1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/thread.h> 36 #include <sys/sysmacros.h> 37 #include <sys/signal.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/vnode.h> 42 #include <sys/mman.h> 43 #include <sys/kmem.h> 44 #include <sys/proc.h> 45 #include <sys/pathname.h> 46 #include <sys/cmn_err.h> 47 #include <sys/systm.h> 48 #include <sys/elf.h> 49 #include <sys/vmsystm.h> 50 #include <sys/debug.h> 51 #include <sys/auxv.h> 52 #include <sys/exec.h> 53 #include <sys/prsystm.h> 54 #include <vm/as.h> 55 #include <vm/rm.h> 56 #include <vm/seg.h> 57 #include <vm/seg_vn.h> 58 #include <sys/modctl.h> 59 #include <sys/systeminfo.h> 60 #include <sys/vmparam.h> 61 #include <sys/machelf.h> 62 #include <sys/shm_impl.h> 63 #include <sys/archsystm.h> 64 #include <sys/fasttrap.h> 65 #include <sys/brand.h> 66 #include "elf_impl.h" 67 68 #include <sys/sdt.h> 69 70 extern int at_flags; 71 72 #define ORIGIN_STR "ORIGIN" 73 #define ORIGIN_STR_SIZE 6 74 75 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 76 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 77 ssize_t *); 78 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 79 ssize_t *, caddr_t *, ssize_t *); 80 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 81 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 82 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 83 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 84 85 typedef enum { 86 STR_CTF, 87 STR_SYMTAB, 88 STR_DYNSYM, 89 STR_STRTAB, 90 STR_DYNSTR, 91 STR_SHSTRTAB, 92 STR_NUM 93 } shstrtype_t; 94 95 static const char *shstrtab_data[] = { 96 ".SUNW_ctf", 97 ".symtab", 98 ".dynsym", 99 ".strtab", 100 ".dynstr", 101 ".shstrtab" 102 }; 103 104 typedef struct shstrtab { 105 int sst_ndx[STR_NUM]; 106 int sst_cur; 107 } shstrtab_t; 108 109 static void 110 shstrtab_init(shstrtab_t *s) 111 { 112 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 113 s->sst_cur = 1; 114 } 115 116 static int 117 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 118 { 119 int ret; 120 121 if ((ret = s->sst_ndx[type]) != 0) 122 return (ret); 123 124 ret = s->sst_ndx[type] = s->sst_cur; 125 s->sst_cur += strlen(shstrtab_data[type]) + 1; 126 127 return (ret); 128 } 129 130 static size_t 131 shstrtab_size(const shstrtab_t *s) 132 { 133 return (s->sst_cur); 134 } 135 136 static void 137 shstrtab_dump(const shstrtab_t *s, char *buf) 138 { 139 int i, ndx; 140 141 *buf = '\0'; 142 for (i = 0; i < STR_NUM; i++) { 143 if ((ndx = s->sst_ndx[i]) != 0) 144 (void) strcpy(buf + ndx, shstrtab_data[i]); 145 } 146 } 147 148 static int 149 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 150 { 151 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 152 153 /* 154 * See the comment in fasttrap.h for information on how to safely 155 * update this program header. 156 */ 157 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 158 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 159 return (-1); 160 161 args->thrptr = phdrp->p_vaddr + base; 162 163 return (0); 164 } 165 166 /* 167 * Map in the executable pointed to by vp. Returns 0 on success. 168 */ 169 int 170 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 171 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 172 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 173 { 174 size_t len; 175 struct vattr vat; 176 caddr_t phdrbase = NULL; 177 ssize_t phdrsize; 178 int nshdrs, shstrndx, nphdrs; 179 int error = 0; 180 Phdr *uphdr = NULL; 181 Phdr *junk = NULL; 182 Phdr *dynphdr = NULL; 183 Phdr *dtrphdr = NULL; 184 uintptr_t lddata; 185 long execsz; 186 intptr_t minaddr; 187 188 if (lddatap != NULL) 189 *lddatap = NULL; 190 191 if (error = execpermissions(vp, &vat, args)) { 192 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 193 return (error); 194 } 195 196 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 197 &nphdrs)) != 0 || 198 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 199 &phdrsize)) != 0) { 200 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 201 return (error); 202 } 203 204 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 205 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 206 kmem_free(phdrbase, phdrsize); 207 return (ENOEXEC); 208 } 209 if (lddatap != NULL) 210 *lddatap = lddata; 211 212 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 213 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 214 len, &execsz, brksize)) { 215 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 216 kmem_free(phdrbase, phdrsize); 217 return (error); 218 } 219 220 /* 221 * Inform our caller if the executable needs an interpreter. 222 */ 223 *interp = (dynphdr == NULL) ? 0 : 1; 224 225 /* 226 * If this is a statically linked executable, voffset should indicate 227 * the address of the executable itself (it normally holds the address 228 * of the interpreter). 229 */ 230 if (ehdr->e_type == ET_EXEC && *interp == 0) 231 *voffset = minaddr; 232 233 if (uphdr != NULL) { 234 *uphdr_vaddr = uphdr->p_vaddr; 235 } else { 236 *uphdr_vaddr = (Addr)-1; 237 } 238 239 kmem_free(phdrbase, phdrsize); 240 return (error); 241 } 242 243 /*ARGSUSED*/ 244 int 245 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 246 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 247 int brand_action) 248 { 249 caddr_t phdrbase = NULL; 250 caddr_t bssbase = 0; 251 caddr_t brkbase = 0; 252 size_t brksize = 0; 253 ssize_t dlnsize; 254 aux_entry_t *aux; 255 int error; 256 ssize_t resid; 257 int fd = -1; 258 intptr_t voffset; 259 Phdr *dyphdr = NULL; 260 Phdr *stphdr = NULL; 261 Phdr *uphdr = NULL; 262 Phdr *junk = NULL; 263 size_t len; 264 ssize_t phdrsize; 265 int postfixsize = 0; 266 int i, hsize; 267 Phdr *phdrp; 268 Phdr *dataphdrp = NULL; 269 Phdr *dtrphdr; 270 int hasu = 0; 271 int hasauxv = 0; 272 int hasdy = 0; 273 int branded = 0; 274 275 struct proc *p = ttoproc(curthread); 276 struct user *up = PTOU(p); 277 struct bigwad { 278 Ehdr ehdr; 279 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 280 char dl_name[MAXPATHLEN]; 281 char pathbuf[MAXPATHLEN]; 282 struct vattr vattr; 283 struct execenv exenv; 284 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 285 Ehdr *ehdrp; 286 int nshdrs, shstrndx, nphdrs; 287 char *dlnp; 288 char *pathbufp; 289 rlim64_t limit; 290 rlim64_t roundlimit; 291 292 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 293 294 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 295 ehdrp = &bigwad->ehdr; 296 dlnp = bigwad->dl_name; 297 pathbufp = bigwad->pathbuf; 298 299 /* 300 * Obtain ELF and program header information. 301 */ 302 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 303 &nphdrs)) != 0 || 304 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 305 &phdrsize)) != 0) 306 goto out; 307 308 /* 309 * Prevent executing an ELF file that has no entry point. 310 */ 311 if (ehdrp->e_entry == 0) { 312 uprintf("%s: Bad entry point\n", exec_file); 313 goto bad; 314 } 315 316 /* 317 * Put data model that we're exec-ing to into the args passed to 318 * exec_args(), so it will know what it is copying to on new stack. 319 * Now that we know whether we are exec-ing a 32-bit or 64-bit 320 * executable, we can set execsz with the appropriate NCARGS. 321 */ 322 #ifdef _LP64 323 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 324 args->to_model = DATAMODEL_ILP32; 325 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 326 } else { 327 args->to_model = DATAMODEL_LP64; 328 args->stk_prot &= ~PROT_EXEC; 329 #if defined(__i386) || defined(__amd64) 330 args->dat_prot &= ~PROT_EXEC; 331 #endif 332 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 333 } 334 #else /* _LP64 */ 335 args->to_model = DATAMODEL_ILP32; 336 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 337 #endif /* _LP64 */ 338 339 /* 340 * We delay invoking the brand callback until we've figured out 341 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 342 * We do this because now the brand library can just check 343 * args->to_model to see if the target is 32-bit or 64-bit without 344 * having do duplicate all the code above. 345 */ 346 if ((level < 2) && 347 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 348 kmem_free(bigwad, sizeof (struct bigwad)); 349 return (BROP(p)->b_elfexec(vp, uap, args, 350 idatap, level + 1, execsz, setid, exec_file, cred, 351 brand_action)); 352 } 353 354 /* 355 * Determine aux size now so that stack can be built 356 * in one shot (except actual copyout of aux image), 357 * determine any non-default stack protections, 358 * and still have this code be machine independent. 359 */ 360 hsize = ehdrp->e_phentsize; 361 phdrp = (Phdr *)phdrbase; 362 for (i = nphdrs; i > 0; i--) { 363 switch (phdrp->p_type) { 364 case PT_INTERP: 365 hasauxv = hasdy = 1; 366 break; 367 case PT_PHDR: 368 hasu = 1; 369 break; 370 case PT_SUNWSTACK: 371 args->stk_prot = PROT_USER; 372 if (phdrp->p_flags & PF_R) 373 args->stk_prot |= PROT_READ; 374 if (phdrp->p_flags & PF_W) 375 args->stk_prot |= PROT_WRITE; 376 if (phdrp->p_flags & PF_X) 377 args->stk_prot |= PROT_EXEC; 378 break; 379 case PT_LOAD: 380 dataphdrp = phdrp; 381 break; 382 } 383 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 384 } 385 386 if (ehdrp->e_type != ET_EXEC) { 387 dataphdrp = NULL; 388 hasauxv = 1; 389 } 390 391 /* Copy BSS permissions to args->dat_prot */ 392 if (dataphdrp != NULL) { 393 args->dat_prot = PROT_USER; 394 if (dataphdrp->p_flags & PF_R) 395 args->dat_prot |= PROT_READ; 396 if (dataphdrp->p_flags & PF_W) 397 args->dat_prot |= PROT_WRITE; 398 if (dataphdrp->p_flags & PF_X) 399 args->dat_prot |= PROT_EXEC; 400 } 401 402 /* 403 * If a auxvector will be required - reserve the space for 404 * it now. This may be increased by exec_args if there are 405 * ISA-specific types (included in __KERN_NAUXV_IMPL). 406 */ 407 if (hasauxv) { 408 /* 409 * If a AUX vector is being built - the base AUX 410 * entries are: 411 * 412 * AT_BASE 413 * AT_FLAGS 414 * AT_PAGESZ 415 * AT_SUN_LDSECURE 416 * AT_SUN_HWCAP 417 * AT_SUN_PLATFORM 418 * AT_SUN_EXECNAME 419 * AT_NULL 420 * 421 * total == 8 422 */ 423 if (hasdy && hasu) { 424 /* 425 * Has PT_INTERP & PT_PHDR - the auxvectors that 426 * will be built are: 427 * 428 * AT_PHDR 429 * AT_PHENT 430 * AT_PHNUM 431 * AT_ENTRY 432 * AT_LDDATA 433 * 434 * total = 5 435 */ 436 args->auxsize = (8 + 5) * sizeof (aux_entry_t); 437 } else if (hasdy) { 438 /* 439 * Has PT_INTERP but no PT_PHDR 440 * 441 * AT_EXECFD 442 * AT_LDDATA 443 * 444 * total = 2 445 */ 446 args->auxsize = (8 + 2) * sizeof (aux_entry_t); 447 } else { 448 args->auxsize = 8 * sizeof (aux_entry_t); 449 } 450 } else 451 args->auxsize = 0; 452 453 /* 454 * If this binary is using an emulator, we need to add an 455 * AT_SUN_EMULATOR aux entry. 456 */ 457 if (args->emulator != NULL) 458 args->auxsize += sizeof (aux_entry_t); 459 460 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 461 branded = 1; 462 /* 463 * We will be adding 4 entries to the aux vectors. One for 464 * the the brandname and 3 for the brand specific aux vectors. 465 */ 466 args->auxsize += 4 * sizeof (aux_entry_t); 467 } 468 469 aux = bigwad->elfargs; 470 /* 471 * Move args to the user's stack. 472 */ 473 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 474 if (error == -1) { 475 error = ENOEXEC; 476 goto bad; 477 } 478 goto out; 479 } 480 /* we're single threaded after this point */ 481 482 /* 483 * If this is an ET_DYN executable (shared object), 484 * determine its memory size so that mapelfexec() can load it. 485 */ 486 if (ehdrp->e_type == ET_DYN) 487 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 488 else 489 len = 0; 490 491 dtrphdr = NULL; 492 493 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr, 494 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 495 len, execsz, &brksize)) != 0) 496 goto bad; 497 498 if (uphdr != NULL && dyphdr == NULL) 499 goto bad; 500 501 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 502 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 503 goto bad; 504 } 505 506 if (dyphdr != NULL) { 507 size_t len; 508 uintptr_t lddata; 509 char *p; 510 struct vnode *nvp; 511 512 dlnsize = dyphdr->p_filesz; 513 514 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 515 goto bad; 516 517 /* 518 * Read in "interpreter" pathname. 519 */ 520 if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz, 521 (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 522 CRED(), &resid)) != 0) { 523 uprintf("%s: Cannot obtain interpreter pathname\n", 524 exec_file); 525 goto bad; 526 } 527 528 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 529 goto bad; 530 531 /* 532 * Search for '$ORIGIN' token in interpreter path. 533 * If found, expand it. 534 */ 535 for (p = dlnp; p = strchr(p, '$'); ) { 536 uint_t len, curlen; 537 char *_ptr; 538 539 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 540 continue; 541 542 curlen = 0; 543 len = p - dlnp - 1; 544 if (len) { 545 bcopy(dlnp, pathbufp, len); 546 curlen += len; 547 } 548 if (_ptr = strrchr(args->pathname, '/')) { 549 len = _ptr - args->pathname; 550 if ((curlen + len) > MAXPATHLEN) 551 break; 552 553 bcopy(args->pathname, &pathbufp[curlen], len); 554 curlen += len; 555 } else { 556 /* 557 * executable is a basename found in the 558 * current directory. So - just substitue 559 * '.' for ORIGIN. 560 */ 561 pathbufp[curlen] = '.'; 562 curlen++; 563 } 564 p += ORIGIN_STR_SIZE; 565 len = strlen(p); 566 567 if ((curlen + len) > MAXPATHLEN) 568 break; 569 bcopy(p, &pathbufp[curlen], len); 570 curlen += len; 571 pathbufp[curlen++] = '\0'; 572 bcopy(pathbufp, dlnp, curlen); 573 } 574 575 /* 576 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 577 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 578 * Just in case /usr is not mounted, change it now. 579 */ 580 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 581 dlnp += 4; 582 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 583 if (error && dlnp != bigwad->dl_name) { 584 /* new kernel, old user-level */ 585 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 586 NULLVPP, &nvp); 587 } 588 if (error) { 589 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 590 goto bad; 591 } 592 593 /* 594 * Setup the "aux" vector. 595 */ 596 if (uphdr) { 597 if (ehdrp->e_type == ET_DYN) { 598 /* don't use the first page */ 599 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 600 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 601 } else { 602 bigwad->exenv.ex_bssbase = bssbase; 603 bigwad->exenv.ex_brkbase = brkbase; 604 } 605 bigwad->exenv.ex_brksize = brksize; 606 bigwad->exenv.ex_magic = elfmagic; 607 bigwad->exenv.ex_vp = vp; 608 setexecenv(&bigwad->exenv); 609 610 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 611 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 612 ADDAUX(aux, AT_PHNUM, nphdrs) 613 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 614 } else { 615 if ((error = execopen(&vp, &fd)) != 0) { 616 VN_RELE(nvp); 617 goto bad; 618 } 619 620 ADDAUX(aux, AT_EXECFD, fd) 621 } 622 623 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 624 VN_RELE(nvp); 625 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 626 goto bad; 627 } 628 629 /* 630 * Now obtain the ELF header along with the entire program 631 * header contained in "nvp". 632 */ 633 kmem_free(phdrbase, phdrsize); 634 phdrbase = NULL; 635 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 636 &shstrndx, &nphdrs)) != 0 || 637 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 638 &phdrsize)) != 0) { 639 VN_RELE(nvp); 640 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 641 goto bad; 642 } 643 644 /* 645 * Determine memory size of the "interpreter's" loadable 646 * sections. This size is then used to obtain the virtual 647 * address of a hole, in the user's address space, large 648 * enough to map the "interpreter". 649 */ 650 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 651 VN_RELE(nvp); 652 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 653 goto bad; 654 } 655 656 dtrphdr = NULL; 657 658 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 659 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 660 execsz, NULL); 661 if (error || junk != NULL) { 662 VN_RELE(nvp); 663 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 664 goto bad; 665 } 666 667 /* 668 * We use the DTrace program header to initialize the 669 * architecture-specific user per-LWP location. The dtrace 670 * fasttrap provider requires ready access to per-LWP scratch 671 * space. We assume that there is only one such program header 672 * in the interpreter. 673 */ 674 if (dtrphdr != NULL && 675 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 676 VN_RELE(nvp); 677 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 678 goto bad; 679 } 680 681 VN_RELE(nvp); 682 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 683 } 684 685 if (hasauxv) { 686 int auxf = AF_SUN_HWCAPVERIFY; 687 /* 688 * Note: AT_SUN_PLATFORM was filled in via exec_args() 689 */ 690 ADDAUX(aux, AT_BASE, voffset) 691 ADDAUX(aux, AT_FLAGS, at_flags) 692 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 693 /* 694 * Linker flags. (security) 695 * p_flag not yet set at this time. 696 * We rely on gexec() to provide us with the information. 697 * If the application is set-uid but this is not reflected 698 * in a mismatch between real/effective uids/gids, then 699 * don't treat this as a set-uid exec. So we care about 700 * the EXECSETID_UGIDS flag but not the ...SETID flag. 701 */ 702 setid &= ~EXECSETID_SETID; 703 ADDAUX(aux, AT_SUN_AUXFLAGS, 704 setid ? AF_SUN_SETUGID | auxf : auxf); 705 /* 706 * Hardware capability flag word (performance hints) 707 * Used for choosing faster library routines. 708 * (Potentially different between 32-bit and 64-bit ABIs) 709 */ 710 #if defined(_LP64) 711 if (args->to_model == DATAMODEL_NATIVE) 712 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 713 else 714 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 715 #else 716 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 717 #endif 718 if (branded) { 719 /* 720 * Reserve space for the brand-private aux vectors, 721 * and record the user addr of that space. 722 */ 723 args->auxp_brand = 724 (char *)((char *)args->stackend + 725 ((char *)&aux->a_type - 726 (char *)bigwad->elfargs)); 727 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 728 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 729 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 730 } 731 732 ADDAUX(aux, AT_NULL, 0) 733 postfixsize = (char *)aux - (char *)bigwad->elfargs; 734 ASSERT(postfixsize == args->auxsize); 735 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 736 } 737 738 /* 739 * For the 64-bit kernel, the limit is big enough that rounding it up 740 * to a page can overflow the 64-bit limit, so we check for btopr() 741 * overflowing here by comparing it with the unrounded limit in pages. 742 * If it hasn't overflowed, compare the exec size with the rounded up 743 * limit in pages. Otherwise, just compare with the unrounded limit. 744 */ 745 limit = btop(p->p_vmem_ctl); 746 roundlimit = btopr(p->p_vmem_ctl); 747 if ((roundlimit > limit && *execsz > roundlimit) || 748 (roundlimit < limit && *execsz > limit)) { 749 mutex_enter(&p->p_lock); 750 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 751 RCA_SAFE); 752 mutex_exit(&p->p_lock); 753 error = ENOMEM; 754 goto bad; 755 } 756 757 bzero(up->u_auxv, sizeof (up->u_auxv)); 758 if (postfixsize) { 759 int num_auxv; 760 761 /* 762 * Copy the aux vector to the user stack. 763 */ 764 error = execpoststack(args, bigwad->elfargs, postfixsize); 765 if (error) 766 goto bad; 767 768 /* 769 * Copy auxv to the process's user structure for use by /proc. 770 * If this is a branded process, the brand's exec routine will 771 * copy it's private entries to the user structure later. It 772 * relies on the fact that the blank entries are at the end. 773 */ 774 num_auxv = postfixsize / sizeof (aux_entry_t); 775 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 776 aux = bigwad->elfargs; 777 for (i = 0; i < num_auxv; i++) { 778 up->u_auxv[i].a_type = aux[i].a_type; 779 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 780 } 781 } 782 783 /* 784 * Pass back the starting address so we can set the program counter. 785 */ 786 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 787 788 if (!uphdr) { 789 if (ehdrp->e_type == ET_DYN) { 790 /* 791 * If we are executing a shared library which doesn't 792 * have a interpreter (probably ld.so.1) then 793 * we don't set the brkbase now. Instead we 794 * delay it's setting until the first call 795 * via grow.c::brk(). This permits ld.so.1 to 796 * initialize brkbase to the tail of the executable it 797 * loads (which is where it needs to be). 798 */ 799 bigwad->exenv.ex_brkbase = (caddr_t)0; 800 bigwad->exenv.ex_bssbase = (caddr_t)0; 801 bigwad->exenv.ex_brksize = 0; 802 } else { 803 bigwad->exenv.ex_brkbase = brkbase; 804 bigwad->exenv.ex_bssbase = bssbase; 805 bigwad->exenv.ex_brksize = brksize; 806 } 807 bigwad->exenv.ex_magic = elfmagic; 808 bigwad->exenv.ex_vp = vp; 809 setexecenv(&bigwad->exenv); 810 } 811 812 ASSERT(error == 0); 813 goto out; 814 815 bad: 816 if (fd != -1) /* did we open the a.out yet */ 817 (void) execclose(fd); 818 819 psignal(p, SIGKILL); 820 821 if (error == 0) 822 error = ENOEXEC; 823 out: 824 if (phdrbase != NULL) 825 kmem_free(phdrbase, phdrsize); 826 kmem_free(bigwad, sizeof (struct bigwad)); 827 return (error); 828 } 829 830 /* 831 * Compute the memory size requirement for the ELF file. 832 */ 833 static size_t 834 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 835 { 836 size_t len; 837 Phdr *phdrp = (Phdr *)phdrbase; 838 int hsize = ehdrp->e_phentsize; 839 int first = 1; 840 int dfirst = 1; /* first data segment */ 841 uintptr_t loaddr = 0; 842 uintptr_t hiaddr = 0; 843 uintptr_t lo, hi; 844 int i; 845 846 for (i = nphdrs; i > 0; i--) { 847 if (phdrp->p_type == PT_LOAD) { 848 lo = phdrp->p_vaddr; 849 hi = lo + phdrp->p_memsz; 850 if (first) { 851 loaddr = lo; 852 hiaddr = hi; 853 first = 0; 854 } else { 855 if (loaddr > lo) 856 loaddr = lo; 857 if (hiaddr < hi) 858 hiaddr = hi; 859 } 860 861 /* 862 * save the address of the first data segment 863 * of a object - used for the AT_SUNW_LDDATA 864 * aux entry. 865 */ 866 if ((lddata != NULL) && dfirst && 867 (phdrp->p_flags & PF_W)) { 868 *lddata = lo; 869 dfirst = 0; 870 } 871 } 872 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 873 } 874 875 len = hiaddr - (loaddr & PAGEMASK); 876 len = roundup(len, PAGESIZE); 877 878 return (len); 879 } 880 881 /* 882 * Read in the ELF header and program header table. 883 * SUSV3 requires: 884 * ENOEXEC File format is not recognized 885 * EINVAL Format recognized but execution not supported 886 */ 887 static int 888 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 889 int *nphdrs) 890 { 891 int error; 892 ssize_t resid; 893 894 /* 895 * We got here by the first two bytes in ident, 896 * now read the entire ELF header. 897 */ 898 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 899 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 900 (rlim64_t)0, credp, &resid)) != 0) 901 return (error); 902 903 /* 904 * Since a separate version is compiled for handling 32-bit and 905 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 906 * doesn't need to be able to deal with 32-bit ELF files. 907 */ 908 if (resid != 0 || 909 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 910 ehdr->e_ident[EI_MAG3] != ELFMAG3) 911 return (ENOEXEC); 912 913 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 914 #if defined(_ILP32) || defined(_ELF32_COMPAT) 915 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 916 #else 917 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 918 #endif 919 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 920 ehdr->e_flags)) 921 return (EINVAL); 922 923 *nshdrs = ehdr->e_shnum; 924 *shstrndx = ehdr->e_shstrndx; 925 *nphdrs = ehdr->e_phnum; 926 927 /* 928 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 929 * to read in the section header at index zero to acces the true 930 * values for those fields. 931 */ 932 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 933 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 934 Shdr shdr; 935 936 if (ehdr->e_shoff == 0) 937 return (EINVAL); 938 939 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 940 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 941 (rlim64_t)0, credp, &resid)) != 0) 942 return (error); 943 944 if (*nshdrs == 0) 945 *nshdrs = shdr.sh_size; 946 if (*shstrndx == SHN_XINDEX) 947 *shstrndx = shdr.sh_link; 948 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 949 *nphdrs = shdr.sh_info; 950 } 951 952 return (0); 953 } 954 955 #ifdef _ELF32_COMPAT 956 extern size_t elf_nphdr_max; 957 #else 958 size_t elf_nphdr_max = 1000; 959 #endif 960 961 static int 962 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 963 caddr_t *phbasep, ssize_t *phsizep) 964 { 965 ssize_t resid, minsize; 966 int err; 967 968 /* 969 * Since we're going to be using e_phentsize to iterate down the 970 * array of program headers, it must be 8-byte aligned or else 971 * a we might cause a misaligned access. We use all members through 972 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 973 * e_phentsize must be at least large enough to include those 974 * members. 975 */ 976 #if !defined(_LP64) || defined(_ELF32_COMPAT) 977 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 978 #else 979 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 980 #endif 981 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 982 return (EINVAL); 983 984 *phsizep = nphdrs * ehdr->e_phentsize; 985 986 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 987 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 988 return (ENOMEM); 989 } else { 990 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 991 } 992 993 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 994 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 995 credp, &resid)) != 0) { 996 kmem_free(*phbasep, *phsizep); 997 *phbasep = NULL; 998 return (err); 999 } 1000 1001 return (0); 1002 } 1003 1004 #ifdef _ELF32_COMPAT 1005 extern size_t elf_nshdr_max; 1006 extern size_t elf_shstrtab_max; 1007 #else 1008 size_t elf_nshdr_max = 10000; 1009 size_t elf_shstrtab_max = 100 * 1024; 1010 #endif 1011 1012 1013 static int 1014 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1015 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1016 char **shstrbasep, ssize_t *shstrsizep) 1017 { 1018 ssize_t resid, minsize; 1019 int err; 1020 Shdr *shdr; 1021 1022 /* 1023 * Since we're going to be using e_shentsize to iterate down the 1024 * array of section headers, it must be 8-byte aligned or else 1025 * a we might cause a misaligned access. We use all members through 1026 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1027 * must be at least large enough to include that member. The index 1028 * of the string table section must also be valid. 1029 */ 1030 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1031 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1032 shstrndx >= nshdrs) 1033 return (EINVAL); 1034 1035 *shsizep = nshdrs * ehdr->e_shentsize; 1036 1037 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1038 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1039 return (ENOMEM); 1040 } else { 1041 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1042 } 1043 1044 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1045 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1046 credp, &resid)) != 0) { 1047 kmem_free(*shbasep, *shsizep); 1048 return (err); 1049 } 1050 1051 /* 1052 * Pull the section string table out of the vnode; fail if the size 1053 * is zero. 1054 */ 1055 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1056 if ((*shstrsizep = shdr->sh_size) == 0) { 1057 kmem_free(*shbasep, *shsizep); 1058 return (EINVAL); 1059 } 1060 1061 if (*shstrsizep > elf_shstrtab_max) { 1062 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1063 KM_NOSLEEP)) == NULL) { 1064 kmem_free(*shbasep, *shsizep); 1065 return (ENOMEM); 1066 } 1067 } else { 1068 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1069 } 1070 1071 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1072 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1073 credp, &resid)) != 0) { 1074 kmem_free(*shbasep, *shsizep); 1075 kmem_free(*shstrbasep, *shstrsizep); 1076 return (err); 1077 } 1078 1079 /* 1080 * Make sure the strtab is null-terminated to make sure we 1081 * don't run off the end of the table. 1082 */ 1083 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1084 1085 return (0); 1086 } 1087 1088 static int 1089 mapelfexec( 1090 vnode_t *vp, 1091 Ehdr *ehdr, 1092 int nphdrs, 1093 caddr_t phdrbase, 1094 Phdr **uphdr, 1095 Phdr **dyphdr, 1096 Phdr **stphdr, 1097 Phdr **dtphdr, 1098 Phdr *dataphdrp, 1099 caddr_t *bssbase, 1100 caddr_t *brkbase, 1101 intptr_t *voffset, 1102 intptr_t *minaddr, 1103 size_t len, 1104 long *execsz, 1105 size_t *brksize) 1106 { 1107 Phdr *phdr; 1108 int i, prot, error; 1109 caddr_t addr; 1110 size_t zfodsz; 1111 int ptload = 0; 1112 int page; 1113 off_t offset; 1114 int hsize = ehdr->e_phentsize; 1115 caddr_t mintmp = (caddr_t)-1; 1116 extern int use_brk_lpg; 1117 1118 if (ehdr->e_type == ET_DYN) { 1119 /* 1120 * Obtain the virtual address of a hole in the 1121 * address space to map the "interpreter". 1122 */ 1123 map_addr(&addr, len, (offset_t)0, 1, 0); 1124 if (addr == NULL) 1125 return (ENOMEM); 1126 *voffset = (intptr_t)addr; 1127 } else { 1128 *voffset = 0; 1129 } 1130 phdr = (Phdr *)phdrbase; 1131 for (i = nphdrs; i > 0; i--) { 1132 switch (phdr->p_type) { 1133 case PT_LOAD: 1134 if ((*dyphdr != NULL) && (*uphdr == NULL)) 1135 return (0); 1136 1137 ptload = 1; 1138 prot = PROT_USER; 1139 if (phdr->p_flags & PF_R) 1140 prot |= PROT_READ; 1141 if (phdr->p_flags & PF_W) 1142 prot |= PROT_WRITE; 1143 if (phdr->p_flags & PF_X) 1144 prot |= PROT_EXEC; 1145 1146 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1147 1148 /* 1149 * Keep track of the segment with the lowest starting 1150 * address. 1151 */ 1152 if (addr < mintmp) 1153 mintmp = addr; 1154 1155 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1156 1157 offset = phdr->p_offset; 1158 if (((uintptr_t)offset & PAGEOFFSET) == 1159 ((uintptr_t)addr & PAGEOFFSET) && 1160 (!(vp->v_flag & VNOMAP))) { 1161 page = 1; 1162 } else { 1163 page = 0; 1164 } 1165 1166 /* 1167 * Set the heap pagesize for OOB when the bss size 1168 * is known and use_brk_lpg is not 0. 1169 */ 1170 if (brksize != NULL && use_brk_lpg && 1171 zfodsz != 0 && phdr == dataphdrp && 1172 (prot & PROT_WRITE)) { 1173 size_t tlen = P2NPHASE((uintptr_t)addr + 1174 phdr->p_filesz, PAGESIZE); 1175 1176 if (zfodsz > tlen) { 1177 curproc->p_brkpageszc = 1178 page_szc(map_pgsz(MAPPGSZ_HEAP, 1179 curproc, addr + phdr->p_filesz + 1180 tlen, zfodsz - tlen, 0)); 1181 } 1182 } 1183 1184 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1185 (prot & PROT_WRITE)) { 1186 uint_t szc = curproc->p_brkpageszc; 1187 size_t pgsz = page_get_pagesize(szc); 1188 caddr_t ebss = addr + phdr->p_memsz; 1189 size_t extra_zfodsz; 1190 1191 ASSERT(pgsz > PAGESIZE); 1192 1193 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1194 1195 if (error = execmap(vp, addr, phdr->p_filesz, 1196 zfodsz + extra_zfodsz, phdr->p_offset, 1197 prot, page, szc)) 1198 goto bad; 1199 if (brksize != NULL) 1200 *brksize = extra_zfodsz; 1201 } else { 1202 if (error = execmap(vp, addr, phdr->p_filesz, 1203 zfodsz, phdr->p_offset, prot, page, 0)) 1204 goto bad; 1205 } 1206 1207 if (bssbase != NULL && addr >= *bssbase && 1208 phdr == dataphdrp) { 1209 *bssbase = addr + phdr->p_filesz; 1210 } 1211 if (brkbase != NULL && addr >= *brkbase) { 1212 *brkbase = addr + phdr->p_memsz; 1213 } 1214 1215 *execsz += btopr(phdr->p_memsz); 1216 break; 1217 1218 case PT_INTERP: 1219 if (ptload) 1220 goto bad; 1221 *dyphdr = phdr; 1222 break; 1223 1224 case PT_SHLIB: 1225 *stphdr = phdr; 1226 break; 1227 1228 case PT_PHDR: 1229 if (ptload) 1230 goto bad; 1231 *uphdr = phdr; 1232 break; 1233 1234 case PT_NULL: 1235 case PT_DYNAMIC: 1236 case PT_NOTE: 1237 break; 1238 1239 case PT_SUNWDTRACE: 1240 if (dtphdr != NULL) 1241 *dtphdr = phdr; 1242 break; 1243 1244 default: 1245 break; 1246 } 1247 phdr = (Phdr *)((caddr_t)phdr + hsize); 1248 } 1249 1250 if (minaddr != NULL) { 1251 ASSERT(mintmp != (caddr_t)-1); 1252 *minaddr = (intptr_t)mintmp; 1253 } 1254 1255 return (0); 1256 bad: 1257 if (error == 0) 1258 error = EINVAL; 1259 return (error); 1260 } 1261 1262 int 1263 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1264 rlim64_t rlimit, cred_t *credp) 1265 { 1266 Note note; 1267 int error; 1268 1269 bzero(¬e, sizeof (note)); 1270 bcopy("CORE", note.name, 4); 1271 note.nhdr.n_type = type; 1272 /* 1273 * The System V ABI states that n_namesz must be the length of the 1274 * string that follows the Nhdr structure including the terminating 1275 * null. The ABI also specifies that sufficient padding should be 1276 * included so that the description that follows the name string 1277 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1278 * respectively. However, since this change was not made correctly 1279 * at the time of the 64-bit port, both 32- and 64-bit binaries 1280 * descriptions are only guaranteed to begin on a 4-byte boundary. 1281 */ 1282 note.nhdr.n_namesz = 5; 1283 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1284 1285 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1286 sizeof (note), rlimit, credp)) 1287 return (error); 1288 1289 *offsetp += sizeof (note); 1290 1291 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1292 note.nhdr.n_descsz, rlimit, credp)) 1293 return (error); 1294 1295 *offsetp += note.nhdr.n_descsz; 1296 return (0); 1297 } 1298 1299 /* 1300 * Copy the section data from one vnode to the section of another vnode. 1301 */ 1302 static void 1303 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1304 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1305 { 1306 ssize_t resid; 1307 size_t len, n = src->sh_size; 1308 offset_t off = 0; 1309 1310 while (n != 0) { 1311 len = MIN(size, n); 1312 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1313 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1314 resid >= len || 1315 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1316 buf, len - resid, rlimit, credp) != 0) { 1317 dst->sh_size = 0; 1318 dst->sh_offset = 0; 1319 return; 1320 } 1321 1322 ASSERT(n >= len - resid); 1323 1324 n -= len - resid; 1325 off += len - resid; 1326 } 1327 1328 *doffset += src->sh_size; 1329 } 1330 1331 #ifdef _ELF32_COMPAT 1332 extern size_t elf_datasz_max; 1333 #else 1334 size_t elf_datasz_max = 1 * 1024 * 1024; 1335 #endif 1336 1337 /* 1338 * This function processes mappings that correspond to load objects to 1339 * examine their respective sections for elfcore(). It's called once with 1340 * v set to NULL to count the number of sections that we're going to need 1341 * and then again with v set to some allocated buffer that we fill in with 1342 * all the section data. 1343 */ 1344 static int 1345 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1346 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1347 { 1348 vnode_t *lastvp = NULL; 1349 struct seg *seg; 1350 int i, j; 1351 void *data = NULL; 1352 size_t datasz = 0; 1353 shstrtab_t shstrtab; 1354 struct as *as = p->p_as; 1355 int error = 0; 1356 1357 if (v != NULL) 1358 shstrtab_init(&shstrtab); 1359 1360 i = 1; 1361 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1362 uint_t prot; 1363 vnode_t *mvp; 1364 void *tmp = NULL; 1365 caddr_t saddr = seg->s_base; 1366 caddr_t naddr; 1367 caddr_t eaddr; 1368 size_t segsize; 1369 1370 Ehdr ehdr; 1371 int nshdrs, shstrndx, nphdrs; 1372 caddr_t shbase; 1373 ssize_t shsize; 1374 char *shstrbase; 1375 ssize_t shstrsize; 1376 1377 Shdr *shdr; 1378 const char *name; 1379 size_t sz; 1380 uintptr_t off; 1381 1382 int ctf_ndx = 0; 1383 int symtab_ndx = 0; 1384 1385 /* 1386 * Since we're just looking for text segments of load 1387 * objects, we only care about the protection bits; we don't 1388 * care about the actual size of the segment so we use the 1389 * reserved size. If the segment's size is zero, there's 1390 * something fishy going on so we ignore this segment. 1391 */ 1392 if (seg->s_ops != &segvn_ops || 1393 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1394 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1395 (segsize = pr_getsegsize(seg, 1)) == 0) 1396 continue; 1397 1398 eaddr = saddr + segsize; 1399 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1400 pr_getprot_done(&tmp); 1401 1402 /* 1403 * Skip this segment unless the protection bits look like 1404 * what we'd expect for a text segment. 1405 */ 1406 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1407 continue; 1408 1409 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1410 &nphdrs) != 0 || 1411 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1412 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1413 continue; 1414 1415 off = ehdr.e_shentsize; 1416 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1417 Shdr *symtab = NULL, *strtab; 1418 1419 shdr = (Shdr *)(shbase + off); 1420 1421 if (shdr->sh_name >= shstrsize) 1422 continue; 1423 1424 name = shstrbase + shdr->sh_name; 1425 1426 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1427 if ((content & CC_CONTENT_CTF) == 0 || 1428 ctf_ndx != 0) 1429 continue; 1430 1431 if (shdr->sh_link > 0 && 1432 shdr->sh_link < nshdrs) { 1433 symtab = (Shdr *)(shbase + 1434 shdr->sh_link * ehdr.e_shentsize); 1435 } 1436 1437 if (v != NULL && i < nv - 1) { 1438 if (shdr->sh_size > datasz && 1439 shdr->sh_size <= elf_datasz_max) { 1440 if (data != NULL) 1441 kmem_free(data, datasz); 1442 1443 datasz = shdr->sh_size; 1444 data = kmem_alloc(datasz, 1445 KM_SLEEP); 1446 } 1447 1448 v[i].sh_name = shstrtab_ndx(&shstrtab, 1449 STR_CTF); 1450 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1451 v[i].sh_type = SHT_PROGBITS; 1452 v[i].sh_addralign = 4; 1453 *doffsetp = roundup(*doffsetp, 1454 v[i].sh_addralign); 1455 v[i].sh_offset = *doffsetp; 1456 v[i].sh_size = shdr->sh_size; 1457 if (symtab == NULL) { 1458 v[i].sh_link = 0; 1459 } else if (symtab->sh_type == 1460 SHT_SYMTAB && 1461 symtab_ndx != 0) { 1462 v[i].sh_link = 1463 symtab_ndx; 1464 } else { 1465 v[i].sh_link = i + 1; 1466 } 1467 1468 copy_scn(shdr, mvp, &v[i], vp, 1469 doffsetp, data, datasz, credp, 1470 rlimit); 1471 } 1472 1473 ctf_ndx = i++; 1474 1475 /* 1476 * We've already dumped the symtab. 1477 */ 1478 if (symtab != NULL && 1479 symtab->sh_type == SHT_SYMTAB && 1480 symtab_ndx != 0) 1481 continue; 1482 1483 } else if (strcmp(name, 1484 shstrtab_data[STR_SYMTAB]) == 0) { 1485 if ((content & CC_CONTENT_SYMTAB) == 0 || 1486 symtab != 0) 1487 continue; 1488 1489 symtab = shdr; 1490 } 1491 1492 if (symtab != NULL) { 1493 if ((symtab->sh_type != SHT_DYNSYM && 1494 symtab->sh_type != SHT_SYMTAB) || 1495 symtab->sh_link == 0 || 1496 symtab->sh_link >= nshdrs) 1497 continue; 1498 1499 strtab = (Shdr *)(shbase + 1500 symtab->sh_link * ehdr.e_shentsize); 1501 1502 if (strtab->sh_type != SHT_STRTAB) 1503 continue; 1504 1505 if (v != NULL && i < nv - 2) { 1506 sz = MAX(symtab->sh_size, 1507 strtab->sh_size); 1508 if (sz > datasz && 1509 sz <= elf_datasz_max) { 1510 if (data != NULL) 1511 kmem_free(data, datasz); 1512 1513 datasz = sz; 1514 data = kmem_alloc(datasz, 1515 KM_SLEEP); 1516 } 1517 1518 if (symtab->sh_type == SHT_DYNSYM) { 1519 v[i].sh_name = shstrtab_ndx( 1520 &shstrtab, STR_DYNSYM); 1521 v[i + 1].sh_name = shstrtab_ndx( 1522 &shstrtab, STR_DYNSTR); 1523 } else { 1524 v[i].sh_name = shstrtab_ndx( 1525 &shstrtab, STR_SYMTAB); 1526 v[i + 1].sh_name = shstrtab_ndx( 1527 &shstrtab, STR_STRTAB); 1528 } 1529 1530 v[i].sh_type = symtab->sh_type; 1531 v[i].sh_addr = symtab->sh_addr; 1532 if (ehdr.e_type == ET_DYN || 1533 v[i].sh_addr == 0) 1534 v[i].sh_addr += 1535 (Addr)(uintptr_t)saddr; 1536 v[i].sh_addralign = 1537 symtab->sh_addralign; 1538 *doffsetp = roundup(*doffsetp, 1539 v[i].sh_addralign); 1540 v[i].sh_offset = *doffsetp; 1541 v[i].sh_size = symtab->sh_size; 1542 v[i].sh_link = i + 1; 1543 v[i].sh_entsize = symtab->sh_entsize; 1544 v[i].sh_info = symtab->sh_info; 1545 1546 copy_scn(symtab, mvp, &v[i], vp, 1547 doffsetp, data, datasz, credp, 1548 rlimit); 1549 1550 v[i + 1].sh_type = SHT_STRTAB; 1551 v[i + 1].sh_flags = SHF_STRINGS; 1552 v[i + 1].sh_addr = symtab->sh_addr; 1553 if (ehdr.e_type == ET_DYN || 1554 v[i + 1].sh_addr == 0) 1555 v[i + 1].sh_addr += 1556 (Addr)(uintptr_t)saddr; 1557 v[i + 1].sh_addralign = 1558 strtab->sh_addralign; 1559 *doffsetp = roundup(*doffsetp, 1560 v[i + 1].sh_addralign); 1561 v[i + 1].sh_offset = *doffsetp; 1562 v[i + 1].sh_size = strtab->sh_size; 1563 1564 copy_scn(strtab, mvp, &v[i + 1], vp, 1565 doffsetp, data, datasz, credp, 1566 rlimit); 1567 } 1568 1569 if (symtab->sh_type == SHT_SYMTAB) 1570 symtab_ndx = i; 1571 i += 2; 1572 } 1573 } 1574 1575 kmem_free(shstrbase, shstrsize); 1576 kmem_free(shbase, shsize); 1577 1578 lastvp = mvp; 1579 } 1580 1581 if (v == NULL) { 1582 if (i == 1) 1583 *nshdrsp = 0; 1584 else 1585 *nshdrsp = i + 1; 1586 goto done; 1587 } 1588 1589 if (i != nv - 1) { 1590 cmn_err(CE_WARN, "elfcore: core dump failed for " 1591 "process %d; address space is changing", p->p_pid); 1592 error = EIO; 1593 goto done; 1594 } 1595 1596 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1597 v[i].sh_size = shstrtab_size(&shstrtab); 1598 v[i].sh_addralign = 1; 1599 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1600 v[i].sh_offset = *doffsetp; 1601 v[i].sh_flags = SHF_STRINGS; 1602 v[i].sh_type = SHT_STRTAB; 1603 1604 if (v[i].sh_size > datasz) { 1605 if (data != NULL) 1606 kmem_free(data, datasz); 1607 1608 datasz = v[i].sh_size; 1609 data = kmem_alloc(datasz, 1610 KM_SLEEP); 1611 } 1612 1613 shstrtab_dump(&shstrtab, data); 1614 1615 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1616 data, v[i].sh_size, rlimit, credp)) != 0) 1617 goto done; 1618 1619 *doffsetp += v[i].sh_size; 1620 1621 done: 1622 if (data != NULL) 1623 kmem_free(data, datasz); 1624 1625 return (error); 1626 } 1627 1628 int 1629 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1630 core_content_t content) 1631 { 1632 offset_t poffset, soffset; 1633 Off doffset; 1634 int error, i, nphdrs, nshdrs; 1635 int overflow = 0; 1636 struct seg *seg; 1637 struct as *as = p->p_as; 1638 union { 1639 Ehdr ehdr; 1640 Phdr phdr[1]; 1641 Shdr shdr[1]; 1642 } *bigwad; 1643 size_t bigsize; 1644 size_t phdrsz, shdrsz; 1645 Ehdr *ehdr; 1646 Phdr *v; 1647 caddr_t brkbase; 1648 size_t brksize; 1649 caddr_t stkbase; 1650 size_t stksize; 1651 int ntries = 0; 1652 1653 top: 1654 /* 1655 * Make sure we have everything we need (registers, etc.). 1656 * All other lwps have already stopped and are in an orderly state. 1657 */ 1658 ASSERT(p == ttoproc(curthread)); 1659 prstop(0, 0); 1660 1661 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1662 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1663 1664 /* 1665 * Count the number of section headers we're going to need. 1666 */ 1667 nshdrs = 0; 1668 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1669 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1670 NULL, &nshdrs); 1671 } 1672 AS_LOCK_EXIT(as, &as->a_lock); 1673 1674 ASSERT(nshdrs == 0 || nshdrs > 1); 1675 1676 /* 1677 * The core file contents may required zero section headers, but if 1678 * we overflow the 16 bits allotted to the program header count in 1679 * the ELF header, we'll need that program header at index zero. 1680 */ 1681 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1682 nshdrs = 1; 1683 1684 phdrsz = nphdrs * sizeof (Phdr); 1685 shdrsz = nshdrs * sizeof (Shdr); 1686 1687 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1688 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1689 1690 ehdr = &bigwad->ehdr; 1691 bzero(ehdr, sizeof (*ehdr)); 1692 1693 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1694 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1695 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1696 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1697 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1698 ehdr->e_type = ET_CORE; 1699 1700 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1701 1702 #if defined(__sparc) 1703 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1704 ehdr->e_machine = EM_SPARC; 1705 #elif defined(__i386) || defined(__i386_COMPAT) 1706 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1707 ehdr->e_machine = EM_386; 1708 #else 1709 #error "no recognized machine type is defined" 1710 #endif 1711 1712 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1713 1714 #if defined(__sparc) 1715 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1716 ehdr->e_machine = EM_SPARCV9; 1717 #elif defined(__amd64) 1718 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1719 ehdr->e_machine = EM_AMD64; 1720 #else 1721 #error "no recognized 64-bit machine type is defined" 1722 #endif 1723 1724 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1725 1726 /* 1727 * If the count of program headers or section headers or the index 1728 * of the section string table can't fit in the mere 16 bits 1729 * shortsightedly allotted to them in the ELF header, we use the 1730 * extended formats and put the real values in the section header 1731 * as index 0. 1732 */ 1733 ehdr->e_version = EV_CURRENT; 1734 ehdr->e_ehsize = sizeof (Ehdr); 1735 1736 if (nphdrs >= PN_XNUM) 1737 ehdr->e_phnum = PN_XNUM; 1738 else 1739 ehdr->e_phnum = (unsigned short)nphdrs; 1740 1741 ehdr->e_phoff = sizeof (Ehdr); 1742 ehdr->e_phentsize = sizeof (Phdr); 1743 1744 if (nshdrs > 0) { 1745 if (nshdrs >= SHN_LORESERVE) 1746 ehdr->e_shnum = 0; 1747 else 1748 ehdr->e_shnum = (unsigned short)nshdrs; 1749 1750 if (nshdrs - 1 >= SHN_LORESERVE) 1751 ehdr->e_shstrndx = SHN_XINDEX; 1752 else 1753 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 1754 1755 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 1756 ehdr->e_shentsize = sizeof (Shdr); 1757 } 1758 1759 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 1760 sizeof (Ehdr), rlimit, credp)) 1761 goto done; 1762 1763 poffset = sizeof (Ehdr); 1764 soffset = sizeof (Ehdr) + phdrsz; 1765 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 1766 1767 v = &bigwad->phdr[0]; 1768 bzero(v, phdrsz); 1769 1770 setup_old_note_header(&v[0], p); 1771 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 1772 doffset += v[0].p_filesz; 1773 1774 setup_note_header(&v[1], p); 1775 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 1776 doffset += v[1].p_filesz; 1777 1778 mutex_enter(&p->p_lock); 1779 1780 brkbase = p->p_brkbase; 1781 brksize = p->p_brksize; 1782 1783 stkbase = p->p_usrstack - p->p_stksize; 1784 stksize = p->p_stksize; 1785 1786 mutex_exit(&p->p_lock); 1787 1788 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1789 i = 2; 1790 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1791 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1792 caddr_t saddr, naddr; 1793 void *tmp = NULL; 1794 extern struct seg_ops segspt_shmops; 1795 1796 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1797 uint_t prot; 1798 size_t size; 1799 int type; 1800 vnode_t *mvp; 1801 1802 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1803 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 1804 if ((size = (size_t)(naddr - saddr)) == 0) 1805 continue; 1806 if (i == nphdrs) { 1807 overflow++; 1808 continue; 1809 } 1810 v[i].p_type = PT_LOAD; 1811 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 1812 v[i].p_memsz = size; 1813 if (prot & PROT_READ) 1814 v[i].p_flags |= PF_R; 1815 if (prot & PROT_WRITE) 1816 v[i].p_flags |= PF_W; 1817 if (prot & PROT_EXEC) 1818 v[i].p_flags |= PF_X; 1819 1820 /* 1821 * Figure out which mappings to include in the core. 1822 */ 1823 type = SEGOP_GETTYPE(seg, saddr); 1824 1825 if (saddr == stkbase && size == stksize) { 1826 if (!(content & CC_CONTENT_STACK)) 1827 goto exclude; 1828 1829 } else if (saddr == brkbase && size == brksize) { 1830 if (!(content & CC_CONTENT_HEAP)) 1831 goto exclude; 1832 1833 } else if (seg->s_ops == &segspt_shmops) { 1834 if (type & MAP_NORESERVE) { 1835 if (!(content & CC_CONTENT_DISM)) 1836 goto exclude; 1837 } else { 1838 if (!(content & CC_CONTENT_ISM)) 1839 goto exclude; 1840 } 1841 1842 } else if (seg->s_ops != &segvn_ops) { 1843 goto exclude; 1844 1845 } else if (type & MAP_SHARED) { 1846 if (shmgetid(p, saddr) != SHMID_NONE) { 1847 if (!(content & CC_CONTENT_SHM)) 1848 goto exclude; 1849 1850 } else if (SEGOP_GETVP(seg, seg->s_base, 1851 &mvp) != 0 || mvp == NULL || 1852 mvp->v_type != VREG) { 1853 if (!(content & CC_CONTENT_SHANON)) 1854 goto exclude; 1855 1856 } else { 1857 if (!(content & CC_CONTENT_SHFILE)) 1858 goto exclude; 1859 } 1860 1861 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1862 mvp == NULL || mvp->v_type != VREG) { 1863 if (!(content & CC_CONTENT_ANON)) 1864 goto exclude; 1865 1866 } else if (prot == (PROT_READ | PROT_EXEC)) { 1867 if (!(content & CC_CONTENT_TEXT)) 1868 goto exclude; 1869 1870 } else if (prot == PROT_READ) { 1871 if (!(content & CC_CONTENT_RODATA)) 1872 goto exclude; 1873 1874 } else { 1875 if (!(content & CC_CONTENT_DATA)) 1876 goto exclude; 1877 } 1878 1879 doffset = roundup(doffset, sizeof (Word)); 1880 v[i].p_offset = doffset; 1881 v[i].p_filesz = size; 1882 doffset += size; 1883 exclude: 1884 i++; 1885 } 1886 ASSERT(tmp == NULL); 1887 } 1888 AS_LOCK_EXIT(as, &as->a_lock); 1889 1890 if (overflow || i != nphdrs) { 1891 if (ntries++ == 0) { 1892 kmem_free(bigwad, bigsize); 1893 goto top; 1894 } 1895 cmn_err(CE_WARN, "elfcore: core dump failed for " 1896 "process %d; address space is changing", p->p_pid); 1897 error = EIO; 1898 goto done; 1899 } 1900 1901 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 1902 v, phdrsz, rlimit, credp)) != 0) 1903 goto done; 1904 1905 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 1906 credp)) != 0) 1907 goto done; 1908 1909 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 1910 credp, content)) != 0) 1911 goto done; 1912 1913 for (i = 2; i < nphdrs; i++) { 1914 if (v[i].p_filesz == 0) 1915 continue; 1916 1917 /* 1918 * If dumping out this segment fails, rather than failing 1919 * the core dump entirely, we reset the size of the mapping 1920 * to zero to indicate that the data is absent from the core 1921 * file and or in the PF_SUNW_FAILURE flag to differentiate 1922 * this from mappings that were excluded due to the core file 1923 * content settings. 1924 */ 1925 if ((error = core_seg(p, vp, v[i].p_offset, 1926 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 1927 rlimit, credp)) != 0) { 1928 1929 /* 1930 * Since the space reserved for the segment is now 1931 * unused, we stash the errno in the first four 1932 * bytes. This undocumented interface will let us 1933 * understand the nature of the failure. 1934 */ 1935 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 1936 &error, sizeof (error), rlimit, credp); 1937 1938 v[i].p_filesz = 0; 1939 v[i].p_flags |= PF_SUNW_FAILURE; 1940 if ((error = core_write(vp, UIO_SYSSPACE, 1941 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 1942 rlimit, credp)) != 0) 1943 goto done; 1944 } 1945 } 1946 1947 if (nshdrs > 0) { 1948 bzero(&bigwad->shdr[0], shdrsz); 1949 1950 if (nshdrs >= SHN_LORESERVE) 1951 bigwad->shdr[0].sh_size = nshdrs; 1952 1953 if (nshdrs - 1 >= SHN_LORESERVE) 1954 bigwad->shdr[0].sh_link = nshdrs - 1; 1955 1956 if (nphdrs >= PN_XNUM) 1957 bigwad->shdr[0].sh_info = nphdrs; 1958 1959 if (nshdrs > 1) { 1960 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1961 if ((error = process_scns(content, p, credp, vp, 1962 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 1963 NULL)) != 0) { 1964 AS_LOCK_EXIT(as, &as->a_lock); 1965 goto done; 1966 } 1967 AS_LOCK_EXIT(as, &as->a_lock); 1968 } 1969 1970 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 1971 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 1972 goto done; 1973 } 1974 1975 done: 1976 kmem_free(bigwad, bigsize); 1977 return (error); 1978 } 1979 1980 #ifndef _ELF32_COMPAT 1981 1982 static struct execsw esw = { 1983 #ifdef _LP64 1984 elf64magicstr, 1985 #else /* _LP64 */ 1986 elf32magicstr, 1987 #endif /* _LP64 */ 1988 0, 1989 5, 1990 elfexec, 1991 elfcore 1992 }; 1993 1994 static struct modlexec modlexec = { 1995 &mod_execops, "exec module for elf %I%", &esw 1996 }; 1997 1998 #ifdef _LP64 1999 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2000 intpdata_t *idatap, int level, long *execsz, 2001 int setid, caddr_t exec_file, cred_t *cred, 2002 int brand_action); 2003 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2004 rlim64_t rlimit, int sig, core_content_t content); 2005 2006 static struct execsw esw32 = { 2007 elf32magicstr, 2008 0, 2009 5, 2010 elf32exec, 2011 elf32core 2012 }; 2013 2014 static struct modlexec modlexec32 = { 2015 &mod_execops, "32-bit exec module for elf", &esw32 2016 }; 2017 #endif /* _LP64 */ 2018 2019 static struct modlinkage modlinkage = { 2020 MODREV_1, 2021 (void *)&modlexec, 2022 #ifdef _LP64 2023 (void *)&modlexec32, 2024 #endif /* _LP64 */ 2025 NULL 2026 }; 2027 2028 int 2029 _init(void) 2030 { 2031 return (mod_install(&modlinkage)); 2032 } 2033 2034 int 2035 _fini(void) 2036 { 2037 return (mod_remove(&modlinkage)); 2038 } 2039 2040 int 2041 _info(struct modinfo *modinfop) 2042 { 2043 return (mod_info(&modlinkage, modinfop)); 2044 } 2045 2046 #endif /* !_ELF32_COMPAT */ 2047