1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 130 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 131 vnode_t *, char *, cred_t *, nfsstat4 *); 132 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 135 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 137 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 138 page_t *[], size_t, struct seg *, caddr_t, 139 enum seg_rw, cred_t *); 140 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 141 cred_t *); 142 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 143 int, cred_t *); 144 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 147 static void nfs4_set_mod(vnode_t *); 148 static void nfs4_get_commit(vnode_t *); 149 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 150 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 151 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 152 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 153 cred_t *); 154 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 157 hrtime_t, vnode_t *, cred_t *); 158 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 159 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 160 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 161 u_offset_t); 162 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 163 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 164 static cred_t *state_to_cred(nfs4_open_stream_t *); 165 static int vtoname(vnode_t *, char *, ssize_t); 166 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 167 static pid_t lo_to_pid(lock_owner4 *); 168 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 169 cred_t *, nfs4_lock_owner_t *); 170 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 171 nfs4_lock_owner_t *); 172 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 173 static void nfs4_delmap_callback(struct as *, void *, uint_t); 174 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 175 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 176 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 177 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 178 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 179 uid_t, gid_t, int); 180 181 /* 182 * Routines that implement the setting of v4 args for the misc. ops 183 */ 184 static void nfs4args_lock_free(nfs_argop4 *); 185 static void nfs4args_lockt_free(nfs_argop4 *); 186 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 187 int, rnode4_t *, cred_t *, bitmap4, int *, 188 nfs4_stateid_types_t *); 189 static void nfs4args_setattr_free(nfs_argop4 *); 190 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 191 bitmap4); 192 static void nfs4args_verify_free(nfs_argop4 *); 193 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 194 WRITE4args **, nfs4_stateid_types_t *); 195 196 /* 197 * These are the vnode ops functions that implement the vnode interface to 198 * the networked file system. See more comments below at nfs4_vnodeops. 199 */ 200 static int nfs4_open(vnode_t **, int, cred_t *); 201 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *); 202 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 203 caller_context_t *); 204 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 207 static int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *); 208 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_access(vnode_t *, int, int, cred_t *); 211 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *); 212 static int nfs4_fsync(vnode_t *, int, cred_t *); 213 static void nfs4_inactive(vnode_t *, cred_t *); 214 static int nfs4_lookup(vnode_t *, char *, vnode_t **, 215 struct pathname *, int, vnode_t *, cred_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int); 218 static int nfs4_remove(vnode_t *, char *, cred_t *); 219 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *); 220 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 221 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, 222 vnode_t **, cred_t *); 223 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 224 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 225 cred_t *); 226 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *); 227 static int nfs4_fid(vnode_t *, fid_t *); 228 static int nfs4_rwlock(vnode_t *, int, caller_context_t *); 229 static void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 230 static int nfs4_seek(vnode_t *, offset_t, offset_t *); 231 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 232 page_t *[], size_t, struct seg *, caddr_t, 233 enum seg_rw, cred_t *); 234 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 235 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, 236 size_t, uchar_t, uchar_t, uint_t, cred_t *); 237 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, 238 size_t, uchar_t, uchar_t, uint_t, cred_t *); 239 static int nfs4_cmp(vnode_t *, vnode_t *); 240 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 241 struct flk_callback *, cred_t *); 242 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 243 cred_t *, caller_context_t *); 244 static int nfs4_realvp(vnode_t *, vnode_t **); 245 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, 246 size_t, uint_t, uint_t, uint_t, cred_t *); 247 static int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *); 248 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 249 cred_t *); 250 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *); 251 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 252 static int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 253 static int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 254 255 /* 256 * Used for nfs4_commit_vp() to indicate if we should 257 * wait on pending writes. 258 */ 259 #define NFS4_WRITE_NOWAIT 0 260 #define NFS4_WRITE_WAIT 1 261 262 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 263 264 /* 265 * Error flags used to pass information about certain special errors 266 * which need to be handled specially. 267 */ 268 #define NFS_EOF -98 269 #define NFS_VERF_MISMATCH -97 270 271 /* 272 * Flags used to differentiate between which operation drove the 273 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 274 */ 275 #define NFS4_CLOSE_OP 0x1 276 #define NFS4_DELMAP_OP 0x2 277 #define NFS4_INACTIVE_OP 0x3 278 279 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 280 281 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 282 #define ALIGN64(x, ptr, sz) \ 283 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 284 if (x) { \ 285 x = sizeof (uint64_t) - (x); \ 286 sz -= (x); \ 287 ptr += (x); \ 288 } 289 290 #ifdef DEBUG 291 int nfs4_client_attr_debug = 0; 292 int nfs4_client_state_debug = 0; 293 int nfs4_client_shadow_debug = 0; 294 int nfs4_client_lock_debug = 0; 295 int nfs4_seqid_sync = 0; 296 int nfs4_client_map_debug = 0; 297 static int nfs4_pageio_debug = 0; 298 int nfs4_client_inactive_debug = 0; 299 int nfs4_client_recov_debug = 0; 300 int nfs4_client_recov_stub_debug = 0; 301 int nfs4_client_failover_debug = 0; 302 int nfs4_client_call_debug = 0; 303 int nfs4_client_lookup_debug = 0; 304 int nfs4_client_zone_debug = 0; 305 int nfs4_lost_rqst_debug = 0; 306 int nfs4_rdattrerr_debug = 0; 307 int nfs4_open_stream_debug = 0; 308 309 int nfs4read_error_inject; 310 311 static int nfs4_create_misses = 0; 312 313 static int nfs4_readdir_cache_shorts = 0; 314 static int nfs4_readdir_readahead = 0; 315 316 static int nfs4_bio_do_stop = 0; 317 318 static int nfs4_lostpage = 0; /* number of times we lost original page */ 319 320 int nfs4_mmap_debug = 0; 321 322 static int nfs4_pathconf_cache_hits = 0; 323 static int nfs4_pathconf_cache_misses = 0; 324 325 int nfs4close_all_cnt; 326 int nfs4close_one_debug = 0; 327 int nfs4close_notw_debug = 0; 328 329 int denied_to_flk_debug = 0; 330 void *lockt_denied_debug; 331 332 #endif 333 334 /* 335 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 336 * or NFS4ERR_RESOURCE. 337 */ 338 static int confirm_retry_sec = 30; 339 340 static int nfs4_lookup_neg_cache = 1; 341 342 /* 343 * number of pages to read ahead 344 * optimized for 100 base-T. 345 */ 346 static int nfs4_nra = 4; 347 348 static int nfs4_do_symlink_cache = 1; 349 350 static int nfs4_pathconf_disable_cache = 0; 351 352 /* 353 * These are the vnode ops routines which implement the vnode interface to 354 * the networked file system. These routines just take their parameters, 355 * make them look networkish by putting the right info into interface structs, 356 * and then calling the appropriate remote routine(s) to do the work. 357 * 358 * Note on directory name lookup cacheing: If we detect a stale fhandle, 359 * we purge the directory cache relative to that vnode. This way, the 360 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 361 * more details on rnode locking. 362 */ 363 364 struct vnodeops *nfs4_vnodeops; 365 366 const fs_operation_def_t nfs4_vnodeops_template[] = { 367 VOPNAME_OPEN, { .vop_open = nfs4_open }, 368 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 369 VOPNAME_READ, { .vop_read = nfs4_read }, 370 VOPNAME_WRITE, { .vop_write = nfs4_write }, 371 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 372 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 373 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 374 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 375 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 376 VOPNAME_CREATE, { .vop_create = nfs4_create }, 377 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 378 VOPNAME_LINK, { .vop_link = nfs4_link }, 379 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 380 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 381 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 382 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 383 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 384 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 385 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 386 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 387 VOPNAME_FID, { .vop_fid = nfs4_fid }, 388 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 389 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 390 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 391 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 392 VOPNAME_SPACE, { .vop_space = nfs4_space }, 393 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 394 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 395 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 396 VOPNAME_MAP, { .vop_map = nfs4_map }, 397 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 398 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 399 /* no separate nfs4_dump */ 400 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 401 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 402 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 403 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 404 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 405 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 406 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 407 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 408 NULL, NULL 409 }; 410 411 /* 412 * The following are subroutines and definitions to set args or get res 413 * for the different nfsv4 ops 414 */ 415 416 void 417 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 418 { 419 int i; 420 421 for (i = 0; i < arglen; i++) { 422 if (argop[i].argop == OP_LOOKUP) 423 kmem_free( 424 argop[i].nfs_argop4_u.oplookup.objname.utf8string_val, 425 argop[i].nfs_argop4_u.oplookup.objname.utf8string_len); 426 } 427 } 428 429 static void 430 nfs4args_lock_free(nfs_argop4 *argop) 431 { 432 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 433 434 if (locker->new_lock_owner == TRUE) { 435 open_to_lock_owner4 *open_owner; 436 437 open_owner = &locker->locker4_u.open_owner; 438 if (open_owner->lock_owner.owner_val != NULL) { 439 kmem_free(open_owner->lock_owner.owner_val, 440 open_owner->lock_owner.owner_len); 441 } 442 } 443 } 444 445 static void 446 nfs4args_lockt_free(nfs_argop4 *argop) 447 { 448 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 449 450 if (lowner->owner_val != NULL) { 451 kmem_free(lowner->owner_val, lowner->owner_len); 452 } 453 } 454 455 static void 456 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 457 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 458 nfs4_stateid_types_t *sid_types) 459 { 460 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 461 mntinfo4_t *mi; 462 463 argop->argop = OP_SETATTR; 464 /* 465 * The stateid is set to 0 if client is not modifying the size 466 * and otherwise to whatever nfs4_get_stateid() returns. 467 * 468 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 469 * state struct could be found for the process/file pair. We may 470 * want to change this in the future (by OPENing the file). See 471 * bug # 4474852. 472 */ 473 if (vap->va_mask & AT_SIZE) { 474 475 ASSERT(rp != NULL); 476 mi = VTOMI4(RTOV4(rp)); 477 478 argop->nfs_argop4_u.opsetattr.stateid = 479 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 480 OP_SETATTR, sid_types, FALSE); 481 } else { 482 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 483 sizeof (stateid4)); 484 } 485 486 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 487 if (*error) 488 bzero(attr, sizeof (*attr)); 489 } 490 491 static void 492 nfs4args_setattr_free(nfs_argop4 *argop) 493 { 494 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 495 } 496 497 static int 498 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 499 bitmap4 supp) 500 { 501 fattr4 *attr; 502 int error = 0; 503 504 argop->argop = op; 505 switch (op) { 506 case OP_VERIFY: 507 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 508 break; 509 case OP_NVERIFY: 510 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 511 break; 512 default: 513 return (EINVAL); 514 } 515 if (!error) 516 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 517 if (error) 518 bzero(attr, sizeof (*attr)); 519 return (error); 520 } 521 522 static void 523 nfs4args_verify_free(nfs_argop4 *argop) 524 { 525 switch (argop->argop) { 526 case OP_VERIFY: 527 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 528 break; 529 case OP_NVERIFY: 530 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 531 break; 532 default: 533 break; 534 } 535 } 536 537 static void 538 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 539 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 540 { 541 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 542 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 543 544 argop->argop = OP_WRITE; 545 wargs->stable = stable; 546 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 547 mi, OP_WRITE, sid_tp); 548 wargs->mblk = NULL; 549 *wargs_pp = wargs; 550 } 551 552 void 553 nfs4args_copen_free(OPEN4cargs *open_args) 554 { 555 if (open_args->owner.owner_val) { 556 kmem_free(open_args->owner.owner_val, 557 open_args->owner.owner_len); 558 } 559 if ((open_args->opentype == OPEN4_CREATE) && 560 (open_args->mode != EXCLUSIVE4)) { 561 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 562 } 563 } 564 565 /* 566 * XXX: This is referenced in modstubs.s 567 */ 568 struct vnodeops * 569 nfs4_getvnodeops(void) 570 { 571 return (nfs4_vnodeops); 572 } 573 574 /* 575 * The OPEN operation opens a regular file. 576 * 577 * ARGSUSED 578 */ 579 static int 580 nfs4_open(vnode_t **vpp, int flag, cred_t *cr) 581 { 582 vnode_t *dvp = NULL; 583 rnode4_t *rp, *drp; 584 int error; 585 int just_been_created; 586 char fn[MAXNAMELEN]; 587 588 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 589 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 590 return (EIO); 591 rp = VTOR4(*vpp); 592 593 /* 594 * Check to see if opening something besides a regular file; 595 * if so skip the OTW call 596 */ 597 if ((*vpp)->v_type != VREG) { 598 error = nfs4_open_non_reg_file(vpp, flag, cr); 599 return (error); 600 } 601 602 /* 603 * XXX - would like a check right here to know if the file is 604 * executable or not, so as to skip OTW 605 */ 606 607 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 608 return (error); 609 610 drp = VTOR4(dvp); 611 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 612 return (EINTR); 613 614 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 615 nfs_rw_exit(&drp->r_rwlock); 616 return (error); 617 } 618 619 /* 620 * See if this file has just been CREATEd. 621 * If so, clear the flag and update the dnlc, which was previously 622 * skipped in nfs4_create. 623 * XXX need better serilization on this. 624 * XXX move this into the nf4open_otw call, after we have 625 * XXX acquired the open owner seqid sync. 626 */ 627 mutex_enter(&rp->r_statev4_lock); 628 if (rp->created_v4) { 629 rp->created_v4 = 0; 630 mutex_exit(&rp->r_statev4_lock); 631 632 dnlc_update(dvp, fn, *vpp); 633 /* This is needed so we don't bump the open ref count */ 634 just_been_created = 1; 635 } else { 636 mutex_exit(&rp->r_statev4_lock); 637 just_been_created = 0; 638 } 639 640 /* 641 * If caller specified O_TRUNC/FTRUNC, then be sure to set 642 * FWRITE (to drive successful setattr(size=0) after open) 643 */ 644 if (flag & FTRUNC) 645 flag |= FWRITE; 646 647 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 648 just_been_created); 649 650 if (!error && !((*vpp)->v_flag & VROOT)) 651 dnlc_update(dvp, fn, *vpp); 652 653 nfs_rw_exit(&drp->r_rwlock); 654 655 /* release the hold from vtodv */ 656 VN_RELE(dvp); 657 658 /* exchange the shadow for the master vnode, if needed */ 659 660 if (error == 0 && IS_SHADOW(*vpp, rp)) 661 sv_exchange(vpp); 662 663 return (error); 664 } 665 666 /* 667 * See if there's a "lost open" request to be saved and recovered. 668 */ 669 static void 670 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 671 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 672 vnode_t *dvp, OPEN4cargs *open_args) 673 { 674 vfs_t *vfsp; 675 char *srccfp; 676 677 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 678 679 if (error != ETIMEDOUT && error != EINTR && 680 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 681 lost_rqstp->lr_op = 0; 682 return; 683 } 684 685 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 686 "nfs4open_save_lost_rqst: error %d", error)); 687 688 lost_rqstp->lr_op = OP_OPEN; 689 /* 690 * The vp (if it is not NULL) and dvp are held and rele'd via 691 * the recovery code. See nfs4_save_lost_rqst. 692 */ 693 lost_rqstp->lr_vp = vp; 694 lost_rqstp->lr_dvp = dvp; 695 lost_rqstp->lr_oop = oop; 696 lost_rqstp->lr_osp = NULL; 697 lost_rqstp->lr_lop = NULL; 698 lost_rqstp->lr_cr = cr; 699 lost_rqstp->lr_flk = NULL; 700 lost_rqstp->lr_oacc = open_args->share_access; 701 lost_rqstp->lr_odeny = open_args->share_deny; 702 lost_rqstp->lr_oclaim = open_args->claim; 703 if (open_args->claim == CLAIM_DELEGATE_CUR) { 704 lost_rqstp->lr_ostateid = 705 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 706 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 707 } else { 708 srccfp = open_args->open_claim4_u.cfile; 709 } 710 lost_rqstp->lr_ofile.utf8string_len = 0; 711 lost_rqstp->lr_ofile.utf8string_val = NULL; 712 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 713 lost_rqstp->lr_putfirst = FALSE; 714 } 715 716 struct nfs4_excl_time { 717 uint32 seconds; 718 uint32 nseconds; 719 }; 720 721 /* 722 * The OPEN operation creates and/or opens a regular file 723 * 724 * ARGSUSED 725 */ 726 static int 727 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 728 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 729 enum createmode4 createmode, int file_just_been_created) 730 { 731 rnode4_t *rp; 732 rnode4_t *drp = VTOR4(dvp); 733 vnode_t *vp = NULL; 734 vnode_t *vpi = *vpp; 735 bool_t needrecov = FALSE; 736 737 int doqueue = 1; 738 739 COMPOUND4args_clnt args; 740 COMPOUND4res_clnt res; 741 nfs_argop4 *argop; 742 nfs_resop4 *resop; 743 int argoplist_size; 744 int idx_open, idx_fattr; 745 746 GETFH4res *gf_res = NULL; 747 OPEN4res *op_res = NULL; 748 nfs4_ga_res_t *garp; 749 fattr4 *attr = NULL; 750 struct nfs4_excl_time verf; 751 bool_t did_excl_setup = FALSE; 752 int created_osp; 753 754 OPEN4cargs *open_args; 755 nfs4_open_owner_t *oop = NULL; 756 nfs4_open_stream_t *osp = NULL; 757 seqid4 seqid = 0; 758 bool_t retry_open = FALSE; 759 nfs4_recov_state_t recov_state; 760 nfs4_lost_rqst_t lost_rqst; 761 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 762 hrtime_t t; 763 int acc = 0; 764 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 765 cred_t *ncr = NULL; 766 767 nfs4_sharedfh_t *otw_sfh; 768 nfs4_sharedfh_t *orig_sfh; 769 int fh_differs = 0; 770 int numops, setgid_flag; 771 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 772 773 /* 774 * Make sure we properly deal with setting the right gid on 775 * a newly created file to reflect the parent's setgid bit 776 */ 777 setgid_flag = 0; 778 if (create_flag && in_va) { 779 780 /* 781 * If the parent's directory has the setgid bit set 782 * _and_ the client was able to get a valid mapping 783 * for the parent dir's owner_group, we want to 784 * append NVERIFY(owner_group == dva.va_gid) and 785 * SETATTR to the CREATE compound. 786 */ 787 mutex_enter(&drp->r_statelock); 788 if (drp->r_attr.va_mode & VSGID && 789 drp->r_attr.va_gid != GID_NOBODY) { 790 in_va->va_gid = drp->r_attr.va_gid; 791 setgid_flag = 1; 792 } 793 mutex_exit(&drp->r_statelock); 794 } 795 796 /* 797 * Normal/non-create compound: 798 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 799 * 800 * Open(create) compound no setgid: 801 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 802 * RESTOREFH + GETATTR 803 * 804 * Open(create) setgid: 805 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 806 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 807 * NVERIFY(grp) + SETATTR 808 */ 809 if (setgid_flag) { 810 numops = 10; 811 idx_open = 1; 812 idx_fattr = 3; 813 } else if (create_flag) { 814 numops = 7; 815 idx_open = 2; 816 idx_fattr = 4; 817 } else { 818 numops = 4; 819 idx_open = 1; 820 idx_fattr = 3; 821 } 822 823 args.array_len = numops; 824 argoplist_size = numops * sizeof (nfs_argop4); 825 argop = kmem_alloc(argoplist_size, KM_SLEEP); 826 827 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 828 "open %s open flag 0x%x cred %p", file_name, open_flag, 829 (void *)cr)); 830 831 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 832 if (create_flag) { 833 /* 834 * We are to create a file. Initialize the passed in vnode 835 * pointer. 836 */ 837 vpi = NULL; 838 } else { 839 /* 840 * Check to see if the client owns a read delegation and is 841 * trying to open for write. If so, then return the delegation 842 * to avoid the server doing a cb_recall and returning DELAY. 843 * NB - we don't use the statev4_lock here because we'd have 844 * to drop the lock anyway and the result would be stale. 845 */ 846 if ((open_flag & FWRITE) && 847 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 848 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 849 850 /* 851 * If the file has a delegation, then do an access check up 852 * front. This avoids having to an access check later after 853 * we've already done start_op, which could deadlock. 854 */ 855 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 856 if (open_flag & FREAD && 857 nfs4_access(vpi, VREAD, 0, cr) == 0) 858 acc |= VREAD; 859 if (open_flag & FWRITE && 860 nfs4_access(vpi, VWRITE, 0, cr) == 0) 861 acc |= VWRITE; 862 } 863 } 864 865 drp = VTOR4(dvp); 866 867 recov_state.rs_flags = 0; 868 recov_state.rs_num_retry_despite_err = 0; 869 cred_otw = cr; 870 871 recov_retry: 872 fh_differs = 0; 873 nfs4_error_zinit(&e); 874 875 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 876 if (e.error) { 877 if (ncr != NULL) 878 crfree(ncr); 879 kmem_free(argop, argoplist_size); 880 return (e.error); 881 } 882 883 args.ctag = TAG_OPEN; 884 args.array_len = numops; 885 args.array = argop; 886 887 /* putfh directory fh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 890 891 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 892 argop[idx_open].argop = OP_COPEN; 893 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 894 open_args->claim = CLAIM_NULL; 895 896 /* name of file */ 897 open_args->open_claim4_u.cfile = file_name; 898 open_args->owner.owner_len = 0; 899 open_args->owner.owner_val = NULL; 900 901 if (create_flag) { 902 /* CREATE a file */ 903 open_args->opentype = OPEN4_CREATE; 904 open_args->mode = createmode; 905 if (createmode == EXCLUSIVE4) { 906 if (did_excl_setup == FALSE) { 907 verf.seconds = nfs_atoi(hw_serial); 908 if (verf.seconds != 0) 909 verf.nseconds = newnum(); 910 else { 911 timestruc_t now; 912 913 gethrestime(&now); 914 verf.seconds = now.tv_sec; 915 verf.nseconds = now.tv_nsec; 916 } 917 /* 918 * Since the server will use this value for the 919 * mtime, make sure that it can't overflow. Zero 920 * out the MSB. The actual value does not matter 921 * here, only its uniqeness. 922 */ 923 verf.seconds &= INT32_MAX; 924 did_excl_setup = TRUE; 925 } 926 927 /* Now copy over verifier to OPEN4args. */ 928 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 929 } else { 930 int v_error; 931 bitmap4 supp_attrs; 932 servinfo4_t *svp; 933 934 attr = &open_args->createhow4_u.createattrs; 935 936 svp = drp->r_server; 937 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 938 supp_attrs = svp->sv_supp_attrs; 939 nfs_rw_exit(&svp->sv_lock); 940 941 /* GUARDED4 or UNCHECKED4 */ 942 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 943 supp_attrs); 944 if (v_error) { 945 bzero(attr, sizeof (*attr)); 946 nfs4args_copen_free(open_args); 947 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 948 &recov_state, FALSE); 949 if (ncr != NULL) 950 crfree(ncr); 951 kmem_free(argop, argoplist_size); 952 return (v_error); 953 } 954 } 955 } else { 956 /* NO CREATE */ 957 open_args->opentype = OPEN4_NOCREATE; 958 } 959 960 if (recov_state.rs_sp != NULL) { 961 mutex_enter(&recov_state.rs_sp->s_lock); 962 open_args->owner.clientid = recov_state.rs_sp->clientid; 963 mutex_exit(&recov_state.rs_sp->s_lock); 964 } else { 965 /* XXX should we just fail here? */ 966 open_args->owner.clientid = 0; 967 } 968 969 /* 970 * This increments oop's ref count or creates a temporary 'just_created' 971 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 972 * completes. 973 */ 974 mutex_enter(&VTOMI4(dvp)->mi_lock); 975 976 /* See if a permanent or just created open owner exists */ 977 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 978 if (!oop) { 979 /* 980 * This open owner does not exist so create a temporary 981 * just created one. 982 */ 983 oop = create_open_owner(cr, VTOMI4(dvp)); 984 ASSERT(oop != NULL); 985 } 986 mutex_exit(&VTOMI4(dvp)->mi_lock); 987 988 /* this length never changes, do alloc before seqid sync */ 989 open_args->owner.owner_len = sizeof (oop->oo_name); 990 open_args->owner.owner_val = 991 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 992 993 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 994 if (e.error == EAGAIN) { 995 open_owner_rele(oop); 996 nfs4args_copen_free(open_args); 997 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 998 if (ncr != NULL) { 999 crfree(ncr); 1000 ncr = NULL; 1001 } 1002 goto recov_retry; 1003 } 1004 1005 /* Check to see if we need to do the OTW call */ 1006 if (!create_flag) { 1007 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1008 file_just_been_created, &e.error, acc, &recov_state)) { 1009 1010 /* 1011 * The OTW open is not necessary. Either 1012 * the open can succeed without it (eg. 1013 * delegation, error == 0) or the open 1014 * must fail due to an access failure 1015 * (error != 0). In either case, tidy 1016 * up and return. 1017 */ 1018 1019 nfs4_end_open_seqid_sync(oop); 1020 open_owner_rele(oop); 1021 nfs4args_copen_free(open_args); 1022 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1023 if (ncr != NULL) 1024 crfree(ncr); 1025 kmem_free(argop, argoplist_size); 1026 return (e.error); 1027 } 1028 } 1029 1030 bcopy(&oop->oo_name, open_args->owner.owner_val, 1031 open_args->owner.owner_len); 1032 1033 seqid = nfs4_get_open_seqid(oop) + 1; 1034 open_args->seqid = seqid; 1035 open_args->share_access = 0; 1036 if (open_flag & FREAD) 1037 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1038 if (open_flag & FWRITE) 1039 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1040 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1041 1042 1043 1044 /* 1045 * getfh w/sanity check for idx_open/idx_fattr 1046 */ 1047 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1048 argop[idx_open + 1].argop = OP_GETFH; 1049 1050 /* getattr */ 1051 argop[idx_fattr].argop = OP_GETATTR; 1052 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1053 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1054 1055 if (setgid_flag) { 1056 vattr_t _v; 1057 servinfo4_t *svp; 1058 bitmap4 supp_attrs; 1059 1060 svp = drp->r_server; 1061 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1062 supp_attrs = svp->sv_supp_attrs; 1063 nfs_rw_exit(&svp->sv_lock); 1064 1065 /* 1066 * For setgid case, we need to: 1067 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1068 */ 1069 argop[4].argop = OP_SAVEFH; 1070 1071 argop[5].argop = OP_CPUTFH; 1072 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1073 1074 argop[6].argop = OP_GETATTR; 1075 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1076 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1077 1078 argop[7].argop = OP_RESTOREFH; 1079 1080 /* 1081 * nverify 1082 */ 1083 _v.va_mask = AT_GID; 1084 _v.va_gid = in_va->va_gid; 1085 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1086 supp_attrs))) { 1087 1088 /* 1089 * setattr 1090 * 1091 * We _know_ we're not messing with AT_SIZE or 1092 * AT_XTIME, so no need for stateid or flags. 1093 * Also we specify NULL rp since we're only 1094 * interested in setting owner_group attributes. 1095 */ 1096 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1097 supp_attrs, &e.error, 0); 1098 if (e.error) 1099 nfs4args_verify_free(&argop[8]); 1100 } 1101 1102 if (e.error) { 1103 /* 1104 * XXX - Revisit the last argument to nfs4_end_op() 1105 * once 5020486 is fixed. 1106 */ 1107 nfs4_end_open_seqid_sync(oop); 1108 open_owner_rele(oop); 1109 nfs4args_copen_free(open_args); 1110 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1111 if (ncr != NULL) 1112 crfree(ncr); 1113 kmem_free(argop, argoplist_size); 1114 return (e.error); 1115 } 1116 } else if (create_flag) { 1117 /* 1118 * For setgid case, we need to: 1119 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1120 */ 1121 argop[1].argop = OP_SAVEFH; 1122 1123 argop[5].argop = OP_RESTOREFH; 1124 1125 argop[6].argop = OP_GETATTR; 1126 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1127 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1128 } 1129 1130 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1131 "nfs4open_otw: %s call, nm %s, rp %s", 1132 needrecov ? "recov" : "first", file_name, 1133 rnode4info(VTOR4(dvp)))); 1134 1135 t = gethrtime(); 1136 1137 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1138 1139 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1140 nfs4_set_open_seqid(seqid, oop, args.ctag); 1141 1142 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1143 1144 if (e.error || needrecov) { 1145 bool_t abort = FALSE; 1146 1147 if (needrecov) { 1148 nfs4_bseqid_entry_t *bsep = NULL; 1149 1150 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1151 cred_otw, vpi, dvp, open_args); 1152 1153 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1154 bsep = nfs4_create_bseqid_entry(oop, NULL, 1155 vpi, 0, args.ctag, open_args->seqid); 1156 num_bseqid_retry--; 1157 } 1158 1159 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1160 NULL, lost_rqst.lr_op == OP_OPEN ? 1161 &lost_rqst : NULL, OP_OPEN, bsep); 1162 1163 if (bsep) 1164 kmem_free(bsep, sizeof (*bsep)); 1165 /* give up if we keep getting BAD_SEQID */ 1166 if (num_bseqid_retry == 0) 1167 abort = TRUE; 1168 if (abort == TRUE && e.error == 0) 1169 e.error = geterrno4(res.status); 1170 } 1171 nfs4_end_open_seqid_sync(oop); 1172 open_owner_rele(oop); 1173 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1174 nfs4args_copen_free(open_args); 1175 if (setgid_flag) { 1176 nfs4args_verify_free(&argop[8]); 1177 nfs4args_setattr_free(&argop[9]); 1178 } 1179 if (!e.error) 1180 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1181 if (ncr != NULL) { 1182 crfree(ncr); 1183 ncr = NULL; 1184 } 1185 if (!needrecov || abort == TRUE || e.error == EINTR || 1186 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1187 kmem_free(argop, argoplist_size); 1188 return (e.error); 1189 } 1190 goto recov_retry; 1191 } 1192 1193 /* 1194 * Will check and update lease after checking the rflag for 1195 * OPEN_CONFIRM in the successful OPEN call. 1196 */ 1197 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1198 1199 /* 1200 * XXX what if we're crossing mount points from server1:/drp 1201 * to server2:/drp/rp. 1202 */ 1203 1204 /* Signal our end of use of the open seqid */ 1205 nfs4_end_open_seqid_sync(oop); 1206 1207 /* 1208 * This will destroy the open owner if it was just created, 1209 * and no one else has put a reference on it. 1210 */ 1211 open_owner_rele(oop); 1212 if (create_flag && (createmode != EXCLUSIVE4) && 1213 res.status == NFS4ERR_BADOWNER) 1214 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1215 1216 e.error = geterrno4(res.status); 1217 nfs4args_copen_free(open_args); 1218 if (setgid_flag) { 1219 nfs4args_verify_free(&argop[8]); 1220 nfs4args_setattr_free(&argop[9]); 1221 } 1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1223 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1224 /* 1225 * If the reply is NFS4ERR_ACCESS, it may be because 1226 * we are root (no root net access). If the real uid 1227 * is not root, then retry with the real uid instead. 1228 */ 1229 if (ncr != NULL) { 1230 crfree(ncr); 1231 ncr = NULL; 1232 } 1233 if (res.status == NFS4ERR_ACCESS && 1234 (ncr = crnetadjust(cred_otw)) != NULL) { 1235 cred_otw = ncr; 1236 goto recov_retry; 1237 } 1238 kmem_free(argop, argoplist_size); 1239 return (e.error); 1240 } 1241 1242 resop = &res.array[idx_open]; /* open res */ 1243 op_res = &resop->nfs_resop4_u.opopen; 1244 1245 #ifdef DEBUG 1246 /* 1247 * verify attrset bitmap 1248 */ 1249 if (create_flag && 1250 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1251 /* make sure attrset returned is what we asked for */ 1252 /* XXX Ignore this 'error' for now */ 1253 if (attr->attrmask != op_res->attrset) 1254 /* EMPTY */; 1255 } 1256 #endif 1257 1258 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1259 mutex_enter(&VTOMI4(dvp)->mi_lock); 1260 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1261 mutex_exit(&VTOMI4(dvp)->mi_lock); 1262 } 1263 1264 resop = &res.array[idx_open + 1]; /* getfh res */ 1265 gf_res = &resop->nfs_resop4_u.opgetfh; 1266 1267 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1268 1269 /* 1270 * The open stateid has been updated on the server but not 1271 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1272 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1273 * WRITE call. That, however, will use the old stateid, so go ahead 1274 * and upate the open stateid now, before any call to makenfs4node. 1275 */ 1276 if (vpi) { 1277 nfs4_open_stream_t *tmp_osp; 1278 rnode4_t *tmp_rp = VTOR4(vpi); 1279 1280 tmp_osp = find_open_stream(oop, tmp_rp); 1281 if (tmp_osp) { 1282 tmp_osp->open_stateid = op_res->stateid; 1283 mutex_exit(&tmp_osp->os_sync_lock); 1284 open_stream_rele(tmp_osp, tmp_rp); 1285 } 1286 1287 /* 1288 * We must determine if the file handle given by the otw open 1289 * is the same as the file handle which was passed in with 1290 * *vpp. This case can be reached if the file we are trying 1291 * to open has been removed and another file has been created 1292 * having the same file name. The passed in vnode is released 1293 * later. 1294 */ 1295 orig_sfh = VTOR4(vpi)->r_fh; 1296 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1297 } 1298 1299 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1300 1301 if (create_flag || fh_differs) { 1302 int rnode_err = 0; 1303 1304 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1305 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1306 1307 if (e.error) 1308 PURGE_ATTRCACHE4(vp); 1309 /* 1310 * For the newly created vp case, make sure the rnode 1311 * isn't bad before using it. 1312 */ 1313 mutex_enter(&(VTOR4(vp))->r_statelock); 1314 if (VTOR4(vp)->r_flags & R4RECOVERR) 1315 rnode_err = EIO; 1316 mutex_exit(&(VTOR4(vp))->r_statelock); 1317 1318 if (rnode_err) { 1319 nfs4_end_open_seqid_sync(oop); 1320 nfs4args_copen_free(open_args); 1321 if (setgid_flag) { 1322 nfs4args_verify_free(&argop[8]); 1323 nfs4args_setattr_free(&argop[9]); 1324 } 1325 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1326 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1327 needrecov); 1328 open_owner_rele(oop); 1329 VN_RELE(vp); 1330 if (ncr != NULL) 1331 crfree(ncr); 1332 sfh4_rele(&otw_sfh); 1333 kmem_free(argop, argoplist_size); 1334 return (EIO); 1335 } 1336 } else { 1337 vp = vpi; 1338 } 1339 sfh4_rele(&otw_sfh); 1340 1341 /* 1342 * It seems odd to get a full set of attrs and then not update 1343 * the object's attrcache in the non-create case. Create case uses 1344 * the attrs since makenfs4node checks to see if the attrs need to 1345 * be updated (and then updates them). The non-create case should 1346 * update attrs also. 1347 */ 1348 if (! create_flag && ! fh_differs && !e.error) { 1349 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1350 } 1351 1352 nfs4_error_zinit(&e); 1353 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1354 /* This does not do recovery for vp explicitly. */ 1355 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1356 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1357 1358 if (e.error || e.stat) { 1359 nfs4_end_open_seqid_sync(oop); 1360 nfs4args_copen_free(open_args); 1361 if (setgid_flag) { 1362 nfs4args_verify_free(&argop[8]); 1363 nfs4args_setattr_free(&argop[9]); 1364 } 1365 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1366 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1367 needrecov); 1368 open_owner_rele(oop); 1369 if (create_flag || fh_differs) { 1370 /* rele the makenfs4node */ 1371 VN_RELE(vp); 1372 } 1373 if (ncr != NULL) { 1374 crfree(ncr); 1375 ncr = NULL; 1376 } 1377 if (retry_open == TRUE) { 1378 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1379 "nfs4open_otw: retry the open since OPEN " 1380 "CONFIRM failed with error %d stat %d", 1381 e.error, e.stat)); 1382 if (create_flag && createmode == GUARDED4) { 1383 NFS4_DEBUG(nfs4_client_recov_debug, 1384 (CE_NOTE, "nfs4open_otw: switch " 1385 "createmode from GUARDED4 to " 1386 "UNCHECKED4")); 1387 createmode = UNCHECKED4; 1388 } 1389 goto recov_retry; 1390 } 1391 if (!e.error) { 1392 if (create_flag && (createmode != EXCLUSIVE4) && 1393 e.stat == NFS4ERR_BADOWNER) 1394 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1395 1396 e.error = geterrno4(e.stat); 1397 } 1398 kmem_free(argop, argoplist_size); 1399 return (e.error); 1400 } 1401 } 1402 1403 rp = VTOR4(vp); 1404 1405 mutex_enter(&rp->r_statev4_lock); 1406 if (create_flag) 1407 rp->created_v4 = 1; 1408 mutex_exit(&rp->r_statev4_lock); 1409 1410 mutex_enter(&oop->oo_lock); 1411 /* Doesn't matter if 'oo_just_created' already was set as this */ 1412 oop->oo_just_created = NFS4_PERM_CREATED; 1413 if (oop->oo_cred_otw) 1414 crfree(oop->oo_cred_otw); 1415 oop->oo_cred_otw = cred_otw; 1416 crhold(oop->oo_cred_otw); 1417 mutex_exit(&oop->oo_lock); 1418 1419 /* returns with 'os_sync_lock' held */ 1420 osp = find_or_create_open_stream(oop, rp, &created_osp); 1421 if (!osp) { 1422 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1423 "nfs4open_otw: failed to create an open stream")); 1424 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1425 "signal our end of use of the open seqid")); 1426 1427 nfs4_end_open_seqid_sync(oop); 1428 open_owner_rele(oop); 1429 nfs4args_copen_free(open_args); 1430 if (setgid_flag) { 1431 nfs4args_verify_free(&argop[8]); 1432 nfs4args_setattr_free(&argop[9]); 1433 } 1434 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1435 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1436 if (create_flag || fh_differs) 1437 VN_RELE(vp); 1438 if (ncr != NULL) 1439 crfree(ncr); 1440 1441 kmem_free(argop, argoplist_size); 1442 return (EINVAL); 1443 1444 } 1445 1446 osp->open_stateid = op_res->stateid; 1447 1448 if (open_flag & FREAD) 1449 osp->os_share_acc_read++; 1450 if (open_flag & FWRITE) 1451 osp->os_share_acc_write++; 1452 osp->os_share_deny_none++; 1453 1454 /* 1455 * Need to reset this bitfield for the possible case where we were 1456 * going to OTW CLOSE the file, got a non-recoverable error, and before 1457 * we could retry the CLOSE, OPENed the file again. 1458 */ 1459 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1460 osp->os_final_close = 0; 1461 osp->os_force_close = 0; 1462 #ifdef DEBUG 1463 if (osp->os_failed_reopen) 1464 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1465 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1466 (void *)osp, (void *)cr, rnode4info(rp))); 1467 #endif 1468 osp->os_failed_reopen = 0; 1469 1470 mutex_exit(&osp->os_sync_lock); 1471 1472 nfs4_end_open_seqid_sync(oop); 1473 1474 if (created_osp && recov_state.rs_sp != NULL) { 1475 mutex_enter(&recov_state.rs_sp->s_lock); 1476 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1477 mutex_exit(&recov_state.rs_sp->s_lock); 1478 } 1479 1480 /* get rid of our reference to find oop */ 1481 open_owner_rele(oop); 1482 1483 open_stream_rele(osp, rp); 1484 1485 /* accept delegation, if any */ 1486 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1487 1488 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1489 1490 if (createmode == EXCLUSIVE4 && 1491 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1492 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1493 " EXCLUSIVE4: sending a SETATTR")); 1494 /* 1495 * If doing an exclusive create, then generate 1496 * a SETATTR to set the initial attributes. 1497 * Try to set the mtime and the atime to the 1498 * server's current time. It is somewhat 1499 * expected that these fields will be used to 1500 * store the exclusive create cookie. If not, 1501 * server implementors will need to know that 1502 * a SETATTR will follow an exclusive create 1503 * and the cookie should be destroyed if 1504 * appropriate. 1505 * 1506 * The AT_GID and AT_SIZE bits are turned off 1507 * so that the SETATTR request will not attempt 1508 * to process these. The gid will be set 1509 * separately if appropriate. The size is turned 1510 * off because it is assumed that a new file will 1511 * be created empty and if the file wasn't empty, 1512 * then the exclusive create will have failed 1513 * because the file must have existed already. 1514 * Therefore, no truncate operation is needed. 1515 */ 1516 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1517 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1518 1519 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1520 if (e.error) { 1521 /* 1522 * Couldn't correct the attributes of 1523 * the newly created file and the 1524 * attributes are wrong. Remove the 1525 * file and return an error to the 1526 * application. 1527 */ 1528 /* XXX will this take care of client state ? */ 1529 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1530 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1531 " remove file", e.error)); 1532 VN_RELE(vp); 1533 (void) nfs4_remove(dvp, file_name, cr); 1534 /* 1535 * Since we've reled the vnode and removed 1536 * the file we now need to return the error. 1537 * At this point we don't want to update the 1538 * dircaches, call nfs4_waitfor_purge_complete 1539 * or set vpp to vp so we need to skip these 1540 * as well. 1541 */ 1542 goto skip_update_dircaches; 1543 } 1544 } 1545 1546 /* 1547 * If we created or found the correct vnode, due to create_flag or 1548 * fh_differs being set, then update directory cache attribute, readdir 1549 * and dnlc caches. 1550 */ 1551 if (create_flag || fh_differs) { 1552 dirattr_info_t dinfo, *dinfop; 1553 1554 /* 1555 * Make sure getattr succeeded before using results. 1556 * note: op 7 is getattr(dir) for both flavors of 1557 * open(create). 1558 */ 1559 if (create_flag && res.status == NFS4_OK) { 1560 dinfo.di_time_call = t; 1561 dinfo.di_cred = cr; 1562 dinfo.di_garp = 1563 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1564 dinfop = &dinfo; 1565 } else { 1566 dinfop = NULL; 1567 } 1568 1569 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1570 dinfop); 1571 } 1572 1573 /* 1574 * If the page cache for this file was flushed from actions 1575 * above, it was done asynchronously and if that is true, 1576 * there is a need to wait here for it to complete. This must 1577 * be done outside of start_fop/end_fop. 1578 */ 1579 (void) nfs4_waitfor_purge_complete(vp); 1580 1581 /* 1582 * It is implicit that we are in the open case (create_flag == 0) since 1583 * fh_differs can only be set to a non-zero value in the open case. 1584 */ 1585 if (fh_differs != 0 && vpi != NULL) 1586 VN_RELE(vpi); 1587 1588 /* 1589 * Be sure to set *vpp to the correct value before returning. 1590 */ 1591 *vpp = vp; 1592 1593 skip_update_dircaches: 1594 1595 nfs4args_copen_free(open_args); 1596 if (setgid_flag) { 1597 nfs4args_verify_free(&argop[8]); 1598 nfs4args_setattr_free(&argop[9]); 1599 } 1600 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1601 1602 if (ncr) 1603 crfree(ncr); 1604 kmem_free(argop, argoplist_size); 1605 return (e.error); 1606 } 1607 1608 /* 1609 * Reopen an open instance. cf. nfs4open_otw(). 1610 * 1611 * Errors are returned by the nfs4_error_t parameter. 1612 * - ep->error contains an errno value or zero. 1613 * - if it is zero, ep->stat is set to an NFS status code, if any. 1614 * If the file could not be reopened, but the caller should continue, the 1615 * file is marked dead and no error values are returned. If the caller 1616 * should stop recovering open files and start over, either the ep->error 1617 * value or ep->stat will indicate an error (either something that requires 1618 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1619 * filehandles) may be handled silently by this routine. 1620 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1621 * will be started, so the caller should not do it. 1622 * 1623 * Gotos: 1624 * - kill_file : reopen failed in such a fashion to constitute marking the 1625 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1626 * is for cases where recovery is not possible. 1627 * - failed_reopen : same as above, except that the file has already been 1628 * marked dead, so no need to do it again. 1629 * - bailout : reopen failed but we are able to recover and retry the reopen - 1630 * either within this function immediatley or via the calling function. 1631 */ 1632 1633 void 1634 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1635 open_claim_type4 claim, bool_t frc_use_claim_previous, 1636 bool_t is_recov) 1637 { 1638 COMPOUND4args_clnt args; 1639 COMPOUND4res_clnt res; 1640 nfs_argop4 argop[4]; 1641 nfs_resop4 *resop; 1642 OPEN4res *op_res = NULL; 1643 OPEN4cargs *open_args; 1644 GETFH4res *gf_res; 1645 rnode4_t *rp = VTOR4(vp); 1646 int doqueue = 1; 1647 cred_t *cr = NULL, *cred_otw = NULL; 1648 nfs4_open_owner_t *oop = NULL; 1649 seqid4 seqid; 1650 nfs4_ga_res_t *garp; 1651 char fn[MAXNAMELEN]; 1652 nfs4_recov_state_t recov = {NULL, 0}; 1653 nfs4_lost_rqst_t lost_rqst; 1654 mntinfo4_t *mi = VTOMI4(vp); 1655 bool_t abort; 1656 char *failed_msg = ""; 1657 int fh_different; 1658 hrtime_t t; 1659 nfs4_bseqid_entry_t *bsep = NULL; 1660 1661 ASSERT(nfs4_consistent_type(vp)); 1662 ASSERT(nfs_zone() == mi->mi_zone); 1663 1664 nfs4_error_zinit(ep); 1665 1666 /* this is the cred used to find the open owner */ 1667 cr = state_to_cred(osp); 1668 if (cr == NULL) { 1669 failed_msg = "Couldn't reopen: no cred"; 1670 goto kill_file; 1671 } 1672 /* use this cred for OTW operations */ 1673 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1674 1675 top: 1676 nfs4_error_zinit(ep); 1677 1678 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1679 /* File system has been unmounted, quit */ 1680 ep->error = EIO; 1681 failed_msg = "Couldn't reopen: file system has been unmounted"; 1682 goto kill_file; 1683 } 1684 1685 oop = osp->os_open_owner; 1686 1687 ASSERT(oop != NULL); 1688 if (oop == NULL) { /* be defensive in non-DEBUG */ 1689 failed_msg = "can't reopen: no open owner"; 1690 goto kill_file; 1691 } 1692 open_owner_hold(oop); 1693 1694 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1695 if (ep->error) { 1696 open_owner_rele(oop); 1697 oop = NULL; 1698 goto bailout; 1699 } 1700 1701 /* 1702 * If the rnode has a delegation and the delegation has been 1703 * recovered and the server didn't request a recall and the caller 1704 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1705 * recovery) and the rnode hasn't been marked dead, then install 1706 * the delegation stateid in the open stream. Otherwise, proceed 1707 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1708 */ 1709 mutex_enter(&rp->r_statev4_lock); 1710 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1711 !rp->r_deleg_return_pending && 1712 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1713 !rp->r_deleg_needs_recall && 1714 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1715 !(rp->r_flags & R4RECOVERR)) { 1716 mutex_enter(&osp->os_sync_lock); 1717 osp->os_delegation = 1; 1718 osp->open_stateid = rp->r_deleg_stateid; 1719 mutex_exit(&osp->os_sync_lock); 1720 mutex_exit(&rp->r_statev4_lock); 1721 goto bailout; 1722 } 1723 mutex_exit(&rp->r_statev4_lock); 1724 1725 /* 1726 * If the file failed recovery, just quit. This failure need not 1727 * affect other reopens, so don't return an error. 1728 */ 1729 mutex_enter(&rp->r_statelock); 1730 if (rp->r_flags & R4RECOVERR) { 1731 mutex_exit(&rp->r_statelock); 1732 ep->error = 0; 1733 goto failed_reopen; 1734 } 1735 mutex_exit(&rp->r_statelock); 1736 1737 /* 1738 * argop is empty here 1739 * 1740 * PUTFH, OPEN, GETATTR 1741 */ 1742 args.ctag = TAG_REOPEN; 1743 args.array_len = 4; 1744 args.array = argop; 1745 1746 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1747 "nfs4_reopen: file is type %d, id %s", 1748 vp->v_type, rnode4info(VTOR4(vp)))); 1749 1750 argop[0].argop = OP_CPUTFH; 1751 1752 if (claim != CLAIM_PREVIOUS) { 1753 /* 1754 * if this is a file mount then 1755 * use the mntinfo parentfh 1756 */ 1757 argop[0].nfs_argop4_u.opcputfh.sfh = 1758 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1759 VTOSV(vp)->sv_dfh; 1760 } else { 1761 /* putfh fh to reopen */ 1762 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1763 } 1764 1765 argop[1].argop = OP_COPEN; 1766 open_args = &argop[1].nfs_argop4_u.opcopen; 1767 open_args->claim = claim; 1768 1769 if (claim == CLAIM_NULL) { 1770 1771 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1772 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1773 "failed for vp 0x%p for CLAIM_NULL with %m", 1774 (void *)vp); 1775 failed_msg = "Couldn't reopen: vtoname failed for " 1776 "CLAIM_NULL"; 1777 /* nothing allocated yet */ 1778 goto kill_file; 1779 } 1780 1781 open_args->open_claim4_u.cfile = fn; 1782 } else if (claim == CLAIM_PREVIOUS) { 1783 1784 /* 1785 * We have two cases to deal with here: 1786 * 1) We're being called to reopen files in order to satisfy 1787 * a lock operation request which requires us to explicitly 1788 * reopen files which were opened under a delegation. If 1789 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1790 * that case, frc_use_claim_previous is TRUE and we must 1791 * use the rnode's current delegation type (r_deleg_type). 1792 * 2) We're reopening files during some form of recovery. 1793 * In this case, frc_use_claim_previous is FALSE and we 1794 * use the delegation type appropriate for recovery 1795 * (r_deleg_needs_recovery). 1796 */ 1797 mutex_enter(&rp->r_statev4_lock); 1798 open_args->open_claim4_u.delegate_type = 1799 frc_use_claim_previous ? 1800 rp->r_deleg_type : 1801 rp->r_deleg_needs_recovery; 1802 mutex_exit(&rp->r_statev4_lock); 1803 1804 } else if (claim == CLAIM_DELEGATE_CUR) { 1805 1806 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1807 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1808 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1809 "with %m", (void *)vp); 1810 failed_msg = "Couldn't reopen: vtoname failed for " 1811 "CLAIM_DELEGATE_CUR"; 1812 /* nothing allocated yet */ 1813 goto kill_file; 1814 } 1815 1816 mutex_enter(&rp->r_statev4_lock); 1817 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1818 rp->r_deleg_stateid; 1819 mutex_exit(&rp->r_statev4_lock); 1820 1821 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1822 } 1823 open_args->opentype = OPEN4_NOCREATE; 1824 open_args->owner.clientid = mi2clientid(mi); 1825 open_args->owner.owner_len = sizeof (oop->oo_name); 1826 open_args->owner.owner_val = 1827 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1828 bcopy(&oop->oo_name, open_args->owner.owner_val, 1829 open_args->owner.owner_len); 1830 open_args->share_access = 0; 1831 open_args->share_deny = 0; 1832 1833 mutex_enter(&osp->os_sync_lock); 1834 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1835 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1836 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1837 (void *)osp, (void *)rp, osp->os_share_acc_read, 1838 osp->os_share_acc_write, osp->os_open_ref_count, 1839 osp->os_mmap_read, osp->os_mmap_write, claim)); 1840 1841 if (osp->os_share_acc_read || osp->os_mmap_read) 1842 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1843 if (osp->os_share_acc_write || osp->os_mmap_write) 1844 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1845 if (osp->os_share_deny_read) 1846 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1847 if (osp->os_share_deny_write) 1848 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1849 mutex_exit(&osp->os_sync_lock); 1850 1851 seqid = nfs4_get_open_seqid(oop) + 1; 1852 open_args->seqid = seqid; 1853 1854 /* Construct the getfh part of the compound */ 1855 argop[2].argop = OP_GETFH; 1856 1857 /* Construct the getattr part of the compound */ 1858 argop[3].argop = OP_GETATTR; 1859 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1860 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1861 1862 t = gethrtime(); 1863 1864 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1865 1866 if (ep->error) { 1867 if (!is_recov && !frc_use_claim_previous && 1868 (ep->error == EINTR || ep->error == ETIMEDOUT || 1869 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1870 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1871 cred_otw, vp, NULL, open_args); 1872 abort = nfs4_start_recovery(ep, 1873 VTOMI4(vp), vp, NULL, NULL, 1874 lost_rqst.lr_op == OP_OPEN ? 1875 &lost_rqst : NULL, OP_OPEN, NULL); 1876 nfs4args_copen_free(open_args); 1877 goto bailout; 1878 } 1879 1880 nfs4args_copen_free(open_args); 1881 1882 if (ep->error == EACCES && cred_otw != cr) { 1883 crfree(cred_otw); 1884 cred_otw = cr; 1885 crhold(cred_otw); 1886 nfs4_end_open_seqid_sync(oop); 1887 open_owner_rele(oop); 1888 oop = NULL; 1889 goto top; 1890 } 1891 if (ep->error == ETIMEDOUT) 1892 goto bailout; 1893 failed_msg = "Couldn't reopen: rpc error"; 1894 goto kill_file; 1895 } 1896 1897 if (nfs4_need_to_bump_seqid(&res)) 1898 nfs4_set_open_seqid(seqid, oop, args.ctag); 1899 1900 switch (res.status) { 1901 case NFS4_OK: 1902 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1903 mutex_enter(&rp->r_statelock); 1904 rp->r_delay_interval = 0; 1905 mutex_exit(&rp->r_statelock); 1906 } 1907 break; 1908 case NFS4ERR_BAD_SEQID: 1909 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1910 args.ctag, open_args->seqid); 1911 1912 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1913 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1914 NULL, OP_OPEN, bsep); 1915 1916 nfs4args_copen_free(open_args); 1917 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1918 nfs4_end_open_seqid_sync(oop); 1919 open_owner_rele(oop); 1920 oop = NULL; 1921 kmem_free(bsep, sizeof (*bsep)); 1922 1923 goto kill_file; 1924 case NFS4ERR_NO_GRACE: 1925 nfs4args_copen_free(open_args); 1926 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1927 nfs4_end_open_seqid_sync(oop); 1928 open_owner_rele(oop); 1929 oop = NULL; 1930 if (claim == CLAIM_PREVIOUS) { 1931 /* 1932 * Retry as a plain open. We don't need to worry about 1933 * checking the changeinfo: it is acceptable for a 1934 * client to re-open a file and continue processing 1935 * (in the absence of locks). 1936 */ 1937 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1938 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1939 "will retry as CLAIM_NULL")); 1940 claim = CLAIM_NULL; 1941 nfs4_mi_kstat_inc_no_grace(mi); 1942 goto top; 1943 } 1944 failed_msg = 1945 "Couldn't reopen: tried reclaim outside grace period. "; 1946 goto kill_file; 1947 case NFS4ERR_GRACE: 1948 nfs4_set_grace_wait(mi); 1949 nfs4args_copen_free(open_args); 1950 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1951 nfs4_end_open_seqid_sync(oop); 1952 open_owner_rele(oop); 1953 oop = NULL; 1954 ep->error = nfs4_wait_for_grace(mi, &recov); 1955 if (ep->error != 0) 1956 goto bailout; 1957 goto top; 1958 case NFS4ERR_DELAY: 1959 nfs4_set_delay_wait(vp); 1960 nfs4args_copen_free(open_args); 1961 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1962 nfs4_end_open_seqid_sync(oop); 1963 open_owner_rele(oop); 1964 oop = NULL; 1965 ep->error = nfs4_wait_for_delay(vp, &recov); 1966 nfs4_mi_kstat_inc_delay(mi); 1967 if (ep->error != 0) 1968 goto bailout; 1969 goto top; 1970 case NFS4ERR_FHEXPIRED: 1971 /* recover filehandle and retry */ 1972 abort = nfs4_start_recovery(ep, 1973 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1974 nfs4args_copen_free(open_args); 1975 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1976 nfs4_end_open_seqid_sync(oop); 1977 open_owner_rele(oop); 1978 oop = NULL; 1979 if (abort == FALSE) 1980 goto top; 1981 failed_msg = "Couldn't reopen: recovery aborted"; 1982 goto kill_file; 1983 case NFS4ERR_RESOURCE: 1984 case NFS4ERR_STALE_CLIENTID: 1985 case NFS4ERR_WRONGSEC: 1986 case NFS4ERR_EXPIRED: 1987 /* 1988 * Do not mark the file dead and let the calling 1989 * function initiate recovery. 1990 */ 1991 nfs4args_copen_free(open_args); 1992 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1993 nfs4_end_open_seqid_sync(oop); 1994 open_owner_rele(oop); 1995 oop = NULL; 1996 goto bailout; 1997 case NFS4ERR_ACCESS: 1998 if (cred_otw != cr) { 1999 crfree(cred_otw); 2000 cred_otw = cr; 2001 crhold(cred_otw); 2002 nfs4args_copen_free(open_args); 2003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2004 nfs4_end_open_seqid_sync(oop); 2005 open_owner_rele(oop); 2006 oop = NULL; 2007 goto top; 2008 } 2009 /* fall through */ 2010 default: 2011 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2012 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2013 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2014 rnode4info(VTOR4(vp)))); 2015 failed_msg = "Couldn't reopen: NFSv4 error"; 2016 nfs4args_copen_free(open_args); 2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 goto kill_file; 2019 } 2020 2021 resop = &res.array[1]; /* open res */ 2022 op_res = &resop->nfs_resop4_u.opopen; 2023 2024 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2025 2026 /* 2027 * Check if the path we reopened really is the same 2028 * file. We could end up in a situation where the file 2029 * was removed and a new file created with the same name. 2030 */ 2031 resop = &res.array[2]; 2032 gf_res = &resop->nfs_resop4_u.opgetfh; 2033 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2034 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2035 if (fh_different) { 2036 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2037 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2038 /* Oops, we don't have the same file */ 2039 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2040 failed_msg = "Couldn't reopen: Persistent " 2041 "file handle changed"; 2042 else 2043 failed_msg = "Couldn't reopen: Volatile " 2044 "(no expire on open) file handle changed"; 2045 2046 nfs4args_copen_free(open_args); 2047 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2048 nfs_rw_exit(&mi->mi_fh_lock); 2049 goto kill_file; 2050 2051 } else { 2052 /* 2053 * We have volatile file handles that don't compare. 2054 * If the fids are the same then we assume that the 2055 * file handle expired but the rnode still refers to 2056 * the same file object. 2057 * 2058 * First check that we have fids or not. 2059 * If we don't we have a dumb server so we will 2060 * just assume every thing is ok for now. 2061 */ 2062 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2063 rp->r_attr.va_mask & AT_NODEID && 2064 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2065 /* 2066 * We have fids, but they don't 2067 * compare. So kill the file. 2068 */ 2069 failed_msg = 2070 "Couldn't reopen: file handle changed" 2071 " due to mismatched fids"; 2072 nfs4args_copen_free(open_args); 2073 (void) xdr_free(xdr_COMPOUND4res_clnt, 2074 (caddr_t)&res); 2075 nfs_rw_exit(&mi->mi_fh_lock); 2076 goto kill_file; 2077 } else { 2078 /* 2079 * We have volatile file handles that refers 2080 * to the same file (at least they have the 2081 * same fid) or we don't have fids so we 2082 * can't tell. :(. We'll be a kind and accepting 2083 * client so we'll update the rnode's file 2084 * handle with the otw handle. 2085 * 2086 * We need to drop mi->mi_fh_lock since 2087 * sh4_update acquires it. Since there is 2088 * only one recovery thread there is no 2089 * race. 2090 */ 2091 nfs_rw_exit(&mi->mi_fh_lock); 2092 sfh4_update(rp->r_fh, &gf_res->object); 2093 } 2094 } 2095 } else { 2096 nfs_rw_exit(&mi->mi_fh_lock); 2097 } 2098 2099 ASSERT(nfs4_consistent_type(vp)); 2100 2101 /* 2102 * If the server wanted an OPEN_CONFIRM but that fails, just start 2103 * over. Presumably if there is a persistent error it will show up 2104 * when we resend the OPEN. 2105 */ 2106 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2107 bool_t retry_open = FALSE; 2108 2109 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2110 cred_otw, is_recov, &retry_open, 2111 oop, FALSE, ep, NULL); 2112 if (ep->error || ep->stat) { 2113 nfs4args_copen_free(open_args); 2114 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2115 nfs4_end_open_seqid_sync(oop); 2116 open_owner_rele(oop); 2117 oop = NULL; 2118 goto top; 2119 } 2120 } 2121 2122 mutex_enter(&osp->os_sync_lock); 2123 osp->open_stateid = op_res->stateid; 2124 osp->os_delegation = 0; 2125 /* 2126 * Need to reset this bitfield for the possible case where we were 2127 * going to OTW CLOSE the file, got a non-recoverable error, and before 2128 * we could retry the CLOSE, OPENed the file again. 2129 */ 2130 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2131 osp->os_final_close = 0; 2132 osp->os_force_close = 0; 2133 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2134 osp->os_dc_openacc = open_args->share_access; 2135 mutex_exit(&osp->os_sync_lock); 2136 2137 nfs4_end_open_seqid_sync(oop); 2138 2139 /* accept delegation, if any */ 2140 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2141 2142 nfs4args_copen_free(open_args); 2143 2144 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2145 2146 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2147 2148 ASSERT(nfs4_consistent_type(vp)); 2149 2150 open_owner_rele(oop); 2151 crfree(cr); 2152 crfree(cred_otw); 2153 return; 2154 2155 kill_file: 2156 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2157 failed_reopen: 2158 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2159 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2160 (void *)osp, (void *)cr, rnode4info(rp))); 2161 mutex_enter(&osp->os_sync_lock); 2162 osp->os_failed_reopen = 1; 2163 mutex_exit(&osp->os_sync_lock); 2164 bailout: 2165 if (oop != NULL) { 2166 nfs4_end_open_seqid_sync(oop); 2167 open_owner_rele(oop); 2168 } 2169 if (cr != NULL) 2170 crfree(cr); 2171 if (cred_otw != NULL) 2172 crfree(cred_otw); 2173 } 2174 2175 /* for . and .. OPENs */ 2176 /* ARGSUSED */ 2177 static int 2178 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2179 { 2180 rnode4_t *rp; 2181 nfs4_ga_res_t gar; 2182 2183 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2184 2185 /* 2186 * If close-to-open consistency checking is turned off or 2187 * if there is no cached data, we can avoid 2188 * the over the wire getattr. Otherwise, force a 2189 * call to the server to get fresh attributes and to 2190 * check caches. This is required for close-to-open 2191 * consistency. 2192 */ 2193 rp = VTOR4(*vpp); 2194 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2195 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2196 return (0); 2197 2198 gar.n4g_va.va_mask = AT_ALL; 2199 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2200 } 2201 2202 /* 2203 * CLOSE a file 2204 */ 2205 static int 2206 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 2207 { 2208 rnode4_t *rp; 2209 int error = 0; 2210 int r_error = 0; 2211 int n4error = 0; 2212 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2213 2214 /* 2215 * Remove client state for this (lockowner, file) pair. 2216 * Issue otw v4 call to have the server do the same. 2217 */ 2218 2219 rp = VTOR4(vp); 2220 2221 /* 2222 * zone_enter(2) prevents processes from changing zones with NFS files 2223 * open; if we happen to get here from the wrong zone we can't do 2224 * anything over the wire. 2225 */ 2226 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2227 /* 2228 * We could attempt to clean up locks, except we're sure 2229 * that the current process didn't acquire any locks on 2230 * the file: any attempt to lock a file belong to another zone 2231 * will fail, and one can't lock an NFS file and then change 2232 * zones, as that fails too. 2233 * 2234 * Returning an error here is the sane thing to do. A 2235 * subsequent call to VN_RELE() which translates to a 2236 * nfs4_inactive() will clean up state: if the zone of the 2237 * vnode's origin is still alive and kicking, the inactive 2238 * thread will handle the request (from the correct zone), and 2239 * everything (minus the OTW close call) should be OK. If the 2240 * zone is going away nfs4_async_inactive() will throw away 2241 * delegations, open streams and cached pages inline. 2242 */ 2243 return (EIO); 2244 } 2245 2246 /* 2247 * If we are using local locking for this filesystem, then 2248 * release all of the SYSV style record locks. Otherwise, 2249 * we are doing network locking and we need to release all 2250 * of the network locks. All of the locks held by this 2251 * process on this file are released no matter what the 2252 * incoming reference count is. 2253 */ 2254 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2255 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2256 cleanshares(vp, ttoproc(curthread)->p_pid); 2257 } else 2258 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2259 2260 if (e.error) 2261 return (e.error); 2262 2263 if (count > 1) 2264 return (0); 2265 2266 /* 2267 * If the file has been `unlinked', then purge the 2268 * DNLC so that this vnode will get reycled quicker 2269 * and the .nfs* file on the server will get removed. 2270 */ 2271 if (rp->r_unldvp != NULL) 2272 dnlc_purge_vp(vp); 2273 2274 /* 2275 * If the file was open for write and there are pages, 2276 * do a synchronous flush and commit of all of the 2277 * dirty and uncommitted pages. 2278 */ 2279 ASSERT(!e.error); 2280 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2281 error = nfs4_putpage_commit(vp, 0, 0, cr); 2282 2283 mutex_enter(&rp->r_statelock); 2284 r_error = rp->r_error; 2285 rp->r_error = 0; 2286 mutex_exit(&rp->r_statelock); 2287 2288 /* 2289 * If this file type is one for which no explicit 'open' was 2290 * done, then bail now (ie. no need for protocol 'close'). If 2291 * there was an error w/the vm subsystem, return _that_ error, 2292 * otherwise, return any errors that may've been reported via 2293 * the rnode. 2294 */ 2295 if (vp->v_type != VREG) 2296 return (error ? error : r_error); 2297 2298 /* 2299 * The sync putpage commit may have failed above, but since 2300 * we're working w/a regular file, we need to do the protocol 2301 * 'close' (nfs4close_one will figure out if an otw close is 2302 * needed or not). Report any errors _after_ doing the protocol 2303 * 'close'. 2304 */ 2305 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2306 n4error = e.error ? e.error : geterrno4(e.stat); 2307 2308 /* 2309 * Error reporting prio (Hi -> Lo) 2310 * 2311 * i) nfs4_putpage_commit (error) 2312 * ii) rnode's (r_error) 2313 * iii) nfs4close_one (n4error) 2314 */ 2315 return (error ? error : (r_error ? r_error : n4error)); 2316 } 2317 2318 /* 2319 * Initialize *lost_rqstp. 2320 */ 2321 2322 static void 2323 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2324 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2325 vnode_t *vp) 2326 { 2327 if (error != ETIMEDOUT && error != EINTR && 2328 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2329 lost_rqstp->lr_op = 0; 2330 return; 2331 } 2332 2333 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2334 "nfs4close_save_lost_rqst: error %d", error)); 2335 2336 lost_rqstp->lr_op = OP_CLOSE; 2337 /* 2338 * The vp is held and rele'd via the recovery code. 2339 * See nfs4_save_lost_rqst. 2340 */ 2341 lost_rqstp->lr_vp = vp; 2342 lost_rqstp->lr_dvp = NULL; 2343 lost_rqstp->lr_oop = oop; 2344 lost_rqstp->lr_osp = osp; 2345 ASSERT(osp != NULL); 2346 ASSERT(mutex_owned(&osp->os_sync_lock)); 2347 osp->os_pending_close = 1; 2348 lost_rqstp->lr_lop = NULL; 2349 lost_rqstp->lr_cr = cr; 2350 lost_rqstp->lr_flk = NULL; 2351 lost_rqstp->lr_putfirst = FALSE; 2352 } 2353 2354 /* 2355 * Assumes you already have the open seqid sync grabbed as well as the 2356 * 'os_sync_lock'. Note: this will release the open seqid sync and 2357 * 'os_sync_lock' if client recovery starts. Calling functions have to 2358 * be prepared to handle this. 2359 * 2360 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2361 * was needed and was started, and that the calling function should retry 2362 * this function; otherwise it is returned as 0. 2363 * 2364 * Errors are returned via the nfs4_error_t parameter. 2365 */ 2366 static void 2367 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2368 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2369 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2370 { 2371 COMPOUND4args_clnt args; 2372 COMPOUND4res_clnt res; 2373 CLOSE4args *close_args; 2374 nfs_resop4 *resop; 2375 nfs_argop4 argop[3]; 2376 int doqueue = 1; 2377 mntinfo4_t *mi; 2378 seqid4 seqid; 2379 vnode_t *vp; 2380 bool_t needrecov = FALSE; 2381 nfs4_lost_rqst_t lost_rqst; 2382 hrtime_t t; 2383 2384 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2385 2386 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2387 2388 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2389 2390 /* Only set this to 1 if recovery is started */ 2391 *recov = 0; 2392 2393 /* do the OTW call to close the file */ 2394 2395 if (close_type == CLOSE_RESEND) 2396 args.ctag = TAG_CLOSE_LOST; 2397 else if (close_type == CLOSE_AFTER_RESEND) 2398 args.ctag = TAG_CLOSE_UNDO; 2399 else 2400 args.ctag = TAG_CLOSE; 2401 2402 args.array_len = 3; 2403 args.array = argop; 2404 2405 vp = RTOV4(rp); 2406 2407 mi = VTOMI4(vp); 2408 2409 /* putfh target fh */ 2410 argop[0].argop = OP_CPUTFH; 2411 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2412 2413 argop[1].argop = OP_GETATTR; 2414 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2415 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2416 2417 argop[2].argop = OP_CLOSE; 2418 close_args = &argop[2].nfs_argop4_u.opclose; 2419 2420 seqid = nfs4_get_open_seqid(oop) + 1; 2421 2422 close_args->seqid = seqid; 2423 close_args->open_stateid = osp->open_stateid; 2424 2425 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2426 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2427 rnode4info(rp))); 2428 2429 t = gethrtime(); 2430 2431 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2432 2433 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2434 nfs4_set_open_seqid(seqid, oop, args.ctag); 2435 } 2436 2437 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2438 if (ep->error && !needrecov) { 2439 /* 2440 * if there was an error and no recovery is to be done 2441 * then then set up the file to flush its cache if 2442 * needed for the next caller. 2443 */ 2444 mutex_enter(&rp->r_statelock); 2445 PURGE_ATTRCACHE4_LOCKED(rp); 2446 rp->r_flags &= ~R4WRITEMODIFIED; 2447 mutex_exit(&rp->r_statelock); 2448 return; 2449 } 2450 2451 if (needrecov) { 2452 bool_t abort; 2453 nfs4_bseqid_entry_t *bsep = NULL; 2454 2455 if (close_type != CLOSE_RESEND) 2456 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2457 osp, cred_otw, vp); 2458 2459 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2460 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2461 0, args.ctag, close_args->seqid); 2462 2463 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2464 "nfs4close_otw: initiating recovery. error %d " 2465 "res.status %d", ep->error, res.status)); 2466 2467 /* 2468 * Drop the 'os_sync_lock' here so we don't hit 2469 * a potential recursive mutex_enter via an 2470 * 'open_stream_hold()'. 2471 */ 2472 mutex_exit(&osp->os_sync_lock); 2473 *have_sync_lockp = 0; 2474 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2475 (close_type != CLOSE_RESEND && 2476 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2477 OP_CLOSE, bsep); 2478 2479 /* drop open seq sync, and let the calling function regrab it */ 2480 nfs4_end_open_seqid_sync(oop); 2481 *did_start_seqid_syncp = 0; 2482 2483 if (bsep) 2484 kmem_free(bsep, sizeof (*bsep)); 2485 /* 2486 * For signals, the caller wants to quit, so don't say to 2487 * retry. For forced unmount, if it's a user thread, it 2488 * wants to quit. If it's a recovery thread, the retry 2489 * will happen higher-up on the call stack. Either way, 2490 * don't say to retry. 2491 */ 2492 if (abort == FALSE && ep->error != EINTR && 2493 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2494 close_type != CLOSE_RESEND && 2495 close_type != CLOSE_AFTER_RESEND) 2496 *recov = 1; 2497 else 2498 *recov = 0; 2499 2500 if (!ep->error) 2501 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2502 return; 2503 } 2504 2505 if (res.status) { 2506 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2507 return; 2508 } 2509 2510 mutex_enter(&rp->r_statev4_lock); 2511 rp->created_v4 = 0; 2512 mutex_exit(&rp->r_statev4_lock); 2513 2514 resop = &res.array[2]; 2515 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2516 osp->os_valid = 0; 2517 2518 /* 2519 * This removes the reference obtained at OPEN; ie, when the 2520 * open stream structure was created. 2521 * 2522 * We don't have to worry about calling 'open_stream_rele' 2523 * since we our currently holding a reference to the open 2524 * stream which means the count cannot go to 0 with this 2525 * decrement. 2526 */ 2527 ASSERT(osp->os_ref_count >= 2); 2528 osp->os_ref_count--; 2529 2530 if (!ep->error) 2531 nfs4_attr_cache(vp, 2532 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2533 t, cred_otw, TRUE, NULL); 2534 2535 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2536 " returning %d", ep->error)); 2537 2538 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2539 } 2540 2541 /* ARGSUSED */ 2542 static int 2543 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2544 caller_context_t *ct) 2545 { 2546 rnode4_t *rp; 2547 u_offset_t off; 2548 offset_t diff; 2549 uint_t on; 2550 uint_t n; 2551 caddr_t base; 2552 uint_t flags; 2553 int error; 2554 mntinfo4_t *mi; 2555 2556 rp = VTOR4(vp); 2557 2558 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2559 2560 if (IS_SHADOW(vp, rp)) 2561 vp = RTOV4(rp); 2562 2563 if (vp->v_type != VREG) 2564 return (EISDIR); 2565 2566 mi = VTOMI4(vp); 2567 2568 if (nfs_zone() != mi->mi_zone) 2569 return (EIO); 2570 2571 if (uiop->uio_resid == 0) 2572 return (0); 2573 2574 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2575 return (EINVAL); 2576 2577 mutex_enter(&rp->r_statelock); 2578 if (rp->r_flags & R4RECOVERRP) 2579 error = (rp->r_error ? rp->r_error : EIO); 2580 else 2581 error = 0; 2582 mutex_exit(&rp->r_statelock); 2583 if (error) 2584 return (error); 2585 2586 /* 2587 * Bypass VM if caching has been disabled (e.g., locking) or if 2588 * using client-side direct I/O and the file is not mmap'd and 2589 * there are no cached pages. 2590 */ 2591 if ((vp->v_flag & VNOCACHE) || 2592 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2593 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2594 size_t resid = 0; 2595 2596 return (nfs4read(vp, NULL, uiop->uio_loffset, 2597 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2598 } 2599 2600 error = 0; 2601 2602 do { 2603 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2604 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2605 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2606 2607 if (error = nfs4_validate_caches(vp, cr)) 2608 break; 2609 2610 mutex_enter(&rp->r_statelock); 2611 diff = rp->r_size - uiop->uio_loffset; 2612 mutex_exit(&rp->r_statelock); 2613 if (diff <= 0) 2614 break; 2615 if (diff < n) 2616 n = (uint_t)diff; 2617 2618 if (vpm_enable) { 2619 /* 2620 * Copy data. 2621 */ 2622 error = vpm_data_copy(vp, off + on, n, uiop, 2623 1, NULL, 0, S_READ); 2624 2625 } else { 2626 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2627 S_READ); 2628 2629 error = uiomove(base + on, n, UIO_READ, uiop); 2630 } 2631 2632 if (!error) { 2633 /* 2634 * If read a whole block or read to eof, 2635 * won't need this buffer again soon. 2636 */ 2637 mutex_enter(&rp->r_statelock); 2638 if (n + on == MAXBSIZE || 2639 uiop->uio_loffset == rp->r_size) 2640 flags = SM_DONTNEED; 2641 else 2642 flags = 0; 2643 mutex_exit(&rp->r_statelock); 2644 if (vpm_enable) { 2645 error = vpm_sync_pages(vp, off, n, flags); 2646 } else { 2647 error = segmap_release(segkmap, base, flags); 2648 } 2649 } else { 2650 if (vpm_enable) { 2651 (void) vpm_sync_pages(vp, off, n, 0); 2652 } else { 2653 (void) segmap_release(segkmap, base, 0); 2654 } 2655 } 2656 } while (!error && uiop->uio_resid > 0); 2657 2658 return (error); 2659 } 2660 2661 /* ARGSUSED */ 2662 static int 2663 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2664 caller_context_t *ct) 2665 { 2666 rlim64_t limit = uiop->uio_llimit; 2667 rnode4_t *rp; 2668 u_offset_t off; 2669 caddr_t base; 2670 uint_t flags; 2671 int remainder; 2672 size_t n; 2673 int on; 2674 int error; 2675 int resid; 2676 u_offset_t offset; 2677 mntinfo4_t *mi; 2678 uint_t bsize; 2679 2680 rp = VTOR4(vp); 2681 2682 if (IS_SHADOW(vp, rp)) 2683 vp = RTOV4(rp); 2684 2685 if (vp->v_type != VREG) 2686 return (EISDIR); 2687 2688 mi = VTOMI4(vp); 2689 2690 if (nfs_zone() != mi->mi_zone) 2691 return (EIO); 2692 2693 if (uiop->uio_resid == 0) 2694 return (0); 2695 2696 mutex_enter(&rp->r_statelock); 2697 if (rp->r_flags & R4RECOVERRP) 2698 error = (rp->r_error ? rp->r_error : EIO); 2699 else 2700 error = 0; 2701 mutex_exit(&rp->r_statelock); 2702 if (error) 2703 return (error); 2704 2705 if (ioflag & FAPPEND) { 2706 struct vattr va; 2707 2708 /* 2709 * Must serialize if appending. 2710 */ 2711 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2712 nfs_rw_exit(&rp->r_rwlock); 2713 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2714 INTR(vp))) 2715 return (EINTR); 2716 } 2717 2718 va.va_mask = AT_SIZE; 2719 error = nfs4getattr(vp, &va, cr); 2720 if (error) 2721 return (error); 2722 uiop->uio_loffset = va.va_size; 2723 } 2724 2725 offset = uiop->uio_loffset + uiop->uio_resid; 2726 2727 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2728 return (EINVAL); 2729 2730 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2731 limit = MAXOFFSET_T; 2732 2733 /* 2734 * Check to make sure that the process will not exceed 2735 * its limit on file size. It is okay to write up to 2736 * the limit, but not beyond. Thus, the write which 2737 * reaches the limit will be short and the next write 2738 * will return an error. 2739 */ 2740 remainder = 0; 2741 if (offset > uiop->uio_llimit) { 2742 remainder = offset - uiop->uio_llimit; 2743 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2744 if (uiop->uio_resid <= 0) { 2745 proc_t *p = ttoproc(curthread); 2746 2747 uiop->uio_resid += remainder; 2748 mutex_enter(&p->p_lock); 2749 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2750 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2751 mutex_exit(&p->p_lock); 2752 return (EFBIG); 2753 } 2754 } 2755 2756 /* update the change attribute, if we have a write delegation */ 2757 2758 mutex_enter(&rp->r_statev4_lock); 2759 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2760 rp->r_deleg_change++; 2761 2762 mutex_exit(&rp->r_statev4_lock); 2763 2764 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2765 return (EINTR); 2766 2767 /* 2768 * Bypass VM if caching has been disabled (e.g., locking) or if 2769 * using client-side direct I/O and the file is not mmap'd and 2770 * there are no cached pages. 2771 */ 2772 if ((vp->v_flag & VNOCACHE) || 2773 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2774 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2775 size_t bufsize; 2776 int count; 2777 u_offset_t org_offset; 2778 stable_how4 stab_comm; 2779 nfs4_fwrite: 2780 if (rp->r_flags & R4STALE) { 2781 resid = uiop->uio_resid; 2782 offset = uiop->uio_loffset; 2783 error = rp->r_error; 2784 goto bottom; 2785 } 2786 2787 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2788 base = kmem_alloc(bufsize, KM_SLEEP); 2789 do { 2790 if (ioflag & FDSYNC) 2791 stab_comm = DATA_SYNC4; 2792 else 2793 stab_comm = FILE_SYNC4; 2794 resid = uiop->uio_resid; 2795 offset = uiop->uio_loffset; 2796 count = MIN(uiop->uio_resid, bufsize); 2797 org_offset = uiop->uio_loffset; 2798 error = uiomove(base, count, UIO_WRITE, uiop); 2799 if (!error) { 2800 error = nfs4write(vp, base, org_offset, 2801 count, cr, &stab_comm); 2802 if (!error) { 2803 mutex_enter(&rp->r_statelock); 2804 if (rp->r_size < uiop->uio_loffset) 2805 rp->r_size = uiop->uio_loffset; 2806 mutex_exit(&rp->r_statelock); 2807 } 2808 } 2809 } while (!error && uiop->uio_resid > 0); 2810 kmem_free(base, bufsize); 2811 goto bottom; 2812 } 2813 2814 bsize = vp->v_vfsp->vfs_bsize; 2815 2816 do { 2817 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2818 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2819 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2820 2821 resid = uiop->uio_resid; 2822 offset = uiop->uio_loffset; 2823 2824 if (rp->r_flags & R4STALE) { 2825 error = rp->r_error; 2826 break; 2827 } 2828 2829 /* 2830 * Don't create dirty pages faster than they 2831 * can be cleaned so that the system doesn't 2832 * get imbalanced. If the async queue is 2833 * maxed out, then wait for it to drain before 2834 * creating more dirty pages. Also, wait for 2835 * any threads doing pagewalks in the vop_getattr 2836 * entry points so that they don't block for 2837 * long periods. 2838 */ 2839 mutex_enter(&rp->r_statelock); 2840 while ((mi->mi_max_threads != 0 && 2841 rp->r_awcount > 2 * mi->mi_max_threads) || 2842 rp->r_gcount > 0) 2843 cv_wait(&rp->r_cv, &rp->r_statelock); 2844 mutex_exit(&rp->r_statelock); 2845 2846 if (vpm_enable) { 2847 /* 2848 * It will use kpm mappings, so no need to 2849 * pass an address. 2850 */ 2851 error = writerp4(rp, NULL, n, uiop, 0); 2852 } else { 2853 if (segmap_kpm) { 2854 int pon = uiop->uio_loffset & PAGEOFFSET; 2855 size_t pn = MIN(PAGESIZE - pon, 2856 uiop->uio_resid); 2857 int pagecreate; 2858 2859 mutex_enter(&rp->r_statelock); 2860 pagecreate = (pon == 0) && (pn == PAGESIZE || 2861 uiop->uio_loffset + pn >= rp->r_size); 2862 mutex_exit(&rp->r_statelock); 2863 2864 base = segmap_getmapflt(segkmap, vp, off + on, 2865 pn, !pagecreate, S_WRITE); 2866 2867 error = writerp4(rp, base + pon, n, uiop, 2868 pagecreate); 2869 2870 } else { 2871 base = segmap_getmapflt(segkmap, vp, off + on, 2872 n, 0, S_READ); 2873 error = writerp4(rp, base + on, n, uiop, 0); 2874 } 2875 } 2876 2877 if (!error) { 2878 if (mi->mi_flags & MI4_NOAC) 2879 flags = SM_WRITE; 2880 else if ((uiop->uio_loffset % bsize) == 0 || 2881 IS_SWAPVP(vp)) { 2882 /* 2883 * Have written a whole block. 2884 * Start an asynchronous write 2885 * and mark the buffer to 2886 * indicate that it won't be 2887 * needed again soon. 2888 */ 2889 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2890 } else 2891 flags = 0; 2892 if ((ioflag & (FSYNC|FDSYNC)) || 2893 (rp->r_flags & R4OUTOFSPACE)) { 2894 flags &= ~SM_ASYNC; 2895 flags |= SM_WRITE; 2896 } 2897 if (vpm_enable) { 2898 error = vpm_sync_pages(vp, off, n, flags); 2899 } else { 2900 error = segmap_release(segkmap, base, flags); 2901 } 2902 } else { 2903 if (vpm_enable) { 2904 (void) vpm_sync_pages(vp, off, n, 0); 2905 } else { 2906 (void) segmap_release(segkmap, base, 0); 2907 } 2908 /* 2909 * In the event that we got an access error while 2910 * faulting in a page for a write-only file just 2911 * force a write. 2912 */ 2913 if (error == EACCES) 2914 goto nfs4_fwrite; 2915 } 2916 } while (!error && uiop->uio_resid > 0); 2917 2918 bottom: 2919 if (error) { 2920 uiop->uio_resid = resid + remainder; 2921 uiop->uio_loffset = offset; 2922 } else { 2923 uiop->uio_resid += remainder; 2924 2925 mutex_enter(&rp->r_statev4_lock); 2926 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2927 gethrestime(&rp->r_attr.va_mtime); 2928 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2929 } 2930 mutex_exit(&rp->r_statev4_lock); 2931 } 2932 2933 nfs_rw_exit(&rp->r_lkserlock); 2934 2935 return (error); 2936 } 2937 2938 /* 2939 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2940 */ 2941 static int 2942 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2943 int flags, cred_t *cr) 2944 { 2945 struct buf *bp; 2946 int error; 2947 page_t *savepp; 2948 uchar_t fsdata; 2949 stable_how4 stab_comm; 2950 2951 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2952 bp = pageio_setup(pp, len, vp, flags); 2953 ASSERT(bp != NULL); 2954 2955 /* 2956 * pageio_setup should have set b_addr to 0. This 2957 * is correct since we want to do I/O on a page 2958 * boundary. bp_mapin will use this addr to calculate 2959 * an offset, and then set b_addr to the kernel virtual 2960 * address it allocated for us. 2961 */ 2962 ASSERT(bp->b_un.b_addr == 0); 2963 2964 bp->b_edev = 0; 2965 bp->b_dev = 0; 2966 bp->b_lblkno = lbtodb(off); 2967 bp->b_file = vp; 2968 bp->b_offset = (offset_t)off; 2969 bp_mapin(bp); 2970 2971 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 2972 freemem > desfree) 2973 stab_comm = UNSTABLE4; 2974 else 2975 stab_comm = FILE_SYNC4; 2976 2977 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 2978 2979 bp_mapout(bp); 2980 pageio_done(bp); 2981 2982 if (stab_comm == UNSTABLE4) 2983 fsdata = C_DELAYCOMMIT; 2984 else 2985 fsdata = C_NOCOMMIT; 2986 2987 savepp = pp; 2988 do { 2989 pp->p_fsdata = fsdata; 2990 } while ((pp = pp->p_next) != savepp); 2991 2992 return (error); 2993 } 2994 2995 /* 2996 */ 2997 static int 2998 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 2999 { 3000 nfs4_open_owner_t *oop; 3001 nfs4_open_stream_t *osp; 3002 rnode4_t *rp = VTOR4(vp); 3003 mntinfo4_t *mi = VTOMI4(vp); 3004 int reopen_needed; 3005 3006 ASSERT(nfs_zone() == mi->mi_zone); 3007 3008 3009 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3010 if (!oop) 3011 return (EIO); 3012 3013 /* returns with 'os_sync_lock' held */ 3014 osp = find_open_stream(oop, rp); 3015 if (!osp) { 3016 open_owner_rele(oop); 3017 return (EIO); 3018 } 3019 3020 if (osp->os_failed_reopen) { 3021 mutex_exit(&osp->os_sync_lock); 3022 open_stream_rele(osp, rp); 3023 open_owner_rele(oop); 3024 return (EIO); 3025 } 3026 3027 /* 3028 * Determine whether a reopen is needed. If this 3029 * is a delegation open stream, then the os_delegation bit 3030 * should be set. 3031 */ 3032 3033 reopen_needed = osp->os_delegation; 3034 3035 mutex_exit(&osp->os_sync_lock); 3036 open_owner_rele(oop); 3037 3038 if (reopen_needed) { 3039 nfs4_error_zinit(ep); 3040 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3041 mutex_enter(&osp->os_sync_lock); 3042 if (ep->error || ep->stat || osp->os_failed_reopen) { 3043 mutex_exit(&osp->os_sync_lock); 3044 open_stream_rele(osp, rp); 3045 return (EIO); 3046 } 3047 mutex_exit(&osp->os_sync_lock); 3048 } 3049 open_stream_rele(osp, rp); 3050 3051 return (0); 3052 } 3053 3054 /* 3055 * Write to file. Writes to remote server in largest size 3056 * chunks that the server can handle. Write is synchronous. 3057 */ 3058 static int 3059 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3060 stable_how4 *stab_comm) 3061 { 3062 mntinfo4_t *mi; 3063 COMPOUND4args_clnt args; 3064 COMPOUND4res_clnt res; 3065 WRITE4args *wargs; 3066 WRITE4res *wres; 3067 nfs_argop4 argop[2]; 3068 nfs_resop4 *resop; 3069 int tsize; 3070 stable_how4 stable; 3071 rnode4_t *rp; 3072 int doqueue = 1; 3073 bool_t needrecov; 3074 nfs4_recov_state_t recov_state; 3075 nfs4_stateid_types_t sid_types; 3076 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3077 3078 rp = VTOR4(vp); 3079 mi = VTOMI4(vp); 3080 3081 ASSERT(nfs_zone() == mi->mi_zone); 3082 3083 stable = *stab_comm; 3084 *stab_comm = FILE_SYNC4; 3085 3086 needrecov = FALSE; 3087 recov_state.rs_flags = 0; 3088 recov_state.rs_num_retry_despite_err = 0; 3089 nfs4_init_stateid_types(&sid_types); 3090 3091 recov_retry: 3092 args.ctag = TAG_WRITE; 3093 args.array_len = 2; 3094 args.array = argop; 3095 3096 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3097 &recov_state, NULL); 3098 if (e.error) 3099 return (e.error); 3100 3101 /* 0. putfh target fh */ 3102 argop[0].argop = OP_CPUTFH; 3103 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3104 3105 /* 1. write */ 3106 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3107 3108 do { 3109 3110 wargs->offset = (offset4)offset; 3111 wargs->data_val = base; 3112 3113 if (mi->mi_io_kstats) { 3114 mutex_enter(&mi->mi_lock); 3115 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3116 mutex_exit(&mi->mi_lock); 3117 } 3118 3119 if ((vp->v_flag & VNOCACHE) || 3120 (rp->r_flags & R4DIRECTIO) || 3121 (mi->mi_flags & MI4_DIRECTIO)) 3122 tsize = MIN(mi->mi_stsize, count); 3123 else 3124 tsize = MIN(mi->mi_curwrite, count); 3125 wargs->data_len = (uint_t)tsize; 3126 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3127 3128 if (mi->mi_io_kstats) { 3129 mutex_enter(&mi->mi_lock); 3130 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3131 mutex_exit(&mi->mi_lock); 3132 } 3133 3134 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3135 if (e.error && !needrecov) { 3136 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3137 &recov_state, needrecov); 3138 return (e.error); 3139 } 3140 3141 3142 /* 3143 * Do handling of OLD_STATEID outside 3144 * of the normal recovery framework. 3145 * 3146 * If write receives a BAD stateid error while using a 3147 * delegation stateid, retry using the open stateid (if it 3148 * exists). If it doesn't have an open stateid, reopen the 3149 * file first, then retry. 3150 */ 3151 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3152 sid_types.cur_sid_type != SPEC_SID) { 3153 nfs4_save_stateid(&wargs->stateid, &sid_types); 3154 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3155 &recov_state, needrecov); 3156 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3157 goto recov_retry; 3158 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3159 sid_types.cur_sid_type == DEL_SID) { 3160 nfs4_save_stateid(&wargs->stateid, &sid_types); 3161 mutex_enter(&rp->r_statev4_lock); 3162 rp->r_deleg_return_pending = TRUE; 3163 mutex_exit(&rp->r_statev4_lock); 3164 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3165 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3166 &recov_state, needrecov); 3167 (void) xdr_free(xdr_COMPOUND4res_clnt, 3168 (caddr_t)&res); 3169 return (EIO); 3170 } 3171 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3172 &recov_state, needrecov); 3173 /* hold needed for nfs4delegreturn_thread */ 3174 VN_HOLD(vp); 3175 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3176 NFS4_DR_DISCARD), FALSE); 3177 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3178 goto recov_retry; 3179 } 3180 3181 if (needrecov) { 3182 bool_t abort; 3183 3184 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3185 "nfs4write: client got error %d, res.status %d" 3186 ", so start recovery", e.error, res.status)); 3187 3188 abort = nfs4_start_recovery(&e, 3189 VTOMI4(vp), vp, NULL, &wargs->stateid, 3190 NULL, OP_WRITE, NULL); 3191 if (!e.error) { 3192 e.error = geterrno4(res.status); 3193 (void) xdr_free(xdr_COMPOUND4res_clnt, 3194 (caddr_t)&res); 3195 } 3196 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3197 &recov_state, needrecov); 3198 if (abort == FALSE) 3199 goto recov_retry; 3200 return (e.error); 3201 } 3202 3203 if (res.status) { 3204 e.error = geterrno4(res.status); 3205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3206 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3207 &recov_state, needrecov); 3208 return (e.error); 3209 } 3210 3211 resop = &res.array[1]; /* write res */ 3212 wres = &resop->nfs_resop4_u.opwrite; 3213 3214 if ((int)wres->count > tsize) { 3215 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3216 3217 zcmn_err(getzoneid(), CE_WARN, 3218 "nfs4write: server wrote %u, requested was %u", 3219 (int)wres->count, tsize); 3220 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3221 &recov_state, needrecov); 3222 return (EIO); 3223 } 3224 if (wres->committed == UNSTABLE4) { 3225 *stab_comm = UNSTABLE4; 3226 if (wargs->stable == DATA_SYNC4 || 3227 wargs->stable == FILE_SYNC4) { 3228 (void) xdr_free(xdr_COMPOUND4res_clnt, 3229 (caddr_t)&res); 3230 zcmn_err(getzoneid(), CE_WARN, 3231 "nfs4write: server %s did not commit " 3232 "to stable storage", 3233 rp->r_server->sv_hostname); 3234 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3235 &recov_state, needrecov); 3236 return (EIO); 3237 } 3238 } 3239 3240 tsize = (int)wres->count; 3241 count -= tsize; 3242 base += tsize; 3243 offset += tsize; 3244 if (mi->mi_io_kstats) { 3245 mutex_enter(&mi->mi_lock); 3246 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3247 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3248 tsize; 3249 mutex_exit(&mi->mi_lock); 3250 } 3251 lwp_stat_update(LWP_STAT_OUBLK, 1); 3252 mutex_enter(&rp->r_statelock); 3253 if (rp->r_flags & R4HAVEVERF) { 3254 if (rp->r_writeverf != wres->writeverf) { 3255 nfs4_set_mod(vp); 3256 rp->r_writeverf = wres->writeverf; 3257 } 3258 } else { 3259 rp->r_writeverf = wres->writeverf; 3260 rp->r_flags |= R4HAVEVERF; 3261 } 3262 PURGE_ATTRCACHE4_LOCKED(rp); 3263 rp->r_flags |= R4WRITEMODIFIED; 3264 gethrestime(&rp->r_attr.va_mtime); 3265 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3266 mutex_exit(&rp->r_statelock); 3267 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3268 } while (count); 3269 3270 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3271 3272 return (e.error); 3273 } 3274 3275 /* 3276 * Read from a file. Reads data in largest chunks our interface can handle. 3277 */ 3278 static int 3279 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3280 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3281 { 3282 mntinfo4_t *mi; 3283 COMPOUND4args_clnt args; 3284 COMPOUND4res_clnt res; 3285 READ4args *rargs; 3286 nfs_argop4 argop[2]; 3287 int tsize; 3288 int doqueue; 3289 rnode4_t *rp; 3290 int data_len; 3291 bool_t is_eof; 3292 bool_t needrecov = FALSE; 3293 nfs4_recov_state_t recov_state; 3294 nfs4_stateid_types_t sid_types; 3295 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3296 3297 rp = VTOR4(vp); 3298 mi = VTOMI4(vp); 3299 doqueue = 1; 3300 3301 ASSERT(nfs_zone() == mi->mi_zone); 3302 3303 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3304 3305 args.array_len = 2; 3306 args.array = argop; 3307 3308 nfs4_init_stateid_types(&sid_types); 3309 3310 recov_state.rs_flags = 0; 3311 recov_state.rs_num_retry_despite_err = 0; 3312 3313 recov_retry: 3314 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3315 &recov_state, NULL); 3316 if (e.error) 3317 return (e.error); 3318 3319 /* putfh target fh */ 3320 argop[0].argop = OP_CPUTFH; 3321 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3322 3323 /* read */ 3324 argop[1].argop = OP_READ; 3325 rargs = &argop[1].nfs_argop4_u.opread; 3326 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3327 OP_READ, &sid_types, async); 3328 3329 do { 3330 if (mi->mi_io_kstats) { 3331 mutex_enter(&mi->mi_lock); 3332 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3333 mutex_exit(&mi->mi_lock); 3334 } 3335 3336 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3337 "nfs4read: %s call, rp %s", 3338 needrecov ? "recov" : "first", 3339 rnode4info(rp))); 3340 3341 if ((vp->v_flag & VNOCACHE) || 3342 (rp->r_flags & R4DIRECTIO) || 3343 (mi->mi_flags & MI4_DIRECTIO)) 3344 tsize = MIN(mi->mi_tsize, count); 3345 else 3346 tsize = MIN(mi->mi_curread, count); 3347 rargs->offset = (offset4)offset; 3348 rargs->count = (count4)tsize; 3349 rargs->res_data_val_alt = NULL; 3350 rargs->res_mblk = NULL; 3351 rargs->res_uiop = NULL; 3352 rargs->res_maxsize = 0; 3353 if (uiop) 3354 rargs->res_uiop = uiop; 3355 else 3356 rargs->res_data_val_alt = base; 3357 rargs->res_maxsize = tsize; 3358 3359 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3360 #ifdef DEBUG 3361 if (nfs4read_error_inject) { 3362 res.status = nfs4read_error_inject; 3363 nfs4read_error_inject = 0; 3364 } 3365 #endif 3366 3367 if (mi->mi_io_kstats) { 3368 mutex_enter(&mi->mi_lock); 3369 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3370 mutex_exit(&mi->mi_lock); 3371 } 3372 3373 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3374 if (e.error != 0 && !needrecov) { 3375 nfs4_end_fop(mi, vp, NULL, OH_READ, 3376 &recov_state, needrecov); 3377 return (e.error); 3378 } 3379 3380 /* 3381 * Do proper retry for OLD and BAD stateid errors outside 3382 * of the normal recovery framework. There are two differences 3383 * between async and sync reads. The first is that we allow 3384 * retry on BAD_STATEID for async reads, but not sync reads. 3385 * The second is that we mark the file dead for a failed 3386 * attempt with a special stateid for sync reads, but just 3387 * return EIO for async reads. 3388 * 3389 * If a sync read receives a BAD stateid error while using a 3390 * delegation stateid, retry using the open stateid (if it 3391 * exists). If it doesn't have an open stateid, reopen the 3392 * file first, then retry. 3393 */ 3394 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3395 res.status == NFS4ERR_BAD_STATEID) && async) { 3396 nfs4_end_fop(mi, vp, NULL, OH_READ, 3397 &recov_state, needrecov); 3398 if (sid_types.cur_sid_type == SPEC_SID) { 3399 (void) xdr_free(xdr_COMPOUND4res_clnt, 3400 (caddr_t)&res); 3401 return (EIO); 3402 } 3403 nfs4_save_stateid(&rargs->stateid, &sid_types); 3404 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3405 goto recov_retry; 3406 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3407 !async && sid_types.cur_sid_type != SPEC_SID) { 3408 nfs4_save_stateid(&rargs->stateid, &sid_types); 3409 nfs4_end_fop(mi, vp, NULL, OH_READ, 3410 &recov_state, needrecov); 3411 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3412 goto recov_retry; 3413 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3414 sid_types.cur_sid_type == DEL_SID) { 3415 nfs4_save_stateid(&rargs->stateid, &sid_types); 3416 mutex_enter(&rp->r_statev4_lock); 3417 rp->r_deleg_return_pending = TRUE; 3418 mutex_exit(&rp->r_statev4_lock); 3419 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3420 nfs4_end_fop(mi, vp, NULL, OH_READ, 3421 &recov_state, needrecov); 3422 (void) xdr_free(xdr_COMPOUND4res_clnt, 3423 (caddr_t)&res); 3424 return (EIO); 3425 } 3426 nfs4_end_fop(mi, vp, NULL, OH_READ, 3427 &recov_state, needrecov); 3428 /* hold needed for nfs4delegreturn_thread */ 3429 VN_HOLD(vp); 3430 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3431 NFS4_DR_DISCARD), FALSE); 3432 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3433 goto recov_retry; 3434 } 3435 if (needrecov) { 3436 bool_t abort; 3437 3438 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3439 "nfs4read: initiating recovery\n")); 3440 3441 abort = nfs4_start_recovery(&e, 3442 mi, vp, NULL, &rargs->stateid, 3443 NULL, OP_READ, NULL); 3444 nfs4_end_fop(mi, vp, NULL, OH_READ, 3445 &recov_state, needrecov); 3446 /* 3447 * Do not retry if we got OLD_STATEID using a special 3448 * stateid. This avoids looping with a broken server. 3449 */ 3450 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3451 sid_types.cur_sid_type == SPEC_SID) 3452 abort = TRUE; 3453 3454 if (abort == FALSE) { 3455 /* 3456 * Need to retry all possible stateids in 3457 * case the recovery error wasn't stateid 3458 * related or the stateids have become 3459 * stale (server reboot). 3460 */ 3461 nfs4_init_stateid_types(&sid_types); 3462 (void) xdr_free(xdr_COMPOUND4res_clnt, 3463 (caddr_t)&res); 3464 goto recov_retry; 3465 } 3466 3467 if (!e.error) { 3468 e.error = geterrno4(res.status); 3469 (void) xdr_free(xdr_COMPOUND4res_clnt, 3470 (caddr_t)&res); 3471 } 3472 return (e.error); 3473 } 3474 3475 if (res.status) { 3476 e.error = geterrno4(res.status); 3477 nfs4_end_fop(mi, vp, NULL, OH_READ, 3478 &recov_state, needrecov); 3479 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3480 return (e.error); 3481 } 3482 3483 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3484 count -= data_len; 3485 if (base) 3486 base += data_len; 3487 offset += data_len; 3488 if (mi->mi_io_kstats) { 3489 mutex_enter(&mi->mi_lock); 3490 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3491 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3492 mutex_exit(&mi->mi_lock); 3493 } 3494 lwp_stat_update(LWP_STAT_INBLK, 1); 3495 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3496 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3497 3498 } while (count && !is_eof); 3499 3500 *residp = count; 3501 3502 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3503 3504 return (e.error); 3505 } 3506 3507 /* ARGSUSED */ 3508 static int 3509 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 3510 { 3511 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3512 return (EIO); 3513 switch (cmd) { 3514 case _FIODIRECTIO: 3515 return (nfs4_directio(vp, (int)arg, cr)); 3516 default: 3517 return (ENOTTY); 3518 } 3519 } 3520 3521 static int 3522 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 3523 { 3524 int error; 3525 rnode4_t *rp = VTOR4(vp); 3526 3527 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3528 return (EIO); 3529 /* 3530 * If it has been specified that the return value will 3531 * just be used as a hint, and we are only being asked 3532 * for size, fsid or rdevid, then return the client's 3533 * notion of these values without checking to make sure 3534 * that the attribute cache is up to date. 3535 * The whole point is to avoid an over the wire GETATTR 3536 * call. 3537 */ 3538 if (flags & ATTR_HINT) { 3539 if (vap->va_mask == 3540 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3541 mutex_enter(&rp->r_statelock); 3542 if (vap->va_mask | AT_SIZE) 3543 vap->va_size = rp->r_size; 3544 if (vap->va_mask | AT_FSID) 3545 vap->va_fsid = rp->r_attr.va_fsid; 3546 if (vap->va_mask | AT_RDEV) 3547 vap->va_rdev = rp->r_attr.va_rdev; 3548 mutex_exit(&rp->r_statelock); 3549 return (0); 3550 } 3551 } 3552 3553 /* 3554 * Only need to flush pages if asking for the mtime 3555 * and if there any dirty pages or any outstanding 3556 * asynchronous (write) requests for this file. 3557 */ 3558 if (vap->va_mask & AT_MTIME) { 3559 rp = VTOR4(vp); 3560 if (nfs4_has_pages(vp)) { 3561 mutex_enter(&rp->r_statev4_lock); 3562 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3563 mutex_exit(&rp->r_statev4_lock); 3564 if (rp->r_flags & R4DIRTY || 3565 rp->r_awcount > 0) { 3566 mutex_enter(&rp->r_statelock); 3567 rp->r_gcount++; 3568 mutex_exit(&rp->r_statelock); 3569 error = 3570 nfs4_putpage(vp, (u_offset_t)0, 3571 0, 0, cr); 3572 mutex_enter(&rp->r_statelock); 3573 if (error && (error == ENOSPC || 3574 error == EDQUOT)) { 3575 if (!rp->r_error) 3576 rp->r_error = error; 3577 } 3578 if (--rp->r_gcount == 0) 3579 cv_broadcast(&rp->r_cv); 3580 mutex_exit(&rp->r_statelock); 3581 } 3582 } else { 3583 mutex_exit(&rp->r_statev4_lock); 3584 } 3585 } 3586 } 3587 return (nfs4getattr(vp, vap, cr)); 3588 } 3589 3590 int 3591 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3592 { 3593 /* 3594 * If these are the only two bits cleared 3595 * on the server then return 0 (OK) else 3596 * return 1 (BAD). 3597 */ 3598 on_client &= ~(S_ISUID|S_ISGID); 3599 if (on_client == from_server) 3600 return (0); 3601 else 3602 return (1); 3603 } 3604 3605 /*ARGSUSED4*/ 3606 static int 3607 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3608 caller_context_t *ct) 3609 { 3610 if (vap->va_mask & AT_NOSET) 3611 return (EINVAL); 3612 3613 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3614 return (EIO); 3615 3616 /* 3617 * Don't call secpolicy_vnode_setattr, the client cannot 3618 * use its cached attributes to make security decisions 3619 * as the server may be faking mode bits or mapping uid/gid. 3620 * Always just let the server to the checking. 3621 * If we provide the ability to remove basic priviledges 3622 * to setattr (e.g. basic without chmod) then we will 3623 * need to add a check here before calling the server. 3624 */ 3625 3626 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3627 } 3628 3629 /* 3630 * To replace the "guarded" version 3 setattr, we use two types of compound 3631 * setattr requests: 3632 * 1. The "normal" setattr, used when the size of the file isn't being 3633 * changed - { Putfh <fh>; Setattr; Getattr }/ 3634 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3635 * with only ctime as the argument. If the server ctime differs from 3636 * what is cached on the client, the verify will fail, but we would 3637 * already have the ctime from the preceding getattr, so just set it 3638 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3639 * Setattr; Getattr }. 3640 * 3641 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3642 * this setattr and NULL if they are not. 3643 */ 3644 static int 3645 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3646 vsecattr_t *vsap) 3647 { 3648 COMPOUND4args_clnt args; 3649 COMPOUND4res_clnt res, *resp = NULL; 3650 nfs4_ga_res_t *garp = NULL; 3651 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3652 nfs_argop4 argop[5]; 3653 int verify_argop = -1; 3654 int setattr_argop = 1; 3655 nfs_resop4 *resop; 3656 vattr_t va; 3657 rnode4_t *rp; 3658 int doqueue = 1; 3659 uint_t mask = vap->va_mask; 3660 mode_t omode; 3661 vsecattr_t *vsp; 3662 timestruc_t ctime; 3663 bool_t needrecov = FALSE; 3664 nfs4_recov_state_t recov_state; 3665 nfs4_stateid_types_t sid_types; 3666 stateid4 stateid; 3667 hrtime_t t; 3668 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3669 servinfo4_t *svp; 3670 bitmap4 supp_attrs; 3671 3672 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3673 rp = VTOR4(vp); 3674 nfs4_init_stateid_types(&sid_types); 3675 3676 /* 3677 * Only need to flush pages if there are any pages and 3678 * if the file is marked as dirty in some fashion. The 3679 * file must be flushed so that we can accurately 3680 * determine the size of the file and the cached data 3681 * after the SETATTR returns. A file is considered to 3682 * be dirty if it is either marked with R4DIRTY, has 3683 * outstanding i/o's active, or is mmap'd. In this 3684 * last case, we can't tell whether there are dirty 3685 * pages, so we flush just to be sure. 3686 */ 3687 if (nfs4_has_pages(vp) && 3688 ((rp->r_flags & R4DIRTY) || 3689 rp->r_count > 0 || 3690 rp->r_mapcnt > 0)) { 3691 ASSERT(vp->v_type != VCHR); 3692 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); 3693 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3694 mutex_enter(&rp->r_statelock); 3695 if (!rp->r_error) 3696 rp->r_error = e.error; 3697 mutex_exit(&rp->r_statelock); 3698 } 3699 } 3700 3701 if (mask & AT_SIZE) { 3702 /* 3703 * Verification setattr compound for non-deleg AT_SIZE: 3704 * { Putfh; Getattr; Verify; Setattr; Getattr } 3705 * Set ctime local here (outside the do_again label) 3706 * so that subsequent retries (after failed VERIFY) 3707 * will use ctime from GETATTR results (from failed 3708 * verify compound) as VERIFY arg. 3709 * If file has delegation, then VERIFY(time_metadata) 3710 * is of little added value, so don't bother. 3711 */ 3712 mutex_enter(&rp->r_statev4_lock); 3713 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3714 rp->r_deleg_return_pending) { 3715 numops = 5; 3716 ctime = rp->r_attr.va_ctime; 3717 } 3718 mutex_exit(&rp->r_statev4_lock); 3719 } 3720 3721 recov_state.rs_flags = 0; 3722 recov_state.rs_num_retry_despite_err = 0; 3723 3724 args.ctag = TAG_SETATTR; 3725 do_again: 3726 recov_retry: 3727 setattr_argop = numops - 2; 3728 3729 args.array = argop; 3730 args.array_len = numops; 3731 3732 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3733 if (e.error) 3734 return (e.error); 3735 3736 3737 /* putfh target fh */ 3738 argop[0].argop = OP_CPUTFH; 3739 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3740 3741 if (numops == 5) { 3742 /* 3743 * We only care about the ctime, but need to get mtime 3744 * and size for proper cache update. 3745 */ 3746 /* getattr */ 3747 argop[1].argop = OP_GETATTR; 3748 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3749 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3750 3751 /* verify - set later in loop */ 3752 verify_argop = 2; 3753 } 3754 3755 /* setattr */ 3756 svp = rp->r_server; 3757 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3758 supp_attrs = svp->sv_supp_attrs; 3759 nfs_rw_exit(&svp->sv_lock); 3760 3761 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3762 supp_attrs, &e.error, &sid_types); 3763 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3764 if (e.error) { 3765 /* req time field(s) overflow - return immediately */ 3766 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3767 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3768 opsetattr.obj_attributes); 3769 return (e.error); 3770 } 3771 omode = rp->r_attr.va_mode; 3772 3773 /* getattr */ 3774 argop[numops-1].argop = OP_GETATTR; 3775 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3776 /* 3777 * If we are setting the ACL (indicated only by vsap != NULL), request 3778 * the ACL in this getattr. The ACL returned from this getattr will be 3779 * used in updating the ACL cache. 3780 */ 3781 if (vsap != NULL) 3782 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3783 FATTR4_ACL_MASK; 3784 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3785 3786 /* 3787 * setattr iterates if the object size is set and the cached ctime 3788 * does not match the file ctime. In that case, verify the ctime first. 3789 */ 3790 3791 do { 3792 if (verify_argop != -1) { 3793 /* 3794 * Verify that the ctime match before doing setattr. 3795 */ 3796 va.va_mask = AT_CTIME; 3797 va.va_ctime = ctime; 3798 svp = rp->r_server; 3799 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3800 supp_attrs = svp->sv_supp_attrs; 3801 nfs_rw_exit(&svp->sv_lock); 3802 e.error = nfs4args_verify(&argop[verify_argop], &va, 3803 OP_VERIFY, supp_attrs); 3804 if (e.error) { 3805 /* req time field(s) overflow - return */ 3806 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3807 needrecov); 3808 break; 3809 } 3810 } 3811 3812 doqueue = 1; 3813 3814 t = gethrtime(); 3815 3816 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3817 3818 /* 3819 * Purge the access cache and ACL cache if changing either the 3820 * owner of the file, the group owner, or the mode. These may 3821 * change the access permissions of the file, so purge old 3822 * information and start over again. 3823 */ 3824 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3825 (void) nfs4_access_purge_rp(rp); 3826 if (rp->r_secattr != NULL) { 3827 mutex_enter(&rp->r_statelock); 3828 vsp = rp->r_secattr; 3829 rp->r_secattr = NULL; 3830 mutex_exit(&rp->r_statelock); 3831 if (vsp != NULL) 3832 nfs4_acl_free_cache(vsp); 3833 } 3834 } 3835 3836 /* 3837 * If res.array_len == numops, then everything succeeded, 3838 * except for possibly the final getattr. If only the 3839 * last getattr failed, give up, and don't try recovery. 3840 */ 3841 if (res.array_len == numops) { 3842 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3843 needrecov); 3844 if (! e.error) 3845 resp = &res; 3846 break; 3847 } 3848 3849 /* 3850 * if either rpc call failed or completely succeeded - done 3851 */ 3852 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3853 if (e.error) { 3854 PURGE_ATTRCACHE4(vp); 3855 if (!needrecov) { 3856 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3857 needrecov); 3858 break; 3859 } 3860 } 3861 3862 /* 3863 * Do proper retry for OLD_STATEID outside of the normal 3864 * recovery framework. 3865 */ 3866 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3867 sid_types.cur_sid_type != SPEC_SID && 3868 sid_types.cur_sid_type != NO_SID) { 3869 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3870 needrecov); 3871 nfs4_save_stateid(&stateid, &sid_types); 3872 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3873 opsetattr.obj_attributes); 3874 if (verify_argop != -1) { 3875 nfs4args_verify_free(&argop[verify_argop]); 3876 verify_argop = -1; 3877 } 3878 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3879 goto recov_retry; 3880 } 3881 3882 if (needrecov) { 3883 bool_t abort; 3884 3885 abort = nfs4_start_recovery(&e, 3886 VTOMI4(vp), vp, NULL, NULL, NULL, 3887 OP_SETATTR, NULL); 3888 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3889 needrecov); 3890 /* 3891 * Do not retry if we failed with OLD_STATEID using 3892 * a special stateid. This is done to avoid looping 3893 * with a broken server. 3894 */ 3895 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3896 (sid_types.cur_sid_type == SPEC_SID || 3897 sid_types.cur_sid_type == NO_SID)) 3898 abort = TRUE; 3899 if (!e.error) { 3900 if (res.status == NFS4ERR_BADOWNER) 3901 nfs4_log_badowner(VTOMI4(vp), 3902 OP_SETATTR); 3903 3904 e.error = geterrno4(res.status); 3905 (void) xdr_free(xdr_COMPOUND4res_clnt, 3906 (caddr_t)&res); 3907 } 3908 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3909 opsetattr.obj_attributes); 3910 if (verify_argop != -1) { 3911 nfs4args_verify_free(&argop[verify_argop]); 3912 verify_argop = -1; 3913 } 3914 if (abort == FALSE) { 3915 /* 3916 * Need to retry all possible stateids in 3917 * case the recovery error wasn't stateid 3918 * related or the stateids have become 3919 * stale (server reboot). 3920 */ 3921 nfs4_init_stateid_types(&sid_types); 3922 goto recov_retry; 3923 } 3924 return (e.error); 3925 } 3926 3927 /* 3928 * Need to call nfs4_end_op before nfs4getattr to 3929 * avoid potential nfs4_start_op deadlock. See RFE 3930 * 4777612. Calls to nfs4_invalidate_pages() and 3931 * nfs4_purge_stale_fh() might also generate over the 3932 * wire calls which my cause nfs4_start_op() deadlock. 3933 */ 3934 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3935 3936 /* 3937 * Check to update lease. 3938 */ 3939 resp = &res; 3940 if (res.status == NFS4_OK) { 3941 break; 3942 } 3943 3944 /* 3945 * Check if verify failed to see if try again 3946 */ 3947 if ((verify_argop == -1) || (res.array_len != 3)) { 3948 /* 3949 * can't continue... 3950 */ 3951 if (res.status == NFS4ERR_BADOWNER) 3952 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3953 3954 e.error = geterrno4(res.status); 3955 } else { 3956 /* 3957 * When the verify request fails, the client ctime is 3958 * not in sync with the server. This is the same as 3959 * the version 3 "not synchronized" error, and we 3960 * handle it in a similar manner (XXX do we need to???). 3961 * Use the ctime returned in the first getattr for 3962 * the input to the next verify. 3963 * If we couldn't get the attributes, then we give up 3964 * because we can't complete the operation as required. 3965 */ 3966 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3967 } 3968 if (e.error) { 3969 PURGE_ATTRCACHE4(vp); 3970 nfs4_purge_stale_fh(e.error, vp, cr); 3971 } else { 3972 /* 3973 * retry with a new verify value 3974 */ 3975 ctime = garp->n4g_va.va_ctime; 3976 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3977 resp = NULL; 3978 } 3979 if (!e.error) { 3980 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3981 opsetattr.obj_attributes); 3982 if (verify_argop != -1) { 3983 nfs4args_verify_free(&argop[verify_argop]); 3984 verify_argop = -1; 3985 } 3986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3987 goto do_again; 3988 } 3989 } while (!e.error); 3990 3991 if (e.error) { 3992 /* 3993 * If we are here, rfs4call has an irrecoverable error - return 3994 */ 3995 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3996 opsetattr.obj_attributes); 3997 if (verify_argop != -1) { 3998 nfs4args_verify_free(&argop[verify_argop]); 3999 verify_argop = -1; 4000 } 4001 if (resp) 4002 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4003 return (e.error); 4004 } 4005 4006 4007 4008 /* 4009 * If changing the size of the file, invalidate 4010 * any local cached data which is no longer part 4011 * of the file. We also possibly invalidate the 4012 * last page in the file. We could use 4013 * pvn_vpzero(), but this would mark the page as 4014 * modified and require it to be written back to 4015 * the server for no particularly good reason. 4016 * This way, if we access it, then we bring it 4017 * back in. A read should be cheaper than a 4018 * write. 4019 */ 4020 if (mask & AT_SIZE) { 4021 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4022 } 4023 4024 /* either no error or one of the postop getattr failed */ 4025 4026 /* 4027 * XXX Perform a simplified version of wcc checking. Instead of 4028 * have another getattr to get pre-op, just purge cache if 4029 * any of the ops prior to and including the getattr failed. 4030 * If the getattr succeeded then update the attrcache accordingly. 4031 */ 4032 4033 garp = NULL; 4034 if (res.status == NFS4_OK) { 4035 /* 4036 * Last getattr 4037 */ 4038 resop = &res.array[numops - 1]; 4039 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4040 } 4041 /* 4042 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4043 * rather than filling it. See the function itself for details. 4044 */ 4045 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4046 if (garp != NULL) { 4047 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4048 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4049 vs_ace4_destroy(&garp->n4g_vsa); 4050 } else { 4051 if (vsap != NULL) { 4052 /* 4053 * The ACL was supposed to be set and to be 4054 * returned in the last getattr of this 4055 * compound, but for some reason the getattr 4056 * result doesn't contain the ACL. In this 4057 * case, purge the ACL cache. 4058 */ 4059 if (rp->r_secattr != NULL) { 4060 mutex_enter(&rp->r_statelock); 4061 vsp = rp->r_secattr; 4062 rp->r_secattr = NULL; 4063 mutex_exit(&rp->r_statelock); 4064 if (vsp != NULL) 4065 nfs4_acl_free_cache(vsp); 4066 } 4067 } 4068 } 4069 } 4070 4071 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4072 /* 4073 * Set the size, rather than relying on getting it updated 4074 * via a GETATTR. With delegations the client tries to 4075 * suppress GETATTR calls. 4076 */ 4077 mutex_enter(&rp->r_statelock); 4078 rp->r_size = vap->va_size; 4079 mutex_exit(&rp->r_statelock); 4080 } 4081 4082 /* 4083 * Can free up request args and res 4084 */ 4085 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4086 opsetattr.obj_attributes); 4087 if (verify_argop != -1) { 4088 nfs4args_verify_free(&argop[verify_argop]); 4089 verify_argop = -1; 4090 } 4091 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4092 4093 /* 4094 * Some servers will change the mode to clear the setuid 4095 * and setgid bits when changing the uid or gid. The 4096 * client needs to compensate appropriately. 4097 */ 4098 if (mask & (AT_UID | AT_GID)) { 4099 int terror, do_setattr; 4100 4101 do_setattr = 0; 4102 va.va_mask = AT_MODE; 4103 terror = nfs4getattr(vp, &va, cr); 4104 if (!terror && 4105 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4106 (!(mask & AT_MODE) && va.va_mode != omode))) { 4107 va.va_mask = AT_MODE; 4108 if (mask & AT_MODE) { 4109 /* 4110 * We asked the mode to be changed and what 4111 * we just got from the server in getattr is 4112 * not what we wanted it to be, so set it now. 4113 */ 4114 va.va_mode = vap->va_mode; 4115 do_setattr = 1; 4116 } else { 4117 /* 4118 * We did not ask the mode to be changed, 4119 * Check to see that the server just cleared 4120 * I_SUID and I_GUID from it. If not then 4121 * set mode to omode with UID/GID cleared. 4122 */ 4123 if (nfs4_compare_modes(va.va_mode, omode)) { 4124 omode &= ~(S_ISUID|S_ISGID); 4125 va.va_mode = omode; 4126 do_setattr = 1; 4127 } 4128 } 4129 4130 if (do_setattr) 4131 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4132 } 4133 } 4134 4135 return (e.error); 4136 } 4137 4138 /* ARGSUSED */ 4139 static int 4140 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr) 4141 { 4142 COMPOUND4args_clnt args; 4143 COMPOUND4res_clnt res; 4144 int doqueue; 4145 uint32_t acc, resacc, argacc; 4146 rnode4_t *rp; 4147 cred_t *cred, *ncr, *ncrfree = NULL; 4148 nfs4_access_type_t cacc; 4149 int num_ops; 4150 nfs_argop4 argop[3]; 4151 nfs_resop4 *resop; 4152 bool_t needrecov = FALSE, do_getattr; 4153 nfs4_recov_state_t recov_state; 4154 int rpc_error; 4155 hrtime_t t; 4156 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4157 mntinfo4_t *mi = VTOMI4(vp); 4158 4159 if (nfs_zone() != mi->mi_zone) 4160 return (EIO); 4161 4162 acc = 0; 4163 if (mode & VREAD) 4164 acc |= ACCESS4_READ; 4165 if (mode & VWRITE) { 4166 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4167 return (EROFS); 4168 if (vp->v_type == VDIR) 4169 acc |= ACCESS4_DELETE; 4170 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4171 } 4172 if (mode & VEXEC) { 4173 if (vp->v_type == VDIR) 4174 acc |= ACCESS4_LOOKUP; 4175 else 4176 acc |= ACCESS4_EXECUTE; 4177 } 4178 4179 if (VTOR4(vp)->r_acache != NULL) { 4180 e.error = nfs4_validate_caches(vp, cr); 4181 if (e.error) 4182 return (e.error); 4183 } 4184 4185 rp = VTOR4(vp); 4186 if (vp->v_type == VDIR) { 4187 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4188 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4189 } else { 4190 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4191 ACCESS4_EXECUTE; 4192 } 4193 recov_state.rs_flags = 0; 4194 recov_state.rs_num_retry_despite_err = 0; 4195 4196 cred = cr; 4197 /* 4198 * ncr and ncrfree both initially 4199 * point to the memory area returned 4200 * by crnetadjust(); 4201 * ncrfree not NULL when exiting means 4202 * that we need to release it 4203 */ 4204 ncr = crnetadjust(cred); 4205 ncrfree = ncr; 4206 4207 tryagain: 4208 cacc = nfs4_access_check(rp, acc, cred); 4209 if (cacc == NFS4_ACCESS_ALLOWED) { 4210 if (ncrfree != NULL) 4211 crfree(ncrfree); 4212 return (0); 4213 } 4214 if (cacc == NFS4_ACCESS_DENIED) { 4215 /* 4216 * If the cred can be adjusted, try again 4217 * with the new cred. 4218 */ 4219 if (ncr != NULL) { 4220 cred = ncr; 4221 ncr = NULL; 4222 goto tryagain; 4223 } 4224 if (ncrfree != NULL) 4225 crfree(ncrfree); 4226 return (EACCES); 4227 } 4228 4229 recov_retry: 4230 /* 4231 * Don't take with r_statev4_lock here. r_deleg_type could 4232 * change as soon as lock is released. Since it is an int, 4233 * there is no atomicity issue. 4234 */ 4235 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4236 num_ops = do_getattr ? 3 : 2; 4237 4238 args.ctag = TAG_ACCESS; 4239 4240 args.array_len = num_ops; 4241 args.array = argop; 4242 4243 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4244 &recov_state, NULL)) { 4245 if (ncrfree != NULL) 4246 crfree(ncrfree); 4247 return (e.error); 4248 } 4249 4250 /* putfh target fh */ 4251 argop[0].argop = OP_CPUTFH; 4252 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4253 4254 /* access */ 4255 argop[1].argop = OP_ACCESS; 4256 argop[1].nfs_argop4_u.opaccess.access = argacc; 4257 4258 /* getattr */ 4259 if (do_getattr) { 4260 argop[2].argop = OP_GETATTR; 4261 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4262 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4263 } 4264 4265 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4266 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4267 rnode4info(VTOR4(vp)))); 4268 4269 doqueue = 1; 4270 t = gethrtime(); 4271 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4272 rpc_error = e.error; 4273 4274 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4275 if (needrecov) { 4276 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4277 "nfs4_access: initiating recovery\n")); 4278 4279 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4280 NULL, OP_ACCESS, NULL) == FALSE) { 4281 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4282 &recov_state, needrecov); 4283 if (!e.error) 4284 (void) xdr_free(xdr_COMPOUND4res_clnt, 4285 (caddr_t)&res); 4286 goto recov_retry; 4287 } 4288 } 4289 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4290 4291 if (e.error) 4292 goto out; 4293 4294 if (res.status) { 4295 e.error = geterrno4(res.status); 4296 /* 4297 * This might generate over the wire calls throught 4298 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4299 * here to avoid a deadlock. 4300 */ 4301 nfs4_purge_stale_fh(e.error, vp, cr); 4302 goto out; 4303 } 4304 resop = &res.array[1]; /* access res */ 4305 4306 resacc = resop->nfs_resop4_u.opaccess.access; 4307 4308 if (do_getattr) { 4309 resop++; /* getattr res */ 4310 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4311 t, cr, FALSE, NULL); 4312 } 4313 4314 if (!e.error) { 4315 nfs4_access_cache(rp, argacc, resacc, cred); 4316 /* 4317 * we just cached results with cred; if cred is the 4318 * adjusted credentials from crnetadjust, we do not want 4319 * to release them before exiting: hence setting ncrfree 4320 * to NULL 4321 */ 4322 if (cred != cr) 4323 ncrfree = NULL; 4324 /* XXX check the supported bits too? */ 4325 if ((acc & resacc) != acc) { 4326 /* 4327 * The following code implements the semantic 4328 * that a setuid root program has *at least* the 4329 * permissions of the user that is running the 4330 * program. See rfs3call() for more portions 4331 * of the implementation of this functionality. 4332 */ 4333 /* XXX-LP */ 4334 if (ncr != NULL) { 4335 (void) xdr_free(xdr_COMPOUND4res_clnt, 4336 (caddr_t)&res); 4337 cred = ncr; 4338 ncr = NULL; 4339 goto tryagain; 4340 } 4341 e.error = EACCES; 4342 } 4343 } 4344 4345 out: 4346 if (!rpc_error) 4347 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4348 4349 if (ncrfree != NULL) 4350 crfree(ncrfree); 4351 4352 return (e.error); 4353 } 4354 4355 static int 4356 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 4357 { 4358 COMPOUND4args_clnt args; 4359 COMPOUND4res_clnt res; 4360 int doqueue; 4361 rnode4_t *rp; 4362 nfs_argop4 argop[3]; 4363 nfs_resop4 *resop; 4364 READLINK4res *lr_res; 4365 nfs4_ga_res_t *garp; 4366 uint_t len; 4367 char *linkdata; 4368 bool_t needrecov = FALSE; 4369 nfs4_recov_state_t recov_state; 4370 hrtime_t t; 4371 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4372 4373 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4374 return (EIO); 4375 /* 4376 * Can't readlink anything other than a symbolic link. 4377 */ 4378 if (vp->v_type != VLNK) 4379 return (EINVAL); 4380 4381 rp = VTOR4(vp); 4382 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4383 e.error = nfs4_validate_caches(vp, cr); 4384 if (e.error) 4385 return (e.error); 4386 mutex_enter(&rp->r_statelock); 4387 if (rp->r_symlink.contents != NULL) { 4388 e.error = uiomove(rp->r_symlink.contents, 4389 rp->r_symlink.len, UIO_READ, uiop); 4390 mutex_exit(&rp->r_statelock); 4391 return (e.error); 4392 } 4393 mutex_exit(&rp->r_statelock); 4394 } 4395 recov_state.rs_flags = 0; 4396 recov_state.rs_num_retry_despite_err = 0; 4397 4398 recov_retry: 4399 args.array_len = 3; 4400 args.array = argop; 4401 args.ctag = TAG_READLINK; 4402 4403 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4404 if (e.error) { 4405 return (e.error); 4406 } 4407 4408 /* 0. putfh symlink fh */ 4409 argop[0].argop = OP_CPUTFH; 4410 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4411 4412 /* 1. readlink */ 4413 argop[1].argop = OP_READLINK; 4414 4415 /* 2. getattr */ 4416 argop[2].argop = OP_GETATTR; 4417 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4418 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4419 4420 doqueue = 1; 4421 4422 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4423 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4424 rnode4info(VTOR4(vp)))); 4425 4426 t = gethrtime(); 4427 4428 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4429 4430 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4431 if (needrecov) { 4432 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4433 "nfs4_readlink: initiating recovery\n")); 4434 4435 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4436 NULL, OP_READLINK, NULL) == FALSE) { 4437 if (!e.error) 4438 (void) xdr_free(xdr_COMPOUND4res_clnt, 4439 (caddr_t)&res); 4440 4441 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4442 needrecov); 4443 goto recov_retry; 4444 } 4445 } 4446 4447 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4448 4449 if (e.error) 4450 return (e.error); 4451 4452 /* 4453 * There is an path in the code below which calls 4454 * nfs4_purge_stale_fh(), which may generate otw calls through 4455 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4456 * here to avoid nfs4_start_op() deadlock. 4457 */ 4458 4459 if (res.status && (res.array_len < args.array_len)) { 4460 /* 4461 * either Putfh or Link failed 4462 */ 4463 e.error = geterrno4(res.status); 4464 nfs4_purge_stale_fh(e.error, vp, cr); 4465 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4466 return (e.error); 4467 } 4468 4469 resop = &res.array[1]; /* readlink res */ 4470 lr_res = &resop->nfs_resop4_u.opreadlink; 4471 4472 /* 4473 * treat symlink names as data 4474 */ 4475 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4476 if (linkdata != NULL) { 4477 int uio_len = len - 1; 4478 /* len includes null byte, which we won't uiomove */ 4479 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4480 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4481 mutex_enter(&rp->r_statelock); 4482 if (rp->r_symlink.contents == NULL) { 4483 rp->r_symlink.contents = linkdata; 4484 rp->r_symlink.len = uio_len; 4485 rp->r_symlink.size = len; 4486 mutex_exit(&rp->r_statelock); 4487 } else { 4488 mutex_exit(&rp->r_statelock); 4489 kmem_free(linkdata, len); 4490 } 4491 } else { 4492 kmem_free(linkdata, len); 4493 } 4494 } 4495 if (res.status == NFS4_OK) { 4496 resop++; /* getattr res */ 4497 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4498 } 4499 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4500 4501 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4502 4503 /* 4504 * The over the wire error for attempting to readlink something 4505 * other than a symbolic link is ENXIO. However, we need to 4506 * return EINVAL instead of ENXIO, so we map it here. 4507 */ 4508 return (e.error == ENXIO ? EINVAL : e.error); 4509 } 4510 4511 /* 4512 * Flush local dirty pages to stable storage on the server. 4513 * 4514 * If FNODSYNC is specified, then there is nothing to do because 4515 * metadata changes are not cached on the client before being 4516 * sent to the server. 4517 */ 4518 static int 4519 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr) 4520 { 4521 int error; 4522 4523 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4524 return (0); 4525 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4526 return (EIO); 4527 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4528 if (!error) 4529 error = VTOR4(vp)->r_error; 4530 return (error); 4531 } 4532 4533 /* 4534 * Weirdness: if the file was removed or the target of a rename 4535 * operation while it was open, it got renamed instead. Here we 4536 * remove the renamed file. 4537 */ 4538 static void 4539 nfs4_inactive(vnode_t *vp, cred_t *cr) 4540 { 4541 rnode4_t *rp; 4542 4543 ASSERT(vp != DNLC_NO_VNODE); 4544 4545 rp = VTOR4(vp); 4546 4547 if (IS_SHADOW(vp, rp)) { 4548 sv_inactive(vp); 4549 return; 4550 } 4551 4552 /* 4553 * If this is coming from the wrong zone, we let someone in the right 4554 * zone take care of it asynchronously. We can get here due to 4555 * VN_RELE() being called from pageout() or fsflush(). This call may 4556 * potentially turn into an expensive no-op if, for instance, v_count 4557 * gets incremented in the meantime, but it's still correct. 4558 */ 4559 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4560 nfs4_async_inactive(vp, cr); 4561 return; 4562 } 4563 4564 /* 4565 * Some of the cleanup steps might require over-the-wire 4566 * operations. Since VOP_INACTIVE can get called as a result of 4567 * other over-the-wire operations (e.g., an attribute cache update 4568 * can lead to a DNLC purge), doing those steps now would lead to a 4569 * nested call to the recovery framework, which can deadlock. So 4570 * do any over-the-wire cleanups asynchronously, in a separate 4571 * thread. 4572 */ 4573 4574 mutex_enter(&rp->r_os_lock); 4575 mutex_enter(&rp->r_statelock); 4576 mutex_enter(&rp->r_statev4_lock); 4577 4578 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4579 mutex_exit(&rp->r_statev4_lock); 4580 mutex_exit(&rp->r_statelock); 4581 mutex_exit(&rp->r_os_lock); 4582 nfs4_async_inactive(vp, cr); 4583 return; 4584 } 4585 4586 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4587 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4588 mutex_exit(&rp->r_statev4_lock); 4589 mutex_exit(&rp->r_statelock); 4590 mutex_exit(&rp->r_os_lock); 4591 nfs4_async_inactive(vp, cr); 4592 return; 4593 } 4594 4595 if (rp->r_unldvp != NULL) { 4596 mutex_exit(&rp->r_statev4_lock); 4597 mutex_exit(&rp->r_statelock); 4598 mutex_exit(&rp->r_os_lock); 4599 nfs4_async_inactive(vp, cr); 4600 return; 4601 } 4602 mutex_exit(&rp->r_statev4_lock); 4603 mutex_exit(&rp->r_statelock); 4604 mutex_exit(&rp->r_os_lock); 4605 4606 rp4_addfree(rp, cr); 4607 } 4608 4609 /* 4610 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4611 * various bits of state. The caller must not refer to vp after this call. 4612 */ 4613 4614 void 4615 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4616 { 4617 rnode4_t *rp = VTOR4(vp); 4618 nfs4_recov_state_t recov_state; 4619 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4620 vnode_t *unldvp; 4621 char *unlname; 4622 cred_t *unlcred; 4623 COMPOUND4args_clnt args; 4624 COMPOUND4res_clnt res, *resp; 4625 nfs_argop4 argop[2]; 4626 int doqueue; 4627 #ifdef DEBUG 4628 char *name; 4629 #endif 4630 4631 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4632 ASSERT(!IS_SHADOW(vp, rp)); 4633 4634 #ifdef DEBUG 4635 name = fn_name(VTOSV(vp)->sv_name); 4636 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4637 "release vnode %s", name)); 4638 kmem_free(name, MAXNAMELEN); 4639 #endif 4640 4641 if (vp->v_type == VREG) { 4642 bool_t recov_failed = FALSE; 4643 4644 e.error = nfs4close_all(vp, cr); 4645 if (e.error) { 4646 /* Check to see if recovery failed */ 4647 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4648 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4649 recov_failed = TRUE; 4650 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4651 if (!recov_failed) { 4652 mutex_enter(&rp->r_statelock); 4653 if (rp->r_flags & R4RECOVERR) 4654 recov_failed = TRUE; 4655 mutex_exit(&rp->r_statelock); 4656 } 4657 if (recov_failed) { 4658 NFS4_DEBUG(nfs4_client_recov_debug, 4659 (CE_NOTE, "nfs4_inactive_otw: " 4660 "close failed (recovery failure)")); 4661 } 4662 } 4663 } 4664 4665 redo: 4666 if (rp->r_unldvp == NULL) { 4667 rp4_addfree(rp, cr); 4668 return; 4669 } 4670 4671 /* 4672 * Save the vnode pointer for the directory where the 4673 * unlinked-open file got renamed, then set it to NULL 4674 * to prevent another thread from getting here before 4675 * we're done with the remove. While we have the 4676 * statelock, make local copies of the pertinent rnode 4677 * fields. If we weren't to do this in an atomic way, the 4678 * the unl* fields could become inconsistent with respect 4679 * to each other due to a race condition between this 4680 * code and nfs_remove(). See bug report 1034328. 4681 */ 4682 mutex_enter(&rp->r_statelock); 4683 if (rp->r_unldvp == NULL) { 4684 mutex_exit(&rp->r_statelock); 4685 rp4_addfree(rp, cr); 4686 return; 4687 } 4688 4689 unldvp = rp->r_unldvp; 4690 rp->r_unldvp = NULL; 4691 unlname = rp->r_unlname; 4692 rp->r_unlname = NULL; 4693 unlcred = rp->r_unlcred; 4694 rp->r_unlcred = NULL; 4695 mutex_exit(&rp->r_statelock); 4696 4697 /* 4698 * If there are any dirty pages left, then flush 4699 * them. This is unfortunate because they just 4700 * may get thrown away during the remove operation, 4701 * but we have to do this for correctness. 4702 */ 4703 if (nfs4_has_pages(vp) && 4704 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4705 ASSERT(vp->v_type != VCHR); 4706 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 4707 if (e.error) { 4708 mutex_enter(&rp->r_statelock); 4709 if (!rp->r_error) 4710 rp->r_error = e.error; 4711 mutex_exit(&rp->r_statelock); 4712 } 4713 } 4714 4715 recov_state.rs_flags = 0; 4716 recov_state.rs_num_retry_despite_err = 0; 4717 recov_retry_remove: 4718 /* 4719 * Do the remove operation on the renamed file 4720 */ 4721 args.ctag = TAG_INACTIVE; 4722 4723 /* 4724 * Remove ops: putfh dir; remove 4725 */ 4726 args.array_len = 2; 4727 args.array = argop; 4728 4729 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4730 if (e.error) { 4731 kmem_free(unlname, MAXNAMELEN); 4732 crfree(unlcred); 4733 VN_RELE(unldvp); 4734 /* 4735 * Try again; this time around r_unldvp will be NULL, so we'll 4736 * just call rp4_addfree() and return. 4737 */ 4738 goto redo; 4739 } 4740 4741 /* putfh directory */ 4742 argop[0].argop = OP_CPUTFH; 4743 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4744 4745 /* remove */ 4746 argop[1].argop = OP_CREMOVE; 4747 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4748 4749 doqueue = 1; 4750 resp = &res; 4751 4752 #if 0 /* notyet */ 4753 /* 4754 * Can't do this yet. We may be being called from 4755 * dnlc_purge_XXX while that routine is holding a 4756 * mutex lock to the nc_rele list. The calls to 4757 * nfs3_cache_wcc_data may result in calls to 4758 * dnlc_purge_XXX. This will result in a deadlock. 4759 */ 4760 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4761 if (e.error) { 4762 PURGE_ATTRCACHE4(unldvp); 4763 resp = NULL; 4764 } else if (res.status) { 4765 e.error = geterrno4(res.status); 4766 PURGE_ATTRCACHE4(unldvp); 4767 /* 4768 * This code is inactive right now 4769 * but if made active there should 4770 * be a nfs4_end_op() call before 4771 * nfs4_purge_stale_fh to avoid start_op() 4772 * deadlock. See BugId: 4948726 4773 */ 4774 nfs4_purge_stale_fh(error, unldvp, cr); 4775 } else { 4776 nfs_resop4 *resop; 4777 REMOVE4res *rm_res; 4778 4779 resop = &res.array[1]; 4780 rm_res = &resop->nfs_resop4_u.opremove; 4781 /* 4782 * Update directory cache attribute, 4783 * readdir and dnlc caches. 4784 */ 4785 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4786 } 4787 #else 4788 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4789 4790 PURGE_ATTRCACHE4(unldvp); 4791 #endif 4792 4793 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4794 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4795 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4796 if (!e.error) 4797 (void) xdr_free(xdr_COMPOUND4res_clnt, 4798 (caddr_t)&res); 4799 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4800 &recov_state, TRUE); 4801 goto recov_retry_remove; 4802 } 4803 } 4804 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4805 4806 /* 4807 * Release stuff held for the remove 4808 */ 4809 VN_RELE(unldvp); 4810 if (!e.error && resp) 4811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4812 4813 kmem_free(unlname, MAXNAMELEN); 4814 crfree(unlcred); 4815 goto redo; 4816 } 4817 4818 /* 4819 * Remote file system operations having to do with directory manipulation. 4820 */ 4821 /* ARGSUSED3 */ 4822 static int 4823 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4824 int flags, vnode_t *rdir, cred_t *cr) 4825 { 4826 int error; 4827 vnode_t *vp, *avp = NULL; 4828 rnode4_t *drp; 4829 4830 *vpp = NULL; 4831 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4832 return (EPERM); 4833 /* 4834 * if LOOKUP_XATTR, must replace dvp (object) with 4835 * object's attrdir before continuing with lookup 4836 */ 4837 if (flags & LOOKUP_XATTR) { 4838 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4839 if (error) 4840 return (error); 4841 4842 dvp = avp; 4843 4844 /* 4845 * If lookup is for "", just return dvp now. The attrdir 4846 * has already been activated (from nfs4lookup_xattr), and 4847 * the caller will RELE the original dvp -- not 4848 * the attrdir. So, set vpp and return. 4849 * Currently, when the LOOKUP_XATTR flag is 4850 * passed to VOP_LOOKUP, the name is always empty, and 4851 * shortcircuiting here avoids 3 unneeded lock/unlock 4852 * pairs. 4853 * 4854 * If a non-empty name was provided, then it is the 4855 * attribute name, and it will be looked up below. 4856 */ 4857 if (*nm == '\0') { 4858 *vpp = dvp; 4859 return (0); 4860 } 4861 4862 /* 4863 * The vfs layer never sends a name when asking for the 4864 * attrdir, so we should never get here (unless of course 4865 * name is passed at some time in future -- at which time 4866 * we'll blow up here). 4867 */ 4868 ASSERT(0); 4869 } 4870 4871 drp = VTOR4(dvp); 4872 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4873 return (EINTR); 4874 4875 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4876 nfs_rw_exit(&drp->r_rwlock); 4877 4878 /* 4879 * If vnode is a device, create special vnode. 4880 */ 4881 if (!error && ISVDEV((*vpp)->v_type)) { 4882 vp = *vpp; 4883 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4884 VN_RELE(vp); 4885 } 4886 4887 return (error); 4888 } 4889 4890 /* ARGSUSED */ 4891 static int 4892 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4893 { 4894 int error; 4895 rnode4_t *drp; 4896 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4897 mntinfo4_t *mi; 4898 4899 mi = VTOMI4(dvp); 4900 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR)) 4901 return (EINVAL); 4902 4903 drp = VTOR4(dvp); 4904 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4905 return (EINTR); 4906 4907 mutex_enter(&drp->r_statelock); 4908 /* 4909 * If the server doesn't support xattrs just return EINVAL 4910 */ 4911 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4912 mutex_exit(&drp->r_statelock); 4913 nfs_rw_exit(&drp->r_rwlock); 4914 return (EINVAL); 4915 } 4916 4917 /* 4918 * If there is a cached xattr directory entry, 4919 * use it as long as the attributes are valid. If the 4920 * attributes are not valid, take the simple approach and 4921 * free the cached value and re-fetch a new value. 4922 * 4923 * We don't negative entry cache for now, if we did we 4924 * would need to check if the file has changed on every 4925 * lookup. But xattrs don't exist very often and failing 4926 * an openattr is not much more expensive than and NVERIFY or GETATTR 4927 * so do an openattr over the wire for now. 4928 */ 4929 if (drp->r_xattr_dir != NULL) { 4930 if (ATTRCACHE4_VALID(dvp)) { 4931 VN_HOLD(drp->r_xattr_dir); 4932 *vpp = drp->r_xattr_dir; 4933 mutex_exit(&drp->r_statelock); 4934 nfs_rw_exit(&drp->r_rwlock); 4935 return (0); 4936 } 4937 VN_RELE(drp->r_xattr_dir); 4938 drp->r_xattr_dir = NULL; 4939 } 4940 mutex_exit(&drp->r_statelock); 4941 4942 error = nfs4openattr(dvp, vpp, cflag, cr); 4943 4944 nfs_rw_exit(&drp->r_rwlock); 4945 4946 return (error); 4947 } 4948 4949 static int 4950 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4951 { 4952 int error; 4953 rnode4_t *drp; 4954 4955 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 4956 4957 /* 4958 * If lookup is for "", just return dvp. Don't need 4959 * to send it over the wire, look it up in the dnlc, 4960 * or perform any access checks. 4961 */ 4962 if (*nm == '\0') { 4963 VN_HOLD(dvp); 4964 *vpp = dvp; 4965 return (0); 4966 } 4967 4968 /* 4969 * Can't do lookups in non-directories. 4970 */ 4971 if (dvp->v_type != VDIR) 4972 return (ENOTDIR); 4973 4974 /* 4975 * If lookup is for ".", just return dvp. Don't need 4976 * to send it over the wire or look it up in the dnlc, 4977 * just need to check access. 4978 */ 4979 if (nm[0] == '.' && nm[1] == '\0') { 4980 error = nfs4_access(dvp, VEXEC, 0, cr); 4981 if (error) 4982 return (error); 4983 VN_HOLD(dvp); 4984 *vpp = dvp; 4985 return (0); 4986 } 4987 4988 drp = VTOR4(dvp); 4989 if (!(drp->r_flags & R4LOOKUP)) { 4990 mutex_enter(&drp->r_statelock); 4991 drp->r_flags |= R4LOOKUP; 4992 mutex_exit(&drp->r_statelock); 4993 } 4994 4995 *vpp = NULL; 4996 /* 4997 * Lookup this name in the DNLC. If there is no entry 4998 * lookup over the wire. 4999 */ 5000 if (!skipdnlc) 5001 *vpp = dnlc_lookup(dvp, nm); 5002 if (*vpp == NULL) { 5003 /* 5004 * We need to go over the wire to lookup the name. 5005 */ 5006 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5007 } 5008 5009 /* 5010 * We hit on the dnlc 5011 */ 5012 if (*vpp != DNLC_NO_VNODE || 5013 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5014 /* 5015 * But our attrs may not be valid. 5016 */ 5017 if (ATTRCACHE4_VALID(dvp)) { 5018 error = nfs4_waitfor_purge_complete(dvp); 5019 if (error) { 5020 VN_RELE(*vpp); 5021 *vpp = NULL; 5022 return (error); 5023 } 5024 5025 /* 5026 * If after the purge completes, check to make sure 5027 * our attrs are still valid. 5028 */ 5029 if (ATTRCACHE4_VALID(dvp)) { 5030 /* 5031 * If we waited for a purge we may have 5032 * lost our vnode so look it up again. 5033 */ 5034 VN_RELE(*vpp); 5035 *vpp = dnlc_lookup(dvp, nm); 5036 if (*vpp == NULL) 5037 return (nfs4lookupnew_otw(dvp, 5038 nm, vpp, cr)); 5039 5040 /* 5041 * The access cache should almost always hit 5042 */ 5043 error = nfs4_access(dvp, VEXEC, 0, cr); 5044 5045 if (error) { 5046 VN_RELE(*vpp); 5047 *vpp = NULL; 5048 return (error); 5049 } 5050 if (*vpp == DNLC_NO_VNODE) { 5051 VN_RELE(*vpp); 5052 *vpp = NULL; 5053 return (ENOENT); 5054 } 5055 return (0); 5056 } 5057 } 5058 } 5059 5060 ASSERT(*vpp != NULL); 5061 5062 /* 5063 * We may have gotten here we have one of the following cases: 5064 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5065 * need to validate them. 5066 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5067 * must validate. 5068 * 5069 * Go to the server and check if the directory has changed, if 5070 * it hasn't we are done and can use the dnlc entry. 5071 */ 5072 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5073 } 5074 5075 /* 5076 * Go to the server and check if the directory has changed, if 5077 * it hasn't we are done and can use the dnlc entry. If it 5078 * has changed we get a new copy of its attributes and check 5079 * the access for VEXEC, then relookup the filename and 5080 * get its filehandle and attributes. 5081 * 5082 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5083 * if the NVERIFY failed we must 5084 * purge the caches 5085 * cache new attributes (will set r_time_attr_inval) 5086 * cache new access 5087 * recheck VEXEC access 5088 * add name to dnlc, possibly negative 5089 * if LOOKUP succeeded 5090 * cache new attributes 5091 * else 5092 * set a new r_time_attr_inval for dvp 5093 * check to make sure we have access 5094 * 5095 * The vpp returned is the vnode passed in if the directory is valid, 5096 * a new vnode if successful lookup, or NULL on error. 5097 */ 5098 static int 5099 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5100 { 5101 COMPOUND4args_clnt args; 5102 COMPOUND4res_clnt res; 5103 fattr4 *ver_fattr; 5104 fattr4_change dchange; 5105 int32_t *ptr; 5106 int argoplist_size = 7 * sizeof (nfs_argop4); 5107 nfs_argop4 *argop; 5108 int doqueue; 5109 mntinfo4_t *mi; 5110 nfs4_recov_state_t recov_state; 5111 hrtime_t t; 5112 int isdotdot; 5113 vnode_t *nvp; 5114 nfs_fh4 *fhp; 5115 nfs4_sharedfh_t *sfhp; 5116 nfs4_access_type_t cacc; 5117 rnode4_t *nrp; 5118 rnode4_t *drp = VTOR4(dvp); 5119 nfs4_ga_res_t *garp = NULL; 5120 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5121 5122 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5123 ASSERT(nm != NULL); 5124 ASSERT(nm[0] != '\0'); 5125 ASSERT(dvp->v_type == VDIR); 5126 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5127 ASSERT(*vpp != NULL); 5128 5129 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5130 isdotdot = 1; 5131 args.ctag = TAG_LOOKUP_VPARENT; 5132 } else { 5133 /* 5134 * Do not allow crossing of server mount points. The 5135 * only visible entries in a SRVSTUB dir are . and .. 5136 * This code handles the non-.. case. We can't even get 5137 * this far if looking up ".". 5138 */ 5139 if (VTOR4(dvp)->r_flags & R4SRVSTUB) { 5140 VN_RELE(*vpp); 5141 *vpp = NULL; 5142 return (ENOENT); 5143 } 5144 isdotdot = 0; 5145 args.ctag = TAG_LOOKUP_VALID; 5146 } 5147 5148 mi = VTOMI4(dvp); 5149 recov_state.rs_flags = 0; 5150 recov_state.rs_num_retry_despite_err = 0; 5151 5152 nvp = NULL; 5153 5154 /* Save the original mount point security information */ 5155 (void) save_mnt_secinfo(mi->mi_curr_serv); 5156 5157 recov_retry: 5158 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5159 &recov_state, NULL); 5160 if (e.error) { 5161 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5162 VN_RELE(*vpp); 5163 *vpp = NULL; 5164 return (e.error); 5165 } 5166 5167 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5168 5169 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5170 args.array_len = 7; 5171 args.array = argop; 5172 5173 /* 0. putfh file */ 5174 argop[0].argop = OP_CPUTFH; 5175 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5176 5177 /* 1. nverify the change info */ 5178 argop[1].argop = OP_NVERIFY; 5179 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5180 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5181 ver_fattr->attrlist4 = (char *)&dchange; 5182 ptr = (int32_t *)&dchange; 5183 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5184 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5185 5186 /* 2. getattr directory */ 5187 argop[2].argop = OP_GETATTR; 5188 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5189 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5190 5191 /* 3. access directory */ 5192 argop[3].argop = OP_ACCESS; 5193 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5194 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5195 5196 /* 4. lookup name */ 5197 if (isdotdot) { 5198 argop[4].argop = OP_LOOKUPP; 5199 } else { 5200 argop[4].argop = OP_CLOOKUP; 5201 argop[4].nfs_argop4_u.opclookup.cname = nm; 5202 } 5203 5204 /* 5. resulting file handle */ 5205 argop[5].argop = OP_GETFH; 5206 5207 /* 6. resulting file attributes */ 5208 argop[6].argop = OP_GETATTR; 5209 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5210 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5211 5212 doqueue = 1; 5213 t = gethrtime(); 5214 5215 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5216 5217 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5218 /* 5219 * For WRONGSEC of a non-dotdot case, send secinfo directly 5220 * from this thread, do not go thru the recovery thread since 5221 * we need the nm information. 5222 * 5223 * Not doing dotdot case because there is no specification 5224 * for (PUTFH, SECINFO "..") yet. 5225 */ 5226 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5227 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5228 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5229 &recov_state, FALSE); 5230 } else { 5231 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5232 &recov_state, TRUE); 5233 } 5234 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5235 kmem_free(argop, argoplist_size); 5236 if (!e.error) 5237 goto recov_retry; 5238 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5239 VN_RELE(*vpp); 5240 *vpp = NULL; 5241 return (e.error); 5242 } 5243 5244 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5245 OP_LOOKUP, NULL) == FALSE) { 5246 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5247 &recov_state, TRUE); 5248 5249 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5250 kmem_free(argop, argoplist_size); 5251 goto recov_retry; 5252 } 5253 } 5254 5255 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5256 5257 if (e.error || res.array_len == 0) { 5258 /* 5259 * If e.error isn't set, then reply has no ops (or we couldn't 5260 * be here). The only legal way to reply without an op array 5261 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5262 * be in the reply for all other status values. 5263 * 5264 * For valid replies without an ops array, return ENOTSUP 5265 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5266 * return EIO -- don't trust status. 5267 */ 5268 if (e.error == 0) 5269 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5270 ENOTSUP : EIO; 5271 VN_RELE(*vpp); 5272 *vpp = NULL; 5273 kmem_free(argop, argoplist_size); 5274 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5275 return (e.error); 5276 } 5277 5278 if (res.status != NFS4ERR_SAME) { 5279 e.error = geterrno4(res.status); 5280 5281 /* 5282 * The NVERIFY "failed" so the directory has changed 5283 * First make sure PUTFH succeeded and NVERIFY "failed" 5284 * cleanly. 5285 */ 5286 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5287 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5288 nfs4_purge_stale_fh(e.error, dvp, cr); 5289 VN_RELE(*vpp); 5290 *vpp = NULL; 5291 goto exit; 5292 } 5293 5294 /* 5295 * We know the NVERIFY "failed" so we must: 5296 * purge the caches (access and indirectly dnlc if needed) 5297 */ 5298 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5299 5300 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5301 nfs4_purge_stale_fh(e.error, dvp, cr); 5302 VN_RELE(*vpp); 5303 *vpp = NULL; 5304 goto exit; 5305 } 5306 5307 /* 5308 * Install new cached attributes for the directory 5309 */ 5310 nfs4_attr_cache(dvp, 5311 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5312 t, cr, FALSE, NULL); 5313 5314 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5315 nfs4_purge_stale_fh(e.error, dvp, cr); 5316 VN_RELE(*vpp); 5317 *vpp = NULL; 5318 e.error = geterrno4(res.status); 5319 goto exit; 5320 } 5321 5322 /* 5323 * Now we know the directory is valid, 5324 * cache new directory access 5325 */ 5326 nfs4_access_cache(drp, 5327 args.array[3].nfs_argop4_u.opaccess.access, 5328 res.array[3].nfs_resop4_u.opaccess.access, cr); 5329 5330 /* 5331 * recheck VEXEC access 5332 */ 5333 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5334 if (cacc != NFS4_ACCESS_ALLOWED) { 5335 /* 5336 * Directory permissions might have been revoked 5337 */ 5338 if (cacc == NFS4_ACCESS_DENIED) { 5339 e.error = EACCES; 5340 VN_RELE(*vpp); 5341 *vpp = NULL; 5342 goto exit; 5343 } 5344 5345 /* 5346 * Somehow we must not have asked for enough 5347 * so try a singleton ACCESS, should never happen. 5348 */ 5349 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5350 if (e.error) { 5351 VN_RELE(*vpp); 5352 *vpp = NULL; 5353 goto exit; 5354 } 5355 } 5356 5357 e.error = geterrno4(res.status); 5358 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5359 /* 5360 * The lookup failed, probably no entry 5361 */ 5362 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5363 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5364 } else { 5365 /* 5366 * Might be some other error, so remove 5367 * the dnlc entry to make sure we start all 5368 * over again, next time. 5369 */ 5370 dnlc_remove(dvp, nm); 5371 } 5372 VN_RELE(*vpp); 5373 *vpp = NULL; 5374 goto exit; 5375 } 5376 5377 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5378 /* 5379 * The file exists but we can't get its fh for 5380 * some unknown reason. Remove it from the dnlc 5381 * and error out to be safe. 5382 */ 5383 dnlc_remove(dvp, nm); 5384 VN_RELE(*vpp); 5385 *vpp = NULL; 5386 goto exit; 5387 } 5388 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5389 if (fhp->nfs_fh4_len == 0) { 5390 /* 5391 * The file exists but a bogus fh 5392 * some unknown reason. Remove it from the dnlc 5393 * and error out to be safe. 5394 */ 5395 e.error = ENOENT; 5396 dnlc_remove(dvp, nm); 5397 VN_RELE(*vpp); 5398 *vpp = NULL; 5399 goto exit; 5400 } 5401 sfhp = sfh4_get(fhp, mi); 5402 5403 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5404 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5405 5406 /* 5407 * Make the new rnode 5408 */ 5409 if (isdotdot) { 5410 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5411 if (e.error) { 5412 sfh4_rele(&sfhp); 5413 VN_RELE(*vpp); 5414 *vpp = NULL; 5415 goto exit; 5416 } 5417 /* 5418 * XXX if nfs4_make_dotdot uses an existing rnode 5419 * XXX it doesn't update the attributes. 5420 * XXX for now just save them again to save an OTW 5421 */ 5422 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5423 } else { 5424 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5425 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5426 /* 5427 * If v_type == VNON, then garp was NULL because 5428 * the last op in the compound failed and makenfs4node 5429 * could not find the vnode for sfhp. It created 5430 * a new vnode, so we have nothing to purge here. 5431 */ 5432 if (nvp->v_type == VNON) { 5433 vattr_t vattr; 5434 5435 vattr.va_mask = AT_TYPE; 5436 /* 5437 * N.B. We've already called nfs4_end_fop above. 5438 */ 5439 e.error = nfs4getattr(nvp, &vattr, cr); 5440 if (e.error) { 5441 sfh4_rele(&sfhp); 5442 VN_RELE(*vpp); 5443 *vpp = NULL; 5444 VN_RELE(nvp); 5445 goto exit; 5446 } 5447 nvp->v_type = vattr.va_type; 5448 } 5449 } 5450 sfh4_rele(&sfhp); 5451 5452 nrp = VTOR4(nvp); 5453 mutex_enter(&nrp->r_statev4_lock); 5454 if (!nrp->created_v4) { 5455 mutex_exit(&nrp->r_statev4_lock); 5456 dnlc_update(dvp, nm, nvp); 5457 } else 5458 mutex_exit(&nrp->r_statev4_lock); 5459 5460 VN_RELE(*vpp); 5461 *vpp = nvp; 5462 } else { 5463 hrtime_t now; 5464 hrtime_t delta = 0; 5465 5466 e.error = 0; 5467 5468 /* 5469 * Because the NVERIFY "succeeded" we know that the 5470 * directory attributes are still valid 5471 * so update r_time_attr_inval 5472 */ 5473 now = gethrtime(); 5474 mutex_enter(&drp->r_statelock); 5475 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5476 delta = now - drp->r_time_attr_saved; 5477 if (delta < mi->mi_acdirmin) 5478 delta = mi->mi_acdirmin; 5479 else if (delta > mi->mi_acdirmax) 5480 delta = mi->mi_acdirmax; 5481 } 5482 drp->r_time_attr_inval = now + delta; 5483 mutex_exit(&drp->r_statelock); 5484 dnlc_update(dvp, nm, *vpp); 5485 5486 /* 5487 * Even though we have a valid directory attr cache 5488 * and dnlc entry, we may not have access. 5489 * This should almost always hit the cache. 5490 */ 5491 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5492 if (e.error) { 5493 VN_RELE(*vpp); 5494 *vpp = NULL; 5495 } 5496 5497 if (*vpp == DNLC_NO_VNODE) { 5498 VN_RELE(*vpp); 5499 *vpp = NULL; 5500 e.error = ENOENT; 5501 } 5502 } 5503 5504 exit: 5505 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5506 kmem_free(argop, argoplist_size); 5507 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5508 return (e.error); 5509 } 5510 5511 /* 5512 * We need to go over the wire to lookup the name, but 5513 * while we are there verify the directory has not 5514 * changed but if it has, get new attributes and check access 5515 * 5516 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5517 * NVERIFY GETATTR ACCESS 5518 * 5519 * With the results: 5520 * if the NVERIFY failed we must purge the caches, add new attributes, 5521 * and cache new access. 5522 * set a new r_time_attr_inval 5523 * add name to dnlc, possibly negative 5524 * if LOOKUP succeeded 5525 * cache new attributes 5526 */ 5527 static int 5528 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5529 { 5530 COMPOUND4args_clnt args; 5531 COMPOUND4res_clnt res; 5532 fattr4 *ver_fattr; 5533 fattr4_change dchange; 5534 int32_t *ptr; 5535 nfs4_ga_res_t *garp = NULL; 5536 int argoplist_size = 9 * sizeof (nfs_argop4); 5537 nfs_argop4 *argop; 5538 int doqueue; 5539 mntinfo4_t *mi; 5540 nfs4_recov_state_t recov_state; 5541 hrtime_t t; 5542 int isdotdot; 5543 vnode_t *nvp; 5544 nfs_fh4 *fhp; 5545 nfs4_sharedfh_t *sfhp; 5546 nfs4_access_type_t cacc; 5547 rnode4_t *nrp; 5548 rnode4_t *drp = VTOR4(dvp); 5549 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5550 5551 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5552 ASSERT(nm != NULL); 5553 ASSERT(nm[0] != '\0'); 5554 ASSERT(dvp->v_type == VDIR); 5555 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5556 ASSERT(*vpp == NULL); 5557 5558 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5559 isdotdot = 1; 5560 args.ctag = TAG_LOOKUP_PARENT; 5561 } else { 5562 /* 5563 * Do not allow crossing of server mount points. The 5564 * only visible entries in a SRVSTUB dir are . and .. 5565 * This code handles the non-.. case. We can't even get 5566 * this far if looking up ".". 5567 */ 5568 if (VTOR4(dvp)->r_flags & R4SRVSTUB) 5569 return (ENOENT); 5570 5571 isdotdot = 0; 5572 args.ctag = TAG_LOOKUP; 5573 } 5574 5575 mi = VTOMI4(dvp); 5576 recov_state.rs_flags = 0; 5577 recov_state.rs_num_retry_despite_err = 0; 5578 5579 nvp = NULL; 5580 5581 /* Save the original mount point security information */ 5582 (void) save_mnt_secinfo(mi->mi_curr_serv); 5583 5584 recov_retry: 5585 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5586 &recov_state, NULL); 5587 if (e.error) { 5588 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5589 return (e.error); 5590 } 5591 5592 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5593 5594 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5595 args.array_len = 9; 5596 args.array = argop; 5597 5598 /* 0. putfh file */ 5599 argop[0].argop = OP_CPUTFH; 5600 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5601 5602 /* 1. savefh for the nverify */ 5603 argop[1].argop = OP_SAVEFH; 5604 5605 /* 2. lookup name */ 5606 if (isdotdot) { 5607 argop[2].argop = OP_LOOKUPP; 5608 } else { 5609 argop[2].argop = OP_CLOOKUP; 5610 argop[2].nfs_argop4_u.opclookup.cname = nm; 5611 } 5612 5613 /* 3. resulting file handle */ 5614 argop[3].argop = OP_GETFH; 5615 5616 /* 4. resulting file attributes */ 5617 argop[4].argop = OP_GETATTR; 5618 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5619 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5620 5621 /* 5. restorefh back the directory for the nverify */ 5622 argop[5].argop = OP_RESTOREFH; 5623 5624 /* 6. nverify the change info */ 5625 argop[6].argop = OP_NVERIFY; 5626 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5627 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5628 ver_fattr->attrlist4 = (char *)&dchange; 5629 ptr = (int32_t *)&dchange; 5630 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5631 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5632 5633 /* 7. getattr directory */ 5634 argop[7].argop = OP_GETATTR; 5635 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5636 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5637 5638 /* 8. access directory */ 5639 argop[8].argop = OP_ACCESS; 5640 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5641 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5642 5643 doqueue = 1; 5644 t = gethrtime(); 5645 5646 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5647 5648 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5649 /* 5650 * For WRONGSEC of a non-dotdot case, send secinfo directly 5651 * from this thread, do not go thru the recovery thread since 5652 * we need the nm information. 5653 * 5654 * Not doing dotdot case because there is no specification 5655 * for (PUTFH, SECINFO "..") yet. 5656 */ 5657 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5658 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5659 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5660 &recov_state, FALSE); 5661 } else { 5662 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5663 &recov_state, TRUE); 5664 } 5665 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5666 kmem_free(argop, argoplist_size); 5667 if (!e.error) 5668 goto recov_retry; 5669 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5670 return (e.error); 5671 } 5672 5673 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5674 OP_LOOKUP, NULL) == FALSE) { 5675 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5676 &recov_state, TRUE); 5677 5678 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5679 kmem_free(argop, argoplist_size); 5680 goto recov_retry; 5681 } 5682 } 5683 5684 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5685 5686 if (e.error || res.array_len == 0) { 5687 /* 5688 * If e.error isn't set, then reply has no ops (or we couldn't 5689 * be here). The only legal way to reply without an op array 5690 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5691 * be in the reply for all other status values. 5692 * 5693 * For valid replies without an ops array, return ENOTSUP 5694 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5695 * return EIO -- don't trust status. 5696 */ 5697 if (e.error == 0) 5698 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5699 ENOTSUP : EIO; 5700 5701 kmem_free(argop, argoplist_size); 5702 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5703 return (e.error); 5704 } 5705 5706 e.error = geterrno4(res.status); 5707 5708 /* 5709 * The PUTFH and SAVEFH may have failed. 5710 */ 5711 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5712 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5713 nfs4_purge_stale_fh(e.error, dvp, cr); 5714 goto exit; 5715 } 5716 5717 /* 5718 * Check if the file exists, if it does delay entering 5719 * into the dnlc until after we update the directory 5720 * attributes so we don't cause it to get purged immediately. 5721 */ 5722 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5723 /* 5724 * The lookup failed, probably no entry 5725 */ 5726 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5727 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5728 } 5729 goto exit; 5730 } 5731 5732 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5733 /* 5734 * The file exists but we can't get its fh for 5735 * some unknown reason. Error out to be safe. 5736 */ 5737 goto exit; 5738 } 5739 5740 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5741 if (fhp->nfs_fh4_len == 0) { 5742 /* 5743 * The file exists but a bogus fh 5744 * some unknown reason. Error out to be safe. 5745 */ 5746 e.error = EIO; 5747 goto exit; 5748 } 5749 sfhp = sfh4_get(fhp, mi); 5750 5751 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5752 sfh4_rele(&sfhp); 5753 e.error = EIO; 5754 goto exit; 5755 } 5756 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5757 5758 /* 5759 * The RESTOREFH may have failed 5760 */ 5761 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5762 sfh4_rele(&sfhp); 5763 e.error = EIO; 5764 goto exit; 5765 } 5766 5767 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5768 /* 5769 * First make sure the NVERIFY failed as we expected, 5770 * if it didn't then be conservative and error out 5771 * as we can't trust the directory. 5772 */ 5773 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5774 sfh4_rele(&sfhp); 5775 e.error = EIO; 5776 goto exit; 5777 } 5778 5779 /* 5780 * We know the NVERIFY "failed" so the directory has changed, 5781 * so we must: 5782 * purge the caches (access and indirectly dnlc if needed) 5783 */ 5784 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5785 5786 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5787 sfh4_rele(&sfhp); 5788 goto exit; 5789 } 5790 nfs4_attr_cache(dvp, 5791 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5792 t, cr, FALSE, NULL); 5793 5794 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5795 nfs4_purge_stale_fh(e.error, dvp, cr); 5796 sfh4_rele(&sfhp); 5797 e.error = geterrno4(res.status); 5798 goto exit; 5799 } 5800 5801 /* 5802 * Now we know the directory is valid, 5803 * cache new directory access 5804 */ 5805 nfs4_access_cache(drp, 5806 args.array[8].nfs_argop4_u.opaccess.access, 5807 res.array[8].nfs_resop4_u.opaccess.access, cr); 5808 5809 /* 5810 * recheck VEXEC access 5811 */ 5812 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5813 if (cacc != NFS4_ACCESS_ALLOWED) { 5814 /* 5815 * Directory permissions might have been revoked 5816 */ 5817 if (cacc == NFS4_ACCESS_DENIED) { 5818 sfh4_rele(&sfhp); 5819 e.error = EACCES; 5820 goto exit; 5821 } 5822 5823 /* 5824 * Somehow we must not have asked for enough 5825 * so try a singleton ACCESS should never happen 5826 */ 5827 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5828 if (e.error) { 5829 sfh4_rele(&sfhp); 5830 goto exit; 5831 } 5832 } 5833 5834 e.error = geterrno4(res.status); 5835 } else { 5836 hrtime_t now; 5837 hrtime_t delta = 0; 5838 5839 e.error = 0; 5840 5841 /* 5842 * Because the NVERIFY "succeeded" we know that the 5843 * directory attributes are still valid 5844 * so update r_time_attr_inval 5845 */ 5846 now = gethrtime(); 5847 mutex_enter(&drp->r_statelock); 5848 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5849 delta = now - drp->r_time_attr_saved; 5850 if (delta < mi->mi_acdirmin) 5851 delta = mi->mi_acdirmin; 5852 else if (delta > mi->mi_acdirmax) 5853 delta = mi->mi_acdirmax; 5854 } 5855 drp->r_time_attr_inval = now + delta; 5856 mutex_exit(&drp->r_statelock); 5857 5858 /* 5859 * Even though we have a valid directory attr cache, 5860 * we may not have access. 5861 * This should almost always hit the cache. 5862 */ 5863 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5864 if (e.error) { 5865 sfh4_rele(&sfhp); 5866 goto exit; 5867 } 5868 } 5869 5870 /* 5871 * Now we have successfully completed the lookup, if the 5872 * directory has changed we now have the valid attributes. 5873 * We also know we have directory access. 5874 * Create the new rnode and insert it in the dnlc. 5875 */ 5876 if (isdotdot) { 5877 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5878 if (e.error) { 5879 sfh4_rele(&sfhp); 5880 goto exit; 5881 } 5882 /* 5883 * XXX if nfs4_make_dotdot uses an existing rnode 5884 * XXX it doesn't update the attributes. 5885 * XXX for now just save them again to save an OTW 5886 */ 5887 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5888 } else { 5889 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5890 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5891 } 5892 sfh4_rele(&sfhp); 5893 5894 nrp = VTOR4(nvp); 5895 mutex_enter(&nrp->r_statev4_lock); 5896 if (!nrp->created_v4) { 5897 mutex_exit(&nrp->r_statev4_lock); 5898 dnlc_update(dvp, nm, nvp); 5899 } else 5900 mutex_exit(&nrp->r_statev4_lock); 5901 5902 *vpp = nvp; 5903 5904 exit: 5905 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5906 kmem_free(argop, argoplist_size); 5907 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5908 return (e.error); 5909 } 5910 5911 #ifdef DEBUG 5912 void 5913 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5914 { 5915 uint_t i, len; 5916 zoneid_t zoneid = getzoneid(); 5917 char *s; 5918 5919 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5920 for (i = 0; i < argcnt; i++) { 5921 nfs_argop4 *op = &argbase[i]; 5922 switch (op->argop) { 5923 case OP_CPUTFH: 5924 case OP_PUTFH: 5925 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5926 break; 5927 case OP_PUTROOTFH: 5928 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5929 break; 5930 case OP_CLOOKUP: 5931 s = op->nfs_argop4_u.opclookup.cname; 5932 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5933 break; 5934 case OP_LOOKUP: 5935 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5936 &len, NULL); 5937 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5938 kmem_free(s, len); 5939 break; 5940 case OP_LOOKUPP: 5941 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5942 break; 5943 case OP_GETFH: 5944 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5945 break; 5946 case OP_GETATTR: 5947 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5948 break; 5949 case OP_OPENATTR: 5950 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5951 break; 5952 default: 5953 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5954 op->argop); 5955 break; 5956 } 5957 } 5958 } 5959 #endif 5960 5961 /* 5962 * nfs4lookup_setup - constructs a multi-lookup compound request. 5963 * 5964 * Given the path "nm1/nm2/.../nmn", the following compound requests 5965 * may be created: 5966 * 5967 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5968 * is faster, for now. 5969 * 5970 * l4_getattrs indicates the type of compound requested. 5971 * 5972 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 5973 * 5974 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 5975 * 5976 * total number of ops is n + 1. 5977 * 5978 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 5979 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 5980 * before the last component, and only get attributes 5981 * for the last component. Note that the second-to-last 5982 * pathname component is XATTR_RPATH, which does NOT go 5983 * over-the-wire as a lookup. 5984 * 5985 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 5986 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 5987 * 5988 * and total number of ops is n + 5. 5989 * 5990 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 5991 * attribute directory: create lookups plus an OPENATTR 5992 * replacing the last lookup. Note that the last pathname 5993 * component is XATTR_RPATH, which does NOT go over-the-wire 5994 * as a lookup. 5995 * 5996 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 5997 * Openattr; Getfh; Getattr } 5998 * 5999 * and total number of ops is n + 5. 6000 * 6001 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6002 * nodes too. 6003 * 6004 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6005 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6006 * 6007 * and total number of ops is 3*n + 1. 6008 * 6009 * All cases: returns the index in the arg array of the final LOOKUP op, or 6010 * -1 if no LOOKUPs were used. 6011 */ 6012 int 6013 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6014 { 6015 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6016 nfs_argop4 *argbase, *argop; 6017 int arglen, argcnt; 6018 int n = 1; /* number of components */ 6019 int nga = 1; /* number of Getattr's in request */ 6020 char c = '\0', *s, *p; 6021 int lookup_idx = -1; 6022 int argoplist_size; 6023 6024 /* set lookuparg response result to 0 */ 6025 lookupargp->resp->status = NFS4_OK; 6026 6027 /* skip leading "/" or "." e.g. ".//./" if there is */ 6028 for (; ; nm++) { 6029 if (*nm != '/' && *nm != '.') 6030 break; 6031 6032 /* ".." is counted as 1 component */ 6033 if (*nm == '.' && *(nm + 1) == '.') 6034 break; 6035 } 6036 6037 /* 6038 * Find n = number of components - nm must be null terminated 6039 * Skip "." components. 6040 */ 6041 if (*nm != '\0') { 6042 for (n = 1, s = nm; *s != '\0'; s++) { 6043 if ((*s == '/') && (*(s + 1) != '/') && 6044 (*(s + 1) != '\0') && 6045 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6046 *(s + 2) == '\0'))) 6047 n++; 6048 } 6049 } else 6050 n = 0; 6051 6052 /* 6053 * nga is number of components that need Getfh+Getattr 6054 */ 6055 switch (l4_getattrs) { 6056 case LKP4_NO_ATTRIBUTES: 6057 nga = 0; 6058 break; 6059 case LKP4_ALL_ATTRIBUTES: 6060 nga = n; 6061 /* 6062 * Always have at least 1 getfh, getattr pair 6063 */ 6064 if (nga == 0) 6065 nga++; 6066 break; 6067 case LKP4_LAST_ATTRDIR: 6068 case LKP4_LAST_NAMED_ATTR: 6069 nga = n+1; 6070 break; 6071 } 6072 6073 /* 6074 * If change to use the filehandle attr instead of getfh 6075 * the following line can be deleted. 6076 */ 6077 nga *= 2; 6078 6079 /* 6080 * calculate number of ops in request as 6081 * header + trailer + lookups + getattrs 6082 */ 6083 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6084 6085 argoplist_size = arglen * sizeof (nfs_argop4); 6086 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6087 lookupargp->argsp->array = argop; 6088 6089 argcnt = lookupargp->header_len; 6090 argop += argcnt; 6091 6092 /* 6093 * loop and create a lookup op and possibly getattr/getfh for 6094 * each component. Skip "." components. 6095 */ 6096 for (s = nm; *s != '\0'; s = p) { 6097 /* 6098 * Set up a pathname struct for each component if needed 6099 */ 6100 while (*s == '/') 6101 s++; 6102 if (*s == '\0') 6103 break; 6104 for (p = s; (*p != '/') && (*p != '\0'); p++); 6105 c = *p; 6106 *p = '\0'; 6107 6108 if (s[0] == '.' && s[1] == '\0') { 6109 *p = c; 6110 continue; 6111 } 6112 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6113 strcmp(s, XATTR_RPATH) == 0) { 6114 /* getfh XXX may not be needed in future */ 6115 argop->argop = OP_GETFH; 6116 argop++; 6117 argcnt++; 6118 6119 /* getattr */ 6120 argop->argop = OP_GETATTR; 6121 argop->nfs_argop4_u.opgetattr.attr_request = 6122 lookupargp->ga_bits; 6123 argop->nfs_argop4_u.opgetattr.mi = 6124 lookupargp->mi; 6125 argop++; 6126 argcnt++; 6127 6128 /* openattr */ 6129 argop->argop = OP_OPENATTR; 6130 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6131 strcmp(s, XATTR_RPATH) == 0) { 6132 /* openattr */ 6133 argop->argop = OP_OPENATTR; 6134 argop++; 6135 argcnt++; 6136 6137 /* getfh XXX may not be needed in future */ 6138 argop->argop = OP_GETFH; 6139 argop++; 6140 argcnt++; 6141 6142 /* getattr */ 6143 argop->argop = OP_GETATTR; 6144 argop->nfs_argop4_u.opgetattr.attr_request = 6145 lookupargp->ga_bits; 6146 argop->nfs_argop4_u.opgetattr.mi = 6147 lookupargp->mi; 6148 argop++; 6149 argcnt++; 6150 *p = c; 6151 continue; 6152 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6153 /* lookupp */ 6154 argop->argop = OP_LOOKUPP; 6155 } else { 6156 /* lookup */ 6157 argop->argop = OP_LOOKUP; 6158 (void) str_to_utf8(s, 6159 &argop->nfs_argop4_u.oplookup.objname); 6160 } 6161 lookup_idx = argcnt; 6162 argop++; 6163 argcnt++; 6164 6165 *p = c; 6166 6167 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6168 /* getfh XXX may not be needed in future */ 6169 argop->argop = OP_GETFH; 6170 argop++; 6171 argcnt++; 6172 6173 /* getattr */ 6174 argop->argop = OP_GETATTR; 6175 argop->nfs_argop4_u.opgetattr.attr_request = 6176 lookupargp->ga_bits; 6177 argop->nfs_argop4_u.opgetattr.mi = 6178 lookupargp->mi; 6179 argop++; 6180 argcnt++; 6181 } 6182 } 6183 6184 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6185 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6186 if (needgetfh) { 6187 /* stick in a post-lookup getfh */ 6188 argop->argop = OP_GETFH; 6189 argcnt++; 6190 argop++; 6191 } 6192 /* post-lookup getattr */ 6193 argop->argop = OP_GETATTR; 6194 argop->nfs_argop4_u.opgetattr.attr_request = 6195 lookupargp->ga_bits; 6196 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6197 argcnt++; 6198 } 6199 argcnt += lookupargp->trailer_len; /* actual op count */ 6200 lookupargp->argsp->array_len = argcnt; 6201 lookupargp->arglen = arglen; 6202 6203 #ifdef DEBUG 6204 if (nfs4_client_lookup_debug) 6205 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6206 #endif 6207 6208 return (lookup_idx); 6209 } 6210 6211 static int 6212 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6213 { 6214 COMPOUND4args_clnt args; 6215 COMPOUND4res_clnt res; 6216 GETFH4res *gf_res = NULL; 6217 nfs_argop4 argop[4]; 6218 nfs_resop4 *resop = NULL; 6219 nfs4_sharedfh_t *sfhp; 6220 hrtime_t t; 6221 nfs4_error_t e; 6222 6223 rnode4_t *drp; 6224 int doqueue = 1; 6225 vnode_t *vp; 6226 int needrecov = 0; 6227 nfs4_recov_state_t recov_state; 6228 6229 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6230 6231 *avp = NULL; 6232 recov_state.rs_flags = 0; 6233 recov_state.rs_num_retry_despite_err = 0; 6234 6235 recov_retry: 6236 /* COMPOUND: putfh, openattr, getfh, getattr */ 6237 args.array_len = 4; 6238 args.array = argop; 6239 args.ctag = TAG_OPENATTR; 6240 6241 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6242 if (e.error) 6243 return (e.error); 6244 6245 drp = VTOR4(dvp); 6246 6247 /* putfh */ 6248 argop[0].argop = OP_CPUTFH; 6249 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6250 6251 /* openattr */ 6252 argop[1].argop = OP_OPENATTR; 6253 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6254 6255 /* getfh */ 6256 argop[2].argop = OP_GETFH; 6257 6258 /* getattr */ 6259 argop[3].argop = OP_GETATTR; 6260 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6261 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6262 6263 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6264 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6265 rnode4info(drp))); 6266 6267 t = gethrtime(); 6268 6269 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6270 6271 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6272 if (needrecov) { 6273 bool_t abort; 6274 6275 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6276 "nfs4openattr: initiating recovery\n")); 6277 6278 abort = nfs4_start_recovery(&e, 6279 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6280 OP_OPENATTR, NULL); 6281 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6282 if (!e.error) { 6283 e.error = geterrno4(res.status); 6284 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6285 } 6286 if (abort == FALSE) 6287 goto recov_retry; 6288 return (e.error); 6289 } 6290 6291 if (e.error) { 6292 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6293 return (e.error); 6294 } 6295 6296 if (res.status) { 6297 /* 6298 * If OTW errro is NOTSUPP, then it should be 6299 * translated to EINVAL. All Solaris file system 6300 * implementations return EINVAL to the syscall layer 6301 * when the attrdir cannot be created due to an 6302 * implementation restriction or noxattr mount option. 6303 */ 6304 if (res.status == NFS4ERR_NOTSUPP) { 6305 mutex_enter(&drp->r_statelock); 6306 if (drp->r_xattr_dir) 6307 VN_RELE(drp->r_xattr_dir); 6308 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6309 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6310 mutex_exit(&drp->r_statelock); 6311 6312 e.error = EINVAL; 6313 } else { 6314 e.error = geterrno4(res.status); 6315 } 6316 6317 if (e.error) { 6318 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6319 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6320 needrecov); 6321 return (e.error); 6322 } 6323 } 6324 6325 resop = &res.array[0]; /* putfh res */ 6326 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6327 6328 resop = &res.array[1]; /* openattr res */ 6329 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6330 6331 resop = &res.array[2]; /* getfh res */ 6332 gf_res = &resop->nfs_resop4_u.opgetfh; 6333 if (gf_res->object.nfs_fh4_len == 0) { 6334 *avp = NULL; 6335 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6336 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6337 return (ENOENT); 6338 } 6339 6340 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6341 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6342 dvp->v_vfsp, t, cr, dvp, 6343 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6344 sfh4_rele(&sfhp); 6345 6346 if (e.error) 6347 PURGE_ATTRCACHE4(vp); 6348 6349 mutex_enter(&vp->v_lock); 6350 vp->v_flag |= V_XATTRDIR; 6351 mutex_exit(&vp->v_lock); 6352 6353 *avp = vp; 6354 6355 mutex_enter(&drp->r_statelock); 6356 if (drp->r_xattr_dir) 6357 VN_RELE(drp->r_xattr_dir); 6358 VN_HOLD(vp); 6359 drp->r_xattr_dir = vp; 6360 6361 /* 6362 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6363 * NULL. xattrs could be created at any time, and we have no 6364 * way to update pc4_xattr_exists in the base object if/when 6365 * it happens. 6366 */ 6367 drp->r_pathconf.pc4_xattr_valid = 0; 6368 6369 mutex_exit(&drp->r_statelock); 6370 6371 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6372 6373 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6374 6375 return (0); 6376 } 6377 6378 /* ARGSUSED */ 6379 static int 6380 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6381 int mode, vnode_t **vpp, cred_t *cr, int flags) 6382 { 6383 int error; 6384 vnode_t *vp = NULL; 6385 rnode4_t *rp; 6386 struct vattr vattr; 6387 rnode4_t *drp; 6388 vnode_t *tempvp; 6389 enum createmode4 createmode; 6390 bool_t must_trunc = FALSE; 6391 int truncating = 0; 6392 6393 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6394 return (EPERM); 6395 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6396 return (EINVAL); 6397 } 6398 6399 /* . and .. have special meaning in the protocol, reject them. */ 6400 6401 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6402 return (EISDIR); 6403 6404 drp = VTOR4(dvp); 6405 6406 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6407 return (EINTR); 6408 6409 top: 6410 /* 6411 * We make a copy of the attributes because the caller does not 6412 * expect us to change what va points to. 6413 */ 6414 vattr = *va; 6415 6416 /* 6417 * If the pathname is "", then dvp is the root vnode of 6418 * a remote file mounted over a local directory. 6419 * All that needs to be done is access 6420 * checking and truncation. Note that we avoid doing 6421 * open w/ create because the parent directory might 6422 * be in pseudo-fs and the open would fail. 6423 */ 6424 if (*nm == '\0') { 6425 error = 0; 6426 VN_HOLD(dvp); 6427 vp = dvp; 6428 must_trunc = TRUE; 6429 } else { 6430 /* 6431 * We need to go over the wire, just to be sure whether the 6432 * file exists or not. Using the DNLC can be dangerous in 6433 * this case when making a decision regarding existence. 6434 */ 6435 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6436 } 6437 6438 if (exclusive) 6439 createmode = EXCLUSIVE4; 6440 else 6441 createmode = GUARDED4; 6442 6443 /* 6444 * error would be set if the file does not exist on the 6445 * server, so lets go create it. 6446 */ 6447 if (error) { 6448 goto create_otw; 6449 } 6450 6451 /* 6452 * File does exist on the server 6453 */ 6454 if (exclusive == EXCL) 6455 error = EEXIST; 6456 else if (vp->v_type == VDIR && (mode & VWRITE)) 6457 error = EISDIR; 6458 else { 6459 /* 6460 * If vnode is a device, create special vnode. 6461 */ 6462 if (ISVDEV(vp->v_type)) { 6463 tempvp = vp; 6464 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6465 VN_RELE(tempvp); 6466 } 6467 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 6468 if ((vattr.va_mask & AT_SIZE) && 6469 vp->v_type == VREG) { 6470 rp = VTOR4(vp); 6471 /* 6472 * Check here for large file handled 6473 * by LF-unaware process (as 6474 * ufs_create() does) 6475 */ 6476 if (!(flags & FOFFMAX)) { 6477 mutex_enter(&rp->r_statelock); 6478 if (rp->r_size > MAXOFF32_T) 6479 error = EOVERFLOW; 6480 mutex_exit(&rp->r_statelock); 6481 } 6482 6483 /* if error is set then we need to return */ 6484 if (error) { 6485 nfs_rw_exit(&drp->r_rwlock); 6486 VN_RELE(vp); 6487 return (error); 6488 } 6489 6490 if (must_trunc) { 6491 vattr.va_mask = AT_SIZE; 6492 error = nfs4setattr(vp, &vattr, 0, cr, 6493 NULL); 6494 } else { 6495 /* 6496 * we know we have a regular file that already 6497 * exists and we may end up truncating the file 6498 * as a result of the open_otw, so flush out 6499 * any dirty pages for this file first. 6500 */ 6501 if (nfs4_has_pages(vp) && 6502 ((rp->r_flags & R4DIRTY) || 6503 rp->r_count > 0 || 6504 rp->r_mapcnt > 0)) { 6505 error = nfs4_putpage(vp, 6506 (offset_t)0, 0, 0, cr); 6507 if (error && (error == ENOSPC || 6508 error == EDQUOT)) { 6509 mutex_enter( 6510 &rp->r_statelock); 6511 if (!rp->r_error) 6512 rp->r_error = 6513 error; 6514 mutex_exit( 6515 &rp->r_statelock); 6516 } 6517 } 6518 vattr.va_mask = (AT_SIZE | 6519 AT_TYPE | AT_MODE); 6520 vattr.va_type = VREG; 6521 createmode = UNCHECKED4; 6522 truncating = 1; 6523 goto create_otw; 6524 } 6525 } 6526 } 6527 } 6528 nfs_rw_exit(&drp->r_rwlock); 6529 if (error) { 6530 VN_RELE(vp); 6531 } else { 6532 vnode_t *tvp; 6533 rnode4_t *trp; 6534 /* 6535 * existing file got truncated, notify. 6536 */ 6537 trp = VTOR4(vp); 6538 tvp = vp; 6539 if (IS_SHADOW(vp, trp)) 6540 tvp = RTOV4(trp); 6541 vnevent_create(tvp); 6542 *vpp = vp; 6543 } 6544 return (error); 6545 6546 create_otw: 6547 dnlc_remove(dvp, nm); 6548 6549 ASSERT(vattr.va_mask & AT_TYPE); 6550 6551 /* 6552 * If not a regular file let nfs4mknod() handle it. 6553 */ 6554 if (vattr.va_type != VREG) { 6555 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6556 nfs_rw_exit(&drp->r_rwlock); 6557 return (error); 6558 } 6559 6560 /* 6561 * It _is_ a regular file. 6562 */ 6563 ASSERT(vattr.va_mask & AT_MODE); 6564 if (MANDMODE(vattr.va_mode)) { 6565 nfs_rw_exit(&drp->r_rwlock); 6566 return (EACCES); 6567 } 6568 6569 /* 6570 * If this happens to be a mknod of a regular file, then flags will 6571 * have neither FREAD or FWRITE. However, we must set at least one 6572 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6573 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6574 * set (based on openmode specified by app). 6575 */ 6576 if ((flags & (FREAD|FWRITE)) == 0) 6577 flags |= (FREAD|FWRITE); 6578 6579 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6580 6581 if (vp != NULL) { 6582 /* if create was successful, throw away the file's pages */ 6583 if (!error && (vattr.va_mask & AT_SIZE)) 6584 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6585 cr); 6586 /* release the lookup hold */ 6587 VN_RELE(vp); 6588 vp = NULL; 6589 } 6590 6591 /* 6592 * validate that we opened a regular file. This handles a misbehaving 6593 * server that returns an incorrect FH. 6594 */ 6595 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6596 error = EISDIR; 6597 VN_RELE(*vpp); 6598 } 6599 6600 /* 6601 * If this is not an exclusive create, then the CREATE 6602 * request will be made with the GUARDED mode set. This 6603 * means that the server will return EEXIST if the file 6604 * exists. The file could exist because of a retransmitted 6605 * request. In this case, we recover by starting over and 6606 * checking to see whether the file exists. This second 6607 * time through it should and a CREATE request will not be 6608 * sent. 6609 * 6610 * This handles the problem of a dangling CREATE request 6611 * which contains attributes which indicate that the file 6612 * should be truncated. This retransmitted request could 6613 * possibly truncate valid data in the file if not caught 6614 * by the duplicate request mechanism on the server or if 6615 * not caught by other means. The scenario is: 6616 * 6617 * Client transmits CREATE request with size = 0 6618 * Client times out, retransmits request. 6619 * Response to the first request arrives from the server 6620 * and the client proceeds on. 6621 * Client writes data to the file. 6622 * The server now processes retransmitted CREATE request 6623 * and truncates file. 6624 * 6625 * The use of the GUARDED CREATE request prevents this from 6626 * happening because the retransmitted CREATE would fail 6627 * with EEXIST and would not truncate the file. 6628 */ 6629 if (error == EEXIST && exclusive == NONEXCL) { 6630 #ifdef DEBUG 6631 nfs4_create_misses++; 6632 #endif 6633 goto top; 6634 } 6635 nfs_rw_exit(&drp->r_rwlock); 6636 if (truncating && !error && *vpp) { 6637 vnode_t *tvp; 6638 rnode4_t *trp; 6639 /* 6640 * existing file got truncated, notify. 6641 */ 6642 tvp = *vpp; 6643 trp = VTOR4(tvp); 6644 if (IS_SHADOW(vp, trp)) 6645 tvp = RTOV4(trp); 6646 vnevent_create(tvp); 6647 } 6648 return (error); 6649 } 6650 6651 /* 6652 * Create compound (for mkdir, mknod, symlink): 6653 * { Putfh <dfh>; Create; Getfh; Getattr } 6654 * It's okay if setattr failed to set gid - this is not considered 6655 * an error, but purge attrs in that case. 6656 */ 6657 static int 6658 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6659 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6660 { 6661 int need_end_op = FALSE; 6662 COMPOUND4args_clnt args; 6663 COMPOUND4res_clnt res, *resp = NULL; 6664 nfs_argop4 *argop; 6665 nfs_resop4 *resop; 6666 int doqueue; 6667 mntinfo4_t *mi; 6668 rnode4_t *drp = VTOR4(dvp); 6669 change_info4 *cinfo; 6670 GETFH4res *gf_res; 6671 struct vattr vattr; 6672 vnode_t *vp; 6673 fattr4 *crattr; 6674 bool_t needrecov = FALSE; 6675 nfs4_recov_state_t recov_state; 6676 nfs4_sharedfh_t *sfhp = NULL; 6677 hrtime_t t; 6678 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6679 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6680 dirattr_info_t dinfo, *dinfop; 6681 servinfo4_t *svp; 6682 bitmap4 supp_attrs; 6683 6684 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6685 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6686 6687 mi = VTOMI4(dvp); 6688 6689 /* 6690 * Make sure we properly deal with setting the right gid 6691 * on a new directory to reflect the parent's setgid bit 6692 */ 6693 setgid_flag = 0; 6694 if (type == NF4DIR) { 6695 struct vattr dva; 6696 6697 va->va_mode &= ~VSGID; 6698 dva.va_mask = AT_MODE | AT_GID; 6699 if (VOP_GETATTR(dvp, &dva, 0, cr) == 0) { 6700 6701 /* 6702 * If the parent's directory has the setgid bit set 6703 * _and_ the client was able to get a valid mapping 6704 * for the parent dir's owner_group, we want to 6705 * append NVERIFY(owner_group == dva.va_gid) and 6706 * SETTATTR to the CREATE compound. 6707 */ 6708 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6709 setgid_flag = 1; 6710 va->va_mode |= VSGID; 6711 if (dva.va_gid != GID_NOBODY) { 6712 va->va_mask |= AT_GID; 6713 va->va_gid = dva.va_gid; 6714 } 6715 } 6716 } 6717 } 6718 6719 /* 6720 * Create ops: 6721 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6722 * 5:restorefh(dir) 6:getattr(dir) 6723 * 6724 * if (setgid) 6725 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6726 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6727 * 8:nverify 9:setattr 6728 */ 6729 if (setgid_flag) { 6730 numops = 10; 6731 idx_create = 1; 6732 idx_fattr = 3; 6733 } else { 6734 numops = 7; 6735 idx_create = 2; 6736 idx_fattr = 4; 6737 } 6738 6739 ASSERT(nfs_zone() == mi->mi_zone); 6740 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6741 return (EINTR); 6742 } 6743 recov_state.rs_flags = 0; 6744 recov_state.rs_num_retry_despite_err = 0; 6745 6746 argoplist_size = numops * sizeof (nfs_argop4); 6747 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6748 6749 recov_retry: 6750 if (type == NF4LNK) 6751 args.ctag = TAG_SYMLINK; 6752 else if (type == NF4DIR) 6753 args.ctag = TAG_MKDIR; 6754 else 6755 args.ctag = TAG_MKNOD; 6756 6757 args.array_len = numops; 6758 args.array = argop; 6759 6760 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6761 nfs_rw_exit(&drp->r_rwlock); 6762 kmem_free(argop, argoplist_size); 6763 return (e.error); 6764 } 6765 need_end_op = TRUE; 6766 6767 6768 /* 0: putfh directory */ 6769 argop[0].argop = OP_CPUTFH; 6770 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6771 6772 /* 1/2: Create object */ 6773 argop[idx_create].argop = OP_CCREATE; 6774 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6775 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6776 if (type == NF4LNK) { 6777 /* 6778 * symlink, treat name as data 6779 */ 6780 ASSERT(data != NULL); 6781 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6782 (char *)data; 6783 } 6784 if (type == NF4BLK || type == NF4CHR) { 6785 ASSERT(data != NULL); 6786 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6787 *((specdata4 *)data); 6788 } 6789 6790 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6791 6792 svp = drp->r_server; 6793 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6794 supp_attrs = svp->sv_supp_attrs; 6795 nfs_rw_exit(&svp->sv_lock); 6796 6797 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6798 nfs_rw_exit(&drp->r_rwlock); 6799 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6800 e.error = EINVAL; 6801 kmem_free(argop, argoplist_size); 6802 return (e.error); 6803 } 6804 6805 /* 2/3: getfh fh of created object */ 6806 ASSERT(idx_create + 1 == idx_fattr - 1); 6807 argop[idx_create + 1].argop = OP_GETFH; 6808 6809 /* 3/4: getattr of new object */ 6810 argop[idx_fattr].argop = OP_GETATTR; 6811 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6812 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6813 6814 if (setgid_flag) { 6815 vattr_t _v; 6816 6817 argop[4].argop = OP_SAVEFH; 6818 6819 argop[5].argop = OP_CPUTFH; 6820 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6821 6822 argop[6].argop = OP_GETATTR; 6823 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6824 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6825 6826 argop[7].argop = OP_RESTOREFH; 6827 6828 /* 6829 * nverify 6830 * 6831 * XXX - Revisit the last argument to nfs4_end_op() 6832 * once 5020486 is fixed. 6833 */ 6834 _v.va_mask = AT_GID; 6835 _v.va_gid = va->va_gid; 6836 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6837 supp_attrs)) { 6838 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6839 nfs_rw_exit(&drp->r_rwlock); 6840 nfs4_fattr4_free(crattr); 6841 kmem_free(argop, argoplist_size); 6842 return (e.error); 6843 } 6844 6845 /* 6846 * setattr 6847 * 6848 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6849 * so no need for stateid or flags. Also we specify NULL 6850 * rp since we're only interested in setting owner_group 6851 * attributes. 6852 */ 6853 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6854 &e.error, 0); 6855 6856 if (e.error) { 6857 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6858 nfs_rw_exit(&drp->r_rwlock); 6859 nfs4_fattr4_free(crattr); 6860 nfs4args_verify_free(&argop[8]); 6861 kmem_free(argop, argoplist_size); 6862 return (e.error); 6863 } 6864 } else { 6865 argop[1].argop = OP_SAVEFH; 6866 6867 argop[5].argop = OP_RESTOREFH; 6868 6869 argop[6].argop = OP_GETATTR; 6870 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6871 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6872 } 6873 6874 dnlc_remove(dvp, nm); 6875 6876 doqueue = 1; 6877 t = gethrtime(); 6878 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6879 6880 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6881 if (e.error) { 6882 PURGE_ATTRCACHE4(dvp); 6883 if (!needrecov) 6884 goto out; 6885 } 6886 6887 if (needrecov) { 6888 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6889 OP_CREATE, NULL) == FALSE) { 6890 nfs4_end_op(mi, dvp, NULL, &recov_state, 6891 needrecov); 6892 need_end_op = FALSE; 6893 nfs4_fattr4_free(crattr); 6894 if (setgid_flag) { 6895 nfs4args_verify_free(&argop[8]); 6896 nfs4args_setattr_free(&argop[9]); 6897 } 6898 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6899 goto recov_retry; 6900 } 6901 } 6902 6903 resp = &res; 6904 6905 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6906 6907 if (res.status == NFS4ERR_BADOWNER) 6908 nfs4_log_badowner(mi, OP_CREATE); 6909 6910 e.error = geterrno4(res.status); 6911 6912 /* 6913 * This check is left over from when create was implemented 6914 * using a setattr op (instead of createattrs). If the 6915 * putfh/create/getfh failed, the error was returned. If 6916 * setattr/getattr failed, we keep going. 6917 * 6918 * It might be better to get rid of the GETFH also, and just 6919 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6920 * Then if any of the operations failed, we could return the 6921 * error now, and remove much of the error code below. 6922 */ 6923 if (res.array_len <= idx_fattr) { 6924 /* 6925 * Either Putfh, Create or Getfh failed. 6926 */ 6927 PURGE_ATTRCACHE4(dvp); 6928 /* 6929 * nfs4_purge_stale_fh() may generate otw calls through 6930 * nfs4_invalidate_pages. Hence the need to call 6931 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6932 */ 6933 nfs4_end_op(mi, dvp, NULL, &recov_state, 6934 needrecov); 6935 need_end_op = FALSE; 6936 nfs4_purge_stale_fh(e.error, dvp, cr); 6937 goto out; 6938 } 6939 } 6940 6941 resop = &res.array[idx_create]; /* create res */ 6942 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6943 6944 resop = &res.array[idx_create + 1]; /* getfh res */ 6945 gf_res = &resop->nfs_resop4_u.opgetfh; 6946 6947 sfhp = sfh4_get(&gf_res->object, mi); 6948 if (e.error) { 6949 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6950 fn_get(VTOSV(dvp)->sv_name, nm)); 6951 if (vp->v_type == VNON) { 6952 vattr.va_mask = AT_TYPE; 6953 /* 6954 * Need to call nfs4_end_op before nfs4getattr to avoid 6955 * potential nfs4_start_op deadlock. See RFE 4777612. 6956 */ 6957 nfs4_end_op(mi, dvp, NULL, &recov_state, 6958 needrecov); 6959 need_end_op = FALSE; 6960 e.error = nfs4getattr(vp, &vattr, cr); 6961 if (e.error) { 6962 VN_RELE(vp); 6963 *vpp = NULL; 6964 goto out; 6965 } 6966 vp->v_type = vattr.va_type; 6967 } 6968 e.error = 0; 6969 } else { 6970 *vpp = vp = makenfs4node(sfhp, 6971 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 6972 dvp->v_vfsp, t, cr, 6973 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 6974 } 6975 6976 /* 6977 * If compound succeeded, then update dir attrs 6978 */ 6979 if (res.status == NFS4_OK) { 6980 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 6981 dinfo.di_cred = cr; 6982 dinfo.di_time_call = t; 6983 dinfop = &dinfo; 6984 } else 6985 dinfop = NULL; 6986 6987 /* Update directory cache attribute, readdir and dnlc caches */ 6988 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 6989 6990 out: 6991 if (sfhp != NULL) 6992 sfh4_rele(&sfhp); 6993 nfs_rw_exit(&drp->r_rwlock); 6994 nfs4_fattr4_free(crattr); 6995 if (setgid_flag) { 6996 nfs4args_verify_free(&argop[8]); 6997 nfs4args_setattr_free(&argop[9]); 6998 } 6999 if (resp) 7000 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7001 if (need_end_op) 7002 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7003 7004 kmem_free(argop, argoplist_size); 7005 return (e.error); 7006 } 7007 7008 /* ARGSUSED */ 7009 static int 7010 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7011 int mode, vnode_t **vpp, cred_t *cr) 7012 { 7013 int error; 7014 vnode_t *vp; 7015 nfs_ftype4 type; 7016 specdata4 spec, *specp = NULL; 7017 7018 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7019 7020 switch (va->va_type) { 7021 case VCHR: 7022 case VBLK: 7023 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7024 spec.specdata1 = getmajor(va->va_rdev); 7025 spec.specdata2 = getminor(va->va_rdev); 7026 specp = &spec; 7027 break; 7028 7029 case VFIFO: 7030 type = NF4FIFO; 7031 break; 7032 case VSOCK: 7033 type = NF4SOCK; 7034 break; 7035 7036 default: 7037 return (EINVAL); 7038 } 7039 7040 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7041 if (error) { 7042 return (error); 7043 } 7044 7045 /* 7046 * This might not be needed any more; special case to deal 7047 * with problematic v2/v3 servers. Since create was unable 7048 * to set group correctly, not sure what hope setattr has. 7049 */ 7050 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7051 va->va_mask = AT_GID; 7052 (void) nfs4setattr(vp, va, 0, cr, NULL); 7053 } 7054 7055 /* 7056 * If vnode is a device create special vnode 7057 */ 7058 if (ISVDEV(vp->v_type)) { 7059 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7060 VN_RELE(vp); 7061 } else { 7062 *vpp = vp; 7063 } 7064 return (error); 7065 } 7066 7067 /* 7068 * Remove requires that the current fh be the target directory. 7069 * After the operation, the current fh is unchanged. 7070 * The compound op structure is: 7071 * PUTFH(targetdir), REMOVE 7072 * 7073 * Weirdness: if the vnode to be removed is open 7074 * we rename it instead of removing it and nfs_inactive 7075 * will remove the new name. 7076 */ 7077 static int 7078 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr) 7079 { 7080 COMPOUND4args_clnt args; 7081 COMPOUND4res_clnt res, *resp = NULL; 7082 REMOVE4res *rm_res; 7083 nfs_argop4 argop[3]; 7084 nfs_resop4 *resop; 7085 vnode_t *vp; 7086 char *tmpname; 7087 int doqueue; 7088 mntinfo4_t *mi; 7089 rnode4_t *rp; 7090 rnode4_t *drp; 7091 int needrecov = 0; 7092 nfs4_recov_state_t recov_state; 7093 int isopen; 7094 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7095 dirattr_info_t dinfo; 7096 7097 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7098 return (EPERM); 7099 drp = VTOR4(dvp); 7100 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7101 return (EINTR); 7102 7103 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7104 if (e.error) { 7105 nfs_rw_exit(&drp->r_rwlock); 7106 return (e.error); 7107 } 7108 7109 if (vp->v_type == VDIR) { 7110 VN_RELE(vp); 7111 nfs_rw_exit(&drp->r_rwlock); 7112 return (EISDIR); 7113 } 7114 7115 /* 7116 * First just remove the entry from the name cache, as it 7117 * is most likely the only entry for this vp. 7118 */ 7119 dnlc_remove(dvp, nm); 7120 7121 rp = VTOR4(vp); 7122 7123 /* 7124 * For regular file types, check to see if the file is open by looking 7125 * at the open streams. 7126 * For all other types, check the reference count on the vnode. Since 7127 * they are not opened OTW they never have an open stream. 7128 * 7129 * If the file is open, rename it to .nfsXXXX. 7130 */ 7131 if (vp->v_type != VREG) { 7132 /* 7133 * If the file has a v_count > 1 then there may be more than one 7134 * entry in the name cache due multiple links or an open file, 7135 * but we don't have the real reference count so flush all 7136 * possible entries. 7137 */ 7138 if (vp->v_count > 1) 7139 dnlc_purge_vp(vp); 7140 7141 /* 7142 * Now we have the real reference count. 7143 */ 7144 isopen = vp->v_count > 1; 7145 } else { 7146 mutex_enter(&rp->r_os_lock); 7147 isopen = list_head(&rp->r_open_streams) != NULL; 7148 mutex_exit(&rp->r_os_lock); 7149 } 7150 7151 mutex_enter(&rp->r_statelock); 7152 if (isopen && 7153 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7154 mutex_exit(&rp->r_statelock); 7155 tmpname = newname(); 7156 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr); 7157 if (e.error) 7158 kmem_free(tmpname, MAXNAMELEN); 7159 else { 7160 mutex_enter(&rp->r_statelock); 7161 if (rp->r_unldvp == NULL) { 7162 VN_HOLD(dvp); 7163 rp->r_unldvp = dvp; 7164 if (rp->r_unlcred != NULL) 7165 crfree(rp->r_unlcred); 7166 crhold(cr); 7167 rp->r_unlcred = cr; 7168 rp->r_unlname = tmpname; 7169 } else { 7170 kmem_free(rp->r_unlname, MAXNAMELEN); 7171 rp->r_unlname = tmpname; 7172 } 7173 mutex_exit(&rp->r_statelock); 7174 } 7175 VN_RELE(vp); 7176 nfs_rw_exit(&drp->r_rwlock); 7177 return (e.error); 7178 } 7179 /* 7180 * Actually remove the file/dir 7181 */ 7182 mutex_exit(&rp->r_statelock); 7183 7184 /* 7185 * We need to flush any dirty pages which happen to 7186 * be hanging around before removing the file. 7187 * This shouldn't happen very often since in NFSv4 7188 * we should be close to open consistent. 7189 */ 7190 if (nfs4_has_pages(vp) && 7191 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7192 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 7193 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7194 mutex_enter(&rp->r_statelock); 7195 if (!rp->r_error) 7196 rp->r_error = e.error; 7197 mutex_exit(&rp->r_statelock); 7198 } 7199 } 7200 7201 mi = VTOMI4(dvp); 7202 7203 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7204 recov_state.rs_flags = 0; 7205 recov_state.rs_num_retry_despite_err = 0; 7206 7207 recov_retry: 7208 /* 7209 * Remove ops: putfh dir; remove 7210 */ 7211 args.ctag = TAG_REMOVE; 7212 args.array_len = 3; 7213 args.array = argop; 7214 7215 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7216 if (e.error) { 7217 nfs_rw_exit(&drp->r_rwlock); 7218 VN_RELE(vp); 7219 return (e.error); 7220 } 7221 7222 /* putfh directory */ 7223 argop[0].argop = OP_CPUTFH; 7224 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7225 7226 /* remove */ 7227 argop[1].argop = OP_CREMOVE; 7228 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7229 7230 /* getattr dir */ 7231 argop[2].argop = OP_GETATTR; 7232 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7233 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7234 7235 doqueue = 1; 7236 dinfo.di_time_call = gethrtime(); 7237 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7238 7239 PURGE_ATTRCACHE4(vp); 7240 7241 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7242 if (e.error) 7243 PURGE_ATTRCACHE4(dvp); 7244 7245 if (needrecov) { 7246 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7247 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7248 if (!e.error) 7249 (void) xdr_free(xdr_COMPOUND4res_clnt, 7250 (caddr_t)&res); 7251 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7252 needrecov); 7253 goto recov_retry; 7254 } 7255 } 7256 7257 /* 7258 * Matching nfs4_end_op() for start_op() above. 7259 * There is a path in the code below which calls 7260 * nfs4_purge_stale_fh(), which may generate otw calls through 7261 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7262 * here to avoid nfs4_start_op() deadlock. 7263 */ 7264 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7265 7266 if (!e.error) { 7267 resp = &res; 7268 7269 if (res.status) { 7270 e.error = geterrno4(res.status); 7271 PURGE_ATTRCACHE4(dvp); 7272 nfs4_purge_stale_fh(e.error, dvp, cr); 7273 } else { 7274 resop = &res.array[1]; /* remove res */ 7275 rm_res = &resop->nfs_resop4_u.opremove; 7276 7277 dinfo.di_garp = 7278 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7279 dinfo.di_cred = cr; 7280 7281 /* Update directory attr, readdir and dnlc caches */ 7282 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7283 &dinfo); 7284 } 7285 } 7286 nfs_rw_exit(&drp->r_rwlock); 7287 if (resp) 7288 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7289 7290 if (e.error == 0) { 7291 vnode_t *tvp; 7292 rnode4_t *trp; 7293 trp = VTOR4(vp); 7294 tvp = vp; 7295 if (IS_SHADOW(vp, trp)) 7296 tvp = RTOV4(trp); 7297 vnevent_remove(tvp, dvp, nm); 7298 } 7299 VN_RELE(vp); 7300 return (e.error); 7301 } 7302 7303 /* 7304 * Link requires that the current fh be the target directory and the 7305 * saved fh be the source fh. After the operation, the current fh is unchanged. 7306 * Thus the compound op structure is: 7307 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7308 * GETATTR(file) 7309 */ 7310 static int 7311 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 7312 { 7313 COMPOUND4args_clnt args; 7314 COMPOUND4res_clnt res, *resp = NULL; 7315 LINK4res *ln_res; 7316 int argoplist_size = 7 * sizeof (nfs_argop4); 7317 nfs_argop4 *argop; 7318 nfs_resop4 *resop; 7319 vnode_t *realvp, *nvp; 7320 int doqueue; 7321 mntinfo4_t *mi; 7322 rnode4_t *tdrp; 7323 bool_t needrecov = FALSE; 7324 nfs4_recov_state_t recov_state; 7325 hrtime_t t; 7326 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7327 dirattr_info_t dinfo; 7328 7329 ASSERT(*tnm != '\0'); 7330 ASSERT(tdvp->v_type == VDIR); 7331 ASSERT(nfs4_consistent_type(tdvp)); 7332 ASSERT(nfs4_consistent_type(svp)); 7333 7334 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7335 return (EPERM); 7336 if (VOP_REALVP(svp, &realvp) == 0) { 7337 svp = realvp; 7338 ASSERT(nfs4_consistent_type(svp)); 7339 } 7340 7341 tdrp = VTOR4(tdvp); 7342 mi = VTOMI4(svp); 7343 7344 if (!(mi->mi_flags & MI4_LINK)) { 7345 return (EOPNOTSUPP); 7346 } 7347 recov_state.rs_flags = 0; 7348 recov_state.rs_num_retry_despite_err = 0; 7349 7350 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7351 return (EINTR); 7352 7353 recov_retry: 7354 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7355 7356 args.ctag = TAG_LINK; 7357 7358 /* 7359 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7360 * restorefh; getattr(fl) 7361 */ 7362 args.array_len = 7; 7363 args.array = argop; 7364 7365 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7366 if (e.error) { 7367 kmem_free(argop, argoplist_size); 7368 nfs_rw_exit(&tdrp->r_rwlock); 7369 return (e.error); 7370 } 7371 7372 /* 0. putfh file */ 7373 argop[0].argop = OP_CPUTFH; 7374 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7375 7376 /* 1. save current fh to free up the space for the dir */ 7377 argop[1].argop = OP_SAVEFH; 7378 7379 /* 2. putfh targetdir */ 7380 argop[2].argop = OP_CPUTFH; 7381 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7382 7383 /* 3. link: current_fh is targetdir, saved_fh is source */ 7384 argop[3].argop = OP_CLINK; 7385 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7386 7387 /* 4. Get attributes of dir */ 7388 argop[4].argop = OP_GETATTR; 7389 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7390 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7391 7392 /* 5. If link was successful, restore current vp to file */ 7393 argop[5].argop = OP_RESTOREFH; 7394 7395 /* 6. Get attributes of linked object */ 7396 argop[6].argop = OP_GETATTR; 7397 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7398 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7399 7400 dnlc_remove(tdvp, tnm); 7401 7402 doqueue = 1; 7403 t = gethrtime(); 7404 7405 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7406 7407 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7408 if (e.error != 0 && !needrecov) { 7409 PURGE_ATTRCACHE4(tdvp); 7410 PURGE_ATTRCACHE4(svp); 7411 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7412 goto out; 7413 } 7414 7415 if (needrecov) { 7416 bool_t abort; 7417 7418 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7419 NULL, NULL, OP_LINK, NULL); 7420 if (abort == FALSE) { 7421 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7422 needrecov); 7423 kmem_free(argop, argoplist_size); 7424 if (!e.error) 7425 (void) xdr_free(xdr_COMPOUND4res_clnt, 7426 (caddr_t)&res); 7427 goto recov_retry; 7428 } else { 7429 if (e.error != 0) { 7430 PURGE_ATTRCACHE4(tdvp); 7431 PURGE_ATTRCACHE4(svp); 7432 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7433 &recov_state, needrecov); 7434 goto out; 7435 } 7436 /* fall through for res.status case */ 7437 } 7438 } 7439 7440 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7441 7442 resp = &res; 7443 if (res.status) { 7444 /* If link succeeded, then don't return error */ 7445 e.error = geterrno4(res.status); 7446 if (res.array_len <= 4) { 7447 /* 7448 * Either Putfh, Savefh, Putfh dir, or Link failed 7449 */ 7450 PURGE_ATTRCACHE4(svp); 7451 PURGE_ATTRCACHE4(tdvp); 7452 if (e.error == EOPNOTSUPP) { 7453 mutex_enter(&mi->mi_lock); 7454 mi->mi_flags &= ~MI4_LINK; 7455 mutex_exit(&mi->mi_lock); 7456 } 7457 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7458 /* XXX-LP */ 7459 if (e.error == EISDIR && crgetuid(cr) != 0) 7460 e.error = EPERM; 7461 goto out; 7462 } 7463 } 7464 7465 /* either no error or one of the postop getattr failed */ 7466 7467 /* 7468 * XXX - if LINK succeeded, but no attrs were returned for link 7469 * file, purge its cache. 7470 * 7471 * XXX Perform a simplified version of wcc checking. Instead of 7472 * have another getattr to get pre-op, just purge cache if 7473 * any of the ops prior to and including the getattr failed. 7474 * If the getattr succeeded then update the attrcache accordingly. 7475 */ 7476 7477 /* 7478 * update cache with link file postattrs. 7479 * Note: at this point resop points to link res. 7480 */ 7481 resop = &res.array[3]; /* link res */ 7482 ln_res = &resop->nfs_resop4_u.oplink; 7483 if (res.status == NFS4_OK) { 7484 e.error = nfs4_update_attrcache(res.status, 7485 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7486 t, svp, cr); 7487 } 7488 7489 /* 7490 * Call makenfs4node to create the new shadow vp for tnm. 7491 * We pass NULL attrs because we just cached attrs for 7492 * the src object. All we're trying to accomplish is to 7493 * to create the new shadow vnode. 7494 */ 7495 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7496 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7497 7498 /* Update target cache attribute, readdir and dnlc caches */ 7499 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7500 dinfo.di_time_call = t; 7501 dinfo.di_cred = cr; 7502 7503 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7504 ASSERT(nfs4_consistent_type(tdvp)); 7505 ASSERT(nfs4_consistent_type(svp)); 7506 ASSERT(nfs4_consistent_type(nvp)); 7507 VN_RELE(nvp); 7508 7509 if (!e.error) { 7510 vnode_t *tvp; 7511 rnode4_t *trp; 7512 /* 7513 * Notify the source file of this link operation. 7514 */ 7515 trp = VTOR4(svp); 7516 tvp = svp; 7517 if (IS_SHADOW(svp, trp)) 7518 tvp = RTOV4(trp); 7519 vnevent_link(tvp); 7520 } 7521 out: 7522 kmem_free(argop, argoplist_size); 7523 if (resp) 7524 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7525 7526 nfs_rw_exit(&tdrp->r_rwlock); 7527 7528 return (e.error); 7529 } 7530 7531 static int 7532 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7533 { 7534 vnode_t *realvp; 7535 7536 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7537 return (EPERM); 7538 if (VOP_REALVP(ndvp, &realvp) == 0) 7539 ndvp = realvp; 7540 7541 return (nfs4rename(odvp, onm, ndvp, nnm, cr)); 7542 } 7543 7544 /* 7545 * nfs4rename does the real work of renaming in NFS Version 4. 7546 * 7547 * A file handle is considered volatile for renaming purposes if either 7548 * of the volatile bits are turned on. However, the compound may differ 7549 * based on the likelihood of the filehandle to change during rename. 7550 */ 7551 static int 7552 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7553 { 7554 int error; 7555 mntinfo4_t *mi; 7556 vnode_t *nvp = NULL; 7557 vnode_t *ovp = NULL; 7558 char *tmpname = NULL; 7559 rnode4_t *rp; 7560 rnode4_t *odrp; 7561 rnode4_t *ndrp; 7562 int did_link = 0; 7563 int do_link = 1; 7564 nfsstat4 stat = NFS4_OK; 7565 7566 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7567 ASSERT(nfs4_consistent_type(odvp)); 7568 ASSERT(nfs4_consistent_type(ndvp)); 7569 7570 if (onm[0] == '.' && (onm[1] == '\0' || 7571 (onm[1] == '.' && onm[2] == '\0'))) 7572 return (EINVAL); 7573 7574 if (nnm[0] == '.' && (nnm[1] == '\0' || 7575 (nnm[1] == '.' && nnm[2] == '\0'))) 7576 return (EINVAL); 7577 7578 odrp = VTOR4(odvp); 7579 ndrp = VTOR4(ndvp); 7580 if ((intptr_t)odrp < (intptr_t)ndrp) { 7581 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7582 return (EINTR); 7583 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7584 nfs_rw_exit(&odrp->r_rwlock); 7585 return (EINTR); 7586 } 7587 } else { 7588 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7589 return (EINTR); 7590 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7591 nfs_rw_exit(&ndrp->r_rwlock); 7592 return (EINTR); 7593 } 7594 } 7595 7596 /* 7597 * Lookup the target file. If it exists, it needs to be 7598 * checked to see whether it is a mount point and whether 7599 * it is active (open). 7600 */ 7601 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7602 if (!error) { 7603 int isactive; 7604 7605 ASSERT(nfs4_consistent_type(nvp)); 7606 /* 7607 * If this file has been mounted on, then just 7608 * return busy because renaming to it would remove 7609 * the mounted file system from the name space. 7610 */ 7611 if (vn_ismntpt(nvp)) { 7612 VN_RELE(nvp); 7613 nfs_rw_exit(&odrp->r_rwlock); 7614 nfs_rw_exit(&ndrp->r_rwlock); 7615 return (EBUSY); 7616 } 7617 7618 /* 7619 * First just remove the entry from the name cache, as it 7620 * is most likely the only entry for this vp. 7621 */ 7622 dnlc_remove(ndvp, nnm); 7623 7624 rp = VTOR4(nvp); 7625 7626 if (nvp->v_type != VREG) { 7627 /* 7628 * Purge the name cache of all references to this vnode 7629 * so that we can check the reference count to infer 7630 * whether it is active or not. 7631 */ 7632 if (nvp->v_count > 1) 7633 dnlc_purge_vp(nvp); 7634 7635 isactive = nvp->v_count > 1; 7636 } else { 7637 mutex_enter(&rp->r_os_lock); 7638 isactive = list_head(&rp->r_open_streams) != NULL; 7639 mutex_exit(&rp->r_os_lock); 7640 } 7641 7642 /* 7643 * If the vnode is active and is not a directory, 7644 * arrange to rename it to a 7645 * temporary file so that it will continue to be 7646 * accessible. This implements the "unlink-open-file" 7647 * semantics for the target of a rename operation. 7648 * Before doing this though, make sure that the 7649 * source and target files are not already the same. 7650 */ 7651 if (isactive && nvp->v_type != VDIR) { 7652 /* 7653 * Lookup the source name. 7654 */ 7655 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7656 7657 /* 7658 * The source name *should* already exist. 7659 */ 7660 if (error) { 7661 VN_RELE(nvp); 7662 nfs_rw_exit(&odrp->r_rwlock); 7663 nfs_rw_exit(&ndrp->r_rwlock); 7664 return (error); 7665 } 7666 7667 ASSERT(nfs4_consistent_type(ovp)); 7668 7669 /* 7670 * Compare the two vnodes. If they are the same, 7671 * just release all held vnodes and return success. 7672 */ 7673 if (VN_CMP(ovp, nvp)) { 7674 VN_RELE(ovp); 7675 VN_RELE(nvp); 7676 nfs_rw_exit(&odrp->r_rwlock); 7677 nfs_rw_exit(&ndrp->r_rwlock); 7678 return (0); 7679 } 7680 7681 /* 7682 * Can't mix and match directories and non- 7683 * directories in rename operations. We already 7684 * know that the target is not a directory. If 7685 * the source is a directory, return an error. 7686 */ 7687 if (ovp->v_type == VDIR) { 7688 VN_RELE(ovp); 7689 VN_RELE(nvp); 7690 nfs_rw_exit(&odrp->r_rwlock); 7691 nfs_rw_exit(&ndrp->r_rwlock); 7692 return (ENOTDIR); 7693 } 7694 link_call: 7695 /* 7696 * The target file exists, is not the same as 7697 * the source file, and is active. We first 7698 * try to Link it to a temporary filename to 7699 * avoid having the server removing the file 7700 * completely (which could cause data loss to 7701 * the user's POV in the event the Rename fails 7702 * -- see bug 1165874). 7703 */ 7704 /* 7705 * The do_link and did_link booleans are 7706 * introduced in the event we get NFS4ERR_FILE_OPEN 7707 * returned for the Rename. Some servers can 7708 * not Rename over an Open file, so they return 7709 * this error. The client needs to Remove the 7710 * newly created Link and do two Renames, just 7711 * as if the server didn't support LINK. 7712 */ 7713 tmpname = newname(); 7714 error = 0; 7715 7716 if (do_link) { 7717 error = nfs4_link(ndvp, nvp, tmpname, cr); 7718 } 7719 if (error == EOPNOTSUPP || !do_link) { 7720 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7721 cr); 7722 did_link = 0; 7723 } else { 7724 did_link = 1; 7725 } 7726 if (error) { 7727 kmem_free(tmpname, MAXNAMELEN); 7728 VN_RELE(ovp); 7729 VN_RELE(nvp); 7730 nfs_rw_exit(&odrp->r_rwlock); 7731 nfs_rw_exit(&ndrp->r_rwlock); 7732 return (error); 7733 } 7734 7735 mutex_enter(&rp->r_statelock); 7736 if (rp->r_unldvp == NULL) { 7737 VN_HOLD(ndvp); 7738 rp->r_unldvp = ndvp; 7739 if (rp->r_unlcred != NULL) 7740 crfree(rp->r_unlcred); 7741 crhold(cr); 7742 rp->r_unlcred = cr; 7743 rp->r_unlname = tmpname; 7744 } else { 7745 if (rp->r_unlname) 7746 kmem_free(rp->r_unlname, MAXNAMELEN); 7747 rp->r_unlname = tmpname; 7748 } 7749 mutex_exit(&rp->r_statelock); 7750 } 7751 7752 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7753 7754 ASSERT(nfs4_consistent_type(nvp)); 7755 } 7756 7757 if (ovp == NULL) { 7758 /* 7759 * When renaming directories to be a subdirectory of a 7760 * different parent, the dnlc entry for ".." will no 7761 * longer be valid, so it must be removed. 7762 * 7763 * We do a lookup here to determine whether we are renaming 7764 * a directory and we need to check if we are renaming 7765 * an unlinked file. This might have already been done 7766 * in previous code, so we check ovp == NULL to avoid 7767 * doing it twice. 7768 */ 7769 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7770 /* 7771 * The source name *should* already exist. 7772 */ 7773 if (error) { 7774 nfs_rw_exit(&odrp->r_rwlock); 7775 nfs_rw_exit(&ndrp->r_rwlock); 7776 if (nvp) { 7777 VN_RELE(nvp); 7778 } 7779 return (error); 7780 } 7781 ASSERT(ovp != NULL); 7782 ASSERT(nfs4_consistent_type(ovp)); 7783 } 7784 7785 /* 7786 * Is the object being renamed a dir, and if so, is 7787 * it being renamed to a child of itself? The underlying 7788 * fs should ultimately return EINVAL for this case; 7789 * however, buggy beta non-Solaris NFSv4 servers at 7790 * interop testing events have allowed this behavior, 7791 * and it caused our client to panic due to a recursive 7792 * mutex_enter in fn_move. 7793 * 7794 * The tedious locking in fn_move could be changed to 7795 * deal with this case, and the client could avoid the 7796 * panic; however, the client would just confuse itself 7797 * later and misbehave. A better way to handle the broken 7798 * server is to detect this condition and return EINVAL 7799 * without ever sending the the bogus rename to the server. 7800 * We know the rename is invalid -- just fail it now. 7801 */ 7802 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7803 VN_RELE(ovp); 7804 nfs_rw_exit(&odrp->r_rwlock); 7805 nfs_rw_exit(&ndrp->r_rwlock); 7806 if (nvp) { 7807 VN_RELE(nvp); 7808 } 7809 return (EINVAL); 7810 } 7811 7812 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7813 7814 /* 7815 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7816 * possible for the filehandle to change due to the rename. 7817 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7818 * the fh will not change because of the rename, but we still need 7819 * to update its rnode entry with the new name for 7820 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7821 * has no effect on these for now, but for future improvements, 7822 * we might want to use it too to simplify handling of files 7823 * that are open with that flag on. (XXX) 7824 */ 7825 mi = VTOMI4(odvp); 7826 if (NFS4_VOLATILE_FH(mi)) { 7827 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7828 &stat); 7829 } else { 7830 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7831 &stat); 7832 } 7833 ASSERT(nfs4_consistent_type(odvp)); 7834 ASSERT(nfs4_consistent_type(ndvp)); 7835 ASSERT(nfs4_consistent_type(ovp)); 7836 7837 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7838 do_link = 0; 7839 /* 7840 * Before the 'link_call' code, we did a nfs4_lookup 7841 * that puts a VN_HOLD on nvp. After the nfs4_link 7842 * call we call VN_RELE to match that hold. We need 7843 * to place an additional VN_HOLD here since we will 7844 * be hitting that VN_RELE again. 7845 */ 7846 VN_HOLD(nvp); 7847 7848 (void) nfs4_remove(ndvp, tmpname, cr); 7849 7850 /* Undo the unlinked file naming stuff we just did */ 7851 mutex_enter(&rp->r_statelock); 7852 if (rp->r_unldvp) { 7853 VN_RELE(ndvp); 7854 rp->r_unldvp = NULL; 7855 if (rp->r_unlcred != NULL) 7856 crfree(rp->r_unlcred); 7857 rp->r_unlcred = NULL; 7858 /* rp->r_unlanme points to tmpname */ 7859 if (rp->r_unlname) 7860 kmem_free(rp->r_unlname, MAXNAMELEN); 7861 rp->r_unlname = NULL; 7862 } 7863 mutex_exit(&rp->r_statelock); 7864 7865 if (nvp) { 7866 VN_RELE(nvp); 7867 } 7868 goto link_call; 7869 } 7870 7871 if (error) { 7872 VN_RELE(ovp); 7873 nfs_rw_exit(&odrp->r_rwlock); 7874 nfs_rw_exit(&ndrp->r_rwlock); 7875 if (nvp) { 7876 VN_RELE(nvp); 7877 } 7878 return (error); 7879 } 7880 7881 /* 7882 * when renaming directories to be a subdirectory of a 7883 * different parent, the dnlc entry for ".." will no 7884 * longer be valid, so it must be removed 7885 */ 7886 rp = VTOR4(ovp); 7887 if (ndvp != odvp) { 7888 if (ovp->v_type == VDIR) { 7889 dnlc_remove(ovp, ".."); 7890 if (rp->r_dir != NULL) 7891 nfs4_purge_rddir_cache(ovp); 7892 } 7893 } 7894 7895 /* 7896 * If we are renaming the unlinked file, update the 7897 * r_unldvp and r_unlname as needed. 7898 */ 7899 mutex_enter(&rp->r_statelock); 7900 if (rp->r_unldvp != NULL) { 7901 if (strcmp(rp->r_unlname, onm) == 0) { 7902 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7903 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7904 if (ndvp != rp->r_unldvp) { 7905 VN_RELE(rp->r_unldvp); 7906 rp->r_unldvp = ndvp; 7907 VN_HOLD(ndvp); 7908 } 7909 } 7910 } 7911 mutex_exit(&rp->r_statelock); 7912 7913 /* 7914 * Notify the rename vnevents to source vnode, and to the target 7915 * vnode if it already existed. 7916 */ 7917 if (error == 0) { 7918 vnode_t *tvp; 7919 rnode4_t *trp; 7920 /* 7921 * Notify the vnode. Each links is represented by 7922 * a different vnode, in nfsv4. 7923 */ 7924 if (nvp) { 7925 trp = VTOR4(nvp); 7926 tvp = nvp; 7927 if (IS_SHADOW(nvp, trp)) 7928 tvp = RTOV4(trp); 7929 vnevent_rename_dest(tvp, ndvp, nnm); 7930 } 7931 7932 /* 7933 * if the source and destination directory are not the 7934 * same notify the destination directory. 7935 */ 7936 if (VTOR4(odvp) != VTOR4(ndvp)) { 7937 trp = VTOR4(ndvp); 7938 tvp = ndvp; 7939 if (IS_SHADOW(ndvp, trp)) 7940 tvp = RTOV4(trp); 7941 vnevent_rename_dest_dir(tvp); 7942 } 7943 7944 trp = VTOR4(ovp); 7945 tvp = ovp; 7946 if (IS_SHADOW(ovp, trp)) 7947 tvp = RTOV4(trp); 7948 vnevent_rename_src(tvp, odvp, onm); 7949 } 7950 7951 if (nvp) { 7952 VN_RELE(nvp); 7953 } 7954 VN_RELE(ovp); 7955 7956 nfs_rw_exit(&odrp->r_rwlock); 7957 nfs_rw_exit(&ndrp->r_rwlock); 7958 7959 return (error); 7960 } 7961 7962 /* 7963 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 7964 * when it is known that the filehandle is persistent through rename. 7965 * 7966 * Rename requires that the current fh be the target directory and the 7967 * saved fh be the source directory. After the operation, the current fh 7968 * is unchanged. 7969 * The compound op structure for persistent fh rename is: 7970 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 7971 * Rather than bother with the directory postop args, we'll simply 7972 * update that a change occured in the cache, so no post-op getattrs. 7973 */ 7974 static int 7975 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 7976 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 7977 { 7978 COMPOUND4args_clnt args; 7979 COMPOUND4res_clnt res, *resp = NULL; 7980 nfs_argop4 *argop; 7981 nfs_resop4 *resop; 7982 int doqueue, argoplist_size; 7983 mntinfo4_t *mi; 7984 rnode4_t *odrp = VTOR4(odvp); 7985 rnode4_t *ndrp = VTOR4(ndvp); 7986 RENAME4res *rn_res; 7987 bool_t needrecov; 7988 nfs4_recov_state_t recov_state; 7989 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7990 dirattr_info_t dinfo, *dinfop; 7991 7992 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7993 7994 recov_state.rs_flags = 0; 7995 recov_state.rs_num_retry_despite_err = 0; 7996 7997 /* 7998 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 7999 * 8000 * If source/target are different dirs, then append putfh(src); getattr 8001 */ 8002 args.array_len = (odvp == ndvp) ? 5 : 7; 8003 argoplist_size = args.array_len * sizeof (nfs_argop4); 8004 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8005 8006 recov_retry: 8007 *statp = NFS4_OK; 8008 8009 /* No need to Lookup the file, persistent fh */ 8010 args.ctag = TAG_RENAME; 8011 8012 mi = VTOMI4(odvp); 8013 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8014 if (e.error) { 8015 kmem_free(argop, argoplist_size); 8016 return (e.error); 8017 } 8018 8019 /* 0: putfh source directory */ 8020 argop[0].argop = OP_CPUTFH; 8021 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8022 8023 /* 1: Save source fh to free up current for target */ 8024 argop[1].argop = OP_SAVEFH; 8025 8026 /* 2: putfh targetdir */ 8027 argop[2].argop = OP_CPUTFH; 8028 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8029 8030 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8031 argop[3].argop = OP_CRENAME; 8032 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8033 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8034 8035 /* 4: getattr (targetdir) */ 8036 argop[4].argop = OP_GETATTR; 8037 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8038 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8039 8040 if (ndvp != odvp) { 8041 8042 /* 5: putfh (sourcedir) */ 8043 argop[5].argop = OP_CPUTFH; 8044 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8045 8046 /* 6: getattr (sourcedir) */ 8047 argop[6].argop = OP_GETATTR; 8048 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8049 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8050 } 8051 8052 dnlc_remove(odvp, onm); 8053 dnlc_remove(ndvp, nnm); 8054 8055 doqueue = 1; 8056 dinfo.di_time_call = gethrtime(); 8057 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8058 8059 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8060 if (e.error) { 8061 PURGE_ATTRCACHE4(odvp); 8062 PURGE_ATTRCACHE4(ndvp); 8063 } else { 8064 *statp = res.status; 8065 } 8066 8067 if (needrecov) { 8068 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8069 OP_RENAME, NULL) == FALSE) { 8070 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8071 if (!e.error) 8072 (void) xdr_free(xdr_COMPOUND4res_clnt, 8073 (caddr_t)&res); 8074 goto recov_retry; 8075 } 8076 } 8077 8078 if (!e.error) { 8079 resp = &res; 8080 /* 8081 * as long as OP_RENAME 8082 */ 8083 if (res.status != NFS4_OK && res.array_len <= 4) { 8084 e.error = geterrno4(res.status); 8085 PURGE_ATTRCACHE4(odvp); 8086 PURGE_ATTRCACHE4(ndvp); 8087 /* 8088 * System V defines rename to return EEXIST, not 8089 * ENOTEMPTY if the target directory is not empty. 8090 * Over the wire, the error is NFSERR_ENOTEMPTY 8091 * which geterrno4 maps to ENOTEMPTY. 8092 */ 8093 if (e.error == ENOTEMPTY) 8094 e.error = EEXIST; 8095 } else { 8096 8097 resop = &res.array[3]; /* rename res */ 8098 rn_res = &resop->nfs_resop4_u.oprename; 8099 8100 if (res.status == NFS4_OK) { 8101 /* 8102 * Update target attribute, readdir and dnlc 8103 * caches. 8104 */ 8105 dinfo.di_garp = 8106 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8107 dinfo.di_cred = cr; 8108 dinfop = &dinfo; 8109 } else 8110 dinfop = NULL; 8111 8112 nfs4_update_dircaches(&rn_res->target_cinfo, 8113 ndvp, NULL, NULL, dinfop); 8114 8115 /* 8116 * Update source attribute, readdir and dnlc caches 8117 * 8118 */ 8119 if (ndvp != odvp) { 8120 if (dinfop) 8121 dinfo.di_garp = 8122 &(res.array[6].nfs_resop4_u. 8123 opgetattr.ga_res); 8124 8125 nfs4_update_dircaches(&rn_res->source_cinfo, 8126 odvp, NULL, NULL, dinfop); 8127 } 8128 8129 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8130 nnm); 8131 } 8132 } 8133 8134 if (resp) 8135 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8136 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8137 kmem_free(argop, argoplist_size); 8138 8139 return (e.error); 8140 } 8141 8142 /* 8143 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8144 * it is possible for the filehandle to change due to the rename. 8145 * 8146 * The compound req in this case includes a post-rename lookup and getattr 8147 * to ensure that we have the correct fh and attributes for the object. 8148 * 8149 * Rename requires that the current fh be the target directory and the 8150 * saved fh be the source directory. After the operation, the current fh 8151 * is unchanged. 8152 * 8153 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8154 * update the filehandle for the renamed object. We also get the old 8155 * filehandle for historical reasons; this should be taken out sometime. 8156 * This results in a rather cumbersome compound... 8157 * 8158 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8159 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8160 * 8161 */ 8162 static int 8163 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8164 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8165 { 8166 COMPOUND4args_clnt args; 8167 COMPOUND4res_clnt res, *resp = NULL; 8168 int argoplist_size; 8169 nfs_argop4 *argop; 8170 nfs_resop4 *resop; 8171 int doqueue; 8172 mntinfo4_t *mi; 8173 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8174 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8175 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8176 RENAME4res *rn_res; 8177 GETFH4res *ngf_res; 8178 bool_t needrecov; 8179 nfs4_recov_state_t recov_state; 8180 hrtime_t t; 8181 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8182 dirattr_info_t dinfo, *dinfop = &dinfo; 8183 8184 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8185 8186 recov_state.rs_flags = 0; 8187 recov_state.rs_num_retry_despite_err = 0; 8188 8189 recov_retry: 8190 *statp = NFS4_OK; 8191 8192 /* 8193 * There is a window between the RPC and updating the path and 8194 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8195 * code, so that it doesn't try to use the old path during that 8196 * window. 8197 */ 8198 mutex_enter(&orp->r_statelock); 8199 while (orp->r_flags & R4RECEXPFH) { 8200 klwp_t *lwp = ttolwp(curthread); 8201 8202 if (lwp != NULL) 8203 lwp->lwp_nostop++; 8204 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8205 mutex_exit(&orp->r_statelock); 8206 if (lwp != NULL) 8207 lwp->lwp_nostop--; 8208 return (EINTR); 8209 } 8210 if (lwp != NULL) 8211 lwp->lwp_nostop--; 8212 } 8213 orp->r_flags |= R4RECEXPFH; 8214 mutex_exit(&orp->r_statelock); 8215 8216 mi = VTOMI4(odvp); 8217 8218 args.ctag = TAG_RENAME_VFH; 8219 args.array_len = (odvp == ndvp) ? 10 : 12; 8220 argoplist_size = args.array_len * sizeof (nfs_argop4); 8221 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8222 8223 /* 8224 * Rename ops: 8225 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8226 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8227 * LOOKUP(trgt), GETFH(new), GETATTR, 8228 * 8229 * if (odvp != ndvp) 8230 * add putfh(sourcedir), getattr(sourcedir) } 8231 */ 8232 args.array = argop; 8233 8234 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8235 &recov_state, NULL); 8236 if (e.error) { 8237 kmem_free(argop, argoplist_size); 8238 mutex_enter(&orp->r_statelock); 8239 orp->r_flags &= ~R4RECEXPFH; 8240 cv_broadcast(&orp->r_cv); 8241 mutex_exit(&orp->r_statelock); 8242 return (e.error); 8243 } 8244 8245 /* 0: putfh source directory */ 8246 argop[0].argop = OP_CPUTFH; 8247 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8248 8249 /* 1: Save source fh to free up current for target */ 8250 argop[1].argop = OP_SAVEFH; 8251 8252 /* 2: Lookup pre-rename fh of renamed object */ 8253 argop[2].argop = OP_CLOOKUP; 8254 argop[2].nfs_argop4_u.opclookup.cname = onm; 8255 8256 /* 3: getfh fh of renamed object (before rename) */ 8257 argop[3].argop = OP_GETFH; 8258 8259 /* 4: putfh targetdir */ 8260 argop[4].argop = OP_CPUTFH; 8261 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8262 8263 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8264 argop[5].argop = OP_CRENAME; 8265 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8266 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8267 8268 /* 6: getattr of target dir (post op attrs) */ 8269 argop[6].argop = OP_GETATTR; 8270 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8271 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8272 8273 /* 7: Lookup post-rename fh of renamed object */ 8274 argop[7].argop = OP_CLOOKUP; 8275 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8276 8277 /* 8: getfh fh of renamed object (after rename) */ 8278 argop[8].argop = OP_GETFH; 8279 8280 /* 9: getattr of renamed object */ 8281 argop[9].argop = OP_GETATTR; 8282 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8283 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8284 8285 /* 8286 * If source/target dirs are different, then get new post-op 8287 * attrs for source dir also. 8288 */ 8289 if (ndvp != odvp) { 8290 /* 10: putfh (sourcedir) */ 8291 argop[10].argop = OP_CPUTFH; 8292 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8293 8294 /* 11: getattr (sourcedir) */ 8295 argop[11].argop = OP_GETATTR; 8296 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8297 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8298 } 8299 8300 dnlc_remove(odvp, onm); 8301 dnlc_remove(ndvp, nnm); 8302 8303 doqueue = 1; 8304 t = gethrtime(); 8305 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8306 8307 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8308 if (e.error) { 8309 PURGE_ATTRCACHE4(odvp); 8310 PURGE_ATTRCACHE4(ndvp); 8311 if (!needrecov) { 8312 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8313 &recov_state, needrecov); 8314 goto out; 8315 } 8316 } else { 8317 *statp = res.status; 8318 } 8319 8320 if (needrecov) { 8321 bool_t abort; 8322 8323 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8324 OP_RENAME, NULL); 8325 if (abort == FALSE) { 8326 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8327 &recov_state, needrecov); 8328 kmem_free(argop, argoplist_size); 8329 if (!e.error) 8330 (void) xdr_free(xdr_COMPOUND4res_clnt, 8331 (caddr_t)&res); 8332 mutex_enter(&orp->r_statelock); 8333 orp->r_flags &= ~R4RECEXPFH; 8334 cv_broadcast(&orp->r_cv); 8335 mutex_exit(&orp->r_statelock); 8336 goto recov_retry; 8337 } else { 8338 if (e.error != 0) { 8339 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8340 &recov_state, needrecov); 8341 goto out; 8342 } 8343 /* fall through for res.status case */ 8344 } 8345 } 8346 8347 resp = &res; 8348 /* 8349 * If OP_RENAME (or any prev op) failed, then return an error. 8350 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8351 */ 8352 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8353 /* 8354 * Error in an op other than last Getattr 8355 */ 8356 e.error = geterrno4(res.status); 8357 PURGE_ATTRCACHE4(odvp); 8358 PURGE_ATTRCACHE4(ndvp); 8359 /* 8360 * System V defines rename to return EEXIST, not 8361 * ENOTEMPTY if the target directory is not empty. 8362 * Over the wire, the error is NFSERR_ENOTEMPTY 8363 * which geterrno4 maps to ENOTEMPTY. 8364 */ 8365 if (e.error == ENOTEMPTY) 8366 e.error = EEXIST; 8367 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8368 needrecov); 8369 goto out; 8370 } 8371 8372 /* rename results */ 8373 rn_res = &res.array[5].nfs_resop4_u.oprename; 8374 8375 if (res.status == NFS4_OK) { 8376 /* Update target attribute, readdir and dnlc caches */ 8377 dinfo.di_garp = 8378 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8379 dinfo.di_cred = cr; 8380 dinfo.di_time_call = t; 8381 } else 8382 dinfop = NULL; 8383 8384 /* Update source cache attribute, readdir and dnlc caches */ 8385 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8386 8387 /* Update source cache attribute, readdir and dnlc caches */ 8388 if (ndvp != odvp) { 8389 8390 /* 8391 * If dinfop is non-NULL, then compound succeded, so 8392 * set di_garp to attrs for source dir. dinfop is only 8393 * set to NULL when compound fails. 8394 */ 8395 if (dinfop) 8396 dinfo.di_garp = 8397 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8398 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8399 dinfop); 8400 } 8401 8402 /* 8403 * Update the rnode with the new component name and args, 8404 * and if the file handle changed, also update it with the new fh. 8405 * This is only necessary if the target object has an rnode 8406 * entry and there is no need to create one for it. 8407 */ 8408 resop = &res.array[8]; /* getfh new res */ 8409 ngf_res = &resop->nfs_resop4_u.opgetfh; 8410 8411 /* 8412 * Update the path and filehandle for the renamed object. 8413 */ 8414 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8415 8416 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8417 8418 if (res.status == NFS4_OK) { 8419 resop++; /* getattr res */ 8420 e.error = nfs4_update_attrcache(res.status, 8421 &resop->nfs_resop4_u.opgetattr.ga_res, 8422 t, ovp, cr); 8423 } 8424 8425 out: 8426 kmem_free(argop, argoplist_size); 8427 if (resp) 8428 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8429 mutex_enter(&orp->r_statelock); 8430 orp->r_flags &= ~R4RECEXPFH; 8431 cv_broadcast(&orp->r_cv); 8432 mutex_exit(&orp->r_statelock); 8433 8434 return (e.error); 8435 } 8436 8437 static int 8438 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 8439 { 8440 int error; 8441 vnode_t *vp; 8442 8443 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8444 return (EPERM); 8445 /* 8446 * As ".." has special meaning and rather than send a mkdir 8447 * over the wire to just let the server freak out, we just 8448 * short circuit it here and return EEXIST 8449 */ 8450 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8451 return (EEXIST); 8452 8453 /* 8454 * Decision to get the right gid and setgid bit of the 8455 * new directory is now made in call_nfs4_create_req. 8456 */ 8457 va->va_mask |= AT_MODE; 8458 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8459 if (error) 8460 return (error); 8461 8462 *vpp = vp; 8463 return (0); 8464 } 8465 8466 8467 /* 8468 * rmdir is using the same remove v4 op as does remove. 8469 * Remove requires that the current fh be the target directory. 8470 * After the operation, the current fh is unchanged. 8471 * The compound op structure is: 8472 * PUTFH(targetdir), REMOVE 8473 */ 8474 static int 8475 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 8476 { 8477 int need_end_op = FALSE; 8478 COMPOUND4args_clnt args; 8479 COMPOUND4res_clnt res, *resp = NULL; 8480 REMOVE4res *rm_res; 8481 nfs_argop4 argop[3]; 8482 nfs_resop4 *resop; 8483 vnode_t *vp; 8484 int doqueue; 8485 mntinfo4_t *mi; 8486 rnode4_t *drp; 8487 bool_t needrecov = FALSE; 8488 nfs4_recov_state_t recov_state; 8489 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8490 dirattr_info_t dinfo, *dinfop; 8491 8492 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8493 return (EPERM); 8494 /* 8495 * As ".." has special meaning and rather than send a rmdir 8496 * over the wire to just let the server freak out, we just 8497 * short circuit it here and return EEXIST 8498 */ 8499 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8500 return (EEXIST); 8501 8502 drp = VTOR4(dvp); 8503 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8504 return (EINTR); 8505 8506 /* 8507 * Attempt to prevent a rmdir(".") from succeeding. 8508 */ 8509 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8510 if (e.error) { 8511 nfs_rw_exit(&drp->r_rwlock); 8512 return (e.error); 8513 } 8514 if (vp == cdir) { 8515 VN_RELE(vp); 8516 nfs_rw_exit(&drp->r_rwlock); 8517 return (EINVAL); 8518 } 8519 8520 /* 8521 * Since nfsv4 remove op works on both files and directories, 8522 * check that the removed object is indeed a directory. 8523 */ 8524 if (vp->v_type != VDIR) { 8525 VN_RELE(vp); 8526 nfs_rw_exit(&drp->r_rwlock); 8527 return (ENOTDIR); 8528 } 8529 8530 /* 8531 * First just remove the entry from the name cache, as it 8532 * is most likely an entry for this vp. 8533 */ 8534 dnlc_remove(dvp, nm); 8535 8536 /* 8537 * If there vnode reference count is greater than one, then 8538 * there may be additional references in the DNLC which will 8539 * need to be purged. First, trying removing the entry for 8540 * the parent directory and see if that removes the additional 8541 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8542 * to completely remove any references to the directory which 8543 * might still exist in the DNLC. 8544 */ 8545 if (vp->v_count > 1) { 8546 dnlc_remove(vp, ".."); 8547 if (vp->v_count > 1) 8548 dnlc_purge_vp(vp); 8549 } 8550 8551 mi = VTOMI4(dvp); 8552 recov_state.rs_flags = 0; 8553 recov_state.rs_num_retry_despite_err = 0; 8554 8555 recov_retry: 8556 args.ctag = TAG_RMDIR; 8557 8558 /* 8559 * Rmdir ops: putfh dir; remove 8560 */ 8561 args.array_len = 3; 8562 args.array = argop; 8563 8564 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8565 if (e.error) { 8566 nfs_rw_exit(&drp->r_rwlock); 8567 return (e.error); 8568 } 8569 need_end_op = TRUE; 8570 8571 /* putfh directory */ 8572 argop[0].argop = OP_CPUTFH; 8573 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8574 8575 /* remove */ 8576 argop[1].argop = OP_CREMOVE; 8577 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8578 8579 /* getattr (postop attrs for dir that contained removed dir) */ 8580 argop[2].argop = OP_GETATTR; 8581 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8582 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8583 8584 dinfo.di_time_call = gethrtime(); 8585 doqueue = 1; 8586 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8587 8588 PURGE_ATTRCACHE4(vp); 8589 8590 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8591 if (e.error) { 8592 PURGE_ATTRCACHE4(dvp); 8593 } 8594 8595 if (needrecov) { 8596 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8597 NULL, OP_REMOVE, NULL) == FALSE) { 8598 if (!e.error) 8599 (void) xdr_free(xdr_COMPOUND4res_clnt, 8600 (caddr_t)&res); 8601 8602 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8603 needrecov); 8604 need_end_op = FALSE; 8605 goto recov_retry; 8606 } 8607 } 8608 8609 if (!e.error) { 8610 resp = &res; 8611 8612 /* 8613 * Only return error if first 2 ops (OP_REMOVE or earlier) 8614 * failed. 8615 */ 8616 if (res.status != NFS4_OK && res.array_len <= 2) { 8617 e.error = geterrno4(res.status); 8618 PURGE_ATTRCACHE4(dvp); 8619 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8620 &recov_state, needrecov); 8621 need_end_op = FALSE; 8622 nfs4_purge_stale_fh(e.error, dvp, cr); 8623 /* 8624 * System V defines rmdir to return EEXIST, not 8625 * ENOTEMPTY if the directory is not empty. Over 8626 * the wire, the error is NFSERR_ENOTEMPTY which 8627 * geterrno4 maps to ENOTEMPTY. 8628 */ 8629 if (e.error == ENOTEMPTY) 8630 e.error = EEXIST; 8631 } else { 8632 resop = &res.array[1]; /* remove res */ 8633 rm_res = &resop->nfs_resop4_u.opremove; 8634 8635 if (res.status == NFS4_OK) { 8636 resop = &res.array[2]; /* dir attrs */ 8637 dinfo.di_garp = 8638 &resop->nfs_resop4_u.opgetattr.ga_res; 8639 dinfo.di_cred = cr; 8640 dinfop = &dinfo; 8641 } else 8642 dinfop = NULL; 8643 8644 /* Update dir attribute, readdir and dnlc caches */ 8645 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8646 dinfop); 8647 8648 /* destroy rddir cache for dir that was removed */ 8649 if (VTOR4(vp)->r_dir != NULL) 8650 nfs4_purge_rddir_cache(vp); 8651 } 8652 } 8653 8654 if (need_end_op) 8655 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8656 8657 nfs_rw_exit(&drp->r_rwlock); 8658 8659 if (resp) 8660 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8661 8662 if (e.error == 0) { 8663 vnode_t *tvp; 8664 rnode4_t *trp; 8665 trp = VTOR4(vp); 8666 tvp = vp; 8667 if (IS_SHADOW(vp, trp)) 8668 tvp = RTOV4(trp); 8669 vnevent_rmdir(tvp, dvp, nm); 8670 } 8671 8672 VN_RELE(vp); 8673 8674 return (e.error); 8675 } 8676 8677 static int 8678 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 8679 { 8680 int error; 8681 vnode_t *vp; 8682 rnode4_t *rp; 8683 char *contents; 8684 mntinfo4_t *mi = VTOMI4(dvp); 8685 8686 if (nfs_zone() != mi->mi_zone) 8687 return (EPERM); 8688 if (!(mi->mi_flags & MI4_SYMLINK)) 8689 return (EOPNOTSUPP); 8690 8691 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8692 if (error) { 8693 return (error); 8694 } 8695 8696 ASSERT(nfs4_consistent_type(vp)); 8697 rp = VTOR4(vp); 8698 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8699 8700 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8701 8702 if (contents != NULL) { 8703 mutex_enter(&rp->r_statelock); 8704 if (rp->r_symlink.contents == NULL) { 8705 rp->r_symlink.len = strlen(tnm); 8706 bcopy(tnm, contents, rp->r_symlink.len); 8707 rp->r_symlink.contents = contents; 8708 rp->r_symlink.size = MAXPATHLEN; 8709 mutex_exit(&rp->r_statelock); 8710 } else { 8711 mutex_exit(&rp->r_statelock); 8712 kmem_free((void *)contents, MAXPATHLEN); 8713 } 8714 } 8715 } 8716 VN_RELE(vp); 8717 8718 return (error); 8719 } 8720 8721 8722 /* 8723 * Read directory entries. 8724 * There are some weird things to look out for here. The uio_loffset 8725 * field is either 0 or it is the offset returned from a previous 8726 * readdir. It is an opaque value used by the server to find the 8727 * correct directory block to read. The count field is the number 8728 * of blocks to read on the server. This is advisory only, the server 8729 * may return only one block's worth of entries. Entries may be compressed 8730 * on the server. 8731 */ 8732 static int 8733 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 8734 { 8735 int error; 8736 uint_t count; 8737 rnode4_t *rp; 8738 rddir4_cache *rdc; 8739 rddir4_cache *rrdc; 8740 8741 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8742 return (EIO); 8743 rp = VTOR4(vp); 8744 8745 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8746 8747 /* 8748 * Make sure that the directory cache is valid. 8749 */ 8750 if (rp->r_dir != NULL) { 8751 if (nfs_disable_rddir_cache != 0) { 8752 /* 8753 * Setting nfs_disable_rddir_cache in /etc/system 8754 * allows interoperability with servers that do not 8755 * properly update the attributes of directories. 8756 * Any cached information gets purged before an 8757 * access is made to it. 8758 */ 8759 nfs4_purge_rddir_cache(vp); 8760 } 8761 8762 error = nfs4_validate_caches(vp, cr); 8763 if (error) 8764 return (error); 8765 } 8766 8767 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8768 8769 /* 8770 * Short circuit last readdir which always returns 0 bytes. 8771 * This can be done after the directory has been read through 8772 * completely at least once. This will set r_direof which 8773 * can be used to find the value of the last cookie. 8774 */ 8775 mutex_enter(&rp->r_statelock); 8776 if (rp->r_direof != NULL && 8777 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8778 mutex_exit(&rp->r_statelock); 8779 #ifdef DEBUG 8780 nfs4_readdir_cache_shorts++; 8781 #endif 8782 if (eofp) 8783 *eofp = 1; 8784 return (0); 8785 } 8786 8787 /* 8788 * Look for a cache entry. Cache entries are identified 8789 * by the NFS cookie value and the byte count requested. 8790 */ 8791 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8792 8793 /* 8794 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8795 */ 8796 if (rdc == NULL) { 8797 mutex_exit(&rp->r_statelock); 8798 return (EINTR); 8799 } 8800 8801 /* 8802 * Check to see if we need to fill this entry in. 8803 */ 8804 if (rdc->flags & RDDIRREQ) { 8805 rdc->flags &= ~RDDIRREQ; 8806 rdc->flags |= RDDIR; 8807 mutex_exit(&rp->r_statelock); 8808 8809 /* 8810 * Do the readdir. 8811 */ 8812 nfs4readdir(vp, rdc, cr); 8813 8814 /* 8815 * Reaquire the lock, so that we can continue 8816 */ 8817 mutex_enter(&rp->r_statelock); 8818 /* 8819 * The entry is now complete 8820 */ 8821 rdc->flags &= ~RDDIR; 8822 } 8823 8824 ASSERT(!(rdc->flags & RDDIR)); 8825 8826 /* 8827 * If an error occurred while attempting 8828 * to fill the cache entry, mark the entry invalid and 8829 * just return the error. 8830 */ 8831 if (rdc->error) { 8832 error = rdc->error; 8833 rdc->flags |= RDDIRREQ; 8834 rddir4_cache_rele(rp, rdc); 8835 mutex_exit(&rp->r_statelock); 8836 return (error); 8837 } 8838 8839 /* 8840 * The cache entry is complete and good, 8841 * copyout the dirent structs to the calling 8842 * thread. 8843 */ 8844 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8845 8846 /* 8847 * If no error occurred during the copyout, 8848 * update the offset in the uio struct to 8849 * contain the value of the next NFS 4 cookie 8850 * and set the eof value appropriately. 8851 */ 8852 if (!error) { 8853 uiop->uio_loffset = rdc->nfs4_ncookie; 8854 if (eofp) 8855 *eofp = rdc->eof; 8856 } 8857 8858 /* 8859 * Decide whether to do readahead. Don't if we 8860 * have already read to the end of directory. 8861 */ 8862 if (rdc->eof) { 8863 /* 8864 * Make the entry the direof only if it is cached 8865 */ 8866 if (rdc->flags & RDDIRCACHED) 8867 rp->r_direof = rdc; 8868 rddir4_cache_rele(rp, rdc); 8869 mutex_exit(&rp->r_statelock); 8870 return (error); 8871 } 8872 8873 /* Determine if a readdir readahead should be done */ 8874 if (!(rp->r_flags & R4LOOKUP)) { 8875 rddir4_cache_rele(rp, rdc); 8876 mutex_exit(&rp->r_statelock); 8877 return (error); 8878 } 8879 8880 /* 8881 * Now look for a readahead entry. 8882 * 8883 * Check to see whether we found an entry for the readahead. 8884 * If so, we don't need to do anything further, so free the new 8885 * entry if one was allocated. Otherwise, allocate a new entry, add 8886 * it to the cache, and then initiate an asynchronous readdir 8887 * operation to fill it. 8888 */ 8889 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8890 8891 /* 8892 * A readdir cache entry could not be obtained for the readahead. In 8893 * this case we skip the readahead and return. 8894 */ 8895 if (rrdc == NULL) { 8896 rddir4_cache_rele(rp, rdc); 8897 mutex_exit(&rp->r_statelock); 8898 return (error); 8899 } 8900 8901 /* 8902 * Check to see if we need to fill this entry in. 8903 */ 8904 if (rrdc->flags & RDDIRREQ) { 8905 rrdc->flags &= ~RDDIRREQ; 8906 rrdc->flags |= RDDIR; 8907 rddir4_cache_rele(rp, rdc); 8908 mutex_exit(&rp->r_statelock); 8909 #ifdef DEBUG 8910 nfs4_readdir_readahead++; 8911 #endif 8912 /* 8913 * Do the readdir. 8914 */ 8915 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8916 return (error); 8917 } 8918 8919 rddir4_cache_rele(rp, rrdc); 8920 rddir4_cache_rele(rp, rdc); 8921 mutex_exit(&rp->r_statelock); 8922 return (error); 8923 } 8924 8925 static int 8926 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8927 { 8928 int error; 8929 rnode4_t *rp; 8930 8931 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8932 8933 rp = VTOR4(vp); 8934 8935 /* 8936 * Obtain the readdir results for the caller. 8937 */ 8938 nfs4readdir(vp, rdc, cr); 8939 8940 mutex_enter(&rp->r_statelock); 8941 /* 8942 * The entry is now complete 8943 */ 8944 rdc->flags &= ~RDDIR; 8945 8946 error = rdc->error; 8947 if (error) 8948 rdc->flags |= RDDIRREQ; 8949 rddir4_cache_rele(rp, rdc); 8950 mutex_exit(&rp->r_statelock); 8951 8952 return (error); 8953 } 8954 8955 static void 8956 nfs4readdir_stub(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8957 { 8958 int stublength; 8959 dirent64_t *dp; 8960 u_longlong_t nodeid, pnodeid; 8961 vnode_t *dotdotvp = NULL; 8962 rnode4_t *rp = VTOR4(vp); 8963 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8964 8965 rdc->error = 0; 8966 rdc->entries = 0; 8967 rdc->actlen = rdc->entlen = 0; 8968 rdc->eof = TRUE; 8969 8970 /* Check for EOF case for readdir of stub */ 8971 if (cookie != 0 && cookie != 1) 8972 return; 8973 8974 nodeid = rp->r_attr.va_nodeid; 8975 if (vp->v_flag & VROOT) { 8976 pnodeid = nodeid; /* root of mount point */ 8977 } else { 8978 if (rdc->error = nfs4_lookup(vp, "..", &dotdotvp, 0, 0, 0, cr)) 8979 return; 8980 pnodeid = VTOR4(dotdotvp)->r_attr.va_nodeid; 8981 VN_RELE(dotdotvp); 8982 } 8983 8984 stublength = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8985 rdc->entries = kmem_alloc(stublength, KM_SLEEP); 8986 rdc->entlen = rdc->buflen = stublength; 8987 rdc->eof = TRUE; 8988 8989 dp = (dirent64_t *)rdc->entries; 8990 8991 if (rdc->nfs4_cookie == (nfs_cookie4)0) { 8992 bcopy(nfs4_dot_entries, rdc->entries, 8993 DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2)); 8994 dp->d_ino = nodeid; 8995 dp = (struct dirent64 *)(((char *)dp) + DIRENT64_RECLEN(1)); 8996 dp->d_ino = pnodeid; 8997 rdc->actlen = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8998 } else { /* for ".." entry */ 8999 bcopy(nfs4_dot_dot_entry, rdc->entries, DIRENT64_RECLEN(2)); 9000 dp->d_ino = pnodeid; 9001 rdc->actlen = DIRENT64_RECLEN(2); 9002 } 9003 rdc->nfs4_ncookie = rdc->actlen; 9004 } 9005 9006 /* 9007 * Read directory entries. 9008 * There are some weird things to look out for here. The uio_loffset 9009 * field is either 0 or it is the offset returned from a previous 9010 * readdir. It is an opaque value used by the server to find the 9011 * correct directory block to read. The count field is the number 9012 * of blocks to read on the server. This is advisory only, the server 9013 * may return only one block's worth of entries. Entries may be compressed 9014 * on the server. 9015 * 9016 * Generates the following compound request: 9017 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9018 * must include a Lookupp as well. In this case, send: 9019 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9020 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9021 * 9022 * Get complete attributes and filehandles for entries if this is the 9023 * first read of the directory. Otherwise, just get fileid's. 9024 */ 9025 static void 9026 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9027 { 9028 COMPOUND4args_clnt args; 9029 COMPOUND4res_clnt res; 9030 READDIR4args *rargs; 9031 READDIR4res_clnt *rd_res; 9032 bitmap4 rd_bitsval; 9033 nfs_argop4 argop[5]; 9034 nfs_resop4 *resop; 9035 rnode4_t *rp = VTOR4(vp); 9036 mntinfo4_t *mi = VTOMI4(vp); 9037 int doqueue; 9038 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9039 vnode_t *dvp; 9040 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9041 int num_ops, res_opcnt; 9042 bool_t needrecov = FALSE; 9043 nfs4_recov_state_t recov_state; 9044 hrtime_t t; 9045 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9046 9047 ASSERT(nfs_zone() == mi->mi_zone); 9048 ASSERT(rdc->flags & RDDIR); 9049 ASSERT(rdc->entries == NULL); 9050 9051 if (rp->r_flags & R4SRVSTUB) { 9052 nfs4readdir_stub(vp, rdc, cr); 9053 return; 9054 } 9055 9056 num_ops = 2; 9057 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9058 /* 9059 * Since nfsv4 readdir may not return entries for "." and "..", 9060 * the client must recreate them: 9061 * To find the correct nodeid, do the following: 9062 * For current node, get nodeid from dnlc. 9063 * - if current node is rootvp, set pnodeid to nodeid. 9064 * - else if parent is in the dnlc, get its nodeid from there. 9065 * - else add LOOKUPP+GETATTR to compound. 9066 */ 9067 nodeid = rp->r_attr.va_nodeid; 9068 if (vp->v_flag & VROOT) { 9069 pnodeid = nodeid; /* root of mount point */ 9070 } else { 9071 dvp = dnlc_lookup(vp, ".."); 9072 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9073 /* parent in dnlc cache - no need for otw */ 9074 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9075 } else { 9076 /* 9077 * parent not in dnlc cache, 9078 * do lookupp to get its id 9079 */ 9080 num_ops = 5; 9081 pnodeid = 0; /* set later by getattr parent */ 9082 } 9083 if (dvp) 9084 VN_RELE(dvp); 9085 } 9086 } 9087 recov_state.rs_flags = 0; 9088 recov_state.rs_num_retry_despite_err = 0; 9089 9090 /* Save the original mount point security flavor */ 9091 (void) save_mnt_secinfo(mi->mi_curr_serv); 9092 9093 recov_retry: 9094 args.ctag = TAG_READDIR; 9095 9096 args.array = argop; 9097 args.array_len = num_ops; 9098 9099 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9100 &recov_state, NULL)) { 9101 /* 9102 * If readdir a node that is a stub for a crossed mount point, 9103 * keep the original secinfo flavor for the current file 9104 * system, not the crossed one. 9105 */ 9106 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9107 rdc->error = e.error; 9108 return; 9109 } 9110 9111 /* 9112 * Determine which attrs to request for dirents. This code 9113 * must be protected by nfs4_start/end_fop because of r_server 9114 * (which will change during failover recovery). 9115 * 9116 */ 9117 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9118 /* 9119 * Get all vattr attrs plus filehandle and rdattr_error 9120 */ 9121 rd_bitsval = NFS4_VATTR_MASK | 9122 FATTR4_RDATTR_ERROR_MASK | 9123 FATTR4_FILEHANDLE_MASK; 9124 9125 if (rp->r_flags & R4READDIRWATTR) { 9126 mutex_enter(&rp->r_statelock); 9127 rp->r_flags &= ~R4READDIRWATTR; 9128 mutex_exit(&rp->r_statelock); 9129 } 9130 } else { 9131 servinfo4_t *svp = rp->r_server; 9132 9133 /* 9134 * Already read directory. Use readdir with 9135 * no attrs (except for mounted_on_fileid) for updates. 9136 */ 9137 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9138 9139 /* 9140 * request mounted on fileid if supported, else request 9141 * fileid. maybe we should verify that fileid is supported 9142 * and request something else if not. 9143 */ 9144 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9145 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9146 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9147 nfs_rw_exit(&svp->sv_lock); 9148 } 9149 9150 /* putfh directory fh */ 9151 argop[0].argop = OP_CPUTFH; 9152 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9153 9154 argop[1].argop = OP_READDIR; 9155 rargs = &argop[1].nfs_argop4_u.opreaddir; 9156 /* 9157 * 1 and 2 are reserved for client "." and ".." entry offset. 9158 * cookie 0 should be used over-the-wire to start reading at 9159 * the beginning of the directory excluding "." and "..". 9160 */ 9161 if (rdc->nfs4_cookie == 0 || 9162 rdc->nfs4_cookie == 1 || 9163 rdc->nfs4_cookie == 2) { 9164 rargs->cookie = (nfs_cookie4)0; 9165 rargs->cookieverf = 0; 9166 } else { 9167 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9168 mutex_enter(&rp->r_statelock); 9169 rargs->cookieverf = rp->r_cookieverf4; 9170 mutex_exit(&rp->r_statelock); 9171 } 9172 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9173 rargs->maxcount = mi->mi_tsize; 9174 rargs->attr_request = rd_bitsval; 9175 rargs->rdc = rdc; 9176 rargs->dvp = vp; 9177 rargs->mi = mi; 9178 rargs->cr = cr; 9179 9180 9181 /* 9182 * If count < than the minimum required, we return no entries 9183 * and fail with EINVAL 9184 */ 9185 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9186 rdc->error = EINVAL; 9187 goto out; 9188 } 9189 9190 if (args.array_len == 5) { 9191 /* 9192 * Add lookupp and getattr for parent nodeid. 9193 */ 9194 argop[2].argop = OP_LOOKUPP; 9195 9196 argop[3].argop = OP_GETFH; 9197 9198 /* getattr parent */ 9199 argop[4].argop = OP_GETATTR; 9200 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9201 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9202 } 9203 9204 doqueue = 1; 9205 9206 if (mi->mi_io_kstats) { 9207 mutex_enter(&mi->mi_lock); 9208 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9209 mutex_exit(&mi->mi_lock); 9210 } 9211 9212 /* capture the time of this call */ 9213 rargs->t = t = gethrtime(); 9214 9215 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9216 9217 if (mi->mi_io_kstats) { 9218 mutex_enter(&mi->mi_lock); 9219 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9220 mutex_exit(&mi->mi_lock); 9221 } 9222 9223 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9224 9225 /* 9226 * If RPC error occurred and it isn't an error that 9227 * triggers recovery, then go ahead and fail now. 9228 */ 9229 if (e.error != 0 && !needrecov) { 9230 rdc->error = e.error; 9231 goto out; 9232 } 9233 9234 if (needrecov) { 9235 bool_t abort; 9236 9237 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9238 "nfs4readdir: initiating recovery.\n")); 9239 9240 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9241 NULL, OP_READDIR, NULL); 9242 if (abort == FALSE) { 9243 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9244 &recov_state, needrecov); 9245 if (!e.error) 9246 (void) xdr_free(xdr_COMPOUND4res_clnt, 9247 (caddr_t)&res); 9248 if (rdc->entries != NULL) { 9249 kmem_free(rdc->entries, rdc->entlen); 9250 rdc->entries = NULL; 9251 } 9252 goto recov_retry; 9253 } 9254 9255 if (e.error != 0) { 9256 rdc->error = e.error; 9257 goto out; 9258 } 9259 9260 /* fall through for res.status case */ 9261 } 9262 9263 res_opcnt = res.array_len; 9264 9265 /* 9266 * If compound failed first 2 ops (PUTFH+READDIR), then return 9267 * failure here. Subsequent ops are for filling out dot-dot 9268 * dirent, and if they fail, we still want to give the caller 9269 * the dirents returned by (the successful) READDIR op, so we need 9270 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9271 * 9272 * One example where PUTFH+READDIR ops would succeed but 9273 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9274 * but lacks x. In this case, a POSIX server's VOP_READDIR 9275 * would succeed; however, VOP_LOOKUP(..) would fail since no 9276 * x perm. We need to come up with a non-vendor-specific way 9277 * for a POSIX server to return d_ino from dotdot's dirent if 9278 * client only requests mounted_on_fileid, and just say the 9279 * LOOKUPP succeeded and fill out the GETATTR. However, if 9280 * client requested any mandatory attrs, server would be required 9281 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9282 * for dotdot. 9283 */ 9284 9285 if (res.status) { 9286 if (res_opcnt <= 2) { 9287 e.error = geterrno4(res.status); 9288 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9289 &recov_state, needrecov); 9290 nfs4_purge_stale_fh(e.error, vp, cr); 9291 rdc->error = e.error; 9292 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9293 if (rdc->entries != NULL) { 9294 kmem_free(rdc->entries, rdc->entlen); 9295 rdc->entries = NULL; 9296 } 9297 /* 9298 * If readdir a node that is a stub for a 9299 * crossed mount point, keep the original 9300 * secinfo flavor for the current file system, 9301 * not the crossed one. 9302 */ 9303 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9304 return; 9305 } 9306 } 9307 9308 resop = &res.array[1]; /* readdir res */ 9309 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9310 9311 mutex_enter(&rp->r_statelock); 9312 rp->r_cookieverf4 = rd_res->cookieverf; 9313 mutex_exit(&rp->r_statelock); 9314 9315 /* 9316 * For "." and ".." entries 9317 * e.g. 9318 * seek(cookie=0) -> "." entry with d_off = 1 9319 * seek(cookie=1) -> ".." entry with d_off = 2 9320 */ 9321 if (cookie == (nfs_cookie4) 0) { 9322 if (rd_res->dotp) 9323 rd_res->dotp->d_ino = nodeid; 9324 if (rd_res->dotdotp) 9325 rd_res->dotdotp->d_ino = pnodeid; 9326 } 9327 if (cookie == (nfs_cookie4) 1) { 9328 if (rd_res->dotdotp) 9329 rd_res->dotdotp->d_ino = pnodeid; 9330 } 9331 9332 9333 /* LOOKUPP+GETATTR attemped */ 9334 if (args.array_len == 5 && rd_res->dotdotp) { 9335 if (res.status == NFS4_OK && res_opcnt == 5) { 9336 nfs_fh4 *fhp; 9337 nfs4_sharedfh_t *sfhp; 9338 vnode_t *pvp; 9339 nfs4_ga_res_t *garp; 9340 9341 resop++; /* lookupp */ 9342 resop++; /* getfh */ 9343 fhp = &resop->nfs_resop4_u.opgetfh.object; 9344 9345 resop++; /* getattr of parent */ 9346 9347 /* 9348 * First, take care of finishing the 9349 * readdir results. 9350 */ 9351 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9352 /* 9353 * The d_ino of .. must be the inode number 9354 * of the mounted filesystem. 9355 */ 9356 if (garp->n4g_va.va_mask & AT_NODEID) 9357 rd_res->dotdotp->d_ino = 9358 garp->n4g_va.va_nodeid; 9359 9360 9361 /* 9362 * Next, create the ".." dnlc entry 9363 */ 9364 sfhp = sfh4_get(fhp, mi); 9365 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9366 dnlc_update(vp, "..", pvp); 9367 VN_RELE(pvp); 9368 } 9369 sfh4_rele(&sfhp); 9370 } 9371 } 9372 9373 if (mi->mi_io_kstats) { 9374 mutex_enter(&mi->mi_lock); 9375 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9376 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9377 mutex_exit(&mi->mi_lock); 9378 } 9379 9380 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9381 9382 out: 9383 /* 9384 * If readdir a node that is a stub for a crossed mount point, 9385 * keep the original secinfo flavor for the current file system, 9386 * not the crossed one. 9387 */ 9388 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9389 9390 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9391 } 9392 9393 9394 static int 9395 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9396 { 9397 rnode4_t *rp = VTOR4(bp->b_vp); 9398 int count; 9399 int error; 9400 cred_t *cred_otw = NULL; 9401 offset_t offset; 9402 nfs4_open_stream_t *osp = NULL; 9403 bool_t first_time = TRUE; /* first time getting otw cred */ 9404 bool_t last_time = FALSE; /* last time getting otw cred */ 9405 9406 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9407 9408 DTRACE_IO1(start, struct buf *, bp); 9409 offset = ldbtob(bp->b_lblkno); 9410 9411 if (bp->b_flags & B_READ) { 9412 read_again: 9413 /* 9414 * Releases the osp, if it is provided. 9415 * Puts a hold on the cred_otw and the new osp (if found). 9416 */ 9417 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9418 &first_time, &last_time); 9419 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9420 offset, bp->b_bcount, 9421 &bp->b_resid, cred_otw, 9422 readahead, NULL); 9423 crfree(cred_otw); 9424 if (!error) { 9425 if (bp->b_resid) { 9426 /* 9427 * Didn't get it all because we hit EOF, 9428 * zero all the memory beyond the EOF. 9429 */ 9430 /* bzero(rdaddr + */ 9431 bzero(bp->b_un.b_addr + 9432 bp->b_bcount - bp->b_resid, bp->b_resid); 9433 } 9434 mutex_enter(&rp->r_statelock); 9435 if (bp->b_resid == bp->b_bcount && 9436 offset >= rp->r_size) { 9437 /* 9438 * We didn't read anything at all as we are 9439 * past EOF. Return an error indicator back 9440 * but don't destroy the pages (yet). 9441 */ 9442 error = NFS_EOF; 9443 } 9444 mutex_exit(&rp->r_statelock); 9445 } else if (error == EACCES && last_time == FALSE) { 9446 goto read_again; 9447 } 9448 } else { 9449 if (!(rp->r_flags & R4STALE)) { 9450 write_again: 9451 /* 9452 * Releases the osp, if it is provided. 9453 * Puts a hold on the cred_otw and the new 9454 * osp (if found). 9455 */ 9456 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9457 &first_time, &last_time); 9458 mutex_enter(&rp->r_statelock); 9459 count = MIN(bp->b_bcount, rp->r_size - offset); 9460 mutex_exit(&rp->r_statelock); 9461 if (count < 0) 9462 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9463 #ifdef DEBUG 9464 if (count == 0) { 9465 zoneid_t zoneid = getzoneid(); 9466 9467 zcmn_err(zoneid, CE_WARN, 9468 "nfs4_bio: zero length write at %lld", 9469 offset); 9470 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9471 "b_bcount=%ld, file size=%lld", 9472 rp->r_flags, (long)bp->b_bcount, 9473 rp->r_size); 9474 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9475 if (nfs4_bio_do_stop) 9476 debug_enter("nfs4_bio"); 9477 } 9478 #endif 9479 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9480 count, cred_otw, stab_comm); 9481 if (error == EACCES && last_time == FALSE) { 9482 crfree(cred_otw); 9483 goto write_again; 9484 } 9485 bp->b_error = error; 9486 if (error && error != EINTR && 9487 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9488 /* 9489 * Don't print EDQUOT errors on the console. 9490 * Don't print asynchronous EACCES errors. 9491 * Don't print EFBIG errors. 9492 * Print all other write errors. 9493 */ 9494 if (error != EDQUOT && error != EFBIG && 9495 (error != EACCES || 9496 !(bp->b_flags & B_ASYNC))) 9497 nfs4_write_error(bp->b_vp, 9498 error, cred_otw); 9499 /* 9500 * Update r_error and r_flags as appropriate. 9501 * If the error was ESTALE, then mark the 9502 * rnode as not being writeable and save 9503 * the error status. Otherwise, save any 9504 * errors which occur from asynchronous 9505 * page invalidations. Any errors occurring 9506 * from other operations should be saved 9507 * by the caller. 9508 */ 9509 mutex_enter(&rp->r_statelock); 9510 if (error == ESTALE) { 9511 rp->r_flags |= R4STALE; 9512 if (!rp->r_error) 9513 rp->r_error = error; 9514 } else if (!rp->r_error && 9515 (bp->b_flags & 9516 (B_INVAL|B_FORCE|B_ASYNC)) == 9517 (B_INVAL|B_FORCE|B_ASYNC)) { 9518 rp->r_error = error; 9519 } 9520 mutex_exit(&rp->r_statelock); 9521 } 9522 crfree(cred_otw); 9523 } else 9524 error = rp->r_error; 9525 } 9526 9527 if (error != 0 && error != NFS_EOF) 9528 bp->b_flags |= B_ERROR; 9529 9530 if (osp) 9531 open_stream_rele(osp, rp); 9532 9533 DTRACE_IO1(done, struct buf *, bp); 9534 9535 return (error); 9536 } 9537 9538 /* ARGSUSED */ 9539 static int 9540 nfs4_fid(vnode_t *vp, fid_t *fidp) 9541 { 9542 return (EREMOTE); 9543 } 9544 9545 /* ARGSUSED2 */ 9546 static int 9547 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9548 { 9549 rnode4_t *rp = VTOR4(vp); 9550 9551 if (!write_lock) { 9552 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9553 return (V_WRITELOCK_FALSE); 9554 } 9555 9556 if ((rp->r_flags & R4DIRECTIO) || 9557 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9558 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9559 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9560 return (V_WRITELOCK_FALSE); 9561 nfs_rw_exit(&rp->r_rwlock); 9562 } 9563 9564 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9565 return (V_WRITELOCK_TRUE); 9566 } 9567 9568 /* ARGSUSED */ 9569 static void 9570 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9571 { 9572 rnode4_t *rp = VTOR4(vp); 9573 9574 nfs_rw_exit(&rp->r_rwlock); 9575 } 9576 9577 /* ARGSUSED */ 9578 static int 9579 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 9580 { 9581 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9582 return (EIO); 9583 9584 /* 9585 * Because we stuff the readdir cookie into the offset field 9586 * someone may attempt to do an lseek with the cookie which 9587 * we want to succeed. 9588 */ 9589 if (vp->v_type == VDIR) 9590 return (0); 9591 if (*noffp < 0) 9592 return (EINVAL); 9593 return (0); 9594 } 9595 9596 9597 /* 9598 * Return all the pages from [off..off+len) in file 9599 */ 9600 static int 9601 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9602 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9603 enum seg_rw rw, cred_t *cr) 9604 { 9605 rnode4_t *rp; 9606 int error; 9607 mntinfo4_t *mi; 9608 9609 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9610 return (EIO); 9611 rp = VTOR4(vp); 9612 if (IS_SHADOW(vp, rp)) 9613 vp = RTOV4(rp); 9614 9615 if (vp->v_flag & VNOMAP) 9616 return (ENOSYS); 9617 9618 if (protp != NULL) 9619 *protp = PROT_ALL; 9620 9621 /* 9622 * Now validate that the caches are up to date. 9623 */ 9624 if (error = nfs4_validate_caches(vp, cr)) 9625 return (error); 9626 9627 mi = VTOMI4(vp); 9628 retry: 9629 mutex_enter(&rp->r_statelock); 9630 9631 /* 9632 * Don't create dirty pages faster than they 9633 * can be cleaned so that the system doesn't 9634 * get imbalanced. If the async queue is 9635 * maxed out, then wait for it to drain before 9636 * creating more dirty pages. Also, wait for 9637 * any threads doing pagewalks in the vop_getattr 9638 * entry points so that they don't block for 9639 * long periods. 9640 */ 9641 if (rw == S_CREATE) { 9642 while ((mi->mi_max_threads != 0 && 9643 rp->r_awcount > 2 * mi->mi_max_threads) || 9644 rp->r_gcount > 0) 9645 cv_wait(&rp->r_cv, &rp->r_statelock); 9646 } 9647 9648 /* 9649 * If we are getting called as a side effect of an nfs_write() 9650 * operation the local file size might not be extended yet. 9651 * In this case we want to be able to return pages of zeroes. 9652 */ 9653 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9654 NFS4_DEBUG(nfs4_pageio_debug, 9655 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9656 "len=%llu, size=%llu, attrsize =%llu", off, 9657 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9658 mutex_exit(&rp->r_statelock); 9659 return (EFAULT); /* beyond EOF */ 9660 } 9661 9662 mutex_exit(&rp->r_statelock); 9663 9664 if (len <= PAGESIZE) { 9665 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9666 seg, addr, rw, cr); 9667 NFS4_DEBUG(nfs4_pageio_debug && error, 9668 (CE_NOTE, "getpage error %d; off=%lld, " 9669 "len=%lld", error, off, (u_longlong_t)len)); 9670 } else { 9671 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9672 pl, plsz, seg, addr, rw, cr); 9673 NFS4_DEBUG(nfs4_pageio_debug && error, 9674 (CE_NOTE, "getpages error %d; off=%lld, " 9675 "len=%lld", error, off, (u_longlong_t)len)); 9676 } 9677 9678 switch (error) { 9679 case NFS_EOF: 9680 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9681 goto retry; 9682 case ESTALE: 9683 nfs4_purge_stale_fh(error, vp, cr); 9684 } 9685 9686 return (error); 9687 } 9688 9689 /* 9690 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9691 */ 9692 /* ARGSUSED */ 9693 static int 9694 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9695 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9696 enum seg_rw rw, cred_t *cr) 9697 { 9698 rnode4_t *rp; 9699 uint_t bsize; 9700 struct buf *bp; 9701 page_t *pp; 9702 u_offset_t lbn; 9703 u_offset_t io_off; 9704 u_offset_t blkoff; 9705 u_offset_t rablkoff; 9706 size_t io_len; 9707 uint_t blksize; 9708 int error; 9709 int readahead; 9710 int readahead_issued = 0; 9711 int ra_window; /* readahead window */ 9712 page_t *pagefound; 9713 page_t *savepp; 9714 9715 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9716 return (EIO); 9717 9718 rp = VTOR4(vp); 9719 ASSERT(!IS_SHADOW(vp, rp)); 9720 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9721 9722 reread: 9723 bp = NULL; 9724 pp = NULL; 9725 pagefound = NULL; 9726 9727 if (pl != NULL) 9728 pl[0] = NULL; 9729 9730 error = 0; 9731 lbn = off / bsize; 9732 blkoff = lbn * bsize; 9733 9734 /* 9735 * Queueing up the readahead before doing the synchronous read 9736 * results in a significant increase in read throughput because 9737 * of the increased parallelism between the async threads and 9738 * the process context. 9739 */ 9740 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9741 rw != S_CREATE && 9742 !(vp->v_flag & VNOCACHE)) { 9743 mutex_enter(&rp->r_statelock); 9744 9745 /* 9746 * Calculate the number of readaheads to do. 9747 * a) No readaheads at offset = 0. 9748 * b) Do maximum(nfs4_nra) readaheads when the readahead 9749 * window is closed. 9750 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9751 * upon how far the readahead window is open or close. 9752 * d) No readaheads if rp->r_nextr is not within the scope 9753 * of the readahead window (random i/o). 9754 */ 9755 9756 if (off == 0) 9757 readahead = 0; 9758 else if (blkoff == rp->r_nextr) 9759 readahead = nfs4_nra; 9760 else if (rp->r_nextr > blkoff && 9761 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9762 <= (nfs4_nra - 1))) 9763 readahead = nfs4_nra - ra_window; 9764 else 9765 readahead = 0; 9766 9767 rablkoff = rp->r_nextr; 9768 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9769 mutex_exit(&rp->r_statelock); 9770 if (nfs4_async_readahead(vp, rablkoff + bsize, 9771 addr + (rablkoff + bsize - off), 9772 seg, cr, nfs4_readahead) < 0) { 9773 mutex_enter(&rp->r_statelock); 9774 break; 9775 } 9776 readahead--; 9777 rablkoff += bsize; 9778 /* 9779 * Indicate that we did a readahead so 9780 * readahead offset is not updated 9781 * by the synchronous read below. 9782 */ 9783 readahead_issued = 1; 9784 mutex_enter(&rp->r_statelock); 9785 /* 9786 * set readahead offset to 9787 * offset of last async readahead 9788 * request. 9789 */ 9790 rp->r_nextr = rablkoff; 9791 } 9792 mutex_exit(&rp->r_statelock); 9793 } 9794 9795 again: 9796 if ((pagefound = page_exists(vp, off)) == NULL) { 9797 if (pl == NULL) { 9798 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9799 nfs4_readahead); 9800 } else if (rw == S_CREATE) { 9801 /* 9802 * Block for this page is not allocated, or the offset 9803 * is beyond the current allocation size, or we're 9804 * allocating a swap slot and the page was not found, 9805 * so allocate it and return a zero page. 9806 */ 9807 if ((pp = page_create_va(vp, off, 9808 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9809 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9810 io_len = PAGESIZE; 9811 mutex_enter(&rp->r_statelock); 9812 rp->r_nextr = off + PAGESIZE; 9813 mutex_exit(&rp->r_statelock); 9814 } else { 9815 /* 9816 * Need to go to server to get a block 9817 */ 9818 mutex_enter(&rp->r_statelock); 9819 if (blkoff < rp->r_size && 9820 blkoff + bsize > rp->r_size) { 9821 /* 9822 * If less than a block left in 9823 * file read less than a block. 9824 */ 9825 if (rp->r_size <= off) { 9826 /* 9827 * Trying to access beyond EOF, 9828 * set up to get at least one page. 9829 */ 9830 blksize = off + PAGESIZE - blkoff; 9831 } else 9832 blksize = rp->r_size - blkoff; 9833 } else if ((off == 0) || 9834 (off != rp->r_nextr && !readahead_issued)) { 9835 blksize = PAGESIZE; 9836 blkoff = off; /* block = page here */ 9837 } else 9838 blksize = bsize; 9839 mutex_exit(&rp->r_statelock); 9840 9841 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9842 &io_len, blkoff, blksize, 0); 9843 9844 /* 9845 * Some other thread has entered the page, 9846 * so just use it. 9847 */ 9848 if (pp == NULL) 9849 goto again; 9850 9851 /* 9852 * Now round the request size up to page boundaries. 9853 * This ensures that the entire page will be 9854 * initialized to zeroes if EOF is encountered. 9855 */ 9856 io_len = ptob(btopr(io_len)); 9857 9858 bp = pageio_setup(pp, io_len, vp, B_READ); 9859 ASSERT(bp != NULL); 9860 9861 /* 9862 * pageio_setup should have set b_addr to 0. This 9863 * is correct since we want to do I/O on a page 9864 * boundary. bp_mapin will use this addr to calculate 9865 * an offset, and then set b_addr to the kernel virtual 9866 * address it allocated for us. 9867 */ 9868 ASSERT(bp->b_un.b_addr == 0); 9869 9870 bp->b_edev = 0; 9871 bp->b_dev = 0; 9872 bp->b_lblkno = lbtodb(io_off); 9873 bp->b_file = vp; 9874 bp->b_offset = (offset_t)off; 9875 bp_mapin(bp); 9876 9877 /* 9878 * If doing a write beyond what we believe is EOF, 9879 * don't bother trying to read the pages from the 9880 * server, we'll just zero the pages here. We 9881 * don't check that the rw flag is S_WRITE here 9882 * because some implementations may attempt a 9883 * read access to the buffer before copying data. 9884 */ 9885 mutex_enter(&rp->r_statelock); 9886 if (io_off >= rp->r_size && seg == segkmap) { 9887 mutex_exit(&rp->r_statelock); 9888 bzero(bp->b_un.b_addr, io_len); 9889 } else { 9890 mutex_exit(&rp->r_statelock); 9891 error = nfs4_bio(bp, NULL, cr, FALSE); 9892 } 9893 9894 /* 9895 * Unmap the buffer before freeing it. 9896 */ 9897 bp_mapout(bp); 9898 pageio_done(bp); 9899 9900 savepp = pp; 9901 do { 9902 pp->p_fsdata = C_NOCOMMIT; 9903 } while ((pp = pp->p_next) != savepp); 9904 9905 if (error == NFS_EOF) { 9906 /* 9907 * If doing a write system call just return 9908 * zeroed pages, else user tried to get pages 9909 * beyond EOF, return error. We don't check 9910 * that the rw flag is S_WRITE here because 9911 * some implementations may attempt a read 9912 * access to the buffer before copying data. 9913 */ 9914 if (seg == segkmap) 9915 error = 0; 9916 else 9917 error = EFAULT; 9918 } 9919 9920 if (!readahead_issued && !error) { 9921 mutex_enter(&rp->r_statelock); 9922 rp->r_nextr = io_off + io_len; 9923 mutex_exit(&rp->r_statelock); 9924 } 9925 } 9926 } 9927 9928 out: 9929 if (pl == NULL) 9930 return (error); 9931 9932 if (error) { 9933 if (pp != NULL) 9934 pvn_read_done(pp, B_ERROR); 9935 return (error); 9936 } 9937 9938 if (pagefound) { 9939 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9940 9941 /* 9942 * Page exists in the cache, acquire the appropriate lock. 9943 * If this fails, start all over again. 9944 */ 9945 if ((pp = page_lookup(vp, off, se)) == NULL) { 9946 #ifdef DEBUG 9947 nfs4_lostpage++; 9948 #endif 9949 goto reread; 9950 } 9951 pl[0] = pp; 9952 pl[1] = NULL; 9953 return (0); 9954 } 9955 9956 if (pp != NULL) 9957 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9958 9959 return (error); 9960 } 9961 9962 static void 9963 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9964 cred_t *cr) 9965 { 9966 int error; 9967 page_t *pp; 9968 u_offset_t io_off; 9969 size_t io_len; 9970 struct buf *bp; 9971 uint_t bsize, blksize; 9972 rnode4_t *rp = VTOR4(vp); 9973 page_t *savepp; 9974 9975 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9976 9977 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9978 9979 mutex_enter(&rp->r_statelock); 9980 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9981 /* 9982 * If less than a block left in file read less 9983 * than a block. 9984 */ 9985 blksize = rp->r_size - blkoff; 9986 } else 9987 blksize = bsize; 9988 mutex_exit(&rp->r_statelock); 9989 9990 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9991 &io_off, &io_len, blkoff, blksize, 1); 9992 /* 9993 * The isra flag passed to the kluster function is 1, we may have 9994 * gotten a return value of NULL for a variety of reasons (# of free 9995 * pages < minfree, someone entered the page on the vnode etc). In all 9996 * cases, we want to punt on the readahead. 9997 */ 9998 if (pp == NULL) 9999 return; 10000 10001 /* 10002 * Now round the request size up to page boundaries. 10003 * This ensures that the entire page will be 10004 * initialized to zeroes if EOF is encountered. 10005 */ 10006 io_len = ptob(btopr(io_len)); 10007 10008 bp = pageio_setup(pp, io_len, vp, B_READ); 10009 ASSERT(bp != NULL); 10010 10011 /* 10012 * pageio_setup should have set b_addr to 0. This is correct since 10013 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10014 * to calculate an offset, and then set b_addr to the kernel virtual 10015 * address it allocated for us. 10016 */ 10017 ASSERT(bp->b_un.b_addr == 0); 10018 10019 bp->b_edev = 0; 10020 bp->b_dev = 0; 10021 bp->b_lblkno = lbtodb(io_off); 10022 bp->b_file = vp; 10023 bp->b_offset = (offset_t)blkoff; 10024 bp_mapin(bp); 10025 10026 /* 10027 * If doing a write beyond what we believe is EOF, don't bother trying 10028 * to read the pages from the server, we'll just zero the pages here. 10029 * We don't check that the rw flag is S_WRITE here because some 10030 * implementations may attempt a read access to the buffer before 10031 * copying data. 10032 */ 10033 mutex_enter(&rp->r_statelock); 10034 if (io_off >= rp->r_size && seg == segkmap) { 10035 mutex_exit(&rp->r_statelock); 10036 bzero(bp->b_un.b_addr, io_len); 10037 error = 0; 10038 } else { 10039 mutex_exit(&rp->r_statelock); 10040 error = nfs4_bio(bp, NULL, cr, TRUE); 10041 if (error == NFS_EOF) 10042 error = 0; 10043 } 10044 10045 /* 10046 * Unmap the buffer before freeing it. 10047 */ 10048 bp_mapout(bp); 10049 pageio_done(bp); 10050 10051 savepp = pp; 10052 do { 10053 pp->p_fsdata = C_NOCOMMIT; 10054 } while ((pp = pp->p_next) != savepp); 10055 10056 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10057 10058 /* 10059 * In case of error set readahead offset 10060 * to the lowest offset. 10061 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10062 */ 10063 if (error && rp->r_nextr > io_off) { 10064 mutex_enter(&rp->r_statelock); 10065 if (rp->r_nextr > io_off) 10066 rp->r_nextr = io_off; 10067 mutex_exit(&rp->r_statelock); 10068 } 10069 } 10070 10071 /* 10072 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10073 * If len == 0, do from off to EOF. 10074 * 10075 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10076 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10077 * (from pageout). 10078 */ 10079 static int 10080 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 10081 { 10082 int error; 10083 rnode4_t *rp; 10084 10085 ASSERT(cr != NULL); 10086 10087 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10088 return (EIO); 10089 10090 rp = VTOR4(vp); 10091 if (IS_SHADOW(vp, rp)) 10092 vp = RTOV4(rp); 10093 10094 /* 10095 * XXX - Why should this check be made here? 10096 */ 10097 if (vp->v_flag & VNOMAP) 10098 return (ENOSYS); 10099 10100 if (len == 0 && !(flags & B_INVAL) && 10101 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10102 return (0); 10103 10104 mutex_enter(&rp->r_statelock); 10105 rp->r_count++; 10106 mutex_exit(&rp->r_statelock); 10107 error = nfs4_putpages(vp, off, len, flags, cr); 10108 mutex_enter(&rp->r_statelock); 10109 rp->r_count--; 10110 cv_broadcast(&rp->r_cv); 10111 mutex_exit(&rp->r_statelock); 10112 10113 return (error); 10114 } 10115 10116 /* 10117 * Write out a single page, possibly klustering adjacent dirty pages. 10118 */ 10119 int 10120 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10121 int flags, cred_t *cr) 10122 { 10123 u_offset_t io_off; 10124 u_offset_t lbn_off; 10125 u_offset_t lbn; 10126 size_t io_len; 10127 uint_t bsize; 10128 int error; 10129 rnode4_t *rp; 10130 10131 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10132 ASSERT(pp != NULL); 10133 ASSERT(cr != NULL); 10134 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10135 10136 rp = VTOR4(vp); 10137 ASSERT(rp->r_count > 0); 10138 ASSERT(!IS_SHADOW(vp, rp)); 10139 10140 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10141 lbn = pp->p_offset / bsize; 10142 lbn_off = lbn * bsize; 10143 10144 /* 10145 * Find a kluster that fits in one block, or in 10146 * one page if pages are bigger than blocks. If 10147 * there is less file space allocated than a whole 10148 * page, we'll shorten the i/o request below. 10149 */ 10150 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10151 roundup(bsize, PAGESIZE), flags); 10152 10153 /* 10154 * pvn_write_kluster shouldn't have returned a page with offset 10155 * behind the original page we were given. Verify that. 10156 */ 10157 ASSERT((pp->p_offset / bsize) >= lbn); 10158 10159 /* 10160 * Now pp will have the list of kept dirty pages marked for 10161 * write back. It will also handle invalidation and freeing 10162 * of pages that are not dirty. Check for page length rounding 10163 * problems. 10164 */ 10165 if (io_off + io_len > lbn_off + bsize) { 10166 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10167 io_len = lbn_off + bsize - io_off; 10168 } 10169 /* 10170 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10171 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10172 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10173 * progress and the r_size has not been made consistent with the 10174 * new size of the file. When the uiomove() completes the r_size is 10175 * updated and the R4MODINPROGRESS flag is cleared. 10176 * 10177 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10178 * consistent value of r_size. Without this handshaking, it is 10179 * possible that nfs4_bio() picks up the old value of r_size 10180 * before the uiomove() in writerp4() completes. This will result 10181 * in the write through nfs4_bio() being dropped. 10182 * 10183 * More precisely, there is a window between the time the uiomove() 10184 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10185 * operation intervenes in this window, the page will be picked up, 10186 * because it is dirty (it will be unlocked, unless it was 10187 * pagecreate'd). When the page is picked up as dirty, the dirty 10188 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10189 * checked. This will still be the old size. Therefore the page will 10190 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10191 * the page will be found to be clean and the write will be dropped. 10192 */ 10193 if (rp->r_flags & R4MODINPROGRESS) { 10194 mutex_enter(&rp->r_statelock); 10195 if ((rp->r_flags & R4MODINPROGRESS) && 10196 rp->r_modaddr + MAXBSIZE > io_off && 10197 rp->r_modaddr < io_off + io_len) { 10198 page_t *plist; 10199 /* 10200 * A write is in progress for this region of the file. 10201 * If we did not detect R4MODINPROGRESS here then this 10202 * path through nfs_putapage() would eventually go to 10203 * nfs4_bio() and may not write out all of the data 10204 * in the pages. We end up losing data. So we decide 10205 * to set the modified bit on each page in the page 10206 * list and mark the rnode with R4DIRTY. This write 10207 * will be restarted at some later time. 10208 */ 10209 plist = pp; 10210 while (plist != NULL) { 10211 pp = plist; 10212 page_sub(&plist, pp); 10213 hat_setmod(pp); 10214 page_io_unlock(pp); 10215 page_unlock(pp); 10216 } 10217 rp->r_flags |= R4DIRTY; 10218 mutex_exit(&rp->r_statelock); 10219 if (offp) 10220 *offp = io_off; 10221 if (lenp) 10222 *lenp = io_len; 10223 return (0); 10224 } 10225 mutex_exit(&rp->r_statelock); 10226 } 10227 10228 if (flags & B_ASYNC) { 10229 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10230 nfs4_sync_putapage); 10231 } else 10232 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10233 10234 if (offp) 10235 *offp = io_off; 10236 if (lenp) 10237 *lenp = io_len; 10238 return (error); 10239 } 10240 10241 static int 10242 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10243 int flags, cred_t *cr) 10244 { 10245 int error; 10246 rnode4_t *rp; 10247 10248 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10249 10250 flags |= B_WRITE; 10251 10252 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10253 10254 rp = VTOR4(vp); 10255 10256 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10257 error == EACCES) && 10258 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10259 if (!(rp->r_flags & R4OUTOFSPACE)) { 10260 mutex_enter(&rp->r_statelock); 10261 rp->r_flags |= R4OUTOFSPACE; 10262 mutex_exit(&rp->r_statelock); 10263 } 10264 flags |= B_ERROR; 10265 pvn_write_done(pp, flags); 10266 /* 10267 * If this was not an async thread, then try again to 10268 * write out the pages, but this time, also destroy 10269 * them whether or not the write is successful. This 10270 * will prevent memory from filling up with these 10271 * pages and destroying them is the only alternative 10272 * if they can't be written out. 10273 * 10274 * Don't do this if this is an async thread because 10275 * when the pages are unlocked in pvn_write_done, 10276 * some other thread could have come along, locked 10277 * them, and queued for an async thread. It would be 10278 * possible for all of the async threads to be tied 10279 * up waiting to lock the pages again and they would 10280 * all already be locked and waiting for an async 10281 * thread to handle them. Deadlock. 10282 */ 10283 if (!(flags & B_ASYNC)) { 10284 error = nfs4_putpage(vp, io_off, io_len, 10285 B_INVAL | B_FORCE, cr); 10286 } 10287 } else { 10288 if (error) 10289 flags |= B_ERROR; 10290 else if (rp->r_flags & R4OUTOFSPACE) { 10291 mutex_enter(&rp->r_statelock); 10292 rp->r_flags &= ~R4OUTOFSPACE; 10293 mutex_exit(&rp->r_statelock); 10294 } 10295 pvn_write_done(pp, flags); 10296 if (freemem < desfree) 10297 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10298 NFS4_WRITE_NOWAIT); 10299 } 10300 10301 return (error); 10302 } 10303 10304 #ifdef DEBUG 10305 int nfs4_force_open_before_mmap = 0; 10306 #endif 10307 10308 static int 10309 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10310 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10311 { 10312 struct segvn_crargs vn_a; 10313 int error = 0; 10314 rnode4_t *rp = VTOR4(vp); 10315 mntinfo4_t *mi = VTOMI4(vp); 10316 10317 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10318 return (EIO); 10319 10320 if (vp->v_flag & VNOMAP) 10321 return (ENOSYS); 10322 10323 if (off < 0 || (off + len) < 0) 10324 return (ENXIO); 10325 10326 if (vp->v_type != VREG) 10327 return (ENODEV); 10328 10329 /* 10330 * If the file is delegated to the client don't do anything. 10331 * If the file is not delegated, then validate the data cache. 10332 */ 10333 mutex_enter(&rp->r_statev4_lock); 10334 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10335 mutex_exit(&rp->r_statev4_lock); 10336 error = nfs4_validate_caches(vp, cr); 10337 if (error) 10338 return (error); 10339 } else { 10340 mutex_exit(&rp->r_statev4_lock); 10341 } 10342 10343 /* 10344 * Check to see if the vnode is currently marked as not cachable. 10345 * This means portions of the file are locked (through VOP_FRLOCK). 10346 * In this case the map request must be refused. We use 10347 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10348 */ 10349 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10350 return (EINTR); 10351 10352 if (vp->v_flag & VNOCACHE) { 10353 error = EAGAIN; 10354 goto done; 10355 } 10356 10357 /* 10358 * Don't allow concurrent locks and mapping if mandatory locking is 10359 * enabled. 10360 */ 10361 if (flk_has_remote_locks(vp)) { 10362 struct vattr va; 10363 va.va_mask = AT_MODE; 10364 error = nfs4getattr(vp, &va, cr); 10365 if (error != 0) 10366 goto done; 10367 if (MANDLOCK(vp, va.va_mode)) { 10368 error = EAGAIN; 10369 goto done; 10370 } 10371 } 10372 10373 /* 10374 * It is possible that the rnode has a lost lock request that we 10375 * are still trying to recover, and that the request conflicts with 10376 * this map request. 10377 * 10378 * An alternative approach would be for nfs4_safemap() to consider 10379 * queued lock requests when deciding whether to set or clear 10380 * VNOCACHE. This would require the frlock code path to call 10381 * nfs4_safemap() after enqueing a lost request. 10382 */ 10383 if (nfs4_map_lost_lock_conflict(vp)) { 10384 error = EAGAIN; 10385 goto done; 10386 } 10387 10388 as_rangelock(as); 10389 if (!(flags & MAP_FIXED)) { 10390 map_addr(addrp, len, off, 1, flags); 10391 if (*addrp == NULL) { 10392 as_rangeunlock(as); 10393 error = ENOMEM; 10394 goto done; 10395 } 10396 } else { 10397 /* 10398 * User specified address - blow away any previous mappings 10399 */ 10400 (void) as_unmap(as, *addrp, len); 10401 } 10402 10403 if (vp->v_type == VREG) { 10404 /* 10405 * We need to retrieve the open stream 10406 */ 10407 nfs4_open_stream_t *osp = NULL; 10408 nfs4_open_owner_t *oop = NULL; 10409 10410 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10411 if (oop != NULL) { 10412 /* returns with 'os_sync_lock' held */ 10413 osp = find_open_stream(oop, rp); 10414 open_owner_rele(oop); 10415 } 10416 if (osp == NULL) { 10417 #ifdef DEBUG 10418 if (nfs4_force_open_before_mmap) { 10419 error = EIO; 10420 goto done; 10421 } 10422 #endif 10423 /* returns with 'os_sync_lock' held */ 10424 error = open_and_get_osp(vp, cr, &osp); 10425 if (osp == NULL) { 10426 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10427 "nfs4_map: we tried to OPEN the file " 10428 "but again no osp, so fail with EIO")); 10429 goto done; 10430 } 10431 } 10432 10433 if (osp->os_failed_reopen) { 10434 mutex_exit(&osp->os_sync_lock); 10435 open_stream_rele(osp, rp); 10436 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10437 "nfs4_map: os_failed_reopen set on " 10438 "osp %p, cr %p, rp %s", (void *)osp, 10439 (void *)cr, rnode4info(rp))); 10440 error = EIO; 10441 goto done; 10442 } 10443 mutex_exit(&osp->os_sync_lock); 10444 open_stream_rele(osp, rp); 10445 } 10446 10447 vn_a.vp = vp; 10448 vn_a.offset = off; 10449 vn_a.type = (flags & MAP_TYPE); 10450 vn_a.prot = (uchar_t)prot; 10451 vn_a.maxprot = (uchar_t)maxprot; 10452 vn_a.flags = (flags & ~MAP_TYPE); 10453 vn_a.cred = cr; 10454 vn_a.amp = NULL; 10455 vn_a.szc = 0; 10456 vn_a.lgrp_mem_policy_flags = 0; 10457 10458 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10459 as_rangeunlock(as); 10460 10461 done: 10462 nfs_rw_exit(&rp->r_lkserlock); 10463 return (error); 10464 } 10465 10466 /* 10467 * We're most likely dealing with a kernel module that likes to READ 10468 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10469 * officially OPEN the file to create the necessary client state 10470 * for bookkeeping of os_mmap_read/write counts. 10471 * 10472 * Since VOP_MAP only passes in a pointer to the vnode rather than 10473 * a double pointer, we can't handle the case where nfs4open_otw() 10474 * returns a different vnode than the one passed into VOP_MAP (since 10475 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10476 * we return NULL and let nfs4_map() fail. Note: the only case where 10477 * this should happen is if the file got removed and replaced with the 10478 * same name on the server (in addition to the fact that we're trying 10479 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10480 */ 10481 static int 10482 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10483 { 10484 rnode4_t *rp, *drp; 10485 vnode_t *dvp, *open_vp; 10486 char file_name[MAXNAMELEN]; 10487 int just_created; 10488 nfs4_open_stream_t *osp; 10489 nfs4_open_owner_t *oop; 10490 int error; 10491 10492 *ospp = NULL; 10493 open_vp = map_vp; 10494 10495 rp = VTOR4(open_vp); 10496 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10497 return (error); 10498 drp = VTOR4(dvp); 10499 10500 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10501 VN_RELE(dvp); 10502 return (EINTR); 10503 } 10504 10505 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10506 nfs_rw_exit(&drp->r_rwlock); 10507 VN_RELE(dvp); 10508 return (error); 10509 } 10510 10511 mutex_enter(&rp->r_statev4_lock); 10512 if (rp->created_v4) { 10513 rp->created_v4 = 0; 10514 mutex_exit(&rp->r_statev4_lock); 10515 10516 dnlc_update(dvp, file_name, open_vp); 10517 /* This is needed so we don't bump the open ref count */ 10518 just_created = 1; 10519 } else { 10520 mutex_exit(&rp->r_statev4_lock); 10521 just_created = 0; 10522 } 10523 10524 VN_HOLD(map_vp); 10525 10526 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10527 just_created); 10528 if (error) { 10529 nfs_rw_exit(&drp->r_rwlock); 10530 VN_RELE(dvp); 10531 VN_RELE(map_vp); 10532 return (error); 10533 } 10534 10535 nfs_rw_exit(&drp->r_rwlock); 10536 VN_RELE(dvp); 10537 10538 /* 10539 * If nfs4open_otw() returned a different vnode then "undo" 10540 * the open and return failure to the caller. 10541 */ 10542 if (!VN_CMP(open_vp, map_vp)) { 10543 nfs4_error_t e; 10544 10545 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10546 "open returned a different vnode")); 10547 /* 10548 * If there's an error, ignore it, 10549 * and let VOP_INACTIVE handle it. 10550 */ 10551 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10552 CLOSE_NORM, 0, 0, 0); 10553 VN_RELE(map_vp); 10554 return (EIO); 10555 } 10556 10557 VN_RELE(map_vp); 10558 10559 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10560 if (!oop) { 10561 nfs4_error_t e; 10562 10563 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10564 "no open owner")); 10565 /* 10566 * If there's an error, ignore it, 10567 * and let VOP_INACTIVE handle it. 10568 */ 10569 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10570 CLOSE_NORM, 0, 0, 0); 10571 return (EIO); 10572 } 10573 osp = find_open_stream(oop, rp); 10574 open_owner_rele(oop); 10575 *ospp = osp; 10576 return (0); 10577 } 10578 10579 /* 10580 * Please be aware that when this function is called, the address space write 10581 * a_lock is held. Do not put over the wire calls in this function. 10582 */ 10583 /* ARGSUSED */ 10584 static int 10585 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10586 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10587 { 10588 rnode4_t *rp; 10589 int error = 0; 10590 mntinfo4_t *mi; 10591 10592 mi = VTOMI4(vp); 10593 rp = VTOR4(vp); 10594 10595 if (nfs_zone() != mi->mi_zone) 10596 return (EIO); 10597 if (vp->v_flag & VNOMAP) 10598 return (ENOSYS); 10599 10600 /* 10601 * Need to hold rwlock while incrementing the mapcnt so that 10602 * mmap'ing can be serialized with writes so that the caching 10603 * can be handled correctly. 10604 * 10605 * Don't need to update the open stream first, since this 10606 * mmap can't add any additional share access that isn't 10607 * already contained in the open stream (for the case where we 10608 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10609 * take into account os_mmap_read[write] counts). 10610 */ 10611 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10612 return (EINTR); 10613 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10614 nfs_rw_exit(&rp->r_rwlock); 10615 10616 if (vp->v_type == VREG) { 10617 /* 10618 * We need to retrieve the open stream and update the counts. 10619 * If there is no open stream here, something is wrong. 10620 */ 10621 nfs4_open_stream_t *osp = NULL; 10622 nfs4_open_owner_t *oop = NULL; 10623 10624 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10625 if (oop != NULL) { 10626 /* returns with 'os_sync_lock' held */ 10627 osp = find_open_stream(oop, rp); 10628 open_owner_rele(oop); 10629 } 10630 if (osp == NULL) { 10631 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10632 "nfs4_addmap: we should have an osp" 10633 "but we don't, so fail with EIO")); 10634 error = EIO; 10635 goto out; 10636 } 10637 10638 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10639 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10640 10641 /* 10642 * Update the map count in the open stream. 10643 * This is necessary in the case where we 10644 * open/mmap/close/, then the server reboots, and we 10645 * attempt to reopen. If the mmap doesn't add share 10646 * access then we send an invalid reopen with 10647 * access = NONE. 10648 * 10649 * We need to specifically check each PROT_* so a mmap 10650 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10651 * read and write access. A simple comparison of prot 10652 * to ~PROT_WRITE to determine read access is insufficient 10653 * since prot can be |= with PROT_USER, etc. 10654 */ 10655 10656 /* 10657 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10658 */ 10659 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10660 osp->os_mmap_write += btopr(len); 10661 if (maxprot & PROT_READ) 10662 osp->os_mmap_read += btopr(len); 10663 if (maxprot & PROT_EXEC) 10664 osp->os_mmap_read += btopr(len); 10665 /* 10666 * Ensure that os_mmap_read gets incremented, even if 10667 * maxprot were to look like PROT_NONE. 10668 */ 10669 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10670 !(maxprot & PROT_EXEC)) 10671 osp->os_mmap_read += btopr(len); 10672 osp->os_mapcnt += btopr(len); 10673 mutex_exit(&osp->os_sync_lock); 10674 open_stream_rele(osp, rp); 10675 } 10676 10677 out: 10678 /* 10679 * If we got an error, then undo our 10680 * incrementing of 'r_mapcnt'. 10681 */ 10682 10683 if (error) { 10684 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10685 ASSERT(rp->r_mapcnt >= 0); 10686 } 10687 return (error); 10688 } 10689 10690 static int 10691 nfs4_cmp(vnode_t *vp1, vnode_t *vp2) 10692 { 10693 10694 return (VTOR4(vp1) == VTOR4(vp2)); 10695 } 10696 10697 static int 10698 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10699 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 10700 { 10701 int rc; 10702 u_offset_t start, end; 10703 rnode4_t *rp; 10704 int error = 0, intr = INTR4(vp); 10705 nfs4_error_t e; 10706 10707 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10708 return (EIO); 10709 10710 /* check for valid cmd parameter */ 10711 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10712 return (EINVAL); 10713 10714 /* Verify l_type. */ 10715 switch (bfp->l_type) { 10716 case F_RDLCK: 10717 if (cmd != F_GETLK && !(flag & FREAD)) 10718 return (EBADF); 10719 break; 10720 case F_WRLCK: 10721 if (cmd != F_GETLK && !(flag & FWRITE)) 10722 return (EBADF); 10723 break; 10724 case F_UNLCK: 10725 intr = 0; 10726 break; 10727 10728 default: 10729 return (EINVAL); 10730 } 10731 10732 /* check the validity of the lock range */ 10733 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10734 return (rc); 10735 if (rc = flk_check_lock_data(start, end, MAXEND)) 10736 return (rc); 10737 10738 /* 10739 * If the filesystem is mounted using local locking, pass the 10740 * request off to the local locking code. 10741 */ 10742 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10743 if (cmd == F_SETLK || cmd == F_SETLKW) { 10744 /* 10745 * For complete safety, we should be holding 10746 * r_lkserlock. However, we can't call 10747 * nfs4_safelock and then fs_frlock while 10748 * holding r_lkserlock, so just invoke 10749 * nfs4_safelock and expect that this will 10750 * catch enough of the cases. 10751 */ 10752 if (!nfs4_safelock(vp, bfp, cr)) 10753 return (EAGAIN); 10754 } 10755 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 10756 } 10757 10758 rp = VTOR4(vp); 10759 10760 /* 10761 * Check whether the given lock request can proceed, given the 10762 * current file mappings. 10763 */ 10764 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10765 return (EINTR); 10766 if (cmd == F_SETLK || cmd == F_SETLKW) { 10767 if (!nfs4_safelock(vp, bfp, cr)) { 10768 rc = EAGAIN; 10769 goto done; 10770 } 10771 } 10772 10773 /* 10774 * Flush the cache after waiting for async I/O to finish. For new 10775 * locks, this is so that the process gets the latest bits from the 10776 * server. For unlocks, this is so that other clients see the 10777 * latest bits once the file has been unlocked. If currently dirty 10778 * pages can't be flushed, then don't allow a lock to be set. But 10779 * allow unlocks to succeed, to avoid having orphan locks on the 10780 * server. 10781 */ 10782 if (cmd != F_GETLK) { 10783 mutex_enter(&rp->r_statelock); 10784 while (rp->r_count > 0) { 10785 if (intr) { 10786 klwp_t *lwp = ttolwp(curthread); 10787 10788 if (lwp != NULL) 10789 lwp->lwp_nostop++; 10790 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 10791 if (lwp != NULL) 10792 lwp->lwp_nostop--; 10793 rc = EINTR; 10794 break; 10795 } 10796 if (lwp != NULL) 10797 lwp->lwp_nostop--; 10798 } else 10799 cv_wait(&rp->r_cv, &rp->r_statelock); 10800 } 10801 mutex_exit(&rp->r_statelock); 10802 if (rc != 0) 10803 goto done; 10804 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 10805 if (error) { 10806 if (error == ENOSPC || error == EDQUOT) { 10807 mutex_enter(&rp->r_statelock); 10808 if (!rp->r_error) 10809 rp->r_error = error; 10810 mutex_exit(&rp->r_statelock); 10811 } 10812 if (bfp->l_type != F_UNLCK) { 10813 rc = ENOLCK; 10814 goto done; 10815 } 10816 } 10817 } 10818 10819 /* 10820 * Call the lock manager to do the real work of contacting 10821 * the server and obtaining the lock. 10822 */ 10823 10824 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10825 cr, &e, NULL, NULL); 10826 rc = e.error; 10827 10828 if (rc == 0) 10829 nfs4_lockcompletion(vp, cmd); 10830 10831 done: 10832 nfs_rw_exit(&rp->r_lkserlock); 10833 10834 return (rc); 10835 } 10836 10837 /* 10838 * Free storage space associated with the specified vnode. The portion 10839 * to be freed is specified by bfp->l_start and bfp->l_len (already 10840 * normalized to a "whence" of 0). 10841 * 10842 * This is an experimental facility whose continued existence is not 10843 * guaranteed. Currently, we only support the special case 10844 * of l_len == 0, meaning free to end of file. 10845 */ 10846 /* ARGSUSED */ 10847 static int 10848 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10849 offset_t offset, cred_t *cr, caller_context_t *ct) 10850 { 10851 int error; 10852 10853 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10854 return (EIO); 10855 ASSERT(vp->v_type == VREG); 10856 if (cmd != F_FREESP) 10857 return (EINVAL); 10858 10859 error = convoff(vp, bfp, 0, offset); 10860 if (!error) { 10861 ASSERT(bfp->l_start >= 0); 10862 if (bfp->l_len == 0) { 10863 struct vattr va; 10864 10865 va.va_mask = AT_SIZE; 10866 va.va_size = bfp->l_start; 10867 error = nfs4setattr(vp, &va, 0, cr, NULL); 10868 } else 10869 error = EINVAL; 10870 } 10871 10872 return (error); 10873 } 10874 10875 /* ARGSUSED */ 10876 static int 10877 nfs4_realvp(vnode_t *vp, vnode_t **vpp) 10878 { 10879 rnode4_t *rp; 10880 rp = VTOR4(vp); 10881 10882 if (IS_SHADOW(vp, rp)) { 10883 vp = RTOV4(rp); 10884 } 10885 *vpp = vp; 10886 return (0); 10887 } 10888 10889 /* 10890 * Setup and add an address space callback to do the work of the delmap call. 10891 * The callback will (and must be) deleted in the actual callback function. 10892 * 10893 * This is done in order to take care of the problem that we have with holding 10894 * the address space's a_lock for a long period of time (e.g. if the NFS server 10895 * is down). Callbacks will be executed in the address space code while the 10896 * a_lock is not held. Holding the address space's a_lock causes things such 10897 * as ps and fork to hang because they are trying to acquire this lock as well. 10898 */ 10899 /* ARGSUSED */ 10900 static int 10901 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10902 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 10903 { 10904 int caller_found; 10905 int error; 10906 rnode4_t *rp; 10907 nfs4_delmap_args_t *dmapp; 10908 nfs4_delmapcall_t *delmap_call; 10909 10910 if (vp->v_flag & VNOMAP) 10911 return (ENOSYS); 10912 10913 /* 10914 * A process may not change zones if it has NFS pages mmap'ed 10915 * in, so we can't legitimately get here from the wrong zone. 10916 */ 10917 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10918 10919 rp = VTOR4(vp); 10920 10921 /* 10922 * The way that the address space of this process deletes its mapping 10923 * of this file is via the following call chains: 10924 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10925 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10926 * 10927 * With the use of address space callbacks we are allowed to drop the 10928 * address space lock, a_lock, while executing the NFS operations that 10929 * need to go over the wire. Returning EAGAIN to the caller of this 10930 * function is what drives the execution of the callback that we add 10931 * below. The callback will be executed by the address space code 10932 * after dropping the a_lock. When the callback is finished, since 10933 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10934 * is called again on the same segment to finish the rest of the work 10935 * that needs to happen during unmapping. 10936 * 10937 * This action of calling back into the segment driver causes 10938 * nfs4_delmap() to get called again, but since the callback was 10939 * already executed at this point, it already did the work and there 10940 * is nothing left for us to do. 10941 * 10942 * To Summarize: 10943 * - The first time nfs4_delmap is called by the current thread is when 10944 * we add the caller associated with this delmap to the delmap caller 10945 * list, add the callback, and return EAGAIN. 10946 * - The second time in this call chain when nfs4_delmap is called we 10947 * will find this caller in the delmap caller list and realize there 10948 * is no more work to do thus removing this caller from the list and 10949 * returning the error that was set in the callback execution. 10950 */ 10951 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10952 if (caller_found) { 10953 /* 10954 * 'error' is from the actual delmap operations. To avoid 10955 * hangs, we need to handle the return of EAGAIN differently 10956 * since this is what drives the callback execution. 10957 * In this case, we don't want to return EAGAIN and do the 10958 * callback execution because there are none to execute. 10959 */ 10960 if (error == EAGAIN) 10961 return (0); 10962 else 10963 return (error); 10964 } 10965 10966 /* current caller was not in the list */ 10967 delmap_call = nfs4_init_delmapcall(); 10968 10969 mutex_enter(&rp->r_statelock); 10970 list_insert_tail(&rp->r_indelmap, delmap_call); 10971 mutex_exit(&rp->r_statelock); 10972 10973 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10974 10975 dmapp->vp = vp; 10976 dmapp->off = off; 10977 dmapp->addr = addr; 10978 dmapp->len = len; 10979 dmapp->prot = prot; 10980 dmapp->maxprot = maxprot; 10981 dmapp->flags = flags; 10982 dmapp->cr = cr; 10983 dmapp->caller = delmap_call; 10984 10985 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10986 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10987 10988 return (error ? error : EAGAIN); 10989 } 10990 10991 static nfs4_delmapcall_t * 10992 nfs4_init_delmapcall() 10993 { 10994 nfs4_delmapcall_t *delmap_call; 10995 10996 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 10997 delmap_call->call_id = curthread; 10998 delmap_call->error = 0; 10999 11000 return (delmap_call); 11001 } 11002 11003 static void 11004 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11005 { 11006 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11007 } 11008 11009 /* 11010 * Searches for the current delmap caller (based on curthread) in the list of 11011 * callers. If it is found, we remove it and free the delmap caller. 11012 * Returns: 11013 * 0 if the caller wasn't found 11014 * 1 if the caller was found, removed and freed. *errp will be set 11015 * to what the result of the delmap was. 11016 */ 11017 static int 11018 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11019 { 11020 nfs4_delmapcall_t *delmap_call; 11021 11022 /* 11023 * If the list doesn't exist yet, we create it and return 11024 * that the caller wasn't found. No list = no callers. 11025 */ 11026 mutex_enter(&rp->r_statelock); 11027 if (!(rp->r_flags & R4DELMAPLIST)) { 11028 /* The list does not exist */ 11029 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11030 offsetof(nfs4_delmapcall_t, call_node)); 11031 rp->r_flags |= R4DELMAPLIST; 11032 mutex_exit(&rp->r_statelock); 11033 return (0); 11034 } else { 11035 /* The list exists so search it */ 11036 for (delmap_call = list_head(&rp->r_indelmap); 11037 delmap_call != NULL; 11038 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11039 if (delmap_call->call_id == curthread) { 11040 /* current caller is in the list */ 11041 *errp = delmap_call->error; 11042 list_remove(&rp->r_indelmap, delmap_call); 11043 mutex_exit(&rp->r_statelock); 11044 nfs4_free_delmapcall(delmap_call); 11045 return (1); 11046 } 11047 } 11048 } 11049 mutex_exit(&rp->r_statelock); 11050 return (0); 11051 } 11052 11053 /* 11054 * Remove some pages from an mmap'd vnode. Just update the 11055 * count of pages. If doing close-to-open, then flush and 11056 * commit all of the pages associated with this file. 11057 * Otherwise, start an asynchronous page flush to write out 11058 * any dirty pages. This will also associate a credential 11059 * with the rnode which can be used to write the pages. 11060 */ 11061 /* ARGSUSED */ 11062 static void 11063 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11064 { 11065 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11066 rnode4_t *rp; 11067 mntinfo4_t *mi; 11068 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11069 11070 rp = VTOR4(dmapp->vp); 11071 mi = VTOMI4(dmapp->vp); 11072 11073 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11074 ASSERT(rp->r_mapcnt >= 0); 11075 11076 /* 11077 * Initiate a page flush and potential commit if there are 11078 * pages, the file system was not mounted readonly, the segment 11079 * was mapped shared, and the pages themselves were writeable. 11080 */ 11081 if (nfs4_has_pages(dmapp->vp) && 11082 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11083 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11084 mutex_enter(&rp->r_statelock); 11085 rp->r_flags |= R4DIRTY; 11086 mutex_exit(&rp->r_statelock); 11087 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11088 dmapp->len, dmapp->cr); 11089 if (!e.error) { 11090 mutex_enter(&rp->r_statelock); 11091 e.error = rp->r_error; 11092 rp->r_error = 0; 11093 mutex_exit(&rp->r_statelock); 11094 } 11095 } else 11096 e.error = 0; 11097 11098 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11099 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11100 B_INVAL, dmapp->cr); 11101 11102 if (e.error) { 11103 e.stat = puterrno4(e.error); 11104 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11105 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11106 dmapp->caller->error = e.error; 11107 } 11108 11109 /* Check to see if we need to close the file */ 11110 11111 if (dmapp->vp->v_type == VREG) { 11112 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11113 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11114 11115 if (e.error != 0 || e.stat != NFS4_OK) { 11116 /* 11117 * Since it is possible that e.error == 0 and 11118 * e.stat != NFS4_OK (and vice versa), 11119 * we do the proper checking in order to get both 11120 * e.error and e.stat reporting the correct info. 11121 */ 11122 if (e.stat == NFS4_OK) 11123 e.stat = puterrno4(e.error); 11124 if (e.error == 0) 11125 e.error = geterrno4(e.stat); 11126 11127 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11128 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11129 dmapp->caller->error = e.error; 11130 } 11131 } 11132 11133 (void) as_delete_callback(as, arg); 11134 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11135 } 11136 11137 11138 static uint_t 11139 fattr4_maxfilesize_to_bits(uint64_t ll) 11140 { 11141 uint_t l = 1; 11142 11143 if (ll == 0) { 11144 return (0); 11145 } 11146 11147 if (ll & 0xffffffff00000000) { 11148 l += 32; ll >>= 32; 11149 } 11150 if (ll & 0xffff0000) { 11151 l += 16; ll >>= 16; 11152 } 11153 if (ll & 0xff00) { 11154 l += 8; ll >>= 8; 11155 } 11156 if (ll & 0xf0) { 11157 l += 4; ll >>= 4; 11158 } 11159 if (ll & 0xc) { 11160 l += 2; ll >>= 2; 11161 } 11162 if (ll & 0x2) { 11163 l += 1; 11164 } 11165 return (l); 11166 } 11167 11168 static int 11169 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 11170 { 11171 int error; 11172 hrtime_t t; 11173 rnode4_t *rp; 11174 nfs4_ga_res_t gar; 11175 nfs4_ga_ext_res_t ger; 11176 11177 gar.n4g_ext_res = &ger; 11178 11179 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11180 return (EIO); 11181 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11182 *valp = MAXPATHLEN; 11183 return (0); 11184 } 11185 if (cmd == _PC_ACL_ENABLED) { 11186 *valp = _ACL_ACE_ENABLED; 11187 return (0); 11188 } 11189 11190 rp = VTOR4(vp); 11191 if (cmd == _PC_XATTR_EXISTS) { 11192 /* 11193 * Eventually should attempt small client readdir before 11194 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11195 * just drive the OTW getattr. This is required because 11196 * _PC_XATTR_EXISTS can only return true if attributes 11197 * exist -- simply checking for existance of the attrdir 11198 * is not sufficient. 11199 * 11200 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11201 * is NULL. Once the xadir vp exists, we can create xattrs, 11202 * and we don't have any way to update the "base" object's 11203 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11204 * could help out. 11205 */ 11206 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11207 rp->r_xattr_dir == NULL) { 11208 *valp = rp->r_pathconf.pc4_xattr_exists; 11209 return (0); 11210 } 11211 } else { /* OLD CODE */ 11212 if (ATTRCACHE4_VALID(vp)) { 11213 mutex_enter(&rp->r_statelock); 11214 if (rp->r_pathconf.pc4_cache_valid) { 11215 error = 0; 11216 switch (cmd) { 11217 case _PC_FILESIZEBITS: 11218 *valp = 11219 rp->r_pathconf.pc4_filesizebits; 11220 break; 11221 case _PC_LINK_MAX: 11222 *valp = 11223 rp->r_pathconf.pc4_link_max; 11224 break; 11225 case _PC_NAME_MAX: 11226 *valp = 11227 rp->r_pathconf.pc4_name_max; 11228 break; 11229 case _PC_CHOWN_RESTRICTED: 11230 *valp = 11231 rp->r_pathconf.pc4_chown_restricted; 11232 break; 11233 case _PC_NO_TRUNC: 11234 *valp = 11235 rp->r_pathconf.pc4_no_trunc; 11236 break; 11237 default: 11238 error = EINVAL; 11239 break; 11240 } 11241 mutex_exit(&rp->r_statelock); 11242 #ifdef DEBUG 11243 nfs4_pathconf_cache_hits++; 11244 #endif 11245 return (error); 11246 } 11247 mutex_exit(&rp->r_statelock); 11248 } 11249 } 11250 #ifdef DEBUG 11251 nfs4_pathconf_cache_misses++; 11252 #endif 11253 11254 t = gethrtime(); 11255 11256 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11257 11258 if (error) { 11259 mutex_enter(&rp->r_statelock); 11260 rp->r_pathconf.pc4_cache_valid = FALSE; 11261 rp->r_pathconf.pc4_xattr_valid = FALSE; 11262 mutex_exit(&rp->r_statelock); 11263 return (error); 11264 } 11265 11266 /* interpret the max filesize */ 11267 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11268 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11269 11270 /* Store the attributes we just received */ 11271 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11272 11273 switch (cmd) { 11274 case _PC_FILESIZEBITS: 11275 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11276 break; 11277 case _PC_LINK_MAX: 11278 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11279 break; 11280 case _PC_NAME_MAX: 11281 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11282 break; 11283 case _PC_CHOWN_RESTRICTED: 11284 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11285 break; 11286 case _PC_NO_TRUNC: 11287 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11288 break; 11289 case _PC_XATTR_EXISTS: 11290 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11291 break; 11292 default: 11293 return (EINVAL); 11294 } 11295 11296 return (0); 11297 } 11298 11299 /* 11300 * Called by async thread to do synchronous pageio. Do the i/o, wait 11301 * for it to complete, and cleanup the page list when done. 11302 */ 11303 static int 11304 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11305 int flags, cred_t *cr) 11306 { 11307 int error; 11308 11309 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11310 11311 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11312 if (flags & B_READ) 11313 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11314 else 11315 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11316 return (error); 11317 } 11318 11319 static int 11320 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11321 int flags, cred_t *cr) 11322 { 11323 int error; 11324 rnode4_t *rp; 11325 11326 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11327 return (EIO); 11328 11329 if (pp == NULL) 11330 return (EINVAL); 11331 11332 rp = VTOR4(vp); 11333 mutex_enter(&rp->r_statelock); 11334 rp->r_count++; 11335 mutex_exit(&rp->r_statelock); 11336 11337 if (flags & B_ASYNC) { 11338 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11339 nfs4_sync_pageio); 11340 } else 11341 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11342 mutex_enter(&rp->r_statelock); 11343 rp->r_count--; 11344 cv_broadcast(&rp->r_cv); 11345 mutex_exit(&rp->r_statelock); 11346 return (error); 11347 } 11348 11349 static void 11350 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 11351 { 11352 int error; 11353 rnode4_t *rp; 11354 page_t *plist; 11355 page_t *pptr; 11356 offset3 offset; 11357 count3 len; 11358 k_sigset_t smask; 11359 11360 /* 11361 * We should get called with fl equal to either B_FREE or 11362 * B_INVAL. Any other value is illegal. 11363 * 11364 * The page that we are either supposed to free or destroy 11365 * should be exclusive locked and its io lock should not 11366 * be held. 11367 */ 11368 ASSERT(fl == B_FREE || fl == B_INVAL); 11369 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11370 11371 rp = VTOR4(vp); 11372 11373 /* 11374 * If the page doesn't need to be committed or we shouldn't 11375 * even bother attempting to commit it, then just make sure 11376 * that the p_fsdata byte is clear and then either free or 11377 * destroy the page as appropriate. 11378 */ 11379 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11380 pp->p_fsdata = C_NOCOMMIT; 11381 if (fl == B_FREE) 11382 page_free(pp, dn); 11383 else 11384 page_destroy(pp, dn); 11385 return; 11386 } 11387 11388 /* 11389 * If there is a page invalidation operation going on, then 11390 * if this is one of the pages being destroyed, then just 11391 * clear the p_fsdata byte and then either free or destroy 11392 * the page as appropriate. 11393 */ 11394 mutex_enter(&rp->r_statelock); 11395 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11396 mutex_exit(&rp->r_statelock); 11397 pp->p_fsdata = C_NOCOMMIT; 11398 if (fl == B_FREE) 11399 page_free(pp, dn); 11400 else 11401 page_destroy(pp, dn); 11402 return; 11403 } 11404 11405 /* 11406 * If we are freeing this page and someone else is already 11407 * waiting to do a commit, then just unlock the page and 11408 * return. That other thread will take care of commiting 11409 * this page. The page can be freed sometime after the 11410 * commit has finished. Otherwise, if the page is marked 11411 * as delay commit, then we may be getting called from 11412 * pvn_write_done, one page at a time. This could result 11413 * in one commit per page, so we end up doing lots of small 11414 * commits instead of fewer larger commits. This is bad, 11415 * we want do as few commits as possible. 11416 */ 11417 if (fl == B_FREE) { 11418 if (rp->r_flags & R4COMMITWAIT) { 11419 page_unlock(pp); 11420 mutex_exit(&rp->r_statelock); 11421 return; 11422 } 11423 if (pp->p_fsdata == C_DELAYCOMMIT) { 11424 pp->p_fsdata = C_COMMIT; 11425 page_unlock(pp); 11426 mutex_exit(&rp->r_statelock); 11427 return; 11428 } 11429 } 11430 11431 /* 11432 * Check to see if there is a signal which would prevent an 11433 * attempt to commit the pages from being successful. If so, 11434 * then don't bother with all of the work to gather pages and 11435 * generate the unsuccessful RPC. Just return from here and 11436 * let the page be committed at some later time. 11437 */ 11438 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11439 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11440 sigunintr(&smask); 11441 page_unlock(pp); 11442 mutex_exit(&rp->r_statelock); 11443 return; 11444 } 11445 sigunintr(&smask); 11446 11447 /* 11448 * We are starting to need to commit pages, so let's try 11449 * to commit as many as possible at once to reduce the 11450 * overhead. 11451 * 11452 * Set the `commit inprogress' state bit. We must 11453 * first wait until any current one finishes. Then 11454 * we initialize the c_pages list with this page. 11455 */ 11456 while (rp->r_flags & R4COMMIT) { 11457 rp->r_flags |= R4COMMITWAIT; 11458 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11459 rp->r_flags &= ~R4COMMITWAIT; 11460 } 11461 rp->r_flags |= R4COMMIT; 11462 mutex_exit(&rp->r_statelock); 11463 ASSERT(rp->r_commit.c_pages == NULL); 11464 rp->r_commit.c_pages = pp; 11465 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11466 rp->r_commit.c_commlen = PAGESIZE; 11467 11468 /* 11469 * Gather together all other pages which can be committed. 11470 * They will all be chained off r_commit.c_pages. 11471 */ 11472 nfs4_get_commit(vp); 11473 11474 /* 11475 * Clear the `commit inprogress' status and disconnect 11476 * the list of pages to be committed from the rnode. 11477 * At this same time, we also save the starting offset 11478 * and length of data to be committed on the server. 11479 */ 11480 plist = rp->r_commit.c_pages; 11481 rp->r_commit.c_pages = NULL; 11482 offset = rp->r_commit.c_commbase; 11483 len = rp->r_commit.c_commlen; 11484 mutex_enter(&rp->r_statelock); 11485 rp->r_flags &= ~R4COMMIT; 11486 cv_broadcast(&rp->r_commit.c_cv); 11487 mutex_exit(&rp->r_statelock); 11488 11489 if (curproc == proc_pageout || curproc == proc_fsflush || 11490 nfs_zone() != VTOMI4(vp)->mi_zone) { 11491 nfs4_async_commit(vp, plist, offset, len, 11492 cr, do_nfs4_async_commit); 11493 return; 11494 } 11495 11496 /* 11497 * Actually generate the COMMIT op over the wire operation. 11498 */ 11499 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11500 11501 /* 11502 * If we got an error during the commit, just unlock all 11503 * of the pages. The pages will get retransmitted to the 11504 * server during a putpage operation. 11505 */ 11506 if (error) { 11507 while (plist != NULL) { 11508 pptr = plist; 11509 page_sub(&plist, pptr); 11510 page_unlock(pptr); 11511 } 11512 return; 11513 } 11514 11515 /* 11516 * We've tried as hard as we can to commit the data to stable 11517 * storage on the server. We just unlock the rest of the pages 11518 * and clear the commit required state. They will be put 11519 * onto the tail of the cachelist if they are nolonger 11520 * mapped. 11521 */ 11522 while (plist != pp) { 11523 pptr = plist; 11524 page_sub(&plist, pptr); 11525 pptr->p_fsdata = C_NOCOMMIT; 11526 page_unlock(pptr); 11527 } 11528 11529 /* 11530 * It is possible that nfs4_commit didn't return error but 11531 * some other thread has modified the page we are going 11532 * to free/destroy. 11533 * In this case we need to rewrite the page. Do an explicit check 11534 * before attempting to free/destroy the page. If modified, needs to 11535 * be rewritten so unlock the page and return. 11536 */ 11537 if (hat_ismod(pp)) { 11538 pp->p_fsdata = C_NOCOMMIT; 11539 page_unlock(pp); 11540 return; 11541 } 11542 11543 /* 11544 * Now, as appropriate, either free or destroy the page 11545 * that we were called with. 11546 */ 11547 pp->p_fsdata = C_NOCOMMIT; 11548 if (fl == B_FREE) 11549 page_free(pp, dn); 11550 else 11551 page_destroy(pp, dn); 11552 } 11553 11554 /* 11555 * Commit requires that the current fh be the file written to. 11556 * The compound op structure is: 11557 * PUTFH(file), COMMIT 11558 */ 11559 static int 11560 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11561 { 11562 COMPOUND4args_clnt args; 11563 COMPOUND4res_clnt res; 11564 COMMIT4res *cm_res; 11565 nfs_argop4 argop[2]; 11566 nfs_resop4 *resop; 11567 int doqueue; 11568 mntinfo4_t *mi; 11569 rnode4_t *rp; 11570 cred_t *cred_otw = NULL; 11571 bool_t needrecov = FALSE; 11572 nfs4_recov_state_t recov_state; 11573 nfs4_open_stream_t *osp = NULL; 11574 bool_t first_time = TRUE; /* first time getting OTW cred */ 11575 bool_t last_time = FALSE; /* last time getting OTW cred */ 11576 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11577 11578 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11579 11580 rp = VTOR4(vp); 11581 11582 mi = VTOMI4(vp); 11583 recov_state.rs_flags = 0; 11584 recov_state.rs_num_retry_despite_err = 0; 11585 get_commit_cred: 11586 /* 11587 * Releases the osp, if a valid open stream is provided. 11588 * Puts a hold on the cred_otw and the new osp (if found). 11589 */ 11590 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11591 &first_time, &last_time); 11592 args.ctag = TAG_COMMIT; 11593 recov_retry: 11594 /* 11595 * Commit ops: putfh file; commit 11596 */ 11597 args.array_len = 2; 11598 args.array = argop; 11599 11600 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11601 &recov_state, NULL); 11602 if (e.error) { 11603 crfree(cred_otw); 11604 if (osp != NULL) 11605 open_stream_rele(osp, rp); 11606 return (e.error); 11607 } 11608 11609 /* putfh directory */ 11610 argop[0].argop = OP_CPUTFH; 11611 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11612 11613 /* commit */ 11614 argop[1].argop = OP_COMMIT; 11615 argop[1].nfs_argop4_u.opcommit.offset = offset; 11616 argop[1].nfs_argop4_u.opcommit.count = count; 11617 11618 doqueue = 1; 11619 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11620 11621 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11622 if (!needrecov && e.error) { 11623 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11624 needrecov); 11625 crfree(cred_otw); 11626 if (e.error == EACCES && last_time == FALSE) 11627 goto get_commit_cred; 11628 if (osp != NULL) 11629 open_stream_rele(osp, rp); 11630 return (e.error); 11631 } 11632 11633 if (needrecov) { 11634 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11635 NULL, OP_COMMIT, NULL) == FALSE) { 11636 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11637 &recov_state, needrecov); 11638 if (!e.error) 11639 (void) xdr_free(xdr_COMPOUND4res_clnt, 11640 (caddr_t)&res); 11641 goto recov_retry; 11642 } 11643 if (e.error) { 11644 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11645 &recov_state, needrecov); 11646 crfree(cred_otw); 11647 if (osp != NULL) 11648 open_stream_rele(osp, rp); 11649 return (e.error); 11650 } 11651 /* fall through for res.status case */ 11652 } 11653 11654 if (res.status) { 11655 e.error = geterrno4(res.status); 11656 if (e.error == EACCES && last_time == FALSE) { 11657 crfree(cred_otw); 11658 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11659 &recov_state, needrecov); 11660 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11661 goto get_commit_cred; 11662 } 11663 /* 11664 * Can't do a nfs4_purge_stale_fh here because this 11665 * can cause a deadlock. nfs4_commit can 11666 * be called from nfs4_dispose which can be called 11667 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11668 * can call back to pvn_vplist_dirty. 11669 */ 11670 if (e.error == ESTALE) { 11671 mutex_enter(&rp->r_statelock); 11672 rp->r_flags |= R4STALE; 11673 if (!rp->r_error) 11674 rp->r_error = e.error; 11675 mutex_exit(&rp->r_statelock); 11676 PURGE_ATTRCACHE4(vp); 11677 } else { 11678 mutex_enter(&rp->r_statelock); 11679 if (!rp->r_error) 11680 rp->r_error = e.error; 11681 mutex_exit(&rp->r_statelock); 11682 } 11683 } else { 11684 ASSERT(rp->r_flags & R4HAVEVERF); 11685 resop = &res.array[1]; /* commit res */ 11686 cm_res = &resop->nfs_resop4_u.opcommit; 11687 mutex_enter(&rp->r_statelock); 11688 if (cm_res->writeverf == rp->r_writeverf) { 11689 mutex_exit(&rp->r_statelock); 11690 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11691 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11692 &recov_state, needrecov); 11693 crfree(cred_otw); 11694 if (osp != NULL) 11695 open_stream_rele(osp, rp); 11696 return (0); 11697 } 11698 nfs4_set_mod(vp); 11699 rp->r_writeverf = cm_res->writeverf; 11700 mutex_exit(&rp->r_statelock); 11701 e.error = NFS_VERF_MISMATCH; 11702 } 11703 11704 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11705 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11706 crfree(cred_otw); 11707 if (osp != NULL) 11708 open_stream_rele(osp, rp); 11709 11710 return (e.error); 11711 } 11712 11713 static void 11714 nfs4_set_mod(vnode_t *vp) 11715 { 11716 page_t *pp; 11717 kmutex_t *vphm; 11718 rnode4_t *rp; 11719 11720 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11721 11722 /* make sure we're looking at the master vnode, not a shadow */ 11723 11724 rp = VTOR4(vp); 11725 if (IS_SHADOW(vp, rp)) 11726 vp = RTOV4(rp); 11727 11728 vphm = page_vnode_mutex(vp); 11729 mutex_enter(vphm); 11730 /* 11731 * If there are no pages associated with this vnode, then 11732 * just return. 11733 */ 11734 if ((pp = vp->v_pages) == NULL) { 11735 mutex_exit(vphm); 11736 return; 11737 } 11738 11739 do { 11740 if (pp->p_fsdata != C_NOCOMMIT) { 11741 hat_setmod(pp); 11742 pp->p_fsdata = C_NOCOMMIT; 11743 } 11744 } while ((pp = pp->p_vpnext) != vp->v_pages); 11745 mutex_exit(vphm); 11746 } 11747 11748 /* 11749 * This function is used to gather a page list of the pages which 11750 * can be committed on the server. 11751 * 11752 * The calling thread must have set R4COMMIT. This bit is used to 11753 * serialize access to the commit structure in the rnode. As long 11754 * as the thread has set R4COMMIT, then it can manipulate the commit 11755 * structure without requiring any other locks. 11756 * 11757 * When this function is called from nfs4_dispose() the page passed 11758 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11759 * will skip it. This is not a problem since we initially add the 11760 * page to the r_commit page list. 11761 * 11762 */ 11763 static void 11764 nfs4_get_commit(vnode_t *vp) 11765 { 11766 rnode4_t *rp; 11767 page_t *pp; 11768 kmutex_t *vphm; 11769 11770 rp = VTOR4(vp); 11771 11772 ASSERT(rp->r_flags & R4COMMIT); 11773 11774 /* make sure we're looking at the master vnode, not a shadow */ 11775 11776 if (IS_SHADOW(vp, rp)) 11777 vp = RTOV4(rp); 11778 11779 vphm = page_vnode_mutex(vp); 11780 mutex_enter(vphm); 11781 11782 /* 11783 * If there are no pages associated with this vnode, then 11784 * just return. 11785 */ 11786 if ((pp = vp->v_pages) == NULL) { 11787 mutex_exit(vphm); 11788 return; 11789 } 11790 11791 /* 11792 * Step through all of the pages associated with this vnode 11793 * looking for pages which need to be committed. 11794 */ 11795 do { 11796 /* 11797 * First short-cut everything (without the page_lock) 11798 * and see if this page does not need to be committed 11799 * or is modified if so then we'll just skip it. 11800 */ 11801 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11802 continue; 11803 11804 /* 11805 * Attempt to lock the page. If we can't, then 11806 * someone else is messing with it or we have been 11807 * called from nfs4_dispose and this is the page that 11808 * nfs4_dispose was called with.. anyway just skip it. 11809 */ 11810 if (!page_trylock(pp, SE_EXCL)) 11811 continue; 11812 11813 /* 11814 * Lets check again now that we have the page lock. 11815 */ 11816 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11817 page_unlock(pp); 11818 continue; 11819 } 11820 11821 /* this had better not be a free page */ 11822 ASSERT(PP_ISFREE(pp) == 0); 11823 11824 /* 11825 * The page needs to be committed and we locked it. 11826 * Update the base and length parameters and add it 11827 * to r_pages. 11828 */ 11829 if (rp->r_commit.c_pages == NULL) { 11830 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11831 rp->r_commit.c_commlen = PAGESIZE; 11832 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11833 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11834 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11835 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11836 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11837 <= pp->p_offset) { 11838 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11839 rp->r_commit.c_commbase + PAGESIZE; 11840 } 11841 page_add(&rp->r_commit.c_pages, pp); 11842 } while ((pp = pp->p_vpnext) != vp->v_pages); 11843 11844 mutex_exit(vphm); 11845 } 11846 11847 /* 11848 * This routine is used to gather together a page list of the pages 11849 * which are to be committed on the server. This routine must not 11850 * be called if the calling thread holds any locked pages. 11851 * 11852 * The calling thread must have set R4COMMIT. This bit is used to 11853 * serialize access to the commit structure in the rnode. As long 11854 * as the thread has set R4COMMIT, then it can manipulate the commit 11855 * structure without requiring any other locks. 11856 */ 11857 static void 11858 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11859 { 11860 11861 rnode4_t *rp; 11862 page_t *pp; 11863 u_offset_t end; 11864 u_offset_t off; 11865 ASSERT(len != 0); 11866 rp = VTOR4(vp); 11867 ASSERT(rp->r_flags & R4COMMIT); 11868 11869 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11870 11871 /* make sure we're looking at the master vnode, not a shadow */ 11872 11873 if (IS_SHADOW(vp, rp)) 11874 vp = RTOV4(rp); 11875 11876 /* 11877 * If there are no pages associated with this vnode, then 11878 * just return. 11879 */ 11880 if ((pp = vp->v_pages) == NULL) 11881 return; 11882 /* 11883 * Calculate the ending offset. 11884 */ 11885 end = soff + len; 11886 for (off = soff; off < end; off += PAGESIZE) { 11887 /* 11888 * Lookup each page by vp, offset. 11889 */ 11890 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11891 continue; 11892 /* 11893 * If this page does not need to be committed or is 11894 * modified, then just skip it. 11895 */ 11896 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11897 page_unlock(pp); 11898 continue; 11899 } 11900 11901 ASSERT(PP_ISFREE(pp) == 0); 11902 /* 11903 * The page needs to be committed and we locked it. 11904 * Update the base and length parameters and add it 11905 * to r_pages. 11906 */ 11907 if (rp->r_commit.c_pages == NULL) { 11908 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11909 rp->r_commit.c_commlen = PAGESIZE; 11910 } else { 11911 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11912 rp->r_commit.c_commbase + PAGESIZE; 11913 } 11914 page_add(&rp->r_commit.c_pages, pp); 11915 } 11916 } 11917 11918 /* 11919 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11920 * Flushes and commits data to the server. 11921 */ 11922 static int 11923 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11924 { 11925 int error; 11926 verifier4 write_verf; 11927 rnode4_t *rp = VTOR4(vp); 11928 11929 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11930 11931 /* 11932 * Flush the data portion of the file and then commit any 11933 * portions which need to be committed. This may need to 11934 * be done twice if the server has changed state since 11935 * data was last written. The data will need to be 11936 * rewritten to the server and then a new commit done. 11937 * 11938 * In fact, this may need to be done several times if the 11939 * server is having problems and crashing while we are 11940 * attempting to do this. 11941 */ 11942 11943 top: 11944 /* 11945 * Do a flush based on the poff and plen arguments. This 11946 * will synchronously write out any modified pages in the 11947 * range specified by (poff, plen). This starts all of the 11948 * i/o operations which will be waited for in the next 11949 * call to nfs4_putpage 11950 */ 11951 11952 mutex_enter(&rp->r_statelock); 11953 write_verf = rp->r_writeverf; 11954 mutex_exit(&rp->r_statelock); 11955 11956 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr); 11957 if (error == EAGAIN) 11958 error = 0; 11959 11960 /* 11961 * Do a flush based on the poff and plen arguments. This 11962 * will synchronously write out any modified pages in the 11963 * range specified by (poff, plen) and wait until all of 11964 * the asynchronous i/o's in that range are done as well. 11965 */ 11966 if (!error) 11967 error = nfs4_putpage(vp, poff, plen, 0, cr); 11968 11969 if (error) 11970 return (error); 11971 11972 mutex_enter(&rp->r_statelock); 11973 if (rp->r_writeverf != write_verf) { 11974 mutex_exit(&rp->r_statelock); 11975 goto top; 11976 } 11977 mutex_exit(&rp->r_statelock); 11978 11979 /* 11980 * Now commit any pages which might need to be committed. 11981 * If the error, NFS_VERF_MISMATCH, is returned, then 11982 * start over with the flush operation. 11983 */ 11984 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11985 11986 if (error == NFS_VERF_MISMATCH) 11987 goto top; 11988 11989 return (error); 11990 } 11991 11992 /* 11993 * nfs4_commit_vp() will wait for other pending commits and 11994 * will either commit the whole file or a range, plen dictates 11995 * if we commit whole file. a value of zero indicates the whole 11996 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 11997 */ 11998 static int 11999 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12000 cred_t *cr, int wait_on_writes) 12001 { 12002 rnode4_t *rp; 12003 page_t *plist; 12004 offset3 offset; 12005 count3 len; 12006 12007 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12008 12009 rp = VTOR4(vp); 12010 12011 /* 12012 * before we gather commitable pages make 12013 * sure there are no outstanding async writes 12014 */ 12015 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12016 mutex_enter(&rp->r_statelock); 12017 while (rp->r_count > 0) { 12018 cv_wait(&rp->r_cv, &rp->r_statelock); 12019 } 12020 mutex_exit(&rp->r_statelock); 12021 } 12022 12023 /* 12024 * Set the `commit inprogress' state bit. We must 12025 * first wait until any current one finishes. 12026 */ 12027 mutex_enter(&rp->r_statelock); 12028 while (rp->r_flags & R4COMMIT) { 12029 rp->r_flags |= R4COMMITWAIT; 12030 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12031 rp->r_flags &= ~R4COMMITWAIT; 12032 } 12033 rp->r_flags |= R4COMMIT; 12034 mutex_exit(&rp->r_statelock); 12035 12036 /* 12037 * Gather all of the pages which need to be 12038 * committed. 12039 */ 12040 if (plen == 0) 12041 nfs4_get_commit(vp); 12042 else 12043 nfs4_get_commit_range(vp, poff, plen); 12044 12045 /* 12046 * Clear the `commit inprogress' bit and disconnect the 12047 * page list which was gathered by nfs4_get_commit. 12048 */ 12049 plist = rp->r_commit.c_pages; 12050 rp->r_commit.c_pages = NULL; 12051 offset = rp->r_commit.c_commbase; 12052 len = rp->r_commit.c_commlen; 12053 mutex_enter(&rp->r_statelock); 12054 rp->r_flags &= ~R4COMMIT; 12055 cv_broadcast(&rp->r_commit.c_cv); 12056 mutex_exit(&rp->r_statelock); 12057 12058 /* 12059 * If any pages need to be committed, commit them and 12060 * then unlock them so that they can be freed some 12061 * time later. 12062 */ 12063 if (plist == NULL) 12064 return (0); 12065 12066 /* 12067 * No error occurred during the flush portion 12068 * of this operation, so now attempt to commit 12069 * the data to stable storage on the server. 12070 * 12071 * This will unlock all of the pages on the list. 12072 */ 12073 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12074 } 12075 12076 static int 12077 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12078 cred_t *cr) 12079 { 12080 int error; 12081 page_t *pp; 12082 12083 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12084 12085 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12086 12087 /* 12088 * If we got an error, then just unlock all of the pages 12089 * on the list. 12090 */ 12091 if (error) { 12092 while (plist != NULL) { 12093 pp = plist; 12094 page_sub(&plist, pp); 12095 page_unlock(pp); 12096 } 12097 return (error); 12098 } 12099 /* 12100 * We've tried as hard as we can to commit the data to stable 12101 * storage on the server. We just unlock the pages and clear 12102 * the commit required state. They will get freed later. 12103 */ 12104 while (plist != NULL) { 12105 pp = plist; 12106 page_sub(&plist, pp); 12107 pp->p_fsdata = C_NOCOMMIT; 12108 page_unlock(pp); 12109 } 12110 12111 return (error); 12112 } 12113 12114 static void 12115 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12116 cred_t *cr) 12117 { 12118 12119 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12120 } 12121 12122 /*ARGSUSED*/ 12123 static int 12124 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 12125 { 12126 int error = 0; 12127 mntinfo4_t *mi; 12128 vattr_t va; 12129 vsecattr_t nfsace4_vsap; 12130 12131 mi = VTOMI4(vp); 12132 if (nfs_zone() != mi->mi_zone) 12133 return (EIO); 12134 if (mi->mi_flags & MI4_ACL) { 12135 /* if we have a delegation, return it */ 12136 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12137 (void) nfs4delegreturn(VTOR4(vp), 12138 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12139 12140 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12141 NFS4_ACL_SET); 12142 if (error) /* EINVAL */ 12143 return (error); 12144 12145 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12146 /* 12147 * These are aclent_t type entries. 12148 */ 12149 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12150 vp->v_type == VDIR, FALSE); 12151 if (error) 12152 return (error); 12153 } else { 12154 /* 12155 * These are ace_t type entries. 12156 */ 12157 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12158 FALSE); 12159 if (error) 12160 return (error); 12161 } 12162 bzero(&va, sizeof (va)); 12163 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12164 vs_ace4_destroy(&nfsace4_vsap); 12165 return (error); 12166 } 12167 return (ENOSYS); 12168 } 12169 12170 static int 12171 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 12172 { 12173 int error; 12174 mntinfo4_t *mi; 12175 nfs4_ga_res_t gar; 12176 rnode4_t *rp = VTOR4(vp); 12177 12178 mi = VTOMI4(vp); 12179 if (nfs_zone() != mi->mi_zone) 12180 return (EIO); 12181 12182 bzero(&gar, sizeof (gar)); 12183 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12184 12185 /* 12186 * vsecattr->vsa_mask holds the original acl request mask. 12187 * This is needed when determining what to return. 12188 * (See: nfs4_create_getsecattr_return()) 12189 */ 12190 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12191 if (error) /* EINVAL */ 12192 return (error); 12193 12194 if (mi->mi_flags & MI4_ACL) { 12195 /* 12196 * Check if the data is cached and the cache is valid. If it 12197 * is we don't go over the wire. 12198 */ 12199 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12200 mutex_enter(&rp->r_statelock); 12201 if (rp->r_secattr != NULL) { 12202 error = nfs4_create_getsecattr_return( 12203 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12204 rp->r_attr.va_gid, 12205 vp->v_type == VDIR); 12206 if (!error) { /* error == 0 - Success! */ 12207 mutex_exit(&rp->r_statelock); 12208 return (error); 12209 } 12210 } 12211 mutex_exit(&rp->r_statelock); 12212 } 12213 12214 /* 12215 * The getattr otw call will always get both the acl, in 12216 * the form of a list of nfsace4's, and the number of acl 12217 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12218 */ 12219 gar.n4g_va.va_mask = AT_ALL; 12220 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12221 if (error) { 12222 vs_ace4_destroy(&gar.n4g_vsa); 12223 if (error == ENOTSUP || error == EOPNOTSUPP) 12224 error = fs_fab_acl(vp, vsecattr, flag, cr); 12225 return (error); 12226 } 12227 12228 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12229 /* 12230 * No error was returned, but according to the response 12231 * bitmap, neither was an acl. 12232 */ 12233 vs_ace4_destroy(&gar.n4g_vsa); 12234 error = fs_fab_acl(vp, vsecattr, flag, cr); 12235 return (error); 12236 } 12237 12238 /* 12239 * Update the cache with the ACL. 12240 */ 12241 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12242 12243 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12244 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12245 vp->v_type == VDIR); 12246 vs_ace4_destroy(&gar.n4g_vsa); 12247 if ((error) && (vsecattr->vsa_mask & 12248 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12249 (error != EACCES)) { 12250 error = fs_fab_acl(vp, vsecattr, flag, cr); 12251 } 12252 return (error); 12253 } 12254 error = fs_fab_acl(vp, vsecattr, flag, cr); 12255 return (error); 12256 } 12257 12258 /* 12259 * The function returns: 12260 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12261 * - EINVAL if the passed in "acl_mask" is an invalid request. 12262 * 12263 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12264 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12265 * 12266 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12267 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12268 * - We have a count field set without the corresponding acl field set. (e.g. - 12269 * VSA_ACECNT is set, but VSA_ACE is not) 12270 */ 12271 static int 12272 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12273 { 12274 /* Shortcut the masks that are always valid. */ 12275 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12276 return (0); 12277 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12278 return (0); 12279 12280 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12281 /* 12282 * We can't have any VSA_ACL type stuff in the mask now. 12283 */ 12284 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12285 VSA_DFACLCNT)) 12286 return (EINVAL); 12287 12288 if (op == NFS4_ACL_SET) { 12289 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12290 return (EINVAL); 12291 } 12292 } 12293 12294 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12295 /* 12296 * We can't have any VSA_ACE type stuff in the mask now. 12297 */ 12298 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12299 return (EINVAL); 12300 12301 if (op == NFS4_ACL_SET) { 12302 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12303 return (EINVAL); 12304 12305 if ((acl_mask & VSA_DFACLCNT) && 12306 !(acl_mask & VSA_DFACL)) 12307 return (EINVAL); 12308 } 12309 } 12310 return (0); 12311 } 12312 12313 /* 12314 * The theory behind creating the correct getsecattr return is simply this: 12315 * "Don't return anything that the caller is not expecting to have to free." 12316 */ 12317 static int 12318 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12319 uid_t uid, gid_t gid, int isdir) 12320 { 12321 int error = 0; 12322 /* Save the mask since the translators modify it. */ 12323 uint_t orig_mask = vsap->vsa_mask; 12324 12325 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12326 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12327 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12328 12329 if (error) 12330 return (error); 12331 12332 /* 12333 * If the caller only asked for the ace count (VSA_ACECNT) 12334 * don't give them the full acl (VSA_ACE), free it. 12335 */ 12336 if (!orig_mask & VSA_ACE) { 12337 if (vsap->vsa_aclentp != NULL) { 12338 kmem_free(vsap->vsa_aclentp, 12339 vsap->vsa_aclcnt * sizeof (ace_t)); 12340 vsap->vsa_aclentp = NULL; 12341 } 12342 } 12343 vsap->vsa_mask = orig_mask; 12344 12345 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12346 VSA_DFACLCNT)) { 12347 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12348 isdir, FALSE, 12349 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12350 12351 if (error) 12352 return (error); 12353 12354 /* 12355 * If the caller only asked for the acl count (VSA_ACLCNT) 12356 * and/or the default acl count (VSA_DFACLCNT) don't give them 12357 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12358 */ 12359 if (!orig_mask & VSA_ACL) { 12360 if (vsap->vsa_aclentp != NULL) { 12361 kmem_free(vsap->vsa_aclentp, 12362 vsap->vsa_aclcnt * sizeof (aclent_t)); 12363 vsap->vsa_aclentp = NULL; 12364 } 12365 } 12366 12367 if (!orig_mask & VSA_DFACL) { 12368 if (vsap->vsa_dfaclentp != NULL) { 12369 kmem_free(vsap->vsa_dfaclentp, 12370 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12371 vsap->vsa_dfaclentp = NULL; 12372 } 12373 } 12374 vsap->vsa_mask = orig_mask; 12375 } 12376 return (0); 12377 } 12378 12379 static int 12380 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 12381 { 12382 int error; 12383 12384 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12385 return (EIO); 12386 /* 12387 * check for valid cmd parameter 12388 */ 12389 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12390 return (EINVAL); 12391 12392 /* 12393 * Check access permissions 12394 */ 12395 if ((cmd & F_SHARE) && 12396 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12397 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12398 return (EBADF); 12399 12400 /* 12401 * If the filesystem is mounted using local locking, pass the 12402 * request off to the local share code. 12403 */ 12404 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12405 return (fs_shrlock(vp, cmd, shr, flag, cr)); 12406 12407 switch (cmd) { 12408 case F_SHARE: 12409 case F_UNSHARE: 12410 /* 12411 * This will be properly implemented later, 12412 * see RFE: 4823948 . 12413 */ 12414 error = EAGAIN; 12415 break; 12416 12417 case F_HASREMOTELOCKS: 12418 /* 12419 * NFS client can't store remote locks itself 12420 */ 12421 shr->s_access = 0; 12422 error = 0; 12423 break; 12424 12425 default: 12426 error = EINVAL; 12427 break; 12428 } 12429 12430 return (error); 12431 } 12432 12433 /* 12434 * Common code called by directory ops to update the attrcache 12435 */ 12436 static int 12437 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12438 hrtime_t t, vnode_t *vp, cred_t *cr) 12439 { 12440 int error = 0; 12441 12442 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12443 12444 if (status != NFS4_OK) { 12445 /* getattr not done or failed */ 12446 PURGE_ATTRCACHE4(vp); 12447 return (error); 12448 } 12449 12450 if (garp) { 12451 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12452 } else { 12453 PURGE_ATTRCACHE4(vp); 12454 } 12455 return (error); 12456 } 12457 12458 /* 12459 * Update directory caches for directory modification ops (link, rename, etc.) 12460 * When dinfo is NULL, manage dircaches in the old way. 12461 */ 12462 static void 12463 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12464 dirattr_info_t *dinfo) 12465 { 12466 rnode4_t *drp = VTOR4(dvp); 12467 12468 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12469 12470 /* Purge rddir cache for dir since it changed */ 12471 if (drp->r_dir != NULL) 12472 nfs4_purge_rddir_cache(dvp); 12473 12474 /* 12475 * If caller provided dinfo, then use it to manage dir caches. 12476 */ 12477 if (dinfo != NULL) { 12478 if (vp != NULL) { 12479 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12480 if (!VTOR4(vp)->created_v4) { 12481 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12482 dnlc_update(dvp, nm, vp); 12483 } else { 12484 /* 12485 * XXX don't update if the created_v4 flag is 12486 * set 12487 */ 12488 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12489 NFS4_DEBUG(nfs4_client_state_debug, 12490 (CE_NOTE, "nfs4_update_dircaches: " 12491 "don't update dnlc: created_v4 flag")); 12492 } 12493 } 12494 12495 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12496 dinfo->di_cred, FALSE, cinfo); 12497 12498 return; 12499 } 12500 12501 /* 12502 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12503 * Since caller modified dir but didn't receive post-dirmod-op dir 12504 * attrs, the dir's attrs must be purged. 12505 * 12506 * XXX this check and dnlc update/purge should really be atomic, 12507 * XXX but can't use rnode statelock because it'll deadlock in 12508 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12509 * XXX does occur. 12510 * 12511 * XXX We also may want to check that atomic is true in the 12512 * XXX change_info struct. If it is not, the change_info may 12513 * XXX reflect changes by more than one clients which means that 12514 * XXX our cache may not be valid. 12515 */ 12516 PURGE_ATTRCACHE4(dvp); 12517 if (drp->r_change == cinfo->before) { 12518 /* no changes took place in the directory prior to our link */ 12519 if (vp != NULL) { 12520 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12521 if (!VTOR4(vp)->created_v4) { 12522 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12523 dnlc_update(dvp, nm, vp); 12524 } else { 12525 /* 12526 * XXX dont' update if the created_v4 flag 12527 * is set 12528 */ 12529 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12530 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12531 "nfs4_update_dircaches: don't" 12532 " update dnlc: created_v4 flag")); 12533 } 12534 } 12535 } else { 12536 /* Another client modified directory - purge its dnlc cache */ 12537 dnlc_purge_vp(dvp); 12538 } 12539 } 12540 12541 /* 12542 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12543 * file. 12544 * 12545 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12546 * file (ie: client recovery) and otherwise set to FALSE. 12547 * 12548 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12549 * initiated) calling functions. 12550 * 12551 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12552 * of resending a 'lost' open request. 12553 * 12554 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12555 * server that hands out BAD_SEQID on open confirm. 12556 * 12557 * Errors are returned via the nfs4_error_t parameter. 12558 */ 12559 void 12560 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12561 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12562 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12563 { 12564 COMPOUND4args_clnt args; 12565 COMPOUND4res_clnt res; 12566 nfs_argop4 argop[2]; 12567 nfs_resop4 *resop; 12568 int doqueue = 1; 12569 mntinfo4_t *mi; 12570 OPEN_CONFIRM4args *open_confirm_args; 12571 int needrecov; 12572 12573 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12574 #if DEBUG 12575 mutex_enter(&oop->oo_lock); 12576 ASSERT(oop->oo_seqid_inuse); 12577 mutex_exit(&oop->oo_lock); 12578 #endif 12579 12580 recov_retry_confirm: 12581 nfs4_error_zinit(ep); 12582 *retry_open = FALSE; 12583 12584 if (resend) 12585 args.ctag = TAG_OPEN_CONFIRM_LOST; 12586 else 12587 args.ctag = TAG_OPEN_CONFIRM; 12588 12589 args.array_len = 2; 12590 args.array = argop; 12591 12592 /* putfh target fh */ 12593 argop[0].argop = OP_CPUTFH; 12594 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12595 12596 argop[1].argop = OP_OPEN_CONFIRM; 12597 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12598 12599 (*seqid) += 1; 12600 open_confirm_args->seqid = *seqid; 12601 open_confirm_args->open_stateid = *stateid; 12602 12603 mi = VTOMI4(vp); 12604 12605 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12606 12607 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12608 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12609 } 12610 12611 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12612 if (!needrecov && ep->error) 12613 return; 12614 12615 if (needrecov) { 12616 bool_t abort = FALSE; 12617 12618 if (reopening_file == FALSE) { 12619 nfs4_bseqid_entry_t *bsep = NULL; 12620 12621 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12622 bsep = nfs4_create_bseqid_entry(oop, NULL, 12623 vp, 0, args.ctag, 12624 open_confirm_args->seqid); 12625 12626 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12627 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12628 if (bsep) { 12629 kmem_free(bsep, sizeof (*bsep)); 12630 if (num_bseqid_retryp && 12631 --(*num_bseqid_retryp) == 0) 12632 abort = TRUE; 12633 } 12634 } 12635 if ((ep->error == ETIMEDOUT || 12636 res.status == NFS4ERR_RESOURCE) && 12637 abort == FALSE && resend == FALSE) { 12638 if (!ep->error) 12639 (void) xdr_free(xdr_COMPOUND4res_clnt, 12640 (caddr_t)&res); 12641 12642 delay(SEC_TO_TICK(confirm_retry_sec)); 12643 goto recov_retry_confirm; 12644 } 12645 /* State may have changed so retry the entire OPEN op */ 12646 if (abort == FALSE) 12647 *retry_open = TRUE; 12648 else 12649 *retry_open = FALSE; 12650 if (!ep->error) 12651 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12652 return; 12653 } 12654 12655 if (res.status) { 12656 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12657 return; 12658 } 12659 12660 resop = &res.array[1]; /* open confirm res */ 12661 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12662 stateid, sizeof (*stateid)); 12663 12664 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12665 } 12666 12667 /* 12668 * Return the credentials associated with a client state object. The 12669 * caller is responsible for freeing the credentials. 12670 */ 12671 12672 static cred_t * 12673 state_to_cred(nfs4_open_stream_t *osp) 12674 { 12675 cred_t *cr; 12676 12677 /* 12678 * It's ok to not lock the open stream and open owner to get 12679 * the oo_cred since this is only written once (upon creation) 12680 * and will not change. 12681 */ 12682 cr = osp->os_open_owner->oo_cred; 12683 crhold(cr); 12684 12685 return (cr); 12686 } 12687 12688 /* 12689 * nfs4_find_sysid 12690 * 12691 * Find the sysid for the knetconfig associated with the given mi. 12692 */ 12693 static struct lm_sysid * 12694 nfs4_find_sysid(mntinfo4_t *mi) 12695 { 12696 ASSERT(nfs_zone() == mi->mi_zone); 12697 12698 /* 12699 * Switch from RDMA knconf to original mount knconf 12700 */ 12701 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12702 mi->mi_curr_serv->sv_hostname, NULL)); 12703 } 12704 12705 #ifdef DEBUG 12706 /* 12707 * Return a string version of the call type for easy reading. 12708 */ 12709 static char * 12710 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12711 { 12712 switch (ctype) { 12713 case NFS4_LCK_CTYPE_NORM: 12714 return ("NORMAL"); 12715 case NFS4_LCK_CTYPE_RECLAIM: 12716 return ("RECLAIM"); 12717 case NFS4_LCK_CTYPE_RESEND: 12718 return ("RESEND"); 12719 case NFS4_LCK_CTYPE_REINSTATE: 12720 return ("REINSTATE"); 12721 default: 12722 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12723 "type %d", ctype); 12724 return (""); 12725 } 12726 } 12727 #endif 12728 12729 /* 12730 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12731 * Unlock requests don't have an over-the-wire locktype, so we just return 12732 * something non-threatening. 12733 */ 12734 12735 static nfs_lock_type4 12736 flk_to_locktype(int cmd, int l_type) 12737 { 12738 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12739 12740 switch (l_type) { 12741 case F_UNLCK: 12742 return (READ_LT); 12743 case F_RDLCK: 12744 if (cmd == F_SETLK) 12745 return (READ_LT); 12746 else 12747 return (READW_LT); 12748 case F_WRLCK: 12749 if (cmd == F_SETLK) 12750 return (WRITE_LT); 12751 else 12752 return (WRITEW_LT); 12753 } 12754 panic("flk_to_locktype"); 12755 /*NOTREACHED*/ 12756 } 12757 12758 /* 12759 * Do some preliminary checks for nfs4frlock. 12760 */ 12761 static int 12762 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12763 u_offset_t offset) 12764 { 12765 int error = 0; 12766 12767 /* 12768 * If we are setting a lock, check that the file is opened 12769 * with the correct mode. 12770 */ 12771 if (cmd == F_SETLK || cmd == F_SETLKW) { 12772 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12773 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12774 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12775 "nfs4frlock_validate_args: file was opened with " 12776 "incorrect mode")); 12777 return (EBADF); 12778 } 12779 } 12780 12781 /* Convert the offset. It may need to be restored before returning. */ 12782 if (error = convoff(vp, flk, 0, offset)) { 12783 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12784 "nfs4frlock_validate_args: convoff => error= %d\n", 12785 error)); 12786 return (error); 12787 } 12788 12789 return (error); 12790 } 12791 12792 /* 12793 * Set the flock64's lm_sysid for nfs4frlock. 12794 */ 12795 static int 12796 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12797 { 12798 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12799 12800 /* Find the lm_sysid */ 12801 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12802 12803 if (*lspp == NULL) { 12804 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12805 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12806 return (ENOLCK); 12807 } 12808 12809 flk->l_sysid = lm_sysidt(*lspp); 12810 12811 return (0); 12812 } 12813 12814 /* 12815 * Do the remaining preliminary setup for nfs4frlock. 12816 */ 12817 static void 12818 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12819 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12820 cred_t **cred_otw) 12821 { 12822 /* 12823 * set tick_delay to the base delay time. 12824 * (NFS4_BASE_WAIT_TIME is in secs) 12825 */ 12826 12827 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12828 12829 /* 12830 * If lock is relative to EOF, we need the newest length of the 12831 * file. Therefore invalidate the ATTR_CACHE. 12832 */ 12833 12834 *whencep = flk->l_whence; 12835 12836 if (*whencep == 2) /* SEEK_END */ 12837 PURGE_ATTRCACHE4(vp); 12838 12839 recov_statep->rs_flags = 0; 12840 recov_statep->rs_num_retry_despite_err = 0; 12841 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12842 } 12843 12844 /* 12845 * Initialize and allocate the data structures necessary for 12846 * the nfs4frlock call. 12847 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12848 */ 12849 static void 12850 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12851 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12852 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12853 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12854 { 12855 int argoplist_size; 12856 int num_ops = 2; 12857 12858 *retry = FALSE; 12859 *did_start_fop = FALSE; 12860 *skip_get_err = FALSE; 12861 lost_rqstp->lr_op = 0; 12862 argoplist_size = num_ops * sizeof (nfs_argop4); 12863 /* fill array with zero */ 12864 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12865 12866 *argspp = argsp; 12867 *respp = NULL; 12868 12869 argsp->array_len = num_ops; 12870 argsp->array = *argopp; 12871 12872 /* initialize in case of error; will get real value down below */ 12873 argsp->ctag = TAG_NONE; 12874 12875 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12876 *op_hintp = OH_LOCKU; 12877 else 12878 *op_hintp = OH_OTHER; 12879 } 12880 12881 /* 12882 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12883 * the proper nfs4_server_t for this instance of nfs4frlock. 12884 * Returns 0 (success) or an errno value. 12885 */ 12886 static int 12887 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12888 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12889 bool_t *did_start_fop, bool_t *startrecovp) 12890 { 12891 int error = 0; 12892 rnode4_t *rp; 12893 12894 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12895 12896 if (ctype == NFS4_LCK_CTYPE_NORM) { 12897 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12898 recov_statep, startrecovp); 12899 if (error) 12900 return (error); 12901 *did_start_fop = TRUE; 12902 } else { 12903 *did_start_fop = FALSE; 12904 *startrecovp = FALSE; 12905 } 12906 12907 if (!error) { 12908 rp = VTOR4(vp); 12909 12910 /* If the file failed recovery, just quit. */ 12911 mutex_enter(&rp->r_statelock); 12912 if (rp->r_flags & R4RECOVERR) { 12913 error = EIO; 12914 } 12915 mutex_exit(&rp->r_statelock); 12916 } 12917 12918 return (error); 12919 } 12920 12921 /* 12922 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12923 * resend nfs4frlock call is initiated by the recovery framework. 12924 * Acquires the lop and oop seqid synchronization. 12925 */ 12926 static void 12927 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12928 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12929 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12930 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12931 { 12932 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12933 int error; 12934 12935 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12936 (CE_NOTE, 12937 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12938 ASSERT(resend_rqstp != NULL); 12939 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12940 resend_rqstp->lr_op == OP_LOCKU); 12941 12942 *oopp = resend_rqstp->lr_oop; 12943 if (resend_rqstp->lr_oop) { 12944 open_owner_hold(resend_rqstp->lr_oop); 12945 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12946 ASSERT(error == 0); /* recov thread always succeeds */ 12947 } 12948 12949 /* Must resend this lost lock/locku request. */ 12950 ASSERT(resend_rqstp->lr_lop != NULL); 12951 *lopp = resend_rqstp->lr_lop; 12952 lock_owner_hold(resend_rqstp->lr_lop); 12953 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12954 ASSERT(error == 0); /* recov thread always succeeds */ 12955 12956 *ospp = resend_rqstp->lr_osp; 12957 if (*ospp) 12958 open_stream_hold(resend_rqstp->lr_osp); 12959 12960 if (resend_rqstp->lr_op == OP_LOCK) { 12961 LOCK4args *lock_args; 12962 12963 argop->argop = OP_LOCK; 12964 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12965 lock_args->locktype = resend_rqstp->lr_locktype; 12966 lock_args->reclaim = 12967 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12968 lock_args->offset = resend_rqstp->lr_flk->l_start; 12969 lock_args->length = resend_rqstp->lr_flk->l_len; 12970 if (lock_args->length == 0) 12971 lock_args->length = ~lock_args->length; 12972 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12973 mi2clientid(mi), &lock_args->locker); 12974 12975 switch (resend_rqstp->lr_ctype) { 12976 case NFS4_LCK_CTYPE_RESEND: 12977 argsp->ctag = TAG_LOCK_RESEND; 12978 break; 12979 case NFS4_LCK_CTYPE_REINSTATE: 12980 argsp->ctag = TAG_LOCK_REINSTATE; 12981 break; 12982 case NFS4_LCK_CTYPE_RECLAIM: 12983 argsp->ctag = TAG_LOCK_RECLAIM; 12984 break; 12985 default: 12986 argsp->ctag = TAG_LOCK_UNKNOWN; 12987 break; 12988 } 12989 } else { 12990 LOCKU4args *locku_args; 12991 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 12992 12993 argop->argop = OP_LOCKU; 12994 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 12995 locku_args->locktype = READ_LT; 12996 locku_args->seqid = lop->lock_seqid + 1; 12997 mutex_enter(&lop->lo_lock); 12998 locku_args->lock_stateid = lop->lock_stateid; 12999 mutex_exit(&lop->lo_lock); 13000 locku_args->offset = resend_rqstp->lr_flk->l_start; 13001 locku_args->length = resend_rqstp->lr_flk->l_len; 13002 if (locku_args->length == 0) 13003 locku_args->length = ~locku_args->length; 13004 13005 switch (resend_rqstp->lr_ctype) { 13006 case NFS4_LCK_CTYPE_RESEND: 13007 argsp->ctag = TAG_LOCKU_RESEND; 13008 break; 13009 case NFS4_LCK_CTYPE_REINSTATE: 13010 argsp->ctag = TAG_LOCKU_REINSTATE; 13011 break; 13012 default: 13013 argsp->ctag = TAG_LOCK_UNKNOWN; 13014 break; 13015 } 13016 } 13017 } 13018 13019 /* 13020 * Setup the LOCKT4 arguments. 13021 */ 13022 static void 13023 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13024 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13025 rnode4_t *rp) 13026 { 13027 LOCKT4args *lockt_args; 13028 13029 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13030 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13031 argop->argop = OP_LOCKT; 13032 argsp->ctag = TAG_LOCKT; 13033 lockt_args = &argop->nfs_argop4_u.oplockt; 13034 13035 /* 13036 * The locktype will be READ_LT unless it's 13037 * a write lock. We do this because the Solaris 13038 * system call allows the combination of 13039 * F_UNLCK and F_GETLK* and so in that case the 13040 * unlock is mapped to a read. 13041 */ 13042 if (flk->l_type == F_WRLCK) 13043 lockt_args->locktype = WRITE_LT; 13044 else 13045 lockt_args->locktype = READ_LT; 13046 13047 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13048 /* set the lock owner4 args */ 13049 nfs4_setlockowner_args(&lockt_args->owner, rp, 13050 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13051 flk->l_pid); 13052 lockt_args->offset = flk->l_start; 13053 lockt_args->length = flk->l_len; 13054 if (flk->l_len == 0) 13055 lockt_args->length = ~lockt_args->length; 13056 13057 *lockt_argsp = lockt_args; 13058 } 13059 13060 /* 13061 * If the client is holding a delegation, and the open stream to be used 13062 * with this lock request is a delegation open stream, then re-open the stream. 13063 * Sets the nfs4_error_t to all zeros unless the open stream has already 13064 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13065 * means the caller should retry (like a recovery retry). 13066 */ 13067 static void 13068 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13069 { 13070 open_delegation_type4 dt; 13071 bool_t reopen_needed, force; 13072 nfs4_open_stream_t *osp; 13073 open_claim_type4 oclaim; 13074 rnode4_t *rp = VTOR4(vp); 13075 mntinfo4_t *mi = VTOMI4(vp); 13076 13077 ASSERT(nfs_zone() == mi->mi_zone); 13078 13079 nfs4_error_zinit(ep); 13080 13081 mutex_enter(&rp->r_statev4_lock); 13082 dt = rp->r_deleg_type; 13083 mutex_exit(&rp->r_statev4_lock); 13084 13085 if (dt != OPEN_DELEGATE_NONE) { 13086 nfs4_open_owner_t *oop; 13087 13088 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13089 if (!oop) { 13090 ep->stat = NFS4ERR_IO; 13091 return; 13092 } 13093 /* returns with 'os_sync_lock' held */ 13094 osp = find_open_stream(oop, rp); 13095 if (!osp) { 13096 open_owner_rele(oop); 13097 ep->stat = NFS4ERR_IO; 13098 return; 13099 } 13100 13101 if (osp->os_failed_reopen) { 13102 NFS4_DEBUG((nfs4_open_stream_debug || 13103 nfs4_client_lock_debug), (CE_NOTE, 13104 "nfs4frlock_check_deleg: os_failed_reopen set " 13105 "for osp %p, cr %p, rp %s", (void *)osp, 13106 (void *)cr, rnode4info(rp))); 13107 mutex_exit(&osp->os_sync_lock); 13108 open_stream_rele(osp, rp); 13109 open_owner_rele(oop); 13110 ep->stat = NFS4ERR_IO; 13111 return; 13112 } 13113 13114 /* 13115 * Determine whether a reopen is needed. If this 13116 * is a delegation open stream, then send the open 13117 * to the server to give visibility to the open owner. 13118 * Even if it isn't a delegation open stream, we need 13119 * to check if the previous open CLAIM_DELEGATE_CUR 13120 * was sufficient. 13121 */ 13122 13123 reopen_needed = osp->os_delegation || 13124 ((lt == F_RDLCK && 13125 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13126 (lt == F_WRLCK && 13127 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13128 13129 mutex_exit(&osp->os_sync_lock); 13130 open_owner_rele(oop); 13131 13132 if (reopen_needed) { 13133 /* 13134 * Always use CLAIM_PREVIOUS after server reboot. 13135 * The server will reject CLAIM_DELEGATE_CUR if 13136 * it is used during the grace period. 13137 */ 13138 mutex_enter(&mi->mi_lock); 13139 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13140 oclaim = CLAIM_PREVIOUS; 13141 force = TRUE; 13142 } else { 13143 oclaim = CLAIM_DELEGATE_CUR; 13144 force = FALSE; 13145 } 13146 mutex_exit(&mi->mi_lock); 13147 13148 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13149 if (ep->error == EAGAIN) { 13150 nfs4_error_zinit(ep); 13151 ep->stat = NFS4ERR_DELAY; 13152 } 13153 } 13154 open_stream_rele(osp, rp); 13155 osp = NULL; 13156 } 13157 } 13158 13159 /* 13160 * Setup the LOCKU4 arguments. 13161 * Returns errors via the nfs4_error_t. 13162 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13163 * over-the-wire. The caller must release the 13164 * reference on *lopp. 13165 * NFS4ERR_DELAY caller should retry (like recovery retry) 13166 * (other) unrecoverable error. 13167 */ 13168 static void 13169 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13170 LOCKU4args **locku_argsp, flock64_t *flk, 13171 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13172 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13173 bool_t *skip_get_err, bool_t *go_otwp) 13174 { 13175 nfs4_lock_owner_t *lop = NULL; 13176 LOCKU4args *locku_args; 13177 pid_t pid; 13178 bool_t is_spec = FALSE; 13179 rnode4_t *rp = VTOR4(vp); 13180 13181 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13182 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13183 13184 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13185 if (ep->error || ep->stat) 13186 return; 13187 13188 argop->argop = OP_LOCKU; 13189 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13190 argsp->ctag = TAG_LOCKU_REINSTATE; 13191 else 13192 argsp->ctag = TAG_LOCKU; 13193 locku_args = &argop->nfs_argop4_u.oplocku; 13194 *locku_argsp = locku_args; 13195 13196 /* 13197 * XXX what should locku_args->locktype be? 13198 * setting to ALWAYS be READ_LT so at least 13199 * it is a valid locktype. 13200 */ 13201 13202 locku_args->locktype = READ_LT; 13203 13204 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13205 flk->l_pid; 13206 13207 /* 13208 * Get the lock owner stateid. If no lock owner 13209 * exists, return success. 13210 */ 13211 lop = find_lock_owner(rp, pid, LOWN_ANY); 13212 *lopp = lop; 13213 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13214 is_spec = TRUE; 13215 if (!lop || is_spec) { 13216 /* 13217 * No lock owner so no locks to unlock. 13218 * Return success. If there was a failed 13219 * reclaim earlier, the lock might still be 13220 * registered with the local locking code, 13221 * so notify it of the unlock. 13222 * 13223 * If the lockowner is using a special stateid, 13224 * then the original lock request (that created 13225 * this lockowner) was never successful, so we 13226 * have no lock to undo OTW. 13227 */ 13228 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13229 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13230 "(%ld) so return success", (long)pid)); 13231 13232 if (ctype == NFS4_LCK_CTYPE_NORM) 13233 flk->l_pid = curproc->p_pid; 13234 nfs4_register_lock_locally(vp, flk, flag, offset); 13235 /* 13236 * Release our hold and NULL out so final_cleanup 13237 * doesn't try to end a lock seqid sync we 13238 * never started. 13239 */ 13240 if (is_spec) { 13241 lock_owner_rele(lop); 13242 *lopp = NULL; 13243 } 13244 *skip_get_err = TRUE; 13245 *go_otwp = FALSE; 13246 return; 13247 } 13248 13249 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13250 if (ep->error == EAGAIN) { 13251 lock_owner_rele(lop); 13252 *lopp = NULL; 13253 return; 13254 } 13255 13256 mutex_enter(&lop->lo_lock); 13257 locku_args->lock_stateid = lop->lock_stateid; 13258 mutex_exit(&lop->lo_lock); 13259 locku_args->seqid = lop->lock_seqid + 1; 13260 13261 /* leave the ref count on lop, rele after RPC call */ 13262 13263 locku_args->offset = flk->l_start; 13264 locku_args->length = flk->l_len; 13265 if (flk->l_len == 0) 13266 locku_args->length = ~locku_args->length; 13267 13268 *go_otwp = TRUE; 13269 } 13270 13271 /* 13272 * Setup the LOCK4 arguments. 13273 * 13274 * Returns errors via the nfs4_error_t. 13275 * NFS4_OK no problems 13276 * NFS4ERR_DELAY caller should retry (like recovery retry) 13277 * (other) unrecoverable error 13278 */ 13279 static void 13280 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13281 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13282 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13283 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13284 { 13285 LOCK4args *lock_args; 13286 nfs4_open_owner_t *oop = NULL; 13287 nfs4_open_stream_t *osp = NULL; 13288 nfs4_lock_owner_t *lop = NULL; 13289 pid_t pid; 13290 rnode4_t *rp = VTOR4(vp); 13291 13292 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13293 13294 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13295 if (ep->error || ep->stat != NFS4_OK) 13296 return; 13297 13298 argop->argop = OP_LOCK; 13299 if (ctype == NFS4_LCK_CTYPE_NORM) 13300 argsp->ctag = TAG_LOCK; 13301 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13302 argsp->ctag = TAG_RELOCK; 13303 else 13304 argsp->ctag = TAG_LOCK_REINSTATE; 13305 lock_args = &argop->nfs_argop4_u.oplock; 13306 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13307 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13308 /* 13309 * Get the lock owner. If no lock owner exists, 13310 * create a 'temporary' one and grab the open seqid 13311 * synchronization (which puts a hold on the open 13312 * owner and open stream). 13313 * This also grabs the lock seqid synchronization. 13314 */ 13315 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13316 ep->stat = 13317 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13318 13319 if (ep->stat != NFS4_OK) 13320 goto out; 13321 13322 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13323 &lock_args->locker); 13324 13325 lock_args->offset = flk->l_start; 13326 lock_args->length = flk->l_len; 13327 if (flk->l_len == 0) 13328 lock_args->length = ~lock_args->length; 13329 *lock_argsp = lock_args; 13330 out: 13331 *oopp = oop; 13332 *ospp = osp; 13333 *lopp = lop; 13334 } 13335 13336 /* 13337 * After we get the reply from the server, record the proper information 13338 * for possible resend lock requests. 13339 * 13340 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13341 */ 13342 static void 13343 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13344 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13345 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13346 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13347 { 13348 bool_t unlock = (flk->l_type == F_UNLCK); 13349 13350 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13351 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13352 ctype == NFS4_LCK_CTYPE_REINSTATE); 13353 13354 if (error != 0 && !unlock) { 13355 NFS4_DEBUG((nfs4_lost_rqst_debug || 13356 nfs4_client_lock_debug), (CE_NOTE, 13357 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13358 " for lop %p", (void *)lop)); 13359 ASSERT(lop != NULL); 13360 mutex_enter(&lop->lo_lock); 13361 lop->lo_pending_rqsts = 1; 13362 mutex_exit(&lop->lo_lock); 13363 } 13364 13365 lost_rqstp->lr_putfirst = FALSE; 13366 lost_rqstp->lr_op = 0; 13367 13368 /* 13369 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13370 * recovery purposes so that the lock request that was sent 13371 * can be saved and re-issued later. Ditto for EIO from a forced 13372 * unmount. This is done to have the client's local locking state 13373 * match the v4 server's state; that is, the request was 13374 * potentially received and accepted by the server but the client 13375 * thinks it was not. 13376 */ 13377 if (error == ETIMEDOUT || error == EINTR || 13378 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13379 NFS4_DEBUG((nfs4_lost_rqst_debug || 13380 nfs4_client_lock_debug), (CE_NOTE, 13381 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13382 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13383 (void *)lop, (void *)oop, (void *)osp)); 13384 if (unlock) 13385 lost_rqstp->lr_op = OP_LOCKU; 13386 else { 13387 lost_rqstp->lr_op = OP_LOCK; 13388 lost_rqstp->lr_locktype = locktype; 13389 } 13390 /* 13391 * Objects are held and rele'd via the recovery code. 13392 * See nfs4_save_lost_rqst. 13393 */ 13394 lost_rqstp->lr_vp = vp; 13395 lost_rqstp->lr_dvp = NULL; 13396 lost_rqstp->lr_oop = oop; 13397 lost_rqstp->lr_osp = osp; 13398 lost_rqstp->lr_lop = lop; 13399 lost_rqstp->lr_cr = cr; 13400 switch (ctype) { 13401 case NFS4_LCK_CTYPE_NORM: 13402 flk->l_pid = ttoproc(curthread)->p_pid; 13403 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13404 break; 13405 case NFS4_LCK_CTYPE_REINSTATE: 13406 lost_rqstp->lr_putfirst = TRUE; 13407 lost_rqstp->lr_ctype = ctype; 13408 break; 13409 default: 13410 break; 13411 } 13412 lost_rqstp->lr_flk = flk; 13413 } 13414 } 13415 13416 /* 13417 * Update lop's seqid. Also update the seqid stored in a resend request, 13418 * if any. (Some recovery errors increment the seqid, and we may have to 13419 * send the resend request again.) 13420 */ 13421 13422 static void 13423 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13424 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13425 { 13426 if (lock_args) { 13427 if (lock_args->locker.new_lock_owner == TRUE) 13428 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13429 else { 13430 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13431 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13432 } 13433 } else if (locku_args) { 13434 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13435 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13436 } 13437 } 13438 13439 /* 13440 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13441 * COMPOUND4 args/res for calls that need to retry. 13442 * Switches the *cred_otwp to base_cr. 13443 */ 13444 static void 13445 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13446 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13447 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13448 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13449 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13450 { 13451 nfs4_open_owner_t *oop = *oopp; 13452 nfs4_open_stream_t *osp = *ospp; 13453 nfs4_lock_owner_t *lop = *lopp; 13454 nfs_argop4 *argop = (*argspp)->array; 13455 13456 if (*did_start_fop) { 13457 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13458 needrecov); 13459 *did_start_fop = FALSE; 13460 } 13461 ASSERT((*argspp)->array_len == 2); 13462 if (argop[1].argop == OP_LOCK) 13463 nfs4args_lock_free(&argop[1]); 13464 else if (argop[1].argop == OP_LOCKT) 13465 nfs4args_lockt_free(&argop[1]); 13466 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13467 if (!error) 13468 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13469 *argspp = NULL; 13470 *respp = NULL; 13471 13472 if (lop) { 13473 nfs4_end_lock_seqid_sync(lop); 13474 lock_owner_rele(lop); 13475 *lopp = NULL; 13476 } 13477 13478 /* need to free up the reference on osp for lock args */ 13479 if (osp != NULL) { 13480 open_stream_rele(osp, VTOR4(vp)); 13481 *ospp = NULL; 13482 } 13483 13484 /* need to free up the reference on oop for lock args */ 13485 if (oop != NULL) { 13486 nfs4_end_open_seqid_sync(oop); 13487 open_owner_rele(oop); 13488 *oopp = NULL; 13489 } 13490 13491 crfree(*cred_otwp); 13492 *cred_otwp = base_cr; 13493 crhold(*cred_otwp); 13494 } 13495 13496 /* 13497 * Function to process the client's recovery for nfs4frlock. 13498 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13499 * 13500 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13501 * COMPOUND4 args/res for calls that need to retry. 13502 * 13503 * Note: the rp's r_lkserlock is *not* dropped during this path. 13504 */ 13505 static bool_t 13506 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13507 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13508 LOCK4args *lock_args, LOCKU4args *locku_args, 13509 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13510 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13511 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13512 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13513 { 13514 nfs4_open_owner_t *oop = *oopp; 13515 nfs4_open_stream_t *osp = *ospp; 13516 nfs4_lock_owner_t *lop = *lopp; 13517 13518 bool_t abort, retry; 13519 13520 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13521 ASSERT((*argspp) != NULL); 13522 ASSERT((*respp) != NULL); 13523 if (lock_args || locku_args) 13524 ASSERT(lop != NULL); 13525 13526 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13527 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13528 13529 retry = TRUE; 13530 abort = FALSE; 13531 if (needrecov) { 13532 nfs4_bseqid_entry_t *bsep = NULL; 13533 nfs_opnum4 op; 13534 13535 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13536 13537 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13538 seqid4 seqid; 13539 13540 if (lock_args) { 13541 if (lock_args->locker.new_lock_owner == TRUE) 13542 seqid = lock_args->locker.locker4_u. 13543 open_owner.open_seqid; 13544 else 13545 seqid = lock_args->locker.locker4_u. 13546 lock_owner.lock_seqid; 13547 } else if (locku_args) { 13548 seqid = locku_args->seqid; 13549 } else { 13550 seqid = 0; 13551 } 13552 13553 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13554 flk->l_pid, (*argspp)->ctag, seqid); 13555 } 13556 13557 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13558 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13559 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13560 NULL, op, bsep); 13561 13562 if (bsep) 13563 kmem_free(bsep, sizeof (*bsep)); 13564 } 13565 13566 /* 13567 * Return that we do not want to retry the request for 3 cases: 13568 * 1. If we received EINTR or are bailing out because of a forced 13569 * unmount, we came into this code path just for the sake of 13570 * initiating recovery, we now need to return the error. 13571 * 2. If we have aborted recovery. 13572 * 3. We received NFS4ERR_BAD_SEQID. 13573 */ 13574 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13575 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13576 retry = FALSE; 13577 13578 if (*did_start_fop == TRUE) { 13579 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13580 needrecov); 13581 *did_start_fop = FALSE; 13582 } 13583 13584 if (retry == TRUE) { 13585 nfs_argop4 *argop; 13586 13587 argop = (*argspp)->array; 13588 ASSERT((*argspp)->array_len == 2); 13589 13590 if (argop[1].argop == OP_LOCK) 13591 nfs4args_lock_free(&argop[1]); 13592 else if (argop[1].argop == OP_LOCKT) 13593 nfs4args_lockt_free(&argop[1]); 13594 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13595 if (!ep->error) 13596 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13597 *respp = NULL; 13598 *argspp = NULL; 13599 } 13600 13601 if (lop != NULL) { 13602 nfs4_end_lock_seqid_sync(lop); 13603 lock_owner_rele(lop); 13604 } 13605 13606 *lopp = NULL; 13607 13608 /* need to free up the reference on osp for lock args */ 13609 if (osp != NULL) { 13610 open_stream_rele(osp, rp); 13611 *ospp = NULL; 13612 } 13613 13614 /* need to free up the reference on oop for lock args */ 13615 if (oop != NULL) { 13616 nfs4_end_open_seqid_sync(oop); 13617 open_owner_rele(oop); 13618 *oopp = NULL; 13619 } 13620 13621 return (retry); 13622 } 13623 13624 /* 13625 * Handles the succesful reply from the server for nfs4frlock. 13626 */ 13627 static void 13628 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13629 vnode_t *vp, int flag, u_offset_t offset, 13630 nfs4_lost_rqst_t *resend_rqstp) 13631 { 13632 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13633 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13634 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13635 if (ctype == NFS4_LCK_CTYPE_NORM) { 13636 flk->l_pid = ttoproc(curthread)->p_pid; 13637 /* 13638 * We do not register lost locks locally in 13639 * the 'resend' case since the user/application 13640 * doesn't think we have the lock. 13641 */ 13642 ASSERT(!resend_rqstp); 13643 nfs4_register_lock_locally(vp, flk, flag, offset); 13644 } 13645 } 13646 } 13647 13648 /* 13649 * Handle the DENIED reply from the server for nfs4frlock. 13650 * Returns TRUE if we should retry the request; FALSE otherwise. 13651 * 13652 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13653 * COMPOUND4 args/res for calls that need to retry. Can also 13654 * drop and regrab the r_lkserlock. 13655 */ 13656 static bool_t 13657 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13658 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13659 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13660 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13661 nfs4_recov_state_t *recov_statep, int needrecov, 13662 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13663 clock_t *tick_delayp, short *whencep, int *errorp, 13664 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13665 bool_t *skip_get_err) 13666 { 13667 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13668 13669 if (lock_args) { 13670 nfs4_open_owner_t *oop = *oopp; 13671 nfs4_open_stream_t *osp = *ospp; 13672 nfs4_lock_owner_t *lop = *lopp; 13673 int intr; 13674 13675 /* 13676 * Blocking lock needs to sleep and retry from the request. 13677 * 13678 * Do not block and wait for 'resend' or 'reinstate' 13679 * lock requests, just return the error. 13680 * 13681 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13682 */ 13683 if (cmd == F_SETLKW) { 13684 rnode4_t *rp = VTOR4(vp); 13685 nfs_argop4 *argop = (*argspp)->array; 13686 13687 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13688 13689 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13690 recov_statep, needrecov); 13691 *did_start_fop = FALSE; 13692 ASSERT((*argspp)->array_len == 2); 13693 if (argop[1].argop == OP_LOCK) 13694 nfs4args_lock_free(&argop[1]); 13695 else if (argop[1].argop == OP_LOCKT) 13696 nfs4args_lockt_free(&argop[1]); 13697 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13698 if (*respp) 13699 (void) xdr_free(xdr_COMPOUND4res_clnt, 13700 (caddr_t)*respp); 13701 *argspp = NULL; 13702 *respp = NULL; 13703 nfs4_end_lock_seqid_sync(lop); 13704 lock_owner_rele(lop); 13705 *lopp = NULL; 13706 if (osp != NULL) { 13707 open_stream_rele(osp, rp); 13708 *ospp = NULL; 13709 } 13710 if (oop != NULL) { 13711 nfs4_end_open_seqid_sync(oop); 13712 open_owner_rele(oop); 13713 *oopp = NULL; 13714 } 13715 13716 nfs_rw_exit(&rp->r_lkserlock); 13717 13718 intr = nfs4_block_and_wait(tick_delayp, rp); 13719 13720 if (intr) { 13721 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13722 RW_WRITER, FALSE); 13723 *errorp = EINTR; 13724 return (FALSE); 13725 } 13726 13727 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13728 RW_WRITER, FALSE); 13729 13730 /* 13731 * Make sure we are still safe to lock with 13732 * regards to mmapping. 13733 */ 13734 if (!nfs4_safelock(vp, flk, cr)) { 13735 *errorp = EAGAIN; 13736 return (FALSE); 13737 } 13738 13739 return (TRUE); 13740 } 13741 if (ctype == NFS4_LCK_CTYPE_NORM) 13742 *errorp = EAGAIN; 13743 *skip_get_err = TRUE; 13744 flk->l_whence = 0; 13745 *whencep = 0; 13746 return (FALSE); 13747 } else if (lockt_args) { 13748 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13749 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13750 13751 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13752 flk, lockt_args); 13753 13754 /* according to NLM code */ 13755 *errorp = 0; 13756 *whencep = 0; 13757 *skip_get_err = TRUE; 13758 return (FALSE); 13759 } 13760 return (FALSE); 13761 } 13762 13763 /* 13764 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13765 */ 13766 static void 13767 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13768 { 13769 switch (resp->status) { 13770 case NFS4ERR_ACCESS: 13771 case NFS4ERR_ADMIN_REVOKED: 13772 case NFS4ERR_BADHANDLE: 13773 case NFS4ERR_BAD_RANGE: 13774 case NFS4ERR_BAD_SEQID: 13775 case NFS4ERR_BAD_STATEID: 13776 case NFS4ERR_BADXDR: 13777 case NFS4ERR_DEADLOCK: 13778 case NFS4ERR_DELAY: 13779 case NFS4ERR_EXPIRED: 13780 case NFS4ERR_FHEXPIRED: 13781 case NFS4ERR_GRACE: 13782 case NFS4ERR_INVAL: 13783 case NFS4ERR_ISDIR: 13784 case NFS4ERR_LEASE_MOVED: 13785 case NFS4ERR_LOCK_NOTSUPP: 13786 case NFS4ERR_LOCK_RANGE: 13787 case NFS4ERR_MOVED: 13788 case NFS4ERR_NOFILEHANDLE: 13789 case NFS4ERR_NO_GRACE: 13790 case NFS4ERR_OLD_STATEID: 13791 case NFS4ERR_OPENMODE: 13792 case NFS4ERR_RECLAIM_BAD: 13793 case NFS4ERR_RECLAIM_CONFLICT: 13794 case NFS4ERR_RESOURCE: 13795 case NFS4ERR_SERVERFAULT: 13796 case NFS4ERR_STALE: 13797 case NFS4ERR_STALE_CLIENTID: 13798 case NFS4ERR_STALE_STATEID: 13799 return; 13800 default: 13801 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13802 "nfs4frlock_results_default: got unrecognizable " 13803 "res.status %d", resp->status)); 13804 *errorp = NFS4ERR_INVAL; 13805 } 13806 } 13807 13808 /* 13809 * The lock request was successful, so update the client's state. 13810 */ 13811 static void 13812 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13813 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13814 vnode_t *vp, flock64_t *flk, cred_t *cr, 13815 nfs4_lost_rqst_t *resend_rqstp) 13816 { 13817 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13818 13819 if (lock_args) { 13820 LOCK4res *lock_res; 13821 13822 lock_res = &resop->nfs_resop4_u.oplock; 13823 /* update the stateid with server's response */ 13824 13825 if (lock_args->locker.new_lock_owner == TRUE) { 13826 mutex_enter(&lop->lo_lock); 13827 lop->lo_just_created = NFS4_PERM_CREATED; 13828 mutex_exit(&lop->lo_lock); 13829 } 13830 13831 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13832 13833 /* 13834 * If the lock was the result of a resending a lost 13835 * request, we've synched up the stateid and seqid 13836 * with the server, but now the server might be out of sync 13837 * with what the application thinks it has for locks. 13838 * Clean that up here. It's unclear whether we should do 13839 * this even if the filesystem has been forcibly unmounted. 13840 * For most servers, it's probably wasted effort, but 13841 * RFC3530 lets servers require that unlocks exactly match 13842 * the locks that are held. 13843 */ 13844 if (resend_rqstp != NULL && 13845 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13846 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13847 } else { 13848 flk->l_whence = 0; 13849 } 13850 } else if (locku_args) { 13851 LOCKU4res *locku_res; 13852 13853 locku_res = &resop->nfs_resop4_u.oplocku; 13854 13855 /* Update the stateid with the server's response */ 13856 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13857 } else if (lockt_args) { 13858 /* Switch the lock type to express success, see fcntl */ 13859 flk->l_type = F_UNLCK; 13860 flk->l_whence = 0; 13861 } 13862 } 13863 13864 /* 13865 * Do final cleanup before exiting nfs4frlock. 13866 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13867 * COMPOUND4 args/res for calls that haven't already. 13868 */ 13869 static void 13870 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13871 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13872 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13873 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13874 short whence, u_offset_t offset, struct lm_sysid *ls, 13875 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13876 bool_t did_start_fop, bool_t skip_get_err, 13877 cred_t *cred_otw, cred_t *cred) 13878 { 13879 mntinfo4_t *mi = VTOMI4(vp); 13880 rnode4_t *rp = VTOR4(vp); 13881 int error = *errorp; 13882 nfs_argop4 *argop; 13883 13884 ASSERT(nfs_zone() == mi->mi_zone); 13885 /* 13886 * The client recovery code wants the raw status information, 13887 * so don't map the NFS status code to an errno value for 13888 * non-normal call types. 13889 */ 13890 if (ctype == NFS4_LCK_CTYPE_NORM) { 13891 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13892 *errorp = geterrno4(resp->status); 13893 if (did_start_fop == TRUE) 13894 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13895 needrecov); 13896 13897 if (!error && resp && resp->status == NFS4_OK) { 13898 /* 13899 * We've established a new lock on the server, so invalidate 13900 * the pages associated with the vnode to get the most up to 13901 * date pages from the server after acquiring the lock. We 13902 * want to be sure that the read operation gets the newest data. 13903 * N.B. 13904 * We used to do this in nfs4frlock_results_ok but that doesn't 13905 * work since VOP_PUTPAGE can call nfs4_commit which calls 13906 * nfs4_start_fop. We flush the pages below after calling 13907 * nfs4_end_fop above 13908 */ 13909 int error; 13910 13911 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13912 0, B_INVAL, cred); 13913 13914 if (error && (error == ENOSPC || error == EDQUOT)) { 13915 rnode4_t *rp = VTOR4(vp); 13916 13917 mutex_enter(&rp->r_statelock); 13918 if (!rp->r_error) 13919 rp->r_error = error; 13920 mutex_exit(&rp->r_statelock); 13921 } 13922 } 13923 } 13924 if (argsp) { 13925 ASSERT(argsp->array_len == 2); 13926 argop = argsp->array; 13927 if (argop[1].argop == OP_LOCK) 13928 nfs4args_lock_free(&argop[1]); 13929 else if (argop[1].argop == OP_LOCKT) 13930 nfs4args_lockt_free(&argop[1]); 13931 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13932 if (resp) 13933 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13934 } 13935 13936 /* free the reference on the lock owner */ 13937 if (lop != NULL) { 13938 nfs4_end_lock_seqid_sync(lop); 13939 lock_owner_rele(lop); 13940 } 13941 13942 /* need to free up the reference on osp for lock args */ 13943 if (osp != NULL) 13944 open_stream_rele(osp, rp); 13945 13946 /* need to free up the reference on oop for lock args */ 13947 if (oop != NULL) { 13948 nfs4_end_open_seqid_sync(oop); 13949 open_owner_rele(oop); 13950 } 13951 13952 (void) convoff(vp, flk, whence, offset); 13953 13954 lm_rel_sysid(ls); 13955 13956 /* 13957 * Record debug information in the event we get EINVAL. 13958 */ 13959 mutex_enter(&mi->mi_lock); 13960 if (*errorp == EINVAL && (lock_args || locku_args) && 13961 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13962 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13963 zcmn_err(getzoneid(), CE_NOTE, 13964 "%s operation failed with " 13965 "EINVAL probably since the server, %s," 13966 " doesn't support POSIX style locking", 13967 lock_args ? "LOCK" : "LOCKU", 13968 mi->mi_curr_serv->sv_hostname); 13969 mi->mi_flags |= MI4_LOCK_DEBUG; 13970 } 13971 } 13972 mutex_exit(&mi->mi_lock); 13973 13974 if (cred_otw) 13975 crfree(cred_otw); 13976 } 13977 13978 /* 13979 * This calls the server and the local locking code. 13980 * 13981 * Client locks are registerred locally by oring the sysid with 13982 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13983 * We need to distinguish between the two to avoid collision in case one 13984 * machine is used as both client and server. 13985 * 13986 * Blocking lock requests will continually retry to acquire the lock 13987 * forever. 13988 * 13989 * The ctype is defined as follows: 13990 * NFS4_LCK_CTYPE_NORM: normal lock request. 13991 * 13992 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 13993 * recovery, get the pid from flk instead of curproc, and don't reregister 13994 * the lock locally. 13995 * 13996 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 13997 * that we will use the information passed in via resend_rqstp to setup the 13998 * lock/locku request. This resend is the exact same request as the 'lost 13999 * lock', and is initiated by the recovery framework. A successful resend 14000 * request can initiate one or more reinstate requests. 14001 * 14002 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14003 * does not trigger additional reinstate requests. This lock call type is 14004 * set for setting the v4 server's locking state back to match what the 14005 * client's local locking state is in the event of a received 'lost lock'. 14006 * 14007 * Errors are returned via the nfs4_error_t parameter. 14008 */ 14009 void 14010 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14011 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14012 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14013 { 14014 COMPOUND4args_clnt args, *argsp = NULL; 14015 COMPOUND4res_clnt res, *resp = NULL; 14016 nfs_argop4 *argop; 14017 nfs_resop4 *resop; 14018 rnode4_t *rp; 14019 int doqueue = 1; 14020 clock_t tick_delay; /* delay in clock ticks */ 14021 struct lm_sysid *ls; 14022 LOCK4args *lock_args = NULL; 14023 LOCKU4args *locku_args = NULL; 14024 LOCKT4args *lockt_args = NULL; 14025 nfs4_open_owner_t *oop = NULL; 14026 nfs4_open_stream_t *osp = NULL; 14027 nfs4_lock_owner_t *lop = NULL; 14028 bool_t needrecov = FALSE; 14029 nfs4_recov_state_t recov_state; 14030 short whence; 14031 nfs4_op_hint_t op_hint; 14032 nfs4_lost_rqst_t lost_rqst; 14033 bool_t retry = FALSE; 14034 bool_t did_start_fop = FALSE; 14035 bool_t skip_get_err = FALSE; 14036 cred_t *cred_otw = NULL; 14037 bool_t recovonly; /* just queue request */ 14038 int frc_no_reclaim = 0; 14039 #ifdef DEBUG 14040 char *name; 14041 #endif 14042 14043 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14044 14045 #ifdef DEBUG 14046 name = fn_name(VTOSV(vp)->sv_name); 14047 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14048 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14049 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14050 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14051 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14052 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14053 resend_rqstp ? "TRUE" : "FALSE")); 14054 kmem_free(name, MAXNAMELEN); 14055 #endif 14056 14057 nfs4_error_zinit(ep); 14058 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14059 if (ep->error) 14060 return; 14061 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14062 if (ep->error) 14063 return; 14064 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14065 vp, cr, &cred_otw); 14066 14067 recov_retry: 14068 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14069 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14070 rp = VTOR4(vp); 14071 14072 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14073 &did_start_fop, &recovonly); 14074 14075 if (ep->error) 14076 goto out; 14077 14078 if (recovonly) { 14079 /* 14080 * Leave the request for the recovery system to deal with. 14081 */ 14082 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14083 ASSERT(cmd != F_GETLK); 14084 ASSERT(flk->l_type == F_UNLCK); 14085 14086 nfs4_error_init(ep, EINTR); 14087 needrecov = TRUE; 14088 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14089 if (lop != NULL) { 14090 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14091 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14092 (void) nfs4_start_recovery(ep, 14093 VTOMI4(vp), vp, NULL, NULL, 14094 (lost_rqst.lr_op == OP_LOCK || 14095 lost_rqst.lr_op == OP_LOCKU) ? 14096 &lost_rqst : NULL, OP_LOCKU, NULL); 14097 lock_owner_rele(lop); 14098 lop = NULL; 14099 } 14100 flk->l_pid = curproc->p_pid; 14101 nfs4_register_lock_locally(vp, flk, flag, offset); 14102 goto out; 14103 } 14104 14105 /* putfh directory fh */ 14106 argop[0].argop = OP_CPUTFH; 14107 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14108 14109 /* 14110 * Set up the over-the-wire arguments and get references to the 14111 * open owner, etc. 14112 */ 14113 14114 if (ctype == NFS4_LCK_CTYPE_RESEND || 14115 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14116 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14117 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14118 } else { 14119 bool_t go_otw = TRUE; 14120 14121 ASSERT(resend_rqstp == NULL); 14122 14123 switch (cmd) { 14124 case F_GETLK: 14125 case F_O_GETLK: 14126 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14127 &lockt_args, argsp, flk, rp); 14128 break; 14129 case F_SETLKW: 14130 case F_SETLK: 14131 if (flk->l_type == F_UNLCK) 14132 nfs4frlock_setup_locku_args(ctype, 14133 &argop[1], &locku_args, flk, 14134 &lop, ep, argsp, 14135 vp, flag, offset, cr, 14136 &skip_get_err, &go_otw); 14137 else 14138 nfs4frlock_setup_lock_args(ctype, 14139 &lock_args, &oop, &osp, &lop, &argop[1], 14140 argsp, flk, cmd, vp, cr, ep); 14141 14142 if (ep->error) 14143 goto out; 14144 14145 switch (ep->stat) { 14146 case NFS4_OK: 14147 break; 14148 case NFS4ERR_DELAY: 14149 /* recov thread never gets this error */ 14150 ASSERT(resend_rqstp == NULL); 14151 ASSERT(did_start_fop); 14152 14153 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14154 &recov_state, TRUE); 14155 did_start_fop = FALSE; 14156 if (argop[1].argop == OP_LOCK) 14157 nfs4args_lock_free(&argop[1]); 14158 else if (argop[1].argop == OP_LOCKT) 14159 nfs4args_lockt_free(&argop[1]); 14160 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14161 argsp = NULL; 14162 goto recov_retry; 14163 default: 14164 ep->error = EIO; 14165 goto out; 14166 } 14167 break; 14168 default: 14169 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14170 "nfs4_frlock: invalid cmd %d", cmd)); 14171 ep->error = EINVAL; 14172 goto out; 14173 } 14174 14175 if (!go_otw) 14176 goto out; 14177 } 14178 14179 /* XXX should we use the local reclock as a cache ? */ 14180 /* 14181 * Unregister the lock with the local locking code before 14182 * contacting the server. This avoids a potential race where 14183 * another process gets notified that it has been granted a lock 14184 * before we can unregister ourselves locally. 14185 */ 14186 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14187 if (ctype == NFS4_LCK_CTYPE_NORM) 14188 flk->l_pid = ttoproc(curthread)->p_pid; 14189 nfs4_register_lock_locally(vp, flk, flag, offset); 14190 } 14191 14192 /* 14193 * Send the server the lock request. Continually loop with a delay 14194 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14195 */ 14196 resp = &res; 14197 14198 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14199 (CE_NOTE, 14200 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14201 rnode4info(rp))); 14202 14203 if (lock_args && frc_no_reclaim) { 14204 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14205 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14206 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14207 lock_args->reclaim = FALSE; 14208 if (did_reclaimp) 14209 *did_reclaimp = 0; 14210 } 14211 14212 /* 14213 * Do the OTW call. 14214 */ 14215 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14216 14217 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14218 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14219 14220 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14221 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14222 "nfs4frlock: needrecov %d", needrecov)); 14223 14224 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14225 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14226 args.ctag); 14227 14228 /* 14229 * Check if one of these mutually exclusive error cases has 14230 * happened: 14231 * need to swap credentials due to access error 14232 * recovery is needed 14233 * different error (only known case is missing Kerberos ticket) 14234 */ 14235 14236 if ((ep->error == EACCES || 14237 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14238 cred_otw != cr) { 14239 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14240 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14241 cr, &cred_otw); 14242 goto recov_retry; 14243 } 14244 14245 if (needrecov) { 14246 /* 14247 * LOCKT requests don't need to recover from lost 14248 * requests since they don't create/modify state. 14249 */ 14250 if ((ep->error == EINTR || 14251 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14252 lockt_args) 14253 goto out; 14254 /* 14255 * Do not attempt recovery for requests initiated by 14256 * the recovery framework. Let the framework redrive them. 14257 */ 14258 if (ctype != NFS4_LCK_CTYPE_NORM) 14259 goto out; 14260 else { 14261 ASSERT(resend_rqstp == NULL); 14262 } 14263 14264 nfs4frlock_save_lost_rqst(ctype, ep->error, 14265 flk_to_locktype(cmd, flk->l_type), 14266 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14267 14268 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14269 &resp, lock_args, locku_args, &oop, &osp, &lop, 14270 rp, vp, &recov_state, op_hint, &did_start_fop, 14271 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14272 14273 if (retry) { 14274 ASSERT(oop == NULL); 14275 ASSERT(osp == NULL); 14276 ASSERT(lop == NULL); 14277 goto recov_retry; 14278 } 14279 goto out; 14280 } 14281 14282 /* 14283 * Bail out if have reached this point with ep->error set. Can 14284 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14285 * This happens if Kerberos ticket has expired or has been 14286 * destroyed. 14287 */ 14288 if (ep->error != 0) 14289 goto out; 14290 14291 /* 14292 * Process the reply. 14293 */ 14294 switch (resp->status) { 14295 case NFS4_OK: 14296 resop = &resp->array[1]; 14297 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14298 resend_rqstp); 14299 /* 14300 * Have a successful lock operation, now update state. 14301 */ 14302 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14303 resop, lop, vp, flk, cr, resend_rqstp); 14304 break; 14305 14306 case NFS4ERR_DENIED: 14307 resop = &resp->array[1]; 14308 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14309 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14310 &recov_state, needrecov, &argsp, &resp, 14311 &tick_delay, &whence, &ep->error, resop, cr, 14312 &did_start_fop, &skip_get_err); 14313 14314 if (retry) { 14315 ASSERT(oop == NULL); 14316 ASSERT(osp == NULL); 14317 ASSERT(lop == NULL); 14318 goto recov_retry; 14319 } 14320 break; 14321 /* 14322 * If the server won't let us reclaim, fall-back to trying to lock 14323 * the file from scratch. Code elsewhere will check the changeinfo 14324 * to ensure the file hasn't been changed. 14325 */ 14326 case NFS4ERR_NO_GRACE: 14327 if (lock_args && lock_args->reclaim == TRUE) { 14328 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14329 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14330 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14331 frc_no_reclaim = 1; 14332 /* clean up before retrying */ 14333 needrecov = 0; 14334 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14335 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14336 &recov_state, op_hint, &did_start_fop, NULL, flk); 14337 goto recov_retry; 14338 } 14339 /* FALLTHROUGH */ 14340 14341 default: 14342 nfs4frlock_results_default(resp, &ep->error); 14343 break; 14344 } 14345 out: 14346 /* 14347 * Process and cleanup from error. Make interrupted unlock 14348 * requests look successful, since they will be handled by the 14349 * client recovery code. 14350 */ 14351 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14352 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14353 lock_args, locku_args, did_start_fop, 14354 skip_get_err, cred_otw, cr); 14355 14356 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14357 (cmd == F_SETLK || cmd == F_SETLKW)) 14358 ep->error = 0; 14359 } 14360 14361 /* 14362 * nfs4_safelock: 14363 * 14364 * Return non-zero if the given lock request can be handled without 14365 * violating the constraints on concurrent mapping and locking. 14366 */ 14367 14368 static int 14369 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14370 { 14371 rnode4_t *rp = VTOR4(vp); 14372 struct vattr va; 14373 int error; 14374 14375 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14376 ASSERT(rp->r_mapcnt >= 0); 14377 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14378 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14379 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14380 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14381 14382 if (rp->r_mapcnt == 0) 14383 return (1); /* always safe if not mapped */ 14384 14385 /* 14386 * If the file is already mapped and there are locks, then they 14387 * should be all safe locks. So adding or removing a lock is safe 14388 * as long as the new request is safe (i.e., whole-file, meaning 14389 * length and starting offset are both zero). 14390 */ 14391 14392 if (bfp->l_start != 0 || bfp->l_len != 0) { 14393 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14394 "cannot lock a memory mapped file unless locking the " 14395 "entire file: start %"PRIx64", len %"PRIx64, 14396 bfp->l_start, bfp->l_len)); 14397 return (0); 14398 } 14399 14400 /* mandatory locking and mapping don't mix */ 14401 va.va_mask = AT_MODE; 14402 error = VOP_GETATTR(vp, &va, 0, cr); 14403 if (error != 0) { 14404 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14405 "getattr error %d", error)); 14406 return (0); /* treat errors conservatively */ 14407 } 14408 if (MANDLOCK(vp, va.va_mode)) { 14409 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14410 "cannot mandatory lock and mmap a file")); 14411 return (0); 14412 } 14413 14414 return (1); 14415 } 14416 14417 14418 /* 14419 * Register the lock locally within Solaris. 14420 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14421 * recording locks locally. 14422 * 14423 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14424 * are registered locally. 14425 */ 14426 void 14427 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14428 u_offset_t offset) 14429 { 14430 int oldsysid; 14431 int error; 14432 #ifdef DEBUG 14433 char *name; 14434 #endif 14435 14436 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14437 14438 #ifdef DEBUG 14439 name = fn_name(VTOSV(vp)->sv_name); 14440 NFS4_DEBUG(nfs4_client_lock_debug, 14441 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14442 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14443 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14444 flk->l_sysid)); 14445 kmem_free(name, MAXNAMELEN); 14446 #endif 14447 14448 /* register the lock with local locking */ 14449 oldsysid = flk->l_sysid; 14450 flk->l_sysid |= LM_SYSID_CLIENT; 14451 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14452 #ifdef DEBUG 14453 if (error != 0) { 14454 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14455 "nfs4_register_lock_locally: could not register with" 14456 " local locking")); 14457 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14458 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14459 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14460 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14461 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14462 flk->l_type, flk->l_start, flk->l_len)); 14463 (void) reclock(vp, flk, 0, flag, offset, NULL); 14464 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14465 "blocked by pid %d sysid 0x%x type %d " 14466 "off 0x%" PRIx64 " len 0x%" PRIx64, 14467 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14468 flk->l_len)); 14469 } 14470 #endif 14471 flk->l_sysid = oldsysid; 14472 } 14473 14474 /* 14475 * nfs4_lockrelease: 14476 * 14477 * Release any locks on the given vnode that are held by the current 14478 * process. Also removes the lock owner (if one exists) from the rnode's 14479 * list. 14480 */ 14481 static int 14482 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14483 { 14484 flock64_t ld; 14485 int ret, error; 14486 rnode4_t *rp; 14487 nfs4_lock_owner_t *lop; 14488 nfs4_recov_state_t recov_state; 14489 mntinfo4_t *mi; 14490 bool_t possible_orphan = FALSE; 14491 bool_t recovonly; 14492 14493 ASSERT((uintptr_t)vp > KERNELBASE); 14494 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14495 14496 rp = VTOR4(vp); 14497 mi = VTOMI4(vp); 14498 14499 /* 14500 * If we have not locked anything then we can 14501 * just return since we have no work to do. 14502 */ 14503 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14504 return (0); 14505 } 14506 14507 /* 14508 * We need to comprehend that another thread may 14509 * kick off recovery and the lock_owner we have stashed 14510 * in lop might be invalid so we should NOT cache it 14511 * locally! 14512 */ 14513 recov_state.rs_flags = 0; 14514 recov_state.rs_num_retry_despite_err = 0; 14515 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14516 &recovonly); 14517 if (error) { 14518 mutex_enter(&rp->r_statelock); 14519 rp->r_flags |= R4LODANGLERS; 14520 mutex_exit(&rp->r_statelock); 14521 return (error); 14522 } 14523 14524 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14525 14526 /* 14527 * Check if the lock owner might have a lock (request was sent but 14528 * no response was received). Also check if there are any remote 14529 * locks on the file. (In theory we shouldn't have to make this 14530 * second check if there's no lock owner, but for now we'll be 14531 * conservative and do it anyway.) If either condition is true, 14532 * send an unlock for the entire file to the server. 14533 * 14534 * Note that no explicit synchronization is needed here. At worst, 14535 * flk_has_remote_locks() will return a false positive, in which case 14536 * the unlock call wastes time but doesn't harm correctness. 14537 */ 14538 14539 if (lop) { 14540 mutex_enter(&lop->lo_lock); 14541 possible_orphan = lop->lo_pending_rqsts; 14542 mutex_exit(&lop->lo_lock); 14543 lock_owner_rele(lop); 14544 } 14545 14546 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14547 14548 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14549 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14550 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14551 (void *)lop)); 14552 14553 if (possible_orphan || flk_has_remote_locks(vp)) { 14554 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14555 ld.l_whence = 0; /* unlock from start of file */ 14556 ld.l_start = 0; 14557 ld.l_len = 0; /* do entire file */ 14558 14559 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr); 14560 14561 if (ret != 0) { 14562 /* 14563 * If VOP_FRLOCK fails, make sure we unregister 14564 * local locks before we continue. 14565 */ 14566 ld.l_pid = ttoproc(curthread)->p_pid; 14567 nfs4_register_lock_locally(vp, &ld, flag, offset); 14568 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14569 "nfs4_lockrelease: lock release error on vp" 14570 " %p: error %d.\n", (void *)vp, ret)); 14571 } 14572 } 14573 14574 recov_state.rs_flags = 0; 14575 recov_state.rs_num_retry_despite_err = 0; 14576 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14577 &recovonly); 14578 if (error) { 14579 mutex_enter(&rp->r_statelock); 14580 rp->r_flags |= R4LODANGLERS; 14581 mutex_exit(&rp->r_statelock); 14582 return (error); 14583 } 14584 14585 /* 14586 * So, here we're going to need to retrieve the lock-owner 14587 * again (in case recovery has done a switch-a-roo) and 14588 * remove it because we can. 14589 */ 14590 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14591 14592 if (lop) { 14593 nfs4_rnode_remove_lock_owner(rp, lop); 14594 lock_owner_rele(lop); 14595 } 14596 14597 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14598 return (0); 14599 } 14600 14601 /* 14602 * Wait for 'tick_delay' clock ticks. 14603 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14604 * NOTE: lock_lease_time is in seconds. 14605 * 14606 * XXX For future improvements, should implement a waiting queue scheme. 14607 */ 14608 static int 14609 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14610 { 14611 long milliseconds_delay; 14612 time_t lock_lease_time; 14613 14614 /* wait tick_delay clock ticks or siginteruptus */ 14615 if (delay_sig(*tick_delay)) { 14616 return (EINTR); 14617 } 14618 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14619 "reissue the lock request: blocked for %ld clock ticks: %ld " 14620 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14621 14622 /* get the lease time */ 14623 lock_lease_time = r2lease_time(rp); 14624 14625 /* drv_hztousec converts ticks to microseconds */ 14626 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14627 if (milliseconds_delay < lock_lease_time * 1000) { 14628 *tick_delay = 2 * *tick_delay; 14629 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14630 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14631 } 14632 return (0); 14633 } 14634 14635 14636 void 14637 nfs4_vnops_init(void) 14638 { 14639 } 14640 14641 void 14642 nfs4_vnops_fini(void) 14643 { 14644 } 14645 14646 /* 14647 * Return a reference to the directory (parent) vnode for a given vnode, 14648 * using the saved pathname information and the directory file handle. The 14649 * caller is responsible for disposing of the reference. 14650 * Returns zero or an errno value. 14651 * 14652 * Caller should set need_start_op to FALSE if it is the recovery 14653 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14654 */ 14655 int 14656 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14657 { 14658 svnode_t *svnp; 14659 vnode_t *dvp = NULL; 14660 servinfo4_t *svp; 14661 nfs4_fname_t *mfname; 14662 int error; 14663 14664 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14665 14666 if (vp->v_flag & VROOT) { 14667 nfs4_sharedfh_t *sfh; 14668 nfs_fh4 fh; 14669 mntinfo4_t *mi; 14670 14671 ASSERT(vp->v_type == VREG); 14672 14673 mi = VTOMI4(vp); 14674 svp = mi->mi_curr_serv; 14675 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14676 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14677 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14678 sfh = sfh4_get(&fh, VTOMI4(vp)); 14679 nfs_rw_exit(&svp->sv_lock); 14680 mfname = mi->mi_fname; 14681 fn_hold(mfname); 14682 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14683 sfh4_rele(&sfh); 14684 14685 if (dvp->v_type == VNON) 14686 dvp->v_type = VDIR; 14687 *dvpp = dvp; 14688 return (0); 14689 } 14690 14691 svnp = VTOSV(vp); 14692 14693 if (svnp == NULL) { 14694 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14695 "shadow node is NULL")); 14696 return (EINVAL); 14697 } 14698 14699 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14700 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14701 "shadow node name or dfh val == NULL")); 14702 return (EINVAL); 14703 } 14704 14705 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14706 (int)need_start_op); 14707 if (error != 0) { 14708 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14709 "nfs4_make_dotdot returned %d", error)); 14710 return (error); 14711 } 14712 if (!dvp) { 14713 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14714 "nfs4_make_dotdot returned a NULL dvp")); 14715 return (EIO); 14716 } 14717 if (dvp->v_type == VNON) 14718 dvp->v_type = VDIR; 14719 ASSERT(dvp->v_type == VDIR); 14720 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14721 mutex_enter(&dvp->v_lock); 14722 dvp->v_flag |= V_XATTRDIR; 14723 mutex_exit(&dvp->v_lock); 14724 } 14725 *dvpp = dvp; 14726 return (0); 14727 } 14728 14729 /* 14730 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14731 * length that fnamep can accept, including the trailing null. 14732 * Returns 0 if okay, returns an errno value if there was a problem. 14733 */ 14734 14735 int 14736 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14737 { 14738 char *fn; 14739 int err = 0; 14740 servinfo4_t *svp; 14741 svnode_t *shvp; 14742 14743 /* 14744 * If the file being opened has VROOT set, then this is 14745 * a "file" mount. sv_name will not be interesting, so 14746 * go back to the servinfo4 to get the original mount 14747 * path and strip off all but the final edge. Otherwise 14748 * just return the name from the shadow vnode. 14749 */ 14750 14751 if (vp->v_flag & VROOT) { 14752 14753 svp = VTOMI4(vp)->mi_curr_serv; 14754 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14755 14756 fn = strrchr(svp->sv_path, '/'); 14757 if (fn == NULL) 14758 err = EINVAL; 14759 else 14760 fn++; 14761 } else { 14762 shvp = VTOSV(vp); 14763 fn = fn_name(shvp->sv_name); 14764 } 14765 14766 if (err == 0) 14767 if (strlen(fn) < maxlen) 14768 (void) strcpy(fnamep, fn); 14769 else 14770 err = ENAMETOOLONG; 14771 14772 if (vp->v_flag & VROOT) 14773 nfs_rw_exit(&svp->sv_lock); 14774 else 14775 kmem_free(fn, MAXNAMELEN); 14776 14777 return (err); 14778 } 14779 14780 /* 14781 * Bookkeeping for a close that doesn't need to go over the wire. 14782 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14783 * it is left at 1. 14784 */ 14785 void 14786 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14787 { 14788 rnode4_t *rp; 14789 mntinfo4_t *mi; 14790 14791 mi = VTOMI4(vp); 14792 rp = VTOR4(vp); 14793 14794 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14795 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14796 ASSERT(nfs_zone() == mi->mi_zone); 14797 ASSERT(mutex_owned(&osp->os_sync_lock)); 14798 ASSERT(*have_lockp); 14799 14800 if (!osp->os_valid || 14801 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14802 return; 14803 } 14804 14805 /* 14806 * This removes the reference obtained at OPEN; ie, 14807 * when the open stream structure was created. 14808 * 14809 * We don't have to worry about calling 'open_stream_rele' 14810 * since we our currently holding a reference to this 14811 * open stream which means the count can not go to 0 with 14812 * this decrement. 14813 */ 14814 ASSERT(osp->os_ref_count >= 2); 14815 osp->os_ref_count--; 14816 osp->os_valid = 0; 14817 mutex_exit(&osp->os_sync_lock); 14818 *have_lockp = 0; 14819 14820 nfs4_dec_state_ref_count(mi); 14821 } 14822 14823 /* 14824 * Close all remaining open streams on the rnode. These open streams 14825 * could be here because: 14826 * - The close attempted at either close or delmap failed 14827 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14828 * - Someone did mknod on a regular file but never opened it 14829 */ 14830 int 14831 nfs4close_all(vnode_t *vp, cred_t *cr) 14832 { 14833 nfs4_open_stream_t *osp; 14834 int error; 14835 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14836 rnode4_t *rp; 14837 14838 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14839 14840 error = 0; 14841 rp = VTOR4(vp); 14842 14843 /* 14844 * At this point, all we know is that the last time 14845 * someone called vn_rele, the count was 1. Since then, 14846 * the vnode could have been re-activated. We want to 14847 * loop through the open streams and close each one, but 14848 * we have to be careful since once we release the rnode 14849 * hash bucket lock, someone else is free to come in and 14850 * re-activate the rnode and add new open streams. The 14851 * strategy is take the rnode hash bucket lock, verify that 14852 * the count is still 1, grab the open stream off the 14853 * head of the list and mark it invalid, then release the 14854 * rnode hash bucket lock and proceed with that open stream. 14855 * This is ok because nfs4close_one() will acquire the proper 14856 * open/create to close/destroy synchronization for open 14857 * streams, and will ensure that if someone has reopened 14858 * the open stream after we've dropped the hash bucket lock 14859 * then we'll just simply return without destroying the 14860 * open stream. 14861 * Repeat until the list is empty. 14862 */ 14863 14864 for (;;) { 14865 14866 /* make sure vnode hasn't been reactivated */ 14867 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14868 mutex_enter(&vp->v_lock); 14869 if (vp->v_count > 1) { 14870 mutex_exit(&vp->v_lock); 14871 rw_exit(&rp->r_hashq->r_lock); 14872 break; 14873 } 14874 /* 14875 * Grabbing r_os_lock before releasing v_lock prevents 14876 * a window where the rnode/open stream could get 14877 * reactivated (and os_force_close set to 0) before we 14878 * had a chance to set os_force_close to 1. 14879 */ 14880 mutex_enter(&rp->r_os_lock); 14881 mutex_exit(&vp->v_lock); 14882 14883 osp = list_head(&rp->r_open_streams); 14884 if (!osp) { 14885 /* nothing left to CLOSE OTW, so return */ 14886 mutex_exit(&rp->r_os_lock); 14887 rw_exit(&rp->r_hashq->r_lock); 14888 break; 14889 } 14890 14891 mutex_enter(&rp->r_statev4_lock); 14892 /* the file can't still be mem mapped */ 14893 ASSERT(rp->r_mapcnt == 0); 14894 if (rp->created_v4) 14895 rp->created_v4 = 0; 14896 mutex_exit(&rp->r_statev4_lock); 14897 14898 /* 14899 * Grab a ref on this open stream; nfs4close_one 14900 * will mark it as invalid 14901 */ 14902 mutex_enter(&osp->os_sync_lock); 14903 osp->os_ref_count++; 14904 osp->os_force_close = 1; 14905 mutex_exit(&osp->os_sync_lock); 14906 mutex_exit(&rp->r_os_lock); 14907 rw_exit(&rp->r_hashq->r_lock); 14908 14909 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14910 14911 /* Update error if it isn't already non-zero */ 14912 if (error == 0) { 14913 if (e.error) 14914 error = e.error; 14915 else if (e.stat) 14916 error = geterrno4(e.stat); 14917 } 14918 14919 #ifdef DEBUG 14920 nfs4close_all_cnt++; 14921 #endif 14922 /* Release the ref on osp acquired above. */ 14923 open_stream_rele(osp, rp); 14924 14925 /* Proceed to the next open stream, if any */ 14926 } 14927 return (error); 14928 } 14929 14930 /* 14931 * nfs4close_one - close one open stream for a file if needed. 14932 * 14933 * "close_type" indicates which close path this is: 14934 * CLOSE_NORM: close initiated via VOP_CLOSE. 14935 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14936 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14937 * the close and release of client state for this open stream 14938 * (unless someone else has the open stream open). 14939 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14940 * (e.g., due to abort because of a signal). 14941 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14942 * 14943 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14944 * recovery. Instead, the caller is expected to deal with retries. 14945 * 14946 * The caller can either pass in the osp ('provided_osp') or not. 14947 * 14948 * 'access_bits' represents the access we are closing/downgrading. 14949 * 14950 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14951 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14952 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14953 * 14954 * Errors are returned via the nfs4_error_t. 14955 */ 14956 void 14957 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14958 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14959 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14960 uint_t mmap_flags) 14961 { 14962 nfs4_open_owner_t *oop; 14963 nfs4_open_stream_t *osp = NULL; 14964 int retry = 0; 14965 int num_retries = NFS4_NUM_RECOV_RETRIES; 14966 rnode4_t *rp; 14967 mntinfo4_t *mi; 14968 nfs4_recov_state_t recov_state; 14969 cred_t *cred_otw = NULL; 14970 bool_t recovonly = FALSE; 14971 int isrecov; 14972 int force_close; 14973 int close_failed = 0; 14974 int did_dec_count = 0; 14975 int did_start_op = 0; 14976 int did_force_recovlock = 0; 14977 int did_start_seqid_sync = 0; 14978 int have_sync_lock = 0; 14979 14980 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14981 14982 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14983 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 14984 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 14985 len, maxprot, mmap_flags, access_bits)); 14986 14987 nfs4_error_zinit(ep); 14988 rp = VTOR4(vp); 14989 mi = VTOMI4(vp); 14990 isrecov = (close_type == CLOSE_RESEND || 14991 close_type == CLOSE_AFTER_RESEND); 14992 14993 /* 14994 * First get the open owner. 14995 */ 14996 if (!provided_osp) { 14997 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 14998 } else { 14999 oop = provided_osp->os_open_owner; 15000 ASSERT(oop != NULL); 15001 open_owner_hold(oop); 15002 } 15003 15004 if (!oop) { 15005 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15006 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15007 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15008 (void *)provided_osp, close_type)); 15009 ep->error = EIO; 15010 goto out; 15011 } 15012 15013 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15014 recov_retry: 15015 osp = NULL; 15016 close_failed = 0; 15017 force_close = (close_type == CLOSE_FORCE); 15018 retry = 0; 15019 did_start_op = 0; 15020 did_force_recovlock = 0; 15021 did_start_seqid_sync = 0; 15022 have_sync_lock = 0; 15023 recovonly = FALSE; 15024 recov_state.rs_flags = 0; 15025 recov_state.rs_num_retry_despite_err = 0; 15026 15027 /* 15028 * Second synchronize with recovery. 15029 */ 15030 if (!isrecov) { 15031 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15032 &recov_state, &recovonly); 15033 if (!ep->error) { 15034 did_start_op = 1; 15035 } else { 15036 close_failed = 1; 15037 /* 15038 * If we couldn't get start_fop, but have to 15039 * cleanup state, then at least acquire the 15040 * mi_recovlock so we can synchronize with 15041 * recovery. 15042 */ 15043 if (close_type == CLOSE_FORCE) { 15044 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15045 RW_READER, FALSE); 15046 did_force_recovlock = 1; 15047 } else 15048 goto out; 15049 } 15050 } 15051 15052 /* 15053 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15054 * set 'recovonly' to TRUE since most likely this is due to 15055 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15056 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15057 * to retry, causing us to loop until recovery finishes. Plus we 15058 * don't need protection over the open seqid since we're not going 15059 * OTW, hence don't need to use the seqid. 15060 */ 15061 if (recovonly == FALSE) { 15062 /* need to grab the open owner sync before 'os_sync_lock' */ 15063 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15064 if (ep->error == EAGAIN) { 15065 ASSERT(!isrecov); 15066 if (did_start_op) 15067 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15068 &recov_state, TRUE); 15069 if (did_force_recovlock) 15070 nfs_rw_exit(&mi->mi_recovlock); 15071 goto recov_retry; 15072 } 15073 did_start_seqid_sync = 1; 15074 } 15075 15076 /* 15077 * Third get an open stream and acquire 'os_sync_lock' to 15078 * sychronize the opening/creating of an open stream with the 15079 * closing/destroying of an open stream. 15080 */ 15081 if (!provided_osp) { 15082 /* returns with 'os_sync_lock' held */ 15083 osp = find_open_stream(oop, rp); 15084 if (!osp) { 15085 ep->error = EIO; 15086 goto out; 15087 } 15088 } else { 15089 osp = provided_osp; 15090 open_stream_hold(osp); 15091 mutex_enter(&osp->os_sync_lock); 15092 } 15093 have_sync_lock = 1; 15094 15095 ASSERT(oop == osp->os_open_owner); 15096 15097 /* 15098 * Fourth, do any special pre-OTW CLOSE processing 15099 * based on the specific close type. 15100 */ 15101 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15102 !did_dec_count) { 15103 ASSERT(osp->os_open_ref_count > 0); 15104 osp->os_open_ref_count--; 15105 did_dec_count = 1; 15106 if (osp->os_open_ref_count == 0) 15107 osp->os_final_close = 1; 15108 } 15109 15110 if (close_type == CLOSE_FORCE) { 15111 /* see if somebody reopened the open stream. */ 15112 if (!osp->os_force_close) { 15113 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15114 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15115 "was reopened, vp %p", (void *)osp, (void *)vp)); 15116 ep->error = 0; 15117 ep->stat = NFS4_OK; 15118 goto out; 15119 } 15120 15121 if (!osp->os_final_close && !did_dec_count) { 15122 osp->os_open_ref_count--; 15123 did_dec_count = 1; 15124 } 15125 15126 /* 15127 * We can't depend on os_open_ref_count being 0 due to the 15128 * way executables are opened (VN_RELE to match a VOP_OPEN). 15129 */ 15130 #ifdef NOTYET 15131 ASSERT(osp->os_open_ref_count == 0); 15132 #endif 15133 if (osp->os_open_ref_count != 0) { 15134 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15135 "nfs4close_one: should panic here on an " 15136 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15137 "since this is probably the exec problem.")); 15138 15139 osp->os_open_ref_count = 0; 15140 } 15141 15142 /* 15143 * There is the possibility that nfs4close_one() 15144 * for close_type == CLOSE_DELMAP couldn't find the 15145 * open stream, thus couldn't decrement its os_mapcnt; 15146 * therefore we can't use this ASSERT yet. 15147 */ 15148 #ifdef NOTYET 15149 ASSERT(osp->os_mapcnt == 0); 15150 #endif 15151 osp->os_mapcnt = 0; 15152 } 15153 15154 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15155 ASSERT(osp->os_mapcnt >= btopr(len)); 15156 15157 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15158 osp->os_mmap_write -= btopr(len); 15159 if (maxprot & PROT_READ) 15160 osp->os_mmap_read -= btopr(len); 15161 if (maxprot & PROT_EXEC) 15162 osp->os_mmap_read -= btopr(len); 15163 /* mirror the PROT_NONE check in nfs4_addmap() */ 15164 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15165 !(maxprot & PROT_EXEC)) 15166 osp->os_mmap_read -= btopr(len); 15167 osp->os_mapcnt -= btopr(len); 15168 did_dec_count = 1; 15169 } 15170 15171 if (recovonly) { 15172 nfs4_lost_rqst_t lost_rqst; 15173 15174 /* request should not already be in recovery queue */ 15175 ASSERT(lrp == NULL); 15176 nfs4_error_init(ep, EINTR); 15177 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15178 osp, cred_otw, vp); 15179 mutex_exit(&osp->os_sync_lock); 15180 have_sync_lock = 0; 15181 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15182 lost_rqst.lr_op == OP_CLOSE ? 15183 &lost_rqst : NULL, OP_CLOSE, NULL); 15184 close_failed = 1; 15185 force_close = 0; 15186 goto close_cleanup; 15187 } 15188 15189 /* 15190 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15191 * we stopped operating on the open owner's <old oo_name, old seqid> 15192 * space, which means we stopped operating on the open stream 15193 * too. So don't go OTW (as the seqid is likely bad, and the 15194 * stateid could be stale, potentially triggering a false 15195 * setclientid), and just clean up the client's internal state. 15196 */ 15197 if (osp->os_orig_oo_name != oop->oo_name) { 15198 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15199 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15200 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15201 "oo_name %" PRIx64")", 15202 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15203 oop->oo_name)); 15204 close_failed = 1; 15205 } 15206 15207 /* If the file failed recovery, just quit. */ 15208 mutex_enter(&rp->r_statelock); 15209 if (rp->r_flags & R4RECOVERR) { 15210 close_failed = 1; 15211 } 15212 mutex_exit(&rp->r_statelock); 15213 15214 /* 15215 * If the force close path failed to obtain start_fop 15216 * then skip the OTW close and just remove the state. 15217 */ 15218 if (close_failed) 15219 goto close_cleanup; 15220 15221 /* 15222 * Fifth, check to see if there are still mapped pages or other 15223 * opens using this open stream. If there are then we can't 15224 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15225 */ 15226 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15227 nfs4_lost_rqst_t new_lost_rqst; 15228 bool_t needrecov = FALSE; 15229 cred_t *odg_cred_otw = NULL; 15230 seqid4 open_dg_seqid = 0; 15231 15232 if (osp->os_delegation) { 15233 /* 15234 * If this open stream was never OPENed OTW then we 15235 * surely can't DOWNGRADE it (especially since the 15236 * osp->open_stateid is really a delegation stateid 15237 * when os_delegation is 1). 15238 */ 15239 if (access_bits & FREAD) 15240 osp->os_share_acc_read--; 15241 if (access_bits & FWRITE) 15242 osp->os_share_acc_write--; 15243 osp->os_share_deny_none--; 15244 nfs4_error_zinit(ep); 15245 goto out; 15246 } 15247 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15248 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15249 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15250 if (needrecov && !isrecov) { 15251 bool_t abort; 15252 nfs4_bseqid_entry_t *bsep = NULL; 15253 15254 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15255 bsep = nfs4_create_bseqid_entry(oop, NULL, 15256 vp, 0, 15257 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15258 open_dg_seqid); 15259 15260 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15261 oop, osp, odg_cred_otw, vp, access_bits, 0); 15262 mutex_exit(&osp->os_sync_lock); 15263 have_sync_lock = 0; 15264 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15265 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15266 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15267 bsep); 15268 if (odg_cred_otw) 15269 crfree(odg_cred_otw); 15270 if (bsep) 15271 kmem_free(bsep, sizeof (*bsep)); 15272 15273 if (abort == TRUE) 15274 goto out; 15275 15276 if (did_start_seqid_sync) { 15277 nfs4_end_open_seqid_sync(oop); 15278 did_start_seqid_sync = 0; 15279 } 15280 open_stream_rele(osp, rp); 15281 15282 if (did_start_op) 15283 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15284 &recov_state, FALSE); 15285 if (did_force_recovlock) 15286 nfs_rw_exit(&mi->mi_recovlock); 15287 15288 goto recov_retry; 15289 } else { 15290 if (odg_cred_otw) 15291 crfree(odg_cred_otw); 15292 } 15293 goto out; 15294 } 15295 15296 /* 15297 * If this open stream was created as the results of an open 15298 * while holding a delegation, then just release it; no need 15299 * to do an OTW close. Otherwise do a "normal" OTW close. 15300 */ 15301 if (osp->os_delegation) { 15302 nfs4close_notw(vp, osp, &have_sync_lock); 15303 nfs4_error_zinit(ep); 15304 goto out; 15305 } 15306 15307 /* 15308 * If this stream is not valid, we're done. 15309 */ 15310 if (!osp->os_valid) { 15311 nfs4_error_zinit(ep); 15312 goto out; 15313 } 15314 15315 /* 15316 * Last open or mmap ref has vanished, need to do an OTW close. 15317 * First check to see if a close is still necessary. 15318 */ 15319 if (osp->os_failed_reopen) { 15320 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15321 "don't close OTW osp %p since reopen failed.", 15322 (void *)osp)); 15323 /* 15324 * Reopen of the open stream failed, hence the 15325 * stateid of the open stream is invalid/stale, and 15326 * sending this OTW would incorrectly cause another 15327 * round of recovery. In this case, we need to set 15328 * the 'os_valid' bit to 0 so another thread doesn't 15329 * come in and re-open this open stream before 15330 * this "closing" thread cleans up state (decrementing 15331 * the nfs4_server_t's state_ref_count and decrementing 15332 * the os_ref_count). 15333 */ 15334 osp->os_valid = 0; 15335 /* 15336 * This removes the reference obtained at OPEN; ie, 15337 * when the open stream structure was created. 15338 * 15339 * We don't have to worry about calling 'open_stream_rele' 15340 * since we our currently holding a reference to this 15341 * open stream which means the count can not go to 0 with 15342 * this decrement. 15343 */ 15344 ASSERT(osp->os_ref_count >= 2); 15345 osp->os_ref_count--; 15346 nfs4_error_zinit(ep); 15347 close_failed = 0; 15348 goto close_cleanup; 15349 } 15350 15351 ASSERT(osp->os_ref_count > 1); 15352 15353 /* 15354 * Sixth, try the CLOSE OTW. 15355 */ 15356 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15357 close_type, ep, &have_sync_lock); 15358 15359 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15360 /* 15361 * Let the recovery thread be responsible for 15362 * removing the state for CLOSE. 15363 */ 15364 close_failed = 1; 15365 force_close = 0; 15366 retry = 0; 15367 } 15368 15369 /* See if we need to retry with a different cred */ 15370 if ((ep->error == EACCES || 15371 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15372 cred_otw != cr) { 15373 crfree(cred_otw); 15374 cred_otw = cr; 15375 crhold(cred_otw); 15376 retry = 1; 15377 } 15378 15379 if (ep->error || ep->stat) 15380 close_failed = 1; 15381 15382 if (retry && !isrecov && num_retries-- > 0) { 15383 if (have_sync_lock) { 15384 mutex_exit(&osp->os_sync_lock); 15385 have_sync_lock = 0; 15386 } 15387 if (did_start_seqid_sync) { 15388 nfs4_end_open_seqid_sync(oop); 15389 did_start_seqid_sync = 0; 15390 } 15391 open_stream_rele(osp, rp); 15392 15393 if (did_start_op) 15394 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15395 &recov_state, FALSE); 15396 if (did_force_recovlock) 15397 nfs_rw_exit(&mi->mi_recovlock); 15398 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15399 "nfs4close_one: need to retry the close " 15400 "operation")); 15401 goto recov_retry; 15402 } 15403 close_cleanup: 15404 /* 15405 * Seventh and lastly, process our results. 15406 */ 15407 if (close_failed && force_close) { 15408 /* 15409 * It's ok to drop and regrab the 'os_sync_lock' since 15410 * nfs4close_notw() will recheck to make sure the 15411 * "close"/removal of state should happen. 15412 */ 15413 if (!have_sync_lock) { 15414 mutex_enter(&osp->os_sync_lock); 15415 have_sync_lock = 1; 15416 } 15417 /* 15418 * This is last call, remove the ref on the open 15419 * stream created by open and clean everything up. 15420 */ 15421 osp->os_pending_close = 0; 15422 nfs4close_notw(vp, osp, &have_sync_lock); 15423 nfs4_error_zinit(ep); 15424 } 15425 15426 if (!close_failed) { 15427 if (have_sync_lock) { 15428 osp->os_pending_close = 0; 15429 mutex_exit(&osp->os_sync_lock); 15430 have_sync_lock = 0; 15431 } else { 15432 mutex_enter(&osp->os_sync_lock); 15433 osp->os_pending_close = 0; 15434 mutex_exit(&osp->os_sync_lock); 15435 } 15436 if (did_start_op && recov_state.rs_sp != NULL) { 15437 mutex_enter(&recov_state.rs_sp->s_lock); 15438 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15439 mutex_exit(&recov_state.rs_sp->s_lock); 15440 } else { 15441 nfs4_dec_state_ref_count(mi); 15442 } 15443 nfs4_error_zinit(ep); 15444 } 15445 15446 out: 15447 if (have_sync_lock) 15448 mutex_exit(&osp->os_sync_lock); 15449 if (did_start_op) 15450 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15451 recovonly ? TRUE : FALSE); 15452 if (did_force_recovlock) 15453 nfs_rw_exit(&mi->mi_recovlock); 15454 if (cred_otw) 15455 crfree(cred_otw); 15456 if (osp) 15457 open_stream_rele(osp, rp); 15458 if (oop) { 15459 if (did_start_seqid_sync) 15460 nfs4_end_open_seqid_sync(oop); 15461 open_owner_rele(oop); 15462 } 15463 } 15464 15465 /* 15466 * Convert information returned by the server in the LOCK4denied 15467 * structure to the form required by fcntl. 15468 */ 15469 static void 15470 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15471 { 15472 nfs4_lo_name_t *lo; 15473 15474 #ifdef DEBUG 15475 if (denied_to_flk_debug) { 15476 lockt_denied_debug = lockt_denied; 15477 debug_enter("lockt_denied"); 15478 } 15479 #endif 15480 15481 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15482 flk->l_whence = 0; /* aka SEEK_SET */ 15483 flk->l_start = lockt_denied->offset; 15484 flk->l_len = lockt_denied->length; 15485 15486 /* 15487 * If the blocking clientid matches our client id, then we can 15488 * interpret the lockowner (since we built it). If not, then 15489 * fabricate a sysid and pid. Note that the l_sysid field 15490 * in *flk already has the local sysid. 15491 */ 15492 15493 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15494 15495 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15496 lo = (nfs4_lo_name_t *) 15497 lockt_denied->owner.owner_val; 15498 15499 flk->l_pid = lo->ln_pid; 15500 } else { 15501 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15502 "denied_to_flk: bad lock owner length\n")); 15503 15504 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15505 } 15506 } else { 15507 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15508 "denied_to_flk: foreign clientid\n")); 15509 15510 /* 15511 * Construct a new sysid which should be different from 15512 * sysids of other systems. 15513 */ 15514 15515 flk->l_sysid++; 15516 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15517 } 15518 } 15519 15520 static pid_t 15521 lo_to_pid(lock_owner4 *lop) 15522 { 15523 pid_t pid = 0; 15524 uchar_t *cp; 15525 int i; 15526 15527 cp = (uchar_t *)&lop->clientid; 15528 15529 for (i = 0; i < sizeof (lop->clientid); i++) 15530 pid += (pid_t)*cp++; 15531 15532 cp = (uchar_t *)lop->owner_val; 15533 15534 for (i = 0; i < lop->owner_len; i++) 15535 pid += (pid_t)*cp++; 15536 15537 return (pid); 15538 } 15539 15540 /* 15541 * Given a lock pointer, returns the length of that lock. 15542 * "end" is the last locked offset the "l_len" covers from 15543 * the start of the lock. 15544 */ 15545 static off64_t 15546 lock_to_end(flock64_t *lock) 15547 { 15548 off64_t lock_end; 15549 15550 if (lock->l_len == 0) 15551 lock_end = (off64_t)MAXEND; 15552 else 15553 lock_end = lock->l_start + lock->l_len - 1; 15554 15555 return (lock_end); 15556 } 15557 15558 /* 15559 * Given the end of a lock, it will return you the length "l_len" for that lock. 15560 */ 15561 static off64_t 15562 end_to_len(off64_t start, off64_t end) 15563 { 15564 off64_t lock_len; 15565 15566 ASSERT(end >= start); 15567 if (end == MAXEND) 15568 lock_len = 0; 15569 else 15570 lock_len = end - start + 1; 15571 15572 return (lock_len); 15573 } 15574 15575 /* 15576 * On given end for a lock it determines if it is the last locked offset 15577 * or not, if so keeps it as is, else adds one to return the length for 15578 * valid start. 15579 */ 15580 static off64_t 15581 start_check(off64_t x) 15582 { 15583 if (x == MAXEND) 15584 return (x); 15585 else 15586 return (x + 1); 15587 } 15588 15589 /* 15590 * See if these two locks overlap, and if so return 1; 15591 * otherwise, return 0. 15592 */ 15593 static int 15594 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15595 { 15596 off64_t llfp_end, curfp_end; 15597 15598 llfp_end = lock_to_end(llfp); 15599 curfp_end = lock_to_end(curfp); 15600 15601 if (((llfp_end >= curfp->l_start) && 15602 (llfp->l_start <= curfp->l_start)) || 15603 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15604 return (1); 15605 return (0); 15606 } 15607 15608 /* 15609 * Determine what the interseting lock region is, and add that to the 15610 * 'nl_llpp' locklist in increasing order (by l_start). 15611 */ 15612 static void 15613 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15614 locklist_t **nl_llpp, vnode_t *vp) 15615 { 15616 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15617 off64_t lost_flp_end, local_flp_end, len, start; 15618 15619 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15620 15621 if (!locks_intersect(lost_flp, local_flp)) 15622 return; 15623 15624 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15625 "locks intersect")); 15626 15627 lost_flp_end = lock_to_end(lost_flp); 15628 local_flp_end = lock_to_end(local_flp); 15629 15630 /* Find the starting point of the intersecting region */ 15631 if (local_flp->l_start > lost_flp->l_start) 15632 start = local_flp->l_start; 15633 else 15634 start = lost_flp->l_start; 15635 15636 /* Find the lenght of the intersecting region */ 15637 if (lost_flp_end < local_flp_end) 15638 len = end_to_len(start, lost_flp_end); 15639 else 15640 len = end_to_len(start, local_flp_end); 15641 15642 /* 15643 * Prepare the flock structure for the intersection found and insert 15644 * it into the new list in increasing l_start order. This list contains 15645 * intersections of locks registered by the client with the local host 15646 * and the lost lock. 15647 * The lock type of this lock is the same as that of the local_flp. 15648 */ 15649 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15650 intersect_llp->ll_flock.l_start = start; 15651 intersect_llp->ll_flock.l_len = len; 15652 intersect_llp->ll_flock.l_type = local_flp->l_type; 15653 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15654 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15655 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15656 intersect_llp->ll_vp = vp; 15657 15658 tmp_fllp = *nl_llpp; 15659 cur_fllp = NULL; 15660 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15661 intersect_llp->ll_flock.l_start) { 15662 cur_fllp = tmp_fllp; 15663 tmp_fllp = tmp_fllp->ll_next; 15664 } 15665 if (cur_fllp == NULL) { 15666 /* first on the list */ 15667 intersect_llp->ll_next = *nl_llpp; 15668 *nl_llpp = intersect_llp; 15669 } else { 15670 intersect_llp->ll_next = cur_fllp->ll_next; 15671 cur_fllp->ll_next = intersect_llp; 15672 } 15673 15674 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15675 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15676 intersect_llp->ll_flock.l_start, 15677 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15678 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15679 } 15680 15681 /* 15682 * Our local locking current state is potentially different than 15683 * what the NFSv4 server thinks we have due to a lost lock that was 15684 * resent and then received. We need to reset our "NFSv4" locking 15685 * state to match the current local locking state for this pid since 15686 * that is what the user/application sees as what the world is. 15687 * 15688 * We cannot afford to drop the open/lock seqid sync since then we can 15689 * get confused about what the current local locking state "is" versus 15690 * "was". 15691 * 15692 * If we are unable to fix up the locks, we send SIGLOST to the affected 15693 * process. This is not done if the filesystem has been forcibly 15694 * unmounted, in case the process has already exited and a new process 15695 * exists with the same pid. 15696 */ 15697 static void 15698 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15699 nfs4_lock_owner_t *lop) 15700 { 15701 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15702 mntinfo4_t *mi = VTOMI4(vp); 15703 const int cmd = F_SETLK; 15704 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15705 flock64_t ul_fl; 15706 15707 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15708 "nfs4_reinstitute_local_lock_state")); 15709 15710 /* 15711 * Find active locks for this vp from the local locking code. 15712 * Scan through this list and find out the locks that intersect with 15713 * the lost lock. Once we find the lock that intersects, add the 15714 * intersection area as a new lock to a new list "ri_llp". The lock 15715 * type of the intersection region lock added to ri_llp is the same 15716 * as that found in the active lock list, "list". The intersecting 15717 * region locks are added to ri_llp in increasing l_start order. 15718 */ 15719 ASSERT(nfs_zone() == mi->mi_zone); 15720 15721 locks = flk_active_locks_for_vp(vp); 15722 ri_llp = NULL; 15723 15724 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15725 ASSERT(llp->ll_vp == vp); 15726 /* 15727 * Pick locks that belong to this pid/lockowner 15728 */ 15729 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15730 continue; 15731 15732 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15733 } 15734 15735 /* 15736 * Now we have the list of intersections with the lost lock. These are 15737 * the locks that were/are active before the server replied to the 15738 * last/lost lock. Issue these locks to the server here. Playing these 15739 * locks to the server will re-establish aur current local locking state 15740 * with the v4 server. 15741 * If we get an error, send SIGLOST to the application for that lock. 15742 */ 15743 15744 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15745 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15746 "nfs4_reinstitute_local_lock_state: need to issue " 15747 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15748 llp->ll_flock.l_start, 15749 llp->ll_flock.l_start + llp->ll_flock.l_len, 15750 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15751 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15752 /* 15753 * No need to relock what we already have 15754 */ 15755 if (llp->ll_flock.l_type == lost_flp->l_type) 15756 continue; 15757 15758 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15759 } 15760 15761 /* 15762 * Now keeping the start of the lost lock as our reference parse the 15763 * newly created ri_llp locklist to find the ranges that we have locked 15764 * with the v4 server but not in the current local locking. We need 15765 * to unlock these ranges. 15766 * These ranges can also be reffered to as those ranges, where the lost 15767 * lock does not overlap with the locks in the ri_llp but are locked 15768 * since the server replied to the lost lock. 15769 */ 15770 cur_start = lost_flp->l_start; 15771 lost_flp_end = lock_to_end(lost_flp); 15772 15773 ul_fl.l_type = F_UNLCK; 15774 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15775 ul_fl.l_sysid = lost_flp->l_sysid; 15776 ul_fl.l_pid = lost_flp->l_pid; 15777 15778 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15779 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15780 15781 if (llp->ll_flock.l_start <= cur_start) { 15782 cur_start = start_check(llp_ll_flock_end); 15783 continue; 15784 } 15785 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15786 "nfs4_reinstitute_local_lock_state: " 15787 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15788 cur_start, llp->ll_flock.l_start)); 15789 15790 ul_fl.l_start = cur_start; 15791 ul_fl.l_len = end_to_len(cur_start, 15792 (llp->ll_flock.l_start - 1)); 15793 15794 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15795 cur_start = start_check(llp_ll_flock_end); 15796 } 15797 15798 /* 15799 * In the case where the lost lock ends after all intersecting locks, 15800 * unlock the last part of the lost lock range. 15801 */ 15802 if (cur_start != start_check(lost_flp_end)) { 15803 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15804 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15805 "lost lock region [%"PRIx64" - %"PRIx64"]", 15806 cur_start, lost_flp->l_start + lost_flp->l_len)); 15807 15808 ul_fl.l_start = cur_start; 15809 /* 15810 * Is it an to-EOF lock? if so unlock till the end 15811 */ 15812 if (lost_flp->l_len == 0) 15813 ul_fl.l_len = 0; 15814 else 15815 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15816 15817 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15818 } 15819 15820 if (locks != NULL) 15821 flk_free_locklist(locks); 15822 15823 /* Free up our newly created locklist */ 15824 for (llp = ri_llp; llp != NULL; ) { 15825 tmp_llp = llp->ll_next; 15826 kmem_free(llp, sizeof (locklist_t)); 15827 llp = tmp_llp; 15828 } 15829 15830 /* 15831 * Now return back to the original calling nfs4frlock() 15832 * and let us naturally drop our seqid syncs. 15833 */ 15834 } 15835 15836 /* 15837 * Create a lost state record for the given lock reinstantiation request 15838 * and push it onto the lost state queue. 15839 */ 15840 static void 15841 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15842 nfs4_lock_owner_t *lop) 15843 { 15844 nfs4_lost_rqst_t req; 15845 nfs_lock_type4 locktype; 15846 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15847 15848 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15849 15850 locktype = flk_to_locktype(cmd, flk->l_type); 15851 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15852 NULL, NULL, lop, flk, &req, cr, vp); 15853 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15854 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15855 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15856 NULL); 15857 } 15858