1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <stdio.h> 29 #include <stdlib.h> 30 #include <errno.h> 31 #include <strings.h> 32 #include <unistd.h> 33 #include <uuid/uuid.h> 34 #include <libintl.h> 35 #include <sys/types.h> 36 #include <sys/dkio.h> 37 #include <sys/vtoc.h> 38 #include <sys/mhd.h> 39 #include <sys/param.h> 40 #include <sys/dktp/fdisk.h> 41 #include <sys/efi_partition.h> 42 #include <sys/byteorder.h> 43 #include <sys/ddi.h> 44 45 static struct uuid_to_ptag { 46 struct uuid uuid; 47 } conversion_array[] = { 48 { EFI_UNUSED }, 49 { EFI_BOOT }, 50 { EFI_ROOT }, 51 { EFI_SWAP }, 52 { EFI_USR }, 53 { EFI_BACKUP }, 54 { 0 }, /* STAND is never used */ 55 { EFI_VAR }, 56 { EFI_HOME }, 57 { EFI_ALTSCTR }, 58 { 0 }, /* CACHE (cachefs) is never used */ 59 { EFI_RESERVED }, 60 { EFI_SYSTEM }, 61 { EFI_LEGACY_MBR }, 62 { EFI_RESV3 }, 63 { EFI_RESV4 }, 64 { EFI_MSFT_RESV }, 65 { EFI_DELL_BASIC }, 66 { EFI_DELL_RAID }, 67 { EFI_DELL_SWAP }, 68 { EFI_DELL_LVM }, 69 { EFI_DELL_RESV }, 70 { EFI_AAPL_HFS }, 71 { EFI_AAPL_UFS } 72 }; 73 74 /* 75 * Default vtoc information for non-SVr4 partitions 76 */ 77 struct dk_map2 default_vtoc_map[NDKMAP] = { 78 { V_ROOT, 0 }, /* a - 0 */ 79 { V_SWAP, V_UNMNT }, /* b - 1 */ 80 { V_BACKUP, V_UNMNT }, /* c - 2 */ 81 { V_UNASSIGNED, 0 }, /* d - 3 */ 82 { V_UNASSIGNED, 0 }, /* e - 4 */ 83 { V_UNASSIGNED, 0 }, /* f - 5 */ 84 { V_USR, 0 }, /* g - 6 */ 85 { V_UNASSIGNED, 0 }, /* h - 7 */ 86 87 #if defined(_SUNOS_VTOC_16) 88 89 #if defined(i386) || defined(__amd64) 90 { V_BOOT, V_UNMNT }, /* i - 8 */ 91 { V_ALTSCTR, 0 }, /* j - 9 */ 92 93 #else 94 #error No VTOC format defined. 95 #endif /* defined(i386) */ 96 97 { V_UNASSIGNED, 0 }, /* k - 10 */ 98 { V_UNASSIGNED, 0 }, /* l - 11 */ 99 { V_UNASSIGNED, 0 }, /* m - 12 */ 100 { V_UNASSIGNED, 0 }, /* n - 13 */ 101 { V_UNASSIGNED, 0 }, /* o - 14 */ 102 { V_UNASSIGNED, 0 }, /* p - 15 */ 103 #endif /* defined(_SUNOS_VTOC_16) */ 104 }; 105 106 #ifdef DEBUG 107 int efi_debug = 1; 108 #else 109 int efi_debug = 0; 110 #endif 111 112 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 113 static int efi_read(int, struct dk_gpt *); 114 115 static int 116 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 117 { 118 struct dk_minfo disk_info; 119 120 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 121 return (errno); 122 *capacity = disk_info.dki_capacity; 123 *lbsize = disk_info.dki_lbsize; 124 return (0); 125 } 126 127 /* 128 * the number of blocks the EFI label takes up (round up to nearest 129 * block) 130 */ 131 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 132 ((l) - 1)) / (l))) 133 /* number of partitions -- limited by what we can malloc */ 134 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 135 sizeof (struct dk_part)) 136 137 int 138 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 139 { 140 diskaddr_t capacity; 141 uint_t lbsize; 142 uint_t nblocks; 143 size_t length; 144 struct dk_gpt *vptr; 145 struct uuid uuid; 146 147 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 148 if (efi_debug) 149 (void) fprintf(stderr, 150 "couldn't read disk information\n"); 151 return (-1); 152 } 153 154 nblocks = NBLOCKS(nparts, lbsize); 155 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 156 /* 16K plus one block for the GPT */ 157 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 158 } 159 160 if (nparts > MAX_PARTS) { 161 if (efi_debug) { 162 (void) fprintf(stderr, 163 "the maximum number of partitions supported is %lu\n", 164 MAX_PARTS); 165 } 166 return (-1); 167 } 168 169 length = sizeof (struct dk_gpt) + 170 sizeof (struct dk_part) * (nparts - 1); 171 172 if ((*vtoc = calloc(length, 1)) == NULL) 173 return (-1); 174 175 vptr = *vtoc; 176 177 vptr->efi_version = EFI_VERSION_CURRENT; 178 vptr->efi_lbasize = lbsize; 179 vptr->efi_nparts = nparts; 180 /* 181 * add one block here for the PMBR; on disks with a 512 byte 182 * block size and 128 or fewer partitions, efi_first_u_lba 183 * should work out to "34" 184 */ 185 vptr->efi_first_u_lba = nblocks + 1; 186 vptr->efi_last_lba = capacity - 1; 187 vptr->efi_altern_lba = capacity -1; 188 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 189 (void) uuid_generate((uchar_t *)&uuid); 190 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 191 return (0); 192 } 193 194 /* 195 * Read EFI - return partition number upon success. 196 */ 197 int 198 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 199 { 200 int rval; 201 uint32_t nparts; 202 int length; 203 204 /* figure out the number of entries that would fit into 16K */ 205 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 206 length = (int) sizeof (struct dk_gpt) + 207 (int) sizeof (struct dk_part) * (nparts - 1); 208 if ((*vtoc = calloc(length, 1)) == NULL) 209 return (VT_ERROR); 210 211 (*vtoc)->efi_nparts = nparts; 212 rval = efi_read(fd, *vtoc); 213 214 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 215 void *tmp; 216 length = (int) sizeof (struct dk_gpt) + 217 (int) sizeof (struct dk_part) * 218 ((*vtoc)->efi_nparts - 1); 219 nparts = (*vtoc)->efi_nparts; 220 if ((tmp = realloc(*vtoc, length)) == NULL) { 221 free (*vtoc); 222 *vtoc = NULL; 223 return (VT_ERROR); 224 } else { 225 *vtoc = tmp; 226 rval = efi_read(fd, *vtoc); 227 } 228 } 229 230 if (rval < 0) { 231 if (efi_debug) { 232 (void) fprintf(stderr, 233 "read of EFI table failed, rval=%d\n", rval); 234 } 235 free (*vtoc); 236 *vtoc = NULL; 237 } 238 239 return (rval); 240 } 241 242 static int 243 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 244 { 245 void *data = dk_ioc->dki_data; 246 int error; 247 248 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 249 error = ioctl(fd, cmd, (void *)dk_ioc); 250 dk_ioc->dki_data = data; 251 252 return (error); 253 } 254 255 static int 256 check_label(int fd, dk_efi_t *dk_ioc) 257 { 258 efi_gpt_t *efi; 259 uint_t crc; 260 261 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 262 switch (errno) { 263 case EIO: 264 return (VT_EIO); 265 default: 266 return (VT_ERROR); 267 } 268 } 269 efi = dk_ioc->dki_data; 270 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 271 if (efi_debug) 272 (void) fprintf(stderr, 273 "Bad EFI signature: 0x%llx != 0x%llx\n", 274 (long long)efi->efi_gpt_Signature, 275 (long long)LE_64(EFI_SIGNATURE)); 276 return (VT_EINVAL); 277 } 278 279 /* 280 * check CRC of the header; the size of the header should 281 * never be larger than one block 282 */ 283 crc = efi->efi_gpt_HeaderCRC32; 284 efi->efi_gpt_HeaderCRC32 = 0; 285 286 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 287 crc != LE_32(efi_crc32((unsigned char *)efi, 288 LE_32(efi->efi_gpt_HeaderSize)))) { 289 if (efi_debug) 290 (void) fprintf(stderr, 291 "Bad EFI CRC: 0x%x != 0x%x\n", 292 crc, 293 LE_32(efi_crc32((unsigned char *)efi, 294 sizeof (struct efi_gpt)))); 295 return (VT_EINVAL); 296 } 297 298 return (0); 299 } 300 301 static int 302 efi_read(int fd, struct dk_gpt *vtoc) 303 { 304 int i, j; 305 int label_len; 306 int rval = 0; 307 int md_flag = 0; 308 struct dk_minfo disk_info; 309 dk_efi_t dk_ioc; 310 efi_gpt_t *efi; 311 efi_gpe_t *efi_parts; 312 struct dk_cinfo dki_info; 313 uint32_t user_length; 314 boolean_t legacy_label = B_FALSE; 315 316 /* 317 * get the partition number for this file descriptor. 318 */ 319 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 320 if (efi_debug) { 321 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 322 } 323 switch (errno) { 324 case EIO: 325 return (VT_EIO); 326 case EINVAL: 327 return (VT_EINVAL); 328 default: 329 return (VT_ERROR); 330 } 331 } 332 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 333 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 334 md_flag++; 335 } 336 /* get the LBA size */ 337 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 338 if (efi_debug) { 339 (void) fprintf(stderr, 340 "assuming LBA 512 bytes %d\n", 341 errno); 342 } 343 disk_info.dki_lbsize = DEV_BSIZE; 344 } 345 if (disk_info.dki_lbsize == 0) { 346 if (efi_debug) { 347 (void) fprintf(stderr, 348 "efi_read: assuming LBA 512 bytes\n"); 349 } 350 disk_info.dki_lbsize = DEV_BSIZE; 351 } 352 /* 353 * Read the EFI GPT to figure out how many partitions we need 354 * to deal with. 355 */ 356 dk_ioc.dki_lba = 1; 357 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 358 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 359 } else { 360 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 361 disk_info.dki_lbsize; 362 if (label_len % disk_info.dki_lbsize) { 363 /* pad to physical sector size */ 364 label_len += disk_info.dki_lbsize; 365 label_len &= ~(disk_info.dki_lbsize - 1); 366 } 367 } 368 369 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 370 return (VT_ERROR); 371 372 dk_ioc.dki_length = disk_info.dki_lbsize; 373 user_length = vtoc->efi_nparts; 374 efi = dk_ioc.dki_data; 375 if (md_flag) { 376 dk_ioc.dki_length = label_len; 377 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 378 switch (errno) { 379 case EIO: 380 return (VT_EIO); 381 default: 382 return (VT_ERROR); 383 } 384 } 385 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 386 /* 387 * No valid label here; try the alternate. Note that here 388 * we just read GPT header and save it into dk_ioc.data, 389 * Later, we will read GUID partition entry array if we 390 * can get valid GPT header. 391 */ 392 393 /* 394 * This is a workaround for legacy systems. In the past, the 395 * last sector of SCSI disk was invisible on x86 platform. At 396 * that time, backup label was saved on the next to the last 397 * sector. It is possible for users to move a disk from previous 398 * solaris system to present system. Here, we attempt to search 399 * legacy backup EFI label first. 400 */ 401 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 402 dk_ioc.dki_length = disk_info.dki_lbsize; 403 rval = check_label(fd, &dk_ioc); 404 if (rval == VT_EINVAL) { 405 /* 406 * we didn't find legacy backup EFI label, try to 407 * search backup EFI label in the last block. 408 */ 409 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 410 dk_ioc.dki_length = disk_info.dki_lbsize; 411 rval = check_label(fd, &dk_ioc); 412 if (rval == 0) { 413 legacy_label = B_TRUE; 414 if (efi_debug) 415 (void) fprintf(stderr, 416 "efi_read: primary label corrupt; " 417 "using EFI backup label located on" 418 " the last block\n"); 419 } 420 } else { 421 if ((efi_debug) && (rval == 0)) 422 (void) fprintf(stderr, "efi_read: primary label" 423 " corrupt; using legacy EFI backup label " 424 " located on the next to last block\n"); 425 } 426 427 if (rval == 0) { 428 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 429 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 430 vtoc->efi_nparts = 431 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 432 433 /* 434 * Partition tables are between backup GPT header 435 * table and ParitionEntryLBA (the starting LBA of 436 * the GUID partition entries array). Now that we 437 * already got valid GPT header and saved it in 438 * dk_ioc.dki_data, we try to get GUID partition 439 * entry array here. 440 */ 441 dk_ioc.dki_data++; 442 if (legacy_label) 443 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 444 dk_ioc.dki_lba; 445 else 446 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 447 dk_ioc.dki_lba; 448 dk_ioc.dki_length *= disk_info.dki_lbsize; 449 if (dk_ioc.dki_length > 450 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 451 rval = VT_EINVAL; 452 } else { 453 /* 454 * read GUID partition entry array 455 */ 456 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 457 } 458 } 459 } else { 460 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 461 dk_ioc.dki_data++; 462 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 463 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 464 } 465 if (rval < 0) { 466 free(efi); 467 return (rval); 468 } 469 470 /* LINTED -- always longlong aligned */ 471 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 472 473 /* 474 * Assemble this into a "dk_gpt" struct for easier 475 * digestibility by applications. 476 */ 477 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 478 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 479 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 480 vtoc->efi_lbasize = disk_info.dki_lbsize; 481 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 482 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 483 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 484 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 485 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 486 487 /* 488 * If the array the user passed in is too small, set the length 489 * to what it needs to be and return 490 */ 491 if (user_length < vtoc->efi_nparts) { 492 return (VT_EINVAL); 493 } 494 495 for (i = 0; i < vtoc->efi_nparts; i++) { 496 497 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 498 efi_parts[i].efi_gpe_PartitionTypeGUID); 499 500 for (j = 0; 501 j < sizeof (conversion_array) 502 / sizeof (struct uuid_to_ptag); j++) { 503 504 if (bcmp(&vtoc->efi_parts[i].p_guid, 505 &conversion_array[j].uuid, 506 sizeof (struct uuid)) == 0) { 507 vtoc->efi_parts[i].p_tag = j; 508 break; 509 } 510 } 511 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 512 continue; 513 vtoc->efi_parts[i].p_flag = 514 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 515 vtoc->efi_parts[i].p_start = 516 LE_64(efi_parts[i].efi_gpe_StartingLBA); 517 vtoc->efi_parts[i].p_size = 518 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 519 vtoc->efi_parts[i].p_start + 1; 520 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 521 vtoc->efi_parts[i].p_name[j] = 522 (uchar_t)LE_16( 523 efi_parts[i].efi_gpe_PartitionName[j]); 524 } 525 526 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 527 efi_parts[i].efi_gpe_UniquePartitionGUID); 528 } 529 free(efi); 530 531 return (dki_info.dki_partition); 532 } 533 534 /* writes a "protective" MBR */ 535 static int 536 write_pmbr(int fd, struct dk_gpt *vtoc) 537 { 538 dk_efi_t dk_ioc; 539 struct mboot mb; 540 uchar_t *cp; 541 diskaddr_t size_in_lba; 542 543 mb.signature = LE_16(MBB_MAGIC); 544 bzero(&mb.parts, sizeof (mb.parts)); 545 cp = (uchar_t *)&mb.parts[0]; 546 /* bootable or not */ 547 *cp++ = 0; 548 /* beginning CHS; 0xffffff if not representable */ 549 *cp++ = 0xff; 550 *cp++ = 0xff; 551 *cp++ = 0xff; 552 /* OS type */ 553 *cp++ = EFI_PMBR; 554 /* ending CHS; 0xffffff if not representable */ 555 *cp++ = 0xff; 556 *cp++ = 0xff; 557 *cp++ = 0xff; 558 /* starting LBA: 1 (little endian format) by EFI definition */ 559 *cp++ = 0x01; 560 *cp++ = 0x00; 561 *cp++ = 0x00; 562 *cp++ = 0x00; 563 /* ending LBA: last block on the disk (little endian format) */ 564 size_in_lba = vtoc->efi_last_lba; 565 if (size_in_lba < 0xffffffff) { 566 *cp++ = (size_in_lba & 0x000000ff); 567 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 568 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 569 *cp++ = (size_in_lba & 0xff000000) >> 24; 570 } else { 571 *cp++ = 0xff; 572 *cp++ = 0xff; 573 *cp++ = 0xff; 574 *cp++ = 0xff; 575 } 576 /* LINTED -- always longlong aligned */ 577 dk_ioc.dki_data = (efi_gpt_t *)&mb; 578 dk_ioc.dki_lba = 0; 579 dk_ioc.dki_length = sizeof (mb); 580 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 581 switch (errno) { 582 case EIO: 583 return (VT_EIO); 584 case EINVAL: 585 return (VT_EINVAL); 586 default: 587 return (VT_ERROR); 588 } 589 } 590 return (0); 591 } 592 593 /* make sure the user specified something reasonable */ 594 static int 595 check_input(struct dk_gpt *vtoc) 596 { 597 int resv_part = -1; 598 int i, j; 599 diskaddr_t istart, jstart, isize, jsize, endsect; 600 601 /* 602 * Sanity-check the input (make sure no partitions overlap) 603 */ 604 for (i = 0; i < vtoc->efi_nparts; i++) { 605 /* It can't be unassigned and have an actual size */ 606 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 607 (vtoc->efi_parts[i].p_size != 0)) { 608 if (efi_debug) { 609 (void) fprintf(stderr, 610 "partition %d is \"unassigned\" but has a size of %llu", 611 i, 612 vtoc->efi_parts[i].p_size); 613 } 614 return (VT_EINVAL); 615 } 616 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 617 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 618 continue; 619 /* we have encountered an unknown uuid */ 620 vtoc->efi_parts[i].p_tag = 0xff; 621 } 622 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 623 if (resv_part != -1) { 624 if (efi_debug) { 625 (void) fprintf(stderr, 626 "found duplicate reserved partition at %d\n", 627 i); 628 } 629 return (VT_EINVAL); 630 } 631 resv_part = i; 632 } 633 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 634 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 635 if (efi_debug) { 636 (void) fprintf(stderr, 637 "Partition %d starts at %llu. ", 638 i, 639 vtoc->efi_parts[i].p_start); 640 (void) fprintf(stderr, 641 "It must be between %llu and %llu.\n", 642 vtoc->efi_first_u_lba, 643 vtoc->efi_last_u_lba); 644 } 645 return (VT_EINVAL); 646 } 647 if ((vtoc->efi_parts[i].p_start + 648 vtoc->efi_parts[i].p_size < 649 vtoc->efi_first_u_lba) || 650 (vtoc->efi_parts[i].p_start + 651 vtoc->efi_parts[i].p_size > 652 vtoc->efi_last_u_lba + 1)) { 653 if (efi_debug) { 654 (void) fprintf(stderr, 655 "Partition %d ends at %llu. ", 656 i, 657 vtoc->efi_parts[i].p_start + 658 vtoc->efi_parts[i].p_size); 659 (void) fprintf(stderr, 660 "It must be between %llu and %llu.\n", 661 vtoc->efi_first_u_lba, 662 vtoc->efi_last_u_lba); 663 } 664 return (VT_EINVAL); 665 } 666 667 for (j = 0; j < vtoc->efi_nparts; j++) { 668 isize = vtoc->efi_parts[i].p_size; 669 jsize = vtoc->efi_parts[j].p_size; 670 istart = vtoc->efi_parts[i].p_start; 671 jstart = vtoc->efi_parts[j].p_start; 672 if ((i != j) && (isize != 0) && (jsize != 0)) { 673 endsect = jstart + jsize -1; 674 if ((jstart <= istart) && 675 (istart <= endsect)) { 676 if (efi_debug) { 677 (void) fprintf(stderr, 678 "Partition %d overlaps partition %d.", 679 i, j); 680 } 681 return (VT_EINVAL); 682 } 683 } 684 } 685 } 686 /* just a warning for now */ 687 if ((resv_part == -1) && efi_debug) { 688 (void) fprintf(stderr, 689 "no reserved partition found\n"); 690 } 691 return (0); 692 } 693 694 /* 695 * add all the unallocated space to the current label 696 */ 697 int 698 efi_use_whole_disk(int fd) 699 { 700 struct dk_gpt *efi_label; 701 int rval; 702 int i; 703 uint_t phy_last_slice = 0; 704 diskaddr_t pl_start = 0; 705 diskaddr_t pl_size; 706 707 rval = efi_alloc_and_read(fd, &efi_label); 708 if (rval < 0) { 709 return (rval); 710 } 711 712 /* find the last physically non-zero partition */ 713 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 714 if (pl_start < efi_label->efi_parts[i].p_start) { 715 pl_start = efi_label->efi_parts[i].p_start; 716 phy_last_slice = i; 717 } 718 } 719 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 720 721 /* 722 * If alter_lba is 1, we are using the backup label. 723 * Since we can locate the backup label by disk capacity, 724 * there must be no unallocated space. 725 */ 726 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 727 >= efi_label->efi_last_lba)) { 728 if (efi_debug) { 729 (void) fprintf(stderr, 730 "efi_use_whole_disk: requested space not found\n"); 731 } 732 efi_free(efi_label); 733 return (VT_ENOSPC); 734 } 735 736 /* 737 * If there is space between the last physically non-zero partition 738 * and the reserved partition, just add the unallocated space to this 739 * area. Otherwise, the unallocated space is added to the last 740 * physically non-zero partition. 741 */ 742 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 743 EFI_MIN_RESV_SIZE) { 744 efi_label->efi_parts[phy_last_slice].p_size += 745 efi_label->efi_last_lba - efi_label->efi_altern_lba; 746 } 747 748 /* 749 * Move the reserved partition. There is currently no data in 750 * here except fabricated devids (which get generated via 751 * efi_write()). So there is no need to copy data. 752 */ 753 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 754 efi_label->efi_last_lba - efi_label->efi_altern_lba; 755 efi_label->efi_last_u_lba += efi_label->efi_last_lba 756 - efi_label->efi_altern_lba; 757 758 rval = efi_write(fd, efi_label); 759 if (rval < 0) { 760 if (efi_debug) { 761 (void) fprintf(stderr, 762 "efi_use_whole_disk:fail to write label, rval=%d\n", 763 rval); 764 } 765 efi_free(efi_label); 766 return (rval); 767 } 768 769 efi_free(efi_label); 770 return (0); 771 } 772 773 774 /* 775 * write EFI label and backup label 776 */ 777 int 778 efi_write(int fd, struct dk_gpt *vtoc) 779 { 780 dk_efi_t dk_ioc; 781 efi_gpt_t *efi; 782 efi_gpe_t *efi_parts; 783 int i, j; 784 struct dk_cinfo dki_info; 785 int md_flag = 0; 786 int nblocks; 787 diskaddr_t lba_backup_gpt_hdr; 788 789 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 790 if (efi_debug) 791 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 792 switch (errno) { 793 case EIO: 794 return (VT_EIO); 795 case EINVAL: 796 return (VT_EINVAL); 797 default: 798 return (VT_ERROR); 799 } 800 } 801 802 /* check if we are dealing wih a metadevice */ 803 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 804 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 805 md_flag = 1; 806 } 807 808 if (check_input(vtoc)) { 809 /* 810 * not valid; if it's a metadevice just pass it down 811 * because SVM will do its own checking 812 */ 813 if (md_flag == 0) { 814 return (VT_EINVAL); 815 } 816 } 817 818 dk_ioc.dki_lba = 1; 819 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 820 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 821 } else { 822 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 823 vtoc->efi_lbasize) * 824 vtoc->efi_lbasize; 825 } 826 827 /* 828 * the number of blocks occupied by GUID partition entry array 829 */ 830 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 831 832 /* 833 * Backup GPT header is located on the block after GUID 834 * partition entry array. Here, we calculate the address 835 * for backup GPT header. 836 */ 837 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 838 839 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 840 return (VT_ERROR); 841 842 efi = dk_ioc.dki_data; 843 844 /* stuff user's input into EFI struct */ 845 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 846 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 847 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 848 efi->efi_gpt_Reserved1 = 0; 849 efi->efi_gpt_MyLBA = LE_64(1ULL); 850 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 851 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 852 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 853 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 854 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 855 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 856 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 857 858 /* LINTED -- always longlong aligned */ 859 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + sizeof (efi_gpt_t)); 860 861 for (i = 0; i < vtoc->efi_nparts; i++) { 862 for (j = 0; 863 j < sizeof (conversion_array) / 864 sizeof (struct uuid_to_ptag); j++) { 865 866 if (vtoc->efi_parts[i].p_tag == j) { 867 UUID_LE_CONVERT( 868 efi_parts[i].efi_gpe_PartitionTypeGUID, 869 conversion_array[j].uuid); 870 break; 871 } 872 } 873 874 if (j == sizeof (conversion_array) / 875 sizeof (struct uuid_to_ptag)) { 876 /* 877 * If we didn't have a matching uuid match, bail here. 878 * Don't write a label with unknown uuid. 879 */ 880 if (efi_debug) { 881 (void) fprintf(stderr, 882 "Unknown uuid for p_tag %d\n", 883 vtoc->efi_parts[i].p_tag); 884 } 885 return (VT_EINVAL); 886 } 887 888 efi_parts[i].efi_gpe_StartingLBA = 889 LE_64(vtoc->efi_parts[i].p_start); 890 efi_parts[i].efi_gpe_EndingLBA = 891 LE_64(vtoc->efi_parts[i].p_start + 892 vtoc->efi_parts[i].p_size - 1); 893 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 894 LE_16(vtoc->efi_parts[i].p_flag); 895 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 896 efi_parts[i].efi_gpe_PartitionName[j] = 897 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 898 } 899 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 900 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 901 (void) uuid_generate((uchar_t *) 902 &vtoc->efi_parts[i].p_uguid); 903 } 904 bcopy(&vtoc->efi_parts[i].p_uguid, 905 &efi_parts[i].efi_gpe_UniquePartitionGUID, 906 sizeof (uuid_t)); 907 } 908 efi->efi_gpt_PartitionEntryArrayCRC32 = 909 LE_32(efi_crc32((unsigned char *)efi_parts, 910 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 911 efi->efi_gpt_HeaderCRC32 = 912 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 913 914 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 915 free(dk_ioc.dki_data); 916 switch (errno) { 917 case EIO: 918 return (VT_EIO); 919 case EINVAL: 920 return (VT_EINVAL); 921 default: 922 return (VT_ERROR); 923 } 924 } 925 /* if it's a metadevice we're done */ 926 if (md_flag) { 927 free(dk_ioc.dki_data); 928 return (0); 929 } 930 /* write backup partition array */ 931 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 932 dk_ioc.dki_length -= vtoc->efi_lbasize; 933 dk_ioc.dki_data++; 934 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 935 /* 936 * we wrote the primary label okay, so don't fail 937 */ 938 if (efi_debug) { 939 (void) fprintf(stderr, 940 "write of backup partitions to block %llu " 941 "failed, errno %d\n", 942 vtoc->efi_last_u_lba + 1, 943 errno); 944 } 945 } 946 /* 947 * now swap MyLBA and AlternateLBA fields and write backup 948 * partition table header 949 */ 950 dk_ioc.dki_lba = lba_backup_gpt_hdr; 951 dk_ioc.dki_length = vtoc->efi_lbasize; 952 dk_ioc.dki_data--; 953 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 954 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 955 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 956 efi->efi_gpt_HeaderCRC32 = 0; 957 efi->efi_gpt_HeaderCRC32 = 958 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 959 sizeof (struct efi_gpt))); 960 961 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 962 if (efi_debug) { 963 (void) fprintf(stderr, 964 "write of backup header to block %llu failed, " 965 "errno %d\n", 966 lba_backup_gpt_hdr, 967 errno); 968 } 969 } 970 /* write the PMBR */ 971 (void) write_pmbr(fd, vtoc); 972 free(dk_ioc.dki_data); 973 return (0); 974 } 975 976 void 977 efi_free(struct dk_gpt *ptr) 978 { 979 free(ptr); 980 } 981 982 /* 983 * Input: File descriptor 984 * Output: 1 if disk is >1TB OR has an EFI label, 0 otherwise. 985 */ 986 int 987 efi_type(int fd) 988 { 989 struct vtoc vtoc; 990 991 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) { 992 if (errno == ENOTSUP) { 993 return (1); 994 } 995 } 996 return (0); 997 } 998 999 void 1000 efi_err_check(struct dk_gpt *vtoc) 1001 { 1002 int resv_part = -1; 1003 int i, j; 1004 diskaddr_t istart, jstart, isize, jsize, endsect; 1005 int overlap = 0; 1006 1007 /* 1008 * make sure no partitions overlap 1009 */ 1010 for (i = 0; i < vtoc->efi_nparts; i++) { 1011 /* It can't be unassigned and have an actual size */ 1012 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1013 (vtoc->efi_parts[i].p_size != 0)) { 1014 (void) fprintf(stderr, 1015 "partition %d is \"unassigned\" but has a size " 1016 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1017 } 1018 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1019 continue; 1020 } 1021 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1022 if (resv_part != -1) { 1023 (void) fprintf(stderr, 1024 "found duplicate reserved partition at " 1025 "%d\n", i); 1026 } 1027 resv_part = i; 1028 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1029 (void) fprintf(stderr, 1030 "Warning: reserved partition size must " 1031 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1032 } 1033 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1034 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1035 (void) fprintf(stderr, 1036 "Partition %d starts at %llu\n", 1037 i, 1038 vtoc->efi_parts[i].p_start); 1039 (void) fprintf(stderr, 1040 "It must be between %llu and %llu.\n", 1041 vtoc->efi_first_u_lba, 1042 vtoc->efi_last_u_lba); 1043 } 1044 if ((vtoc->efi_parts[i].p_start + 1045 vtoc->efi_parts[i].p_size < 1046 vtoc->efi_first_u_lba) || 1047 (vtoc->efi_parts[i].p_start + 1048 vtoc->efi_parts[i].p_size > 1049 vtoc->efi_last_u_lba + 1)) { 1050 (void) fprintf(stderr, 1051 "Partition %d ends at %llu\n", 1052 i, 1053 vtoc->efi_parts[i].p_start + 1054 vtoc->efi_parts[i].p_size); 1055 (void) fprintf(stderr, 1056 "It must be between %llu and %llu.\n", 1057 vtoc->efi_first_u_lba, 1058 vtoc->efi_last_u_lba); 1059 } 1060 1061 for (j = 0; j < vtoc->efi_nparts; j++) { 1062 isize = vtoc->efi_parts[i].p_size; 1063 jsize = vtoc->efi_parts[j].p_size; 1064 istart = vtoc->efi_parts[i].p_start; 1065 jstart = vtoc->efi_parts[j].p_start; 1066 if ((i != j) && (isize != 0) && (jsize != 0)) { 1067 endsect = jstart + jsize -1; 1068 if ((jstart <= istart) && 1069 (istart <= endsect)) { 1070 if (!overlap) { 1071 (void) fprintf(stderr, 1072 "label error: EFI Labels do not " 1073 "support overlapping partitions\n"); 1074 } 1075 (void) fprintf(stderr, 1076 "Partition %d overlaps partition " 1077 "%d.\n", i, j); 1078 overlap = 1; 1079 } 1080 } 1081 } 1082 } 1083 /* make sure there is a reserved partition */ 1084 if (resv_part == -1) { 1085 (void) fprintf(stderr, 1086 "no reserved partition found\n"); 1087 } 1088 } 1089 1090 /* 1091 * We need to get information necessary to construct a *new* efi 1092 * label type 1093 */ 1094 int 1095 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1096 { 1097 1098 int i; 1099 1100 /* 1101 * Now build the default partition table 1102 */ 1103 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1104 if (efi_debug) { 1105 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1106 } 1107 return (-1); 1108 } 1109 1110 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1111 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1112 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1113 (*vtoc)->efi_parts[i].p_start = 0; 1114 (*vtoc)->efi_parts[i].p_size = 0; 1115 } 1116 /* 1117 * Make constants first 1118 * and variable partitions later 1119 */ 1120 1121 /* root partition - s0 128 MB */ 1122 (*vtoc)->efi_parts[0].p_start = 34; 1123 (*vtoc)->efi_parts[0].p_size = 262144; 1124 1125 /* partition - s1 128 MB */ 1126 (*vtoc)->efi_parts[1].p_start = 262178; 1127 (*vtoc)->efi_parts[1].p_size = 262144; 1128 1129 /* partition -s2 is NOT the Backup disk */ 1130 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1131 1132 /* partition -s6 /usr partition - HOG */ 1133 (*vtoc)->efi_parts[6].p_start = 524322; 1134 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1135 - (1024 * 16); 1136 1137 /* efi reserved partition - s9 16K */ 1138 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1139 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1140 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1141 return (0); 1142 } 1143