2728 mutex_enter(&vp->v_lock); 2729 if (vp->v_path != NULL) { 2730 mutex_exit(&vp->v_lock); 2731 kmem_free(buf, len + 1); 2732 return; 2733 } 2734 2735 vp->v_path = buf; 2736 bcopy(str, vp->v_path, len); 2737 vp->v_path[len] = '\0'; 2738 2739 mutex_exit(&vp->v_lock); 2740 } 2741 2742 /* 2743 * Similar to vn_setpath_str(), this function sets the path of the destination 2744 * vnode to the be the same as the source vnode. 2745 */ 2746 void 2747 vn_copypath(struct vnode *src, struct vnode *dst) 2748 { 2749 char *buf; 2750 int alloc; 2751 2752 mutex_enter(&src->v_lock); 2753 if (src->v_path == NULL) { 2754 mutex_exit(&src->v_lock); 2755 return; 2756 } 2757 alloc = strlen(src->v_path) + 1; 2758 2759 /* avoid kmem_alloc() with lock held */ 2760 mutex_exit(&src->v_lock); 2761 buf = kmem_alloc(alloc, KM_SLEEP); 2762 mutex_enter(&src->v_lock); 2763 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2764 mutex_exit(&src->v_lock); 2765 kmem_free(buf, alloc); 2766 return; 2767 } 2768 bcopy(src->v_path, buf, alloc); 2769 mutex_exit(&src->v_lock); 2770 2771 mutex_enter(&dst->v_lock); 2772 if (dst->v_path != NULL) { 2773 mutex_exit(&dst->v_lock); 2774 kmem_free(buf, alloc); 2775 return; 2776 } 2777 dst->v_path = buf; 2778 mutex_exit(&dst->v_lock); 2779 } 2780 2781 /* 2782 * XXX Private interface for segvn routines that handle vnode 2783 * large page segments. 2784 * 2785 * return 1 if vp's file system VOP_PAGEIO() implementation 2786 * can be safely used instead of VOP_GETPAGE() for handling 2787 * pagefaults against regular non swap files. VOP_PAGEIO() 2788 * interface is considered safe here if its implementation 2789 * is very close to VOP_GETPAGE() implementation. 2790 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2791 * panic if there're file holes but instead returns an error. 2792 * Doesn't assume file won't be changed by user writes, etc. 2793 * 2794 * return 0 otherwise. 2795 * 2796 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2797 */ 2798 int 2799 vn_vmpss_usepageio(vnode_t *vp) 2800 { 2801 vfs_t *vfsp = vp->v_vfsp; 2802 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2803 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2804 char **fsok = pageio_ok_fss; 2805 2806 if (fsname == NULL) { 2807 return (0); 2808 } 2809 2810 for (; *fsok; fsok++) { 2811 if (strcmp(*fsok, fsname) == 0) { 2812 return (1); 2813 } 2814 } 2815 return (0); 2816 } 2817 2818 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2819 2820 int 2821 fop_open( 2822 vnode_t **vpp, 2823 int mode, 2824 cred_t *cr) 2825 { 2826 int ret; 2827 vnode_t *vp = *vpp; 2828 2829 VN_HOLD(vp); 2830 /* 2831 * Adding to the vnode counts before calling open 2832 * avoids the need for a mutex. It circumvents a race 2833 * condition where a query made on the vnode counts results in a 2834 * false negative. The inquirer goes away believing the file is 2835 * not open when there is an open on the file already under way. 2836 * 2837 * The counts are meant to prevent NFS from granting a delegation 2838 * when it would be dangerous to do so. 2839 * 2840 * The vnode counts are only kept on regular files 2841 */ 2842 if ((*vpp)->v_type == VREG) { 2843 if (mode & FREAD) 2844 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2845 if (mode & FWRITE) 2846 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2847 } 2848 2849 VOPXID_MAP_CR(vp, cr); 2850 2851 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2852 2853 if (ret) { 2854 /* 2855 * Use the saved vp just in case the vnode ptr got trashed 2856 * by the error. 2857 */ 2858 VOPSTATS_UPDATE(vp, open); 2859 if ((vp->v_type == VREG) && (mode & FREAD)) 2860 atomic_add_32(&(vp->v_rdcnt), -1); 2861 if ((vp->v_type == VREG) && (mode & FWRITE)) 2862 atomic_add_32(&(vp->v_wrcnt), -1); 2863 } else { 2864 /* 2865 * Some filesystems will return a different vnode, 2866 * but the same path was still used to open it. 2867 * So if we do change the vnode and need to 2868 * copy over the path, do so here, rather than special 2869 * casing each filesystem. Adjust the vnode counts to 2870 * reflect the vnode switch. 2871 */ 2872 VOPSTATS_UPDATE(*vpp, open); 2873 if (*vpp != vp && *vpp != NULL) { 2874 vn_copypath(vp, *vpp); 2875 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2876 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2877 if ((vp->v_type == VREG) && (mode & FREAD)) 2878 atomic_add_32(&(vp->v_rdcnt), -1); 2879 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2880 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2881 if ((vp->v_type == VREG) && (mode & FWRITE)) 2882 atomic_add_32(&(vp->v_wrcnt), -1); 2883 } 2884 } 2885 VN_RELE(vp); 2886 return (ret); 2887 } 2888 2889 int 2890 fop_close( 2891 vnode_t *vp, 2892 int flag, 2893 int count, 2894 offset_t offset, 2895 cred_t *cr) 2896 { 2897 int err; 2898 2899 VOPXID_MAP_CR(vp, cr); 2900 2901 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2902 VOPSTATS_UPDATE(vp, close); 2903 /* 2904 * Check passed in count to handle possible dups. Vnode counts are only 2905 * kept on regular files 2906 */ 2907 if ((vp->v_type == VREG) && (count == 1)) { 2908 if (flag & FREAD) { 2909 ASSERT(vp->v_rdcnt > 0); 2910 atomic_add_32(&(vp->v_rdcnt), -1); 2911 } 2912 if (flag & FWRITE) { 2913 ASSERT(vp->v_wrcnt > 0); 2914 atomic_add_32(&(vp->v_wrcnt), -1); 2915 } 2916 } 2917 return (err); 2918 } 2919 2920 int 2921 fop_read( 2922 vnode_t *vp, 2923 uio_t *uiop, 2924 int ioflag, 2925 cred_t *cr, 2926 struct caller_context *ct) 2927 { 2928 int err; 2929 ssize_t resid_start = uiop->uio_resid; 2930 2931 VOPXID_MAP_CR(vp, cr); 2932 2933 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2934 VOPSTATS_UPDATE_IO(vp, read, 2935 read_bytes, (resid_start - uiop->uio_resid)); 2936 return (err); 2937 } 2938 2939 int 2940 fop_write( 2941 vnode_t *vp, 2942 uio_t *uiop, 2943 int ioflag, 2944 cred_t *cr, 2945 struct caller_context *ct) 2946 { 2947 int err; 2948 ssize_t resid_start = uiop->uio_resid; 2949 2950 VOPXID_MAP_CR(vp, cr); 2951 2952 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2953 VOPSTATS_UPDATE_IO(vp, write, 2954 write_bytes, (resid_start - uiop->uio_resid)); 2955 return (err); 2956 } 2957 2958 int 2959 fop_ioctl( 2960 vnode_t *vp, 2961 int cmd, 2962 intptr_t arg, 2963 int flag, 2964 cred_t *cr, 2965 int *rvalp) 2966 { 2967 int err; 2968 2969 VOPXID_MAP_CR(vp, cr); 2970 2971 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2972 VOPSTATS_UPDATE(vp, ioctl); 2973 return (err); 2974 } 2975 2976 int 2977 fop_setfl( 2978 vnode_t *vp, 2979 int oflags, 2980 int nflags, 2981 cred_t *cr) 2982 { 2983 int err; 2984 2985 VOPXID_MAP_CR(vp, cr); 2986 2987 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2988 VOPSTATS_UPDATE(vp, setfl); 2989 return (err); 2990 } 2991 2992 int 2993 fop_getattr( 2994 vnode_t *vp, 2995 vattr_t *vap, 2996 int flags, 2997 cred_t *cr) 2998 { 2999 int err; 3000 3001 VOPXID_MAP_CR(vp, cr); 3002 3003 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 3004 VOPSTATS_UPDATE(vp, getattr); 3005 return (err); 3006 } 3007 3008 int 3009 fop_setattr( 3010 vnode_t *vp, 3011 vattr_t *vap, 3012 int flags, 3013 cred_t *cr, 3014 caller_context_t *ct) 3015 { 3016 int err; 3017 3018 VOPXID_MAP_CR(vp, cr); 3019 3020 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 3021 VOPSTATS_UPDATE(vp, setattr); 3022 return (err); 3023 } 3024 3025 int 3026 fop_access( 3027 vnode_t *vp, 3028 int mode, 3029 int flags, 3030 cred_t *cr) 3031 { 3032 int err; 3033 3034 VOPXID_MAP_CR(vp, cr); 3035 3036 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 3037 VOPSTATS_UPDATE(vp, access); 3038 return (err); 3039 } 3040 3041 int 3042 fop_lookup( 3043 vnode_t *dvp, 3044 char *nm, 3045 vnode_t **vpp, 3046 pathname_t *pnp, 3047 int flags, 3048 vnode_t *rdir, 3049 cred_t *cr) 3050 { 3051 int ret; 3052 3053 VOPXID_MAP_CR(dvp, cr); 3054 3055 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 3056 if (ret == 0 && *vpp) { 3057 VOPSTATS_UPDATE(*vpp, lookup); 3058 if ((*vpp)->v_path == NULL) { 3059 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 3060 } 3061 } 3062 3063 return (ret); 3064 } 3065 3066 int 3067 fop_create( 3068 vnode_t *dvp, 3069 char *name, 3070 vattr_t *vap, 3071 vcexcl_t excl, 3072 int mode, 3073 vnode_t **vpp, 3074 cred_t *cr, 3075 int flag) 3076 { 3077 int ret; 3078 3079 VOPXID_MAP_CR(dvp, cr); 3080 3081 ret = (*(dvp)->v_op->vop_create) 3082 (dvp, name, vap, excl, mode, vpp, cr, flag); 3083 if (ret == 0 && *vpp) { 3084 VOPSTATS_UPDATE(*vpp, create); 3085 if ((*vpp)->v_path == NULL) { 3086 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 3087 } 3088 } 3089 3090 return (ret); 3091 } 3092 3093 int 3094 fop_remove( 3095 vnode_t *dvp, 3096 char *nm, 3097 cred_t *cr) 3098 { 3099 int err; 3100 3101 VOPXID_MAP_CR(dvp, cr); 3102 3103 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 3104 VOPSTATS_UPDATE(dvp, remove); 3105 return (err); 3106 } 3107 3108 int 3109 fop_link( 3110 vnode_t *tdvp, 3111 vnode_t *svp, 3112 char *tnm, 3113 cred_t *cr) 3114 { 3115 int err; 3116 3117 VOPXID_MAP_CR(tdvp, cr); 3118 3119 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 3120 VOPSTATS_UPDATE(tdvp, link); 3121 return (err); 3122 } 3123 3124 int 3125 fop_rename( 3126 vnode_t *sdvp, 3127 char *snm, 3128 vnode_t *tdvp, 3129 char *tnm, 3130 cred_t *cr) 3131 { 3132 int err; 3133 3134 VOPXID_MAP_CR(tdvp, cr); 3135 3136 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 3137 VOPSTATS_UPDATE(sdvp, rename); 3138 return (err); 3139 } 3140 3141 int 3142 fop_mkdir( 3143 vnode_t *dvp, 3144 char *dirname, 3145 vattr_t *vap, 3146 vnode_t **vpp, 3147 cred_t *cr) 3148 { 3149 int ret; 3150 3151 VOPXID_MAP_CR(dvp, cr); 3152 3153 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 3154 if (ret == 0 && *vpp) { 3155 VOPSTATS_UPDATE(*vpp, mkdir); 3156 if ((*vpp)->v_path == NULL) { 3157 vn_setpath(rootdir, dvp, *vpp, dirname, 3158 strlen(dirname)); 3159 } 3160 } 3161 3162 return (ret); 3163 } 3164 3165 int 3166 fop_rmdir( 3167 vnode_t *dvp, 3168 char *nm, 3169 vnode_t *cdir, 3170 cred_t *cr) 3171 { 3172 int err; 3173 3174 VOPXID_MAP_CR(dvp, cr); 3175 3176 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 3177 VOPSTATS_UPDATE(dvp, rmdir); 3178 return (err); 3179 } 3180 3181 int 3182 fop_readdir( 3183 vnode_t *vp, 3184 uio_t *uiop, 3185 cred_t *cr, 3186 int *eofp) 3187 { 3188 int err; 3189 ssize_t resid_start = uiop->uio_resid; 3190 3191 VOPXID_MAP_CR(vp, cr); 3192 3193 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 3194 VOPSTATS_UPDATE_IO(vp, readdir, 3195 readdir_bytes, (resid_start - uiop->uio_resid)); 3196 return (err); 3197 } 3198 3199 int 3200 fop_symlink( 3201 vnode_t *dvp, 3202 char *linkname, 3203 vattr_t *vap, 3204 char *target, 3205 cred_t *cr) 3206 { 3207 int err; 3208 3209 VOPXID_MAP_CR(dvp, cr); 3210 3211 err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 3212 VOPSTATS_UPDATE(dvp, symlink); 3213 return (err); 3214 } 3215 3216 int 3217 fop_readlink( 3218 vnode_t *vp, 3219 uio_t *uiop, 3220 cred_t *cr) 3221 { 3222 int err; 3223 3224 VOPXID_MAP_CR(vp, cr); 3225 3226 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 3227 VOPSTATS_UPDATE(vp, readlink); 3228 return (err); 3229 } 3230 3231 int 3232 fop_fsync( 3233 vnode_t *vp, 3234 int syncflag, 3235 cred_t *cr) 3236 { 3237 int err; 3238 3239 VOPXID_MAP_CR(vp, cr); 3240 3241 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 3242 VOPSTATS_UPDATE(vp, fsync); 3243 return (err); 3244 } 3245 3246 void 3247 fop_inactive( 3248 vnode_t *vp, 3249 cred_t *cr) 3250 { 3251 /* Need to update stats before vop call since we may lose the vnode */ 3252 VOPSTATS_UPDATE(vp, inactive); 3253 3254 VOPXID_MAP_CR(vp, cr); 3255 3256 (*(vp)->v_op->vop_inactive)(vp, cr); 3257 } 3258 3259 int 3260 fop_fid( 3261 vnode_t *vp, 3262 fid_t *fidp) 3263 { 3264 int err; 3265 3266 err = (*(vp)->v_op->vop_fid)(vp, fidp); 3267 VOPSTATS_UPDATE(vp, fid); 3268 return (err); 3269 } 3270 3271 int 3272 fop_rwlock( 3273 vnode_t *vp, 3274 int write_lock, 3275 caller_context_t *ct) 3276 { 3277 int ret; 3278 3279 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3280 VOPSTATS_UPDATE(vp, rwlock); 3281 return (ret); 3282 } 3283 3284 void 3285 fop_rwunlock( 3286 vnode_t *vp, 3287 int write_lock, 3288 caller_context_t *ct) 3289 { 3290 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3291 VOPSTATS_UPDATE(vp, rwunlock); 3292 } 3293 3294 int 3295 fop_seek( 3296 vnode_t *vp, 3297 offset_t ooff, 3298 offset_t *noffp) 3299 { 3300 int err; 3301 3302 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 3303 VOPSTATS_UPDATE(vp, seek); 3304 return (err); 3305 } 3306 3307 int 3308 fop_cmp( 3309 vnode_t *vp1, 3310 vnode_t *vp2) 3311 { 3312 int err; 3313 3314 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2); 3315 VOPSTATS_UPDATE(vp1, cmp); 3316 return (err); 3317 } 3318 3319 int 3320 fop_frlock( 3321 vnode_t *vp, 3322 int cmd, 3323 flock64_t *bfp, 3324 int flag, 3325 offset_t offset, 3326 struct flk_callback *flk_cbp, 3327 cred_t *cr) 3328 { 3329 int err; 3330 3331 VOPXID_MAP_CR(vp, cr); 3332 3333 err = (*(vp)->v_op->vop_frlock) 3334 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 3335 VOPSTATS_UPDATE(vp, frlock); 3336 return (err); 3337 } 3338 3339 int 3340 fop_space( 3341 vnode_t *vp, 3342 int cmd, 3343 flock64_t *bfp, 3344 int flag, 3345 offset_t offset, 3346 cred_t *cr, 3347 caller_context_t *ct) 3348 { 3349 int err; 3350 3351 VOPXID_MAP_CR(vp, cr); 3352 3353 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3354 VOPSTATS_UPDATE(vp, space); 3355 return (err); 3356 } 3357 3358 int 3359 fop_realvp( 3360 vnode_t *vp, 3361 vnode_t **vpp) 3362 { 3363 int err; 3364 3365 err = (*(vp)->v_op->vop_realvp)(vp, vpp); 3366 VOPSTATS_UPDATE(vp, realvp); 3367 return (err); 3368 } 3369 3370 int 3371 fop_getpage( 3372 vnode_t *vp, 3373 offset_t off, 3374 size_t len, 3375 uint_t *protp, 3376 page_t **plarr, 3377 size_t plsz, 3378 struct seg *seg, 3379 caddr_t addr, 3380 enum seg_rw rw, 3381 cred_t *cr) 3382 { 3383 int err; 3384 3385 VOPXID_MAP_CR(vp, cr); 3386 3387 err = (*(vp)->v_op->vop_getpage) 3388 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 3389 VOPSTATS_UPDATE(vp, getpage); 3390 return (err); 3391 } 3392 3393 int 3394 fop_putpage( 3395 vnode_t *vp, 3396 offset_t off, 3397 size_t len, 3398 int flags, 3399 cred_t *cr) 3400 { 3401 int err; 3402 3403 VOPXID_MAP_CR(vp, cr); 3404 3405 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 3406 VOPSTATS_UPDATE(vp, putpage); 3407 return (err); 3408 } 3409 3410 int 3411 fop_map( 3412 vnode_t *vp, 3413 offset_t off, 3414 struct as *as, 3415 caddr_t *addrp, 3416 size_t len, 3417 uchar_t prot, 3418 uchar_t maxprot, 3419 uint_t flags, 3420 cred_t *cr) 3421 { 3422 int err; 3423 3424 VOPXID_MAP_CR(vp, cr); 3425 3426 err = (*(vp)->v_op->vop_map) 3427 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 3428 VOPSTATS_UPDATE(vp, map); 3429 return (err); 3430 } 3431 3432 int 3433 fop_addmap( 3434 vnode_t *vp, 3435 offset_t off, 3436 struct as *as, 3437 caddr_t addr, 3438 size_t len, 3439 uchar_t prot, 3440 uchar_t maxprot, 3441 uint_t flags, 3442 cred_t *cr) 3443 { 3444 int error; 3445 u_longlong_t delta; 3446 3447 VOPXID_MAP_CR(vp, cr); 3448 3449 error = (*(vp)->v_op->vop_addmap) 3450 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3451 3452 if ((!error) && (vp->v_type == VREG)) { 3453 delta = (u_longlong_t)btopr(len); 3454 /* 3455 * If file is declared MAP_PRIVATE, it can't be written back 3456 * even if open for write. Handle as read. 3457 */ 3458 if (flags & MAP_PRIVATE) { 3459 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3460 (int64_t)delta); 3461 } else { 3462 /* 3463 * atomic_add_64 forces the fetch of a 64 bit value to 3464 * be atomic on 32 bit machines 3465 */ 3466 if (maxprot & PROT_WRITE) 3467 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3468 (int64_t)delta); 3469 if (maxprot & PROT_READ) 3470 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3471 (int64_t)delta); 3472 if (maxprot & PROT_EXEC) 3473 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3474 (int64_t)delta); 3475 } 3476 } 3477 VOPSTATS_UPDATE(vp, addmap); 3478 return (error); 3479 } 3480 3481 int 3482 fop_delmap( 3483 vnode_t *vp, 3484 offset_t off, 3485 struct as *as, 3486 caddr_t addr, 3487 size_t len, 3488 uint_t prot, 3489 uint_t maxprot, 3490 uint_t flags, 3491 cred_t *cr) 3492 { 3493 int error; 3494 u_longlong_t delta; 3495 3496 VOPXID_MAP_CR(vp, cr); 3497 3498 error = (*(vp)->v_op->vop_delmap) 3499 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3500 3501 /* 3502 * NFS calls into delmap twice, the first time 3503 * it simply establishes a callback mechanism and returns EAGAIN 3504 * while the real work is being done upon the second invocation. 3505 * We have to detect this here and only decrement the counts upon 3506 * the second delmap request. 3507 */ 3508 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3509 3510 delta = (u_longlong_t)btopr(len); 3511 3512 if (flags & MAP_PRIVATE) { 3513 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3514 (int64_t)(-delta)); 3515 } else { 3516 /* 3517 * atomic_add_64 forces the fetch of a 64 bit value 3518 * to be atomic on 32 bit machines 3519 */ 3520 if (maxprot & PROT_WRITE) 3521 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3522 (int64_t)(-delta)); 3523 if (maxprot & PROT_READ) 3524 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3525 (int64_t)(-delta)); 3526 if (maxprot & PROT_EXEC) 3527 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3528 (int64_t)(-delta)); 3529 } 3530 } 3531 VOPSTATS_UPDATE(vp, delmap); 3532 return (error); 3533 } 3534 3535 3536 int 3537 fop_poll( 3538 vnode_t *vp, 3539 short events, 3540 int anyyet, 3541 short *reventsp, 3542 struct pollhead **phpp) 3543 { 3544 int err; 3545 3546 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 3547 VOPSTATS_UPDATE(vp, poll); 3548 return (err); 3549 } 3550 3551 int 3552 fop_dump( 3553 vnode_t *vp, 3554 caddr_t addr, 3555 int lbdn, 3556 int dblks) 3557 { 3558 int err; 3559 3560 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 3561 VOPSTATS_UPDATE(vp, dump); 3562 return (err); 3563 } 3564 3565 int 3566 fop_pathconf( 3567 vnode_t *vp, 3568 int cmd, 3569 ulong_t *valp, 3570 cred_t *cr) 3571 { 3572 int err; 3573 3574 VOPXID_MAP_CR(vp, cr); 3575 3576 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 3577 VOPSTATS_UPDATE(vp, pathconf); 3578 return (err); 3579 } 3580 3581 int 3582 fop_pageio( 3583 vnode_t *vp, 3584 struct page *pp, 3585 u_offset_t io_off, 3586 size_t io_len, 3587 int flags, 3588 cred_t *cr) 3589 { 3590 int err; 3591 3592 VOPXID_MAP_CR(vp, cr); 3593 3594 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 3595 VOPSTATS_UPDATE(vp, pageio); 3596 return (err); 3597 } 3598 3599 int 3600 fop_dumpctl( 3601 vnode_t *vp, 3602 int action, 3603 int *blkp) 3604 { 3605 int err; 3606 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 3607 VOPSTATS_UPDATE(vp, dumpctl); 3608 return (err); 3609 } 3610 3611 void 3612 fop_dispose( 3613 vnode_t *vp, 3614 page_t *pp, 3615 int flag, 3616 int dn, 3617 cred_t *cr) 3618 { 3619 /* Must do stats first since it's possible to lose the vnode */ 3620 VOPSTATS_UPDATE(vp, dispose); 3621 3622 VOPXID_MAP_CR(vp, cr); 3623 3624 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 3625 } 3626 3627 int 3628 fop_setsecattr( 3629 vnode_t *vp, 3630 vsecattr_t *vsap, 3631 int flag, 3632 cred_t *cr) 3633 { 3634 int err; 3635 3636 VOPXID_MAP_CR(vp, cr); 3637 3638 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 3639 VOPSTATS_UPDATE(vp, setsecattr); 3640 return (err); 3641 } 3642 3643 int 3644 fop_getsecattr( 3645 vnode_t *vp, 3646 vsecattr_t *vsap, 3647 int flag, 3648 cred_t *cr) 3649 { 3650 int err; 3651 3652 VOPXID_MAP_CR(vp, cr); 3653 3654 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 3655 VOPSTATS_UPDATE(vp, getsecattr); 3656 return (err); 3657 } 3658 3659 int 3660 fop_shrlock( 3661 vnode_t *vp, 3662 int cmd, 3663 struct shrlock *shr, 3664 int flag, 3665 cred_t *cr) 3666 { 3667 int err; 3668 3669 VOPXID_MAP_CR(vp, cr); 3670 3671 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 3672 VOPSTATS_UPDATE(vp, shrlock); 3673 return (err); 3674 } 3675 3676 int 3677 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm) 3678 { 3679 int err; 3680 3681 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm); 3682 VOPSTATS_UPDATE(vp, vnevent); 3683 return (err); 3684 } 3685 3686 /* 3687 * Default destructor 3688 * Needed because NULL destructor means that the key is unused 3689 */ 3690 /* ARGSUSED */ 3691 void 3692 vsd_defaultdestructor(void *value) 3693 {} 3694 3695 /* 3696 * Create a key (index into per vnode array) 3697 * Locks out vsd_create, vsd_destroy, and vsd_free 3698 * May allocate memory with lock held 3699 */ 3700 void 3701 vsd_create(uint_t *keyp, void (*destructor)(void *)) 3702 { 3703 int i; 3704 uint_t nkeys; 3705 3706 /* 3707 * if key is allocated, do nothing 3708 */ 3709 mutex_enter(&vsd_lock); 3710 if (*keyp) { 3711 mutex_exit(&vsd_lock); 3712 return; 3713 } 3714 /* 3715 * find an unused key 3716 */ 3717 if (destructor == NULL) 3718 destructor = vsd_defaultdestructor; 3719 3720 for (i = 0; i < vsd_nkeys; ++i) 3721 if (vsd_destructor[i] == NULL) 3722 break; 3723 3724 /* 3725 * if no unused keys, increase the size of the destructor array 3726 */ 3727 if (i == vsd_nkeys) { 3728 if ((nkeys = (vsd_nkeys << 1)) == 0) 3729 nkeys = 1; 3730 vsd_destructor = 3731 (void (**)(void *))vsd_realloc((void *)vsd_destructor, 3732 (size_t)(vsd_nkeys * sizeof (void (*)(void *))), 3733 (size_t)(nkeys * sizeof (void (*)(void *)))); 3734 vsd_nkeys = nkeys; 3735 } 3736 3737 /* 3738 * allocate the next available unused key 3739 */ 3740 vsd_destructor[i] = destructor; 3741 *keyp = i + 1; 3742 3743 /* create vsd_list, if it doesn't exist */ 3744 if (vsd_list == NULL) { 3745 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 3746 list_create(vsd_list, sizeof (struct vsd_node), 3747 offsetof(struct vsd_node, vs_nodes)); 3748 } 3749 3750 mutex_exit(&vsd_lock); 3751 } 3752 3753 /* 3754 * Destroy a key 3755 * 3756 * Assumes that the caller is preventing vsd_set and vsd_get 3757 * Locks out vsd_create, vsd_destroy, and vsd_free 3758 * May free memory with lock held 3759 */ 3760 void 3761 vsd_destroy(uint_t *keyp) 3762 { 3763 uint_t key; 3764 struct vsd_node *vsd; 3765 3766 /* 3767 * protect the key namespace and our destructor lists 3768 */ 3769 mutex_enter(&vsd_lock); 3770 key = *keyp; 3771 *keyp = 0; 3772 3773 ASSERT(key <= vsd_nkeys); 3774 3775 /* 3776 * if the key is valid 3777 */ 3778 if (key != 0) { 3779 uint_t k = key - 1; 3780 /* 3781 * for every vnode with VSD, call key's destructor 3782 */ 3783 for (vsd = list_head(vsd_list); vsd != NULL; 3784 vsd = list_next(vsd_list, vsd)) { 3785 /* 3786 * no VSD for key in this vnode 3787 */ 3788 if (key > vsd->vs_nkeys) 3789 continue; 3790 /* 3791 * call destructor for key 3792 */ 3793 if (vsd->vs_value[k] && vsd_destructor[k]) 3794 (*vsd_destructor[k])(vsd->vs_value[k]); 3795 /* 3796 * reset value for key 3797 */ 3798 vsd->vs_value[k] = NULL; 3799 } 3800 /* 3801 * actually free the key (NULL destructor == unused) 3802 */ 3803 vsd_destructor[k] = NULL; 3804 } 3805 3806 mutex_exit(&vsd_lock); 3807 } 3808 3809 /* 3810 * Quickly return the per vnode value that was stored with the specified key 3811 * Assumes the caller is protecting key from vsd_create and vsd_destroy 3812 * Assumes the caller is holding v_lock to protect the vsd. 3813 */ 3814 void * 3815 vsd_get(vnode_t *vp, uint_t key) 3816 { 3817 struct vsd_node *vsd; 3818 3819 /* 3820 * The caller needs to pass a valid vnode. 3821 */ 3822 ASSERT(vp != NULL); 3823 if (vp == NULL) 3824 return (NULL); 3825 3826 vsd = vp->v_vsd; 3827 3828 if (key && vsd != NULL && key <= vsd->vs_nkeys) 3829 return (vsd->vs_value[key - 1]); 3830 return (NULL); 3831 } 3832 3833 /* 3834 * Set a per vnode value indexed with the specified key 3835 * Assumes the caller is holding v_lock to protect the vsd. 3836 */ 3837 int 3838 vsd_set(vnode_t *vp, uint_t key, void *value) 3839 { 3840 struct vsd_node *vsd = vp->v_vsd; 3841 3842 if (key == 0) 3843 return (EINVAL); 3844 if (vsd == NULL) 3845 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP); 3846 3847 /* 3848 * If the vsd was just allocated, vs_nkeys will be 0, so the following 3849 * code won't happen and we will continue down and allocate space for 3850 * the vs_value array. 3851 * If the caller is replacing one value with another, then it is up 3852 * to the caller to free/rele/destroy the previous value (if needed). 3853 */ 3854 if (key <= vsd->vs_nkeys) { 3855 vsd->vs_value[key - 1] = value; 3856 return (0); 3857 } 3858 3859 ASSERT(key <= vsd_nkeys); 3860 3861 if (vsd->vs_nkeys == 0) { 3862 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */ 3863 /* 3864 * Link onto list of all VSD nodes. 3865 */ 3866 list_insert_head(vsd_list, vsd); 3867 mutex_exit(&vsd_lock); 3868 } 3869 3870 /* 3871 * Allocate vnode local storage and set the value for key 3872 */ 3873 vsd->vs_value = vsd_realloc(vsd->vs_value, 3874 vsd->vs_nkeys * sizeof (void *), 3875 key * sizeof (void *)); 3876 vsd->vs_nkeys = key; 3877 vsd->vs_value[key - 1] = value; 3878 3879 return (0); 3880 } 3881 3882 /* 3883 * Called from vn_free() to run the destructor function for each vsd 3884 * Locks out vsd_create and vsd_destroy 3885 * Assumes that the destructor *DOES NOT* use vsd 3886 */ 3887 void 3888 vsd_free(vnode_t *vp) 3889 { 3890 int i; 3891 struct vsd_node *vsd = vp->v_vsd; 3892 3893 if (vsd == NULL) 3894 return; 3895 3896 if (vsd->vs_nkeys == 0) { 3897 kmem_free(vsd, sizeof (*vsd)); 3898 vp->v_vsd = NULL; 3899 return; 3900 } 3901 3902 /* 3903 * lock out vsd_create and vsd_destroy, call 3904 * the destructor, and mark the value as destroyed. 3905 */ 3906 mutex_enter(&vsd_lock); 3907 3908 for (i = 0; i < vsd->vs_nkeys; i++) { 3909 if (vsd->vs_value[i] && vsd_destructor[i]) 3910 (*vsd_destructor[i])(vsd->vs_value[i]); 3911 vsd->vs_value[i] = NULL; 3912 } 3913 3914 /* 3915 * remove from linked list of VSD nodes 3916 */ 3917 list_remove(vsd_list, vsd); 3918 3919 mutex_exit(&vsd_lock); 3920 3921 /* 3922 * free up the VSD 3923 */ 3924 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *)); 3925 kmem_free(vsd, sizeof (struct vsd_node)); 3926 vp->v_vsd = NULL; 3927 } 3928 3929 /* 3930 * realloc 3931 */ 3932 static void * 3933 vsd_realloc(void *old, size_t osize, size_t nsize) 3934 { 3935 void *new; 3936 3937 new = kmem_zalloc(nsize, KM_SLEEP); 3938 if (old) { 3939 bcopy(old, new, osize); 3940 kmem_free(old, osize); 3941 } 3942 return (new); 3943 } 3944