xref: /titanic_50/usr/src/uts/sun4u/io/sysiosbus.c (revision 7b07063d906859b2be1e88791f801b3c96e432f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/conf.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/sunndi.h>
35 #include <sys/ddi_impldefs.h>
36 #include <sys/ddi_implfuncs.h>
37 #include <sys/obpdefs.h>
38 #include <sys/cmn_err.h>
39 #include <sys/errno.h>
40 #include <sys/kmem.h>
41 #include <sys/debug.h>
42 #include <sys/sysmacros.h>
43 #include <sys/autoconf.h>
44 #include <sys/spl.h>
45 #include <sys/iommu.h>
46 #include <sys/sysiosbus.h>
47 #include <sys/sysioerr.h>
48 #include <sys/iocache.h>
49 #include <sys/async.h>
50 #include <sys/machsystm.h>
51 #include <sys/intreg.h>
52 #include <sys/ddi_subrdefs.h>
53 #ifdef _STARFIRE
54 #include <sys/starfire.h>
55 #endif /* _STARFIRE */
56 #include <sys/sdt.h>
57 
58 /* Useful debugging Stuff */
59 #include <sys/nexusdebug.h>
60 /* Bitfield debugging definitions for this file */
61 #define	SBUS_ATTACH_DEBUG	0x1
62 #define	SBUS_SBUSMEM_DEBUG	0x2
63 #define	SBUS_INTERRUPT_DEBUG	0x4
64 #define	SBUS_REGISTERS_DEBUG	0x8
65 
66 /*
67  * Interrupt registers table.
68  * This table is necessary due to inconsistencies in the sysio register
69  * layout.  If this gets fixed in the chip, we can get rid of this stupid
70  * table.
71  */
72 static struct sbus_slot_entry ino_1 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
73 					SBUS_SLOT0_L1_CLEAR, NULL};
74 static struct sbus_slot_entry ino_2 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
75 					SBUS_SLOT0_L2_CLEAR, NULL};
76 static struct sbus_slot_entry ino_3 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
77 					SBUS_SLOT0_L3_CLEAR, NULL};
78 static struct sbus_slot_entry ino_4 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
79 					SBUS_SLOT0_L4_CLEAR, NULL};
80 static struct sbus_slot_entry ino_5 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
81 					SBUS_SLOT0_L5_CLEAR, NULL};
82 static struct sbus_slot_entry ino_6 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
83 					SBUS_SLOT0_L6_CLEAR, NULL};
84 static struct sbus_slot_entry ino_7 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
85 					SBUS_SLOT0_L7_CLEAR, NULL};
86 static struct sbus_slot_entry ino_9 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
87 					SBUS_SLOT1_L1_CLEAR, NULL};
88 static struct sbus_slot_entry ino_10 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
89 					SBUS_SLOT1_L2_CLEAR, NULL};
90 static struct sbus_slot_entry ino_11 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
91 					SBUS_SLOT1_L3_CLEAR, NULL};
92 static struct sbus_slot_entry ino_12 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
93 					SBUS_SLOT1_L4_CLEAR, NULL};
94 static struct sbus_slot_entry ino_13 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
95 					SBUS_SLOT1_L5_CLEAR, NULL};
96 static struct sbus_slot_entry ino_14 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
97 					SBUS_SLOT1_L6_CLEAR, NULL};
98 static struct sbus_slot_entry ino_15 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
99 					SBUS_SLOT1_L7_CLEAR, NULL};
100 static struct sbus_slot_entry ino_17 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
101 					SBUS_SLOT2_L1_CLEAR, NULL};
102 static struct sbus_slot_entry ino_18 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
103 					SBUS_SLOT2_L2_CLEAR, NULL};
104 static struct sbus_slot_entry ino_19 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
105 					SBUS_SLOT2_L3_CLEAR, NULL};
106 static struct sbus_slot_entry ino_20 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
107 					SBUS_SLOT2_L4_CLEAR, NULL};
108 static struct sbus_slot_entry ino_21 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
109 					SBUS_SLOT2_L5_CLEAR, NULL};
110 static struct sbus_slot_entry ino_22 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
111 					SBUS_SLOT2_L6_CLEAR, NULL};
112 static struct sbus_slot_entry ino_23 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
113 					SBUS_SLOT2_L7_CLEAR, NULL};
114 static struct sbus_slot_entry ino_25 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
115 					SBUS_SLOT3_L1_CLEAR, NULL};
116 static struct sbus_slot_entry ino_26 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
117 					SBUS_SLOT3_L2_CLEAR, NULL};
118 static struct sbus_slot_entry ino_27 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
119 					SBUS_SLOT3_L3_CLEAR, NULL};
120 static struct sbus_slot_entry ino_28 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
121 					SBUS_SLOT3_L4_CLEAR, NULL};
122 static struct sbus_slot_entry ino_29 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
123 					SBUS_SLOT3_L5_CLEAR, NULL};
124 static struct sbus_slot_entry ino_30 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
125 					SBUS_SLOT3_L6_CLEAR, NULL};
126 static struct sbus_slot_entry ino_31 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
127 					SBUS_SLOT3_L7_CLEAR, NULL};
128 static struct sbus_slot_entry ino_32 = {SBUS_SLOT5_CONFIG, ESP_MAPREG,
129 					ESP_CLEAR, ESP_INTR_STATE_SHIFT};
130 static struct sbus_slot_entry ino_33 = {SBUS_SLOT5_CONFIG, ETHER_MAPREG,
131 					ETHER_CLEAR, ETHER_INTR_STATE_SHIFT};
132 static struct sbus_slot_entry ino_34 = {SBUS_SLOT5_CONFIG, PP_MAPREG,
133 					PP_CLEAR, PP_INTR_STATE_SHIFT};
134 static struct sbus_slot_entry ino_36 = {SBUS_SLOT4_CONFIG, AUDIO_MAPREG,
135 					AUDIO_CLEAR, AUDIO_INTR_STATE_SHIFT};
136 static struct sbus_slot_entry ino_40 = {SBUS_SLOT6_CONFIG, KBDMOUSE_MAPREG,
137 					KBDMOUSE_CLEAR,
138 					KBDMOUSE_INTR_STATE_SHIFT};
139 static struct sbus_slot_entry ino_41 = {SBUS_SLOT6_CONFIG, FLOPPY_MAPREG,
140 					FLOPPY_CLEAR, FLOPPY_INTR_STATE_SHIFT};
141 static struct sbus_slot_entry ino_42 = {SBUS_SLOT6_CONFIG, THERMAL_MAPREG,
142 					THERMAL_CLEAR,
143 					THERMAL_INTR_STATE_SHIFT};
144 static struct sbus_slot_entry ino_48 = {SBUS_SLOT6_CONFIG, TIMER0_MAPREG,
145 					TIMER0_CLEAR, TIMER0_INTR_STATE_SHIFT};
146 static struct sbus_slot_entry ino_49 = {SBUS_SLOT6_CONFIG, TIMER1_MAPREG,
147 					TIMER1_CLEAR, TIMER1_INTR_STATE_SHIFT};
148 static struct sbus_slot_entry ino_52 = {SBUS_SLOT6_CONFIG, UE_ECC_MAPREG,
149 					UE_ECC_CLEAR, UE_INTR_STATE_SHIFT};
150 static struct sbus_slot_entry ino_53 = {SBUS_SLOT6_CONFIG, CE_ECC_MAPREG,
151 					CE_ECC_CLEAR, CE_INTR_STATE_SHIFT};
152 static struct sbus_slot_entry ino_54 = {SBUS_SLOT6_CONFIG, SBUS_ERR_MAPREG,
153 					SBUS_ERR_CLEAR, SERR_INTR_STATE_SHIFT};
154 static struct sbus_slot_entry ino_55 = {SBUS_SLOT6_CONFIG, PM_WAKEUP_MAPREG,
155 					PM_WAKEUP_CLEAR, PM_INTR_STATE_SHIFT};
156 static struct sbus_slot_entry ino_ffb = {NULL, FFB_MAPPING_REG, NULL, NULL};
157 static struct sbus_slot_entry ino_exp = {NULL, EXP_MAPPING_REG, NULL, NULL};
158 
159 /* Construct the interrupt number array */
160 struct sbus_slot_entry *ino_table[] = {
161 	NULL, &ino_1, &ino_2, &ino_3, &ino_4, &ino_5, &ino_6, &ino_7,
162 	NULL, &ino_9, &ino_10, &ino_11, &ino_12, &ino_13, &ino_14, &ino_15,
163 	NULL, &ino_17, &ino_18, &ino_19, &ino_20, &ino_21, &ino_22, &ino_23,
164 	NULL, &ino_25, &ino_26, &ino_27, &ino_28, &ino_29, &ino_30, &ino_31,
165 	&ino_32, &ino_33, &ino_34, NULL, &ino_36, NULL, NULL, NULL,
166 	&ino_40, &ino_41, &ino_42, NULL, NULL, NULL, NULL, NULL, &ino_48,
167 	&ino_49, NULL, NULL, &ino_52, &ino_53, &ino_54, &ino_55, &ino_ffb,
168 	&ino_exp
169 };
170 
171 /*
172  * This table represents the Fusion interrupt priorities.  They range
173  * from 1 - 15, so we'll pattern the priorities after the 4M.  We map Fusion
174  * interrupt number to system priority.  The mondo number is used as an
175  * index into this table.
176  */
177 int interrupt_priorities[] = {
178 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 0 sbus level 1 - 7 */
179 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 1 sbus level 1 - 7 */
180 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 2 sbus level 1 - 7 */
181 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 3 sbus level 1 - 7 */
182 	4,				/* Onboard SCSI */
183 	6,				/* Onboard Ethernet */
184 	3,				/* Onboard Parallel port */
185 	-1,				/* Not in use */
186 	9,				/* Onboard Audio */
187 	-1, -1, -1,			/* Not in use */
188 	12,				/* Onboard keyboard/serial ports */
189 	11,				/* Onboard Floppy */
190 	9,				/* Thermal interrupt */
191 	-1, -1, -1,			/* Not is use */
192 	10,				/* Timer 0 (tick timer) */
193 	14,				/* Timer 1 (not used) */
194 	15,				/* Sysio UE ECC error */
195 	10,				/* Sysio CE ECC error */
196 	10,				/* Sysio Sbus error */
197 	10,				/* PM Wakeup */
198 };
199 
200 /* Interrupt counter flag.  To enable/disable spurious interrupt counter. */
201 static int intr_cntr_on;
202 
203 /*
204  * Function prototypes.
205  */
206 static int
207 sbus_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *);
208 
209 static int
210 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
211     ddi_intr_handle_impl_t *hdlp);
212 
213 static void
214 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
215     ddi_intr_handle_impl_t *hdlp);
216 
217 static int
218 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
219     ddi_intr_handle_impl_t *hdlp, void *result);
220 
221 static int
222 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, uint32_t *intr,
223     uint32_t *pil, int32_t ign);
224 
225 static int
226 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd);
227 
228 static int
229 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
230 
231 static int
232 sbus_do_detach(dev_info_t *devi);
233 
234 static	void
235 sbus_add_picN_kstats(dev_info_t *dip);
236 
237 static	void
238 sbus_add_kstats(struct sbus_soft_state *);
239 
240 static	int
241 sbus_counters_kstat_update(kstat_t *, int);
242 
243 extern int
244 sysio_err_uninit(struct sbus_soft_state *softsp);
245 
246 extern int
247 iommu_uninit(struct sbus_soft_state *softsp);
248 
249 extern int
250 stream_buf_uninit(struct sbus_soft_state *softsp);
251 
252 static int
253 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip);
254 
255 static void make_sbus_ppd(dev_info_t *child);
256 
257 static int
258 sbusmem_initchild(dev_info_t *dip, dev_info_t *child);
259 
260 static int
261 sbus_initchild(dev_info_t *dip, dev_info_t *child);
262 
263 static int
264 sbus_uninitchild(dev_info_t *dip);
265 
266 static int
267 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args);
268 
269 static int
270 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
271     void *result);
272 
273 static int
274 sbus_init(struct sbus_soft_state *softsp, caddr_t address);
275 
276 static int
277 sbus_resume_init(struct sbus_soft_state *softsp, int resume);
278 
279 static void
280 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
281     int flag);
282 
283 static void sbus_intrdist(void *);
284 static uint_t sbus_intr_reset(void *);
285 
286 static int
287 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
288     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state);
289 
290 #ifdef	_STARFIRE
291 void
292 pc_ittrans_init(int, caddr_t *);
293 
294 void
295 pc_ittrans_uninit(caddr_t);
296 
297 int
298 pc_translate_tgtid(caddr_t, int, volatile uint64_t *);
299 
300 void
301 pc_ittrans_cleanup(caddr_t, volatile uint64_t *);
302 #endif	/* _STARFIRE */
303 
304 /*
305  * Configuration data structures
306  */
307 static struct bus_ops sbus_bus_ops = {
308 	BUSO_REV,
309 	i_ddi_bus_map,
310 	0,
311 	0,
312 	0,
313 	i_ddi_map_fault,
314 	0,
315 	iommu_dma_allochdl,
316 	iommu_dma_freehdl,
317 	iommu_dma_bindhdl,
318 	iommu_dma_unbindhdl,
319 	iommu_dma_flush,
320 	iommu_dma_win,
321 	iommu_dma_mctl,
322 	sbus_ctlops,
323 	ddi_bus_prop_op,
324 	0,			/* (*bus_get_eventcookie)();	*/
325 	0,			/* (*bus_add_eventcall)();	*/
326 	0,			/* (*bus_remove_eventcall)();	*/
327 	0,			/* (*bus_post_event)();		*/
328 	0,			/* (*bus_intr_control)();	*/
329 	0,			/* (*bus_config)();		*/
330 	0,			/* (*bus_unconfig)();		*/
331 	0,			/* (*bus_fm_init)();		*/
332 	0,			/* (*bus_fm_fini)();		*/
333 	0,			/* (*bus_fm_access_enter)();	*/
334 	0,			/* (*bus_fm_access_exit)();	*/
335 	0,			/* (*bus_power)();		*/
336 	sbus_intr_ops		/* (*bus_intr_op)();		*/
337 };
338 
339 static struct cb_ops sbus_cb_ops = {
340 	nodev,			/* open */
341 	nodev,			/* close */
342 	nodev,			/* strategy */
343 	nodev,			/* print */
344 	nodev,			/* dump */
345 	nodev,			/* read */
346 	nodev,			/* write */
347 	nodev,			/* ioctl */
348 	nodev,			/* devmap */
349 	nodev,			/* mmap */
350 	nodev,			/* segmap */
351 	nochpoll,		/* poll */
352 	ddi_prop_op,		/* prop_op */
353 	NULL,
354 	D_NEW | D_MP | D_HOTPLUG,
355 	CB_REV,				/* rev */
356 	nodev,				/* int (*cb_aread)() */
357 	nodev				/* int (*cb_awrite)() */
358 };
359 
360 static struct dev_ops sbus_ops = {
361 	DEVO_REV,		/* devo_rev, */
362 	0,			/* refcnt  */
363 	ddi_no_info,		/* info */
364 	nulldev,		/* identify */
365 	nulldev,		/* probe */
366 	sbus_attach,		/* attach */
367 	sbus_detach,		/* detach */
368 	nodev,			/* reset */
369 	&sbus_cb_ops,		/* driver operations */
370 	&sbus_bus_ops,		/* bus operations */
371 	nulldev,		/* power */
372 	ddi_quiesce_not_supported,	/* devo_quiesce */
373 };
374 
375 /* global data */
376 void *sbusp;		/* sbus soft state hook */
377 void *sbus_cprp;	/* subs suspend/resume soft state hook */
378 static kstat_t *sbus_picN_ksp[SBUS_NUM_PICS]; /* performance picN kstats */
379 static int	sbus_attachcnt = 0;   /* number of instances attached */
380 static kmutex_t	sbus_attachcnt_mutex; /* sbus_attachcnt lock - attach/detach */
381 
382 #include <sys/modctl.h>
383 extern struct mod_ops mod_driverops;
384 
385 static struct modldrv modldrv = {
386 	&mod_driverops, 	/* Type of module.  This one is a driver */
387 	"SBus (sysio) nexus driver",	/* Name of module. */
388 	&sbus_ops,		/* driver ops */
389 };
390 
391 static struct modlinkage modlinkage = {
392 	MODREV_1, (void *)&modldrv, NULL
393 };
394 
395 /*
396  * These are the module initialization routines.
397  */
398 int
399 _init(void)
400 {
401 	int error;
402 
403 	if ((error = ddi_soft_state_init(&sbusp,
404 	    sizeof (struct sbus_soft_state), 1)) != 0)
405 		return (error);
406 
407 	/*
408 	 * Initialize cpr soft state structure
409 	 */
410 	if ((error = ddi_soft_state_init(&sbus_cprp,
411 	    sizeof (uint64_t) * MAX_INO_TABLE_SIZE, 0)) != 0)
412 		return (error);
413 
414 	/* Initialize global mutex */
415 	mutex_init(&sbus_attachcnt_mutex, NULL, MUTEX_DRIVER, NULL);
416 
417 	return (mod_install(&modlinkage));
418 }
419 
420 int
421 _fini(void)
422 {
423 	int error;
424 
425 	if ((error = mod_remove(&modlinkage)) != 0)
426 		return (error);
427 
428 	mutex_destroy(&sbus_attachcnt_mutex);
429 	ddi_soft_state_fini(&sbusp);
430 	ddi_soft_state_fini(&sbus_cprp);
431 	return (0);
432 }
433 
434 int
435 _info(struct modinfo *modinfop)
436 {
437 	return (mod_info(&modlinkage, modinfop));
438 }
439 
440 /*ARGSUSED*/
441 static int
442 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
443 {
444 	struct sbus_soft_state *softsp;
445 	int instance, error;
446 	uint64_t *cpr_softsp;
447 	ddi_device_acc_attr_t attr;
448 
449 
450 #ifdef	DEBUG
451 	debug_info = 1;
452 	debug_print_level = 0;
453 #endif
454 
455 	instance = ddi_get_instance(devi);
456 
457 	switch (cmd) {
458 	case DDI_ATTACH:
459 		break;
460 
461 	case DDI_RESUME:
462 		softsp = ddi_get_soft_state(sbusp, instance);
463 
464 		if ((error = iommu_resume_init(softsp)) != DDI_SUCCESS)
465 			return (error);
466 
467 		if ((error = sbus_resume_init(softsp, 1)) != DDI_SUCCESS)
468 			return (error);
469 
470 		if ((error = stream_buf_resume_init(softsp)) != DDI_SUCCESS)
471 			return (error);
472 
473 		/*
474 		 * Restore Interrupt Mapping registers
475 		 */
476 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
477 
478 		if (cpr_softsp != NULL) {
479 			sbus_cpr_handle_intr_map_reg(cpr_softsp,
480 			    softsp->intr_mapping_reg, 0);
481 			ddi_soft_state_free(sbus_cprp, instance);
482 		}
483 
484 		return (DDI_SUCCESS);
485 
486 	default:
487 		return (DDI_FAILURE);
488 	}
489 
490 	if (ddi_soft_state_zalloc(sbusp, instance) != DDI_SUCCESS)
491 		return (DDI_FAILURE);
492 
493 	softsp = ddi_get_soft_state(sbusp, instance);
494 
495 	/* Set the dip in the soft state */
496 	softsp->dip = devi;
497 
498 	if ((softsp->upa_id = (int)ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
499 	    DDI_PROP_DONTPASS, "upa-portid", -1)) == -1) {
500 		cmn_err(CE_WARN, "Unable to retrieve sbus upa-portid"
501 		    "property.");
502 		error = DDI_FAILURE;
503 		goto bad;
504 	}
505 
506 	/*
507 	 * The firmware maps in all 3 pages of the sysio chips device
508 	 * device registers and exports the mapping in the int-sized
509 	 * property "address".  Read in this address and pass it to
510 	 * the subsidiary *_init functions, so we don't create extra
511 	 * mappings to the same physical pages and we don't have to
512 	 * retrieve the more than once.
513 	 */
514 	/*
515 	 * Implement new policy to start ignoring the "address" property
516 	 * due to new requirements from DR.  The problem is that the contents
517 	 * of the "address" property contain vm mappings from OBP which needs
518 	 * to be recaptured into kernel vm.  Instead of relying on a blanket
519 	 * recapture during boot time, we map psycho registers each time during
520 	 * attach and unmap the during detach.  In some future point of time
521 	 * OBP will drop creating "address" property but this driver will
522 	 * will already not rely on this property any more.
523 	 */
524 
525 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
526 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
527 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
528 	if (ddi_regs_map_setup(softsp->dip, 0, &softsp->address, 0, 0,
529 	    &attr, &softsp->ac) != DDI_SUCCESS) {
530 		cmn_err(CE_WARN, "%s%d: unable to map reg set 0\n",
531 		    ddi_get_name(softsp->dip),
532 		    ddi_get_instance(softsp->dip));
533 		return (0);
534 	}
535 	if (softsp->address == (caddr_t)-1) {
536 		cmn_err(CE_CONT, "?sbus%d: No sysio <address> property\n",
537 		    ddi_get_instance(softsp->dip));
538 		return (DDI_FAILURE);
539 	}
540 
541 	DPRINTF(SBUS_ATTACH_DEBUG, ("sbus: devi=0x%p, softsp=0x%p\n",
542 	    (void *)devi, (void *)softsp));
543 
544 #ifdef	notdef
545 	/*
546 	 * This bit of code, plus the firmware, will tell us if
547 	 * the #size-cells infrastructure code works, to some degree.
548 	 * You should be able to use the firmware to determine if
549 	 * the address returned by ddi_map_regs maps the correct phys. pages.
550 	 */
551 
552 	{
553 		caddr_t addr;
554 		int rv;
555 
556 		cmn_err(CE_CONT, "?sbus: address property = 0x%x\n", address);
557 
558 		if ((rv = ddi_map_regs(softsp->dip, 0, &addr,
559 		    (off_t)0, (off_t)0)) != DDI_SUCCESS)  {
560 			cmn_err(CE_CONT, "?sbus: ddi_map_regs failed: %d\n",
561 			    rv);
562 		} else {
563 			cmn_err(CE_CONT, "?sbus: ddi_map_regs returned "
564 			    " virtual address 0x%x\n", addr);
565 		}
566 	}
567 #endif	/* notdef */
568 
569 	if ((error = iommu_init(softsp, softsp->address)) != DDI_SUCCESS)
570 		goto bad;
571 
572 	if ((error = sbus_init(softsp, softsp->address)) != DDI_SUCCESS)
573 		goto bad;
574 
575 	if ((error = sysio_err_init(softsp, softsp->address)) != DDI_SUCCESS)
576 		goto bad;
577 
578 	if ((error = stream_buf_init(softsp, softsp->address)) != DDI_SUCCESS)
579 		goto bad;
580 
581 	/* Init the pokefault mutex for sbus devices */
582 	mutex_init(&softsp->pokefault_mutex, NULL, MUTEX_SPIN,
583 	    (void *)ipltospl(SBUS_ERR_PIL - 1));
584 
585 	sbus_add_kstats(softsp);
586 
587 	bus_func_register(BF_TYPE_RESINTR, sbus_intr_reset, devi);
588 
589 	intr_dist_add(sbus_intrdist, devi);
590 
591 	ddi_report_dev(devi);
592 
593 	return (DDI_SUCCESS);
594 
595 bad:
596 	ddi_soft_state_free(sbusp, instance);
597 	return (error);
598 }
599 
600 /* ARGSUSED */
601 static int
602 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
603 {
604 	int instance;
605 	struct sbus_soft_state *softsp;
606 	uint64_t *cpr_softsp;
607 
608 	switch (cmd) {
609 	case DDI_SUSPEND:
610 		/*
611 		 * Allocate the cpr  soft data structure to save the current
612 		 * state of the interrupt mapping registers.
613 		 * This structure will be deallocated after the system
614 		 * is resumed.
615 		 */
616 		instance = ddi_get_instance(devi);
617 
618 		if (ddi_soft_state_zalloc(sbus_cprp, instance)
619 		    != DDI_SUCCESS)
620 			return (DDI_FAILURE);
621 
622 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
623 
624 		softsp = ddi_get_soft_state(sbusp, instance);
625 
626 		sbus_cpr_handle_intr_map_reg(cpr_softsp,
627 		    softsp->intr_mapping_reg, 1);
628 		return (DDI_SUCCESS);
629 
630 	case DDI_DETACH:
631 		return (sbus_do_detach(devi));
632 	default:
633 		return (DDI_FAILURE);
634 	}
635 }
636 
637 static int
638 sbus_do_detach(dev_info_t *devi)
639 {
640 	int instance, pic;
641 	struct sbus_soft_state *softsp;
642 
643 	instance = ddi_get_instance(devi);
644 	softsp = ddi_get_soft_state(sbusp, instance);
645 	ASSERT(softsp != NULL);
646 
647 	bus_func_unregister(BF_TYPE_RESINTR, sbus_intr_reset, devi);
648 
649 	intr_dist_rem(sbus_intrdist, devi);
650 
651 	/* disable the streamming cache */
652 	if (stream_buf_uninit(softsp) == DDI_FAILURE) {
653 		goto err;
654 	}
655 
656 	/* remove the interrupt handlers from the system */
657 	if (sysio_err_uninit(softsp) == DDI_FAILURE) {
658 		goto err;
659 	}
660 
661 	/* disable the IOMMU */
662 	if (iommu_uninit(softsp)) {
663 		goto err;
664 	}
665 
666 	/* unmap register space if we have a handle */
667 	if (softsp->ac) {
668 		ddi_regs_map_free(&softsp->ac);
669 		softsp->address = NULL;
670 	}
671 
672 	/*
673 	 * remove counter kstats for this device
674 	 */
675 	if (softsp->sbus_counters_ksp != (kstat_t *)NULL)
676 		kstat_delete(softsp->sbus_counters_ksp);
677 
678 	/*
679 	 * if we are the last instance to detach we need to
680 	 * remove the picN kstats. We use sbus_attachcnt as a
681 	 * count of how many instances are still attached. This
682 	 * is protected by a mutex.
683 	 */
684 	mutex_enter(&sbus_attachcnt_mutex);
685 	sbus_attachcnt --;
686 	if (sbus_attachcnt == 0) {
687 		for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
688 			if (sbus_picN_ksp[pic] != (kstat_t *)NULL) {
689 				kstat_delete(sbus_picN_ksp[pic]);
690 				sbus_picN_ksp[pic] = NULL;
691 			}
692 		}
693 	}
694 	mutex_exit(&sbus_attachcnt_mutex);
695 
696 #ifdef _STARFIRE
697 	/* free starfire specific soft intr mapping structure */
698 	pc_ittrans_uninit(softsp->ittrans_cookie);
699 #endif /* _STARFIRE */
700 
701 	/* free the soft state structure */
702 	ddi_soft_state_free(sbusp, instance);
703 
704 	return (DDI_SUCCESS);
705 err:
706 	return (DDI_FAILURE);
707 }
708 
709 static int
710 sbus_init(struct sbus_soft_state *softsp, caddr_t address)
711 {
712 	int i;
713 	extern void set_intr_mapping_reg(int, uint64_t *, int);
714 	int numproxy;
715 
716 	/*
717 	 * Simply add each registers offset to the base address
718 	 * to calculate the already mapped virtual address of
719 	 * the device register...
720 	 *
721 	 * define a macro for the pointer arithmetic; all registers
722 	 * are 64 bits wide and are defined as uint64_t's.
723 	 */
724 
725 #define	REG_ADDR(b, o)	(uint64_t *)((caddr_t)(b) + (o))
726 
727 	softsp->sysio_ctrl_reg = REG_ADDR(address, OFF_SYSIO_CTRL_REG);
728 	softsp->sbus_ctrl_reg = REG_ADDR(address, OFF_SBUS_CTRL_REG);
729 	softsp->sbus_slot_config_reg = REG_ADDR(address, OFF_SBUS_SLOT_CONFIG);
730 	softsp->intr_mapping_reg = REG_ADDR(address, OFF_INTR_MAPPING_REG);
731 	softsp->clr_intr_reg = REG_ADDR(address, OFF_CLR_INTR_REG);
732 	softsp->intr_retry_reg = REG_ADDR(address, OFF_INTR_RETRY_REG);
733 	softsp->sbus_intr_state = REG_ADDR(address, OFF_SBUS_INTR_STATE_REG);
734 	softsp->sbus_pcr = REG_ADDR(address, OFF_SBUS_PCR);
735 	softsp->sbus_pic = REG_ADDR(address, OFF_SBUS_PIC);
736 
737 #undef	REG_ADDR
738 
739 	DPRINTF(SBUS_REGISTERS_DEBUG, ("SYSIO Control reg: 0x%p\n"
740 	    "SBUS Control reg: 0x%p", (void *)softsp->sysio_ctrl_reg,
741 	    (void *)softsp->sbus_ctrl_reg));
742 
743 #ifdef _STARFIRE
744 	/* Setup interrupt target translation for starfire */
745 	pc_ittrans_init(softsp->upa_id, &softsp->ittrans_cookie);
746 #endif /* _STARFIRE */
747 
748 	softsp->intr_mapping_ign =
749 	    UPAID_TO_IGN(softsp->upa_id) << IMR_IGN_SHIFT;
750 
751 	/* Diag reg 2 is the next 64 bit word after diag reg 1 */
752 	softsp->obio_intr_state = softsp->sbus_intr_state + 1;
753 
754 	(void) sbus_resume_init(softsp, 0);
755 
756 	/*
757 	 * Set the initial burstsizes for each slot to all 1's.  This will
758 	 * get changed at initchild time.
759 	 */
760 	for (i = 0; i < MAX_SBUS_SLOTS; i++)
761 		softsp->sbus_slave_burstsizes[i] = 0xffffffffu;
762 
763 	/*
764 	 * Since SYSIO is used as an interrupt mastering device for slave
765 	 * only UPA devices, we call a dedicated kernel function to register
766 	 * The address of the interrupt mapping register for the slave device.
767 	 *
768 	 * If RISC/sysio is wired to support 2 upa slave interrupt
769 	 * devices then register 2nd mapping register with system.
770 	 * The slave/proxy portid algorithm (decribed in Fusion Desktop Spec)
771 	 * allows for upto 3 slaves per proxy but Psycho/SYSIO only support 2.
772 	 *
773 	 * #upa-interrupt-proxies property defines how many UPA interrupt
774 	 * slaves a bridge is wired to support. Older systems that lack
775 	 * this property will default to 1.
776 	 */
777 	numproxy = ddi_prop_get_int(DDI_DEV_T_ANY, softsp->dip,
778 	    DDI_PROP_DONTPASS, "#upa-interrupt-proxies", 1);
779 
780 	if (numproxy > 0)
781 		set_intr_mapping_reg(softsp->upa_id,
782 		    (uint64_t *)(softsp->intr_mapping_reg +
783 		    FFB_MAPPING_REG), 1);
784 
785 	if (numproxy > 1)
786 		set_intr_mapping_reg(softsp->upa_id,
787 		    (uint64_t *)(softsp->intr_mapping_reg +
788 		    EXP_MAPPING_REG), 2);
789 
790 	/* support for a 3 interrupt proxy would go here */
791 
792 	/* Turn on spurious interrupt counter if we're not a DEBUG kernel. */
793 #ifndef DEBUG
794 	intr_cntr_on = 1;
795 #else
796 	intr_cntr_on = 0;
797 #endif
798 
799 
800 	return (DDI_SUCCESS);
801 }
802 
803 /*
804  * This procedure is part of sbus initialization. It is called by
805  * sbus_init() and is invoked when the system is being resumed.
806  */
807 static int
808 sbus_resume_init(struct sbus_soft_state *softsp, int resume)
809 {
810 	int i;
811 	uint_t sbus_burst_sizes;
812 
813 	/*
814 	 * This shouldn't be needed when we have a real OBP PROM.
815 	 * (RAZ) Get rid of this later!!!
816 	 */
817 
818 #ifdef _STARFIRE
819 	/*
820 	 * For Starfire, we need to program a
821 	 * constant odd value.
822 	 * Zero out the MID field before ORing
823 	 * We leave the LSB of the MID field intact since
824 	 * we cannot have a zero(even) MID value
825 	 */
826 	uint64_t tmpconst = 0x1DULL;
827 	*softsp->sysio_ctrl_reg &= 0xFF0FFFFFFFFFFFFFULL;
828 	*softsp->sysio_ctrl_reg |= tmpconst << 51;
829 
830 	/*
831 	 * Program in the interrupt group number
832 	 * Here we have to convert the starfire
833 	 * 7 bit upaid into a 5bit value.
834 	 */
835 	*softsp->sysio_ctrl_reg |=
836 	    (uint64_t)STARFIRE_UPAID2HWIGN(softsp->upa_id)
837 	    << SYSIO_IGN;
838 #else
839 	/* for the rest of sun4u's */
840 	*softsp->sysio_ctrl_reg |=
841 	    (uint64_t)softsp->upa_id << 51;
842 
843 	/* Program in the interrupt group number */
844 	*softsp->sysio_ctrl_reg |=
845 	    (uint64_t)softsp->upa_id << SYSIO_IGN;
846 #endif /* _STARFIRE */
847 
848 	/*
849 	 * Set appropriate fields of sbus control register.
850 	 * Set DVMA arbitration enable for all devices.
851 	 */
852 	*softsp->sbus_ctrl_reg |= SBUS_ARBIT_ALL;
853 
854 	/* Calculate our burstsizes now so we don't have to do it later */
855 	sbus_burst_sizes = (SYSIO64_BURST_RANGE << SYSIO64_BURST_SHIFT)
856 	    | SYSIO_BURST_RANGE;
857 
858 	sbus_burst_sizes = ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
859 	    DDI_PROP_DONTPASS, "up-burst-sizes", sbus_burst_sizes);
860 
861 	softsp->sbus_burst_sizes = sbus_burst_sizes & SYSIO_BURST_MASK;
862 	softsp->sbus64_burst_sizes = sbus_burst_sizes & SYSIO64_BURST_MASK;
863 
864 	if (!resume) {
865 		/* Set burstsizes to smallest value */
866 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
867 			volatile uint64_t *config;
868 			uint64_t tmpreg;
869 
870 			config = softsp->sbus_slot_config_reg + i;
871 
872 			/* Write out the burst size */
873 			tmpreg = (uint64_t)0;
874 			*config = tmpreg;
875 
876 			/* Flush any write buffers */
877 			tmpreg = *softsp->sbus_ctrl_reg;
878 
879 			DPRINTF(SBUS_REGISTERS_DEBUG, ("Sbus slot 0x%x slot "
880 			    "configuration reg: 0x%p", (i > 3) ? i + 9 : i,
881 			    (void *)config));
882 		}
883 	} else {
884 		/* Program the slot configuration registers */
885 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
886 			volatile uint64_t *config;
887 #ifndef lint
888 			uint64_t tmpreg;
889 #endif /* !lint */
890 			uint_t slave_burstsizes;
891 
892 			slave_burstsizes = 0;
893 			if (softsp->sbus_slave_burstsizes[i] != 0xffffffffu) {
894 				config = softsp->sbus_slot_config_reg + i;
895 
896 				if (softsp->sbus_slave_burstsizes[i] &
897 				    SYSIO64_BURST_MASK) {
898 					/* get the 64 bit burstsizes */
899 					slave_burstsizes =
900 					    softsp->sbus_slave_burstsizes[i] >>
901 					    SYSIO64_BURST_SHIFT;
902 
903 					/* Turn on 64 bit PIO's on the sbus */
904 					*config |= SBUS_ETM;
905 				} else {
906 					slave_burstsizes =
907 					    softsp->sbus_slave_burstsizes[i] &
908 					    SYSIO_BURST_MASK;
909 				}
910 
911 				/* Get burstsizes into sysio register format */
912 				slave_burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
913 
914 				/* Program the burstsizes */
915 				*config |= (uint64_t)slave_burstsizes;
916 
917 				/* Flush any write buffers */
918 #ifndef lint
919 				tmpreg = *softsp->sbus_ctrl_reg;
920 #endif /* !lint */
921 			}
922 		}
923 	}
924 
925 	return (DDI_SUCCESS);
926 }
927 
928 #define	get_prop(di, pname, flag, pval, plen)	\
929 	(ddi_prop_op(DDI_DEV_T_NONE, di, PROP_LEN_AND_VAL_ALLOC, \
930 	flag | DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, \
931 	pname, (caddr_t)pval, plen))
932 
933 struct prop_ispec {
934 	uint_t	pri, vec;
935 };
936 
937 /*
938  * Create a sysio_parent_private_data structure from the ddi properties of
939  * the dev_info node.
940  *
941  * The "reg" and either an "intr" or "interrupts" properties are required
942  * if the driver wishes to create mappings or field interrupts on behalf
943  * of the device.
944  *
945  * The "reg" property is assumed to be a list of at least one triple
946  *
947  *	<bustype, address, size>*1
948  *
949  * On pre-fusion machines, the "intr" property was the IPL for the system.
950  * Most new sbus devices post an "interrupts" property that corresponds to
951  * a particular bus level.  All devices on fusion using an "intr" property
952  * will have it's contents translated into a bus level.  Hence, "intr" and
953  * "interrupts on the fusion platform can be treated the same.
954  *
955  * The "interrupts" property is assumed to be a list of at least one
956  * n-tuples that describes the interrupt capabilities of the bus the device
957  * is connected to.  For SBus, this looks like
958  *
959  *	<SBus-level>*1
960  *
961  * (This property obsoletes the 'intr' property).
962  *
963  * The OBP_RANGES property is optional.
964  */
965 static void
966 make_sbus_ppd(dev_info_t *child)
967 {
968 	struct sysio_parent_private_data *pdptr;
969 	int n;
970 	int *reg_prop, *rgstr_prop, *rng_prop;
971 	int reg_len, rgstr_len, rng_len;
972 
973 	/*
974 	 * Make the function idempotent, because name_child could
975 	 * be called multiple times on a node.
976 	 */
977 	if (ddi_get_parent_data(child) != NULL)
978 		return;
979 
980 	pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
981 	ddi_set_parent_data(child, pdptr);
982 
983 	/*
984 	 * Handle the 'reg'/'registers' properties.
985 	 * "registers" overrides "reg", but requires that "reg" be exported,
986 	 * so we can handle wildcard specifiers.  "registers" implies an
987 	 * sbus style device.  "registers" implies that we insert the
988 	 * correct value in the regspec_bustype field of each spec for a real
989 	 * (non-pseudo) device node.  "registers" is a s/w only property, so
990 	 * we inhibit the prom search for this property.
991 	 */
992 	if (get_prop(child, OBP_REG, 0, &reg_prop, &reg_len) != DDI_SUCCESS)
993 		reg_len = 0;
994 
995 	/*
996 	 * Save the underlying slot number and slot offset.
997 	 * Among other things, we use these to name the child node.
998 	 */
999 	pdptr->slot = (uint_t)-1;
1000 	if (reg_len != 0) {
1001 		pdptr->slot = ((struct regspec *)reg_prop)->regspec_bustype;
1002 		pdptr->offset = ((struct regspec *)reg_prop)->regspec_addr;
1003 	}
1004 
1005 	rgstr_len = 0;
1006 	(void) get_prop(child, "registers", DDI_PROP_NOTPROM,
1007 	    &rgstr_prop, &rgstr_len);
1008 
1009 	if (rgstr_len != 0)  {
1010 		if (ndi_dev_is_persistent_node(child) && (reg_len != 0))  {
1011 			/*
1012 			 * Convert wildcard "registers" for a real node...
1013 			 * (Else, this is the wildcard prototype node)
1014 			 */
1015 			struct regspec *rp = (struct regspec *)reg_prop;
1016 			uint_t slot = rp->regspec_bustype;
1017 			int i;
1018 
1019 			rp = (struct regspec *)rgstr_prop;
1020 			n = rgstr_len / sizeof (struct regspec);
1021 			for (i = 0; i < n; ++i, ++rp)
1022 				rp->regspec_bustype = slot;
1023 		}
1024 
1025 		if (reg_len != 0)
1026 			kmem_free(reg_prop, reg_len);
1027 
1028 		reg_prop = rgstr_prop;
1029 		reg_len = rgstr_len;
1030 	}
1031 	if (reg_len != 0)  {
1032 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
1033 		pdptr->par_reg = (struct regspec *)reg_prop;
1034 	}
1035 
1036 	/*
1037 	 * See if I have ranges.
1038 	 */
1039 	if (get_prop(child, OBP_RANGES, 0, &rng_prop, &rng_len) ==
1040 	    DDI_SUCCESS) {
1041 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
1042 		pdptr->par_rng = (struct rangespec *)rng_prop;
1043 	}
1044 }
1045 
1046 /*
1047  * Special handling for "sbusmem" pseudo device nodes.
1048  * The special handling automatically creates the "reg"
1049  * property in the sbusmem nodes, based on the parent's
1050  * property so that each slot will automtically have a
1051  * correctly sized "reg" property, once created,
1052  * sbus_initchild does the rest of the work to init
1053  * the child node.
1054  */
1055 static int
1056 sbusmem_initchild(dev_info_t *dip, dev_info_t *child)
1057 {
1058 	int i, n;
1059 	int slot, size;
1060 	char ident[10];
1061 
1062 	slot = ddi_getprop(DDI_DEV_T_NONE, child,
1063 	    DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "slot", -1);
1064 	if (slot == -1) {
1065 		DPRINTF(SBUS_SBUSMEM_DEBUG, ("can't get slot property\n"));
1066 		return (DDI_FAILURE);
1067 	}
1068 
1069 	/*
1070 	 * Find the parent range corresponding to this "slot",
1071 	 * so we can set the size of the child's "reg" property.
1072 	 */
1073 	for (i = 0, n = sparc_pd_getnrng(dip); i < n; i++) {
1074 		struct rangespec *rp = sparc_pd_getrng(dip, i);
1075 
1076 		if (rp->rng_cbustype == (uint_t)slot) {
1077 			struct regspec r;
1078 
1079 			/* create reg property */
1080 
1081 			r.regspec_bustype = (uint_t)slot;
1082 			r.regspec_addr = 0;
1083 			r.regspec_size = rp->rng_size;
1084 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
1085 			    child, "reg", (int *)&r,
1086 			    sizeof (struct regspec) / sizeof (int));
1087 
1088 			/* create size property for slot */
1089 
1090 			size = rp->rng_size;
1091 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
1092 			    child, "size", size);
1093 
1094 			(void) sprintf(ident, "slot%x", slot);
1095 			(void) ddi_prop_update_string(DDI_DEV_T_NONE,
1096 			    child, "ident", ident);
1097 
1098 			return (DDI_SUCCESS);
1099 		}
1100 	}
1101 	return (DDI_FAILURE);
1102 }
1103 
1104 /*
1105  * Nexus routine to name a child.
1106  * It takes a dev_info node and a buffer, returns the name
1107  * in the buffer.
1108  */
1109 static int
1110 sysio_name_child(dev_info_t *child, char *name, int namelen)
1111 {
1112 	/*
1113 	 * Fill in parent-private data
1114 	 */
1115 	make_sbus_ppd(child);
1116 
1117 	/*
1118 	 * Name the device node using the underlying (prom) values
1119 	 * of the first entry in the "reg" property.  For SBus devices,
1120 	 * the textual form of the name is <name>@<slot#>,<offset>.
1121 	 * This must match the prom's pathname or mountroot, etc, won't
1122 	 */
1123 	name[0] = '\0';
1124 	if (sysio_pd_getslot(child) != (uint_t)-1) {
1125 		(void) snprintf(name, namelen, "%x,%x",
1126 		    sysio_pd_getslot(child), sysio_pd_getoffset(child));
1127 	}
1128 	return (DDI_SUCCESS);
1129 }
1130 
1131 /*
1132  * Called from the bus_ctl op of sysio sbus nexus driver
1133  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
1134  * the children of sysio sbusses based on the reg spec.
1135  *
1136  * Handles the following properties:
1137  *
1138  *	Property		value
1139  *	  Name			type
1140  *
1141  *	reg		register spec
1142  *	registers	wildcard s/w sbus register spec (.conf file property)
1143  *	intr		old-form interrupt spec
1144  *	interrupts	new (bus-oriented) interrupt spec
1145  *	ranges		range spec
1146  */
1147 static int
1148 sbus_initchild(dev_info_t *dip, dev_info_t *child)
1149 {
1150 	char name[MAXNAMELEN];
1151 	ulong_t slave_burstsizes;
1152 	int slot;
1153 	volatile uint64_t *slot_reg;
1154 #ifndef lint
1155 	uint64_t tmp;
1156 #endif /* !lint */
1157 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1158 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1159 
1160 	if (strcmp(ddi_get_name(child), "sbusmem") == 0) {
1161 		if (sbusmem_initchild(dip, child) != DDI_SUCCESS)
1162 			return (DDI_FAILURE);
1163 	}
1164 
1165 	/*
1166 	 * If this is a s/w node defined with the "registers" property,
1167 	 * this means that this is a wildcard specifier, whose properties
1168 	 * get applied to all previously defined h/w nodes with the same
1169 	 * name and same parent.
1170 	 */
1171 	if (ndi_dev_is_persistent_node(child) == 0) {
1172 		int len = 0;
1173 		if ((ddi_getproplen(DDI_DEV_T_ANY, child, DDI_PROP_NOTPROM,
1174 		    "registers", &len) == DDI_SUCCESS) && (len != 0)) {
1175 			ndi_merge_wildcard_node(child);
1176 			return (DDI_FAILURE);
1177 		}
1178 	}
1179 
1180 	/* name the child */
1181 	(void) sysio_name_child(child, name, MAXNAMELEN);
1182 	ddi_set_name_addr(child, name);
1183 
1184 	/*
1185 	 * If a pseudo node, attempt to merge it into a hw node.
1186 	 * If merge is successful, we uinitialize the node and
1187 	 * return failure, to allow caller to remove the node.
1188 	 * The merge fails, this is a real pseudo node. Allow
1189 	 * initchild to continue.
1190 	 */
1191 	if ((ndi_dev_is_persistent_node(child) == 0) &&
1192 	    (ndi_merge_node(child, sysio_name_child) == DDI_SUCCESS)) {
1193 		(void) sbus_uninitchild(child);
1194 		return (DDI_FAILURE);
1195 	}
1196 
1197 	/* Figure out the child devices slot number */
1198 	slot = sysio_pd_getslot(child);
1199 
1200 	/* If we don't have a reg property, bypass slot specific programming */
1201 	if (slot < 0 || slot >= MAX_SBUS_SLOT_ADDR) {
1202 #ifdef DEBUG
1203 		cmn_err(CE_WARN, "?Invalid sbus slot address 0x%x for %s "
1204 		    "device\n", slot, ddi_get_name(child));
1205 #endif /* DEBUG */
1206 		goto done;
1207 	}
1208 
1209 	/* Modify the onboard slot numbers if applicable. */
1210 	slot = (slot > 3) ? slot - 9 : slot;
1211 
1212 	/* Get the slot configuration register for the child device. */
1213 	slot_reg = softsp->sbus_slot_config_reg + slot;
1214 
1215 	/*
1216 	 * Program the devices slot configuration register for the
1217 	 * appropriate slave burstsizes.
1218 	 * The upper 16 bits of the slave-burst-sizes are for 64 bit sbus
1219 	 * and the lower 16 bits are the burst sizes for 32 bit sbus. If
1220 	 * we see that a device supports both 64 bit and 32 bit slave accesses,
1221 	 * we default to 64 bit and turn it on in the slot config reg.
1222 	 *
1223 	 * For older devices, make sure we check the "burst-sizes" property
1224 	 * too.
1225 	 */
1226 	if ((slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1227 	    DDI_PROP_DONTPASS, "slave-burst-sizes", 0)) != 0 ||
1228 	    (slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1229 	    DDI_PROP_DONTPASS, "burst-sizes", 0)) != 0) {
1230 		uint_t burstsizes = 0;
1231 
1232 		/*
1233 		 * If we only have 32 bit burst sizes from a previous device,
1234 		 * mask out any burstsizes for 64 bit mode.
1235 		 */
1236 		if (((softsp->sbus_slave_burstsizes[slot] &
1237 		    0xffff0000u) == 0) &&
1238 		    ((softsp->sbus_slave_burstsizes[slot] & 0xffff) != 0)) {
1239 			slave_burstsizes &= 0xffff;
1240 		}
1241 
1242 		/*
1243 		 * If "slave-burst-sizes was defined but we have 0 at this
1244 		 * point, we must have had 64 bit burstsizes, however a prior
1245 		 * device can only burst in 32 bit mode.  Therefore, we leave
1246 		 * the burstsizes in the 32 bit mode and disregard the 64 bit.
1247 		 */
1248 		if (slave_burstsizes == 0)
1249 			goto done;
1250 
1251 		/*
1252 		 * We and in the new burst sizes with that of prior devices.
1253 		 * This ensures that we always take the least common
1254 		 * denominator of the burst sizes.
1255 		 */
1256 		softsp->sbus_slave_burstsizes[slot] &=
1257 		    (slave_burstsizes &
1258 		    ((SYSIO64_SLAVEBURST_RANGE <<
1259 		    SYSIO64_BURST_SHIFT) |
1260 		    SYSIO_SLAVEBURST_RANGE));
1261 
1262 		/* Get the 64 bit burstsizes. */
1263 		if (softsp->sbus_slave_burstsizes[slot] &
1264 		    SYSIO64_BURST_MASK) {
1265 			/* get the 64 bit burstsizes */
1266 			burstsizes = softsp->sbus_slave_burstsizes[slot] >>
1267 			    SYSIO64_BURST_SHIFT;
1268 
1269 			/* Turn on 64 bit PIO's on the sbus */
1270 			*slot_reg |= SBUS_ETM;
1271 		} else {
1272 			/* Turn off 64 bit PIO's on the sbus */
1273 			*slot_reg &= ~SBUS_ETM;
1274 
1275 			/* Get the 32 bit burstsizes if we don't have 64 bit. */
1276 			if (softsp->sbus_slave_burstsizes[slot] &
1277 			    SYSIO_BURST_MASK) {
1278 				burstsizes =
1279 				    softsp->sbus_slave_burstsizes[slot] &
1280 				    SYSIO_BURST_MASK;
1281 			}
1282 		}
1283 
1284 		/* Get the burstsizes into sysio register format */
1285 		burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
1286 
1287 		/* Reset reg in case we're scaling back */
1288 		*slot_reg &= (uint64_t)~SYSIO_SLAVEBURST_MASK;
1289 
1290 		/* Program the burstsizes */
1291 		*slot_reg |= (uint64_t)burstsizes;
1292 
1293 		/* Flush system load/store buffers */
1294 #ifndef lint
1295 		tmp = *slot_reg;
1296 #endif /* !lint */
1297 	}
1298 
1299 done:
1300 	return (DDI_SUCCESS);
1301 }
1302 
1303 static int
1304 sbus_uninitchild(dev_info_t *dip)
1305 {
1306 	struct sysio_parent_private_data *pdptr;
1307 	size_t n;
1308 
1309 	if ((pdptr = ddi_get_parent_data(dip)) != NULL)  {
1310 		if ((n = (size_t)pdptr->par_nrng) != 0)
1311 			kmem_free(pdptr->par_rng, n *
1312 			    sizeof (struct rangespec));
1313 
1314 		if ((n = pdptr->par_nreg) != 0)
1315 			kmem_free(pdptr->par_reg, n * sizeof (struct regspec));
1316 
1317 		kmem_free(pdptr, sizeof (*pdptr));
1318 		ddi_set_parent_data(dip, NULL);
1319 	}
1320 	ddi_set_name_addr(dip, NULL);
1321 	/*
1322 	 * Strip the node to properly convert it back to prototype form
1323 	 */
1324 	ddi_remove_minor_node(dip, NULL);
1325 	impl_rem_dev_props(dip);
1326 	return (DDI_SUCCESS);
1327 }
1328 
1329 #ifdef  DEBUG
1330 int	sbus_peekfault_cnt = 0;
1331 int	sbus_pokefault_cnt = 0;
1332 #endif  /* DEBUG */
1333 
1334 static int
1335 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args)
1336 {
1337 	int err = DDI_SUCCESS;
1338 	on_trap_data_t otd;
1339 	volatile uint64_t tmpreg;
1340 
1341 	/* Cautious access not supported. */
1342 	if (in_args->handle != NULL)
1343 		return (DDI_FAILURE);
1344 
1345 	mutex_enter(&softsp->pokefault_mutex);
1346 	softsp->ontrap_data = &otd;
1347 
1348 	/* Set up protected environment. */
1349 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1350 		uintptr_t tramp = otd.ot_trampoline;
1351 
1352 		otd.ot_trampoline = (uintptr_t)&poke_fault;
1353 		err = do_poke(in_args->size, (void *)in_args->dev_addr,
1354 		    (void *)in_args->host_addr);
1355 		otd.ot_trampoline = tramp;
1356 	} else
1357 		err = DDI_FAILURE;
1358 
1359 	/* Flush any sbus store buffers. */
1360 	tmpreg = *softsp->sbus_ctrl_reg;
1361 
1362 	/*
1363 	 * Read the sbus error reg and see if a fault occured.  If
1364 	 * one has, give the SYSIO time to packetize the interrupt
1365 	 * for the fault and send it out.  The sbus error handler will
1366 	 * 0 these fields when it's called to service the fault.
1367 	 */
1368 	tmpreg = *softsp->sbus_err_reg;
1369 	while (tmpreg & SB_AFSR_P_TO || tmpreg & SB_AFSR_P_BERR)
1370 		tmpreg = *softsp->sbus_err_reg;
1371 
1372 	/* Take down protected environment. */
1373 	no_trap();
1374 
1375 	softsp->ontrap_data = NULL;
1376 	mutex_exit(&softsp->pokefault_mutex);
1377 
1378 #ifdef  DEBUG
1379 	if (err == DDI_FAILURE)
1380 		sbus_pokefault_cnt++;
1381 #endif
1382 	return (err);
1383 }
1384 
1385 /*ARGSUSED*/
1386 static int
1387 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
1388     void *result)
1389 {
1390 	int err = DDI_SUCCESS;
1391 	on_trap_data_t otd;
1392 
1393 	/* No safe access except for peek is supported. */
1394 	if (in_args->handle != NULL)
1395 		return (DDI_FAILURE);
1396 
1397 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1398 		uintptr_t tramp = otd.ot_trampoline;
1399 
1400 		otd.ot_trampoline = (uintptr_t)&peek_fault;
1401 		err = do_peek(in_args->size, (void *)in_args->dev_addr,
1402 		    (void *)in_args->host_addr);
1403 		otd.ot_trampoline = tramp;
1404 		result = (void *)in_args->host_addr;
1405 	} else
1406 		err = DDI_FAILURE;
1407 
1408 #ifdef  DEBUG
1409 	if (err == DDI_FAILURE)
1410 		sbus_peekfault_cnt++;
1411 #endif
1412 	no_trap();
1413 	return (err);
1414 }
1415 
1416 static int
1417 sbus_ctlops(dev_info_t *dip, dev_info_t *rdip,
1418     ddi_ctl_enum_t op, void *arg, void *result)
1419 {
1420 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1421 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1422 
1423 	switch (op) {
1424 
1425 	case DDI_CTLOPS_INITCHILD:
1426 		return (sbus_initchild(dip, (dev_info_t *)arg));
1427 
1428 	case DDI_CTLOPS_UNINITCHILD:
1429 		return (sbus_uninitchild(arg));
1430 
1431 	case DDI_CTLOPS_IOMIN: {
1432 		int val = *((int *)result);
1433 
1434 		/*
1435 		 * The 'arg' value of nonzero indicates 'streaming' mode.
1436 		 * If in streaming mode, pick the largest of our burstsizes
1437 		 * available and say that that is our minimum value (modulo
1438 		 * what mincycle is).
1439 		 */
1440 		if ((int)(uintptr_t)arg)
1441 			val = maxbit(val,
1442 			    (1 << (ddi_fls(softsp->sbus_burst_sizes) - 1)));
1443 		else
1444 			val = maxbit(val,
1445 			    (1 << (ddi_ffs(softsp->sbus_burst_sizes) - 1)));
1446 
1447 		*((int *)result) = val;
1448 		return (ddi_ctlops(dip, rdip, op, arg, result));
1449 	}
1450 
1451 	case DDI_CTLOPS_REPORTDEV: {
1452 		dev_info_t *pdev;
1453 		int i, n, len, f_len;
1454 		char *msgbuf;
1455 
1456 	/*
1457 	 * So we can do one atomic cmn_err call, we allocate a 4k
1458 	 * buffer, and format the reportdev message into that buffer,
1459 	 * send it to cmn_err, and then free the allocated buffer.
1460 	 * If message is longer than 1k, the message is truncated and
1461 	 * an error message is emitted (debug kernel only).
1462 	 */
1463 #define	REPORTDEV_BUFSIZE	1024
1464 
1465 		int sbusid = ddi_get_instance(dip);
1466 
1467 		if (ddi_get_parent_data(rdip) == NULL)
1468 			return (DDI_FAILURE);
1469 
1470 		msgbuf = kmem_zalloc(REPORTDEV_BUFSIZE, KM_SLEEP);
1471 
1472 		pdev = ddi_get_parent(rdip);
1473 		f_len = snprintf(msgbuf, REPORTDEV_BUFSIZE,
1474 		    "%s%d at %s%d: SBus%d ",
1475 		    ddi_driver_name(rdip), ddi_get_instance(rdip),
1476 		    ddi_driver_name(pdev), ddi_get_instance(pdev), sbusid);
1477 		len = strlen(msgbuf);
1478 
1479 		for (i = 0, n = sysio_pd_getnreg(rdip); i < n; i++) {
1480 			struct regspec *rp;
1481 
1482 			rp = sysio_pd_getreg(rdip, i);
1483 			if (i != 0) {
1484 				f_len += snprintf(msgbuf + len,
1485 				    REPORTDEV_BUFSIZE - len, " and ");
1486 				len = strlen(msgbuf);
1487 			}
1488 
1489 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1490 			    "slot 0x%x offset 0x%x",
1491 			    rp->regspec_bustype, rp->regspec_addr);
1492 			len = strlen(msgbuf);
1493 		}
1494 
1495 		for (i = 0, n = i_ddi_get_intx_nintrs(rdip); i < n; i++) {
1496 			uint32_t sbuslevel, inum, pri;
1497 
1498 			if (i != 0) {
1499 				f_len += snprintf(msgbuf + len,
1500 				    REPORTDEV_BUFSIZE - len, ",");
1501 				len = strlen(msgbuf);
1502 			}
1503 
1504 			sbuslevel = inum = i_ddi_get_inum(rdip, i);
1505 			pri = i_ddi_get_intr_pri(rdip, i);
1506 
1507 			(void) sbus_xlate_intrs(dip, rdip, &inum,
1508 			    &pri, softsp->intr_mapping_ign);
1509 
1510 			if (sbuslevel > MAX_SBUS_LEVEL)
1511 				f_len += snprintf(msgbuf + len,
1512 				    REPORTDEV_BUFSIZE - len,
1513 				    " Onboard device ");
1514 			else
1515 				f_len += snprintf(msgbuf + len,
1516 				    REPORTDEV_BUFSIZE - len, " SBus level %d ",
1517 				    sbuslevel);
1518 			len = strlen(msgbuf);
1519 
1520 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1521 			    "sparc9 ipl %d", pri);
1522 			len = strlen(msgbuf);
1523 		}
1524 #ifdef DEBUG
1525 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
1526 		cmn_err(CE_NOTE, "next message is truncated: "
1527 		    "printed length 1024, real length %d", f_len);
1528 	}
1529 #endif /* DEBUG */
1530 
1531 		cmn_err(CE_CONT, "?%s\n", msgbuf);
1532 		kmem_free(msgbuf, REPORTDEV_BUFSIZE);
1533 		return (DDI_SUCCESS);
1534 
1535 #undef	REPORTDEV_BUFSIZE
1536 	}
1537 
1538 	case DDI_CTLOPS_SLAVEONLY:
1539 		return (DDI_FAILURE);
1540 
1541 	case DDI_CTLOPS_AFFINITY: {
1542 		dev_info_t *dipb = (dev_info_t *)arg;
1543 		int r_slot, b_slot;
1544 
1545 		if ((b_slot = find_sbus_slot(dip, dipb)) < 0)
1546 			return (DDI_FAILURE);
1547 
1548 		if ((r_slot = find_sbus_slot(dip, rdip)) < 0)
1549 			return (DDI_FAILURE);
1550 
1551 		return ((b_slot == r_slot)? DDI_SUCCESS : DDI_FAILURE);
1552 
1553 	}
1554 	case DDI_CTLOPS_DMAPMAPC:
1555 		cmn_err(CE_CONT, "?DDI_DMAPMAPC called!!\n");
1556 		return (DDI_FAILURE);
1557 
1558 	case DDI_CTLOPS_POKE:
1559 		return (sbus_ctlops_poke(softsp, (peekpoke_ctlops_t *)arg));
1560 
1561 	case DDI_CTLOPS_PEEK:
1562 		return (sbus_ctlops_peek(softsp, (peekpoke_ctlops_t *)arg,
1563 		    result));
1564 
1565 	case DDI_CTLOPS_DVMAPAGESIZE:
1566 		*(ulong_t *)result = IOMMU_PAGESIZE;
1567 		return (DDI_SUCCESS);
1568 
1569 	default:
1570 		return (ddi_ctlops(dip, rdip, op, arg, result));
1571 	}
1572 }
1573 
1574 static int
1575 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip)
1576 {
1577 	dev_info_t *child;
1578 	int slot = -1;
1579 
1580 	/*
1581 	 * look for the node that's a direct child of this Sbus node.
1582 	 */
1583 	while (rdip && (child = ddi_get_parent(rdip)) != dip) {
1584 		rdip = child;
1585 	}
1586 
1587 	/*
1588 	 * If there is one, get the slot number of *my* child
1589 	 */
1590 	if (child == dip)
1591 		slot = sysio_pd_getslot(rdip);
1592 
1593 	return (slot);
1594 }
1595 
1596 /*
1597  * This is the sbus interrupt routine wrapper function.  This function
1598  * installs itself as a child devices interrupt handler.  It's function is
1599  * to dispatch a child devices interrupt handler, and then
1600  * reset the interrupt clear register for the child device.
1601  *
1602  * Warning: This routine may need to be implemented as an assembly level
1603  * routine to improve performance.
1604  */
1605 
1606 #define	MAX_INTR_CNT 10
1607 
1608 static uint_t
1609 sbus_intr_wrapper(caddr_t arg)
1610 {
1611 	uint_t intr_return = DDI_INTR_UNCLAIMED;
1612 	volatile uint64_t tmpreg;
1613 	struct sbus_wrapper_arg *intr_info;
1614 	struct sbus_intr_handler *intr_handler;
1615 	uchar_t *spurious_cntr;
1616 
1617 	intr_info = (struct sbus_wrapper_arg *)arg;
1618 	spurious_cntr = &intr_info->softsp->spurious_cntrs[intr_info->pil];
1619 	intr_handler = intr_info->handler_list;
1620 
1621 	while (intr_handler) {
1622 		caddr_t arg1 = intr_handler->arg1;
1623 		caddr_t arg2 = intr_handler->arg2;
1624 		uint_t (*funcp)() = intr_handler->funcp;
1625 		dev_info_t *dip = intr_handler->dip;
1626 		int r;
1627 
1628 		if (intr_handler->intr_state == SBUS_INTR_STATE_DISABLE) {
1629 			intr_handler = intr_handler->next;
1630 			continue;
1631 		}
1632 
1633 		DTRACE_PROBE4(interrupt__start, dev_info_t, dip,
1634 		    void *, funcp, caddr_t, arg1, caddr_t, arg2);
1635 
1636 		r = (*funcp)(arg1, arg2);
1637 
1638 		DTRACE_PROBE4(interrupt__complete, dev_info_t, dip,
1639 		    void *, funcp, caddr_t, arg1, int, r);
1640 
1641 		intr_return |= r;
1642 		intr_handler = intr_handler->next;
1643 	}
1644 
1645 	/* Set the interrupt state machine to idle */
1646 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1647 	tmpreg = SBUS_INTR_IDLE;
1648 	*intr_info->clear_reg = tmpreg;
1649 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1650 
1651 	if (intr_return == DDI_INTR_UNCLAIMED) {
1652 		(*spurious_cntr)++;
1653 
1654 		if (*spurious_cntr < MAX_INTR_CNT) {
1655 			if (intr_cntr_on)
1656 				return (DDI_INTR_CLAIMED);
1657 		}
1658 #ifdef DEBUG
1659 		else if (intr_info->pil >= LOCK_LEVEL) {
1660 			cmn_err(CE_PANIC, "%d unclaimed interrupts at "
1661 			    "interrupt level %d", MAX_INTR_CNT,
1662 			    intr_info->pil);
1663 		}
1664 #endif
1665 
1666 		/*
1667 		 * Reset spurious counter once we acknowledge
1668 		 * it to the system level.
1669 		 */
1670 		*spurious_cntr = (uchar_t)0;
1671 	} else {
1672 		*spurious_cntr = (uchar_t)0;
1673 	}
1674 
1675 	return (intr_return);
1676 }
1677 
1678 /*
1679  * add_intrspec - Add an interrupt specification.
1680  */
1681 static int
1682 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1683     ddi_intr_handle_impl_t *hdlp)
1684 {
1685 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1686 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1687 	volatile uint64_t *mondo_vec_reg;
1688 	volatile uint64_t tmp_mondo_vec;
1689 	volatile uint64_t *intr_state_reg;
1690 	volatile uint64_t tmpreg;	/* HW flush reg */
1691 	uint_t start_bit;
1692 	int ino;
1693 	uint_t cpu_id;
1694 	struct sbus_wrapper_arg *sbus_arg;
1695 	struct sbus_intr_handler *intr_handler;
1696 	uint32_t slot;
1697 	/* Interrupt state machine reset flag */
1698 	int reset_ism_register = 1;
1699 	int ret = DDI_SUCCESS;
1700 
1701 	/* Check if we have a valid sbus slot address */
1702 	if (((slot = (uint_t)find_sbus_slot(dip, rdip)) >=
1703 	    MAX_SBUS_SLOT_ADDR) || (slot < (uint_t)0)) {
1704 		cmn_err(CE_WARN, "Invalid sbus slot 0x%x during add intr\n",
1705 		    slot);
1706 		return (DDI_FAILURE);
1707 	}
1708 
1709 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: sbus interrupt %d "
1710 	    "for device %s%d\n", hdlp->ih_vector, ddi_driver_name(rdip),
1711 	    ddi_get_instance(rdip)));
1712 
1713 	/* Xlate the interrupt */
1714 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
1715 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
1716 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1717 		    ddi_driver_name(rdip));
1718 		return (DDI_FAILURE);
1719 	}
1720 
1721 	/* get the ino number */
1722 	ino = hdlp->ih_vector & SBUS_MAX_INO;
1723 	mondo_vec_reg = (softsp->intr_mapping_reg +
1724 	    ino_table[ino]->mapping_reg);
1725 
1726 	/*
1727 	 * This is an intermediate step in identifying
1728 	 * the exact bits which represent the device in the interrupt
1729 	 * state diagnostic register.
1730 	 */
1731 	if (ino > MAX_MONDO_EXTERNAL) {
1732 		start_bit = ino_table[ino]->diagreg_shift;
1733 		intr_state_reg = softsp->obio_intr_state;
1734 	} else {
1735 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1736 		intr_state_reg = softsp->sbus_intr_state;
1737 	}
1738 
1739 
1740 	/* Allocate a nexus interrupt data structure */
1741 	intr_handler = kmem_zalloc(sizeof (struct sbus_intr_handler), KM_SLEEP);
1742 	intr_handler->dip = rdip;
1743 	intr_handler->funcp = hdlp->ih_cb_func;
1744 	intr_handler->arg1 = hdlp->ih_cb_arg1;
1745 	intr_handler->arg2 = hdlp->ih_cb_arg2;
1746 	intr_handler->inum = hdlp->ih_inum;
1747 
1748 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: xlated interrupt 0x%x "
1749 	    "intr_handler 0x%p\n", hdlp->ih_vector, (void *)intr_handler));
1750 
1751 	/*
1752 	 * Grab this lock here. So it will protect the poll list.
1753 	 */
1754 	mutex_enter(&softsp->intr_poll_list_lock);
1755 
1756 	sbus_arg = softsp->intr_list[ino];
1757 	/* Check if we have a poll list to deal with */
1758 	if (sbus_arg) {
1759 		tmp_mondo_vec = *mondo_vec_reg;
1760 		tmp_mondo_vec &= ~INTERRUPT_VALID;
1761 		*mondo_vec_reg = tmp_mondo_vec;
1762 
1763 		tmpreg = *softsp->sbus_ctrl_reg;
1764 #ifdef	lint
1765 		tmpreg = tmpreg;
1766 #endif
1767 
1768 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:sbus_arg exists "
1769 		    "0x%p\n", (void *)sbus_arg));
1770 		/*
1771 		 * Two bits per ino in the diagnostic register
1772 		 * indicate the status of its interrupt.
1773 		 * 0 - idle, 1 - transmit, 3 - pending.
1774 		 */
1775 		while (((*intr_state_reg >>
1776 		    start_bit) & 0x3) == INT_PENDING && !panicstr)
1777 			/* empty */;
1778 
1779 		intr_handler->next = sbus_arg->handler_list;
1780 		sbus_arg->handler_list = intr_handler;
1781 
1782 		reset_ism_register = 0;
1783 	} else {
1784 		sbus_arg = kmem_zalloc(sizeof (struct sbus_wrapper_arg),
1785 		    KM_SLEEP);
1786 
1787 		softsp->intr_list[ino] = sbus_arg;
1788 		sbus_arg->clear_reg = (softsp->clr_intr_reg +
1789 		    ino_table[ino]->clear_reg);
1790 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Ino 0x%x Interrupt "
1791 		    "clear reg: 0x%p\n", ino, (void *)sbus_arg->clear_reg));
1792 		sbus_arg->softsp = softsp;
1793 		sbus_arg->handler_list = intr_handler;
1794 
1795 		/*
1796 		 * No handler added yet in the interrupt vector
1797 		 * table for this ino.
1798 		 * Install the nexus interrupt wrapper in the
1799 		 * system. The wrapper will call the device
1800 		 * interrupt handler.
1801 		 */
1802 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp,
1803 		    (ddi_intr_handler_t *)sbus_intr_wrapper,
1804 		    (caddr_t)sbus_arg, NULL);
1805 
1806 		ret = i_ddi_add_ivintr(hdlp);
1807 
1808 		/*
1809 		 * Restore original interrupt handler
1810 		 * and arguments in interrupt handle.
1811 		 */
1812 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, intr_handler->funcp,
1813 		    intr_handler->arg1, intr_handler->arg2);
1814 
1815 		if (ret != DDI_SUCCESS) {
1816 			mutex_exit(&softsp->intr_poll_list_lock);
1817 			goto done;
1818 		}
1819 
1820 		if ((slot >= EXT_SBUS_SLOTS) ||
1821 		    (softsp->intr_hndlr_cnt[slot] == 0)) {
1822 
1823 			cpu_id = intr_dist_cpuid();
1824 #ifdef	_STARFIRE
1825 			tmp_mondo_vec = pc_translate_tgtid(
1826 			    softsp->ittrans_cookie, cpu_id,
1827 			    mondo_vec_reg) << IMR_TID_SHIFT;
1828 #else
1829 			tmp_mondo_vec =
1830 			    cpu_id << IMR_TID_SHIFT;
1831 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: initial "
1832 			    "mapping reg 0x%lx\n", tmp_mondo_vec));
1833 #endif	/* _STARFIRE */
1834 		} else {
1835 			/*
1836 			 * There is already a different
1837 			 * ino programmed at this IMR.
1838 			 * Just read the IMR out to get the
1839 			 * correct MID target.
1840 			 */
1841 			tmp_mondo_vec = *mondo_vec_reg;
1842 			tmp_mondo_vec &= ~INTERRUPT_VALID;
1843 			*mondo_vec_reg = tmp_mondo_vec;
1844 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: existing "
1845 			    "mapping reg 0x%lx\n", tmp_mondo_vec));
1846 		}
1847 
1848 		sbus_arg->pil = hdlp->ih_pri;
1849 
1850 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Alloc sbus_arg "
1851 		    "0x%p\n", (void *)sbus_arg));
1852 	}
1853 
1854 	softsp->intr_hndlr_cnt[slot]++;
1855 
1856 	mutex_exit(&softsp->intr_poll_list_lock);
1857 
1858 	/*
1859 	 * Program the ino vector accordingly.  This MUST be the
1860 	 * last thing we do.  Once we program the ino, the device
1861 	 * may begin to interrupt. Add this hardware interrupt to
1862 	 * the interrupt lists, and get the CPU to target it at.
1863 	 */
1864 
1865 	tmp_mondo_vec |= INTERRUPT_VALID;
1866 
1867 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: Ino 0x%x mapping reg: 0x%p "
1868 	    "Intr cntr %d\n", ino, (void *)mondo_vec_reg,
1869 	    softsp->intr_hndlr_cnt[slot]));
1870 
1871 	/* Force the interrupt state machine to idle. */
1872 	if (reset_ism_register) {
1873 		tmpreg = SBUS_INTR_IDLE;
1874 		*sbus_arg->clear_reg = tmpreg;
1875 	}
1876 
1877 	/* Store it in the hardware reg. */
1878 	*mondo_vec_reg = tmp_mondo_vec;
1879 
1880 	/* Flush store buffers */
1881 	tmpreg = *softsp->sbus_ctrl_reg;
1882 
1883 done:
1884 	return (ret);
1885 }
1886 
1887 static void
1888 sbus_free_handler(dev_info_t *dip, uint32_t inum,
1889     struct sbus_wrapper_arg *sbus_arg)
1890 {
1891 	struct sbus_intr_handler *listp, *prevp;
1892 
1893 	if (sbus_arg) {
1894 		prevp = NULL;
1895 		listp = sbus_arg->handler_list;
1896 
1897 		while (listp) {
1898 			if (listp->dip == dip && listp->inum == inum) {
1899 				if (prevp)
1900 					prevp->next = listp->next;
1901 				else {
1902 					prevp = listp->next;
1903 					sbus_arg->handler_list = prevp;
1904 				}
1905 
1906 				kmem_free(listp,
1907 				    sizeof (struct sbus_intr_handler));
1908 				break;
1909 			}
1910 			prevp = listp;
1911 			listp = listp->next;
1912 		}
1913 	}
1914 }
1915 
1916 /*
1917  * remove_intrspec - Remove an interrupt specification.
1918  */
1919 /*ARGSUSED*/
1920 static void
1921 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1922     ddi_intr_handle_impl_t *hdlp)
1923 {
1924 	volatile uint64_t *mondo_vec_reg;
1925 	volatile uint64_t *intr_state_reg;
1926 #ifndef lint
1927 	volatile uint64_t tmpreg;
1928 #endif /* !lint */
1929 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1930 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1931 	int start_bit, ino, slot;
1932 	struct sbus_wrapper_arg *sbus_arg;
1933 
1934 	/* Grab the mutex protecting the poll list */
1935 	mutex_enter(&softsp->intr_poll_list_lock);
1936 
1937 	/* Xlate the interrupt */
1938 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
1939 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
1940 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1941 		    ddi_driver_name(rdip));
1942 		goto done;
1943 	}
1944 
1945 	ino = ((int32_t)hdlp->ih_vector) & SBUS_MAX_INO;
1946 
1947 	mondo_vec_reg = (softsp->intr_mapping_reg +
1948 	    ino_table[ino]->mapping_reg);
1949 
1950 	/* Turn off the valid bit in the mapping register. */
1951 	*mondo_vec_reg &= ~INTERRUPT_VALID;
1952 #ifndef lint
1953 	tmpreg = *softsp->sbus_ctrl_reg;
1954 #endif /* !lint */
1955 
1956 	/* Get our bit position for checking intr pending */
1957 	if (ino > MAX_MONDO_EXTERNAL) {
1958 		start_bit = ino_table[ino]->diagreg_shift;
1959 		intr_state_reg = softsp->obio_intr_state;
1960 	} else {
1961 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1962 		intr_state_reg = softsp->sbus_intr_state;
1963 	}
1964 
1965 	while (((*intr_state_reg >> start_bit) & 0x3) == INT_PENDING &&
1966 	    !panicstr)
1967 		/* empty */;
1968 
1969 	slot = find_sbus_slot(dip, rdip);
1970 
1971 	/* Return if the slot is invalid */
1972 	if (slot >= MAX_SBUS_SLOT_ADDR || slot < 0) {
1973 		goto done;
1974 	}
1975 
1976 	sbus_arg = softsp->intr_list[ino];
1977 
1978 	/* Decrement the intr handler count on this slot */
1979 	softsp->intr_hndlr_cnt[slot]--;
1980 
1981 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Softsp 0x%p, Mondo 0x%x, "
1982 	    "ino 0x%x, sbus_arg 0x%p intr cntr %d\n", (void *)softsp,
1983 	    hdlp->ih_vector, ino, (void *)sbus_arg,
1984 	    softsp->intr_hndlr_cnt[slot]));
1985 
1986 	ASSERT(sbus_arg != NULL);
1987 	ASSERT(sbus_arg->handler_list != NULL);
1988 	sbus_free_handler(rdip, hdlp->ih_inum, sbus_arg);
1989 
1990 	/* If we still have a list, we're done. */
1991 	if (sbus_arg->handler_list == NULL)
1992 		i_ddi_rem_ivintr(hdlp);
1993 
1994 	/*
1995 	 * If other devices are still installed for this slot, we need to
1996 	 * turn the valid bit back on.
1997 	 */
1998 	if (softsp->intr_hndlr_cnt[slot] > 0) {
1999 		*mondo_vec_reg |= INTERRUPT_VALID;
2000 #ifndef lint
2001 		tmpreg = *softsp->sbus_ctrl_reg;
2002 #endif /* !lint */
2003 	}
2004 
2005 	if ((softsp->intr_hndlr_cnt[slot] == 0) || (slot >= EXT_SBUS_SLOTS)) {
2006 		ASSERT(sbus_arg->handler_list == NULL);
2007 #ifdef	_STARFIRE
2008 		/* Do cleanup for interrupt target translation */
2009 		pc_ittrans_cleanup(softsp->ittrans_cookie, mondo_vec_reg);
2010 #endif	/* _STARFIRE */
2011 	}
2012 
2013 
2014 	/* Free up the memory used for the sbus interrupt handler */
2015 	if (sbus_arg->handler_list == NULL) {
2016 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Freeing sbus arg "
2017 		    "0x%p\n", (void *)sbus_arg));
2018 		kmem_free(sbus_arg, sizeof (struct sbus_wrapper_arg));
2019 		softsp->intr_list[ino] = NULL;
2020 	}
2021 
2022 done:
2023 	mutex_exit(&softsp->intr_poll_list_lock);
2024 }
2025 
2026 /*
2027  * We're prepared to claim that the interrupt string is in
2028  * the form of a list of <SBusintr> specifications, or we're dealing
2029  * with on-board devices and we have an interrupt_number property which
2030  * gives us our mondo number.
2031  * Translate the sbus levels or mondos into sysiointrspecs.
2032  */
2033 static int
2034 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, uint32_t *intr,
2035     uint32_t *pil, int32_t ign)
2036 {
2037 	uint32_t ino, slot, level = *intr;
2038 	int ret = DDI_SUCCESS;
2039 
2040 	/*
2041 	 * Create the sysio ino number.  onboard devices will have
2042 	 * an "interrupts" property, that is equal to the ino number.
2043 	 * If the devices are from the
2044 	 * expansion slots, we construct the ino number by putting
2045 	 * the slot number in the upper three bits, and the sbus
2046 	 * interrupt level in the lower three bits.
2047 	 */
2048 	if (level > MAX_SBUS_LEVEL) {
2049 		ino = level;
2050 	} else {
2051 		/* Construct ino from slot and interrupts */
2052 		if ((slot = find_sbus_slot(dip, rdip)) == -1) {
2053 			cmn_err(CE_WARN, "Can't determine sbus slot "
2054 			    "of %s device\n", ddi_driver_name(rdip));
2055 			ret = DDI_FAILURE;
2056 			goto done;
2057 		}
2058 
2059 		if (slot >= MAX_SBUS_SLOT_ADDR) {
2060 			cmn_err(CE_WARN, "Invalid sbus slot 0x%x"
2061 			    "in %s device\n", slot, ddi_driver_name(rdip));
2062 			ret = DDI_FAILURE;
2063 			goto done;
2064 		}
2065 
2066 		ino = slot << 3;
2067 		ino |= level;
2068 	}
2069 
2070 	/* Sanity check the inos range */
2071 	if (ino >= MAX_INO_TABLE_SIZE) {
2072 		cmn_err(CE_WARN, "Ino vector 0x%x out of range", ino);
2073 		ret = DDI_FAILURE;
2074 		goto done;
2075 	}
2076 	/* Sanity check the inos value */
2077 	if (!ino_table[ino]) {
2078 		cmn_err(CE_WARN, "Ino vector 0x%x is invalid", ino);
2079 		ret = DDI_FAILURE;
2080 		goto done;
2081 	}
2082 
2083 	if (*pil == 0) {
2084 #define	SOC_PRIORITY 5
2085 		/* The sunfire i/o board has a soc in the printer slot */
2086 		if ((ino_table[ino]->clear_reg == PP_CLEAR) &&
2087 		    ((strcmp(ddi_get_name(rdip), "soc") == 0) ||
2088 		    (strcmp(ddi_get_name(rdip), "SUNW,soc") == 0))) {
2089 			*pil = SOC_PRIORITY;
2090 		} else {
2091 			/* Figure out the pil associated with this interrupt */
2092 			*pil = interrupt_priorities[ino];
2093 		}
2094 	}
2095 
2096 	/* Or in the upa_id into the interrupt group number field */
2097 	*intr = (uint32_t)(ino | ign);
2098 
2099 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Xlate intr: Interrupt info for "
2100 	    "device %s Mondo: 0x%x, ino: 0x%x, Pil: 0x%x, sbus level: 0x%x\n",
2101 	    ddi_driver_name(rdip), *intr, ino, *pil, level));
2102 
2103 done:
2104 	return (ret);
2105 }
2106 
2107 /* new intr_ops structure */
2108 int
2109 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
2110     ddi_intr_handle_impl_t *hdlp, void *result)
2111 {
2112 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2113 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2114 	int			ret = DDI_SUCCESS;
2115 
2116 
2117 	switch (intr_op) {
2118 	case DDI_INTROP_GETCAP:
2119 		*(int *)result = DDI_INTR_FLAG_LEVEL;
2120 		break;
2121 	case DDI_INTROP_ALLOC:
2122 		*(int *)result = hdlp->ih_scratch1;
2123 		break;
2124 	case DDI_INTROP_FREE:
2125 		break;
2126 	case DDI_INTROP_GETPRI:
2127 		if (hdlp->ih_pri == 0) {
2128 			/* Xlate the interrupt */
2129 			(void) sbus_xlate_intrs(dip, rdip,
2130 			    (uint32_t *)&hdlp->ih_vector, &hdlp->ih_pri,
2131 			    softsp->intr_mapping_ign);
2132 		}
2133 
2134 		*(int *)result = hdlp->ih_pri;
2135 		break;
2136 	case DDI_INTROP_SETPRI:
2137 		break;
2138 	case DDI_INTROP_ADDISR:
2139 		ret = sbus_add_intr_impl(dip, rdip, hdlp);
2140 		break;
2141 	case DDI_INTROP_REMISR:
2142 		sbus_remove_intr_impl(dip, rdip, hdlp);
2143 		break;
2144 	case DDI_INTROP_ENABLE:
2145 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2146 		    SBUS_INTR_STATE_ENABLE);
2147 		break;
2148 	case DDI_INTROP_DISABLE:
2149 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2150 		    SBUS_INTR_STATE_DISABLE);
2151 		break;
2152 	case DDI_INTROP_NINTRS:
2153 	case DDI_INTROP_NAVAIL:
2154 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
2155 		break;
2156 	case DDI_INTROP_SETCAP:
2157 	case DDI_INTROP_SETMASK:
2158 	case DDI_INTROP_CLRMASK:
2159 	case DDI_INTROP_GETPENDING:
2160 		ret = DDI_ENOTSUP;
2161 		break;
2162 	case DDI_INTROP_SUPPORTED_TYPES:
2163 		/* Sbus nexus driver supports only fixed interrupts */
2164 		*(int *)result = i_ddi_get_intx_nintrs(rdip) ?
2165 		    DDI_INTR_TYPE_FIXED : 0;
2166 		break;
2167 	default:
2168 		ret = i_ddi_intr_ops(dip, rdip, intr_op, hdlp, result);
2169 		break;
2170 	}
2171 
2172 	return (ret);
2173 }
2174 
2175 
2176 /*
2177  * Called by suspend/resume to save/restore the interrupt status (valid bit)
2178  * of the interrupt mapping registers.
2179  */
2180 static void
2181 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
2182     int save)
2183 {
2184 	int i;
2185 	volatile uint64_t *mondo_vec_reg;
2186 
2187 	for (i = 0; i < MAX_INO_TABLE_SIZE; i++) {
2188 		if (ino_table[i] != NULL) {
2189 			mondo_vec_reg = baddr + ino_table[i]->mapping_reg;
2190 			if (save) {
2191 				if (*mondo_vec_reg & INTERRUPT_VALID) {
2192 					cpr_softsp[i] = *mondo_vec_reg;
2193 				}
2194 			} else {
2195 				if (cpr_softsp[i]) {
2196 					*mondo_vec_reg = cpr_softsp[i];
2197 				}
2198 			}
2199 		}
2200 	}
2201 }
2202 
2203 #define	SZ_INO_TABLE (sizeof (ino_table) / sizeof (ino_table[0]))
2204 
2205 /*
2206  * sbus_intrdist
2207  *
2208  * This function retargets active interrupts by reprogramming the mondo
2209  * vec register. If the CPU ID of the target has not changed, then
2210  * the mondo is not reprogrammed. The routine must hold the mondo
2211  * lock for this instance of the sbus.
2212  */
2213 static void
2214 sbus_intrdist(void *arg)
2215 {
2216 	struct sbus_soft_state *softsp;
2217 	dev_info_t *dip = (dev_info_t *)arg;
2218 	volatile uint64_t *mondo_vec_reg;
2219 	uint64_t *last_mondo_vec_reg;
2220 	uint64_t mondo_vec;
2221 	volatile uint64_t *intr_state_reg;
2222 	uint_t start_bit;
2223 	volatile uint64_t tmpreg; /* HW flush reg */
2224 	uint_t mondo;
2225 	uint_t cpu_id;
2226 
2227 	/* extract the soft state pointer */
2228 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2229 
2230 	last_mondo_vec_reg = NULL;
2231 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2232 		if (ino_table[mondo] == NULL)
2233 			continue;
2234 
2235 		mondo_vec_reg = (softsp->intr_mapping_reg +
2236 		    ino_table[mondo]->mapping_reg);
2237 
2238 		/* Don't reprogram the same register twice */
2239 		if (mondo_vec_reg == last_mondo_vec_reg)
2240 			continue;
2241 
2242 		if ((*mondo_vec_reg & INTERRUPT_VALID) == 0)
2243 			continue;
2244 
2245 		last_mondo_vec_reg = (uint64_t *)mondo_vec_reg;
2246 
2247 		cpu_id = intr_dist_cpuid();
2248 #ifdef _STARFIRE
2249 		/*
2250 		 * For Starfire it is a pain to check the current target for
2251 		 * the mondo since we have to read the PC asics ITTR slot
2252 		 * assigned to this mondo. It will be much easier to assume
2253 		 * the current target is always different and do the target
2254 		 * reprogram all the time.
2255 		 */
2256 #else
2257 		if (((*mondo_vec_reg & IMR_TID) >> IMR_TID_SHIFT) == cpu_id) {
2258 			/* It is the same, don't reprogram */
2259 			return;
2260 		}
2261 #endif	/* _STARFIRE */
2262 
2263 		/* So it's OK to reprogram the CPU target */
2264 
2265 		/* turn off valid bit and wait for the state machine to idle */
2266 		*mondo_vec_reg &= ~INTERRUPT_VALID;
2267 
2268 		tmpreg = *softsp->sbus_ctrl_reg;
2269 
2270 #ifdef	lint
2271 		tmpreg = tmpreg;
2272 #endif	/* lint */
2273 
2274 		if (mondo > MAX_MONDO_EXTERNAL) {
2275 			start_bit = ino_table[mondo]->diagreg_shift;
2276 			intr_state_reg = softsp->obio_intr_state;
2277 
2278 			/*
2279 			 * Loop waiting for state machine to idle. Do not keep
2280 			 * looping on a panic so that the system does not hang.
2281 			 */
2282 			while ((((*intr_state_reg >> start_bit) & 0x3) ==
2283 			    INT_PENDING) && !panicstr)
2284 				/* empty */;
2285 		} else {
2286 			int int_pending = 0;	/* interrupts pending */
2287 
2288 			/*
2289 			 * Shift over to first bit for this Sbus slot, 16
2290 			 * bits per slot, bits 0-1 of each slot are reserved.
2291 			 */
2292 			start_bit = 16 * (mondo >> 3) + 2;
2293 			intr_state_reg = softsp->sbus_intr_state;
2294 
2295 			/*
2296 			 * Make sure interrupts for levels 1-7 of this slot
2297 			 * are not pending.
2298 			 */
2299 			do {
2300 				int level;	/* Sbus interrupt level */
2301 				int shift;		/* # of bits to shift */
2302 				uint64_t state_reg = *intr_state_reg;
2303 
2304 				int_pending = 0;
2305 
2306 				for (shift = start_bit, level = 1; level < 8;
2307 				    level++, shift += 2) {
2308 					if (((state_reg >> shift) &
2309 					    0x3) == INT_PENDING) {
2310 						int_pending = 1;
2311 						break;
2312 					}
2313 				}
2314 			} while (int_pending && !panicstr);
2315 		}
2316 
2317 		/* re-target the mondo and turn it on */
2318 #ifdef _STARFIRE
2319 		mondo_vec = (pc_translate_tgtid(softsp->ittrans_cookie,
2320 		    cpu_id, mondo_vec_reg) <<
2321 		    INTERRUPT_CPU_FIELD) |
2322 		    INTERRUPT_VALID;
2323 #else
2324 		mondo_vec = (cpu_id << INTERRUPT_CPU_FIELD) | INTERRUPT_VALID;
2325 #endif	/* _STARFIRE */
2326 
2327 		/* write it back to the hardware. */
2328 		*mondo_vec_reg = mondo_vec;
2329 
2330 		/* flush the hardware buffers. */
2331 		tmpreg = *mondo_vec_reg;
2332 
2333 #ifdef	lint
2334 		tmpreg = tmpreg;
2335 #endif	/* lint */
2336 	}
2337 }
2338 
2339 /*
2340  * Reset interrupts to IDLE.  This function is called during
2341  * panic handling after redistributing interrupts; it's needed to
2342  * support dumping to network devices after 'sync' from OBP.
2343  *
2344  * N.B.  This routine runs in a context where all other threads
2345  * are permanently suspended.
2346  */
2347 static uint_t
2348 sbus_intr_reset(void *arg)
2349 {
2350 	dev_info_t *dip = (dev_info_t *)arg;
2351 	struct sbus_soft_state *softsp;
2352 	uint_t mondo;
2353 	volatile uint64_t *mondo_clear_reg;
2354 
2355 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2356 
2357 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2358 		if (ino_table[mondo] == NULL ||
2359 		    ino_table[mondo]->clear_reg == NULL) {
2360 
2361 			continue;
2362 		}
2363 
2364 		mondo_clear_reg = (softsp->clr_intr_reg +
2365 		    ino_table[mondo]->clear_reg);
2366 		*mondo_clear_reg = SBUS_INTR_IDLE;
2367 	}
2368 
2369 	return (BF_NONE);
2370 }
2371 
2372 /*
2373  * called from sbus_add_kstats() to create a kstat for each %pic
2374  * that the SBUS supports. These (read-only) kstats export the
2375  * event names that each %pic supports.
2376  *
2377  * if we fail to create any of these kstats we must remove any
2378  * that we have already created and return;
2379  *
2380  * NOTE: because all sbus devices use the same events we only
2381  *	 need to create the picN kstats once. All instances can
2382  *	 use the same picN kstats.
2383  *
2384  *       The flexibility exists to allow each device specify it's
2385  *       own events by creating picN kstats with the instance number
2386  *       set to ddi_get_instance(softsp->dip).
2387  *
2388  *       When searching for a picN kstat for a device you should
2389  *       first search for a picN kstat using the instance number
2390  *       of the device you are interested in. If that fails you
2391  *       should use the first picN kstat found for that device.
2392  */
2393 static	void
2394 sbus_add_picN_kstats(dev_info_t *dip)
2395 {
2396 	/*
2397 	 * SBUS Performance Events.
2398 	 *
2399 	 * We declare an array of event-names and event-masks.
2400 	 * The num of events in this array is AC_NUM_EVENTS.
2401 	 */
2402 	sbus_event_mask_t sbus_events_arr[SBUS_NUM_EVENTS] = {
2403 		{"dvma_stream_rd", 0x0}, {"dvma_stream_wr", 0x1},
2404 		{"dvma_const_rd", 0x2}, {"dvma_const_wr", 0x3},
2405 		{"dvma_tlb_misses", 0x4}, {"dvma_stream_buf_mis", 0x5},
2406 		{"dvma_cycles", 0x6}, {"dvma_bytes_xfr", 0x7},
2407 		{"interrupts", 0x8}, {"upa_inter_nack", 0x9},
2408 		{"pio_reads", 0xA}, {"pio_writes", 0xB},
2409 		{"sbus_reruns", 0xC}, {"pio_cycles", 0xD}
2410 	};
2411 
2412 	/*
2413 	 * We declare an array of clear masks for each pic.
2414 	 * These masks are used to clear the %pcr bits for
2415 	 * each pic.
2416 	 */
2417 	sbus_event_mask_t sbus_clear_pic[SBUS_NUM_PICS] = {
2418 		/* pic0 */
2419 		{"clear_pic", (uint64_t)~(0xf)},
2420 		/* pic1 */
2421 		{"clear_pic", (uint64_t)~(0xf << 8)}
2422 	};
2423 
2424 	struct kstat_named *sbus_pic_named_data;
2425 	int  		event, pic;
2426 	char 		pic_name[30];
2427 	int		instance = ddi_get_instance(dip);
2428 	int		pic_shift = 0;
2429 
2430 	for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
2431 		/*
2432 		 * create the picN kstat. The size of this kstat is
2433 		 * SBUS_NUM_EVENTS + 1 for the clear_event_mask
2434 		 */
2435 		(void) sprintf(pic_name, "pic%d", pic);	/* pic0, pic1 ... */
2436 		if ((sbus_picN_ksp[pic] = kstat_create("sbus",
2437 		    instance, pic_name, "bus", KSTAT_TYPE_NAMED,
2438 		    SBUS_NUM_EVENTS + 1, NULL)) == NULL) {
2439 				cmn_err(CE_WARN, "sbus %s: kstat_create failed",
2440 				    pic_name);
2441 
2442 			/* remove pic0 kstat if pic1 create fails */
2443 			if (pic == 1) {
2444 				kstat_delete(sbus_picN_ksp[0]);
2445 				sbus_picN_ksp[0] = NULL;
2446 			}
2447 			return;
2448 		}
2449 
2450 		sbus_pic_named_data =
2451 		    (struct kstat_named *)(sbus_picN_ksp[pic]->ks_data);
2452 
2453 		/*
2454 		 * when we are writing pcr_masks to the kstat we need to
2455 		 * shift bits left by 8 for pic1 events.
2456 		 */
2457 		if (pic == 1)
2458 			pic_shift = 8;
2459 
2460 		/*
2461 		 * for each picN event we need to write a kstat record
2462 		 * (name = EVENT, value.ui64 = PCR_MASK)
2463 		 */
2464 		for (event = 0; event < SBUS_NUM_EVENTS; event ++) {
2465 
2466 			/* pcr_mask */
2467 			sbus_pic_named_data[event].value.ui64 =
2468 			    sbus_events_arr[event].pcr_mask << pic_shift;
2469 
2470 			/* event-name */
2471 			kstat_named_init(&sbus_pic_named_data[event],
2472 			    sbus_events_arr[event].event_name,
2473 			    KSTAT_DATA_UINT64);
2474 		}
2475 
2476 		/*
2477 		 * we add the clear_pic event and mask as the last
2478 		 * record in the kstat
2479 		 */
2480 		/* pcr mask */
2481 		sbus_pic_named_data[SBUS_NUM_EVENTS].value.ui64 =
2482 		    sbus_clear_pic[pic].pcr_mask;
2483 
2484 		/* event-name */
2485 		kstat_named_init(&sbus_pic_named_data[SBUS_NUM_EVENTS],
2486 		    sbus_clear_pic[pic].event_name,
2487 		    KSTAT_DATA_UINT64);
2488 
2489 		kstat_install(sbus_picN_ksp[pic]);
2490 	}
2491 }
2492 
2493 static	void
2494 sbus_add_kstats(struct sbus_soft_state *softsp)
2495 {
2496 	struct kstat *sbus_counters_ksp;
2497 	struct kstat_named *sbus_counters_named_data;
2498 
2499 	/*
2500 	 * Create the picN kstats if we are the first instance
2501 	 * to attach. We use sbus_attachcnt as a count of how
2502 	 * many instances have attached. This is protected by
2503 	 * a mutex.
2504 	 */
2505 	mutex_enter(&sbus_attachcnt_mutex);
2506 	if (sbus_attachcnt == 0)
2507 		sbus_add_picN_kstats(softsp->dip);
2508 
2509 	sbus_attachcnt ++;
2510 	mutex_exit(&sbus_attachcnt_mutex);
2511 
2512 	/*
2513 	 * A "counter" kstat is created for each sbus
2514 	 * instance that provides access to the %pcr and %pic
2515 	 * registers for that instance.
2516 	 *
2517 	 * The size of this kstat is SBUS_NUM_PICS + 1 for %pcr
2518 	 */
2519 	if ((sbus_counters_ksp = kstat_create("sbus",
2520 	    ddi_get_instance(softsp->dip), "counters",
2521 	    "bus", KSTAT_TYPE_NAMED, SBUS_NUM_PICS + 1,
2522 	    KSTAT_FLAG_WRITABLE)) == NULL) {
2523 
2524 			cmn_err(CE_WARN, "sbus%d counters: kstat_create"
2525 			    " failed", ddi_get_instance(softsp->dip));
2526 		return;
2527 	}
2528 
2529 	sbus_counters_named_data =
2530 	    (struct kstat_named *)(sbus_counters_ksp->ks_data);
2531 
2532 	/* initialize the named kstats */
2533 	kstat_named_init(&sbus_counters_named_data[0],
2534 	    "pcr", KSTAT_DATA_UINT64);
2535 
2536 	kstat_named_init(&sbus_counters_named_data[1],
2537 	    "pic0", KSTAT_DATA_UINT64);
2538 
2539 	kstat_named_init(&sbus_counters_named_data[2],
2540 	    "pic1", KSTAT_DATA_UINT64);
2541 
2542 	sbus_counters_ksp->ks_update = sbus_counters_kstat_update;
2543 	sbus_counters_ksp->ks_private = (void *)softsp;
2544 
2545 	kstat_install(sbus_counters_ksp);
2546 
2547 	/* update the sofstate */
2548 	softsp->sbus_counters_ksp = sbus_counters_ksp;
2549 }
2550 
2551 static	int
2552 sbus_counters_kstat_update(kstat_t *ksp, int rw)
2553 {
2554 	struct kstat_named *sbus_counters_data;
2555 	struct sbus_soft_state *softsp;
2556 	uint64_t pic_register;
2557 
2558 	sbus_counters_data = (struct kstat_named *)ksp->ks_data;
2559 	softsp = (struct sbus_soft_state *)ksp->ks_private;
2560 
2561 	if (rw == KSTAT_WRITE) {
2562 
2563 		/*
2564 		 * Write the pcr value to the softsp->sbus_pcr.
2565 		 * The pic register is read-only so we don't
2566 		 * attempt to write to it.
2567 		 */
2568 
2569 		*softsp->sbus_pcr =
2570 		    (uint32_t)sbus_counters_data[0].value.ui64;
2571 
2572 	} else {
2573 		/*
2574 		 * Read %pcr and %pic register values and write them
2575 		 * into counters kstat.
2576 		 *
2577 		 * Due to a hardware bug we need to right shift the %pcr
2578 		 * by 4 bits. This is only done when reading the %pcr.
2579 		 *
2580 		 */
2581 		/* pcr */
2582 		sbus_counters_data[0].value.ui64 = *softsp->sbus_pcr >> 4;
2583 
2584 		pic_register = *softsp->sbus_pic;
2585 		/*
2586 		 * sbus pic register:
2587 		 *  (63:32) = pic0
2588 		 *  (31:00) = pic1
2589 		 */
2590 
2591 		/* pic0 */
2592 		sbus_counters_data[1].value.ui64 = pic_register >> 32;
2593 		/* pic1 */
2594 		sbus_counters_data[2].value.ui64 =
2595 		    pic_register & SBUS_PIC0_MASK;
2596 
2597 	}
2598 	return (0);
2599 }
2600 
2601 static int
2602 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
2603     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
2604 {
2605 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2606 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2607 	int ino;
2608 	struct sbus_wrapper_arg *sbus_arg;
2609 	struct sbus_intr_handler *intr_handler;
2610 
2611 	/* Xlate the interrupt */
2612 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
2613 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
2614 		cmn_err(CE_WARN, "sbus_update_intr_state() can't xlate SBUS "
2615 		    "devices %s interrupt.", ddi_driver_name(rdip));
2616 		return (DDI_FAILURE);
2617 	}
2618 
2619 	ino = ((int32_t)hdlp->ih_vector) & SBUS_MAX_INO;
2620 	sbus_arg = softsp->intr_list[ino];
2621 
2622 	ASSERT(sbus_arg != NULL);
2623 	ASSERT(sbus_arg->handler_list != NULL);
2624 	intr_handler = sbus_arg->handler_list;
2625 
2626 	while (intr_handler) {
2627 		if ((intr_handler->inum == hdlp->ih_inum) &&
2628 		    (intr_handler->dip == rdip)) {
2629 			intr_handler->intr_state = new_intr_state;
2630 			return (DDI_SUCCESS);
2631 		}
2632 
2633 		intr_handler = intr_handler->next;
2634 	}
2635 
2636 	return (DDI_FAILURE);
2637 }
2638