xref: /titanic_50/usr/src/uts/sun4/os/ddi_impl.c (revision 1e49577a7fcde812700ded04431b49d67cc57d6d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * sun4 specific DDI implementation
29  */
30 #include <sys/cpuvar.h>
31 #include <sys/ddi_subrdefs.h>
32 #include <sys/machsystm.h>
33 #include <sys/sunndi.h>
34 #include <sys/sysmacros.h>
35 #include <sys/ontrap.h>
36 #include <vm/seg_kmem.h>
37 #include <sys/membar.h>
38 #include <sys/dditypes.h>
39 #include <sys/ndifm.h>
40 #include <sys/fm/io/ddi.h>
41 #include <sys/ivintr.h>
42 #include <sys/bootconf.h>
43 #include <sys/conf.h>
44 #include <sys/ethernet.h>
45 #include <sys/idprom.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/systeminfo.h>
49 #include <sys/fpu/fpusystm.h>
50 #include <sys/vm.h>
51 #include <sys/ddi_isa.h>
52 #include <sys/modctl.h>
53 
54 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
55     ddi_intr_handle_impl_t *);
56 #pragma weak get_intr_parent
57 
58 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
59     ddi_intr_handle_impl_t *, void *);
60 #pragma weak process_intr_ops
61 
62 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
63     prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
64     int32_t len);
65 #pragma weak cells_1275_copy
66 
67 /*
68  * Wrapper for ddi_prop_lookup_int_array().
69  * This is handy because it returns the prop length in
70  * bytes which is what most of the callers require.
71  */
72 
73 static int
74 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
75 {
76 	int ret;
77 
78 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
79 	    DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
80 		*plen = (*plen) * (uint_t)sizeof (int);
81 	}
82 	return (ret);
83 }
84 
85 /*
86  * SECTION: DDI Node Configuration
87  */
88 
89 /*
90  * init_regspec_64:
91  *
92  * If the parent #size-cells is 2, convert the upa-style or
93  * safari-style reg property from 2-size cells to 1 size cell
94  * format, ignoring the size_hi, which must be zero for devices.
95  * (It won't be zero in the memory list properties in the memory
96  * nodes, but that doesn't matter here.)
97  */
98 struct ddi_parent_private_data *
99 init_regspec_64(dev_info_t *dip)
100 {
101 	struct ddi_parent_private_data *pd;
102 	dev_info_t *parent;
103 	int size_cells;
104 
105 	/*
106 	 * If there are no "reg"s in the child node, return.
107 	 */
108 	pd = ddi_get_parent_data(dip);
109 	if ((pd == NULL) || (pd->par_nreg == 0)) {
110 		return (pd);
111 	}
112 	parent = ddi_get_parent(dip);
113 
114 	size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
115 	    DDI_PROP_DONTPASS, "#size-cells", 1);
116 
117 	if (size_cells != 1)  {
118 
119 		int n, j;
120 		struct regspec *irp;
121 		struct reg_64 {
122 			uint_t addr_hi, addr_lo, size_hi, size_lo;
123 		};
124 		struct reg_64 *r64_rp;
125 		struct regspec *rp;
126 		uint_t len = 0;
127 		int *reg_prop;
128 
129 		ASSERT(size_cells == 2);
130 
131 		/*
132 		 * We already looked the property up once before if
133 		 * pd is non-NULL.
134 		 */
135 		(void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
136 		    DDI_PROP_DONTPASS, OBP_REG, &reg_prop, &len);
137 		ASSERT(len != 0);
138 
139 		n = sizeof (struct reg_64) / sizeof (int);
140 		n = len / n;
141 
142 		/*
143 		 * We're allocating a buffer the size of the PROM's property,
144 		 * but we're only using a smaller portion when we assign it
145 		 * to a regspec.  We do this so that in the
146 		 * impl_ddi_sunbus_removechild function, we will
147 		 * always free the right amount of memory.
148 		 */
149 		irp = rp = (struct regspec *)reg_prop;
150 		r64_rp = (struct reg_64 *)pd->par_reg;
151 
152 		for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
153 			ASSERT(r64_rp->size_hi == 0);
154 			rp->regspec_bustype = r64_rp->addr_hi;
155 			rp->regspec_addr = r64_rp->addr_lo;
156 			rp->regspec_size = r64_rp->size_lo;
157 		}
158 
159 		ddi_prop_free((void *)pd->par_reg);
160 		pd->par_nreg = n;
161 		pd->par_reg = irp;
162 	}
163 	return (pd);
164 }
165 
166 /*
167  * Create a ddi_parent_private_data structure from the ddi properties of
168  * the dev_info node.
169  *
170  * The "reg" is required if the driver wishes to create mappings on behalf
171  * of the device. The "reg" property is assumed to be a list of at least
172  * one triplet
173  *
174  *	<bustype, address, size>*1
175  *
176  * The "interrupt" property is no longer part of parent private data on
177  * sun4u. The interrupt parent is may not be the device tree parent.
178  *
179  * The "ranges" property describes the mapping of child addresses to parent
180  * addresses.
181  *
182  * N.B. struct rangespec is defined for the following default values:
183  *			parent  child
184  *	#address-cells	2	2
185  *	#size-cells	1	1
186  * This function doesn't deal with non-default cells and will not create
187  * ranges in such cases.
188  */
189 void
190 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
191 {
192 	struct ddi_parent_private_data *pdptr;
193 	int *reg_prop, *rng_prop;
194 	uint_t reg_len = 0, rng_len = 0;
195 	dev_info_t *parent;
196 	int parent_addr_cells, parent_size_cells;
197 	int child_addr_cells, child_size_cells;
198 
199 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
200 
201 	/*
202 	 * root node has no parent private data, so *ppd should
203 	 * be initialized for naming to work properly.
204 	 */
205 	if ((parent = ddi_get_parent(child)) == NULL)
206 		return;
207 
208 	/*
209 	 * Set reg field of parent data from "reg" property
210 	 */
211 	if ((get_prop_int_array(child, OBP_REG, &reg_prop, &reg_len)
212 	    == DDI_PROP_SUCCESS) && (reg_len != 0)) {
213 		pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
214 		pdptr->par_reg = (struct regspec *)reg_prop;
215 	}
216 
217 	/*
218 	 * "ranges" property ...
219 	 *
220 	 * This function does not handle cases where #address-cells != 2
221 	 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
222 	 *
223 	 * Nexus drivers with such exceptions (e.g. pci ranges)
224 	 * should either create a separate function for handling
225 	 * ranges or not use parent private data to store ranges.
226 	 */
227 
228 	/* root node has no ranges */
229 	if ((parent = ddi_get_parent(child)) == NULL)
230 		return;
231 
232 	child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
233 	    DDI_PROP_DONTPASS, "#address-cells", 2);
234 	child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
235 	    DDI_PROP_DONTPASS, "#size-cells", 1);
236 	parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
237 	    DDI_PROP_DONTPASS, "#address-cells", 2);
238 	parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
239 	    DDI_PROP_DONTPASS, "#size-cells", 1);
240 	if (child_addr_cells != 2 || parent_addr_cells != 2 ||
241 	    (child_size_cells != 1 && parent_size_cells != 1)) {
242 		NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
243 		    "#address-cells or #size-cells have non-default value"));
244 		return;
245 	}
246 
247 	if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
248 	    == DDI_PROP_SUCCESS) {
249 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
250 		pdptr->par_rng = (struct rangespec *)rng_prop;
251 	}
252 }
253 
254 /*
255  * Free ddi_parent_private_data structure
256  */
257 void
258 impl_free_ddi_ppd(dev_info_t *dip)
259 {
260 	struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
261 
262 	if (pdptr == NULL)
263 		return;
264 
265 	if (pdptr->par_nrng != 0)
266 		ddi_prop_free((void *)pdptr->par_rng);
267 
268 	if (pdptr->par_nreg != 0)
269 		ddi_prop_free((void *)pdptr->par_reg);
270 
271 	kmem_free(pdptr, sizeof (*pdptr));
272 	ddi_set_parent_data(dip, NULL);
273 }
274 
275 /*
276  * Name a child of sun busses based on the reg spec.
277  * Handles the following properties:
278  *
279  *	Property	value
280  *	Name		type
281  *
282  *	reg		register spec
283  *	interrupts	new (bus-oriented) interrupt spec
284  *	ranges		range spec
285  *
286  * This may be called multiple times, independent of
287  * initchild calls.
288  */
289 static int
290 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
291 {
292 	struct ddi_parent_private_data *pdptr;
293 	struct regspec *rp;
294 
295 	/*
296 	 * Fill in parent-private data and this function returns to us
297 	 * an indication if it used "registers" to fill in the data.
298 	 */
299 	if (ddi_get_parent_data(child) == NULL) {
300 		make_ddi_ppd(child, &pdptr);
301 		ddi_set_parent_data(child, pdptr);
302 	}
303 
304 	/*
305 	 * No reg property, return null string as address
306 	 * (e.g. root node)
307 	 */
308 	name[0] = '\0';
309 	if (sparc_pd_getnreg(child) == 0) {
310 		return (DDI_SUCCESS);
311 	}
312 
313 	rp = sparc_pd_getreg(child, 0);
314 	(void) snprintf(name, namelen, "%x,%x",
315 	    rp->regspec_bustype, rp->regspec_addr);
316 	return (DDI_SUCCESS);
317 }
318 
319 
320 /*
321  * Called from the bus_ctl op of some drivers.
322  * to implement the DDI_CTLOPS_INITCHILD operation.
323  *
324  * NEW drivers should NOT use this function, but should declare
325  * there own initchild/uninitchild handlers. (This function assumes
326  * the layout of the parent private data and the format of "reg",
327  * "ranges", "interrupts" properties and that #address-cells and
328  * #size-cells of the parent bus are defined to be default values.)
329  */
330 int
331 impl_ddi_sunbus_initchild(dev_info_t *child)
332 {
333 	char name[MAXNAMELEN];
334 
335 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
336 	ddi_set_name_addr(child, name);
337 
338 	/*
339 	 * Try to merge .conf node. If successful, return failure to
340 	 * remove this child.
341 	 */
342 	if ((ndi_dev_is_persistent_node(child) == 0) &&
343 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
344 		impl_ddi_sunbus_removechild(child);
345 		return (DDI_FAILURE);
346 	}
347 	return (DDI_SUCCESS);
348 }
349 
350 /*
351  * A better name for this function would be impl_ddi_sunbus_uninitchild()
352  * It does not remove the child, it uninitializes it, reclaiming the
353  * resources taken by impl_ddi_sunbus_initchild.
354  */
355 void
356 impl_ddi_sunbus_removechild(dev_info_t *dip)
357 {
358 	impl_free_ddi_ppd(dip);
359 	ddi_set_name_addr(dip, NULL);
360 	/*
361 	 * Strip the node to properly convert it back to prototype form
362 	 */
363 	impl_rem_dev_props(dip);
364 }
365 
366 /*
367  * SECTION: DDI Interrupt
368  */
369 
370 void
371 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
372 {
373 	int i;
374 	for (i = 0; i < len; i++)
375 		*to = *from;
376 }
377 
378 prop_1275_cell_t *
379 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
380 {
381 	prop_1275_cell_t *match_cell = 0;
382 	int32_t i;
383 
384 	for (i = 0; i < len; i++)
385 		if (cell1[i] != cell2[i]) {
386 			match_cell = &cell1[i];
387 			break;
388 		}
389 
390 	return (match_cell);
391 }
392 
393 /*
394  * get_intr_parent() is a generic routine that process a 1275 interrupt
395  * map (imap) property.  This function returns a dev_info_t structure
396  * which claims ownership of the interrupt domain.
397  * It also returns the new interrupt translation within this new domain.
398  * If an interrupt-parent or interrupt-map property are not found,
399  * then we fallback to using the device tree's parent.
400  *
401  * imap entry format:
402  * <reg>,<interrupt>,<phandle>,<translated interrupt>
403  * reg - The register specification in the interrupts domain
404  * interrupt - The interrupt specification
405  * phandle - PROM handle of the device that owns the xlated interrupt domain
406  * translated interrupt - interrupt specifier in the parents domain
407  * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
408  *	a unique entry called a unit interrupt specifier.
409  *
410  * Here's the processing steps:
411  * step1 - If the interrupt-parent property exists, create the ispec and
412  *	return the dip of the interrupt parent.
413  * step2 - Extract the interrupt-map property and the interrupt-map-mask
414  *	If these don't exist, just return the device tree parent.
415  * step3 - build up the unit interrupt specifier to match against the
416  *	interrupt map property
417  * step4 - Scan the interrupt-map property until a match is found
418  * step4a - Extract the interrupt parent
419  * step4b - Compare the unit interrupt specifier
420  */
421 dev_info_t *
422 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
423 {
424 	prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
425 	int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
426 	    addr_cells, intr_cells, reg_len, i, j;
427 	int32_t match_found = 0;
428 	dev_info_t *intr_parent_dip = NULL;
429 	uint32_t *intr = &hdlp->ih_vector;
430 	uint32_t nodeid;
431 #ifdef DEBUG
432 	static int debug = 0;
433 #endif
434 
435 	/*
436 	 * step1
437 	 * If we have an interrupt-parent property, this property represents
438 	 * the nodeid of our interrupt parent.
439 	 */
440 	if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
441 	    "interrupt-parent", -1)) != -1) {
442 		intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
443 		ASSERT(intr_parent_dip);
444 
445 		/*
446 		 * Attach the interrupt parent.
447 		 *
448 		 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
449 		 *	Also, interrupt parent isn't held. This needs
450 		 *	to be revisited if DR-capable platforms implement
451 		 *	interrupt redirection.
452 		 */
453 		if (i_ddi_attach_node_hierarchy(intr_parent_dip)
454 		    != DDI_SUCCESS) {
455 			ndi_rele_devi(intr_parent_dip);
456 			return (NULL);
457 		}
458 
459 		return (intr_parent_dip);
460 	}
461 
462 	/*
463 	 * step2
464 	 * Get interrupt map structure from PROM property
465 	 */
466 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
467 	    "interrupt-map", (caddr_t)&imap, &imap_sz)
468 	    != DDI_PROP_SUCCESS) {
469 		/*
470 		 * If we don't have an imap property, default to using the
471 		 * device tree.
472 		 */
473 
474 		ndi_hold_devi(pdip);
475 		return (pdip);
476 	}
477 
478 	/* Get the interrupt mask property */
479 	if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
480 	    "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
481 	    != DDI_PROP_SUCCESS) {
482 		/*
483 		 * If we don't find this property, we have to fail the request
484 		 * because the 1275 imap property wasn't defined correctly.
485 		 */
486 		ASSERT(intr_parent_dip == NULL);
487 		goto exit2;
488 	}
489 
490 	/* Get the address cell size */
491 	addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
492 	    "#address-cells", 2);
493 
494 	/* Get the interrupts cell size */
495 	intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
496 	    "#interrupt-cells", 1);
497 
498 	/*
499 	 * step3
500 	 * Now lets build up the unit interrupt specifier e.g. reg,intr
501 	 * and apply the imap mask.  match_req will hold this when we're
502 	 * through.
503 	 */
504 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
505 	    (caddr_t)&reg_p, &reg_len) != DDI_SUCCESS) {
506 		ASSERT(intr_parent_dip == NULL);
507 		goto exit3;
508 	}
509 
510 	match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
511 	    CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
512 
513 	for (i = 0; i < addr_cells; i++)
514 		match_req[i] = (reg_p[i] & imap_mask[i]);
515 
516 	for (j = 0; j < intr_cells; i++, j++)
517 		match_req[i] = (intr[j] & imap_mask[i]);
518 
519 	/* Calculate the imap size in cells */
520 	imap_cells = BYTES_TO_1275_CELLS(imap_sz);
521 
522 #ifdef DEBUG
523 	if (debug)
524 		prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
525 		    "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
526 		    (void *)match_req, (void *)imap);
527 #endif
528 
529 	/*
530 	 * Scan the imap property looking for a match of the interrupt unit
531 	 * specifier.  This loop is rather complex since the data within the
532 	 * imap property may vary in size.
533 	 */
534 	for (scan = imap, imap_scan_cells = i = 0;
535 	    imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
536 		int new_intr_cells;
537 
538 		/* Set the index to the nodeid field */
539 		i = addr_cells + intr_cells;
540 
541 		/*
542 		 * step4a
543 		 * Translate the nodeid field to a dip
544 		 */
545 		ASSERT(intr_parent_dip == NULL);
546 		intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
547 
548 		ASSERT(intr_parent_dip != 0);
549 #ifdef DEBUG
550 		if (debug)
551 			prom_printf("scan 0x%p\n", (void *)scan);
552 #endif
553 		/*
554 		 * The tmp_dip describes the new domain, get it's interrupt
555 		 * cell size
556 		 */
557 		new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
558 		    "#interrupts-cells", 1);
559 
560 		/*
561 		 * step4b
562 		 * See if we have a match on the interrupt unit specifier
563 		 */
564 		if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
565 		    == 0) {
566 			uint32_t *intr;
567 
568 			match_found = 1;
569 
570 			/*
571 			 * If we have an imap parent whose not in our device
572 			 * tree path, we need to hold and install that driver.
573 			 */
574 			if (i_ddi_attach_node_hierarchy(intr_parent_dip)
575 			    != DDI_SUCCESS) {
576 				ndi_rele_devi(intr_parent_dip);
577 				intr_parent_dip = (dev_info_t *)NULL;
578 				goto exit4;
579 			}
580 
581 			/*
582 			 * We need to handcraft an ispec along with a bus
583 			 * interrupt value, so we can dup it into our
584 			 * standard ispec structure.
585 			 */
586 			/* Extract the translated interrupt information */
587 			intr = kmem_alloc(
588 			    CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
589 
590 			for (j = 0; j < new_intr_cells; j++, i++)
591 				intr[j] = scan[i];
592 
593 			cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
594 
595 			kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
596 
597 #ifdef DEBUG
598 			if (debug)
599 				prom_printf("dip 0x%p\n",
600 				    (void *)intr_parent_dip);
601 #endif
602 			break;
603 		} else {
604 #ifdef DEBUG
605 			if (debug)
606 				prom_printf("dip 0x%p\n",
607 				    (void *)intr_parent_dip);
608 #endif
609 			ndi_rele_devi(intr_parent_dip);
610 			intr_parent_dip = NULL;
611 			i += new_intr_cells;
612 		}
613 	}
614 
615 	/*
616 	 * If we haven't found our interrupt parent at this point, fallback
617 	 * to using the device tree.
618 	 */
619 	if (!match_found) {
620 		ndi_hold_devi(pdip);
621 		ASSERT(intr_parent_dip == NULL);
622 		intr_parent_dip = pdip;
623 	}
624 
625 	ASSERT(intr_parent_dip != NULL);
626 
627 exit4:
628 	kmem_free(reg_p, reg_len);
629 	kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
630 	    CELLS_1275_TO_BYTES(intr_cells));
631 
632 exit3:
633 	kmem_free(imap_mask, imap_mask_sz);
634 
635 exit2:
636 	kmem_free(imap, imap_sz);
637 
638 	return (intr_parent_dip);
639 }
640 
641 /*
642  * process_intr_ops:
643  *
644  * Process the interrupt op via the interrupt parent.
645  */
646 int
647 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
648     ddi_intr_handle_impl_t *hdlp, void *result)
649 {
650 	int		ret = DDI_FAILURE;
651 
652 	if (NEXUS_HAS_INTR_OP(pdip)) {
653 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
654 		    bus_intr_op)) (pdip, rdip, op, hdlp, result);
655 	} else {
656 		cmn_err(CE_WARN, "Failed to process interrupt "
657 		    "for %s%d due to down-rev nexus driver %s%d",
658 		    ddi_get_name(rdip), ddi_get_instance(rdip),
659 		    ddi_get_name(pdip), ddi_get_instance(pdip));
660 	}
661 
662 	return (ret);
663 }
664 
665 /*ARGSUSED*/
666 uint_t
667 softlevel1(caddr_t arg)
668 {
669 	softint();
670 	return (1);
671 }
672 
673 /*
674  * indirection table, to save us some large switch statements
675  * NOTE: This must agree with "INTLEVEL_foo" constants in
676  *	<sys/avintr.h>
677  */
678 struct autovec *const vectorlist[] = { 0 };
679 
680 /*
681  * This value is exported here for the functions in avintr.c
682  */
683 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
684 
685 /*
686  * Check for machine specific interrupt levels which cannot be reassigned by
687  * settrap(), sun4u version.
688  *
689  * sun4u does not support V8 SPARC "fast trap" handlers.
690  */
691 /*ARGSUSED*/
692 int
693 exclude_settrap(int lvl)
694 {
695 	return (1);
696 }
697 
698 /*
699  * Check for machine specific interrupt levels which cannot have interrupt
700  * handlers added. We allow levels 1 through 15; level 0 is nonsense.
701  */
702 /*ARGSUSED*/
703 int
704 exclude_level(int lvl)
705 {
706 	return ((lvl < 1) || (lvl > 15));
707 }
708 
709 /*
710  * Wrapper functions used by New DDI interrupt framework.
711  */
712 
713 /*
714  * i_ddi_intr_ops:
715  */
716 int
717 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
718     ddi_intr_handle_impl_t *hdlp, void *result)
719 {
720 	dev_info_t	*pdip = ddi_get_parent(dip);
721 	int		ret = DDI_FAILURE;
722 
723 	/*
724 	 * The following check is required to address
725 	 * one of the test case of ADDI test suite.
726 	 */
727 	if (pdip == NULL)
728 		return (DDI_FAILURE);
729 
730 	if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
731 		return (process_intr_ops(pdip, rdip, op, hdlp, result));
732 
733 	if (hdlp->ih_vector == 0)
734 		hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
735 
736 	if (hdlp->ih_pri == 0)
737 		hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
738 
739 	switch (op) {
740 	case DDI_INTROP_ADDISR:
741 	case DDI_INTROP_REMISR:
742 	case DDI_INTROP_GETTARGET:
743 	case DDI_INTROP_SETTARGET:
744 	case DDI_INTROP_ENABLE:
745 	case DDI_INTROP_DISABLE:
746 	case DDI_INTROP_BLOCKENABLE:
747 	case DDI_INTROP_BLOCKDISABLE:
748 		/*
749 		 * Try and determine our parent and possibly an interrupt
750 		 * translation. intr parent dip returned held
751 		 */
752 		if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
753 			goto done;
754 	}
755 
756 	ret = process_intr_ops(pdip, rdip, op, hdlp, result);
757 
758 done:
759 	switch (op) {
760 	case DDI_INTROP_ADDISR:
761 	case DDI_INTROP_REMISR:
762 	case DDI_INTROP_ENABLE:
763 	case DDI_INTROP_DISABLE:
764 	case DDI_INTROP_BLOCKENABLE:
765 	case DDI_INTROP_BLOCKDISABLE:
766 		/* Release hold acquired in get_intr_parent() */
767 		if (pdip)
768 			ndi_rele_devi(pdip);
769 	}
770 
771 	hdlp->ih_vector = 0;
772 
773 	return (ret);
774 }
775 
776 /*
777  * i_ddi_add_ivintr:
778  */
779 /*ARGSUSED*/
780 int
781 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
782 {
783 	/*
784 	 * If the PIL was set and is valid use it, otherwise
785 	 * default it to 1
786 	 */
787 	if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
788 		hdlp->ih_pri = 1;
789 
790 	VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
791 	    (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1,
792 	    hdlp->ih_cb_arg2, NULL) == 0);
793 
794 	return (DDI_SUCCESS);
795 }
796 
797 /*
798  * i_ddi_rem_ivintr:
799  */
800 /*ARGSUSED*/
801 void
802 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
803 {
804 	VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0);
805 }
806 
807 /*
808  * i_ddi_get_inum - Get the interrupt number property from the
809  * specified device. Note that this function is called only for
810  * the FIXED interrupt type.
811  */
812 uint32_t
813 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
814 {
815 	int32_t			intrlen, intr_cells, max_intrs;
816 	prop_1275_cell_t	*ip, intr_sz;
817 	uint32_t		intr = 0;
818 
819 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
820 	    DDI_PROP_CANSLEEP,
821 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
822 
823 		intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
824 		    "#interrupt-cells", 1);
825 
826 		/* adjust for number of bytes */
827 		intr_sz = CELLS_1275_TO_BYTES(intr_cells);
828 
829 		/* Calculate the number of interrupts */
830 		max_intrs = intrlen / intr_sz;
831 
832 		if (inumber < max_intrs) {
833 			prop_1275_cell_t *intrp = ip;
834 
835 			/* Index into interrupt property */
836 			intrp += (inumber * intr_cells);
837 
838 			cells_1275_copy(intrp, &intr, intr_cells);
839 		}
840 
841 		kmem_free(ip, intrlen);
842 	}
843 
844 	return (intr);
845 }
846 
847 /*
848  * i_ddi_get_intr_pri - Get the interrupt-priorities property from
849  * the specified device. Note that this function is called only for
850  * the FIXED interrupt type.
851  */
852 uint32_t
853 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
854 {
855 	uint32_t	*intr_prio_p;
856 	uint32_t	pri = 0;
857 	int32_t		i;
858 
859 	/*
860 	 * Use the "interrupt-priorities" property to determine the
861 	 * the pil/ipl for the interrupt handler.
862 	 */
863 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
864 	    "interrupt-priorities", (caddr_t)&intr_prio_p,
865 	    &i) == DDI_SUCCESS) {
866 		if (inumber < (i / sizeof (int32_t)))
867 			pri = intr_prio_p[inumber];
868 		kmem_free(intr_prio_p, i);
869 	}
870 
871 	return (pri);
872 }
873 
874 int
875 i_ddi_get_intx_nintrs(dev_info_t *dip)
876 {
877 	int32_t intrlen;
878 	prop_1275_cell_t intr_sz;
879 	prop_1275_cell_t *ip;
880 	int32_t ret = 0;
881 
882 	if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
883 	    DDI_PROP_CANSLEEP,
884 	    "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
885 
886 		intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
887 		    "#interrupt-cells", 1);
888 		/* adjust for number of bytes */
889 		intr_sz = CELLS_1275_TO_BYTES(intr_sz);
890 
891 		ret = intrlen / intr_sz;
892 
893 		kmem_free(ip, intrlen);
894 	}
895 
896 	return (ret);
897 }
898 
899 /*
900  * i_ddi_add_softint - allocate and add a software interrupt.
901  *
902  * NOTE: All software interrupts that are registered through DDI
903  *	 should be triggered only on a single target or CPU.
904  */
905 int
906 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
907 {
908 	if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri,
909 	    hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL)
910 		return (DDI_FAILURE);
911 
912 	return (DDI_SUCCESS);
913 }
914 
915 /*
916  * i_ddi_remove_softint - remove and free a software interrupt.
917  */
918 void
919 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
920 {
921 	ASSERT(hdlp->ih_private != NULL);
922 
923 	if (rem_softintr((uint64_t)hdlp->ih_private) == 0)
924 		hdlp->ih_private = NULL;
925 }
926 
927 /*
928  * i_ddi_trigger_softint - trigger a software interrupt.
929  */
930 int
931 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
932 {
933 	int	ret;
934 
935 	ASSERT(hdlp->ih_private != NULL);
936 
937 	/* Update the second argument for the software interrupt */
938 	if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0)
939 		setsoftint((uint64_t)hdlp->ih_private);
940 
941 	return (ret ? DDI_EPENDING : DDI_SUCCESS);
942 }
943 
944 /*
945  * i_ddi_set_softint_pri - change software interrupt priority.
946  */
947 /* ARGSUSED */
948 int
949 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
950 {
951 	int	ret;
952 
953 	ASSERT(hdlp->ih_private != NULL);
954 
955 	/* Update the interrupt priority for the software interrupt */
956 	ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri);
957 
958 	return (ret ? DDI_FAILURE : DDI_SUCCESS);
959 }
960 
961 /*ARGSUSED*/
962 void
963 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
964 {
965 }
966 
967 /*ARGSUSED*/
968 void
969 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
970 {
971 }
972 
973 /*
974  * SECTION: DDI Memory/DMA
975  */
976 
977 /* set HAT endianess attributes from ddi_device_acc_attr */
978 void
979 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
980 {
981 	if (devaccp != NULL) {
982 		if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
983 			*hataccp &= ~HAT_ENDIAN_MASK;
984 			*hataccp |= HAT_STRUCTURE_LE;
985 		}
986 	}
987 }
988 
989 /*
990  * Check if the specified cache attribute is supported on the platform.
991  * This function must be called before i_ddi_cacheattr_to_hatacc().
992  */
993 boolean_t
994 i_ddi_check_cache_attr(uint_t flags)
995 {
996 	/*
997 	 * The cache attributes are mutually exclusive. Any combination of
998 	 * the attributes leads to a failure.
999 	 */
1000 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1001 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1002 		return (B_FALSE);
1003 
1004 	/*
1005 	 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1006 	 * but others lead to a failure.
1007 	 */
1008 	if (cache_attr & IOMEM_DATA_CACHED)
1009 		return (B_TRUE);
1010 	else
1011 		return (B_FALSE);
1012 }
1013 
1014 /* set HAT cache attributes from the cache attributes */
1015 void
1016 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1017 {
1018 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1019 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1020 #if defined(lint)
1021 	*hataccp = *hataccp;
1022 #endif
1023 	/*
1024 	 * set HAT attrs according to the cache attrs.
1025 	 */
1026 	switch (cache_attr) {
1027 	/*
1028 	 * The cache coherency is always maintained on SPARC, and
1029 	 * nothing is required.
1030 	 */
1031 	case IOMEM_DATA_CACHED:
1032 		break;
1033 	/*
1034 	 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1035 	 * not supported on SPARC -- this case must not occur because the
1036 	 * cache attribute is scrutinized before this function is called.
1037 	 */
1038 	case IOMEM_DATA_UNCACHED:
1039 	case IOMEM_DATA_UC_WR_COMBINE:
1040 	default:
1041 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1042 		    fname, cache_attr);
1043 	}
1044 }
1045 
1046 static vmem_t *little_endian_arena;
1047 static vmem_t *big_endian_arena;
1048 
1049 static void *
1050 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1051 {
1052 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1053 	    segkmem_page_create, NULL));
1054 }
1055 
1056 static void *
1057 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1058 {
1059 	return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1060 	    segkmem_page_create, NULL));
1061 }
1062 
1063 void
1064 ka_init(void)
1065 {
1066 	little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1067 	    segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1068 	big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1069 	    segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1070 }
1071 
1072 /*
1073  * Allocate from the system, aligned on a specific boundary.
1074  * The alignment, if non-zero, must be a power of 2.
1075  */
1076 static void *
1077 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1078 {
1079 	size_t *addr, *raddr, rsize;
1080 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1081 
1082 	align = MAX(align, hdrsize);
1083 	ASSERT((align & (align - 1)) == 0);
1084 
1085 	/*
1086 	 * We need to allocate
1087 	 *    rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1088 	 * bytes to be sure we have enough freedom to satisfy the request.
1089 	 * Since the buffer alignment depends on the request size, this is
1090 	 * not straightforward to use directly.
1091 	 *
1092 	 * kmem guarantees that any allocation of a 64-byte multiple will be
1093 	 * 64-byte aligned.  Since rounding up the request could add more
1094 	 * than we save, we compute the size with and without alignment, and
1095 	 * use the smaller of the two.
1096 	 */
1097 	rsize = size + hdrsize + align;
1098 
1099 	if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1100 		raddr = vmem_alloc(little_endian_arena, rsize,
1101 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1102 	} else {
1103 		raddr = vmem_alloc(big_endian_arena, rsize,
1104 		    cansleep ? VM_SLEEP : VM_NOSLEEP);
1105 	}
1106 
1107 	if (raddr == NULL)
1108 		return (NULL);
1109 
1110 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1111 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1112 
1113 	addr[-3] = (size_t)endian_flags;
1114 	addr[-2] = (size_t)raddr;
1115 	addr[-1] = rsize;
1116 
1117 	return (addr);
1118 }
1119 
1120 static void
1121 kfreea(void *addr)
1122 {
1123 	size_t *saddr = addr;
1124 
1125 	if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1126 		vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1127 	else
1128 		vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1129 }
1130 
1131 int
1132 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1133     size_t length, int cansleep, int flags,
1134     ddi_device_acc_attr_t *accattrp,
1135     caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1136 {
1137 	caddr_t a;
1138 	int iomin, align, streaming;
1139 	uint_t endian_flags = DDI_NEVERSWAP_ACC;
1140 
1141 #if defined(lint)
1142 	*handlep = *handlep;
1143 #endif
1144 
1145 	/*
1146 	 * Check legality of arguments
1147 	 */
1148 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1149 		return (DDI_FAILURE);
1150 	}
1151 
1152 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1153 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1154 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1155 		return (DDI_FAILURE);
1156 	}
1157 
1158 	/*
1159 	 * check if a streaming sequential xfer is requested.
1160 	 */
1161 	streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1162 
1163 	/*
1164 	 * Drivers for 64-bit capable SBus devices will encode
1165 	 * the burtsizes for 64-bit xfers in the upper 16-bits.
1166 	 * For DMA alignment, we use the most restrictive
1167 	 * alignment of 32-bit and 64-bit xfers.
1168 	 */
1169 	iomin = (attr->dma_attr_burstsizes & 0xffff) |
1170 	    ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1171 	/*
1172 	 * If a driver set burtsizes to 0, we give him byte alignment.
1173 	 * Otherwise align at the burtsizes boundary.
1174 	 */
1175 	if (iomin == 0)
1176 		iomin = 1;
1177 	else
1178 		iomin = 1 << (ddi_fls(iomin) - 1);
1179 	iomin = maxbit(iomin, attr->dma_attr_minxfer);
1180 	iomin = maxbit(iomin, attr->dma_attr_align);
1181 	iomin = ddi_iomin(dip, iomin, streaming);
1182 	if (iomin == 0)
1183 		return (DDI_FAILURE);
1184 
1185 	ASSERT((iomin & (iomin - 1)) == 0);
1186 	ASSERT(iomin >= attr->dma_attr_minxfer);
1187 	ASSERT(iomin >= attr->dma_attr_align);
1188 
1189 	length = P2ROUNDUP(length, iomin);
1190 	align = iomin;
1191 
1192 	if (accattrp != NULL)
1193 		endian_flags = accattrp->devacc_attr_endian_flags;
1194 
1195 	a = kalloca(length, align, cansleep, endian_flags);
1196 	if ((*kaddrp = a) == 0) {
1197 		return (DDI_FAILURE);
1198 	} else {
1199 		if (real_length) {
1200 			*real_length = length;
1201 		}
1202 		if (handlep) {
1203 			/*
1204 			 * assign handle information
1205 			 */
1206 			impl_acc_hdl_init(handlep);
1207 		}
1208 		return (DDI_SUCCESS);
1209 	}
1210 }
1211 
1212 /*
1213  * covert old DMA limits structure to DMA attribute structure
1214  * and continue
1215  */
1216 int
1217 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1218     size_t length, int cansleep, int streaming,
1219     ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1220     uint_t *real_length, ddi_acc_hdl_t *ap)
1221 {
1222 	ddi_dma_attr_t dma_attr, *attrp;
1223 	size_t rlen;
1224 	int ret;
1225 
1226 	ASSERT(limits);
1227 	attrp = &dma_attr;
1228 	attrp->dma_attr_version = DMA_ATTR_V0;
1229 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1230 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1231 	attrp->dma_attr_count_max = (uint64_t)-1;
1232 	attrp->dma_attr_align = 1;
1233 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1234 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1235 	attrp->dma_attr_maxxfer = (uint64_t)-1;
1236 	attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max;
1237 	attrp->dma_attr_sgllen = 1;
1238 	attrp->dma_attr_granular = 1;
1239 	attrp->dma_attr_flags = 0;
1240 
1241 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1242 	    accattrp, kaddrp, &rlen, ap);
1243 	if (ret == DDI_SUCCESS) {
1244 		if (real_length)
1245 			*real_length = (uint_t)rlen;
1246 	}
1247 	return (ret);
1248 }
1249 
1250 /* ARGSUSED */
1251 void
1252 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1253 {
1254 	kfreea(kaddr);
1255 }
1256 
1257 /*
1258  * SECTION: DDI Data Access
1259  */
1260 
1261 static uintptr_t impl_acc_hdl_id = 0;
1262 
1263 /*
1264  * access handle allocator
1265  */
1266 ddi_acc_hdl_t *
1267 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1268 {
1269 	/*
1270 	 * Extract the access handle address from the DDI implemented
1271 	 * access handle
1272 	 */
1273 	return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1274 }
1275 
1276 ddi_acc_handle_t
1277 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1278 {
1279 	ddi_acc_impl_t *hp;
1280 	on_trap_data_t *otp;
1281 	int sleepflag;
1282 
1283 	sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1284 
1285 	/*
1286 	 * Allocate and initialize the data access handle and error status.
1287 	 */
1288 	if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1289 		goto fail;
1290 	if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1291 	    sizeof (ndi_err_t), sleepflag)) == NULL) {
1292 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1293 		goto fail;
1294 	}
1295 	if ((otp = (on_trap_data_t *)kmem_zalloc(
1296 	    sizeof (on_trap_data_t), sleepflag)) == NULL) {
1297 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1298 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1299 		goto fail;
1300 	}
1301 	hp->ahi_err->err_ontrap = otp;
1302 	hp->ahi_common.ah_platform_private = (void *)hp;
1303 
1304 	return ((ddi_acc_handle_t)hp);
1305 fail:
1306 	if ((waitfp != (int (*)())KM_SLEEP) &&
1307 	    (waitfp != (int (*)())KM_NOSLEEP))
1308 		ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1309 	return (NULL);
1310 }
1311 
1312 void
1313 impl_acc_hdl_free(ddi_acc_handle_t handle)
1314 {
1315 	ddi_acc_impl_t *hp;
1316 
1317 	/*
1318 	 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1319 	 * because that's what we allocated in impl_acc_hdl_alloc() above.
1320 	 */
1321 	hp = (ddi_acc_impl_t *)handle;
1322 	if (hp) {
1323 		kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1324 		kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1325 		kmem_free(hp, sizeof (ddi_acc_impl_t));
1326 		if (impl_acc_hdl_id)
1327 			ddi_run_callback(&impl_acc_hdl_id);
1328 	}
1329 }
1330 
1331 #define	PCI_GET_MP_PFN(mp, page_no)	((mp)->dmai_ndvmapages == 1 ? \
1332 	(pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1333 
1334 /*
1335  * Function called after a dma fault occurred to find out whether the
1336  * fault address is associated with a driver that is able to handle faults
1337  * and recover from faults.
1338  */
1339 /* ARGSUSED */
1340 int
1341 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1342     const void *not_used)
1343 {
1344 	ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1345 	pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1346 	pfn_t comp_pfn;
1347 
1348 	/*
1349 	 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1350 	 */
1351 	int page;
1352 
1353 	ASSERT(mp);
1354 	for (page = 0; page < mp->dmai_ndvmapages; page++) {
1355 		comp_pfn = PCI_GET_MP_PFN(mp, page);
1356 		if (fault_pfn == comp_pfn)
1357 			return (DDI_FM_NONFATAL);
1358 	}
1359 	return (DDI_FM_UNKNOWN);
1360 }
1361 
1362 /*
1363  * Function used to check if a given access handle owns the failing address.
1364  * Called by ndi_fmc_error, when we detect a PIO error.
1365  */
1366 /* ARGSUSED */
1367 static int
1368 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1369     const void *not_used)
1370 {
1371 	pfn_t pfn, fault_pfn;
1372 	ddi_acc_hdl_t *hp;
1373 
1374 	hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1375 
1376 	ASSERT(hp);
1377 
1378 	if (addr != NULL) {
1379 		pfn = hp->ah_pfn;
1380 		fault_pfn = mmu_btop(*(uint64_t *)addr);
1381 		if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1382 			return (DDI_FM_NONFATAL);
1383 	}
1384 	return (DDI_FM_UNKNOWN);
1385 }
1386 
1387 void
1388 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1389 {
1390 	int fmcap;
1391 	ndi_err_t *errp;
1392 	on_trap_data_t *otp;
1393 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1394 
1395 	fmcap = ddi_fm_capable(handlep->ah_dip);
1396 
1397 	if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1398 	    !DDI_FM_ACC_ERR_CAP(fmcap)) {
1399 		handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1400 	} else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1401 		if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1402 			if (handlep->ah_xfermodes)
1403 				return;
1404 			i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1405 			    NULL, DDI_NOSLEEP);
1406 		} else {
1407 			errp = hp->ahi_err;
1408 			otp = (on_trap_data_t *)errp->err_ontrap;
1409 			otp->ot_handle = (void *)(hp);
1410 			otp->ot_prot = OT_DATA_ACCESS;
1411 			if (handlep->ah_acc.devacc_attr_access ==
1412 			    DDI_CAUTIOUS_ACC)
1413 				otp->ot_trampoline =
1414 				    (uintptr_t)&i_ddi_caut_trampoline;
1415 			else
1416 				otp->ot_trampoline =
1417 				    (uintptr_t)&i_ddi_prot_trampoline;
1418 			errp->err_status = DDI_FM_OK;
1419 			errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1420 			errp->err_cf = impl_acc_check;
1421 		}
1422 	}
1423 }
1424 
1425 void
1426 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1427 {
1428 	ddi_acc_impl_t *hp;
1429 
1430 	ASSERT(handlep);
1431 
1432 	hp = (ddi_acc_impl_t *)handlep;
1433 
1434 	/*
1435 	 * check for SW byte-swapping
1436 	 */
1437 	hp->ahi_get8 = i_ddi_get8;
1438 	hp->ahi_put8 = i_ddi_put8;
1439 	hp->ahi_rep_get8 = i_ddi_rep_get8;
1440 	hp->ahi_rep_put8 = i_ddi_rep_put8;
1441 	if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1442 		hp->ahi_get16 = i_ddi_swap_get16;
1443 		hp->ahi_get32 = i_ddi_swap_get32;
1444 		hp->ahi_get64 = i_ddi_swap_get64;
1445 		hp->ahi_put16 = i_ddi_swap_put16;
1446 		hp->ahi_put32 = i_ddi_swap_put32;
1447 		hp->ahi_put64 = i_ddi_swap_put64;
1448 		hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1449 		hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1450 		hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1451 		hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1452 		hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1453 		hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1454 	} else {
1455 		hp->ahi_get16 = i_ddi_get16;
1456 		hp->ahi_get32 = i_ddi_get32;
1457 		hp->ahi_get64 = i_ddi_get64;
1458 		hp->ahi_put16 = i_ddi_put16;
1459 		hp->ahi_put32 = i_ddi_put32;
1460 		hp->ahi_put64 = i_ddi_put64;
1461 		hp->ahi_rep_get16 = i_ddi_rep_get16;
1462 		hp->ahi_rep_get32 = i_ddi_rep_get32;
1463 		hp->ahi_rep_get64 = i_ddi_rep_get64;
1464 		hp->ahi_rep_put16 = i_ddi_rep_put16;
1465 		hp->ahi_rep_put32 = i_ddi_rep_put32;
1466 		hp->ahi_rep_put64 = i_ddi_rep_put64;
1467 	}
1468 
1469 	/* Legacy fault flags and support */
1470 	hp->ahi_fault_check = i_ddi_acc_fault_check;
1471 	hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1472 	hp->ahi_fault = 0;
1473 	impl_acc_err_init(handlep);
1474 }
1475 
1476 void
1477 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1478 {
1479 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1480 
1481 	if (!hp->ahi_fault) {
1482 		hp->ahi_fault = 1;
1483 			(*hp->ahi_fault_notify)(hp);
1484 	}
1485 }
1486 
1487 void
1488 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1489 {
1490 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1491 
1492 	if (hp->ahi_fault) {
1493 		hp->ahi_fault = 0;
1494 			(*hp->ahi_fault_notify)(hp);
1495 	}
1496 }
1497 
1498 /* ARGSUSED */
1499 void
1500 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1501 {
1502 	/* Default version, does nothing */
1503 }
1504 
1505 /*
1506  * SECTION: Misc functions
1507  */
1508 
1509 /*
1510  * instance wrappers
1511  */
1512 /*ARGSUSED*/
1513 uint_t
1514 impl_assign_instance(dev_info_t *dip)
1515 {
1516 	return ((uint_t)-1);
1517 }
1518 
1519 /*ARGSUSED*/
1520 int
1521 impl_keep_instance(dev_info_t *dip)
1522 {
1523 	return (DDI_FAILURE);
1524 }
1525 
1526 /*ARGSUSED*/
1527 int
1528 impl_free_instance(dev_info_t *dip)
1529 {
1530 	return (DDI_FAILURE);
1531 }
1532 
1533 /*ARGSUSED*/
1534 int
1535 impl_check_cpu(dev_info_t *devi)
1536 {
1537 	return (DDI_SUCCESS);
1538 }
1539 
1540 
1541 static const char *nocopydevs[] = {
1542 	"SUNW,ffb",
1543 	"SUNW,afb",
1544 	NULL
1545 };
1546 
1547 /*
1548  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1549  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1550  */
1551 /*ARGSUSED*/
1552 int
1553 e_ddi_copyfromdev(dev_info_t *devi,
1554     off_t off, const void *devaddr, void *kaddr, size_t len)
1555 {
1556 	const char **argv;
1557 
1558 	for (argv = nocopydevs; *argv; argv++)
1559 		if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1560 			bzero(kaddr, len);
1561 			return (0);
1562 		}
1563 
1564 	bcopy(devaddr, kaddr, len);
1565 	return (0);
1566 }
1567 
1568 /*
1569  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1570  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1571  */
1572 /*ARGSUSED*/
1573 int
1574 e_ddi_copytodev(dev_info_t *devi,
1575     off_t off, const void *kaddr, void *devaddr, size_t len)
1576 {
1577 	const char **argv;
1578 
1579 	for (argv = nocopydevs; *argv; argv++)
1580 		if (strcmp(ddi_binding_name(devi), *argv) == 0)
1581 			return (1);
1582 
1583 	bcopy(kaddr, devaddr, len);
1584 	return (0);
1585 }
1586 
1587 /*
1588  * Boot Configuration
1589  */
1590 idprom_t idprom;
1591 
1592 /*
1593  * Configure the hardware on the system.
1594  * Called before the rootfs is mounted
1595  */
1596 void
1597 configure(void)
1598 {
1599 	extern void i_ddi_init_root();
1600 
1601 	/* We better have released boot by this time! */
1602 	ASSERT(!bootops);
1603 
1604 	/*
1605 	 * Determine whether or not to use the fpu, V9 SPARC cpus
1606 	 * always have one. Could check for existence of a fp queue,
1607 	 * Ultra I, II and IIa do not have a fp queue.
1608 	 */
1609 	if (fpu_exists)
1610 		fpu_probe();
1611 	else
1612 		cmn_err(CE_CONT, "FPU not in use\n");
1613 
1614 #if 0 /* XXXQ - not necessary for sun4u */
1615 	/*
1616 	 * This following line fixes bugid 1041296; we need to do a
1617 	 * prom_nextnode(0) because this call ALSO patches the DMA+
1618 	 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1619 	 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1620 	 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1621 	 */
1622 	(void) prom_nextnode((pnode_t)0);
1623 #endif
1624 
1625 	/*
1626 	 * Initialize devices on the machine.
1627 	 * Uses configuration tree built by the PROMs to determine what
1628 	 * is present, and builds a tree of prototype dev_info nodes
1629 	 * corresponding to the hardware which identified itself.
1630 	 */
1631 	i_ddi_init_root();
1632 
1633 #ifdef	DDI_PROP_DEBUG
1634 	(void) ddi_prop_debug(1);	/* Enable property debugging */
1635 #endif	/* DDI_PROP_DEBUG */
1636 }
1637 
1638 /*
1639  * The "status" property indicates the operational status of a device.
1640  * If this property is present, the value is a string indicating the
1641  * status of the device as follows:
1642  *
1643  *	"okay"		operational.
1644  *	"disabled"	not operational, but might become operational.
1645  *	"fail"		not operational because a fault has been detected,
1646  *			and it is unlikely that the device will become
1647  *			operational without repair. no additional details
1648  *			are available.
1649  *	"fail-xxx"	not operational because a fault has been detected,
1650  *			and it is unlikely that the device will become
1651  *			operational without repair. "xxx" is additional
1652  *			human-readable information about the particular
1653  *			fault condition that was detected.
1654  *
1655  * The absence of this property means that the operational status is
1656  * unknown or okay.
1657  *
1658  * This routine checks the status property of the specified device node
1659  * and returns 0 if the operational status indicates failure, and 1 otherwise.
1660  *
1661  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1662  * And, in that case, the property may not even be a string. So we carefully
1663  * check for the value "fail", in the beginning of the string, noting
1664  * the property length.
1665  */
1666 int
1667 status_okay(int id, char *buf, int buflen)
1668 {
1669 	char status_buf[OBP_MAXPROPNAME];
1670 	char *bufp = buf;
1671 	int len = buflen;
1672 	int proplen;
1673 	static const char *status = "status";
1674 	static const char *fail = "fail";
1675 	size_t fail_len = strlen(fail);
1676 
1677 	/*
1678 	 * Get the proplen ... if it's smaller than "fail",
1679 	 * or doesn't exist ... then we don't care, since
1680 	 * the value can't begin with the char string "fail".
1681 	 *
1682 	 * NB: proplen, if it's a string, includes the NULL in the
1683 	 * the size of the property, and fail_len does not.
1684 	 */
1685 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1686 	if (proplen <= fail_len)	/* nonexistent or uninteresting len */
1687 		return (1);
1688 
1689 	/*
1690 	 * if a buffer was provided, use it
1691 	 */
1692 	if ((buf == (char *)NULL) || (buflen <= 0)) {
1693 		bufp = status_buf;
1694 		len = sizeof (status_buf);
1695 	}
1696 	*bufp = (char)0;
1697 
1698 	/*
1699 	 * Get the property into the buffer, to the extent of the buffer,
1700 	 * and in case the buffer is smaller than the property size,
1701 	 * NULL terminate the buffer. (This handles the case where
1702 	 * a buffer was passed in and the caller wants to print the
1703 	 * value, but the buffer was too small).
1704 	 */
1705 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1706 	    (caddr_t)bufp, len);
1707 	*(bufp + len - 1) = (char)0;
1708 
1709 	/*
1710 	 * If the value begins with the char string "fail",
1711 	 * then it means the node is failed. We don't care
1712 	 * about any other values. We assume the node is ok
1713 	 * although it might be 'disabled'.
1714 	 */
1715 	if (strncmp(bufp, fail, fail_len) == 0)
1716 		return (0);
1717 
1718 	return (1);
1719 }
1720 
1721 
1722 /*
1723  * We set the cpu type from the idprom, if we can.
1724  * Note that we just read out the contents of it, for the most part.
1725  */
1726 void
1727 setcputype(void)
1728 {
1729 	/*
1730 	 * We cache the idprom info early on so that we don't
1731 	 * rummage through the NVRAM unnecessarily later.
1732 	 */
1733 	(void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1734 }
1735 
1736 /*
1737  *  Here is where we actually infer meanings to the members of idprom_t
1738  */
1739 void
1740 parse_idprom(void)
1741 {
1742 	if (idprom.id_format == IDFORM_1) {
1743 		(void) localetheraddr((struct ether_addr *)idprom.id_ether,
1744 		    (struct ether_addr *)NULL);
1745 		(void) snprintf(hw_serial, HW_HOSTID_LEN, "%u",
1746 		    (idprom.id_machine << 24) + idprom.id_serial);
1747 	} else
1748 		prom_printf("Invalid format code in IDprom.\n");
1749 }
1750 
1751 /*
1752  * Allow for implementation specific correction of PROM property values.
1753  */
1754 /*ARGSUSED*/
1755 void
1756 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1757     caddr_t buffer)
1758 {
1759 	/*
1760 	 * There are no adjustments needed in this implementation.
1761 	 */
1762 }
1763 
1764 /*
1765  * The following functions ready a cautious request to go up to the nexus
1766  * driver.  It is up to the nexus driver to decide how to process the request.
1767  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1768  * differently.
1769  */
1770 
1771 static void
1772 i_ddi_caut_getput_ctlops(
1773     ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1774     size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1775 {
1776 	peekpoke_ctlops_t	cautacc_ctlops_arg;
1777 
1778 	cautacc_ctlops_arg.size = size;
1779 	cautacc_ctlops_arg.dev_addr = dev_addr;
1780 	cautacc_ctlops_arg.host_addr = host_addr;
1781 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1782 	cautacc_ctlops_arg.repcount = repcount;
1783 	cautacc_ctlops_arg.flags = flags;
1784 
1785 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1786 	    &cautacc_ctlops_arg, NULL);
1787 }
1788 
1789 uint8_t
1790 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1791 {
1792 	uint8_t value;
1793 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1794 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1795 
1796 	return (value);
1797 }
1798 
1799 uint16_t
1800 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1801 {
1802 	uint16_t value;
1803 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1804 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1805 
1806 	return (value);
1807 }
1808 
1809 uint32_t
1810 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1811 {
1812 	uint32_t value;
1813 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1814 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1815 
1816 	return (value);
1817 }
1818 
1819 uint64_t
1820 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1821 {
1822 	uint64_t value;
1823 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1824 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1825 
1826 	return (value);
1827 }
1828 
1829 void
1830 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1831 {
1832 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1833 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1834 }
1835 
1836 void
1837 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1838 {
1839 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1840 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1841 }
1842 
1843 void
1844 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1845 {
1846 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1847 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1848 }
1849 
1850 void
1851 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1852 {
1853 	i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1854 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1855 }
1856 
1857 void
1858 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1859 	size_t repcount, uint_t flags)
1860 {
1861 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1862 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1863 }
1864 
1865 void
1866 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1867     uint16_t *dev_addr, size_t repcount, uint_t flags)
1868 {
1869 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1870 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1871 }
1872 
1873 void
1874 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1875     uint32_t *dev_addr, size_t repcount, uint_t flags)
1876 {
1877 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1878 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1879 }
1880 
1881 void
1882 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1883     uint64_t *dev_addr, size_t repcount, uint_t flags)
1884 {
1885 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1886 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1887 }
1888 
1889 void
1890 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1891 	size_t repcount, uint_t flags)
1892 {
1893 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1894 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1895 }
1896 
1897 void
1898 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1899     uint16_t *dev_addr, size_t repcount, uint_t flags)
1900 {
1901 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1902 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1903 }
1904 
1905 void
1906 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1907     uint32_t *dev_addr, size_t repcount, uint_t flags)
1908 {
1909 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1910 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1911 }
1912 
1913 void
1914 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1915     uint64_t *dev_addr, size_t repcount, uint_t flags)
1916 {
1917 	i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1918 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1919 }
1920 
1921 /*
1922  * This is called only to process peek/poke when the DIP is NULL.
1923  * Assume that this is for memory, as nexi take care of device safe accesses.
1924  */
1925 int
1926 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1927 {
1928 	int err = DDI_SUCCESS;
1929 	on_trap_data_t otd;
1930 
1931 	/* Set up protected environment. */
1932 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1933 		uintptr_t tramp = otd.ot_trampoline;
1934 
1935 		if (cmd == DDI_CTLOPS_POKE) {
1936 			otd.ot_trampoline = (uintptr_t)&poke_fault;
1937 			err = do_poke(in_args->size, (void *)in_args->dev_addr,
1938 			    (void *)in_args->host_addr);
1939 		} else {
1940 			otd.ot_trampoline = (uintptr_t)&peek_fault;
1941 			err = do_peek(in_args->size, (void *)in_args->dev_addr,
1942 			    (void *)in_args->host_addr);
1943 		}
1944 		otd.ot_trampoline = tramp;
1945 	} else
1946 		err = DDI_FAILURE;
1947 
1948 	/* Take down protected environment. */
1949 	no_trap();
1950 
1951 	return (err);
1952 }
1953