1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/strsubr.h> 27 #include <sys/strsun.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <vm/seg_map.h> 31 #include <vm/seg_kpm.h> 32 #include <sys/condvar_impl.h> 33 #include <sys/sendfile.h> 34 #include <fs/sockfs/nl7c.h> 35 #include <fs/sockfs/nl7curi.h> 36 37 #include <inet/common.h> 38 #include <inet/ip.h> 39 #include <inet/ip6.h> 40 #include <inet/tcp.h> 41 #include <inet/led.h> 42 #include <inet/mi.h> 43 44 #include <inet/nca/ncadoorhdr.h> 45 #include <inet/nca/ncalogd.h> 46 #include <inet/nca/ncandd.h> 47 48 #include <sys/promif.h> 49 50 /* 51 * Some externs: 52 */ 53 54 extern boolean_t nl7c_logd_enabled; 55 extern void nl7c_logd_log(uri_desc_t *, uri_desc_t *, 56 time_t, ipaddr_t); 57 extern boolean_t nl7c_close_addr(struct sonode *); 58 extern struct sonode *nl7c_addr2portso(void *); 59 extern uri_desc_t *nl7c_http_cond(uri_desc_t *, uri_desc_t *); 60 61 /* 62 * Various global tuneables: 63 */ 64 65 clock_t nl7c_uri_ttl = -1; /* TTL in seconds (-1 == infinite) */ 66 67 boolean_t nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */ 68 69 uint64_t nl7c_file_prefetch = 1; /* File cache prefetch pages */ 70 71 uint64_t nl7c_uri_max = 0; /* Maximum bytes (0 == infinite) */ 72 uint64_t nl7c_uri_bytes = 0; /* Bytes of kmem used by URIs */ 73 74 /* 75 * Locals: 76 */ 77 78 static int uri_rd_response(struct sonode *, uri_desc_t *, 79 uri_rd_t *, boolean_t); 80 static int uri_response(struct sonode *, uri_desc_t *); 81 82 /* 83 * HTTP scheme functions called from nl7chttp.c: 84 */ 85 86 boolean_t nl7c_http_request(char **, char *, uri_desc_t *, struct sonode *); 87 boolean_t nl7c_http_response(char **, char *, uri_desc_t *, struct sonode *); 88 boolean_t nl7c_http_cmp(void *, void *); 89 mblk_t *nl7c_http_persist(struct sonode *); 90 void nl7c_http_free(void *arg); 91 void nl7c_http_init(void); 92 93 /* 94 * Counters that need to move to kstat and/or be removed: 95 */ 96 97 volatile uint64_t nl7c_uri_request = 0; 98 volatile uint64_t nl7c_uri_hit = 0; 99 volatile uint64_t nl7c_uri_pass = 0; 100 volatile uint64_t nl7c_uri_miss = 0; 101 volatile uint64_t nl7c_uri_temp = 0; 102 volatile uint64_t nl7c_uri_more = 0; 103 volatile uint64_t nl7c_uri_data = 0; 104 volatile uint64_t nl7c_uri_sendfilev = 0; 105 volatile uint64_t nl7c_uri_reclaim_calls = 0; 106 volatile uint64_t nl7c_uri_reclaim_cnt = 0; 107 volatile uint64_t nl7c_uri_pass_urifail = 0; 108 volatile uint64_t nl7c_uri_pass_dupbfail = 0; 109 volatile uint64_t nl7c_uri_more_get = 0; 110 volatile uint64_t nl7c_uri_pass_method = 0; 111 volatile uint64_t nl7c_uri_pass_option = 0; 112 volatile uint64_t nl7c_uri_more_eol = 0; 113 volatile uint64_t nl7c_uri_more_http = 0; 114 volatile uint64_t nl7c_uri_pass_http = 0; 115 volatile uint64_t nl7c_uri_pass_addfail = 0; 116 volatile uint64_t nl7c_uri_pass_temp = 0; 117 volatile uint64_t nl7c_uri_expire = 0; 118 volatile uint64_t nl7c_uri_purge = 0; 119 volatile uint64_t nl7c_uri_NULL1 = 0; 120 volatile uint64_t nl7c_uri_NULL2 = 0; 121 volatile uint64_t nl7c_uri_close = 0; 122 volatile uint64_t nl7c_uri_temp_close = 0; 123 volatile uint64_t nl7c_uri_free = 0; 124 volatile uint64_t nl7c_uri_temp_free = 0; 125 volatile uint64_t nl7c_uri_temp_mk = 0; 126 volatile uint64_t nl7c_uri_rd_EAGAIN = 0; 127 128 /* 129 * Various kmem_cache_t's: 130 */ 131 132 kmem_cache_t *nl7c_uri_kmc; 133 kmem_cache_t *nl7c_uri_rd_kmc; 134 static kmem_cache_t *uri_desb_kmc; 135 static kmem_cache_t *uri_segmap_kmc; 136 137 static void uri_kmc_reclaim(void *); 138 139 static void nl7c_uri_reclaim(void); 140 141 /* 142 * The URI hash is a dynamically sized A/B bucket hash, when the current 143 * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of 144 * the next P2Ps[] size is created. 145 * 146 * All lookups are done in the current hash then the new hash (if any), 147 * if there is a new has then when a current hash bucket chain is examined 148 * any uri_desc_t members will be migrated to the new hash and when the 149 * last uri_desc_t has been migrated then the new hash will become the 150 * current and the previous current hash will be freed leaving a single 151 * hash. 152 * 153 * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[] 154 * and can be accessed only after aquiring the uri_hash_access lock (for 155 * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t 156 * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD() 157 * is placed on all uri_desc_t uri_hash_t list members. 158 * 159 * uri_hash_access - rwlock for all uri_hash_* variables, READER for read 160 * access and WRITER for write access. Note, WRITER is only required for 161 * hash geometry changes. 162 * 163 * uri_hash_which - which uri_hash_ab[] is the current hash. 164 * 165 * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[]. 166 * 167 * uri_hash_sz[] - the size for each uri_hash_ab[]. 168 * 169 * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[]. 170 * 171 * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when 172 * a new uri_hash_ab[] needs to be created. 173 * 174 * uri_hash_ab[] - the uri_hash_t entries. 175 * 176 * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim. 177 */ 178 179 typedef struct uri_hash_s { 180 struct uri_desc_s *list; /* List of uri_t(s) */ 181 kmutex_t lock; 182 } uri_hash_t; 183 184 #define URI_HASH_AVRG 5 /* Desired average hash chain length */ 185 #define URI_HASH_N_INIT 9 /* P2Ps[] initial index */ 186 187 static krwlock_t uri_hash_access; 188 static uint32_t uri_hash_which = 0; 189 static uint32_t uri_hash_n[2] = {URI_HASH_N_INIT, 0}; 190 static uint32_t uri_hash_sz[2] = {0, 0}; 191 static uint32_t uri_hash_cnt[2] = {0, 0}; 192 static uint32_t uri_hash_overflow[2] = {0, 0}; 193 static uri_hash_t *uri_hash_ab[2] = {NULL, NULL}; 194 static uri_hash_t *uri_hash_lru[2] = {NULL, NULL}; 195 196 /* 197 * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2)) 198 * these primes have been foud to be useful for prime sized hash tables. 199 */ 200 201 static const int P2Ps[] = { 202 0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, 203 6143, 12281, 24571, 49139, 98299, 196597, 393209, 204 786431, 1572853, 3145721, 6291449, 12582893, 0}; 205 206 /* 207 * Hash macros: 208 * 209 * H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII) 210 * hex multichar of the format "%HH" pointeded to by *cp to a char and 211 * return in c, *ep points to past end of (char *), on return *cp will 212 * point to the last char consumed. 213 * 214 * URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from 215 * *cp to *ep to the unsigned hix, cp nor ep are modified. 216 * 217 * URI_HASH_IX(unsigned hix, int which) - convert the hash value hix to 218 * a hash index 0 - (uri_hash_sz[which] - 1). 219 * 220 * URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list 221 * uri_desc_t members from hash from to hash to. 222 * 223 * URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t 224 * *uri which is a member of the uri_hash_t *hp list with a previous 225 * list member of *puri for the uri_hash_ab[] cur. After unlinking 226 * check for cur hash empty, if so make new cur. Note, as this macro 227 * can change a hash chain it needs to be run under hash_access as 228 * RW_WRITER, futher as it can change the new hash to cur any access 229 * to the hash state must be done after either dropping locks and 230 * starting over or making sure the global state is consistent after 231 * as before. 232 */ 233 234 #define H2A(cp, ep, c) { \ 235 int _h = 2; \ 236 int _n = 0; \ 237 char _hc; \ 238 \ 239 while (_h > 0 && ++(cp) < (ep)) { \ 240 if (_h == 1) \ 241 _n *= 0x10; \ 242 _hc = *(cp); \ 243 if (_hc >= '0' && _hc <= '9') \ 244 _n += _hc - '0'; \ 245 else if (_hc >= 'a' || _hc <= 'f') \ 246 _n += _hc - 'W'; \ 247 else if (_hc >= 'A' || _hc <= 'F') \ 248 _n += _hc - '7'; \ 249 _h--; \ 250 } \ 251 (c) = _n; \ 252 } 253 254 #define URI_HASH(hv, cp, ep) { \ 255 char *_s = (cp); \ 256 char _c; \ 257 \ 258 while (_s < (ep)) { \ 259 if ((_c = *_s) == '%') { \ 260 H2A(_s, (ep), _c); \ 261 } \ 262 CHASH(hv, _c); \ 263 _s++; \ 264 } \ 265 } 266 267 #define URI_HASH_IX(hix, which) (hix) = (hix) % (uri_hash_sz[(which)]) 268 269 #define URI_HASH_MIGRATE(from, hp, to) { \ 270 uri_desc_t *_nuri; \ 271 uint32_t _nhix; \ 272 uri_hash_t *_nhp; \ 273 \ 274 mutex_enter(&(hp)->lock); \ 275 while ((_nuri = (hp)->list) != NULL) { \ 276 (hp)->list = _nuri->hash; \ 277 atomic_add_32(&uri_hash_cnt[(from)], -1); \ 278 atomic_add_32(&uri_hash_cnt[(to)], 1); \ 279 _nhix = _nuri->hvalue; \ 280 URI_HASH_IX(_nhix, to); \ 281 _nhp = &uri_hash_ab[(to)][_nhix]; \ 282 mutex_enter(&_nhp->lock); \ 283 _nuri->hash = _nhp->list; \ 284 _nhp->list = _nuri; \ 285 _nuri->hit = 0; \ 286 mutex_exit(&_nhp->lock); \ 287 } \ 288 mutex_exit(&(hp)->lock); \ 289 } 290 291 #define URI_HASH_UNLINK(cur, new, hp, puri, uri) { \ 292 if ((puri) != NULL) { \ 293 (puri)->hash = (uri)->hash; \ 294 } else { \ 295 (hp)->list = (uri)->hash; \ 296 } \ 297 if (atomic_add_32_nv(&uri_hash_cnt[(cur)], -1) == 0 && \ 298 uri_hash_ab[(new)] != NULL) { \ 299 kmem_free(uri_hash_ab[cur], \ 300 sizeof (uri_hash_t) * uri_hash_sz[cur]); \ 301 uri_hash_ab[(cur)] = NULL; \ 302 uri_hash_lru[(cur)] = NULL; \ 303 uri_hash_which = (new); \ 304 } else { \ 305 uri_hash_lru[(cur)] = (hp); \ 306 } \ 307 } 308 309 void 310 nl7c_uri_init(void) 311 { 312 uint32_t cur = uri_hash_which; 313 314 rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL); 315 316 uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT]; 317 uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG; 318 uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur], 319 KM_SLEEP); 320 uri_hash_lru[cur] = uri_hash_ab[cur]; 321 322 nl7c_uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t), 323 0, NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0); 324 325 nl7c_uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc", 326 sizeof (uri_rd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 327 328 uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc", 329 sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 330 331 uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc", 332 sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 333 334 nl7c_http_init(); 335 } 336 337 #define CV_SZ 16 338 339 void 340 nl7c_mi_report_hash(mblk_t *mp) 341 { 342 uri_hash_t *hp, *pend; 343 uri_desc_t *uri; 344 uint32_t cur; 345 uint32_t new; 346 int n, nz, tot; 347 uint32_t cv[CV_SZ + 1]; 348 349 rw_enter(&uri_hash_access, RW_READER); 350 cur = uri_hash_which; 351 new = cur ? 0 : 1; 352 next: 353 for (n = 0; n <= CV_SZ; n++) 354 cv[n] = 0; 355 nz = 0; 356 tot = 0; 357 hp = &uri_hash_ab[cur][0]; 358 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 359 while (hp < pend) { 360 n = 0; 361 for (uri = hp->list; uri != NULL; uri = uri->hash) { 362 n++; 363 } 364 tot += n; 365 if (n > 0) 366 nz++; 367 if (n > CV_SZ) 368 n = CV_SZ; 369 cv[n]++; 370 hp++; 371 } 372 373 (void) mi_mpprintf(mp, "\nHash=%s, Buckets=%d, " 374 "Avrg=%d\nCount by bucket:", cur != new ? "CUR" : "NEW", 375 uri_hash_sz[cur], nz != 0 ? ((tot * 10 + 5) / nz) / 10 : 0); 376 (void) mi_mpprintf(mp, "Free=%d", cv[0]); 377 for (n = 1; n < CV_SZ; n++) { 378 int pn = 0; 379 char pv[5]; 380 char *pp = pv; 381 382 for (pn = n; pn < 1000; pn *= 10) 383 *pp++ = ' '; 384 *pp = 0; 385 (void) mi_mpprintf(mp, "%s%d=%d", pv, n, cv[n]); 386 } 387 (void) mi_mpprintf(mp, "Long=%d", cv[CV_SZ]); 388 389 if (cur != new && uri_hash_ab[new] != NULL) { 390 cur = new; 391 goto next; 392 } 393 rw_exit(&uri_hash_access); 394 } 395 396 void 397 nl7c_mi_report_uri(mblk_t *mp) 398 { 399 uri_hash_t *hp; 400 uri_desc_t *uri; 401 uint32_t cur; 402 uint32_t new; 403 int ix; 404 int ret; 405 char sc; 406 407 rw_enter(&uri_hash_access, RW_READER); 408 cur = uri_hash_which; 409 new = cur ? 0 : 1; 410 next: 411 for (ix = 0; ix < uri_hash_sz[cur]; ix++) { 412 hp = &uri_hash_ab[cur][ix]; 413 mutex_enter(&hp->lock); 414 uri = hp->list; 415 while (uri != NULL) { 416 sc = *(uri->path.ep); 417 *(uri->path.ep) = 0; 418 ret = mi_mpprintf(mp, "%s: %d %d %d", 419 uri->path.cp, (int)uri->resplen, 420 (int)uri->respclen, (int)uri->count); 421 *(uri->path.ep) = sc; 422 if (ret == -1) break; 423 uri = uri->hash; 424 } 425 mutex_exit(&hp->lock); 426 if (ret == -1) break; 427 } 428 if (ret != -1 && cur != new && uri_hash_ab[new] != NULL) { 429 cur = new; 430 goto next; 431 } 432 rw_exit(&uri_hash_access); 433 } 434 435 /* 436 * The uri_desc_t ref_t inactive function called on the last REF_RELE(), 437 * free all resources contained in the uri_desc_t. Note, the uri_desc_t 438 * will be freed by REF_RELE() on return. 439 */ 440 441 void 442 nl7c_uri_inactive(uri_desc_t *uri) 443 { 444 int64_t bytes = 0; 445 446 if (uri->tail) { 447 uri_rd_t *rdp = &uri->response; 448 uri_rd_t *free = NULL; 449 450 while (rdp) { 451 if (rdp->off == -1) { 452 bytes += rdp->sz; 453 kmem_free(rdp->data.kmem, rdp->sz); 454 } else { 455 VN_RELE(rdp->data.vnode); 456 } 457 rdp = rdp->next; 458 if (free != NULL) { 459 kmem_cache_free(nl7c_uri_rd_kmc, free); 460 } 461 free = rdp; 462 } 463 } 464 if (bytes) { 465 atomic_add_64(&nl7c_uri_bytes, -bytes); 466 } 467 if (uri->scheme != NULL) { 468 nl7c_http_free(uri->scheme); 469 } 470 if (uri->reqmp) { 471 freeb(uri->reqmp); 472 } 473 } 474 475 /* 476 * The reclaim is called by the kmem subsystem when kmem is running 477 * low. More work is needed to determine the best reclaim policy, for 478 * now we just manipulate the nl7c_uri_max global maximum bytes threshold 479 * value using a simple arithmetic backoff of the value every time this 480 * function is called then call uri_reclaim() to enforce it. 481 * 482 * Note, this value remains in place and enforced for all subsequent 483 * URI request/response processing. 484 * 485 * Note, nl7c_uri_max is currently initialized to 0 or infinite such that 486 * the first call here set it to the current uri_bytes value then backoff 487 * from there. 488 * 489 * XXX how do we determine when to increase nl7c_uri_max ??? 490 */ 491 492 /*ARGSUSED*/ 493 static void 494 uri_kmc_reclaim(void *arg) 495 { 496 uint64_t new_max; 497 498 if ((new_max = nl7c_uri_max) == 0) { 499 /* Currently infinite, initialize to current bytes used */ 500 nl7c_uri_max = nl7c_uri_bytes; 501 new_max = nl7c_uri_bytes; 502 } 503 if (new_max > 1) { 504 /* Lower max_bytes to 93% of current value */ 505 new_max >>= 1; /* 50% */ 506 new_max += (new_max >> 1); /* 75% */ 507 new_max += (new_max >> 2); /* 93% */ 508 if (new_max < nl7c_uri_max) 509 nl7c_uri_max = new_max; 510 else 511 nl7c_uri_max = 1; 512 } 513 nl7c_uri_reclaim(); 514 } 515 516 /* 517 * Delete a uri_desc_t from the URI hash. 518 */ 519 520 static void 521 uri_delete(uri_desc_t *del) 522 { 523 uint32_t hix; 524 uri_hash_t *hp; 525 uri_desc_t *uri; 526 uri_desc_t *puri; 527 uint32_t cur; 528 uint32_t new; 529 530 ASSERT(del->hash != URI_TEMP); 531 rw_enter(&uri_hash_access, RW_WRITER); 532 cur = uri_hash_which; 533 new = cur ? 0 : 1; 534 next: 535 puri = NULL; 536 hix = del->hvalue; 537 URI_HASH_IX(hix, cur); 538 hp = &uri_hash_ab[cur][hix]; 539 for (uri = hp->list; uri != NULL; uri = uri->hash) { 540 if (uri != del) { 541 puri = uri; 542 continue; 543 } 544 /* 545 * Found the URI, unlink from the hash chain, 546 * drop locks, ref release it. 547 */ 548 URI_HASH_UNLINK(cur, new, hp, puri, uri); 549 rw_exit(&uri_hash_access); 550 REF_RELE(uri); 551 return; 552 } 553 if (cur != new && uri_hash_ab[new] != NULL) { 554 /* 555 * Not found in current hash and have a new hash so 556 * check the new hash next. 557 */ 558 cur = new; 559 goto next; 560 } 561 rw_exit(&uri_hash_access); 562 } 563 564 /* 565 * Add a uri_desc_t to the URI hash. 566 */ 567 568 static void 569 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking) 570 { 571 uint32_t hix; 572 uri_hash_t *hp; 573 uint32_t cur = uri_hash_which; 574 uint32_t new = cur ? 0 : 1; 575 576 /* 577 * Caller of uri_add() must hold the uri_hash_access rwlock. 578 */ 579 ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) || 580 (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access))); 581 /* 582 * uri_add() always succeeds so add a hash ref to the URI now. 583 */ 584 REF_HOLD(uri); 585 again: 586 hix = uri->hvalue; 587 URI_HASH_IX(hix, cur); 588 if (uri_hash_ab[new] == NULL && 589 uri_hash_cnt[cur] < uri_hash_overflow[cur]) { 590 /* 591 * Easy case, no new hash and current hasn't overflowed, 592 * add URI to current hash and return. 593 * 594 * Note, the check for uri_hash_cnt[] above aren't done 595 * atomictally, i.e. multiple threads can be in this code 596 * as RW_READER and update the cnt[], this isn't a problem 597 * as the check is only advisory. 598 */ 599 fast: 600 atomic_add_32(&uri_hash_cnt[cur], 1); 601 hp = &uri_hash_ab[cur][hix]; 602 mutex_enter(&hp->lock); 603 uri->hash = hp->list; 604 hp->list = uri; 605 mutex_exit(&hp->lock); 606 rw_exit(&uri_hash_access); 607 return; 608 } 609 if (uri_hash_ab[new] == NULL) { 610 /* 611 * Need a new a or b hash, if not already RW_WRITER 612 * try to upgrade our lock to writer. 613 */ 614 if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) { 615 /* 616 * Upgrade failed, we can't simple exit and reenter 617 * the lock as after the exit and before the reenter 618 * the whole world can change so just wait for writer 619 * then do everything again. 620 */ 621 if (nonblocking) { 622 /* 623 * Can't block, use fast-path above. 624 * 625 * XXX should have a background thread to 626 * handle new ab[] in this case so as to 627 * not overflow the cur hash to much. 628 */ 629 goto fast; 630 } 631 rw_exit(&uri_hash_access); 632 rwlock = RW_WRITER; 633 rw_enter(&uri_hash_access, rwlock); 634 cur = uri_hash_which; 635 new = cur ? 0 : 1; 636 goto again; 637 } 638 rwlock = RW_WRITER; 639 if (uri_hash_ab[new] == NULL) { 640 /* 641 * Still need a new hash, allocate and initialize 642 * the new hash. 643 */ 644 uri_hash_n[new] = uri_hash_n[cur] + 1; 645 if (uri_hash_n[new] == 0) { 646 /* 647 * No larger P2Ps[] value so use current, 648 * i.e. 2 of the largest are better than 1 ? 649 */ 650 uri_hash_n[new] = uri_hash_n[cur]; 651 cmn_err(CE_NOTE, "NL7C: hash index overflow"); 652 } 653 uri_hash_sz[new] = P2Ps[uri_hash_n[new]]; 654 ASSERT(uri_hash_cnt[new] == 0); 655 uri_hash_overflow[new] = uri_hash_sz[new] * 656 URI_HASH_AVRG; 657 uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) * 658 uri_hash_sz[new], nonblocking ? KM_NOSLEEP : 659 KM_SLEEP); 660 if (uri_hash_ab[new] == NULL) { 661 /* 662 * Alloc failed, use fast-path above. 663 * 664 * XXX should have a background thread to 665 * handle new ab[] in this case so as to 666 * not overflow the cur hash to much. 667 */ 668 goto fast; 669 } 670 uri_hash_lru[new] = uri_hash_ab[new]; 671 } 672 } 673 /* 674 * Hashed against current hash so migrate any current hash chain 675 * members, if any. 676 * 677 * Note, the hash chain list can be checked for a non empty list 678 * outside of the hash chain list lock as the hash chain struct 679 * can't be destroyed while in the uri_hash_access rwlock, worst 680 * case is that a non empty list is found and after acquiring the 681 * lock another thread beats us to it (i.e. migrated the list). 682 */ 683 hp = &uri_hash_ab[cur][hix]; 684 if (hp->list != NULL) { 685 URI_HASH_MIGRATE(cur, hp, new); 686 } 687 /* 688 * If new hash has overflowed before current hash has been 689 * completely migrated then walk all current hash chains and 690 * migrate list members now. 691 */ 692 if (atomic_add_32_nv(&uri_hash_cnt[new], 1) >= uri_hash_overflow[new]) { 693 for (hix = 0; hix < uri_hash_sz[cur]; hix++) { 694 hp = &uri_hash_ab[cur][hix]; 695 if (hp->list != NULL) { 696 URI_HASH_MIGRATE(cur, hp, new); 697 } 698 } 699 } 700 /* 701 * Add URI to new hash. 702 */ 703 hix = uri->hvalue; 704 URI_HASH_IX(hix, new); 705 hp = &uri_hash_ab[new][hix]; 706 mutex_enter(&hp->lock); 707 uri->hash = hp->list; 708 hp->list = uri; 709 mutex_exit(&hp->lock); 710 /* 711 * Last, check to see if last cur hash chain has been 712 * migrated, if so free cur hash and make new hash cur. 713 */ 714 if (uri_hash_cnt[cur] == 0) { 715 /* 716 * If we don't already hold the uri_hash_access rwlock for 717 * RW_WRITE try to upgrade to RW_WRITE and if successful 718 * check again and to see if still need to do the free. 719 */ 720 if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) && 721 uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) { 722 kmem_free(uri_hash_ab[cur], 723 sizeof (uri_hash_t) * uri_hash_sz[cur]); 724 uri_hash_ab[cur] = NULL; 725 uri_hash_lru[cur] = NULL; 726 uri_hash_which = new; 727 } 728 } 729 rw_exit(&uri_hash_access); 730 } 731 732 /* 733 * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t 734 * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, if 735 * add B_TRUE use the request URI to create a new hash entry. Else if add 736 * B_FALSE ... 737 */ 738 739 static uri_desc_t * 740 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking) 741 { 742 uint32_t hix; 743 uri_hash_t *hp; 744 uri_desc_t *uri; 745 uri_desc_t *puri; 746 uint32_t cur; 747 uint32_t new; 748 char *rcp = ruri->path.cp; 749 char *rep = ruri->path.ep; 750 751 again: 752 rw_enter(&uri_hash_access, RW_READER); 753 cur = uri_hash_which; 754 new = cur ? 0 : 1; 755 nexthash: 756 puri = NULL; 757 hix = ruri->hvalue; 758 URI_HASH_IX(hix, cur); 759 hp = &uri_hash_ab[cur][hix]; 760 mutex_enter(&hp->lock); 761 for (uri = hp->list; uri != NULL; uri = uri->hash) { 762 char *ap = uri->path.cp; 763 char *bp = rcp; 764 char a, b; 765 766 /* Compare paths */ 767 while (bp < rep && ap < uri->path.ep) { 768 if ((a = *ap) == '%') { 769 /* Escaped hex multichar, convert it */ 770 H2A(ap, uri->path.ep, a); 771 } 772 if ((b = *bp) == '%') { 773 /* Escaped hex multichar, convert it */ 774 H2A(bp, rep, b); 775 } 776 if (a != b) { 777 /* Char's don't match */ 778 goto nexturi; 779 } 780 ap++; 781 bp++; 782 } 783 if (bp != rep || ap != uri->path.ep) { 784 /* Not same length */ 785 goto nexturi; 786 } 787 ap = uri->auth.cp; 788 bp = ruri->auth.cp; 789 if (ap != NULL) { 790 if (bp == NULL) { 791 /* URI has auth request URI doesn't */ 792 goto nexturi; 793 } 794 while (bp < ruri->auth.ep && ap < uri->auth.ep) { 795 if ((a = *ap) == '%') { 796 /* Escaped hex multichar, convert it */ 797 H2A(ap, uri->path.ep, a); 798 } 799 if ((b = *bp) == '%') { 800 /* Escaped hex multichar, convert it */ 801 H2A(bp, rep, b); 802 } 803 if (a != b) { 804 /* Char's don't match */ 805 goto nexturi; 806 } 807 ap++; 808 bp++; 809 } 810 if (bp != ruri->auth.ep || ap != uri->auth.ep) { 811 /* Not same length */ 812 goto nexturi; 813 } 814 } else if (bp != NULL) { 815 /* URI doesn't have auth and request URI does */ 816 goto nexturi; 817 } 818 /* 819 * Have a path/auth match so before any other processing 820 * of requested URI, check for expire or request no cache 821 * purge. 822 */ 823 if (uri->expire >= 0 && uri->expire <= lbolt || ruri->nocache) { 824 /* 825 * URI has expired or request specified to not use 826 * the cached version, unlink the URI from the hash 827 * chain, release all locks, release the hash ref 828 * on the URI, and last look it up again. 829 * 830 * Note, this will cause all variants of the named 831 * URI to be purged. 832 */ 833 if (puri != NULL) { 834 puri->hash = uri->hash; 835 } else { 836 hp->list = uri->hash; 837 } 838 mutex_exit(&hp->lock); 839 atomic_add_32(&uri_hash_cnt[cur], -1); 840 rw_exit(&uri_hash_access); 841 if (ruri->nocache) 842 nl7c_uri_purge++; 843 else 844 nl7c_uri_expire++; 845 REF_RELE(uri); 846 goto again; 847 } 848 if (uri->scheme != NULL) { 849 /* 850 * URI has scheme private qualifier(s), if request 851 * URI doesn't or if no match skip this URI. 852 */ 853 if (ruri->scheme == NULL || 854 ! nl7c_http_cmp(uri->scheme, ruri->scheme)) 855 goto nexturi; 856 } else if (ruri->scheme != NULL) { 857 /* 858 * URI doesn't have scheme private qualifiers but 859 * request URI does, no match, skip this URI. 860 */ 861 goto nexturi; 862 } 863 /* 864 * Have a match, ready URI for return, first put a reference 865 * hold on the URI, if this URI is currently being processed 866 * then have to wait for the processing to be completed and 867 * redo the lookup, else return it. 868 */ 869 REF_HOLD(uri); 870 mutex_enter(&uri->proclock); 871 if (uri->proc != NULL) { 872 /* The URI is being processed, wait for completion */ 873 mutex_exit(&hp->lock); 874 rw_exit(&uri_hash_access); 875 if (! nonblocking && 876 cv_wait_sig(&uri->waiting, &uri->proclock)) { 877 /* 878 * URI has been processed but things may 879 * have changed while we were away so do 880 * most everything again. 881 */ 882 mutex_exit(&uri->proclock); 883 REF_RELE(uri); 884 goto again; 885 } else { 886 /* 887 * A nonblocking socket or an interrupted 888 * cv_wait_sig() in the first case can't 889 * block waiting for the processing of the 890 * uri hash hit uri to complete, in both 891 * cases just return failure to lookup. 892 */ 893 mutex_exit(&uri->proclock); 894 REF_RELE(uri); 895 return (NULL); 896 } 897 } 898 mutex_exit(&uri->proclock); 899 uri->hit++; 900 mutex_exit(&hp->lock); 901 rw_exit(&uri_hash_access); 902 return (uri); 903 nexturi: 904 puri = uri; 905 } 906 mutex_exit(&hp->lock); 907 if (cur != new && uri_hash_ab[new] != NULL) { 908 /* 909 * Not found in current hash and have a new hash so 910 * check the new hash next. 911 */ 912 cur = new; 913 goto nexthash; 914 } 915 add: 916 if (! add) { 917 /* Lookup only so return failure */ 918 rw_exit(&uri_hash_access); 919 return (NULL); 920 } 921 /* 922 * URI not hashed, finish intialization of the 923 * request URI, add it to the hash, return it. 924 */ 925 ruri->hit = 0; 926 ruri->expire = -1; 927 ruri->response.sz = 0; 928 ruri->proc = (struct sonode *)~NULL; 929 cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL); 930 mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL); 931 uri_add(ruri, RW_READER, nonblocking); 932 /* uri_add() has done rw_exit(&uri_hash_access) */ 933 return (ruri); 934 } 935 936 /* 937 * Reclaim URIs until max cache size threshold has been reached. 938 * 939 * A CLOCK based reclaim modified with a history (hit counter) counter. 940 */ 941 942 static void 943 nl7c_uri_reclaim(void) 944 { 945 uri_hash_t *hp, *start, *pend; 946 uri_desc_t *uri; 947 uri_desc_t *puri; 948 uint32_t cur; 949 uint32_t new; 950 951 nl7c_uri_reclaim_calls++; 952 again: 953 rw_enter(&uri_hash_access, RW_WRITER); 954 cur = uri_hash_which; 955 new = cur ? 0 : 1; 956 next: 957 hp = uri_hash_lru[cur]; 958 start = hp; 959 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 960 while (nl7c_uri_bytes > nl7c_uri_max) { 961 puri = NULL; 962 for (uri = hp->list; uri != NULL; uri = uri->hash) { 963 if (uri->hit != 0) { 964 /* 965 * Decrement URI activity counter and skip. 966 */ 967 uri->hit--; 968 puri = uri; 969 continue; 970 } 971 if (uri->proc != NULL) { 972 /* 973 * Currently being processed by a socket, skip. 974 */ 975 continue; 976 } 977 /* 978 * Found a candidate, no hit(s) since added or last 979 * reclaim pass, unlink from it's hash chain, update 980 * lru scan pointer, drop lock, ref release it. 981 */ 982 URI_HASH_UNLINK(cur, new, hp, puri, uri); 983 if (cur == uri_hash_which) { 984 if (++hp == pend) { 985 /* Wrap pointer */ 986 hp = uri_hash_ab[cur]; 987 } 988 uri_hash_lru[cur] = hp; 989 } 990 rw_exit(&uri_hash_access); 991 REF_RELE(uri); 992 nl7c_uri_reclaim_cnt++; 993 goto again; 994 } 995 if (++hp == pend) { 996 /* Wrap pointer */ 997 hp = uri_hash_ab[cur]; 998 } 999 if (hp == start) { 1000 if (cur != new && uri_hash_ab[new] != NULL) { 1001 /* 1002 * Done with the current hash and have a 1003 * new hash so check the new hash next. 1004 */ 1005 cur = new; 1006 goto next; 1007 } 1008 } 1009 } 1010 rw_exit(&uri_hash_access); 1011 } 1012 1013 /* 1014 * Called for a socket which is being freed prior to close, e.g. errored. 1015 */ 1016 1017 void 1018 nl7c_urifree(struct sonode *so) 1019 { 1020 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1021 1022 so->so_nl7c_uri = NULL; 1023 if (uri->hash != URI_TEMP) { 1024 uri_delete(uri); 1025 mutex_enter(&uri->proclock); 1026 uri->proc = NULL; 1027 if (CV_HAS_WAITERS(&uri->waiting)) { 1028 cv_broadcast(&uri->waiting); 1029 } 1030 mutex_exit(&uri->proclock); 1031 nl7c_uri_free++; 1032 } else { 1033 /* No proclock as uri exclusively owned by so */ 1034 uri->proc = NULL; 1035 nl7c_uri_temp_free++; 1036 } 1037 REF_RELE(uri); 1038 } 1039 1040 /* 1041 * ... 1042 * 1043 * < 0 need more data 1044 * 1045 * 0 parse complete 1046 * 1047 * > 0 parse error 1048 */ 1049 1050 volatile uint64_t nl7c_resp_pfail = 0; 1051 volatile uint64_t nl7c_resp_ntemp = 0; 1052 volatile uint64_t nl7c_resp_pass = 0; 1053 1054 static int 1055 nl7c_resp_parse(struct sonode *so, uri_desc_t *uri, char *data, int sz) 1056 { 1057 if (! nl7c_http_response(&data, &data[sz], uri, so)) { 1058 if (data == NULL) { 1059 /* Parse fail */ 1060 goto pfail; 1061 } 1062 /* More data */ 1063 data = NULL; 1064 } else if (data == NULL) { 1065 goto pass; 1066 } 1067 if (uri->hash != URI_TEMP && uri->nocache) { 1068 /* 1069 * After response parse now no cache, 1070 * delete it from cache, wakeup any 1071 * waiters on this URI, make URI_TEMP. 1072 */ 1073 uri_delete(uri); 1074 mutex_enter(&uri->proclock); 1075 if (CV_HAS_WAITERS(&uri->waiting)) { 1076 cv_broadcast(&uri->waiting); 1077 } 1078 mutex_exit(&uri->proclock); 1079 uri->hash = URI_TEMP; 1080 nl7c_uri_temp_mk++; 1081 } 1082 if (data == NULL) { 1083 /* More data needed */ 1084 return (-1); 1085 } 1086 /* Success */ 1087 return (0); 1088 1089 pfail: 1090 nl7c_resp_pfail++; 1091 return (EINVAL); 1092 1093 pass: 1094 nl7c_resp_pass++; 1095 return (ENOTSUP); 1096 } 1097 1098 /* 1099 * Called to sink application response data, the processing of the data 1100 * is the same for a cached or temp URI (i.e. a URI for which we aren't 1101 * going to cache the URI but want to parse it for detecting response 1102 * data end such that for a persistent connection we can parse the next 1103 * request). 1104 * 1105 * On return 0 is returned for sink success, > 0 on error, and < 0 on 1106 * no so URI (note, data not sinked). 1107 */ 1108 1109 int 1110 nl7c_data(struct sonode *so, uio_t *uio) 1111 { 1112 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1113 iovec_t *iov; 1114 int cnt; 1115 int sz = uio->uio_resid; 1116 char *data, *alloc; 1117 char *bp; 1118 uri_rd_t *rdp; 1119 boolean_t first; 1120 int error, perror; 1121 1122 nl7c_uri_data++; 1123 1124 if (uri == NULL) { 1125 /* Socket & NL7C out of sync, disable NL7C */ 1126 so->so_nl7c_flags = 0; 1127 nl7c_uri_NULL1++; 1128 return (-1); 1129 } 1130 1131 if (so->so_nl7c_flags & NL7C_WAITWRITE) { 1132 so->so_nl7c_flags &= ~NL7C_WAITWRITE; 1133 first = B_TRUE; 1134 } else { 1135 first = B_FALSE; 1136 } 1137 1138 alloc = kmem_alloc(sz, KM_SLEEP); 1139 URI_RD_ADD(uri, rdp, sz, -1); 1140 if (rdp == NULL) { 1141 error = ENOMEM; 1142 goto fail; 1143 } 1144 1145 if (uri->hash != URI_TEMP && uri->count > nca_max_cache_size) { 1146 uri_delete(uri); 1147 uri->hash = URI_TEMP; 1148 } 1149 data = alloc; 1150 alloc = NULL; 1151 rdp->data.kmem = data; 1152 atomic_add_64(&nl7c_uri_bytes, sz); 1153 1154 bp = data; 1155 while (uio->uio_resid > 0) { 1156 iov = uio->uio_iov; 1157 if ((cnt = iov->iov_len) == 0) { 1158 goto next; 1159 } 1160 cnt = MIN(cnt, uio->uio_resid); 1161 error = xcopyin(iov->iov_base, bp, cnt); 1162 if (error) 1163 goto fail; 1164 1165 iov->iov_base += cnt; 1166 iov->iov_len -= cnt; 1167 uio->uio_resid -= cnt; 1168 uio->uio_loffset += cnt; 1169 bp += cnt; 1170 next: 1171 uio->uio_iov++; 1172 uio->uio_iovcnt--; 1173 } 1174 1175 /* Successfull sink of data, response parse the data */ 1176 perror = nl7c_resp_parse(so, uri, data, sz); 1177 1178 /* Send the data out the connection */ 1179 error = uri_rd_response(so, uri, rdp, first); 1180 if (error) 1181 goto fail; 1182 1183 /* Success */ 1184 if (perror == 0 && 1185 ((uri->respclen == URI_LEN_NOVALUE && 1186 uri->resplen == URI_LEN_NOVALUE) || 1187 uri->count >= uri->resplen)) { 1188 /* 1189 * No more data needed and no pending response 1190 * data or current data count >= response length 1191 * so close the URI processing for this so. 1192 */ 1193 nl7c_close(so); 1194 if (! (so->so_nl7c_flags & NL7C_SOPERSIST)) { 1195 /* Not a persistent connection */ 1196 so->so_nl7c_flags = 0; 1197 } 1198 } 1199 1200 return (0); 1201 1202 fail: 1203 if (alloc != NULL) { 1204 kmem_free(alloc, sz); 1205 } 1206 so->so_nl7c_flags = 0; 1207 nl7c_urifree(so); 1208 1209 return (error); 1210 } 1211 1212 /* 1213 * Called to read data from file "*fp" at offset "*off" of length "*len" 1214 * for a maximum of "*max_rem" bytes. 1215 * 1216 * On success a pointer to the kmem_alloc()ed file data is returned, "*off" 1217 * and "*len" are updated for the acutal number of bytes read and "*max_rem" 1218 * is updated with the number of bytes remaining to be read. 1219 * 1220 * Else, "NULL" is returned. 1221 */ 1222 1223 static char * 1224 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int max, int *ret) 1225 { 1226 vnode_t *vp = fp->f_vnode; 1227 int flg = 0; 1228 size_t size = MIN(*len, max); 1229 char *data; 1230 int error; 1231 uio_t uio; 1232 iovec_t iov; 1233 1234 (void) VOP_RWLOCK(vp, flg, NULL); 1235 1236 if (*off > MAXOFFSET_T) { 1237 VOP_RWUNLOCK(vp, flg, NULL); 1238 *ret = EFBIG; 1239 return (NULL); 1240 } 1241 1242 if (*off + size > MAXOFFSET_T) 1243 size = (ssize32_t)(MAXOFFSET_T - *off); 1244 1245 data = kmem_alloc(size, KM_SLEEP); 1246 1247 iov.iov_base = data; 1248 iov.iov_len = size; 1249 uio.uio_loffset = *off; 1250 uio.uio_iov = &iov; 1251 uio.uio_iovcnt = 1; 1252 uio.uio_resid = size; 1253 uio.uio_segflg = UIO_SYSSPACE; 1254 uio.uio_llimit = MAXOFFSET_T; 1255 uio.uio_fmode = fp->f_flag; 1256 1257 error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL); 1258 VOP_RWUNLOCK(vp, flg, NULL); 1259 *ret = error; 1260 if (error) { 1261 kmem_free(data, size); 1262 return (NULL); 1263 } 1264 *len = size; 1265 *off += size; 1266 return (data); 1267 } 1268 1269 /* 1270 * Called to sink application response sendfilev, as with nl7c_data() above 1271 * all the data will be processed by NL7C unless there's an error. 1272 */ 1273 1274 int 1275 nl7c_sendfilev(struct sonode *so, u_offset_t *fileoff, sendfilevec_t *sfvp, 1276 int sfvc, ssize_t *xfer) 1277 { 1278 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1279 file_t *fp = NULL; 1280 vnode_t *vp = NULL; 1281 char *data = NULL; 1282 u_offset_t off; 1283 int len; 1284 int cnt; 1285 int total_count = 0; 1286 char *alloc; 1287 uri_rd_t *rdp; 1288 int max; 1289 int perror; 1290 int error = 0; 1291 boolean_t first = B_TRUE; 1292 1293 nl7c_uri_sendfilev++; 1294 1295 if (uri == NULL) { 1296 /* Socket & NL7C out of sync, disable NL7C */ 1297 so->so_nl7c_flags = 0; 1298 nl7c_uri_NULL2++; 1299 return (0); 1300 } 1301 1302 if (so->so_nl7c_flags & NL7C_WAITWRITE) 1303 so->so_nl7c_flags &= ~NL7C_WAITWRITE; 1304 1305 while (sfvc-- > 0) { 1306 /* 1307 * off - the current sfv read file offset or user address. 1308 * 1309 * len - the current sfv length in bytes. 1310 * 1311 * cnt - number of bytes kmem_alloc()ed. 1312 * 1313 * alloc - the kmem_alloc()ed buffer of size "cnt". 1314 * 1315 * data - copy of "alloc" used for post alloc references. 1316 * 1317 * fp - the current sfv file_t pointer. 1318 * 1319 * vp - the current "*vp" vnode_t pointer. 1320 * 1321 * Note, for "data" and "fp" and "vp" a NULL value is used 1322 * when not allocated such that the common failure path "fail" 1323 * is used. 1324 */ 1325 off = sfvp->sfv_off; 1326 len = sfvp->sfv_len; 1327 cnt = len; 1328 1329 if (len == 0) { 1330 sfvp++; 1331 continue; 1332 } 1333 1334 if (sfvp->sfv_fd == SFV_FD_SELF) { 1335 /* 1336 * User memory, copyin() all the bytes. 1337 */ 1338 alloc = kmem_alloc(cnt, KM_SLEEP); 1339 error = xcopyin((caddr_t)(uintptr_t)off, alloc, cnt); 1340 if (error) 1341 goto fail; 1342 } else { 1343 /* 1344 * File descriptor, prefetch some bytes. 1345 */ 1346 if ((fp = getf(sfvp->sfv_fd)) == NULL) { 1347 error = EBADF; 1348 goto fail; 1349 } 1350 if ((fp->f_flag & FREAD) == 0) { 1351 error = EACCES; 1352 goto fail; 1353 } 1354 vp = fp->f_vnode; 1355 if (vp->v_type != VREG) { 1356 error = EINVAL; 1357 goto fail; 1358 } 1359 VN_HOLD(vp); 1360 1361 /* Read max_rem bytes from file for prefetch */ 1362 if (nl7c_use_kmem) { 1363 max = cnt; 1364 } else { 1365 max = MAXBSIZE * nl7c_file_prefetch; 1366 } 1367 alloc = nl7c_readfile(fp, &off, &cnt, max, &error); 1368 if (alloc == NULL) 1369 goto fail; 1370 1371 releasef(sfvp->sfv_fd); 1372 fp = NULL; 1373 } 1374 URI_RD_ADD(uri, rdp, cnt, -1); 1375 if (rdp == NULL) { 1376 error = ENOMEM; 1377 goto fail; 1378 } 1379 data = alloc; 1380 alloc = NULL; 1381 rdp->data.kmem = data; 1382 total_count += cnt; 1383 if (uri->hash != URI_TEMP && total_count > nca_max_cache_size) { 1384 uri_delete(uri); 1385 uri->hash = URI_TEMP; 1386 } 1387 1388 /* Response parse */ 1389 perror = nl7c_resp_parse(so, uri, data, len); 1390 1391 /* Send kmem data out the connection */ 1392 error = uri_rd_response(so, uri, rdp, first); 1393 1394 if (error) 1395 goto fail; 1396 1397 if (sfvp->sfv_fd != SFV_FD_SELF) { 1398 /* 1399 * File descriptor, if any bytes left save vnode_t. 1400 */ 1401 if (len > cnt) { 1402 /* More file data so add it */ 1403 URI_RD_ADD(uri, rdp, len - cnt, off); 1404 if (rdp == NULL) { 1405 error = ENOMEM; 1406 goto fail; 1407 } 1408 rdp->data.vnode = vp; 1409 1410 /* Send vnode data out the connection */ 1411 error = uri_rd_response(so, uri, rdp, first); 1412 } else { 1413 /* All file data fit in the prefetch */ 1414 VN_RELE(vp); 1415 } 1416 *fileoff += len; 1417 vp = NULL; 1418 } 1419 *xfer += len; 1420 sfvp++; 1421 1422 if (first) 1423 first = B_FALSE; 1424 } 1425 if (total_count > 0) { 1426 atomic_add_64(&nl7c_uri_bytes, total_count); 1427 } 1428 if (perror == 0 && 1429 ((uri->respclen == URI_LEN_NOVALUE && 1430 uri->resplen == URI_LEN_NOVALUE) || 1431 uri->count >= uri->resplen)) { 1432 /* 1433 * No more data needed and no pending response 1434 * data or current data count >= response length 1435 * so close the URI processing for this so. 1436 */ 1437 nl7c_close(so); 1438 if (! (so->so_nl7c_flags & NL7C_SOPERSIST)) { 1439 /* Not a persistent connection */ 1440 so->so_nl7c_flags = 0; 1441 } 1442 } 1443 1444 return (0); 1445 1446 fail: 1447 if (alloc != NULL) 1448 kmem_free(data, len); 1449 1450 if (vp != NULL) 1451 VN_RELE(vp); 1452 1453 if (fp != NULL) 1454 releasef(sfvp->sfv_fd); 1455 1456 if (total_count > 0) { 1457 atomic_add_64(&nl7c_uri_bytes, total_count); 1458 } 1459 1460 so->so_nl7c_flags = 0; 1461 nl7c_urifree(so); 1462 1463 return (error); 1464 } 1465 1466 /* 1467 * Called for a socket which is closing or when an application has 1468 * completed sending all the response data (i.e. for a persistent 1469 * connection called once for each completed application response). 1470 */ 1471 1472 void 1473 nl7c_close(struct sonode *so) 1474 { 1475 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1476 1477 if (uri == NULL) { 1478 /* 1479 * No URI being processed so might be a listen()er 1480 * if so do any cleanup, else nothing more to do. 1481 */ 1482 if (so->so_state & SS_ACCEPTCONN) { 1483 (void) nl7c_close_addr(so); 1484 } 1485 return; 1486 } 1487 so->so_nl7c_uri = NULL; 1488 if (uri->hash != URI_TEMP) { 1489 mutex_enter(&uri->proclock); 1490 uri->proc = NULL; 1491 if (CV_HAS_WAITERS(&uri->waiting)) { 1492 cv_broadcast(&uri->waiting); 1493 } 1494 mutex_exit(&uri->proclock); 1495 nl7c_uri_close++; 1496 } else { 1497 /* No proclock as uri exclusively owned by so */ 1498 uri->proc = NULL; 1499 nl7c_uri_temp_close++; 1500 } 1501 REF_RELE(uri); 1502 if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) { 1503 nl7c_uri_reclaim(); 1504 } 1505 } 1506 1507 /* 1508 * The uri_segmap_t ref_t inactive function called on the last REF_RELE(), 1509 * release the segmap mapping. Note, the uri_segmap_t will be freed by 1510 * REF_RELE() on return. 1511 */ 1512 1513 void 1514 uri_segmap_inactive(uri_segmap_t *smp) 1515 { 1516 if (!segmap_kpm) { 1517 (void) segmap_fault(kas.a_hat, segkmap, smp->base, 1518 smp->len, F_SOFTUNLOCK, S_OTHER); 1519 } 1520 (void) segmap_release(segkmap, smp->base, SM_DONTNEED); 1521 VN_RELE(smp->vp); 1522 } 1523 1524 /* 1525 * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t 1526 * release the reference, one per desballoc() of a segmap page, if a rd_t 1527 * mapped mblk_t release the reference, one per desballoc() of a uri_desc_t, 1528 * last kmem free the uri_desb_t. 1529 */ 1530 1531 static void 1532 uri_desb_free(uri_desb_t *desb) 1533 { 1534 if (desb->segmap != NULL) { 1535 REF_RELE(desb->segmap); 1536 } 1537 REF_RELE(desb->uri); 1538 kmem_cache_free(uri_desb_kmc, desb); 1539 } 1540 1541 /* 1542 * Segmap map up to a page of a uri_rd_t file descriptor. 1543 */ 1544 1545 uri_segmap_t * 1546 uri_segmap_map(uri_rd_t *rdp, int bytes) 1547 { 1548 uri_segmap_t *segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP); 1549 int len = MIN(rdp->sz, MAXBSIZE); 1550 1551 if (len > bytes) 1552 len = bytes; 1553 1554 REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc); 1555 segmap->len = len; 1556 VN_HOLD(rdp->data.vnode); 1557 segmap->vp = rdp->data.vnode; 1558 1559 segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len, 1560 segmap_kpm ? SM_FAULT : 0, S_READ); 1561 1562 if (segmap_fault(kas.a_hat, segkmap, segmap->base, len, 1563 F_SOFTLOCK, S_READ) != 0) { 1564 REF_RELE(segmap); 1565 return (NULL); 1566 } 1567 return (segmap); 1568 } 1569 1570 /* 1571 * Chop up the kernel virtual memory area *data of size *sz bytes for 1572 * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using 1573 * the given template uri_desb_t *temp of max_mblk bytes per. 1574 * 1575 * The values of *data, *sz, and *bytes are updated on return, the 1576 * mblk_t chain is returned. 1577 */ 1578 1579 static mblk_t * 1580 uri_desb_chop( 1581 char **data, 1582 size_t *sz, 1583 int *bytes, 1584 uri_desb_t *temp, 1585 int max_mblk, 1586 char *eoh, 1587 mblk_t *persist 1588 ) 1589 { 1590 char *ldata = *data; 1591 size_t lsz = *sz; 1592 int lbytes = bytes ? *bytes : lsz; 1593 uri_desb_t *desb; 1594 mblk_t *mp = NULL; 1595 mblk_t *nmp, *pmp = NULL; 1596 int msz; 1597 1598 if (lbytes == 0 && lsz == 0) 1599 return (NULL); 1600 1601 while (lbytes > 0 && lsz > 0) { 1602 msz = MIN(lbytes, max_mblk); 1603 msz = MIN(msz, lsz); 1604 if (persist && eoh >= ldata && eoh < &ldata[msz]) { 1605 msz = (eoh - ldata); 1606 pmp = persist; 1607 persist = NULL; 1608 if (msz == 0) { 1609 nmp = pmp; 1610 pmp = NULL; 1611 goto zero; 1612 } 1613 } 1614 desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP); 1615 REF_HOLD(temp->uri); 1616 if (temp->segmap) { 1617 REF_HOLD(temp->segmap); 1618 } 1619 bcopy(temp, desb, sizeof (*desb)); 1620 desb->frtn.free_arg = (caddr_t)desb; 1621 nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn); 1622 if (nmp == NULL) { 1623 if (temp->segmap) { 1624 REF_RELE(temp->segmap); 1625 } 1626 REF_RELE(temp->uri); 1627 if (mp != NULL) { 1628 mp->b_next = NULL; 1629 freemsg(mp); 1630 } 1631 if (persist != NULL) { 1632 freeb(persist); 1633 } 1634 return (NULL); 1635 } 1636 nmp->b_wptr += msz; 1637 zero: 1638 if (mp != NULL) { 1639 mp->b_next->b_cont = nmp; 1640 } else { 1641 mp = nmp; 1642 } 1643 if (pmp != NULL) { 1644 nmp->b_cont = pmp; 1645 nmp = pmp; 1646 pmp = NULL; 1647 } 1648 mp->b_next = nmp; 1649 ldata += msz; 1650 lsz -= msz; 1651 lbytes -= msz; 1652 } 1653 *data = ldata; 1654 *sz = lsz; 1655 if (bytes) 1656 *bytes = lbytes; 1657 return (mp); 1658 } 1659 1660 /* 1661 * Experimential noqwait (i.e. no canput()/qwait() checks), just send 1662 * the entire mblk_t chain down without flow-control checks. 1663 */ 1664 1665 static int 1666 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp) 1667 { 1668 struct stdata *stp; 1669 int error = 0; 1670 1671 ASSERT(vp->v_stream); 1672 stp = vp->v_stream; 1673 1674 /* Fast check of flags before acquiring the lock */ 1675 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 1676 mutex_enter(&stp->sd_lock); 1677 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0); 1678 mutex_exit(&stp->sd_lock); 1679 if (error != 0) { 1680 if (!(stp->sd_flag & STPLEX) && 1681 (stp->sd_wput_opt & SW_SIGPIPE)) { 1682 tsignal(curthread, SIGPIPE); 1683 error = EPIPE; 1684 } 1685 return (error); 1686 } 1687 } 1688 putnext(stp->sd_wrq, mp); 1689 return (0); 1690 } 1691 1692 /* 1693 * Send the URI uri_desc_t *uri response uri_rd_t *rdp out the socket_t *so. 1694 */ 1695 1696 static int 1697 uri_rd_response(struct sonode *so, 1698 uri_desc_t *uri, 1699 uri_rd_t *rdp, 1700 boolean_t first) 1701 { 1702 vnode_t *vp = SOTOV(so); 1703 int max_mblk = (int)((tcp_t *)so->so_priv)->tcp_mss; 1704 int wsz; 1705 mblk_t *mp, *wmp, *persist; 1706 int write_bytes; 1707 uri_rd_t rd; 1708 uri_desb_t desb; 1709 uri_segmap_t *segmap = NULL; 1710 char *segmap_data; 1711 size_t segmap_sz; 1712 int error; 1713 int fflg = ((so->so_state & SS_NDELAY) ? FNDELAY : 0) | 1714 ((so->so_state & SS_NONBLOCK) ? FNONBLOCK : 0); 1715 1716 1717 /* Initialize template uri_desb_t */ 1718 desb.frtn.free_func = uri_desb_free; 1719 desb.frtn.free_arg = NULL; 1720 desb.uri = uri; 1721 1722 /* Get a local copy of the rd_t */ 1723 bcopy(rdp, &rd, sizeof (rd)); 1724 do { 1725 if (first) { 1726 /* 1727 * For first kstrwrite() enough data to get 1728 * things going, note non blocking version of 1729 * kstrwrite() will be used below. 1730 */ 1731 write_bytes = P2ROUNDUP((max_mblk * 4), 1732 MAXBSIZE * nl7c_file_prefetch); 1733 } else { 1734 if ((write_bytes = so->so_sndbuf) == 0) 1735 write_bytes = vp->v_stream->sd_qn_maxpsz; 1736 ASSERT(write_bytes > 0); 1737 write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE); 1738 } 1739 /* 1740 * Chop up to a write_bytes worth of data. 1741 */ 1742 wmp = NULL; 1743 wsz = write_bytes; 1744 do { 1745 if (rd.sz == 0) 1746 break; 1747 if (rd.off == -1) { 1748 if (uri->eoh >= rd.data.kmem && 1749 uri->eoh < &rd.data.kmem[rd.sz]) { 1750 persist = nl7c_http_persist(so); 1751 } else { 1752 persist = NULL; 1753 } 1754 desb.segmap = NULL; 1755 mp = uri_desb_chop(&rd.data.kmem, &rd.sz, 1756 &wsz, &desb, max_mblk, uri->eoh, persist); 1757 if (mp == NULL) { 1758 error = ENOMEM; 1759 goto invalidate; 1760 } 1761 } else { 1762 if (segmap == NULL) { 1763 segmap = uri_segmap_map(&rd, 1764 write_bytes); 1765 if (segmap == NULL) { 1766 error = ENOMEM; 1767 goto invalidate; 1768 } 1769 desb.segmap = segmap; 1770 segmap_data = segmap->base; 1771 segmap_sz = segmap->len; 1772 } 1773 mp = uri_desb_chop(&segmap_data, &segmap_sz, 1774 &wsz, &desb, max_mblk, NULL, NULL); 1775 if (mp == NULL) { 1776 error = ENOMEM; 1777 goto invalidate; 1778 } 1779 if (segmap_sz == 0) { 1780 rd.sz -= segmap->len; 1781 rd.off += segmap->len; 1782 REF_RELE(segmap); 1783 segmap = NULL; 1784 } 1785 } 1786 if (wmp == NULL) { 1787 wmp = mp; 1788 } else { 1789 wmp->b_next->b_cont = mp; 1790 wmp->b_next = mp->b_next; 1791 mp->b_next = NULL; 1792 } 1793 } while (wsz > 0 && rd.sz > 0); 1794 1795 wmp->b_next = NULL; 1796 if (first) { 1797 /* First kstrwrite(), use noqwait */ 1798 if ((error = kstrwritempnoqwait(vp, wmp)) != 0) 1799 goto invalidate; 1800 /* 1801 * For the rest of the kstrwrite()s use SO_SNDBUF 1802 * worth of data at a time, note these kstrwrite()s 1803 * may (will) block one or more times. 1804 */ 1805 first = B_FALSE; 1806 } else { 1807 if ((error = kstrwritemp(vp, wmp, fflg)) != 0) { 1808 if (error == EAGAIN) { 1809 nl7c_uri_rd_EAGAIN++; 1810 if ((error = 1811 kstrwritempnoqwait(vp, wmp)) != 0) 1812 goto invalidate; 1813 } else 1814 goto invalidate; 1815 } 1816 } 1817 } while (rd.sz > 0); 1818 1819 return (0); 1820 1821 invalidate: 1822 if (segmap) { 1823 REF_RELE(segmap); 1824 } 1825 if (wmp) 1826 freemsg(wmp); 1827 1828 return (error); 1829 } 1830 1831 /* 1832 * Send the URI uri_desc_t *uri response out the socket_t *so. 1833 */ 1834 1835 static int 1836 uri_response(struct sonode *so, uri_desc_t *uri) 1837 { 1838 uri_rd_t *rdp = &uri->response; 1839 boolean_t first = B_TRUE; 1840 int error; 1841 1842 while (rdp != NULL) { 1843 error = uri_rd_response(so, uri, rdp, first); 1844 if (error != 0) { 1845 goto invalidate; 1846 } 1847 first = B_FALSE; 1848 rdp = rdp->next; 1849 } 1850 return (0); 1851 1852 invalidate: 1853 uri_delete(uri); 1854 return (error); 1855 } 1856 1857 /* 1858 * The pchars[] array is indexed by a char to determine if it's a 1859 * valid URI path component chararcter where: 1860 * 1861 * pchar = unreserved | escaped | 1862 * ":" | "@" | "&" | "=" | "+" | "$" | "," 1863 * 1864 * unreserved = alphanum | mark 1865 * 1866 * alphanum = alpha | digit 1867 * 1868 * alpha = lowalpha | upalpha 1869 * 1870 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | 1871 * "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | 1872 * "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | 1873 * "y" | "z" 1874 * 1875 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | 1876 * "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | 1877 * "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | 1878 * "Y" | "Z" 1879 * 1880 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 1881 * "8" | "9" 1882 * 1883 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")" 1884 * 1885 * escaped = "%" hex hex 1886 * hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 1887 * "a" | "b" | "c" | "d" | "e" | "f" 1888 */ 1889 1890 static char pchars[] = { 1891 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x07 */ 1892 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08 - 0x0F */ 1893 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x17 */ 1894 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18 - 0x1F */ 1895 0, 1, 0, 0, 1, 1, 1, 1, /* 0x20 - 0x27 */ 1896 0, 0, 1, 1, 1, 1, 1, 1, /* 0x28 - 0x2F */ 1897 1, 1, 1, 1, 1, 1, 1, 1, /* 0x30 - 0x37 */ 1898 1, 1, 1, 0, 0, 1, 0, 0, /* 0x38 - 0x3F */ 1899 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x47 */ 1900 1, 1, 1, 1, 1, 1, 1, 1, /* 0x48 - 0x4F */ 1901 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x57 */ 1902 1, 1, 1, 0, 0, 0, 0, 1, /* 0x58 - 0x5F */ 1903 0, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x67 */ 1904 1, 1, 1, 1, 1, 1, 1, 1, /* 0x68 - 0x6F */ 1905 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x77 */ 1906 1, 1, 1, 0, 0, 0, 1, 0 /* 0x78 - 0x7F */ 1907 }; 1908 1909 #define PCHARS_MASK 0x7F 1910 1911 /* 1912 * This is the main L7 request message parse, we are called each time 1913 * new data is availble for a socket, each time a single buffer of the 1914 * entire message to date is given. 1915 * 1916 * Here we parse the request looking for the URI, parse it, and if a 1917 * supported scheme call the scheme parser to commplete the parse of any 1918 * headers which may further qualify the identity of the requested object 1919 * then lookup it up in the URI hash. 1920 * 1921 * Return B_TRUE for more processing. 1922 * 1923 * Note, at this time the parser supports the generic message format as 1924 * specified in RFC 822 with potentional limitations as specified in RFC 1925 * 2616 for HTTP messages. 1926 * 1927 * Note, the caller supports an mblk_t chain, for now the parser(s) 1928 * require the complete header in a single mblk_t. This is the common 1929 * case and certainly for high performance environments, if at a future 1930 * date mblk_t chains are important the parse can be reved to process 1931 * mblk_t chains. 1932 */ 1933 1934 boolean_t 1935 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret) 1936 { 1937 char *cp = (char *)so->so_nl7c_rcv_mp->b_rptr; 1938 char *ep = (char *)so->so_nl7c_rcv_mp->b_wptr; 1939 char *get = "GET "; 1940 char *post = "POST "; 1941 char c; 1942 char *uris; 1943 uri_desc_t *uri = NULL; 1944 uri_desc_t *ruri = NULL; 1945 mblk_t *reqmp; 1946 uint32_t hv = 0; 1947 1948 if ((reqmp = dupb(so->so_nl7c_rcv_mp)) == NULL) { 1949 nl7c_uri_pass_dupbfail++; 1950 goto pass; 1951 } 1952 /* 1953 * Allocate and initialize minimumal state for the request 1954 * uri_desc_t, in the cache hit case this uri_desc_t will 1955 * be freed. 1956 */ 1957 uri = kmem_cache_alloc(nl7c_uri_kmc, KM_SLEEP); 1958 REF_INIT(uri, 1, nl7c_uri_inactive, nl7c_uri_kmc); 1959 uri->hash = NULL; 1960 uri->tail = NULL; 1961 uri->scheme = NULL; 1962 uri->count = 0; 1963 uri->reqmp = reqmp; 1964 1965 /* 1966 * Set request time to current time. 1967 */ 1968 so->so_nl7c_rtime = gethrestime_sec(); 1969 1970 /* 1971 * Parse the Request-Line for the URI. 1972 * 1973 * For backwards HTTP version compatable reasons skip any leading 1974 * CRLF (or CR or LF) line terminator(s) preceding Request-Line. 1975 */ 1976 while (cp < ep && (*cp == '\r' || *cp == '\n')) { 1977 cp++; 1978 } 1979 while (cp < ep && *get == *cp) { 1980 get++; 1981 cp++; 1982 } 1983 if (*get != 0) { 1984 /* Note a "GET", check for "POST" */ 1985 while (cp < ep && *post == *cp) { 1986 post++; 1987 cp++; 1988 } 1989 if (*post != 0) { 1990 if (cp == ep) { 1991 nl7c_uri_more_get++; 1992 goto more; 1993 } 1994 /* Not a "GET" or a "POST", just pass */ 1995 nl7c_uri_pass_method++; 1996 goto pass; 1997 } 1998 /* "POST", don't cache but still may want to parse */ 1999 uri->hash = URI_TEMP; 2000 } 2001 /* 2002 * Skip over URI path char(s) and save start and past end pointers. 2003 */ 2004 uris = cp; 2005 while (cp < ep && (c = *cp) != ' ' && c != '\r') { 2006 if (c == '?') { 2007 /* Don't cache but still may want to parse */ 2008 uri->hash = URI_TEMP; 2009 } 2010 CHASH(hv, c); 2011 cp++; 2012 } 2013 if (c != '\r' && cp == ep) { 2014 nl7c_uri_more_eol++; 2015 goto more; 2016 } 2017 /* 2018 * Request-Line URI parsed, pass the rest of the request on 2019 * to the the http scheme parse. 2020 */ 2021 uri->path.cp = uris; 2022 uri->path.ep = cp; 2023 uri->hvalue = hv; 2024 if (! nl7c_http_request(&cp, ep, uri, so) || cp == NULL) { 2025 /* 2026 * Parse not successful or pass on request, the pointer 2027 * to the parse pointer "cp" is overloaded such that ! NULL 2028 * for more data and NULL for bad parse of request or pass. 2029 */ 2030 if (cp != NULL) { 2031 nl7c_uri_more_http++; 2032 goto more; 2033 } 2034 nl7c_uri_pass_http++; 2035 goto pass; 2036 } 2037 if (uri->nocache) { 2038 uri->hash = URI_TEMP; 2039 (void) uri_lookup(uri, B_FALSE, nonblocking); 2040 } else if (uri->hash == URI_TEMP) { 2041 uri->nocache = B_TRUE; 2042 (void) uri_lookup(uri, B_FALSE, nonblocking); 2043 } 2044 2045 if (uri->hash == URI_TEMP) { 2046 if (so->so_nl7c_flags & NL7C_SOPERSIST) { 2047 /* Temporary URI so skip hash processing */ 2048 nl7c_uri_request++; 2049 nl7c_uri_temp++; 2050 goto temp; 2051 } 2052 /* Not persistent so not interested in the response */ 2053 nl7c_uri_pass_temp++; 2054 goto pass; 2055 } 2056 /* 2057 * Check the URI hash for a cached response, save the request 2058 * uri in case we need it below. 2059 */ 2060 ruri = uri; 2061 if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) { 2062 /* 2063 * Failed to lookup due to nonblocking wait required, 2064 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc 2065 * failure, ... Just pass on this request. 2066 */ 2067 nl7c_uri_pass_addfail++; 2068 goto pass; 2069 } 2070 nl7c_uri_request++; 2071 if (uri->response.sz > 0) { 2072 /* 2073 * We have the response cached, update recv mblk rptr 2074 * to reflect the data consumed in parse. 2075 */ 2076 mblk_t *mp = so->so_nl7c_rcv_mp; 2077 2078 if (cp == (char *)mp->b_wptr) { 2079 so->so_nl7c_rcv_mp = mp->b_cont; 2080 mp->b_cont = NULL; 2081 freeb(mp); 2082 } else { 2083 mp->b_rptr = (unsigned char *)cp; 2084 } 2085 nl7c_uri_hit++; 2086 /* If conditional request check for substitute response */ 2087 if (ruri->conditional) { 2088 uri = nl7c_http_cond(ruri, uri); 2089 } 2090 /* If logging enabled log request */ 2091 if (nl7c_logd_enabled) { 2092 ipaddr_t faddr; 2093 2094 if (so->so_family == AF_INET) { 2095 /* Only support IPv4 addrs */ 2096 faddr = ((struct sockaddr_in *) 2097 so->so_faddr_sa) ->sin_addr.s_addr; 2098 } else { 2099 faddr = 0; 2100 } 2101 /* XXX need to pass response type, e.g. 200, 304 */ 2102 nl7c_logd_log(ruri, uri, so->so_nl7c_rtime, faddr); 2103 } 2104 /* 2105 * Release reference on request URI, send the response out 2106 * the socket, release reference on response uri, set the 2107 * *ret value to B_TRUE to indicate request was consumed 2108 * then return B_FALSE to indcate no more data needed. 2109 */ 2110 REF_RELE(ruri); 2111 (void) uri_response(so, uri); 2112 REF_RELE(uri); 2113 *ret = B_TRUE; 2114 return (B_FALSE); 2115 } 2116 /* 2117 * Miss the cache, the request URI is in the cache waiting for 2118 * application write-side data to fill it. 2119 */ 2120 nl7c_uri_miss++; 2121 temp: 2122 /* 2123 * A miss or temp URI for which response data is needed, link 2124 * uri to so and so to uri, set WAITWRITE in the so such that 2125 * read-side processing is suspended (so the next read() gets 2126 * the request data) until a write() is processed by NL7C. 2127 * 2128 * Note, so->so_nl7c_uri now owns the REF_INIT() ref. 2129 */ 2130 uri->proc = so; 2131 so->so_nl7c_uri = uri; 2132 so->so_nl7c_flags |= NL7C_WAITWRITE; 2133 *ret = B_FALSE; 2134 return (B_FALSE); 2135 2136 more: 2137 /* More data is needed, note fragmented recv not supported */ 2138 nl7c_uri_more++; 2139 2140 pass: 2141 /* Pass on this request */ 2142 nl7c_uri_pass++; 2143 nl7c_uri_request++; 2144 if (ruri != NULL) { 2145 REF_RELE(ruri); 2146 } 2147 if (uri) { 2148 REF_RELE(uri); 2149 } 2150 so->so_nl7c_flags = 0; 2151 *ret = B_FALSE; 2152 return (B_FALSE); 2153 } 2154