xref: /titanic_50/usr/src/uts/sun4/io/su_driver.c (revision a237e38e9161f0acd6451439d4a7dd597e66291d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
23 /*	  All Rights Reserved					*/
24 
25 /*
26  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  *	Serial I/O driver for 82510/8250/16450/16550AF/16C554D chips.
34  *	Modified as sparc keyboard/mouse driver.
35  */
36 #define	SU_REGISTER_FILE_NO 0
37 #define	SU_REGOFFSET 0
38 #define	SU_REGISTER_LEN 8
39 
40 #include <sys/param.h>
41 #include <sys/types.h>
42 #include <sys/signal.h>
43 #include <sys/stream.h>
44 #include <sys/termio.h>
45 #include <sys/errno.h>
46 #include <sys/file.h>
47 #include <sys/cmn_err.h>
48 #include <sys/stropts.h>
49 #include <sys/strsubr.h>
50 #include <sys/strsun.h>
51 #include <sys/strtty.h>
52 #include <sys/debug.h>
53 #include <sys/kbio.h>
54 #include <sys/cred.h>
55 #include <sys/modctl.h>
56 #include <sys/stat.h>
57 #include <sys/consdev.h>
58 #include <sys/mkdev.h>
59 #include <sys/kmem.h>
60 #include <sys/cred.h>
61 #ifdef DEBUG
62 #include <sys/promif.h>
63 #endif
64 #include <sys/ddi.h>
65 #include <sys/sunddi.h>
66 #include <sys/sudev.h>
67 #include <sys/note.h>
68 #include <sys/timex.h>
69 #include <sys/policy.h>
70 
71 #define	async_stopc	async_ttycommon.t_stopc
72 #define	async_startc	async_ttycommon.t_startc
73 
74 #define	ASY_INIT	1
75 #define	ASY_NOINIT	0
76 
77 #ifdef DEBUG
78 #define	ASY_DEBUG_INIT	0x001
79 #define	ASY_DEBUG_INPUT	0x002
80 #define	ASY_DEBUG_EOT	0x004
81 #define	ASY_DEBUG_CLOSE	0x008
82 #define	ASY_DEBUG_HFLOW	0x010
83 #define	ASY_DEBUG_PROCS	0x020
84 #define	ASY_DEBUG_STATE	0x040
85 #define	ASY_DEBUG_INTR	0x080
86 static	int asydebug = 0;
87 #endif
88 static	int su_log = 0;
89 
90 int su_drain_check = 15000000;		/* tunable: exit drain check time */
91 
92 static	struct ppsclockev asy_ppsev;
93 
94 static	int max_asy_instance = -1;
95 static	void	*su_asycom;	/* soft state asycom pointer */
96 static	void	*su_asyncline;	/* soft state asyncline pointer */
97 static	boolean_t abort_charseq_recognize(uchar_t ch);
98 
99 static	uint_t	asysoftintr(caddr_t intarg);
100 static	uint_t	asyintr(caddr_t argasy);
101 
102 /* The async interrupt entry points */
103 static void	async_txint(struct asycom *asy, uchar_t lsr);
104 static void	async_rxint(struct asycom *asy, uchar_t lsr);
105 static void	async_msint(struct asycom *asy);
106 static int	async_softint(struct asycom *asy);
107 
108 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp,
109     boolean_t iswput);
110 static void	async_reioctl(void *);
111 static void	async_iocdata(queue_t *q, mblk_t *mp);
112 static void	async_restart(void *);
113 static void	async_start(struct asyncline *async);
114 static void	async_nstart(struct asyncline *async, int mode);
115 static void	async_resume(struct asyncline *async);
116 static int	asy_program(struct asycom *asy, int mode);
117 
118 static int	asymctl(struct asycom *, int, int);
119 static int	asytodm(int, int);
120 static int	dmtoasy(int);
121 static void	asycheckflowcontrol_hw(struct asycom *asy);
122 static boolean_t asycheckflowcontrol_sw(struct asycom *asy);
123 static void	asy_ppsevent(struct asycom *asy, int msr);
124 
125 extern kcondvar_t lbolt_cv;
126 extern int ddi_create_internal_pathname(dev_info_t *dip, char *name,
127 		int spec_type, minor_t minor_num);
128 
129 
130 /*
131  * Baud rate table. Indexed by #defines found in sys/termios.h
132  */
133 ushort_t asyspdtab[] = {
134 	0,	/* 0 baud rate */
135 	0x900,	/* 50 baud rate */
136 	0x600,	/* 75 baud rate */
137 	0x417,	/* 110 baud rate (%0.026) */
138 	0x359,	/* 134 baud rate (%0.058) */
139 	0x300,	/* 150 baud rate */
140 	0x240,	/* 200 baud rate */
141 	0x180,	/* 300 baud rate */
142 	0x0c0,	/* 600 baud rate */
143 	0x060,	/* 1200 baud rate */
144 	0x040,	/* 1800 baud rate */
145 	0x030,	/* 2400 baud rate */
146 	0x018,	/* 4800 baud rate */
147 	0x00c,	/* 9600 baud rate */
148 	0x006,	/* 19200 baud rate */
149 	0x003,	/* 38400 baud rate */
150 	0x002,	/* 57600 baud rate */
151 	0,	/* 76800 baud rate - not supported */
152 	0x001,	/* 115200 baud rate */
153 	0,	/* 153600 baud rate - not supported */
154 	0x8002,	/* 230400 baud rate - supported on specific platforms */
155 	0,	/* 307200 baud rate - not supported */
156 	0x8001	/* 460800 baud rate - supported on specific platforms */
157 };
158 
159 /*
160  * Number of speeds supported is the number of entries in
161  * the above table.
162  */
163 #define	N_SU_SPEEDS	(sizeof (asyspdtab)/sizeof (ushort_t))
164 
165 /*
166  * Human-readable baud rate table.
167  * Indexed by #defines found in sys/termios.h
168  */
169 int baudtable[] = {
170 	0,	/* 0 baud rate */
171 	50,	/* 50 baud rate */
172 	75,	/* 75 baud rate */
173 	110,	/* 110 baud rate */
174 	134,	/* 134 baud rate */
175 	150,	/* 150 baud rate */
176 	200,	/* 200 baud rate */
177 	300,	/* 300 baud rate */
178 	600,	/* 600 baud rate */
179 	1200,	/* 1200 baud rate */
180 	1800,	/* 1800 baud rate */
181 	2400,	/* 2400 baud rate */
182 	4800,	/* 4800 baud rate */
183 	9600,	/* 9600 baud rate */
184 	19200,	/* 19200 baud rate */
185 	38400,	/* 38400 baud rate */
186 	57600,	/* 57600 baud rate */
187 	76800,	/* 76800 baud rate */
188 	115200,	/* 115200 baud rate */
189 	153600,	/* 153600 baud rate */
190 	230400,	/* 230400 baud rate */
191 	307200,	/* 307200 baud rate */
192 	460800	/* 460800 baud rate */
193 };
194 
195 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
196 static int asyclose(queue_t *q, int flag);
197 static void asywput(queue_t *q, mblk_t *mp);
198 static void asyrsrv(queue_t *q);
199 
200 struct module_info asy_info = {
201 	0,
202 	"su",
203 	0,
204 	INFPSZ,
205 	32*4096,
206 	4096
207 };
208 
209 static struct qinit asy_rint = {
210 	putq,
211 	(int (*)())asyrsrv,
212 	asyopen,
213 	asyclose,
214 	NULL,
215 	&asy_info,
216 	NULL
217 };
218 
219 static struct qinit asy_wint = {
220 	(int (*)())asywput,
221 	NULL,
222 	NULL,
223 	NULL,
224 	NULL,
225 	&asy_info,
226 	NULL
227 };
228 
229 struct streamtab asy_str_info = {
230 	&asy_rint,
231 	&asy_wint,
232 	NULL,
233 	NULL
234 };
235 
236 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
237 		void **result);
238 static int asyprobe(dev_info_t *);
239 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
240 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
241 
242 static 	struct cb_ops cb_asy_ops = {
243 	nodev,			/* cb_open */
244 	nodev,			/* cb_close */
245 	nodev,			/* cb_strategy */
246 	nodev,			/* cb_print */
247 	nodev,			/* cb_dump */
248 	nodev,			/* cb_read */
249 	nodev,			/* cb_write */
250 	nodev,			/* cb_ioctl */
251 	nodev,			/* cb_devmap */
252 	nodev,			/* cb_mmap */
253 	nodev,			/* cb_segmap */
254 	nochpoll,		/* cb_chpoll */
255 	ddi_prop_op,		/* cb_prop_op */
256 	&asy_str_info,		/* cb_stream */
257 	D_MP			/* cb_flag */
258 };
259 
260 struct dev_ops asy_ops = {
261 	DEVO_REV,		/* devo_rev */
262 	0,			/* devo_refcnt */
263 	asyinfo,		/* devo_getinfo */
264 	nulldev,		/* devo_identify */
265 	asyprobe,		/* devo_probe */
266 	asyattach,		/* devo_attach */
267 	asydetach,		/* devo_detach */
268 	nodev,			/* devo_reset */
269 	&cb_asy_ops,		/* devo_cb_ops */
270 };
271 
272 /*
273  * Module linkage information for the kernel.
274  */
275 
276 static struct modldrv modldrv = {
277 	&mod_driverops, /* Type of module.  This one is a driver */
278 	"su driver %I%",
279 	&asy_ops,	/* driver ops */
280 };
281 
282 static struct modlinkage modlinkage = {
283 	MODREV_1,
284 	&modldrv,
285 	NULL
286 };
287 
288 int
289 _init(void)
290 {
291 	int status;
292 
293 	status = ddi_soft_state_init(&su_asycom, sizeof (struct asycom),
294 	    SU_INITIAL_SOFT_ITEMS);
295 	if (status != 0)
296 	    return (status);
297 	status = ddi_soft_state_init(&su_asyncline, sizeof (struct asyncline),
298 	    SU_INITIAL_SOFT_ITEMS);
299 	if (status != 0) {
300 		ddi_soft_state_fini(&su_asycom);
301 		return (status);
302 	}
303 
304 	if ((status = mod_install(&modlinkage)) != 0) {
305 		ddi_soft_state_fini(&su_asycom);
306 		ddi_soft_state_fini(&su_asyncline);
307 	}
308 
309 	return (status);
310 }
311 
312 int
313 _fini(void)
314 {
315 	int i;
316 
317 	i = mod_remove(&modlinkage);
318 	if (i == 0) {
319 		ddi_soft_state_fini(&su_asycom);
320 		ddi_soft_state_fini(&su_asyncline);
321 	}
322 
323 	return (i);
324 }
325 
326 int
327 _info(struct modinfo *modinfop)
328 {
329 	return (mod_info(&modlinkage, modinfop));
330 }
331 
332 static int
333 asyprobe(dev_info_t *devi)
334 {
335 	int		instance;
336 	ddi_acc_handle_t handle;
337 	uchar_t *addr;
338 	ddi_device_acc_attr_t attr;
339 
340 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
341 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
342 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
343 
344 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, (caddr_t *)&addr,
345 	    SU_REGOFFSET, SU_REGISTER_LEN, &attr, &handle) != DDI_SUCCESS) {
346 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
347 		return (DDI_PROBE_FAILURE);
348 	}
349 #ifdef DEBUG
350 	if (asydebug)
351 	    printf("Probe address mapped %p\n", (void *)addr);
352 #endif
353 
354 	/*
355 	 * Probe for the device:
356 	 * 	Ser. int. uses bits 0,1,2; FIFO uses 3,6,7; 4,5 wired low.
357 	 * 	If bit 4 or 5 appears on inb() ISR, board is not there.
358 	 */
359 	if (ddi_get8(handle, addr+ISR) & 0x30)
360 	    return (DDI_PROBE_FAILURE);
361 	instance = ddi_get_instance(devi);
362 	if (max_asy_instance < instance)
363 	    max_asy_instance = instance;
364 	ddi_regs_map_free(&handle);
365 
366 	return (DDI_PROBE_SUCCESS); /* hw is present */
367 }
368 
369 static int
370 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
371 {
372 	register int	instance;
373 	struct asycom	*asy;
374 	struct asyncline *async;
375 	char		name[16];
376 
377 	instance = ddi_get_instance(devi);	/* find out which unit */
378 
379 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
380 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
381 
382 	switch (cmd) {
383 	    case DDI_DETACH:
384 		break;
385 	    case DDI_SUSPEND:
386 		/* grab both mutex locks */
387 		mutex_enter(asy->asy_excl);
388 		mutex_enter(asy->asy_excl_hi);
389 		if (asy->suspended) {
390 			mutex_exit(asy->asy_excl_hi);
391 			mutex_exit(asy->asy_excl);
392 			return (DDI_SUCCESS);
393 		}
394 		asy->suspended = B_TRUE;
395 
396 		/*
397 		 * The quad UART ST16C554D, version D2 (made by EXAR) has an
398 		 * anomaly of generating spurious interrups when the ICR is
399 		 * loaded with zero. The workaround would be to read/write
400 		 * any register with DATA1 bit set to 0 before such write.
401 		 */
402 		if (asy->asy_hwtype == ASY16C554D)
403 			OUTB(SPR, 0);
404 
405 		/* Disable further interrupts */
406 		OUTB(ICR, 0);
407 		mutex_exit(asy->asy_excl_hi);
408 		mutex_exit(asy->asy_excl);
409 		return (DDI_SUCCESS);
410 
411 	    default:
412 		return (DDI_FAILURE);
413 	}
414 
415 #ifdef DEBUG
416 	if (asydebug & ASY_DEBUG_INIT)
417 	    cmn_err(CE_NOTE, "su%d: ASY%s shutdown.", instance,
418 		asy->asy_hwtype == ASY82510 ? "82510" :
419 		asy->asy_hwtype == ASY16550AF ? "16550AF" :
420 		asy->asy_hwtype == ASY16C554D ? "16C554D" :
421 		"8250");
422 #endif
423 	/*
424 	 * Before removing interrupts it is always better to disable
425 	 * interrupts if the chip gives a provision to disable the
426 	 * serial port interrupts.
427 	 */
428 	mutex_enter(asy->asy_excl);
429 	mutex_enter(asy->asy_excl_hi);
430 	/* disable interrupts, see EXAR bug */
431 	if (asy->asy_hwtype == ASY16C554D)
432 		OUTB(SPR, 0);
433 	OUTB(ICR, 0);
434 	mutex_exit(asy->asy_excl_hi);
435 	mutex_exit(asy->asy_excl);
436 
437 	/* remove minor device node(s) for this device */
438 	(void) sprintf(name, "%c", (instance+'a'));	/* serial-port */
439 	ddi_remove_minor_node(devi, name);
440 	(void) sprintf(name, "%c,cu", (instance+'a')); /* serial-port:dailout */
441 	ddi_remove_minor_node(devi, name);
442 
443 	mutex_destroy(asy->asy_excl);
444 	mutex_destroy(asy->asy_excl_hi);
445 	kmem_free(asy->asy_excl, sizeof (kmutex_t));
446 	kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
447 	cv_destroy(&async->async_flags_cv);
448 	kstat_delete(asy->sukstat);
449 	ddi_remove_intr(devi, 0, asy->asy_iblock);
450 	ddi_regs_map_free(&asy->asy_handle);
451 	ddi_remove_softintr(asy->asy_softintr_id);
452 	mutex_destroy(asy->asy_soft_lock);
453 	kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
454 	ddi_soft_state_free(su_asycom, instance);
455 	ddi_soft_state_free(su_asyncline, instance);
456 	return (DDI_SUCCESS);
457 }
458 
459 static int
460 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
461 {
462 	register int	instance;
463 	struct asycom	*asy;
464 	struct asyncline *async;
465 	char		name[40];
466 	ddi_device_acc_attr_t attr;
467 	enum states { EMPTY, SOFTSTATE, REGSMAP, MUTEXES, ADDINTR,
468 	    SOFTINTR, ASYINIT, KSTAT, MINORNODE };
469 	enum states state = EMPTY;
470 	char *hwtype;
471 
472 	instance = ddi_get_instance(devi);	/* find out which unit */
473 
474 	/* cannot attach a device that has not been probed first */
475 	if (instance > max_asy_instance)
476 	    return (DDI_FAILURE);
477 
478 	if (cmd != DDI_RESUME) {
479 		/* Allocate soft state space */
480 		if (ddi_soft_state_zalloc(su_asycom, instance) != DDI_SUCCESS) {
481 			cmn_err(CE_WARN, "su%d: cannot allocate soft state",
482 			    instance);
483 			goto error;
484 		}
485 	}
486 	state = SOFTSTATE;
487 
488 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
489 
490 	if (asy == NULL) {
491 		cmn_err(CE_WARN, "su%d: cannot get soft state", instance);
492 		goto error;
493 	}
494 
495 	switch (cmd) {
496 	    case DDI_ATTACH:
497 		break;
498 	    case DDI_RESUME: {
499 		struct asyncline *async;
500 
501 		/* grab both mutex locks */
502 		mutex_enter(asy->asy_excl);
503 		mutex_enter(asy->asy_excl_hi);
504 		if (!asy->suspended) {
505 			mutex_exit(asy->asy_excl_hi);
506 			mutex_exit(asy->asy_excl);
507 			return (DDI_SUCCESS);
508 		}
509 		/* re-setup all the registers and enable interrupts if needed */
510 		async = (struct asyncline *)asy->asy_priv;
511 		if ((async) && (async->async_flags & ASYNC_ISOPEN))
512 		    (void) asy_program(asy, ASY_INIT);
513 		asy->suspended = B_FALSE;
514 		mutex_exit(asy->asy_excl_hi);
515 		mutex_exit(asy->asy_excl);
516 		return (DDI_SUCCESS);
517 	    }
518 	    default:
519 		goto error;
520 	}
521 
522 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
523 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
524 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
525 
526 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO,
527 	    (caddr_t *)&asy->asy_ioaddr, SU_REGOFFSET, SU_REGISTER_LEN,
528 	    &attr, &asy->asy_handle) != DDI_SUCCESS) {
529 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
530 		goto error;
531 	}
532 	state = REGSMAP;
533 
534 #ifdef DEBUG
535 	if (asydebug)
536 	    printf("su attach mapped %p\n", (void *)asy->asy_ioaddr);
537 #endif
538 
539 	/*
540 	 * Initialize the port with default settings.
541 	 */
542 	asy->asy_fifo_buf = 1;
543 	asy->asy_use_fifo = FIFO_OFF;
544 
545 	/*
546 	 * Check for baudrate generator's "baud-divisor-factor" property setup
547 	 * by OBP, since different UART chips might have different baudrate
548 	 * generator divisor. e.g., in case of NSPG's Sputnik platform, the
549 	 * baud-divisor-factor is 13, it uses dedicated 16552 "DUART" chip
550 	 * instead of SuperIO. Since the baud-divisor-factor must be a positive
551 	 * integer, the divisors will always be at least as large as the values
552 	 * in asyspdtab[].  Make the default factor 1.
553 	 */
554 	asy->asy_baud_divisor_factor = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
555 	    DDI_PROP_DONTPASS, "baud-divisor-factor", 1);
556 
557 	/* set speed cap */
558 	asy->asy_speed_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
559 	    DDI_PROP_DONTPASS, "serial-speed-cap", 115200);
560 
561 	/* check for ASY82510 chip */
562 	OUTB(ISR, 0x20);
563 	if (INB(ISR) & 0x20) { /* 82510 chip is present */
564 		/*
565 		 * Since most of the general operation of the 82510 chip
566 		 * can be done from BANK 0 (8250A/16450 compatable mode)
567 		 * we will default to BANK 0.
568 		 */
569 		asy->asy_hwtype = ASY82510;
570 		OUTB(DAT+7, 0x04); /* clear status */
571 		OUTB(ISR, 0x40); /* set to bank 2 */
572 		OUTB(MCR, 0x08); /* IMD */
573 		OUTB(DAT, 0x21); /* FMD */
574 		OUTB(ISR, 0x00); /* set to bank 0 */
575 		asy->asy_trig_level = 0;
576 	} else { /* Set the UART in FIFO mode if it has FIFO buffers */
577 		asy->asy_hwtype = ASY16550AF;
578 		OUTB(FIFOR, 0x00); /* clear fifo register */
579 		asy->asy_trig_level = 0x00; /* sets the fifo Threshold to 1 */
580 
581 		/* set/Enable FIFO */
582 		OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | FIFORXFLSH |
583 		    (asy->asy_trig_level & 0xff));
584 
585 		if ((INB(ISR) & 0xc0) == 0xc0)
586 		    asy->asy_use_fifo = FIFO_ON;
587 		else {
588 			asy->asy_hwtype = ASY8250;
589 			OUTB(FIFOR, 0x00); /* NO FIFOs */
590 			asy->asy_trig_level = 0;
591 		}
592 	}
593 
594 	/* check for ST16C554D chip */
595 	if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_NOTPROM |
596 	    DDI_PROP_DONTPASS, "hwtype", &hwtype)) == DDI_PROP_SUCCESS) {
597 		if (strcmp(hwtype, "ST16C554D") == 0)
598 			asy->asy_hwtype = ASY16C554D;
599 		ddi_prop_free(hwtype);
600 	}
601 
602 	/* disable interrupts, see EXAR bug */
603 	if (asy->asy_hwtype == ASY16C554D)
604 		OUTB(SPR, 0);
605 	OUTB(ICR, 0);
606 	OUTB(LCR, DLAB); /* select baud rate generator */
607 	/* Set the baud rate to 9600 */
608 	OUTB(DAT+DLL, (ASY9600*asy->asy_baud_divisor_factor) & 0xff);
609 	OUTB(DAT+DLH, ((ASY9600*asy->asy_baud_divisor_factor) >> 8) & 0xff);
610 	OUTB(LCR, STOP1|BITS8);
611 	OUTB(MCR, (DTR | RTS| OUT2));
612 
613 	/*
614 	 * Set up the other components of the asycom structure for this port.
615 	 */
616 	asy->asy_excl = (kmutex_t *)
617 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
618 	asy->asy_excl_hi = (kmutex_t *)
619 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
620 	asy->asy_soft_lock = (kmutex_t *)
621 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
622 	asy->asy_unit = instance;
623 	asy->asy_dip = devi;
624 
625 	if (ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) {
626 		cmn_err(CE_NOTE,
627 		    "Get iblock_cookie failed-Device interrupt%x\n", instance);
628 		goto error;
629 	}
630 
631 	if (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_HIGH,
632 	    &asy->asy_soft_iblock) != DDI_SUCCESS) {
633 		cmn_err(CE_NOTE, "Get iblock_cookie failed -soft interrupt%x\n",
634 		    instance);
635 		goto error;
636 	}
637 
638 	mutex_init(asy->asy_soft_lock, NULL, MUTEX_DRIVER,
639 	    (void *)asy->asy_soft_iblock);
640 	mutex_init(asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
641 	mutex_init(asy->asy_excl_hi, NULL, MUTEX_DRIVER,
642 	    (void *)asy->asy_iblock);
643 	state = MUTEXES;
644 
645 	/*
646 	 * Install interrupt handlers for this device.
647 	 */
648 	if (ddi_add_intr(devi, 0, &(asy->asy_iblock), 0, asyintr,
649 	    (caddr_t)asy) != DDI_SUCCESS) {
650 		cmn_err(CE_CONT,
651 		    "Cannot set device interrupt for su driver\n");
652 		goto error;
653 	}
654 	state = ADDINTR;
655 
656 	if (ddi_add_softintr(devi, DDI_SOFTINT_HIGH, &(asy->asy_softintr_id),
657 	    &asy->asy_soft_iblock, 0, asysoftintr, (caddr_t)asy)
658 	    != DDI_SUCCESS) {
659 		cmn_err(CE_CONT, "Cannot set soft interrupt for su driver\n");
660 		goto error;
661 	}
662 	state = SOFTINTR;
663 
664 	/* initialize the asyncline structure */
665 	if (ddi_soft_state_zalloc(su_asyncline, instance) != DDI_SUCCESS) {
666 		cmn_err(CE_CONT, "su%d: cannot allocate soft state", instance);
667 		goto error;
668 	}
669 	state = ASYINIT;
670 
671 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
672 
673 	mutex_enter(asy->asy_excl);
674 	async->async_common = asy;
675 	cv_init(&async->async_flags_cv, NULL, CV_DEFAULT, NULL);
676 	mutex_exit(asy->asy_excl);
677 
678 	if ((asy->sukstat = kstat_create("su", instance, "serialstat",
679 	    "misc", KSTAT_TYPE_NAMED, 2, KSTAT_FLAG_VIRTUAL)) != NULL) {
680 		asy->sukstat->ks_data = &asy->kstats;
681 		kstat_named_init(&asy->kstats.ringover, "ring buffer overflow",
682 		    KSTAT_DATA_UINT64);
683 		kstat_named_init(&asy->kstats.siloover, "silo overflow",
684 		    KSTAT_DATA_UINT64);
685 		kstat_install(asy->sukstat);
686 	}
687 	state = KSTAT;
688 
689 	if (strcmp(ddi_node_name(devi), "rsc-console") == 0) {
690 		/*
691 		 * If the device is configured as the 'rsc-console'
692 		 * create the minor device for this node.
693 		 */
694 		if (ddi_create_minor_node(devi, "ssp", S_IFCHR,
695 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
696 		    == DDI_FAILURE) {
697 			cmn_err(CE_WARN,
698 			    "%s%d: Failed to create node rsc-console",
699 			    ddi_get_name(devi), ddi_get_instance(devi));
700 			goto error;
701 		}
702 
703 		asy->asy_lom_console = 0;
704 		asy->asy_rsc_console = 1;
705 		asy->asy_rsc_control = 0;
706 		asy->asy_device_type = ASY_SERIAL;
707 		asy->asy_flags |= ASY_IGNORE_CD;
708 
709 	} else if (strcmp(ddi_node_name(devi), "lom-console") == 0) {
710 		/*
711 		 * If the device is configured as the 'lom-console'
712 		 * create the minor device for this node.
713 		 * Do not create a dialout device.
714 		 * Use the same minor numbers as would be used for standard
715 		 * serial instances.
716 		 */
717 		if (ddi_create_minor_node(devi, "lom-console", S_IFCHR,
718 		    instance, DDI_NT_SERIAL_LOMCON, NULL) == DDI_FAILURE) {
719 			cmn_err(CE_WARN,
720 			    "%s%d: Failed to create node lom-console",
721 			    ddi_get_name(devi), ddi_get_instance(devi));
722 			goto error;
723 		}
724 		asy->asy_lom_console = 1;
725 		asy->asy_rsc_console = 0;
726 		asy->asy_rsc_control = 0;
727 		asy->asy_device_type = ASY_SERIAL;
728 		asy->asy_flags |= ASY_IGNORE_CD;
729 
730 	} else if (strcmp(ddi_node_name(devi), "rsc-control") == 0) {
731 		/*
732 		 * If the device is configured as the 'rsc-control'
733 		 * create the minor device for this node.
734 		 */
735 		if (ddi_create_minor_node(devi, "sspctl", S_IFCHR,
736 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
737 		    == DDI_FAILURE) {
738 			cmn_err(CE_WARN, "%s%d: Failed to create rsc-control",
739 			    ddi_get_name(devi), ddi_get_instance(devi));
740 			goto error;
741 		}
742 
743 		asy->asy_lom_console = 0;
744 		asy->asy_rsc_console = 0;
745 		asy->asy_rsc_control = 1;
746 		asy->asy_device_type = ASY_SERIAL;
747 		asy->asy_flags |= ASY_IGNORE_CD;
748 
749 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
750 		"keyboard", 0)) {
751 		/*
752 		 * If the device is a keyboard, then create an internal
753 		 * pathname so that the dacf code will link the node into
754 		 * the keyboard console stream.  See dacf.conf.
755 		 */
756 		if (ddi_create_internal_pathname(devi, "keyboard",
757 		    S_IFCHR, instance) == DDI_FAILURE) {
758 			goto error;
759 		}
760 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
761 		asy->asy_device_type = ASY_KEYBOARD; 	/* Device type */
762 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
763 		"mouse", 0)) {
764 		/*
765 		 * If the device is a mouse, then create an internal
766 		 * pathname so that the dacf code will link the node into
767 		 * the mouse stream.  See dacf.conf.
768 		 */
769 		if (ddi_create_internal_pathname(devi, "mouse", S_IFCHR,
770 		    instance) == DDI_FAILURE) {
771 			goto error;
772 		}
773 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
774 		asy->asy_device_type = ASY_MOUSE;
775 	} else {
776 		/*
777 		 * If not used for keyboard/mouse, create minor devices nodes
778 		 * for this device
779 		 */
780 		/* serial-port */
781 		(void) sprintf(name, "%c", (instance+'a'));
782 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance,
783 		    DDI_NT_SERIAL_MB, NULL) == DDI_FAILURE) {
784 			goto error;
785 		}
786 		state = MINORNODE;
787 		/* serial-port:dailout */
788 		(void) sprintf(name, "%c,cu", (instance+'a'));
789 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance|OUTLINE,
790 		    DDI_NT_SERIAL_MB_DO, NULL) == DDI_FAILURE) {
791 			goto error;
792 		}
793 		/* Property for ignoring DCD */
794 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
795 		    "ignore-cd", 0)) {
796 			asy->asy_flags |= ASY_IGNORE_CD;  /* ignore cd */
797 		} else {
798 			asy->asy_flags &= ~ASY_IGNORE_CD;
799 			/*
800 			 * if ignore-cd is not available it could be
801 			 * some old legacy platform, try to see
802 			 * whether the old legacy property exists
803 			 */
804 			(void) sprintf(name,
805 			    "port-%c-ignore-cd", (instance+ 'a'));
806 			if (ddi_getprop(DDI_DEV_T_ANY, devi,
807 			    DDI_PROP_DONTPASS, name, 0))
808 				asy->asy_flags |= ASY_IGNORE_CD;
809 		}
810 		asy->asy_device_type = ASY_SERIAL;
811 	}
812 	ddi_report_dev(devi);
813 	return (DDI_SUCCESS);
814 
815 error:
816 	if (state == MINORNODE) {
817 		(void) sprintf(name, "%c", (instance+'a'));
818 		ddi_remove_minor_node(devi, name);
819 	}
820 	if (state >= KSTAT)
821 		kstat_delete(asy->sukstat);
822 	if (state >= ASYINIT) {
823 		cv_destroy(&async->async_flags_cv);
824 		ddi_soft_state_free(su_asyncline, instance);
825 	}
826 	if (state >= SOFTINTR)
827 		ddi_remove_softintr(asy->asy_softintr_id);
828 	if (state >= ADDINTR)
829 		ddi_remove_intr(devi, 0, asy->asy_iblock);
830 	if (state >= MUTEXES) {
831 		mutex_destroy(asy->asy_excl_hi);
832 		mutex_destroy(asy->asy_excl);
833 		mutex_destroy(asy->asy_soft_lock);
834 		kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
835 		kmem_free(asy->asy_excl, sizeof (kmutex_t));
836 		kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
837 	}
838 	if (state >= REGSMAP)
839 		ddi_regs_map_free(&asy->asy_handle);
840 	if (state >= SOFTSTATE)
841 		ddi_soft_state_free(su_asycom, instance);
842 	/* no action for EMPTY state */
843 	return (DDI_FAILURE);
844 }
845 
846 static int
847 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
848 	void **result)
849 {
850 	_NOTE(ARGUNUSED(dip))
851 	register dev_t dev = (dev_t)arg;
852 	register int instance, error;
853 	struct asycom *asy;
854 
855 	if ((instance = UNIT(dev)) > max_asy_instance)
856 		return (DDI_FAILURE);
857 
858 	switch (infocmd) {
859 	    case DDI_INFO_DEVT2DEVINFO:
860 		asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
861 		if (asy->asy_dip == NULL)
862 		    error = DDI_FAILURE;
863 		else {
864 			*result = (void *) asy->asy_dip;
865 			error = DDI_SUCCESS;
866 		}
867 		break;
868 	    case DDI_INFO_DEVT2INSTANCE:
869 		*result = (void *)(uintptr_t)instance;
870 		error = DDI_SUCCESS;
871 		break;
872 	    default:
873 		error = DDI_FAILURE;
874 	}
875 	return (error);
876 }
877 
878 static int
879 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
880 {
881 	_NOTE(ARGUNUSED(sflag))
882 	struct asycom	*asy;
883 	struct asyncline *async;
884 	int		mcr;
885 	int		unit;
886 	int 		len;
887 	struct termios 	*termiosp;
888 
889 #ifdef DEBUG
890 	if (asydebug & ASY_DEBUG_CLOSE)
891 		printf("open\n");
892 #endif
893 	unit = UNIT(*dev);
894 	if (unit > max_asy_instance)
895 		return (ENXIO);		/* unit not configured */
896 
897 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, unit);
898 	if (async == NULL)
899 		return (ENXIO);
900 
901 	asy = async->async_common;
902 	if (asy == NULL)
903 		return (ENXIO);		/* device not found by autoconfig */
904 
905 	mutex_enter(asy->asy_excl);
906 	asy->asy_priv = (caddr_t)async;
907 
908 again:
909 	mutex_enter(asy->asy_excl_hi);
910 	/*
911 	 * Block waiting for carrier to come up, unless this is a no-delay open.
912 	 */
913 	if (!(async->async_flags & ASYNC_ISOPEN)) {
914 		/*
915 		 * If this port is for a RSC console or control
916 		 * use the following termio info
917 		 */
918 		if (asy->asy_rsc_console || asy->asy_rsc_control) {
919 			async->async_ttycommon.t_cflag = CIBAUDEXT | CBAUDEXT |
920 			    (B115200 & CBAUD);
921 			async->async_ttycommon.t_cflag |= ((B115200 << IBSHIFT)
922 			    & CIBAUD);
923 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
924 		} else if (asy->asy_lom_console) {
925 			async->async_ttycommon.t_cflag = B9600 & CBAUD;
926 			async->async_ttycommon.t_cflag |= ((B9600 << IBSHIFT)
927 			    & CIBAUD);
928 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
929 		} else {
930 
931 			/*
932 			 * Set the default termios settings (cflag).
933 			 * Others are set in ldterm.  Release the spin
934 			 * mutex as we can block here, reaquire before
935 			 * calling asy_program.
936 			 */
937 			mutex_exit(asy->asy_excl_hi);
938 			if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
939 			    0, "ttymodes", (caddr_t)&termiosp, &len)
940 			    == DDI_PROP_SUCCESS &&
941 			    len == sizeof (struct termios)) {
942 				async->async_ttycommon.t_cflag =
943 				    termiosp->c_cflag;
944 				kmem_free(termiosp, len);
945 			} else {
946 				cmn_err(CE_WARN,
947 					"su: couldn't get ttymodes property!");
948 			}
949 			mutex_enter(asy->asy_excl_hi);
950 		}
951 		async->async_ttycommon.t_iflag = 0;
952 		async->async_ttycommon.t_iocpending = NULL;
953 		async->async_ttycommon.t_size.ws_row = 0;
954 		async->async_ttycommon.t_size.ws_col = 0;
955 		async->async_ttycommon.t_size.ws_xpixel = 0;
956 		async->async_ttycommon.t_size.ws_ypixel = 0;
957 		async->async_dev = *dev;
958 		async->async_wbufcid = 0;
959 
960 		async->async_startc = CSTART;
961 		async->async_stopc = CSTOP;
962 		(void) asy_program(asy, ASY_INIT);
963 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
964 					    secpolicy_excl_open(cr) != 0) {
965 		mutex_exit(asy->asy_excl_hi);
966 		mutex_exit(asy->asy_excl);
967 		return (EBUSY);
968 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
969 		mutex_exit(asy->asy_excl_hi);
970 		mutex_exit(asy->asy_excl);
971 		return (EBUSY);
972 	}
973 
974 	if (*dev & OUTLINE)
975 		async->async_flags |= ASYNC_OUT;
976 
977 	/* Raise DTR on every open */
978 	mcr = INB(MCR);
979 	OUTB(MCR, mcr|DTR);
980 
981 	/*
982 	 * Check carrier.
983 	 */
984 	if (asy->asy_flags & ASY_IGNORE_CD)
985 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
986 	if ((async->async_ttycommon.t_flags & TS_SOFTCAR) ||
987 					(INB(MSR) & DCD))
988 		async->async_flags |= ASYNC_CARR_ON;
989 	else
990 		async->async_flags &= ~ASYNC_CARR_ON;
991 	mutex_exit(asy->asy_excl_hi);
992 
993 	/*
994 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
995 	 * Quit on interrupt.
996 	 */
997 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
998 			!(async->async_ttycommon.t_cflag & CLOCAL)) {
999 		if (!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) ||
1000 				((async->async_flags & ASYNC_OUT) &&
1001 				!(*dev & OUTLINE))) {
1002 			async->async_flags |= ASYNC_WOPEN;
1003 			if (cv_wait_sig(&async->async_flags_cv,
1004 			    asy->asy_excl) == 0) {
1005 				async->async_flags &= ~ASYNC_WOPEN;
1006 				mutex_exit(asy->asy_excl);
1007 				return (EINTR);
1008 			}
1009 			async->async_flags &= ~ASYNC_WOPEN;
1010 			goto again;
1011 		}
1012 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1013 			mutex_exit(asy->asy_excl);
1014 			return (EBUSY);
1015 	}
1016 
1017 	if (asy->suspended) {
1018 		mutex_exit(asy->asy_excl);
1019 		(void) ddi_dev_is_needed(asy->asy_dip, 0, 1);
1020 		mutex_enter(asy->asy_excl);
1021 	}
1022 
1023 	async->async_ttycommon.t_readq = rq;
1024 	async->async_ttycommon.t_writeq = WR(rq);
1025 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1026 	mutex_exit(asy->asy_excl);
1027 	qprocson(rq);
1028 	async->async_flags |= ASYNC_ISOPEN;
1029 	async->async_polltid = 0;
1030 	return (0);
1031 }
1032 
1033 static void
1034 async_progress_check(void *arg)
1035 {
1036 	struct asyncline *async = arg;
1037 	struct asycom	 *asy = async->async_common;
1038 	mblk_t *bp;
1039 
1040 	/*
1041 	 * We define "progress" as either waiting on a timed break or delay, or
1042 	 * having had at least one transmitter interrupt.  If none of these are
1043 	 * true, then just terminate the output and wake up that close thread.
1044 	 */
1045 	mutex_enter(asy->asy_excl);
1046 	mutex_enter(asy->asy_excl_hi);
1047 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1048 		async->async_ocnt = 0;
1049 		async->async_flags &= ~ASYNC_BUSY;
1050 		async->async_timer = 0;
1051 		bp = async->async_xmitblk;
1052 		async->async_xmitblk = NULL;
1053 		mutex_exit(asy->asy_excl_hi);
1054 		if (bp != NULL)
1055 			freeb(bp);
1056 		/*
1057 		 * Since this timer is running, we know that we're in exit(2).
1058 		 * That means that the user can't possibly be waiting on any
1059 		 * valid ioctl(2) completion anymore, and we should just flush
1060 		 * everything.
1061 		 */
1062 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1063 		cv_broadcast(&async->async_flags_cv);
1064 	} else {
1065 		async->async_flags &= ~ASYNC_PROGRESS;
1066 		async->async_timer = timeout(async_progress_check, async,
1067 		    drv_usectohz(su_drain_check));
1068 		mutex_exit(asy->asy_excl_hi);
1069 	}
1070 	mutex_exit(asy->asy_excl);
1071 }
1072 
1073 /*
1074  * Close routine.
1075  */
1076 static int
1077 asyclose(queue_t *q, int flag)
1078 {
1079 	struct asyncline *async;
1080 	struct asycom	 *asy;
1081 	int icr, lcr;
1082 	int		nohupcl;
1083 
1084 
1085 #ifdef DEBUG
1086 	if (asydebug & ASY_DEBUG_CLOSE)
1087 		printf("close\n");
1088 #endif
1089 	async = q->q_ptr;
1090 	ASSERT(async != NULL);
1091 	asy = async->async_common;
1092 
1093 	/* get the nohupcl OBP property of this device */
1094 	nohupcl = ddi_getprop(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1095 	    "nohupcl", 0);
1096 
1097 	mutex_enter(asy->asy_excl);
1098 	async->async_flags |= ASYNC_CLOSING;
1099 
1100 	/*
1101 	 * Turn off PPS handling early to avoid events occuring during
1102 	 * close.  Also reset the DCD edge monitoring bit.
1103 	 */
1104 	mutex_enter(asy->asy_excl_hi);
1105 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1106 	mutex_exit(asy->asy_excl_hi);
1107 
1108 	/*
1109 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1110 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1111 	 * write queue and there's a timer running, so we don't have to worry
1112 	 * about them.  For the untimed case, though, the user obviously made a
1113 	 * mistake, because these are handled immediately.  We'll terminate the
1114 	 * break now and honor his implicit request by discarding the rest of
1115 	 * the data.
1116 	 */
1117 	if (!(async->async_flags & ASYNC_BREAK)) {
1118 		mutex_enter(asy->asy_excl_hi);
1119 		lcr = INB(LCR);
1120 		if (lcr & SETBREAK) {
1121 			OUTB(LCR, (lcr & ~SETBREAK));
1122 		}
1123 		mutex_exit(asy->asy_excl_hi);
1124 		if (lcr & SETBREAK)
1125 			goto nodrain;
1126 	}
1127 
1128 	/*
1129 	 * If the user told us not to delay the close ("non-blocking"), then
1130 	 * don't bother trying to drain.
1131 	 *
1132 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1133 	 * getting an M_START (since these messages aren't enqueued), and the
1134 	 * only other way to clear the stop condition is by loss of DCD, which
1135 	 * would discard the queue data.  Thus, we drop the output data if
1136 	 * ASYNC_STOPPED is set.
1137 	 */
1138 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1139 	    (async->async_flags & ASYNC_STOPPED)) {
1140 		goto nodrain;
1141 	}
1142 
1143 	/*
1144 	 * If there's any pending output, then we have to try to drain it.
1145 	 * There are two main cases to be handled:
1146 	 *	- called by close(2): need to drain until done or until
1147 	 *	  a signal is received.  No timeout.
1148 	 *	- called by exit(2): need to drain while making progress
1149 	 *	  or until a timeout occurs.  No signals.
1150 	 *
1151 	 * If we can't rely on receiving a signal to get us out of a hung
1152 	 * session, then we have to use a timer.  In this case, we set a timer
1153 	 * to check for progress in sending the output data -- all that we ask
1154 	 * (at each interval) is that there's been some progress made.  Since
1155 	 * the interrupt routine grabs buffers from the write queue, we can't
1156 	 * trust async_ocnt.  Instead, we use a flag.
1157 	 *
1158 	 * Note that loss of carrier will cause the output queue to be flushed,
1159 	 * and we'll wake up again and finish normally.
1160 	 */
1161 	if (!ddi_can_receive_sig() && su_drain_check != 0) {
1162 		async->async_flags &= ~ASYNC_PROGRESS;
1163 		async->async_timer = timeout(async_progress_check, async,
1164 		    drv_usectohz(su_drain_check));
1165 	}
1166 
1167 	while (async->async_ocnt > 0 ||
1168 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1169 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1170 		if (cv_wait_sig(&async->async_flags_cv, asy->asy_excl) == 0)
1171 			break;
1172 	}
1173 	if (async->async_timer != 0) {
1174 		(void) untimeout(async->async_timer);
1175 		async->async_timer = 0;
1176 	}
1177 
1178 nodrain:
1179 	mutex_enter(asy->asy_excl_hi);
1180 
1181 	/* turn off the loopback mode */
1182 	if ((async->async_dev != rconsdev) &&
1183 	    (async->async_dev != kbddev) &&
1184 	    (async->async_dev != stdindev)) {
1185 		OUTB(MCR, INB(MCR) & ~ ASY_LOOP);
1186 	}
1187 
1188 	async->async_ocnt = 0;
1189 	if (async->async_xmitblk != NULL)
1190 		freeb(async->async_xmitblk);
1191 	async->async_xmitblk = NULL;
1192 
1193 	/*
1194 	 * If the "nohupcl" OBP property is set for this device, do
1195 	 * not turn off DTR and RTS no matter what.  Otherwise, if the
1196 	 * line has HUPCL set or is incompletely opened, turn off DTR
1197 	 * and RTS to fix the modem line.
1198 	 */
1199 	if (!nohupcl && ((async->async_ttycommon.t_cflag & HUPCL) ||
1200 	    (async->async_flags & ASYNC_WOPEN))) {
1201 		/* turn off DTR, RTS but NOT interrupt to 386 */
1202 		OUTB(MCR, OUT2);
1203 		mutex_exit(asy->asy_excl_hi);
1204 		/*
1205 		 * Don't let an interrupt in the middle of close
1206 		 * bounce us back to the top; just continue closing
1207 		 * as if nothing had happened.
1208 		 */
1209 		if (cv_wait_sig(&lbolt_cv, asy->asy_excl) == 0)
1210 			goto out;
1211 		mutex_enter(asy->asy_excl_hi);
1212 	}
1213 
1214 	/*
1215 	 * If nobody's using it now, turn off receiver interrupts.
1216 	 */
1217 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1218 		icr = INB(ICR);
1219 		OUTB(ICR, (icr & ~RIEN));
1220 	}
1221 	mutex_exit(asy->asy_excl_hi);
1222 out:
1223 	/*
1224 	 * Clear out device state.
1225 	 */
1226 	async->async_flags = 0;
1227 	ttycommon_close(&async->async_ttycommon);
1228 	cv_broadcast(&async->async_flags_cv);
1229 
1230 	/*
1231 	 * Clear ASY_DOINGSOFT and ASY_NEEDSOFT in case we were in
1232 	 * async_softint or an interrupt was pending when the process
1233 	 * using the port exited.
1234 	 */
1235 	asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
1236 
1237 	/*
1238 	 * Cancel outstanding "bufcall" request.
1239 	 */
1240 	if (async->async_wbufcid) {
1241 		unbufcall(async->async_wbufcid);
1242 		async->async_wbufcid = 0;
1243 	}
1244 
1245 	/*
1246 	 * If inperim is true, it means the port is closing while there's
1247 	 * a pending software interrupt.  async_flags has been zeroed out,
1248 	 * so this instance of leaveq() needs to be called before we call
1249 	 * qprocsoff() to disable services on the q.  If inperim is false,
1250 	 * leaveq() has already been called or we're not in a perimeter.
1251 	 */
1252 	if (asy->inperim == B_TRUE) {
1253 		asy->inperim = B_FALSE;
1254 		mutex_exit(asy->asy_excl);
1255 		leaveq(q);
1256 	} else {
1257 		mutex_exit(asy->asy_excl);
1258 	}
1259 
1260 	/* Note that qprocsoff can't be done until after interrupts are off */
1261 	qprocsoff(q);
1262 	q->q_ptr = WR(q)->q_ptr = NULL;
1263 	async->async_ttycommon.t_readq = NULL;
1264 	async->async_ttycommon.t_writeq = NULL;
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Checks to see if the serial port is still transmitting
1271  * characters.  It returns true when there are characters
1272  * queued to transmit,  when the holding register contains
1273  * a byte, or when the shifting register still contains
1274  * data to send.
1275  *
1276  */
1277 static boolean_t
1278 asy_isbusy(struct asycom *asy)
1279 {
1280 	struct asyncline *async;
1281 
1282 #ifdef DEBUG
1283 	if (asydebug & ASY_DEBUG_EOT)
1284 		printf("isbusy\n");
1285 #endif
1286 	async = (struct asyncline *)asy->asy_priv;
1287 	ASSERT(mutex_owned(asy->asy_excl));
1288 	ASSERT(mutex_owned(asy->asy_excl_hi));
1289 	return ((async->async_ocnt > 0) ||
1290 			((INB(LSR) & XSRE) == 0));
1291 }
1292 
1293 /*
1294  * Program the ASY port. Most of the async operation is based on the values
1295  * of 'c_iflag' and 'c_cflag'.
1296  */
1297 static int
1298 asy_program(struct asycom *asy, int mode)
1299 {
1300 	struct asyncline *async;
1301 	int baudrate, c_flag;
1302 	int icr, lcr;
1303 	int ocflags;
1304 	int error = 0;
1305 
1306 	ASSERT(mutex_owned(asy->asy_excl));
1307 	ASSERT(mutex_owned(asy->asy_excl_hi));
1308 
1309 #ifdef DEBUG
1310 	if (asydebug & ASY_DEBUG_PROCS)
1311 		printf("program\n");
1312 #endif
1313 	async = (struct asyncline *)asy->asy_priv;
1314 
1315 	baudrate = async->async_ttycommon.t_cflag & CBAUD;
1316 	if (async->async_ttycommon.t_cflag & CBAUDEXT)
1317 		baudrate += 16;
1318 
1319 	/* Limit baudrate so it can't index out of baudtable */
1320 	if (baudrate >= N_SU_SPEEDS) baudrate = B9600;
1321 
1322 	/*
1323 	 * If baud rate requested is greater than the speed cap
1324 	 * or is an unsupported baud rate then reset t_cflag baud
1325 	 * to the last valid baud rate.  If this is the initial
1326 	 * pass through asy_program then set it to 9600.
1327 	 */
1328 	if (((baudrate > 0) && (asyspdtab[baudrate] == 0)) ||
1329 	    (baudtable[baudrate] > asy->asy_speed_cap)) {
1330 		async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1331 		    ~CIBAUD & ~CIBAUDEXT;
1332 		if (mode == ASY_INIT) {
1333 			async->async_ttycommon.t_cflag |= B9600;
1334 			async->async_ttycommon.t_cflag |= B9600 << IBSHIFT;
1335 			baudrate = B9600;
1336 		} else {
1337 			async->async_ttycommon.t_cflag |=
1338 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1339 			    CIBAUD | CIBAUDEXT));
1340 			error = EINVAL;
1341 			goto end;
1342 		}
1343 	}
1344 
1345 	/*
1346 	 * If CIBAUD and CIBAUDEXT are zero then we should set them to
1347 	 * the equivelant output baud bits.  Else, if CIBAUD and CIBAUDEXT
1348 	 * don't match CBAUD and CBAUDEXT respectively then we should
1349 	 * notify the requestor that we do not support split speeds.
1350 	 */
1351 	if ((async->async_ttycommon.t_cflag  & (CIBAUD|CIBAUDEXT)) == 0) {
1352 		async->async_ttycommon.t_cflag |=
1353 		    (async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT;
1354 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
1355 		    async->async_ttycommon.t_cflag |= CIBAUDEXT;
1356 	} else {
1357 		if ((((async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT) !=
1358 		    (async->async_ttycommon.t_cflag & CIBAUD)) ||
1359 		    !(((async->async_ttycommon.t_cflag & (CBAUDEXT |
1360 		    CIBAUDEXT)) == (CBAUDEXT | CIBAUDEXT)) ||
1361 		    ((async->async_ttycommon.t_cflag & (CBAUDEXT |
1362 		    CIBAUDEXT)) == 0))) {
1363 			async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1364 			    ~CIBAUD & ~CIBAUDEXT;
1365 			async->async_ttycommon.t_cflag |=
1366 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1367 			    CIBAUD | CIBAUDEXT));
1368 			error = EINVAL;
1369 			goto end;
1370 		}
1371 	}
1372 
1373 	c_flag = async->async_ttycommon.t_cflag &
1374 	    (CLOCAL | CREAD | CSTOPB | CSIZE | PARENB | PARODD | CBAUD |
1375 	    CBAUDEXT | CIBAUD | CIBAUDEXT);
1376 
1377 	/* disable interrupts, see EXAR bug */
1378 	if (asy->asy_hwtype == ASY16C554D)
1379 		OUTB(SPR, 0);
1380 	OUTB(ICR, 0);
1381 
1382 	ocflags = asy->asy_ocflags;
1383 
1384 	/* flush/reset the status registers */
1385 	if (mode == ASY_INIT) {
1386 		(void) INB(DAT);
1387 		(void) INB(ISR);
1388 		(void) INB(LSR);
1389 		(void) INB(MSR);
1390 	}
1391 
1392 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
1393 		/* Set line control */
1394 		lcr = INB(LCR);
1395 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
1396 
1397 		if (c_flag & CSTOPB)
1398 			lcr |= STB;	/* 2 stop bits */
1399 
1400 		if (c_flag & PARENB)
1401 			lcr |= PEN;
1402 
1403 		if ((c_flag & PARODD) == 0)
1404 			lcr |= EPS;
1405 
1406 		switch (c_flag & CSIZE) {
1407 		case CS5:
1408 			lcr |= BITS5;
1409 			break;
1410 		case CS6:
1411 			lcr |= BITS6;
1412 			break;
1413 		case CS7:
1414 			lcr |= BITS7;
1415 			break;
1416 		case CS8:
1417 			lcr |= BITS8;
1418 			break;
1419 		}
1420 
1421 		/* set the baud rate when the rate is NOT B0 */
1422 		if (baudrate != 0) {
1423 			OUTB(LCR, DLAB);
1424 			OUTB(DAT, (asyspdtab[baudrate] *
1425 				asy->asy_baud_divisor_factor) & 0xff);
1426 			OUTB(ICR, ((asyspdtab[baudrate] *
1427 				asy->asy_baud_divisor_factor) >> 8) & 0xff);
1428 		}
1429 		/* set the line control modes */
1430 		OUTB(LCR, lcr);
1431 
1432 		/*
1433 		 * if transitioning from CREAD off to CREAD on,
1434 		 * flush the FIFO buffer if we have one.
1435 		 */
1436 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD)) {
1437 			if (asy->asy_use_fifo == FIFO_ON) {
1438 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
1439 				    (asy->asy_trig_level & 0xff));
1440 			}
1441 		}
1442 
1443 		/* remember the new cflags */
1444 		asy->asy_ocflags = c_flag & ~CLOCAL;
1445 	}
1446 
1447 	/* whether or not CLOCAL is set, modify the modem control lines */
1448 	if (baudrate == 0)
1449 		/* B0 has been issued, lower DTR */
1450 		OUTB(MCR, RTS|OUT2);
1451 	else
1452 		/* raise DTR */
1453 		OUTB(MCR, DTR|RTS|OUT2);
1454 
1455 	/*
1456 	 * Call the modem status interrupt handler to check for the carrier
1457 	 * in case CLOCAL was turned off after the carrier came on.
1458 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
1459 	 */
1460 	async_msint(asy);
1461 
1462 	/* Set interrupt control */
1463 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
1464 		/*
1465 		 * direct-wired line ignores DCD, so we don't enable modem
1466 		 * status interrupts.
1467 		 */
1468 		icr = (TIEN | SIEN);
1469 	else
1470 		icr = (TIEN | SIEN | MIEN);
1471 
1472 	if (c_flag & CREAD)
1473 		icr |= RIEN;
1474 
1475 	OUTB(ICR, icr);
1476 end:
1477 	return (error);
1478 }
1479 
1480 /*
1481  * asyintr() is the High Level Interrupt Handler.
1482  *
1483  * There are four different interrupt types indexed by ISR register values:
1484  *		0: modem
1485  *		1: Tx holding register is empty, ready for next char
1486  *		2: Rx register now holds a char to be picked up
1487  *		3: error or break on line
1488  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
1489  * the interrupt is from this port.
1490  */
1491 uint_t
1492 asyintr(caddr_t argasy)
1493 {
1494 	struct asycom		*asy = (struct asycom *)argasy;
1495 	struct asyncline	*async;
1496 	int			ret_status = DDI_INTR_UNCLAIMED;
1497 	uchar_t			interrupt_id, lsr;
1498 
1499 	interrupt_id = INB(ISR) & 0x0F;
1500 	async = (struct asyncline *)asy->asy_priv;
1501 	if ((async == NULL) ||
1502 		!(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
1503 		if (interrupt_id & NOINTERRUPT)  {
1504 			return (DDI_INTR_UNCLAIMED);
1505 		} else {
1506 			lsr = INB(LSR);
1507 			if ((lsr & BRKDET) &&
1508 			    ((abort_enable == KIOCABORTENABLE) &&
1509 			    (async->async_dev == rconsdev)))
1510 				abort_sequence_enter((char *)NULL);
1511 			else {
1512 				/* reset line status */
1513 				(void) INB(LSR);
1514 				/* discard any data */
1515 				(void) INB(DAT);
1516 				/* reset modem status */
1517 				(void) INB(MSR);
1518 				return (DDI_INTR_CLAIMED);
1519 			}
1520 		}
1521 	}
1522 	/*
1523 	 * Spurious interrupts happen in this driver
1524 	 * because of the transmission on serial port not handled
1525 	 * properly.
1526 	 *
1527 	 * The reasons for Spurious interrupts are:
1528 	 *    1. There is a path in async_nstart which transmits
1529 	 *	 characters without going through interrupt services routine
1530 	 *	 which causes spurious interrupts to happen.
1531 	 *    2. In the async_txint more than one character is sent
1532 	 *	 in one interrupt service.
1533 	 *    3. In async_rxint more than one characters are received in
1534 	 *	 in one interrupt service.
1535 	 *
1536 	 * Hence we have flags to indicate that such scenerio has happened.
1537 	 * and claim only such interrupts and others we donot claim it
1538 	 * as it could be a indicator of some hardware problem.
1539 	 *
1540 	 */
1541 	if (interrupt_id & NOINTERRUPT) {
1542 		mutex_enter(asy->asy_excl_hi);
1543 		if ((asy->asy_xmit_count > 1) ||
1544 			    (asy->asy_out_of_band_xmit > 0) ||
1545 				(asy->asy_rx_count > 1)) {
1546 			asy->asy_xmit_count = 0;
1547 			asy->asy_out_of_band_xmit = 0;
1548 			asy->asy_rx_count = 0;
1549 			mutex_exit(asy->asy_excl_hi);
1550 			return (DDI_INTR_CLAIMED);
1551 		} else {
1552 			mutex_exit(asy->asy_excl_hi);
1553 			return (DDI_INTR_UNCLAIMED);
1554 		}
1555 	}
1556 	ret_status = DDI_INTR_CLAIMED;
1557 	mutex_enter(asy->asy_excl_hi);
1558 	if (asy->asy_hwtype == ASY82510)
1559 		OUTB(ISR, 0x00); /* set bank 0 */
1560 
1561 #ifdef DEBUG
1562 	if (asydebug & ASY_DEBUG_INTR)
1563 		prom_printf("l");
1564 #endif
1565 	lsr = INB(LSR);
1566 	switch (interrupt_id) {
1567 	case RxRDY:
1568 	case RSTATUS:
1569 	case FFTMOUT:
1570 		/* receiver interrupt or receiver errors */
1571 		async_rxint(asy, lsr);
1572 		break;
1573 	case TxRDY:
1574 		/* transmit interrupt */
1575 		async_txint(asy, lsr);
1576 		break;
1577 	case MSTATUS:
1578 		/* modem status interrupt */
1579 		async_msint(asy);
1580 		break;
1581 	}
1582 	mutex_exit(asy->asy_excl_hi);
1583 	return (ret_status);
1584 }
1585 
1586 /*
1587  * Transmitter interrupt service routine.
1588  * If there is more data to transmit in the current pseudo-DMA block,
1589  * send the next character if output is not stopped or draining.
1590  * Otherwise, queue up a soft interrupt.
1591  *
1592  * XXX -  Needs review for HW FIFOs.
1593  */
1594 static void
1595 async_txint(struct asycom *asy, uchar_t lsr)
1596 {
1597 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1598 	int		fifo_len;
1599 	int		xmit_progress;
1600 
1601 	asycheckflowcontrol_hw(asy);
1602 
1603 	/*
1604 	 * If ASYNC_BREAK has been set, return to asyintr()'s context to
1605 	 * claim the interrupt without performing any action.
1606 	 */
1607 	if (async->async_flags & ASYNC_BREAK)
1608 		return;
1609 
1610 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
1611 
1612 	/*
1613 	 * Check for flow control and do the needed action.
1614 	 */
1615 	if (asycheckflowcontrol_sw(asy)) {
1616 		return;
1617 	}
1618 
1619 	if (async->async_ocnt > 0 &&
1620 	    !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED))) {
1621 		xmit_progress = 0;
1622 		while (fifo_len > 0 && async->async_ocnt > 0) {
1623 			if (lsr & XHRE) {
1624 				OUTB(DAT, *async->async_optr++);
1625 				fifo_len--;
1626 				async->async_ocnt--;
1627 				xmit_progress++;
1628 			}
1629 			/*
1630 			 * Reading the lsr, (moved reading at the end of
1631 			 * while loop) as already we have read once at
1632 			 * the beginning of interrupt service
1633 			 */
1634 			lsr = INB(LSR);
1635 		}
1636 		asy->asy_xmit_count = xmit_progress;
1637 		if (xmit_progress > 0)
1638 			async->async_flags |= ASYNC_PROGRESS;
1639 	}
1640 
1641 	if (fifo_len == 0) {
1642 		return;
1643 	}
1644 
1645 
1646 	ASYSETSOFT(asy);
1647 }
1648 
1649 /*
1650  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
1651  * error interrupt.
1652  * Try to put the character into the circular buffer for this line; if it
1653  * overflows, indicate a circular buffer overrun. If this port is always
1654  * to be serviced immediately, or the character is a STOP character, or
1655  * more than 15 characters have arrived, queue up a soft interrupt to
1656  * drain the circular buffer.
1657  * XXX - needs review for hw FIFOs support.
1658  */
1659 
1660 static void
1661 async_rxint(struct asycom *asy, uchar_t lsr)
1662 {
1663 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1664 	uchar_t c = 0;
1665 	uint_t s = 0, needsoft = 0;
1666 	register tty_common_t *tp;
1667 
1668 	tp = &async->async_ttycommon;
1669 	if (!(tp->t_cflag & CREAD)) {
1670 		if (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1671 			(void) (INB(DAT) & 0xff);
1672 		}
1673 		return; /* line is not open for read? */
1674 	}
1675 	asy->asy_rx_count = 0;
1676 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1677 		c = 0;
1678 		s = 0;
1679 		asy->asy_rx_count++;
1680 		if (lsr & RCA) {
1681 			c = INB(DAT) & 0xff;
1682 			/*
1683 			 * Even a single character is received
1684 			 * we need Soft interrupt to pass it to
1685 			 * higher layers.
1686 			 */
1687 			needsoft = 1;
1688 		}
1689 
1690 		/* Check for character break sequence */
1691 		if ((abort_enable == KIOCABORTALTERNATE) &&
1692 		    (async->async_dev == rconsdev)) {
1693 			if (abort_charseq_recognize(c))
1694 				abort_sequence_enter((char *)NULL);
1695 			}
1696 
1697 		/* Handle framing errors */
1698 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
1699 			if (lsr & PARERR) {
1700 				if (tp->t_iflag & INPCK) /* parity enabled */
1701 					s |= PERROR;
1702 			}
1703 			if (lsr & (FRMERR|BRKDET))
1704 				s |= FRERROR;
1705 			if (lsr & OVRRUN) {
1706 				async->async_hw_overrun = 1;
1707 				s |= OVERRUN;
1708 			}
1709 		}
1710 
1711 		if (s == 0)
1712 			if ((tp->t_iflag & PARMRK) &&
1713 					!(tp->t_iflag & (IGNPAR|ISTRIP)) &&
1714 						(c == 0377))
1715 				if (RING_POK(async, 2)) {
1716 					RING_PUT(async, 0377);
1717 					RING_PUT(async, c);
1718 				} else
1719 					async->async_sw_overrun = 1;
1720 			else
1721 				if (RING_POK(async, 1))
1722 					RING_PUT(async, c);
1723 				else
1724 					async->async_sw_overrun = 1;
1725 		else
1726 			if (s & FRERROR) { /* Handle framing errors */
1727 				if (c == 0)  {
1728 		/* Look for break on kbd, stdin, or rconsdev */
1729 					if ((async->async_dev == kbddev) ||
1730 					    ((async->async_dev == rconsdev) ||
1731 					    (async->async_dev == stdindev)) &&
1732 					    (abort_enable !=
1733 					    KIOCABORTALTERNATE))
1734 						abort_sequence_enter((char *)0);
1735 					else
1736 						async->async_break++;
1737 				} else {
1738 					if (RING_POK(async, 1))
1739 						RING_MARK(async, c, s);
1740 					else
1741 						async->async_sw_overrun = 1;
1742 				}
1743 			} else  { /* Parity errors  handled by ldterm */
1744 				if (RING_POK(async, 1))
1745 					RING_MARK(async, c, s);
1746 				else
1747 					async->async_sw_overrun = 1;
1748 			}
1749 		lsr = INB(LSR);
1750 		if (asy->asy_rx_count > 16) break;
1751 	}
1752 	/* Check whether there is a request for hw/sw inbound/input flow ctrl */
1753 	if ((async->async_ttycommon.t_cflag & CRTSXOFF) ||
1754 		(async->async_ttycommon.t_iflag & IXOFF))
1755 		if ((int)(RING_CNT(async)) > (RINGSIZE * 3)/4) {
1756 #ifdef DEBUG
1757 			if (asydebug & ASY_DEBUG_HFLOW)
1758 				printf("asy%d: hardware flow stop input.\n",
1759 				UNIT(async->async_dev));
1760 #endif
1761 			async->async_flags |= ASYNC_HW_IN_FLOW;
1762 			async->async_flowc = async->async_stopc;
1763 			async->async_ringbuf_overflow = 1;
1764 		}
1765 
1766 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
1767 			(RING_FRAC(async)) || (async->async_polltid == 0))
1768 		ASYSETSOFT(asy);	/* need a soft interrupt */
1769 }
1770 
1771 /*
1772  * Interrupt on port: handle PPS event.  This function is only called
1773  * for a port on which PPS event handling has been enabled.
1774  */
1775 static void
1776 asy_ppsevent(struct asycom *asy, int msr)
1777 {
1778 	if (asy->asy_flags & ASY_PPS_EDGE) {
1779 		/* Have seen leading edge, now look for and record drop */
1780 		if ((msr & DCD) == 0)
1781 			asy->asy_flags &= ~ASY_PPS_EDGE;
1782 		/*
1783 		 * Waiting for leading edge, look for rise; stamp event and
1784 		 * calibrate kernel clock.
1785 		 */
1786 	} else if (msr & DCD) {
1787 		/*
1788 		 * This code captures a timestamp at the designated
1789 		 * transition of the PPS signal (DCD asserted).  The
1790 		 * code provides a pointer to the timestamp, as well
1791 		 * as the hardware counter value at the capture.
1792 		 *
1793 		 * Note: the kernel has nano based time values while
1794 		 * NTP requires micro based, an in-line fast algorithm
1795 		 * to convert nsec to usec is used here -- see hrt2ts()
1796 		 * in common/os/timers.c for a full description.
1797 		 */
1798 		struct timeval *tvp = &asy_ppsev.tv;
1799 		timestruc_t ts;
1800 		long nsec, usec;
1801 
1802 		asy->asy_flags |= ASY_PPS_EDGE;
1803 		gethrestime(&ts);
1804 		nsec = ts.tv_nsec;
1805 		usec = nsec + (nsec >> 2);
1806 		usec = nsec + (usec >> 1);
1807 		usec = nsec + (usec >> 2);
1808 		usec = nsec + (usec >> 4);
1809 		usec = nsec - (usec >> 3);
1810 		usec = nsec + (usec >> 2);
1811 		usec = nsec + (usec >> 3);
1812 		usec = nsec + (usec >> 4);
1813 		usec = nsec + (usec >> 1);
1814 		usec = nsec + (usec >> 6);
1815 		tvp->tv_usec = usec >> 10;
1816 		tvp->tv_sec = ts.tv_sec;
1817 
1818 		++asy_ppsev.serial;
1819 
1820 		/*
1821 		 * Because the kernel keeps a high-resolution time,
1822 		 * pass the current highres timestamp in tvp and zero
1823 		 * in usec.
1824 		 */
1825 		ddi_hardpps(tvp, 0);
1826 	}
1827 }
1828 
1829 /*
1830  * Modem status interrupt.
1831  *
1832  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
1833  */
1834 
1835 static void
1836 async_msint(struct asycom *asy)
1837 {
1838 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1839 	int msr;
1840 
1841 	msr = INB(MSR);	/* this resets the interrupt */
1842 	asy->asy_cached_msr = msr;
1843 #ifdef DEBUG
1844 	if (asydebug & ASY_DEBUG_STATE) {
1845 		printf("   transition: %3s %3s %3s %3s\n"
1846 			"current state: %3s %3s %3s %3s\n",
1847 			(msr & DCTS) ? "CTS" : "   ",
1848 			(msr & DDSR) ? "DSR" : "   ",
1849 			(msr & DRI) ?  "RI " : "   ",
1850 			(msr & DDCD) ? "DCD" : "   ",
1851 			(msr & CTS) ?  "CTS" : "   ",
1852 			(msr & DSR) ?  "DSR" : "   ",
1853 			(msr & RI) ?   "RI " : "   ",
1854 			(msr & DCD) ?  "DCD" : "   ");
1855 	}
1856 #endif
1857 	if (async->async_ttycommon.t_cflag & CRTSCTS && !(msr & CTS)) {
1858 #ifdef DEBUG
1859 		if (asydebug & ASY_DEBUG_HFLOW)
1860 			printf("asy%d: hflow start\n",
1861 				UNIT(async->async_dev));
1862 #endif
1863 		async->async_flags |= ASYNC_HW_OUT_FLW;
1864 	}
1865 	if (asy->asy_hwtype == ASY82510)
1866 		OUTB(MSR, (msr & 0xF0));
1867 
1868 	/* Handle PPS event */
1869 	if (asy->asy_flags & ASY_PPS)
1870 		asy_ppsevent(asy, msr);
1871 
1872 	async->async_ext++;
1873 	ASYSETSOFT(asy);
1874 }
1875 
1876 /*
1877  * Handle a second-stage interrupt.
1878  */
1879 uint_t
1880 asysoftintr(caddr_t intarg)
1881 {
1882 	struct asycom *asy = (struct asycom *)intarg;
1883 	struct asyncline *async;
1884 	int rv;
1885 	int cc;
1886 	/*
1887 	 * Test and clear soft interrupt.
1888 	 */
1889 	mutex_enter(asy->asy_soft_lock);
1890 #ifdef DEBUG
1891 	if (asydebug & ASY_DEBUG_PROCS)
1892 		printf("softintr\n");
1893 #endif
1894 	rv = asy->asysoftpend;
1895 	if (rv != 0)
1896 		asy->asysoftpend = 0;
1897 	mutex_exit(asy->asy_soft_lock);
1898 
1899 	if (rv) {
1900 		if (asy->asy_priv == NULL)
1901 			return (rv);
1902 		async = (struct asyncline *)asy->asy_priv;
1903 		mutex_enter(asy->asy_excl_hi);
1904 		if (asy->asy_flags & ASY_NEEDSOFT) {
1905 			asy->asy_flags &= ~ASY_NEEDSOFT;
1906 			mutex_exit(asy->asy_excl_hi);
1907 			(void) async_softint(asy);
1908 			mutex_enter(asy->asy_excl_hi);
1909 		}
1910 		/*
1911 		 * There are some instances where the softintr is not
1912 		 * scheduled and hence not called. It so happened that makes
1913 		 * the last few characters to be stuck in ringbuffer.
1914 		 * Hence, call once again the  handler so that the last few
1915 		 * characters are cleared.
1916 		 */
1917 		cc = RING_CNT(async);
1918 		mutex_exit(asy->asy_excl_hi);
1919 		if (cc > 0) {
1920 			(void) async_softint(asy);
1921 		}
1922 	}
1923 	return (rv);
1924 }
1925 
1926 /*
1927  * Handle a software interrupt.
1928  */
1929 static int
1930 async_softint(struct asycom *asy)
1931 {
1932 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1933 	uint_t	cc;
1934 	mblk_t	*bp;
1935 	queue_t	*q;
1936 	uchar_t	val;
1937 	uchar_t	c;
1938 	tty_common_t	*tp;
1939 
1940 #ifdef DEBUG
1941 	if (asydebug & ASY_DEBUG_PROCS)
1942 		printf("process\n");
1943 #endif
1944 	mutex_enter(asy->asy_excl);
1945 	if (asy->asy_flags & ASY_DOINGSOFT) {
1946 		mutex_exit(asy->asy_excl);
1947 		return (0);
1948 	}
1949 	tp = &async->async_ttycommon;
1950 	q = tp->t_readq;
1951 	if (q != NULL) {
1952 		mutex_exit(asy->asy_excl);
1953 		enterq(q);
1954 		mutex_enter(asy->asy_excl);
1955 	}
1956 	mutex_enter(asy->asy_excl_hi);
1957 	asy->asy_flags |= ASY_DOINGSOFT;
1958 
1959 	if (INB(ICR) & MIEN)
1960 		val = asy->asy_cached_msr & 0xFF;
1961 	else
1962 		val = INB(MSR) & 0xFF;
1963 
1964 	if (async->async_ttycommon.t_cflag & CRTSCTS) {
1965 		if ((val & CTS) && (async->async_flags & ASYNC_HW_OUT_FLW)) {
1966 #ifdef DEBUG
1967 			if (asydebug & ASY_DEBUG_HFLOW)
1968 				printf("asy%d: hflow start\n",
1969 					UNIT(async->async_dev));
1970 #endif
1971 			async->async_flags &= ~ASYNC_HW_OUT_FLW;
1972 			mutex_exit(asy->asy_excl_hi);
1973 			if (async->async_ocnt > 0) {
1974 				mutex_enter(asy->asy_excl_hi);
1975 				async_resume(async);
1976 				mutex_exit(asy->asy_excl_hi);
1977 			} else {
1978 				async_start(async);
1979 			}
1980 			mutex_enter(asy->asy_excl_hi);
1981 		}
1982 	}
1983 	if (async->async_ext) {
1984 		async->async_ext = 0;
1985 		/* check for carrier up */
1986 		if ((val & DCD) || (tp->t_flags & TS_SOFTCAR)) {
1987 			/* carrier present */
1988 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
1989 				async->async_flags |= ASYNC_CARR_ON;
1990 				mutex_exit(asy->asy_excl_hi);
1991 				mutex_exit(asy->asy_excl);
1992 				if (async->async_flags & ASYNC_ISOPEN)
1993 					(void) putctl(q, M_UNHANGUP);
1994 				cv_broadcast(&async->async_flags_cv);
1995 				mutex_enter(asy->asy_excl);
1996 				mutex_enter(asy->asy_excl_hi);
1997 			}
1998 		} else {
1999 			if ((async->async_flags & ASYNC_CARR_ON) &&
2000 			    !(tp->t_cflag & CLOCAL)) {
2001 				int flushflag;
2002 
2003 				/*
2004 				 * Carrier went away.
2005 				 * Drop DTR, abort any output in
2006 				 * progress, indicate that output is
2007 				 * not stopped, and send a hangup
2008 				 * notification upstream.
2009 				 *
2010 				 * If we're in the midst of close, then flush
2011 				 * everything.  Don't leave stale ioctls lying
2012 				 * about.
2013 				 */
2014 				val = INB(MCR);
2015 				OUTB(MCR, (val & ~DTR));
2016 				flushflag = (async->async_flags &
2017 				    ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
2018 				flushq(tp->t_writeq, flushflag);
2019 				if (async->async_xmitblk != NULL) {
2020 					freeb(async->async_xmitblk);
2021 					async->async_xmitblk = NULL;
2022 				}
2023 				if (async->async_flags & ASYNC_BUSY) {
2024 					async->async_ocnt = 0;
2025 					async->async_flags &= ~ASYNC_BUSY;
2026 				}
2027 				async->async_flags &= ~ASYNC_STOPPED;
2028 				if (async->async_flags & ASYNC_ISOPEN) {
2029 					mutex_exit(asy->asy_excl_hi);
2030 					mutex_exit(asy->asy_excl);
2031 					(void) putctl(q, M_HANGUP);
2032 					mutex_enter(asy->asy_excl);
2033 					mutex_enter(asy->asy_excl_hi);
2034 				}
2035 				async->async_flags &= ~ASYNC_CARR_ON;
2036 				mutex_exit(asy->asy_excl_hi);
2037 				cv_broadcast(&async->async_flags_cv);
2038 				mutex_enter(asy->asy_excl_hi);
2039 			}
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * If data has been added to the circular buffer, remove
2045 	 * it from the buffer, and send it up the stream if there's
2046 	 * somebody listening. Try to do it 16 bytes at a time. If we
2047 	 * have more than 16 bytes to move, move 16 byte chunks and
2048 	 * leave the rest for next time around (maybe it will grow).
2049 	 */
2050 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2051 		RING_INIT(async);
2052 		goto rv;
2053 	}
2054 	if ((cc = RING_CNT(async)) == 0) {
2055 		goto rv;
2056 	}
2057 	mutex_exit(asy->asy_excl_hi);
2058 
2059 	if (!canput(q)) {
2060 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2061 #ifdef DEBUG
2062 			if (!(asydebug & ASY_DEBUG_HFLOW)) {
2063 				printf("asy%d: hflow stop input.\n",
2064 				UNIT(async->async_dev));
2065 				if (canputnext(q))
2066 					printf("asy%d: next queue is "
2067 						"ready\n",
2068 					UNIT(async->async_dev));
2069 			}
2070 #endif
2071 			mutex_enter(asy->asy_excl_hi);
2072 			async->async_flags |= ASYNC_HW_IN_FLOW;
2073 			async->async_flowc = async->async_stopc;
2074 		} else mutex_enter(asy->asy_excl_hi);
2075 		goto rv;
2076 	}
2077 
2078 	if (async->async_ringbuf_overflow) {
2079 		if ((async->async_flags & ASYNC_HW_IN_FLOW) &&
2080 				((int)(RING_CNT(async)) < (RINGSIZE/4))) {
2081 #ifdef DEBUG
2082 			if (asydebug & ASY_DEBUG_HFLOW)
2083 				printf("asy%d: hflow start input.\n",
2084 				UNIT(async->async_dev));
2085 #endif
2086 			mutex_enter(asy->asy_excl_hi);
2087 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2088 			async->async_flowc = async->async_startc;
2089 			async->async_ringbuf_overflow = 0;
2090 			goto rv;
2091 		}
2092 	}
2093 #ifdef DEBUG
2094 	if (asydebug & ASY_DEBUG_INPUT)
2095 		printf("asy%d: %d char(s) in queue.\n",
2096 			UNIT(async->async_dev), cc);
2097 #endif
2098 	/*
2099 	 * Before you pull the characters from the RING BUF
2100 	 * Check whether you can put into the queue again
2101 	 */
2102 	if ((!canputnext(q)) || (!canput(q))) {
2103 		mutex_enter(asy->asy_excl_hi);
2104 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2105 			async->async_flags |= ASYNC_HW_IN_FLOW;
2106 			async->async_flowc = async->async_stopc;
2107 			async->async_queue_full = 1;
2108 		}
2109 		goto rv;
2110 	}
2111 	mutex_enter(asy->asy_excl_hi);
2112 	if (async->async_queue_full) {
2113 		/*
2114 		 * Last time the Stream queue didnot allow
2115 		 * now it allows so, relax, the flow control
2116 		 */
2117 		if (async->async_flags & ASYNC_HW_IN_FLOW) {
2118 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2119 			async->async_queue_full = 0;
2120 			async->async_flowc = async->async_startc;
2121 			goto rv;
2122 		} else
2123 			async->async_queue_full = 0;
2124 	}
2125 	mutex_exit(asy->asy_excl_hi);
2126 	if (!(bp = allocb(cc, BPRI_MED))) {
2127 		ttycommon_qfull(&async->async_ttycommon, q);
2128 		mutex_enter(asy->asy_excl_hi);
2129 		goto rv;
2130 	}
2131 	mutex_enter(asy->asy_excl_hi);
2132 	do {
2133 		if (RING_ERR(async, S_ERRORS)) {
2134 			RING_UNMARK(async);
2135 			c = RING_GET(async);
2136 			break;
2137 		} else {
2138 			*bp->b_wptr++ = RING_GET(async);
2139 		}
2140 	} while (--cc);
2141 
2142 	mutex_exit(asy->asy_excl_hi);
2143 	mutex_exit(asy->asy_excl);
2144 	if (bp->b_wptr > bp->b_rptr) {
2145 		if (!canputnext(q)) {
2146 			if (!canput(q)) {
2147 				/*
2148 				 * Even after taking all precautions that
2149 				 * Still we are unable to queue, then we
2150 				 * cannot do anything, just drop the block
2151 				 */
2152 				cmn_err(CE_NOTE,
2153 					"su%d: local queue full\n",
2154 					UNIT(async->async_dev));
2155 				freemsg(bp);
2156 				mutex_enter(asy->asy_excl_hi);
2157 				if ((async->async_flags &
2158 					ASYNC_HW_IN_FLOW) == 0) {
2159 					async->async_flags |=
2160 						ASYNC_HW_IN_FLOW;
2161 					async->async_flowc =
2162 						async->async_stopc;
2163 					async->async_queue_full = 1;
2164 				}
2165 				mutex_exit(asy->asy_excl_hi);
2166 			} else {
2167 				(void) putq(q, bp);
2168 			}
2169 		} else {
2170 			putnext(q, bp);
2171 		}
2172 	} else {
2173 		freemsg(bp);
2174 	}
2175 	/*
2176 	 * If we have a parity error, then send
2177 	 * up an M_BREAK with the "bad"
2178 	 * character as an argument. Let ldterm
2179 	 * figure out what to do with the error.
2180 	 */
2181 	if (cc)
2182 		(void) putctl1(q, M_BREAK, c);
2183 	mutex_enter(asy->asy_excl);
2184 	mutex_enter(asy->asy_excl_hi);
2185 rv:
2186 	/*
2187 	 * If a transmission has finished, indicate that it's finished,
2188 	 * and start that line up again.
2189 	 */
2190 	if (async->async_break) {
2191 		async->async_break = 0;
2192 		if (async->async_flags & ASYNC_ISOPEN) {
2193 			mutex_exit(asy->asy_excl_hi);
2194 			mutex_exit(asy->asy_excl);
2195 			(void) putctl(q, M_BREAK);
2196 			mutex_enter(asy->asy_excl);
2197 			mutex_enter(asy->asy_excl_hi);
2198 		}
2199 	}
2200 	if ((async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) ||
2201 	    (async->async_flowc != '\0')) {
2202 		async->async_flags &= ~ASYNC_BUSY;
2203 		mutex_exit(asy->asy_excl_hi);
2204 		if (async->async_xmitblk)
2205 			freeb(async->async_xmitblk);
2206 		async->async_xmitblk = NULL;
2207 		if (async->async_flags & ASYNC_ISOPEN) {
2208 			asy->inperim = B_TRUE;
2209 			mutex_exit(asy->asy_excl);
2210 			enterq(async->async_ttycommon.t_writeq);
2211 			mutex_enter(asy->asy_excl);
2212 		}
2213 		async_start(async);
2214 		/*
2215 		 * We need to check for inperim and ISOPEN due to
2216 		 * multi-threading implications; it's possible to close the
2217 		 * port and nullify async_flags while completing the software
2218 		 * interrupt.  If the port is closed, leaveq() will have already
2219 		 * been called.  We don't want to call it twice.
2220 		 */
2221 		if ((asy->inperim) && (async->async_flags & ASYNC_ISOPEN)) {
2222 			mutex_exit(asy->asy_excl);
2223 			leaveq(async->async_ttycommon.t_writeq);
2224 			mutex_enter(asy->asy_excl);
2225 			asy->inperim = B_FALSE;
2226 		}
2227 		if (!(async->async_flags & ASYNC_BUSY))
2228 			cv_broadcast(&async->async_flags_cv);
2229 		mutex_enter(asy->asy_excl_hi);
2230 	}
2231 	/*
2232 	 * A note about these overrun bits: all they do is *tell* someone
2233 	 * about an error- They do not track multiple errors. In fact,
2234 	 * you could consider them latched register bits if you like.
2235 	 * We are only interested in printing the error message once for
2236 	 * any cluster of overrun errrors.
2237 	 */
2238 	if (async->async_hw_overrun) {
2239 		if (async->async_flags & ASYNC_ISOPEN) {
2240 			if (su_log > 0) {
2241 				mutex_exit(asy->asy_excl_hi);
2242 				mutex_exit(asy->asy_excl);
2243 				cmn_err(CE_NOTE, "su%d: silo overflow\n",
2244 				    UNIT(async->async_dev));
2245 				mutex_enter(asy->asy_excl);
2246 				mutex_enter(asy->asy_excl_hi);
2247 			}
2248 			INC64_KSTAT(asy, siloover);
2249 		}
2250 		async->async_hw_overrun = 0;
2251 	}
2252 	if (async->async_sw_overrun) {
2253 		if (async->async_flags & ASYNC_ISOPEN) {
2254 			if (su_log > 0) {
2255 				mutex_exit(asy->asy_excl_hi);
2256 				mutex_exit(asy->asy_excl);
2257 				cmn_err(CE_NOTE, "su%d: ring buffer overflow\n",
2258 				    UNIT(async->async_dev));
2259 				mutex_enter(asy->asy_excl);
2260 				mutex_enter(asy->asy_excl_hi);
2261 			}
2262 			INC64_KSTAT(asy, ringover);
2263 		}
2264 		async->async_sw_overrun = 0;
2265 	}
2266 	asy->asy_flags &= ~ASY_DOINGSOFT;
2267 	mutex_exit(asy->asy_excl_hi);
2268 	mutex_exit(asy->asy_excl);
2269 	if (q != NULL)
2270 		leaveq(q);
2271 	return (0);
2272 }
2273 
2274 /*
2275  * Restart output on a line after a delay or break timer expired.
2276  */
2277 static void
2278 async_restart(void *arg)
2279 {
2280 	struct asyncline *async = arg;
2281 	struct asycom *asy = async->async_common;
2282 	queue_t *q;
2283 	uchar_t lcr;
2284 
2285 	/*
2286 	 * If break timer expired, turn off the break bit.
2287 	 */
2288 #ifdef DEBUG
2289 	if (asydebug & ASY_DEBUG_PROCS)
2290 		printf("restart\n");
2291 #endif
2292 	mutex_enter(asy->asy_excl);
2293 	if (async->async_flags & ASYNC_BREAK) {
2294 		unsigned int rate;
2295 
2296 		mutex_enter(asy->asy_excl_hi);
2297 		lcr = INB(LCR);
2298 		OUTB(LCR, (lcr & ~SETBREAK));
2299 
2300 		/*
2301 		 * Go to sleep for the time it takes for at least one
2302 		 * stop bit to be received by the device at the other
2303 		 * end of the line as stated in the RS-232 specification.
2304 		 * The wait period is equal to:
2305 		 * 2 clock cycles * (1 MICROSEC / baud rate)
2306 		 */
2307 		rate = async->async_ttycommon.t_cflag & CBAUD;
2308 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
2309 			rate += 16;
2310 		if (rate >= N_SU_SPEEDS || rate == B0) {
2311 			rate = B9600;
2312 		}
2313 
2314 		mutex_exit(asy->asy_excl_hi);
2315 		mutex_exit(asy->asy_excl);
2316 		drv_usecwait(2 * MICROSEC / baudtable[rate]);
2317 		mutex_enter(asy->asy_excl);
2318 	}
2319 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK|ASYNC_DRAINING);
2320 	if ((q = async->async_ttycommon.t_writeq) != NULL) {
2321 		mutex_exit(asy->asy_excl);
2322 		enterq(q);
2323 		mutex_enter(asy->asy_excl);
2324 	}
2325 	async_start(async);
2326 	mutex_exit(asy->asy_excl);
2327 	if (q != NULL)
2328 		leaveq(q);
2329 
2330 	/* cleared break or delay flag; may have made some output progress */
2331 	cv_broadcast(&async->async_flags_cv);
2332 }
2333 
2334 static void
2335 async_start(struct asyncline *async)
2336 {
2337 	async_nstart(async, 0);
2338 }
2339 
2340 /*
2341  * Start output on a line, unless it's busy, frozen, or otherwise.
2342  */
2343 static void
2344 async_nstart(struct asyncline *async, int mode)
2345 {
2346 	register struct asycom *asy = async->async_common;
2347 	register int cc;
2348 	register queue_t *q;
2349 	mblk_t *bp, *nbp;
2350 	uchar_t *xmit_addr;
2351 	uchar_t	val;
2352 	int	fifo_len = 1;
2353 	int	xmit_progress;
2354 
2355 #ifdef DEBUG
2356 	if (asydebug & ASY_DEBUG_PROCS)
2357 		printf("start\n");
2358 #endif
2359 	if (asy->asy_use_fifo == FIFO_ON)
2360 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2361 
2362 	ASSERT(mutex_owned(asy->asy_excl));
2363 	mutex_enter(asy->asy_excl_hi);
2364 	asycheckflowcontrol_hw(asy);
2365 
2366 	/*
2367 	 * If the chip is busy (i.e., we're waiting for a break timeout
2368 	 * to expire, or for the current transmission to finish, or for
2369 	 * output to finish draining from chip), don't grab anything new.
2370 	 */
2371 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY|ASYNC_DRAINING)) {
2372 		mutex_exit(asy->asy_excl_hi);
2373 #ifdef DEBUG
2374 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2375 			printf("asy%d: start %s.\n",
2376 				UNIT(async->async_dev),
2377 				async->async_flags & ASYNC_BREAK
2378 				? "break" : "busy");
2379 #endif
2380 		return;
2381 	}
2382 
2383 	/*
2384 	 * If we have a flow-control character to transmit, do it now.
2385 	 */
2386 	if (asycheckflowcontrol_sw(asy)) {
2387 		mutex_exit(asy->asy_excl_hi);
2388 		return;
2389 	}
2390 	mutex_exit(asy->asy_excl_hi);
2391 	/*
2392 	 * If we're waiting for a delay timeout to expire, don't grab
2393 	 * anything new.
2394 	 */
2395 	if (async->async_flags & ASYNC_DELAY) {
2396 #ifdef DEBUG
2397 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2398 			printf("asy%d: start ASYNC_DELAY.\n",
2399 				UNIT(async->async_dev));
2400 #endif
2401 		return;
2402 	}
2403 
2404 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
2405 #ifdef DEBUG
2406 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2407 			printf("asy%d: start writeq is null.\n",
2408 				UNIT(async->async_dev));
2409 #endif
2410 		return;	/* not attached to a stream */
2411 	}
2412 
2413 	for (;;) {
2414 		if ((bp = getq(q)) == NULL)
2415 			return;	/* no data to transmit */
2416 
2417 		/*
2418 		 * We have a message block to work on.
2419 		 * Check whether it's a break, a delay, or an ioctl (the latter
2420 		 * occurs if the ioctl in question was waiting for the output
2421 		 * to drain).  If it's one of those, process it immediately.
2422 		 */
2423 		switch (bp->b_datap->db_type) {
2424 
2425 		case M_BREAK:
2426 			/*
2427 			 * Set the break bit, and arrange for "async_restart"
2428 			 * to be called in 1/4 second; it will turn the
2429 			 * break bit off, and call "async_start" to grab
2430 			 * the next message.
2431 			 */
2432 			mutex_enter(asy->asy_excl_hi);
2433 			val = INB(LCR);
2434 			OUTB(LCR, (val | SETBREAK));
2435 			mutex_exit(asy->asy_excl_hi);
2436 			async->async_flags |= ASYNC_BREAK;
2437 			(void) timeout(async_restart, async, hz / 4);
2438 			freemsg(bp);
2439 			return;	/* wait for this to finish */
2440 
2441 		case M_DELAY:
2442 			/*
2443 			 * Arrange for "async_restart" to be called when the
2444 			 * delay expires; it will turn ASYNC_DELAY off,
2445 			 * and call "async_start" to grab the next message.
2446 			 */
2447 			(void) timeout(async_restart, async,
2448 				(clock_t)(*(unsigned char *)bp->b_rptr + 6));
2449 			async->async_flags |= ASYNC_DELAY;
2450 			freemsg(bp);
2451 			return;	/* wait for this to finish */
2452 
2453 		case M_IOCTL:
2454 			/*
2455 			 * This ioctl needs to wait for the output ahead of
2456 			 * it to drain.  Try to do it, and then either
2457 			 * redo the ioctl at a later time or grab the next
2458 			 * message after it.
2459 			 */
2460 
2461 			mutex_enter(asy->asy_excl_hi);
2462 			if (asy_isbusy(asy)) {
2463 				/*
2464 				 * Get the divisor by calculating the rate
2465 				 */
2466 				unsigned int rate;
2467 
2468 				mutex_exit(asy->asy_excl_hi);
2469 				rate = async->async_ttycommon.t_cflag & CBAUD;
2470 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
2471 					rate += 16;
2472 				if (rate >= N_SU_SPEEDS || rate == B0) {
2473 					rate = B9600;
2474 				}
2475 
2476 				/*
2477 				 * We need to do a callback as the port will
2478 				 * be set to drain
2479 				 */
2480 				async->async_flags |= ASYNC_DRAINING;
2481 
2482 				/*
2483 				 * Put the message we just processed back onto
2484 				 * the end of the queue
2485 				 */
2486 				if (putq(q, bp) == 0)
2487 					freemsg(bp);
2488 
2489 				/*
2490 				 * We need to delay until the TSR and THR
2491 				 * have been exhausted.  We base the delay on
2492 				 * the amount of time it takes to transmit
2493 				 * 2 chars at the current baud rate in
2494 				 * microseconds.
2495 				 *
2496 				 * Therefore, the wait period is:
2497 				 *
2498 				 * (#TSR bits + #THR bits) *
2499 				 * 	1 MICROSEC / baud rate
2500 				 */
2501 				(void) timeout(async_restart, async,
2502 					drv_usectohz(16 * MICROSEC /
2503 						baudtable[rate]));
2504 				return;
2505 			}
2506 			mutex_exit(asy->asy_excl_hi);
2507 			mutex_exit(asy->asy_excl);
2508 			async_ioctl(async, q, bp, B_FALSE);
2509 			mutex_enter(asy->asy_excl);
2510 			continue;
2511 		}
2512 
2513 		while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) {
2514 			nbp = bp->b_cont;
2515 			freeb(bp);
2516 			bp = nbp;
2517 		}
2518 		if (bp != NULL)
2519 			break;
2520 	}
2521 
2522 	/*
2523 	 * We have data to transmit.  If output is stopped, put
2524 	 * it back and try again later.
2525 	 */
2526 	if (async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED)) {
2527 #ifdef DEBUG
2528 		if (asydebug & ASY_DEBUG_HFLOW &&
2529 					async->async_flags & ASYNC_HW_OUT_FLW)
2530 			printf("asy%d: output hflow in effect.\n",
2531 				UNIT(async->async_dev));
2532 #endif
2533 		mutex_exit(asy->asy_excl);
2534 		(void) putbq(q, bp);
2535 		/*
2536 		 * We entered the routine owning the lock, we need to
2537 		 * exit the routine owning the lock.
2538 		 */
2539 		mutex_enter(asy->asy_excl);
2540 		return;
2541 	}
2542 
2543 	async->async_xmitblk = bp;
2544 	xmit_addr = bp->b_rptr;
2545 	bp = bp->b_cont;
2546 	if (bp != NULL) {
2547 		mutex_exit(asy->asy_excl);
2548 		(void) putbq(q, bp);	/* not done with this message yet */
2549 		mutex_enter(asy->asy_excl);
2550 	}
2551 
2552 	/*
2553 	 * In 5-bit mode, the high order bits are used
2554 	 * to indicate character sizes less than five,
2555 	 * so we need to explicitly mask before transmitting
2556 	 */
2557 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
2558 		register unsigned char *p = xmit_addr;
2559 		register int cnt = cc;
2560 
2561 		while (cnt--)
2562 			*p++ &= (unsigned char) 0x1f;
2563 	}
2564 
2565 	/*
2566 	 * Set up this block for pseudo-DMA.
2567 	 */
2568 	mutex_enter(asy->asy_excl_hi);
2569 	async->async_optr = xmit_addr;
2570 	async->async_ocnt = cc;
2571 	/*
2572 	 * If the transmitter is ready, shove some
2573 	 * characters out.
2574 	 */
2575 	xmit_progress = 0;
2576 	while (fifo_len-- && async->async_ocnt) {
2577 		if (INB(LSR) & XHRE) {
2578 			OUTB(DAT, *async->async_optr++);
2579 			async->async_ocnt--;
2580 			xmit_progress++;
2581 		}
2582 	}
2583 	asy->asy_out_of_band_xmit = xmit_progress;
2584 	if (xmit_progress > 0)
2585 		async->async_flags |= ASYNC_PROGRESS;
2586 	async->async_flags |= ASYNC_BUSY;
2587 	mutex_exit(asy->asy_excl_hi);
2588 }
2589 
2590 /*
2591  * Resume output by poking the transmitter.
2592  */
2593 static void
2594 async_resume(struct asyncline *async)
2595 {
2596 	register struct asycom *asy = async->async_common;
2597 
2598 	ASSERT(mutex_owned(asy->asy_excl_hi));
2599 #ifdef DEBUG
2600 	if (asydebug & ASY_DEBUG_PROCS)
2601 		printf("resume\n");
2602 #endif
2603 
2604 	asycheckflowcontrol_hw(asy);
2605 
2606 	if (INB(LSR) & XHRE) {
2607 		if (asycheckflowcontrol_sw(asy)) {
2608 			return;
2609 		} else if (async->async_ocnt > 0) {
2610 			OUTB(DAT, *async->async_optr++);
2611 			async->async_ocnt--;
2612 			async->async_flags |= ASYNC_PROGRESS;
2613 		}
2614 	}
2615 }
2616 
2617 /*
2618  * Process an "ioctl" message sent down to us.
2619  * Note that we don't need to get any locks until we are ready to access
2620  * the hardware.  Nothing we access until then is going to be altered
2621  * outside of the STREAMS framework, so we should be safe.
2622  */
2623 static void
2624 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp, boolean_t iswput)
2625 {
2626 	register struct asycom *asy = async->async_common;
2627 	register tty_common_t  *tp = &async->async_ttycommon;
2628 	register struct iocblk *iocp;
2629 	register unsigned datasize;
2630 	size_t ioc_count;
2631 	mblk_t *datamp;
2632 	int error = 0;
2633 	uchar_t val, icr;
2634 #ifdef DEBUG
2635 	if (asydebug & ASY_DEBUG_PROCS)
2636 		printf("ioctl\n");
2637 #endif
2638 
2639 	if (tp->t_iocpending != NULL) {
2640 		/*
2641 		 * We were holding an "ioctl" response pending the
2642 		 * availability of an "mblk" to hold data to be passed up;
2643 		 * another "ioctl" came through, which means that "ioctl"
2644 		 * must have timed out or been aborted.
2645 		 */
2646 		freemsg(async->async_ttycommon.t_iocpending);
2647 		async->async_ttycommon.t_iocpending = NULL;
2648 	}
2649 
2650 	iocp = (struct iocblk *)mp->b_rptr;
2651 
2652 	/*
2653 	 * Save off the ioc count in case we need to restore it
2654 	 * because we are queuing a message block.
2655 	 */
2656 	ioc_count = iocp->ioc_count;
2657 
2658 	/*
2659 	 * For TIOCMGET, TIOCMBIC, TIOCMBIS, TIOCMSET, and PPS, do NOT call
2660 	 * ttycommon_ioctl() because this function frees up the message block
2661 	 * (mp->b_cont) that contains the address of the user variable where
2662 	 * we need to pass back the bit array.
2663 	 */
2664 	if (iocp->ioc_cmd == TIOCMGET ||
2665 		iocp->ioc_cmd == TIOCMBIC ||
2666 		iocp->ioc_cmd == TIOCMBIS ||
2667 		iocp->ioc_cmd == TIOCMSET ||
2668 		iocp->ioc_cmd == TIOCGPPS ||
2669 		iocp->ioc_cmd == TIOCSPPS ||
2670 		iocp->ioc_cmd == TIOCGPPSEV)
2671 		error = -1; /* Do Nothing */
2672 	else
2673 
2674 	/*
2675 	 * The only way in which "ttycommon_ioctl" can fail is if the "ioctl"
2676 	 * requires a response containing data to be returned to the user,
2677 	 * and no mblk could be allocated for the data.
2678 	 * No such "ioctl" alters our state.  Thus, we always go ahead and
2679 	 * do any state-changes the "ioctl" calls for.  If we couldn't allocate
2680 	 * the data, "ttycommon_ioctl" has stashed the "ioctl" away safely, so
2681 	 * we just call "bufcall" to request that we be called back when we
2682 	 * stand a better chance of allocating the data.
2683 	 */
2684 	if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
2685 		if (async->async_wbufcid)
2686 			unbufcall(async->async_wbufcid);
2687 		async->async_wbufcid = bufcall(datasize, BPRI_HI, async_reioctl,
2688 		    async);
2689 		return;
2690 	}
2691 
2692 	mutex_enter(asy->asy_excl);
2693 
2694 	if (error == 0) {
2695 		/*
2696 		 * "ttycommon_ioctl" did most of the work; we just use the
2697 		 * data it set up.
2698 		 */
2699 		switch (iocp->ioc_cmd) {
2700 
2701 		case TCSETS:
2702 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2703 			    asy->asy_lom_console)) {
2704 				mutex_enter(asy->asy_excl_hi);
2705 				error = asy_program(asy, ASY_NOINIT);
2706 				mutex_exit(asy->asy_excl_hi);
2707 			}
2708 			break;
2709 		case TCSETSF:
2710 		case TCSETSW:
2711 		case TCSETA:
2712 		case TCSETAW:
2713 		case TCSETAF:
2714 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2715 			    asy->asy_lom_console)) {
2716 				mutex_enter(asy->asy_excl_hi);
2717 				if (iswput && asy_isbusy(asy)) {
2718 					/*
2719 					 * ttycommon_ioctl sets the db_type to
2720 					 * M_IOCACK and ioc_count to zero
2721 					 * we need to undo this when we
2722 					 * queue a control message. This will
2723 					 * allow the control messages to be
2724 					 * processed again when the chip
2725 					 * becomes available.
2726 					 */
2727 					mp->b_datap->db_type = M_IOCTL;
2728 					iocp->ioc_count = ioc_count;
2729 
2730 					if (putq(wq, mp) == 0)
2731 						freemsg(mp);
2732 					mutex_exit(asy->asy_excl_hi);
2733 					mutex_exit(asy->asy_excl);
2734 					return;
2735 				}
2736 
2737 				/*
2738 				 * TCSETA, TCSETAW, and TCSETAF make use of
2739 				 * the termio structure and therefore have
2740 				 * no concept of any speed except what can
2741 				 * be represented by CBAUD. This is because
2742 				 * of legacy SVR4 code. Therefore, if we see
2743 				 * one of the aforementioned IOCTL commands
2744 				 * we should zero out CBAUDEXT, CIBAUD, and
2745 				 * CIBAUDEXT as to not break legacy
2746 				 * functionality. This is because CBAUDEXT,
2747 				 * CIBAUD, and CIBAUDEXT can't be stored in
2748 				 * an unsigned short. By zeroing out CBAUDEXT,
2749 				 * CIBAUD, and CIBAUDEXT in the t_cflag of the
2750 				 * termios structure asy_program() will set the
2751 				 * input baud rate to the output baud rate.
2752 				 */
2753 				if (iocp->ioc_cmd == TCSETA ||
2754 				    iocp->ioc_cmd == TCSETAW ||
2755 				    iocp->ioc_cmd == TCSETAF)
2756 					tp->t_cflag &= ~(CIBAUD |
2757 					    CIBAUDEXT | CBAUDEXT);
2758 
2759 				error = asy_program(asy, ASY_NOINIT);
2760 				mutex_exit(asy->asy_excl_hi);
2761 			}
2762 			break;
2763 		case TIOCSSOFTCAR:
2764 			/* Set the driver state appropriately */
2765 			mutex_enter(asy->asy_excl_hi);
2766 			if (tp->t_flags & TS_SOFTCAR)
2767 				asy->asy_flags |= ASY_IGNORE_CD;
2768 			else
2769 				asy->asy_flags &= ~ASY_IGNORE_CD;
2770 			mutex_exit(asy->asy_excl_hi);
2771 			break;
2772 		}
2773 	} else if (error < 0) {
2774 		/*
2775 		 * "ttycommon_ioctl" didn't do anything; we process it here.
2776 		 */
2777 		error = 0;
2778 		switch (iocp->ioc_cmd) {
2779 
2780 		case TIOCGPPS:
2781 			/*
2782 			 * Get PPS on/off.
2783 			 */
2784 			if (mp->b_cont != NULL)
2785 				freemsg(mp->b_cont);
2786 
2787 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
2788 			if (mp->b_cont == NULL) {
2789 				error = ENOMEM;
2790 				break;
2791 			}
2792 			if (asy->asy_flags & ASY_PPS)
2793 				*(int *)mp->b_cont->b_wptr = 1;
2794 			else
2795 				*(int *)mp->b_cont->b_wptr = 0;
2796 			mp->b_cont->b_wptr += sizeof (int);
2797 			mp->b_datap->db_type = M_IOCACK;
2798 			iocp->ioc_count = sizeof (int);
2799 			break;
2800 
2801 		case TIOCSPPS:
2802 			/*
2803 			 * Set PPS on/off.
2804 			 */
2805 			error = miocpullup(mp, sizeof (int));
2806 			if (error != 0)
2807 				break;
2808 
2809 			mutex_enter(asy->asy_excl_hi);
2810 			if (*(int *)mp->b_cont->b_rptr)
2811 				asy->asy_flags |= ASY_PPS;
2812 			else
2813 				asy->asy_flags &= ~ASY_PPS;
2814 			/* Reset edge sense */
2815 			asy->asy_flags &= ~ASY_PPS_EDGE;
2816 			mutex_exit(asy->asy_excl_hi);
2817 			mp->b_datap->db_type = M_IOCACK;
2818 			break;
2819 
2820 		case TIOCGPPSEV: {
2821 			/*
2822 			 * Get PPS event data.
2823 			 */
2824 			mblk_t *bp;
2825 			void *buf;
2826 #ifdef _SYSCALL32_IMPL
2827 			struct ppsclockev32 p32;
2828 #endif
2829 			struct ppsclockev ppsclockev;
2830 
2831 			if (mp->b_cont != NULL) {
2832 				freemsg(mp->b_cont);
2833 				mp->b_cont = NULL;
2834 			}
2835 
2836 			if ((asy->asy_flags & ASY_PPS) == 0) {
2837 				error = ENXIO;
2838 				break;
2839 			}
2840 
2841 			/* Protect from incomplete asy_ppsev */
2842 			mutex_enter(asy->asy_excl_hi);
2843 			ppsclockev = asy_ppsev;
2844 			mutex_exit(asy->asy_excl_hi);
2845 
2846 #ifdef _SYSCALL32_IMPL
2847 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
2848 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
2849 				p32.serial = ppsclockev.serial;
2850 				buf = &p32;
2851 				iocp->ioc_count = sizeof (struct ppsclockev32);
2852 			} else
2853 #endif
2854 			{
2855 				buf = &ppsclockev;
2856 				iocp->ioc_count = sizeof (struct ppsclockev);
2857 			}
2858 
2859 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
2860 				error = ENOMEM;
2861 				break;
2862 			}
2863 			mp->b_cont = bp;
2864 
2865 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
2866 			bp->b_wptr += iocp->ioc_count;
2867 			mp->b_datap->db_type = M_IOCACK;
2868 			break;
2869 		}
2870 
2871 		case TCSBRK:
2872 			error = miocpullup(mp, sizeof (int));
2873 			if (error != 0)
2874 				break;
2875 
2876 			mutex_enter(asy->asy_excl_hi);
2877 			if (*(int *)mp->b_cont->b_rptr == 0) {
2878 				/*
2879 				 * Get the divisor by calculating the rate
2880 				 */
2881 				unsigned int rate, divisor;
2882 				rate = async->async_ttycommon.t_cflag & CBAUD;
2883 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
2884 					rate += 16;
2885 				if (rate >= N_SU_SPEEDS) rate = B9600;
2886 				divisor = asyspdtab[rate] & 0xfff;
2887 
2888 				/*
2889 				 * To ensure that erroneous characters are
2890 				 * not sent out when the break is set, SB
2891 				 * recommends three steps:
2892 				 *
2893 				 * 1) pad the TSR with 0 bits
2894 				 * 2) When the TSR is full, set break
2895 				 * 3) When the TSR has been flushed, unset
2896 				 *    the break when transmission must be
2897 				 *    restored.
2898 				 *
2899 				 * We loop until the TSR is empty and then
2900 				 * set the break.  ASYNC_BREAK has been set
2901 				 * to ensure that no characters are
2902 				 * transmitted while the TSR is being
2903 				 * flushed and SOUT is being used for the
2904 				 * break signal.
2905 				 *
2906 				 * The wait period is equal to
2907 				 * clock / (baud * 16) * 16 * 2.
2908 				 */
2909 				async->async_flags |= ASYNC_BREAK;
2910 				while ((INB(LSR) & XSRE) == 0) {
2911 					mutex_exit(asy->asy_excl_hi);
2912 					mutex_exit(asy->asy_excl);
2913 					drv_usecwait(32*divisor);
2914 					mutex_enter(asy->asy_excl);
2915 					mutex_enter(asy->asy_excl_hi);
2916 				}
2917 
2918 				/*
2919 				 * Set the break bit, and arrange for
2920 				 * "async_restart" to be called in 1/4 second;
2921 				 * it will turn the break bit off, and call
2922 				 * "async_start" to grab the next message.
2923 				 */
2924 				val = INB(LCR);
2925 				OUTB(LCR, (val | SETBREAK));
2926 				mutex_exit(asy->asy_excl_hi);
2927 				(void) timeout(async_restart, async, hz / 4);
2928 			} else {
2929 #ifdef DEBUG
2930 				if (asydebug & ASY_DEBUG_CLOSE)
2931 					printf("asy%d: wait for flush.\n",
2932 					UNIT(async->async_dev));
2933 #endif
2934 				if (iswput && asy_isbusy(asy)) {
2935 					if (putq(wq, mp) == 0)
2936 						freemsg(mp);
2937 					mutex_exit(asy->asy_excl_hi);
2938 					mutex_exit(asy->asy_excl);
2939 					return;
2940 				}
2941 				mutex_exit(asy->asy_excl_hi);
2942 #ifdef DEBUG
2943 				if (asydebug & ASY_DEBUG_CLOSE)
2944 					printf("asy%d: ldterm satisfied.\n",
2945 					UNIT(async->async_dev));
2946 #endif
2947 			}
2948 			break;
2949 
2950 		case TIOCSBRK:
2951 			mutex_enter(asy->asy_excl_hi);
2952 			val = INB(LCR);
2953 			OUTB(LCR, (val | SETBREAK));
2954 			mutex_exit(asy->asy_excl_hi);
2955 			mutex_exit(asy->asy_excl);
2956 			miocack(wq, mp, 0, 0);
2957 			return;
2958 
2959 		case TIOCCBRK:
2960 			mutex_enter(asy->asy_excl_hi);
2961 			val = INB(LCR);
2962 			OUTB(LCR, (val & ~SETBREAK));
2963 			mutex_exit(asy->asy_excl_hi);
2964 			mutex_exit(asy->asy_excl);
2965 			miocack(wq, mp, 0, 0);
2966 			return;
2967 
2968 		case TIOCMSET:
2969 		case TIOCMBIS:
2970 		case TIOCMBIC:
2971 			if (iocp->ioc_count == TRANSPARENT)
2972 				mcopyin(mp, NULL, sizeof (int), NULL);
2973 			else {
2974 				error = miocpullup(mp, sizeof (int));
2975 				if (error != 0)
2976 					break;
2977 
2978 				mutex_enter(asy->asy_excl_hi);
2979 
2980 				(void) asymctl(asy,
2981 					dmtoasy(*(int *)mp->b_cont->b_rptr),
2982 					iocp->ioc_cmd);
2983 
2984 				mutex_exit(asy->asy_excl_hi);
2985 				iocp->ioc_error = 0;
2986 				mp->b_datap->db_type = M_IOCACK;
2987 			}
2988 			break;
2989 
2990 		case TIOCSILOOP:
2991 			mutex_enter(asy->asy_excl_hi);
2992 			/*
2993 			 * If somebody misues this Ioctl when used for
2994 			 * driving keyboard and mouse indicate not supported
2995 			 */
2996 			if ((asy->asy_device_type == ASY_KEYBOARD) ||
2997 				(asy->asy_device_type == ASY_MOUSE)) {
2998 				mutex_exit(asy->asy_excl_hi);
2999 				error = ENOTTY;
3000 				break;
3001 			}
3002 
3003 			/* should not use when we're the console */
3004 			if ((async->async_dev == kbddev) ||
3005 			    (async->async_dev == rconsdev) ||
3006 			    (async->async_dev == stdindev)) {
3007 				mutex_exit(asy->asy_excl_hi);
3008 				error = EINVAL;
3009 				break;
3010 			}
3011 
3012 			val = INB(MCR);
3013 			icr = INB(ICR);
3014 			/*
3015 			 * Disable the Modem Status Interrupt
3016 			 * The reason for disabling is  the status of
3017 			 * modem signal are in the higher 4 bits instead of
3018 			 * lower four bits when in loopback mode,
3019 			 * so, donot worry about Modem interrupt when
3020 			 * you are planning to set
3021 			 * this in loopback mode until it is cleared by
3022 			 * another ioctl to get out of the loopback mode
3023 			 */
3024 			OUTB(ICR, icr & ~ MIEN);
3025 			OUTB(MCR, val | ASY_LOOP);
3026 			mutex_exit(asy->asy_excl_hi);
3027 			iocp->ioc_error = 0;
3028 			mp->b_datap->db_type = M_IOCACK;
3029 			break;
3030 
3031 		case TIOCMGET:
3032 			datamp = allocb(sizeof (int), BPRI_MED);
3033 			if (datamp == NULL) {
3034 				error = EAGAIN;
3035 				break;
3036 			}
3037 
3038 			mutex_enter(asy->asy_excl_hi);
3039 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3040 			mutex_exit(asy->asy_excl_hi);
3041 
3042 			if (iocp->ioc_count == TRANSPARENT) {
3043 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3044 			} else {
3045 				if (mp->b_cont != NULL)
3046 					freemsg(mp->b_cont);
3047 				mp->b_cont = datamp;
3048 				mp->b_cont->b_wptr += sizeof (int);
3049 				mp->b_datap->db_type = M_IOCACK;
3050 				iocp->ioc_count = sizeof (int);
3051 			}
3052 			break;
3053 
3054 		default: /* unexpected ioctl type */
3055 			/*
3056 			 * If we don't understand it, it's an error.  NAK it.
3057 			 */
3058 			error = EINVAL;
3059 			break;
3060 		}
3061 	}
3062 	if (error != 0) {
3063 		iocp->ioc_error = error;
3064 		mp->b_datap->db_type = M_IOCNAK;
3065 	}
3066 	mutex_exit(asy->asy_excl);
3067 	qreply(wq, mp);
3068 }
3069 
3070 static void
3071 asyrsrv(queue_t *q)
3072 {
3073 	mblk_t *bp;
3074 	struct asyncline *async;
3075 
3076 	async = (struct asyncline *)q->q_ptr;
3077 
3078 	while (canputnext(q) && (bp = getq(q)))
3079 		putnext(q, bp);
3080 	ASYSETSOFT(async->async_common);
3081 	async->async_polltid = 0;
3082 }
3083 
3084 /*
3085  * Put procedure for write queue.
3086  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3087  * set the flow control character for M_STOPI and M_STARTI messages;
3088  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3089  * by the start routine, and then call the start routine; discard
3090  * everything else.  Note that this driver does not incorporate any
3091  * mechanism to negotiate to handle the canonicalization process.
3092  * It expects that these functions are handled in upper module(s),
3093  * as we do in ldterm.
3094  */
3095 static void
3096 asywput(queue_t *q, mblk_t *mp)
3097 {
3098 	register struct asyncline *async;
3099 	register struct asycom *asy;
3100 	int error;
3101 
3102 	async = (struct asyncline *)q->q_ptr;
3103 	asy = async->async_common;
3104 
3105 	switch (mp->b_datap->db_type) {
3106 
3107 	case M_STOP:
3108 		/*
3109 		 * Since we don't do real DMA, we can just let the
3110 		 * chip coast to a stop after applying the brakes.
3111 		 */
3112 		mutex_enter(asy->asy_excl);
3113 		async->async_flags |= ASYNC_STOPPED;
3114 		mutex_exit(asy->asy_excl);
3115 		freemsg(mp);
3116 		break;
3117 
3118 	case M_START:
3119 		mutex_enter(asy->asy_excl);
3120 		if (async->async_flags & ASYNC_STOPPED) {
3121 			async->async_flags &= ~ASYNC_STOPPED;
3122 			/*
3123 			 * If an output operation is in progress,
3124 			 * resume it.  Otherwise, prod the start
3125 			 * routine.
3126 			 */
3127 			if (async->async_ocnt > 0) {
3128 				mutex_enter(asy->asy_excl_hi);
3129 				async_resume(async);
3130 				mutex_exit(asy->asy_excl_hi);
3131 			} else {
3132 				async_start(async);
3133 			}
3134 		}
3135 		mutex_exit(asy->asy_excl);
3136 		freemsg(mp);
3137 		break;
3138 
3139 	case M_IOCTL:
3140 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3141 
3142 		case TCSBRK:
3143 			error = miocpullup(mp, sizeof (int));
3144 			if (error != 0) {
3145 				miocnak(q, mp, 0, error);
3146 				return;
3147 			}
3148 
3149 			if (*(int *)mp->b_cont->b_rptr != 0) {
3150 #ifdef DEBUG
3151 				if (asydebug & ASY_DEBUG_CLOSE)
3152 					printf("asy%d: flush request.\n",
3153 					    UNIT(async->async_dev));
3154 #endif
3155 				(void) putq(q, mp);
3156 				mutex_enter(asy->asy_excl);
3157 				async_nstart(async, 1);
3158 				mutex_exit(asy->asy_excl);
3159 				break;
3160 			}
3161 			/*FALLTHROUGH*/
3162 		case TCSETSW:
3163 		case TCSETSF:
3164 		case TCSETAW:
3165 		case TCSETAF:
3166 			/*
3167 			 * The changes do not take effect until all
3168 			 * output queued before them is drained.
3169 			 * Put this message on the queue, so that
3170 			 * "async_start" will see it when it's done
3171 			 * with the output before it.  Poke the
3172 			 * start routine, just in case.
3173 			 */
3174 			(void) putq(q, mp);
3175 			mutex_enter(asy->asy_excl);
3176 			async_start(async);
3177 			mutex_exit(asy->asy_excl);
3178 			break;
3179 
3180 		default:
3181 			/*
3182 			 * Do it now.
3183 			 */
3184 			async_ioctl(async, q, mp, B_TRUE);
3185 			break;
3186 		}
3187 		break;
3188 
3189 	case M_FLUSH:
3190 		if (*mp->b_rptr & FLUSHW) {
3191 			mutex_enter(asy->asy_excl);
3192 
3193 			/*
3194 			 * Abort any output in progress.
3195 			 */
3196 			mutex_enter(asy->asy_excl_hi);
3197 			if (async->async_flags & ASYNC_BUSY) {
3198 				async->async_ocnt = 0;
3199 				async->async_flags &= ~ASYNC_BUSY;
3200 			}
3201 			mutex_exit(asy->asy_excl_hi);
3202 
3203 			/* Flush FIFO buffers */
3204 			if (asy->asy_use_fifo == FIFO_ON) {
3205 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH |
3206 				    (asy->asy_trig_level & 0xff));
3207 			}
3208 
3209 			/*
3210 			 * Flush our write queue.
3211 			 */
3212 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3213 			if (async->async_xmitblk != NULL) {
3214 				freeb(async->async_xmitblk);
3215 				async->async_xmitblk = NULL;
3216 			}
3217 
3218 			mutex_exit(asy->asy_excl);
3219 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3220 		}
3221 		if (*mp->b_rptr & FLUSHR) {
3222 			/* Flush FIFO buffers */
3223 			if (asy->asy_use_fifo == FIFO_ON) {
3224 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
3225 				    (asy->asy_trig_level & 0xff));
3226 			}
3227 			flushq(RD(q), FLUSHDATA);
3228 			qreply(q, mp);	/* give the read queues a crack at it */
3229 		} else {
3230 			freemsg(mp);
3231 		}
3232 
3233 		/*
3234 		 * We must make sure we process messages that survive the
3235 		 * write-side flush.  Without this call, the close protocol
3236 		 * with ldterm can hang forever.  (ldterm will have sent us a
3237 		 * TCSBRK ioctl that it expects a response to.)
3238 		 */
3239 		mutex_enter(asy->asy_excl);
3240 		async_start(async);
3241 		mutex_exit(asy->asy_excl);
3242 		break;
3243 	case M_BREAK:
3244 	case M_DELAY:
3245 	case M_DATA:
3246 		/*
3247 		 * Queue the message up to be transmitted,
3248 		 * and poke the start routine.
3249 		 */
3250 		(void) putq(q, mp);
3251 		mutex_enter(asy->asy_excl);
3252 		async_start(async);
3253 		mutex_exit(asy->asy_excl);
3254 		break;
3255 
3256 	case M_STOPI:
3257 		mutex_enter(asy->asy_excl);
3258 		async->async_flowc = async->async_stopc;
3259 		async_start(async);		/* poke the start routine */
3260 		mutex_exit(asy->asy_excl);
3261 		freemsg(mp);
3262 		break;
3263 
3264 	case M_STARTI:
3265 		mutex_enter(asy->asy_excl);
3266 		async->async_flowc = async->async_startc;
3267 		async_start(async);		/* poke the start routine */
3268 		mutex_exit(asy->asy_excl);
3269 		freemsg(mp);
3270 		break;
3271 
3272 	case M_CTL:
3273 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
3274 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
3275 			((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX;
3276 			qreply(q, mp);
3277 		} else {
3278 			/*
3279 			 * These MC_SERVICE type messages are used by upper
3280 			 * modules to tell this driver to send input up
3281 			 * immediately, or that it can wait for normal
3282 			 * processing that may or may not be done.  Sun
3283 			 * requires these for the mouse module.
3284 			 * (XXX - for x86?)
3285 			 */
3286 			mutex_enter(asy->asy_excl);
3287 			switch (*mp->b_rptr) {
3288 
3289 			case MC_SERVICEIMM:
3290 				async->async_flags |= ASYNC_SERVICEIMM;
3291 				break;
3292 
3293 			case MC_SERVICEDEF:
3294 				async->async_flags &= ~ASYNC_SERVICEIMM;
3295 				break;
3296 			}
3297 			mutex_exit(asy->asy_excl);
3298 			freemsg(mp);
3299 		}
3300 		break;
3301 
3302 	case M_IOCDATA:
3303 		async_iocdata(q, mp);
3304 		break;
3305 
3306 	default:
3307 		freemsg(mp);
3308 		break;
3309 	}
3310 }
3311 
3312 /*
3313  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
3314  * the buffer we need.
3315  */
3316 static void
3317 async_reioctl(void *arg)
3318 {
3319 	struct asyncline *async = arg;
3320 	struct asycom *asy = async->async_common;
3321 	queue_t	*q;
3322 	mblk_t		*mp;
3323 
3324 	/*
3325 	 * The bufcall is no longer pending.
3326 	 */
3327 	mutex_enter(asy->asy_excl);
3328 	async->async_wbufcid = 0;
3329 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3330 		mutex_exit(asy->asy_excl);
3331 		return;
3332 	}
3333 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
3334 		/* not pending any more */
3335 		async->async_ttycommon.t_iocpending = NULL;
3336 		mutex_exit(asy->asy_excl);
3337 		/* not in STREAMS queue; we no longer know if we're in wput */
3338 		async_ioctl(async, q, mp, B_TRUE);
3339 	} else
3340 		mutex_exit(asy->asy_excl);
3341 }
3342 
3343 static void
3344 async_iocdata(queue_t *q, mblk_t *mp)
3345 {
3346 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
3347 	struct asycom		*asy;
3348 	struct copyresp *csp;
3349 
3350 	asy = async->async_common;
3351 	csp = (struct copyresp *)mp->b_rptr;
3352 
3353 	if (csp->cp_rval != 0) {
3354 		freemsg(mp);
3355 		return;
3356 	}
3357 
3358 	mutex_enter(asy->asy_excl);
3359 
3360 	switch (csp->cp_cmd) {
3361 	case TIOCMSET:
3362 	case TIOCMBIS:
3363 	case TIOCMBIC:
3364 		if (mp->b_cont == NULL) {
3365 			mutex_exit(asy->asy_excl);
3366 			miocnak(q, mp, 0, EINVAL);
3367 			break;
3368 		}
3369 
3370 		mutex_enter(asy->asy_excl_hi);
3371 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
3372 			csp->cp_cmd);
3373 		mutex_exit(asy->asy_excl_hi);
3374 
3375 		freemsg(mp->b_cont);
3376 		mp->b_cont = NULL;
3377 		mutex_exit(asy->asy_excl);
3378 		miocack(q, mp, 0, 0);
3379 		break;
3380 
3381 	case TIOCMGET:
3382 		if (mp->b_cont != NULL) {
3383 			freemsg(mp->b_cont);
3384 			mp->b_cont = NULL;
3385 		}
3386 		mutex_exit(asy->asy_excl);
3387 		miocack(q, mp, 0, 0);
3388 		break;
3389 
3390 	default:
3391 		mutex_exit(asy->asy_excl);
3392 		miocnak(q, mp, 0, EINVAL);
3393 		break;
3394 	}
3395 }
3396 
3397 
3398 /*
3399  * Set or get the modem control status.
3400  */
3401 static int
3402 asymctl(struct asycom *asy, int bits, int how)
3403 {
3404 	register int mcr_r, msr_r;
3405 
3406 	ASSERT(mutex_owned(asy->asy_excl_hi));
3407 	ASSERT(mutex_owned(asy->asy_excl));
3408 
3409 	/* Read Modem Control Registers */
3410 	mcr_r = INB(MCR);
3411 
3412 	switch (how) {
3413 
3414 	case TIOCMSET:
3415 		mcr_r = bits;
3416 		break;
3417 
3418 	case TIOCMBIS:
3419 		mcr_r |= bits;			/* Set bits from input	*/
3420 		break;
3421 
3422 	case TIOCMBIC:
3423 		mcr_r &= ~bits;			/* Set ~bits from input	*/
3424 		break;
3425 
3426 	case TIOCMGET:
3427 		/* Read Modem Status Registers */
3428 		if (INB(ICR) & MIEN)
3429 			msr_r = asy->asy_cached_msr;
3430 		else
3431 			msr_r = INB(MSR);
3432 		return (asytodm(mcr_r, msr_r));
3433 	}
3434 
3435 	OUTB(MCR, mcr_r);
3436 
3437 	return (mcr_r);
3438 }
3439 
3440 static int
3441 asytodm(int mcr_r, int msr_r)
3442 {
3443 	register int b = 0;
3444 
3445 
3446 	/* MCR registers */
3447 	if (mcr_r & RTS)
3448 		b |= TIOCM_RTS;
3449 
3450 	if (mcr_r & DTR)
3451 		b |= TIOCM_DTR;
3452 
3453 	/* MSR registers */
3454 	if (msr_r & DCD)
3455 		b |= TIOCM_CAR;
3456 
3457 	if (msr_r & CTS)
3458 		b |= TIOCM_CTS;
3459 
3460 	if (msr_r & DSR)
3461 		b |= TIOCM_DSR;
3462 
3463 	if (msr_r & RI)
3464 		b |= TIOCM_RNG;
3465 
3466 	return (b);
3467 }
3468 
3469 static int
3470 dmtoasy(int bits)
3471 {
3472 	register int b = 0;
3473 
3474 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
3475 	if (bits & TIOCM_CAR)
3476 		b |= DCD;
3477 	if (bits & TIOCM_CTS)
3478 		b |= CTS;
3479 	if (bits & TIOCM_DSR)
3480 		b |= DSR;
3481 	if (bits & TIOCM_RNG)
3482 		b |= RI;
3483 #endif
3484 
3485 	if (bits & TIOCM_RTS)
3486 		b |= RTS;
3487 	if (bits & TIOCM_DTR)
3488 		b |= DTR;
3489 
3490 	return (b);
3491 }
3492 
3493 static void
3494 asycheckflowcontrol_hw(struct asycom *asy)
3495 {
3496 	struct asyncline *async;
3497 	uchar_t	mcr, flag;
3498 
3499 	ASSERT(mutex_owned(asy->asy_excl_hi));
3500 
3501 	async = (struct asyncline *)asy->asy_priv;
3502 	ASSERT(async != NULL);
3503 
3504 	if (async->async_ttycommon.t_cflag & CRTSXOFF) {
3505 		mcr = INB(MCR);
3506 		flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
3507 		if (((mcr ^ flag) & RTS) != 0) {
3508 			OUTB(MCR, (mcr ^ RTS));
3509 		}
3510 	}
3511 }
3512 
3513 static boolean_t
3514 asycheckflowcontrol_sw(struct asycom *asy)
3515 {
3516 	uchar_t		ss;
3517 	struct asyncline *async;
3518 	int rval = B_FALSE;
3519 
3520 	ASSERT(mutex_owned(asy->asy_excl_hi));
3521 
3522 	async = (struct asyncline *)asy->asy_priv;
3523 	ASSERT(async != NULL);
3524 
3525 	if ((ss = async->async_flowc) != '\0' && (INB(LSR) & XHRE)) {
3526 		/*
3527 		 * If we get this far, then we know that flowc is non-zero and
3528 		 * that there's transmit room available.  We've "handled" the
3529 		 * request now, so clear it.  If the user didn't ask for IXOFF,
3530 		 * then don't actually send anything, but wait for the next
3531 		 * opportunity.
3532 		 */
3533 		async->async_flowc = '\0';
3534 		if (async->async_ttycommon.t_iflag & IXOFF) {
3535 			async->async_flags |= ASYNC_BUSY;
3536 			OUTB(DAT, ss);
3537 			rval = B_TRUE;
3538 		}
3539 	}
3540 
3541 	return (rval);
3542 }
3543 
3544 /*
3545  * Check for abort character sequence
3546  */
3547 static boolean_t
3548 abort_charseq_recognize(uchar_t ch)
3549 {
3550 	static int state = 0;
3551 #define	CNTRL(c) ((c)&037)
3552 	static char sequence[] = { '\r', '~', CNTRL('b') };
3553 
3554 	if (ch == sequence[state]) {
3555 		if (++state >= sizeof (sequence)) {
3556 			state = 0;
3557 			return (B_TRUE);
3558 		}
3559 	} else {
3560 		state = (ch == sequence[0]) ? 1 : 0;
3561 	}
3562 	return (B_FALSE);
3563 }
3564