xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 24db46411fd54f70c35b94bb952eb7ba040e43b4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 
89 #if defined(SF_ERRATA_57)
90 extern caddr_t errata57_limit;
91 #endif
92 
93 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94 				(sizeof (int64_t)))
95 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96 
97 #define	HBLK_RESERVE_CNT	128
98 #define	HBLK_RESERVE_MIN	20
99 
100 static struct hme_blk		*freehblkp;
101 static kmutex_t			freehblkp_lock;
102 static int			freehblkcnt;
103 
104 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105 static kmutex_t			hblk_reserve_lock;
106 static kthread_t		*hblk_reserve_thread;
107 
108 static nucleus_hblk8_info_t	nucleus_hblk8;
109 static nucleus_hblk1_info_t	nucleus_hblk1;
110 
111 /*
112  * SFMMU specific hat functions
113  */
114 void	hat_pagecachectl(struct page *, int);
115 
116 /* flags for hat_pagecachectl */
117 #define	HAT_CACHE	0x1
118 #define	HAT_UNCACHE	0x2
119 #define	HAT_TMPNC	0x4
120 
121 /*
122  * Flag to allow the creation of non-cacheable translations
123  * to system memory. It is off by default. At the moment this
124  * flag is used by the ecache error injector. The error injector
125  * will turn it on when creating such a translation then shut it
126  * off when it's finished.
127  */
128 
129 int	sfmmu_allow_nc_trans = 0;
130 
131 /*
132  * Flag to disable large page support.
133  * 	value of 1 => disable all large pages.
134  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135  *
136  * For example, use the value 0x4 to disable 512K pages.
137  *
138  */
139 #define	LARGE_PAGES_OFF		0x1
140 
141 /*
142  * The disable_large_pages and disable_ism_large_pages variables control
143  * hat_memload_array and the page sizes to be used by ISM and the kernel.
144  *
145  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
146  * are only used to control which OOB pages to use at upper VM segment creation
147  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
148  * Their values may come from platform or CPU specific code to disable page
149  * sizes that should not be used.
150  *
151  * WARNING: 512K pages are currently not supported for ISM/DISM.
152  */
153 uint_t	disable_large_pages = 0;
154 uint_t	disable_ism_large_pages = (1 << TTE512K);
155 uint_t	disable_auto_data_large_pages = 0;
156 uint_t	disable_auto_text_large_pages = 0;
157 
158 /*
159  * Private sfmmu data structures for hat management
160  */
161 static struct kmem_cache *sfmmuid_cache;
162 static struct kmem_cache *mmuctxdom_cache;
163 
164 /*
165  * Private sfmmu data structures for tsb management
166  */
167 static struct kmem_cache *sfmmu_tsbinfo_cache;
168 static struct kmem_cache *sfmmu_tsb8k_cache;
169 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
170 static vmem_t *kmem_tsb_arena;
171 
172 /*
173  * sfmmu static variables for hmeblk resource management.
174  */
175 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
176 static struct kmem_cache *sfmmu8_cache;
177 static struct kmem_cache *sfmmu1_cache;
178 static struct kmem_cache *pa_hment_cache;
179 
180 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
181 /*
182  * private data for ism
183  */
184 static struct kmem_cache *ism_blk_cache;
185 static struct kmem_cache *ism_ment_cache;
186 #define	ISMID_STARTADDR	NULL
187 
188 /*
189  * Whether to delay TLB flushes and use Cheetah's flush-all support
190  * when removing contexts from the dirty list.
191  */
192 int delay_tlb_flush;
193 int disable_delay_tlb_flush;
194 
195 /*
196  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
197  * HAT flags, synchronizing TLB/TSB coherency, and context management.
198  * The lock is hashed on the sfmmup since the case where we need to lock
199  * all processes is rare but does occur (e.g. we need to unload a shared
200  * mapping from all processes using the mapping).  We have a lot of buckets,
201  * and each slab of sfmmu_t's can use about a quarter of them, giving us
202  * a fairly good distribution without wasting too much space and overhead
203  * when we have to grab them all.
204  */
205 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
206 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
207 
208 /*
209  * Hash algorithm optimized for a small number of slabs.
210  *  7 is (highbit((sizeof sfmmu_t)) - 1)
211  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
212  * kmem_cache, and thus they will be sequential within that cache.  In
213  * addition, each new slab will have a different "color" up to cache_maxcolor
214  * which will skew the hashing for each successive slab which is allocated.
215  * If the size of sfmmu_t changed to a larger size, this algorithm may need
216  * to be revisited.
217  */
218 #define	TSB_HASH_SHIFT_BITS (7)
219 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
220 
221 #ifdef DEBUG
222 int tsb_hash_debug = 0;
223 #define	TSB_HASH(sfmmup)	\
224 	(tsb_hash_debug ? &hat_lock[0] : \
225 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
226 #else	/* DEBUG */
227 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
228 #endif	/* DEBUG */
229 
230 
231 /* sfmmu_replace_tsb() return codes. */
232 typedef enum tsb_replace_rc {
233 	TSB_SUCCESS,
234 	TSB_ALLOCFAIL,
235 	TSB_LOSTRACE,
236 	TSB_ALREADY_SWAPPED,
237 	TSB_CANTGROW
238 } tsb_replace_rc_t;
239 
240 /*
241  * Flags for TSB allocation routines.
242  */
243 #define	TSB_ALLOC	0x01
244 #define	TSB_FORCEALLOC	0x02
245 #define	TSB_GROW	0x04
246 #define	TSB_SHRINK	0x08
247 #define	TSB_SWAPIN	0x10
248 
249 /*
250  * Support for HAT callbacks.
251  */
252 #define	SFMMU_MAX_RELOC_CALLBACKS	10
253 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
254 static id_t sfmmu_cb_nextid = 0;
255 static id_t sfmmu_tsb_cb_id;
256 struct sfmmu_callback *sfmmu_cb_table;
257 
258 /*
259  * Kernel page relocation is enabled by default for non-caged
260  * kernel pages.  This has little effect unless segkmem_reloc is
261  * set, since by default kernel memory comes from inside the
262  * kernel cage.
263  */
264 int hat_kpr_enabled = 1;
265 
266 kmutex_t	kpr_mutex;
267 kmutex_t	kpr_suspendlock;
268 kthread_t	*kreloc_thread;
269 
270 /*
271  * Enable VA->PA translation sanity checking on DEBUG kernels.
272  * Disabled by default.  This is incompatible with some
273  * drivers (error injector, RSM) so if it breaks you get
274  * to keep both pieces.
275  */
276 int hat_check_vtop = 0;
277 
278 /*
279  * Private sfmmu routines (prototypes)
280  */
281 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
282 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
283 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
284 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
285 			caddr_t, demap_range_t *, uint_t);
286 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
287 			caddr_t, int);
288 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
289 			uint64_t, struct hme_blk **);
290 static void	sfmmu_hblks_list_purge(struct hme_blk **);
291 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
292 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
293 static struct hme_blk *sfmmu_hblk_steal(int);
294 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
295 			struct hme_blk *, uint64_t, uint64_t,
296 			struct hme_blk *);
297 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
298 
299 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
300 		    uint_t, uint_t, pgcnt_t);
301 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
302 			uint_t);
303 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
304 			uint_t);
305 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
306 					caddr_t, int);
307 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
308 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
309 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
310 			caddr_t, page_t **, uint_t);
311 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
312 
313 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
314 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
315 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
316 #ifdef VAC
317 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
318 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
319 int	tst_tnc(page_t *pp, pgcnt_t);
320 void	conv_tnc(page_t *pp, int);
321 #endif
322 
323 static void	sfmmu_get_ctx(sfmmu_t *);
324 static void	sfmmu_free_sfmmu(sfmmu_t *);
325 
326 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
327 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
328 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
329 
330 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
331 static void	hat_pagereload(struct page *, struct page *);
332 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
333 #ifdef VAC
334 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
335 static void	sfmmu_page_cache(page_t *, int, int, int);
336 #endif
337 
338 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
339 			pfn_t, int, int, int, int);
340 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
341 			pfn_t, int);
342 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
343 static void	sfmmu_tlb_range_demap(demap_range_t *);
344 static void	sfmmu_invalidate_ctx(sfmmu_t *);
345 static void	sfmmu_sync_mmustate(sfmmu_t *);
346 
347 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
348 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
349 			sfmmu_t *);
350 static void	sfmmu_tsb_free(struct tsb_info *);
351 static void	sfmmu_tsbinfo_free(struct tsb_info *);
352 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
353 			sfmmu_t *);
354 
355 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
356 static int	sfmmu_select_tsb_szc(pgcnt_t);
357 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
358 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
359 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
360 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
361 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
362 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
363 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
364     hatlock_t *, uint_t);
365 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
366 
367 #ifdef VAC
368 void	sfmmu_cache_flush(pfn_t, int);
369 void	sfmmu_cache_flushcolor(int, pfn_t);
370 #endif
371 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
372 			caddr_t, demap_range_t *, uint_t, int);
373 
374 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
375 static uint_t	sfmmu_ptov_attr(tte_t *);
376 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
377 			caddr_t, demap_range_t *, uint_t);
378 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
379 static int	sfmmu_idcache_constructor(void *, void *, int);
380 static void	sfmmu_idcache_destructor(void *, void *);
381 static int	sfmmu_hblkcache_constructor(void *, void *, int);
382 static void	sfmmu_hblkcache_destructor(void *, void *);
383 static void	sfmmu_hblkcache_reclaim(void *);
384 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
385 			struct hmehash_bucket *);
386 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
387 static void	sfmmu_rm_large_mappings(page_t *, int);
388 
389 static void	hat_lock_init(void);
390 static void	hat_kstat_init(void);
391 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
392 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
393 int	fnd_mapping_sz(page_t *);
394 static void	iment_add(struct ism_ment *,  struct hat *);
395 static void	iment_sub(struct ism_ment *, struct hat *);
396 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
397 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
398 #ifdef sun4v
399 extern void	sfmmu_invalidate_tsbinfo(sfmmu_t *);
400 #endif	/* sun4v */
401 extern void	sfmmu_clear_utsbinfo(void);
402 
403 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
404 
405 /* kpm globals */
406 #ifdef	DEBUG
407 /*
408  * Enable trap level tsbmiss handling
409  */
410 int	kpm_tsbmtl = 1;
411 
412 /*
413  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
414  * required TLB shootdowns in this case, so handle w/ care. Off by default.
415  */
416 int	kpm_tlb_flush;
417 #endif	/* DEBUG */
418 
419 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
420 
421 #ifdef DEBUG
422 static void	sfmmu_check_hblk_flist();
423 #endif
424 
425 /*
426  * Semi-private sfmmu data structures.  Some of them are initialize in
427  * startup or in hat_init. Some of them are private but accessed by
428  * assembly code or mach_sfmmu.c
429  */
430 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
431 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
432 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
433 uint64_t	khme_hash_pa;		/* PA of khme_hash */
434 int 		uhmehash_num;		/* # of buckets in user hash table */
435 int 		khmehash_num;		/* # of buckets in kernel hash table */
436 
437 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
438 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
439 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
440 
441 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
442 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
443 
444 int		cache;			/* describes system cache */
445 
446 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
447 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
448 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
449 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
450 
451 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
452 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
453 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
454 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
455 
456 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
457 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
458 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
459 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
460 
461 #ifndef sun4v
462 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
463 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
464 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
465 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
466 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
467 #endif /* sun4v */
468 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
469 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
470 
471 /*
472  * Size to use for TSB slabs.  Future platforms that support page sizes
473  * larger than 4M may wish to change these values, and provide their own
474  * assembly macros for building and decoding the TSB base register contents.
475  * Note disable_large_pages will override the value set here.
476  */
477 uint_t	tsb_slab_ttesz = TTE4M;
478 uint_t	tsb_slab_size;
479 uint_t	tsb_slab_shift;
480 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
481 
482 /* largest TSB size to grow to, will be smaller on smaller memory systems */
483 int	tsb_max_growsize = UTSB_MAX_SZCODE;
484 
485 /*
486  * Tunable parameters dealing with TSB policies.
487  */
488 
489 /*
490  * This undocumented tunable forces all 8K TSBs to be allocated from
491  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
492  */
493 #ifdef	DEBUG
494 int	tsb_forceheap = 0;
495 #endif	/* DEBUG */
496 
497 /*
498  * Decide whether to use per-lgroup arenas, or one global set of
499  * TSB arenas.  The default is not to break up per-lgroup, since
500  * most platforms don't recognize any tangible benefit from it.
501  */
502 int	tsb_lgrp_affinity = 0;
503 
504 /*
505  * Used for growing the TSB based on the process RSS.
506  * tsb_rss_factor is based on the smallest TSB, and is
507  * shifted by the TSB size to determine if we need to grow.
508  * The default will grow the TSB if the number of TTEs for
509  * this page size exceeds 75% of the number of TSB entries,
510  * which should _almost_ eliminate all conflict misses
511  * (at the expense of using up lots and lots of memory).
512  */
513 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
514 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
515 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
516 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
517 	default_tsb_size)
518 #define	TSB_OK_SHRINK()	\
519 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
520 #define	TSB_OK_GROW()	\
521 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
522 
523 int	enable_tsb_rss_sizing = 1;
524 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
525 
526 /* which TSB size code to use for new address spaces or if rss sizing off */
527 int default_tsb_size = TSB_8K_SZCODE;
528 
529 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
530 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
531 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
532 
533 #ifdef DEBUG
534 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
535 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
536 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
537 static int tsb_alloc_fail_mtbf = 0;
538 static int tsb_alloc_count = 0;
539 #endif /* DEBUG */
540 
541 /* if set to 1, will remap valid TTEs when growing TSB. */
542 int tsb_remap_ttes = 1;
543 
544 /*
545  * If we have more than this many mappings, allocate a second TSB.
546  * This default is chosen because the I/D fully associative TLBs are
547  * assumed to have at least 8 available entries. Platforms with a
548  * larger fully-associative TLB could probably override the default.
549  */
550 int tsb_sectsb_threshold = 8;
551 
552 /*
553  * kstat data
554  */
555 struct sfmmu_global_stat sfmmu_global_stat;
556 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
557 
558 /*
559  * Global data
560  */
561 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
562 
563 #ifdef DEBUG
564 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
565 #endif
566 
567 /* sfmmu locking operations */
568 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
569 static int	sfmmu_mlspl_held(struct page *, int);
570 
571 kmutex_t *sfmmu_page_enter(page_t *);
572 void	sfmmu_page_exit(kmutex_t *);
573 int	sfmmu_page_spl_held(struct page *);
574 
575 /* sfmmu internal locking operations - accessed directly */
576 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
577 				kmutex_t **, kmutex_t **);
578 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
579 static hatlock_t *
580 		sfmmu_hat_enter(sfmmu_t *);
581 static hatlock_t *
582 		sfmmu_hat_tryenter(sfmmu_t *);
583 static void	sfmmu_hat_exit(hatlock_t *);
584 static void	sfmmu_hat_lock_all(void);
585 static void	sfmmu_hat_unlock_all(void);
586 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
587 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
588 
589 /*
590  * Array of mutexes protecting a page's mapping list and p_nrm field.
591  *
592  * The hash function looks complicated, but is made up so that:
593  *
594  * "pp" not shifted, so adjacent pp values will hash to different cache lines
595  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
596  *
597  * "pp" >> mml_shift, incorporates more source bits into the hash result
598  *
599  *  "& (mml_table_size - 1), should be faster than using remainder "%"
600  *
601  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
602  * cacheline, since they get declared next to each other below. We'll trust
603  * ld not to do something random.
604  */
605 #ifdef	DEBUG
606 int mlist_hash_debug = 0;
607 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
608 	&mml_table[((uintptr_t)(pp) + \
609 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
610 #else	/* !DEBUG */
611 #define	MLIST_HASH(pp)   &mml_table[ \
612 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
613 #endif	/* !DEBUG */
614 
615 kmutex_t		*mml_table;
616 uint_t			mml_table_sz;	/* must be a power of 2 */
617 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
618 
619 kpm_hlk_t	*kpmp_table;
620 uint_t		kpmp_table_sz;	/* must be a power of 2 */
621 uchar_t		kpmp_shift;
622 
623 kpm_shlk_t	*kpmp_stable;
624 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
625 
626 /*
627  * SPL_HASH was improved to avoid false cache line sharing
628  */
629 #define	SPL_TABLE_SIZE	128
630 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
631 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
632 
633 #define	SPL_INDEX(pp) \
634 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
635 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
636 	(SPL_TABLE_SIZE - 1))
637 
638 #define	SPL_HASH(pp)    \
639 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
640 
641 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
642 
643 
644 /*
645  * hat_unload_callback() will group together callbacks in order
646  * to avoid xt_sync() calls.  This is the maximum size of the group.
647  */
648 #define	MAX_CB_ADDR	32
649 
650 tte_t	hw_tte;
651 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
652 
653 static char	*mmu_ctx_kstat_names[] = {
654 	"mmu_ctx_tsb_exceptions",
655 	"mmu_ctx_tsb_raise_exception",
656 	"mmu_ctx_wrap_around",
657 };
658 
659 /*
660  * Wrapper for vmem_xalloc since vmem_create only allows limited
661  * parameters for vm_source_alloc functions.  This function allows us
662  * to specify alignment consistent with the size of the object being
663  * allocated.
664  */
665 static void *
666 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
667 {
668 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
669 }
670 
671 /* Common code for setting tsb_alloc_hiwater. */
672 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
673 		ptob(pages) / tsb_alloc_hiwater_factor
674 
675 /*
676  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
677  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
678  * TTEs to represent all those physical pages.  We round this up by using
679  * 1<<highbit().  To figure out which size code to use, remember that the size
680  * code is just an amount to shift the smallest TSB size to get the size of
681  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
682  * highbit() - 1) to get the size code for the smallest TSB that can represent
683  * all of physical memory, while erring on the side of too much.
684  *
685  * If the computed size code is less than the current tsb_max_growsize, we set
686  * tsb_max_growsize to the computed size code.  In the case where the computed
687  * size code is greater than tsb_max_growsize, we have these restrictions that
688  * apply to increasing tsb_max_growsize:
689  *	1) TSBs can't grow larger than the TSB slab size
690  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
691  */
692 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
693 	int	i, szc;							\
694 									\
695 	i = highbit(pages);						\
696 	if ((1 << (i - 1)) == (pages))					\
697 		i--;		/* 2^n case, round down */		\
698 	szc = i - TSB_START_SIZE;					\
699 	if (szc < tsb_max_growsize)					\
700 		tsb_max_growsize = szc;					\
701 	else if ((szc > tsb_max_growsize) &&				\
702 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
703 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
704 }
705 
706 /*
707  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
708  * tsb_info which handles that TTE size.
709  */
710 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
711 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
712 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
713 	if ((tte_szc) >= TTE4M)						\
714 		(tsbinfop) = (tsbinfop)->tsb_next;
715 
716 /*
717  * Return the number of mappings present in the HAT
718  * for a particular process and page size.
719  */
720 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
721 	(sfmmup)->sfmmu_iblk?						\
722 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
723 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
724 	    (sfmmup)->sfmmu_ttecnt[(szc)];
725 
726 /*
727  * Macro to use to unload entries from the TSB.
728  * It has knowledge of which page sizes get replicated in the TSB
729  * and will call the appropriate unload routine for the appropriate size.
730  */
731 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
732 {									\
733 	int ttesz = get_hblk_ttesz(hmeblkp);				\
734 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
735 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
736 	} else {							\
737 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
738 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
739 		ASSERT(addr >= sva && addr < eva);			\
740 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
741 	}								\
742 }
743 
744 
745 /* Update tsb_alloc_hiwater after memory is configured. */
746 /*ARGSUSED*/
747 static void
748 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
749 {
750 	/* Assumes physmem has already been updated. */
751 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
752 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
753 }
754 
755 /*
756  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
757  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
758  * deleted.
759  */
760 /*ARGSUSED*/
761 static int
762 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
763 {
764 	return (0);
765 }
766 
767 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
768 /*ARGSUSED*/
769 static void
770 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
771 {
772 	/*
773 	 * Whether the delete was cancelled or not, just go ahead and update
774 	 * tsb_alloc_hiwater and tsb_max_growsize.
775 	 */
776 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
777 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
778 }
779 
780 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
781 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
782 	sfmmu_update_tsb_post_add,	/* post_add */
783 	sfmmu_update_tsb_pre_del,	/* pre_del */
784 	sfmmu_update_tsb_post_del	/* post_del */
785 };
786 
787 
788 /*
789  * HME_BLK HASH PRIMITIVES
790  */
791 
792 /*
793  * Enter a hme on the mapping list for page pp.
794  * When large pages are more prevalent in the system we might want to
795  * keep the mapping list in ascending order by the hment size. For now,
796  * small pages are more frequent, so don't slow it down.
797  */
798 #define	HME_ADD(hme, pp)					\
799 {								\
800 	ASSERT(sfmmu_mlist_held(pp));				\
801 								\
802 	hme->hme_prev = NULL;					\
803 	hme->hme_next = pp->p_mapping;				\
804 	hme->hme_page = pp;					\
805 	if (pp->p_mapping) {					\
806 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
807 		ASSERT(pp->p_share > 0);			\
808 	} else  {						\
809 		/* EMPTY */					\
810 		ASSERT(pp->p_share == 0);			\
811 	}							\
812 	pp->p_mapping = hme;					\
813 	pp->p_share++;						\
814 }
815 
816 /*
817  * Enter a hme on the mapping list for page pp.
818  * If we are unmapping a large translation, we need to make sure that the
819  * change is reflect in the corresponding bit of the p_index field.
820  */
821 #define	HME_SUB(hme, pp)					\
822 {								\
823 	ASSERT(sfmmu_mlist_held(pp));				\
824 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
825 								\
826 	if (pp->p_mapping == NULL) {				\
827 		panic("hme_remove - no mappings");		\
828 	}							\
829 								\
830 	membar_stst();	/* ensure previous stores finish */	\
831 								\
832 	ASSERT(pp->p_share > 0);				\
833 	pp->p_share--;						\
834 								\
835 	if (hme->hme_prev) {					\
836 		ASSERT(pp->p_mapping != hme);			\
837 		ASSERT(hme->hme_prev->hme_page == pp ||		\
838 			IS_PAHME(hme->hme_prev));		\
839 		hme->hme_prev->hme_next = hme->hme_next;	\
840 	} else {						\
841 		ASSERT(pp->p_mapping == hme);			\
842 		pp->p_mapping = hme->hme_next;			\
843 		ASSERT((pp->p_mapping == NULL) ?		\
844 			(pp->p_share == 0) : 1);		\
845 	}							\
846 								\
847 	if (hme->hme_next) {					\
848 		ASSERT(hme->hme_next->hme_page == pp ||		\
849 			IS_PAHME(hme->hme_next));		\
850 		hme->hme_next->hme_prev = hme->hme_prev;	\
851 	}							\
852 								\
853 	/* zero out the entry */				\
854 	hme->hme_next = NULL;					\
855 	hme->hme_prev = NULL;					\
856 	hme->hme_page = NULL;					\
857 								\
858 	if (hme_size(hme) > TTE8K) {				\
859 		/* remove mappings for remainder of large pg */	\
860 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
861 	}							\
862 }
863 
864 /*
865  * This function returns the hment given the hme_blk and a vaddr.
866  * It assumes addr has already been checked to belong to hme_blk's
867  * range.
868  */
869 #define	HBLKTOHME(hment, hmeblkp, addr)					\
870 {									\
871 	int index;							\
872 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
873 }
874 
875 /*
876  * Version of HBLKTOHME that also returns the index in hmeblkp
877  * of the hment.
878  */
879 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
880 {									\
881 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
882 									\
883 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
884 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
885 	} else								\
886 		idx = 0;						\
887 									\
888 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
889 }
890 
891 /*
892  * Disable any page sizes not supported by the CPU
893  */
894 void
895 hat_init_pagesizes()
896 {
897 	int 		i;
898 
899 	mmu_exported_page_sizes = 0;
900 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
901 
902 		szc_2_userszc[i] = (uint_t)-1;
903 		userszc_2_szc[i] = (uint_t)-1;
904 
905 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
906 			disable_large_pages |= (1 << i);
907 		} else {
908 			szc_2_userszc[i] = mmu_exported_page_sizes;
909 			userszc_2_szc[mmu_exported_page_sizes] = i;
910 			mmu_exported_page_sizes++;
911 		}
912 	}
913 
914 	disable_ism_large_pages |= disable_large_pages;
915 	disable_auto_data_large_pages = disable_large_pages;
916 	disable_auto_text_large_pages = disable_large_pages;
917 
918 	/*
919 	 * Initialize mmu-specific large page sizes.
920 	 */
921 	if (&mmu_large_pages_disabled) {
922 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
923 		disable_ism_large_pages |=
924 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
925 		disable_auto_data_large_pages |=
926 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
927 		disable_auto_text_large_pages |=
928 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
929 	}
930 }
931 
932 /*
933  * Initialize the hardware address translation structures.
934  */
935 void
936 hat_init(void)
937 {
938 	int 		i;
939 	uint_t		sz;
940 	uint_t		maxtsb;
941 	size_t		size;
942 
943 	hat_lock_init();
944 	hat_kstat_init();
945 
946 	/*
947 	 * Hardware-only bits in a TTE
948 	 */
949 	MAKE_TTE_MASK(&hw_tte);
950 
951 	hat_init_pagesizes();
952 
953 	/* Initialize the hash locks */
954 	for (i = 0; i < khmehash_num; i++) {
955 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
956 		    MUTEX_DEFAULT, NULL);
957 	}
958 	for (i = 0; i < uhmehash_num; i++) {
959 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
960 		    MUTEX_DEFAULT, NULL);
961 	}
962 	khmehash_num--;		/* make sure counter starts from 0 */
963 	uhmehash_num--;		/* make sure counter starts from 0 */
964 
965 	/*
966 	 * Allocate context domain structures.
967 	 *
968 	 * A platform may choose to modify max_mmu_ctxdoms in
969 	 * set_platform_defaults(). If a platform does not define
970 	 * a set_platform_defaults() or does not choose to modify
971 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
972 	 *
973 	 * For sun4v, there will be one global context domain, this is to
974 	 * avoid the ldom cpu substitution problem.
975 	 *
976 	 * For all platforms that have CPUs sharing MMUs, this
977 	 * value must be defined.
978 	 */
979 	if (max_mmu_ctxdoms == 0) {
980 #ifndef sun4v
981 		max_mmu_ctxdoms = max_ncpus;
982 #else /* sun4v */
983 		max_mmu_ctxdoms = 1;
984 #endif /* sun4v */
985 	}
986 
987 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
988 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
989 
990 	/* mmu_ctx_t is 64 bytes aligned */
991 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
992 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
993 	/*
994 	 * MMU context domain initialization for the Boot CPU.
995 	 * This needs the context domains array allocated above.
996 	 */
997 	mutex_enter(&cpu_lock);
998 	sfmmu_cpu_init(CPU);
999 	mutex_exit(&cpu_lock);
1000 
1001 	/*
1002 	 * Intialize ism mapping list lock.
1003 	 */
1004 
1005 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1006 
1007 	/*
1008 	 * Each sfmmu structure carries an array of MMU context info
1009 	 * structures, one per context domain. The size of this array depends
1010 	 * on the maximum number of context domains. So, the size of the
1011 	 * sfmmu structure varies per platform.
1012 	 *
1013 	 * sfmmu is allocated from static arena, because trap
1014 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1015 	 * memory. sfmmu's alignment is changed to 64 bytes from
1016 	 * default 8 bytes, as the lower 6 bits will be used to pass
1017 	 * pgcnt to vtag_flush_pgcnt_tl1.
1018 	 */
1019 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1020 
1021 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1022 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1023 	    NULL, NULL, static_arena, 0);
1024 
1025 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1026 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1027 
1028 	/*
1029 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1030 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1031 	 * specified, don't use magazines to cache them--we want to return
1032 	 * them to the system as quickly as possible.
1033 	 */
1034 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1035 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1036 	    static_arena, KMC_NOMAGAZINE);
1037 
1038 	/*
1039 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1040 	 * memory, which corresponds to the old static reserve for TSBs.
1041 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1042 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1043 	 * allocations will be taken from the kernel heap (via
1044 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1045 	 * consumer.
1046 	 */
1047 	if (tsb_alloc_hiwater_factor == 0) {
1048 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1049 	}
1050 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1051 
1052 	/* Set tsb_max_growsize. */
1053 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1054 
1055 	/*
1056 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1057 	 * than the default 4M slab size. We also honor disable_large_pages
1058 	 * here.
1059 	 *
1060 	 * The trap handlers need to be patched with the final slab shift,
1061 	 * since they need to be able to construct the TSB pointer at runtime.
1062 	 */
1063 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1064 		tsb_slab_ttesz = TTE512K;
1065 
1066 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1067 		if (!(disable_large_pages & (1 << sz)))
1068 			break;
1069 	}
1070 
1071 	tsb_slab_ttesz = sz;
1072 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1073 	tsb_slab_size = 1 << tsb_slab_shift;
1074 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1075 
1076 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1077 	if (tsb_max_growsize > maxtsb)
1078 		tsb_max_growsize = maxtsb;
1079 
1080 	/*
1081 	 * Set up memory callback to update tsb_alloc_hiwater and
1082 	 * tsb_max_growsize.
1083 	 */
1084 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1085 	ASSERT(i == 0);
1086 
1087 	/*
1088 	 * kmem_tsb_arena is the source from which large TSB slabs are
1089 	 * drawn.  The quantum of this arena corresponds to the largest
1090 	 * TSB size we can dynamically allocate for user processes.
1091 	 * Currently it must also be a supported page size since we
1092 	 * use exactly one translation entry to map each slab page.
1093 	 *
1094 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1095 	 * which most TSBs are allocated.  Since most TSB allocations are
1096 	 * typically 8K we have a kmem cache we stack on top of each
1097 	 * kmem_tsb_default_arena to speed up those allocations.
1098 	 *
1099 	 * Note the two-level scheme of arenas is required only
1100 	 * because vmem_create doesn't allow us to specify alignment
1101 	 * requirements.  If this ever changes the code could be
1102 	 * simplified to use only one level of arenas.
1103 	 */
1104 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1105 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1106 	    0, VM_SLEEP);
1107 
1108 	if (tsb_lgrp_affinity) {
1109 		char s[50];
1110 		for (i = 0; i < NLGRPS_MAX; i++) {
1111 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1112 			kmem_tsb_default_arena[i] =
1113 			    vmem_create(s, NULL, 0, PAGESIZE,
1114 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1115 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1116 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1117 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1118 			    PAGESIZE, NULL, NULL, NULL, NULL,
1119 			    kmem_tsb_default_arena[i], 0);
1120 		}
1121 	} else {
1122 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1123 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1124 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1125 		    VM_SLEEP | VM_BESTFIT);
1126 
1127 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1128 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1129 		    kmem_tsb_default_arena[0], 0);
1130 	}
1131 
1132 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1133 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1134 		sfmmu_hblkcache_destructor,
1135 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1136 		hat_memload_arena, KMC_NOHASH);
1137 
1138 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1139 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1140 
1141 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1142 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1143 		sfmmu_hblkcache_destructor,
1144 		NULL, (void *)HME1BLK_SZ,
1145 		hat_memload1_arena, KMC_NOHASH);
1146 
1147 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1148 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1149 
1150 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1151 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1152 		NULL, NULL, static_arena, KMC_NOHASH);
1153 
1154 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1155 		sizeof (ism_ment_t), 0, NULL, NULL,
1156 		NULL, NULL, NULL, 0);
1157 
1158 	/*
1159 	 * We grab the first hat for the kernel,
1160 	 */
1161 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1162 	kas.a_hat = hat_alloc(&kas);
1163 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1164 
1165 	/*
1166 	 * Initialize hblk_reserve.
1167 	 */
1168 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1169 				va_to_pa((caddr_t)hblk_reserve);
1170 
1171 #ifndef UTSB_PHYS
1172 	/*
1173 	 * Reserve some kernel virtual address space for the locked TTEs
1174 	 * that allow us to probe the TSB from TL>0.
1175 	 */
1176 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1177 		0, 0, NULL, NULL, VM_SLEEP);
1178 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1179 		0, 0, NULL, NULL, VM_SLEEP);
1180 #endif
1181 
1182 #ifdef VAC
1183 	/*
1184 	 * The big page VAC handling code assumes VAC
1185 	 * will not be bigger than the smallest big
1186 	 * page- which is 64K.
1187 	 */
1188 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1189 		cmn_err(CE_PANIC, "VAC too big!");
1190 	}
1191 #endif
1192 
1193 	(void) xhat_init();
1194 
1195 	uhme_hash_pa = va_to_pa(uhme_hash);
1196 	khme_hash_pa = va_to_pa(khme_hash);
1197 
1198 	/*
1199 	 * Initialize relocation locks. kpr_suspendlock is held
1200 	 * at PIL_MAX to prevent interrupts from pinning the holder
1201 	 * of a suspended TTE which may access it leading to a
1202 	 * deadlock condition.
1203 	 */
1204 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1205 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1206 
1207 	/*
1208 	 * Pre-allocate hrm_hashtab before enabling the collection of
1209 	 * refmod statistics.  Allocating on the fly would mean us
1210 	 * running the risk of suffering recursive mutex enters or
1211 	 * deadlocks.
1212 	 */
1213 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1214 	    KM_SLEEP);
1215 }
1216 
1217 /*
1218  * Initialize locking for the hat layer, called early during boot.
1219  */
1220 static void
1221 hat_lock_init()
1222 {
1223 	int i;
1224 
1225 	/*
1226 	 * initialize the array of mutexes protecting a page's mapping
1227 	 * list and p_nrm field.
1228 	 */
1229 	for (i = 0; i < mml_table_sz; i++)
1230 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1231 
1232 	if (kpm_enable) {
1233 		for (i = 0; i < kpmp_table_sz; i++) {
1234 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1235 			    MUTEX_DEFAULT, NULL);
1236 		}
1237 	}
1238 
1239 	/*
1240 	 * Initialize array of mutex locks that protects sfmmu fields and
1241 	 * TSB lists.
1242 	 */
1243 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1244 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1245 		    NULL);
1246 }
1247 
1248 #define	SFMMU_KERNEL_MAXVA \
1249 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1250 
1251 /*
1252  * Allocate a hat structure.
1253  * Called when an address space first uses a hat.
1254  */
1255 struct hat *
1256 hat_alloc(struct as *as)
1257 {
1258 	sfmmu_t *sfmmup;
1259 	int i;
1260 	uint64_t cnum;
1261 	extern uint_t get_color_start(struct as *);
1262 
1263 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1264 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1265 	sfmmup->sfmmu_as = as;
1266 	sfmmup->sfmmu_flags = 0;
1267 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1268 
1269 	if (as == &kas) {
1270 		ksfmmup = sfmmup;
1271 		sfmmup->sfmmu_cext = 0;
1272 		cnum = KCONTEXT;
1273 
1274 		sfmmup->sfmmu_clrstart = 0;
1275 		sfmmup->sfmmu_tsb = NULL;
1276 		/*
1277 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1278 		 * to setup tsb_info for ksfmmup.
1279 		 */
1280 	} else {
1281 
1282 		/*
1283 		 * Just set to invalid ctx. When it faults, it will
1284 		 * get a valid ctx. This would avoid the situation
1285 		 * where we get a ctx, but it gets stolen and then
1286 		 * we fault when we try to run and so have to get
1287 		 * another ctx.
1288 		 */
1289 		sfmmup->sfmmu_cext = 0;
1290 		cnum = INVALID_CONTEXT;
1291 
1292 		/* initialize original physical page coloring bin */
1293 		sfmmup->sfmmu_clrstart = get_color_start(as);
1294 #ifdef DEBUG
1295 		if (tsb_random_size) {
1296 			uint32_t randval = (uint32_t)gettick() >> 4;
1297 			int size = randval % (tsb_max_growsize + 1);
1298 
1299 			/* chose a random tsb size for stress testing */
1300 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1301 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1302 		} else
1303 #endif /* DEBUG */
1304 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1305 			    default_tsb_size,
1306 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1307 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1308 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1309 	}
1310 
1311 	ASSERT(max_mmu_ctxdoms > 0);
1312 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1313 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1314 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1315 	}
1316 
1317 	sfmmu_setup_tsbinfo(sfmmup);
1318 	for (i = 0; i < max_mmu_page_sizes; i++) {
1319 		sfmmup->sfmmu_ttecnt[i] = 0;
1320 		sfmmup->sfmmu_ismttecnt[i] = 0;
1321 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1322 	}
1323 
1324 	sfmmup->sfmmu_iblk = NULL;
1325 	sfmmup->sfmmu_ismhat = 0;
1326 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1327 	if (sfmmup == ksfmmup) {
1328 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1329 	} else {
1330 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1331 	}
1332 	sfmmup->sfmmu_free = 0;
1333 	sfmmup->sfmmu_rmstat = 0;
1334 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1335 	sfmmup->sfmmu_xhat_provider = NULL;
1336 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1337 	return (sfmmup);
1338 }
1339 
1340 /*
1341  * Create per-MMU context domain kstats for a given MMU ctx.
1342  */
1343 static void
1344 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1345 {
1346 	mmu_ctx_stat_t	stat;
1347 	kstat_t		*mmu_kstat;
1348 
1349 	ASSERT(MUTEX_HELD(&cpu_lock));
1350 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1351 
1352 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1353 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1354 
1355 	if (mmu_kstat == NULL) {
1356 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1357 		    mmu_ctxp->mmu_idx);
1358 	} else {
1359 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1360 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1361 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1362 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1363 		mmu_ctxp->mmu_kstat = mmu_kstat;
1364 		kstat_install(mmu_kstat);
1365 	}
1366 }
1367 
1368 /*
1369  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1370  * context domain information for a given CPU. If a platform does not
1371  * specify that interface, then the function below is used instead to return
1372  * default information. The defaults are as follows:
1373  *
1374  *	- For sun4u systems there's one MMU context domain per CPU.
1375  *	  This default is used by all sun4u systems except OPL. OPL systems
1376  *	  provide platform specific interface to map CPU ids to MMU ids
1377  *	  because on OPL more than 1 CPU shares a single MMU.
1378  *        Note that on sun4v, there is one global context domain for
1379  *	  the entire system. This is to avoid running into potential problem
1380  *	  with ldom physical cpu substitution feature.
1381  *	- The number of MMU context IDs supported on any CPU in the
1382  *	  system is 8K.
1383  */
1384 /*ARGSUSED*/
1385 static void
1386 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1387 {
1388 	infop->mmu_nctxs = nctxs;
1389 #ifndef sun4v
1390 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1391 #else /* sun4v */
1392 	infop->mmu_idx = 0;
1393 #endif /* sun4v */
1394 }
1395 
1396 /*
1397  * Called during CPU initialization to set the MMU context-related information
1398  * for a CPU.
1399  *
1400  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1401  */
1402 void
1403 sfmmu_cpu_init(cpu_t *cp)
1404 {
1405 	mmu_ctx_info_t	info;
1406 	mmu_ctx_t	*mmu_ctxp;
1407 
1408 	ASSERT(MUTEX_HELD(&cpu_lock));
1409 
1410 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1411 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1412 	else
1413 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1414 
1415 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1416 
1417 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1418 		/* Each mmu_ctx is cacheline aligned. */
1419 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1420 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1421 
1422 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1423 		    (void *)ipltospl(DISP_LEVEL));
1424 		mmu_ctxp->mmu_idx = info.mmu_idx;
1425 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1426 		/*
1427 		 * Globally for lifetime of a system,
1428 		 * gnum must always increase.
1429 		 * mmu_saved_gnum is protected by the cpu_lock.
1430 		 */
1431 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1432 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1433 
1434 		sfmmu_mmu_kstat_create(mmu_ctxp);
1435 
1436 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1437 	} else {
1438 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1439 	}
1440 
1441 	/*
1442 	 * The mmu_lock is acquired here to prevent races with
1443 	 * the wrap-around code.
1444 	 */
1445 	mutex_enter(&mmu_ctxp->mmu_lock);
1446 
1447 
1448 	mmu_ctxp->mmu_ncpus++;
1449 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1450 	CPU_MMU_IDX(cp) = info.mmu_idx;
1451 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1452 
1453 	mutex_exit(&mmu_ctxp->mmu_lock);
1454 }
1455 
1456 /*
1457  * Called to perform MMU context-related cleanup for a CPU.
1458  */
1459 void
1460 sfmmu_cpu_cleanup(cpu_t *cp)
1461 {
1462 	mmu_ctx_t	*mmu_ctxp;
1463 
1464 	ASSERT(MUTEX_HELD(&cpu_lock));
1465 
1466 	mmu_ctxp = CPU_MMU_CTXP(cp);
1467 	ASSERT(mmu_ctxp != NULL);
1468 
1469 	/*
1470 	 * The mmu_lock is acquired here to prevent races with
1471 	 * the wrap-around code.
1472 	 */
1473 	mutex_enter(&mmu_ctxp->mmu_lock);
1474 
1475 	CPU_MMU_CTXP(cp) = NULL;
1476 
1477 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1478 	if (--mmu_ctxp->mmu_ncpus == 0) {
1479 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1480 		mutex_exit(&mmu_ctxp->mmu_lock);
1481 		mutex_destroy(&mmu_ctxp->mmu_lock);
1482 
1483 		if (mmu_ctxp->mmu_kstat)
1484 			kstat_delete(mmu_ctxp->mmu_kstat);
1485 
1486 		/* mmu_saved_gnum is protected by the cpu_lock. */
1487 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1488 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1489 
1490 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1491 
1492 		return;
1493 	}
1494 
1495 	mutex_exit(&mmu_ctxp->mmu_lock);
1496 }
1497 
1498 /*
1499  * Hat_setup, makes an address space context the current active one.
1500  * In sfmmu this translates to setting the secondary context with the
1501  * corresponding context.
1502  */
1503 void
1504 hat_setup(struct hat *sfmmup, int allocflag)
1505 {
1506 	hatlock_t *hatlockp;
1507 
1508 	/* Init needs some special treatment. */
1509 	if (allocflag == HAT_INIT) {
1510 		/*
1511 		 * Make sure that we have
1512 		 * 1. a TSB
1513 		 * 2. a valid ctx that doesn't get stolen after this point.
1514 		 */
1515 		hatlockp = sfmmu_hat_enter(sfmmup);
1516 
1517 		/*
1518 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1519 		 * TSBs, but we need one for init, since the kernel does some
1520 		 * special things to set up its stack and needs the TSB to
1521 		 * resolve page faults.
1522 		 */
1523 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1524 
1525 		sfmmu_get_ctx(sfmmup);
1526 
1527 		sfmmu_hat_exit(hatlockp);
1528 	} else {
1529 		ASSERT(allocflag == HAT_ALLOC);
1530 
1531 		hatlockp = sfmmu_hat_enter(sfmmup);
1532 		kpreempt_disable();
1533 
1534 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1535 
1536 		/*
1537 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1538 		 * pagesize bits don't matter in this case since we are passing
1539 		 * INVALID_CONTEXT to it.
1540 		 */
1541 		sfmmu_setctx_sec(INVALID_CONTEXT);
1542 		sfmmu_clear_utsbinfo();
1543 
1544 		kpreempt_enable();
1545 		sfmmu_hat_exit(hatlockp);
1546 	}
1547 }
1548 
1549 /*
1550  * Free all the translation resources for the specified address space.
1551  * Called from as_free when an address space is being destroyed.
1552  */
1553 void
1554 hat_free_start(struct hat *sfmmup)
1555 {
1556 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1557 	ASSERT(sfmmup != ksfmmup);
1558 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1559 
1560 	sfmmup->sfmmu_free = 1;
1561 }
1562 
1563 void
1564 hat_free_end(struct hat *sfmmup)
1565 {
1566 	int i;
1567 
1568 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1569 	if (sfmmup->sfmmu_ismhat) {
1570 		for (i = 0; i < mmu_page_sizes; i++) {
1571 			sfmmup->sfmmu_ttecnt[i] = 0;
1572 			sfmmup->sfmmu_ismttecnt[i] = 0;
1573 		}
1574 	} else {
1575 		/* EMPTY */
1576 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1577 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1578 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1579 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1580 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1581 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1582 	}
1583 
1584 	if (sfmmup->sfmmu_rmstat) {
1585 		hat_freestat(sfmmup->sfmmu_as, NULL);
1586 	}
1587 
1588 	while (sfmmup->sfmmu_tsb != NULL) {
1589 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1590 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1591 		sfmmup->sfmmu_tsb = next;
1592 	}
1593 	sfmmu_free_sfmmu(sfmmup);
1594 
1595 	kmem_cache_free(sfmmuid_cache, sfmmup);
1596 }
1597 
1598 /*
1599  * Set up any translation structures, for the specified address space,
1600  * that are needed or preferred when the process is being swapped in.
1601  */
1602 /* ARGSUSED */
1603 void
1604 hat_swapin(struct hat *hat)
1605 {
1606 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1607 }
1608 
1609 /*
1610  * Free all of the translation resources, for the specified address space,
1611  * that can be freed while the process is swapped out. Called from as_swapout.
1612  * Also, free up the ctx that this process was using.
1613  */
1614 void
1615 hat_swapout(struct hat *sfmmup)
1616 {
1617 	struct hmehash_bucket *hmebp;
1618 	struct hme_blk *hmeblkp;
1619 	struct hme_blk *pr_hblk = NULL;
1620 	struct hme_blk *nx_hblk;
1621 	int i;
1622 	uint64_t hblkpa, prevpa, nx_pa;
1623 	struct hme_blk *list = NULL;
1624 	hatlock_t *hatlockp;
1625 	struct tsb_info *tsbinfop;
1626 	struct free_tsb {
1627 		struct free_tsb *next;
1628 		struct tsb_info *tsbinfop;
1629 	};			/* free list of TSBs */
1630 	struct free_tsb *freelist, *last, *next;
1631 
1632 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1633 	SFMMU_STAT(sf_swapout);
1634 
1635 	/*
1636 	 * There is no way to go from an as to all its translations in sfmmu.
1637 	 * Here is one of the times when we take the big hit and traverse
1638 	 * the hash looking for hme_blks to free up.  Not only do we free up
1639 	 * this as hme_blks but all those that are free.  We are obviously
1640 	 * swapping because we need memory so let's free up as much
1641 	 * as we can.
1642 	 *
1643 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1644 	 * because:
1645 	 *  1) we free the ctx we're using and throw away the TSB(s);
1646 	 *  2) processes aren't runnable while being swapped out.
1647 	 */
1648 	ASSERT(sfmmup != KHATID);
1649 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1650 		hmebp = &uhme_hash[i];
1651 		SFMMU_HASH_LOCK(hmebp);
1652 		hmeblkp = hmebp->hmeblkp;
1653 		hblkpa = hmebp->hmeh_nextpa;
1654 		prevpa = 0;
1655 		pr_hblk = NULL;
1656 		while (hmeblkp) {
1657 
1658 			ASSERT(!hmeblkp->hblk_xhat_bit);
1659 
1660 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1661 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1662 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1663 					(caddr_t)get_hblk_base(hmeblkp),
1664 					get_hblk_endaddr(hmeblkp),
1665 					NULL, HAT_UNLOAD);
1666 			}
1667 			nx_hblk = hmeblkp->hblk_next;
1668 			nx_pa = hmeblkp->hblk_nextpa;
1669 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1670 				ASSERT(!hmeblkp->hblk_lckcnt);
1671 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1672 					prevpa, pr_hblk);
1673 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1674 			} else {
1675 				pr_hblk = hmeblkp;
1676 				prevpa = hblkpa;
1677 			}
1678 			hmeblkp = nx_hblk;
1679 			hblkpa = nx_pa;
1680 		}
1681 		SFMMU_HASH_UNLOCK(hmebp);
1682 	}
1683 
1684 	sfmmu_hblks_list_purge(&list);
1685 
1686 	/*
1687 	 * Now free up the ctx so that others can reuse it.
1688 	 */
1689 	hatlockp = sfmmu_hat_enter(sfmmup);
1690 
1691 	sfmmu_invalidate_ctx(sfmmup);
1692 
1693 	/*
1694 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1695 	 * If TSBs were never swapped in, just return.
1696 	 * This implies that we don't support partial swapping
1697 	 * of TSBs -- either all are swapped out, or none are.
1698 	 *
1699 	 * We must hold the HAT lock here to prevent racing with another
1700 	 * thread trying to unmap TTEs from the TSB or running the post-
1701 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1702 	 * can't free memory while holding the HAT lock or we could
1703 	 * deadlock, so we build a list of TSBs to be freed after marking
1704 	 * the tsbinfos as swapped out and free them after dropping the
1705 	 * lock.
1706 	 */
1707 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1708 		sfmmu_hat_exit(hatlockp);
1709 		return;
1710 	}
1711 
1712 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1713 	last = freelist = NULL;
1714 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1715 	    tsbinfop = tsbinfop->tsb_next) {
1716 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1717 
1718 		/*
1719 		 * Cast the TSB into a struct free_tsb and put it on the free
1720 		 * list.
1721 		 */
1722 		if (freelist == NULL) {
1723 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1724 		} else {
1725 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1726 			last = last->next;
1727 		}
1728 		last->next = NULL;
1729 		last->tsbinfop = tsbinfop;
1730 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1731 		/*
1732 		 * Zero out the TTE to clear the valid bit.
1733 		 * Note we can't use a value like 0xbad because we want to
1734 		 * ensure diagnostic bits are NEVER set on TTEs that might
1735 		 * be loaded.  The intent is to catch any invalid access
1736 		 * to the swapped TSB, such as a thread running with a valid
1737 		 * context without first calling sfmmu_tsb_swapin() to
1738 		 * allocate TSB memory.
1739 		 */
1740 		tsbinfop->tsb_tte.ll = 0;
1741 	}
1742 
1743 #ifdef sun4v
1744 	if (freelist)
1745 		sfmmu_invalidate_tsbinfo(sfmmup);
1746 #endif	/* sun4v */
1747 
1748 	/* Now we can drop the lock and free the TSB memory. */
1749 	sfmmu_hat_exit(hatlockp);
1750 	for (; freelist != NULL; freelist = next) {
1751 		next = freelist->next;
1752 		sfmmu_tsb_free(freelist->tsbinfop);
1753 	}
1754 }
1755 
1756 /*
1757  * Duplicate the translations of an as into another newas
1758  */
1759 /* ARGSUSED */
1760 int
1761 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1762 	uint_t flag)
1763 {
1764 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1765 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1766 
1767 	if (flag == HAT_DUP_COW) {
1768 		panic("hat_dup: HAT_DUP_COW not supported");
1769 	}
1770 	return (0);
1771 }
1772 
1773 /*
1774  * Set up addr to map to page pp with protection prot.
1775  * As an optimization we also load the TSB with the
1776  * corresponding tte but it is no big deal if  the tte gets kicked out.
1777  */
1778 void
1779 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1780 	uint_t attr, uint_t flags)
1781 {
1782 	tte_t tte;
1783 
1784 
1785 	ASSERT(hat != NULL);
1786 	ASSERT(PAGE_LOCKED(pp));
1787 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1788 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1789 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1790 
1791 	if (PP_ISFREE(pp)) {
1792 		panic("hat_memload: loading a mapping to free page %p",
1793 		    (void *)pp);
1794 	}
1795 
1796 	if (hat->sfmmu_xhat_provider) {
1797 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1798 		return;
1799 	}
1800 
1801 	ASSERT((hat == ksfmmup) ||
1802 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1803 
1804 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1805 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1806 		    flags & ~SFMMU_LOAD_ALLFLAG);
1807 
1808 	if (hat->sfmmu_rmstat)
1809 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1810 
1811 #if defined(SF_ERRATA_57)
1812 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1813 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1814 	    !(flags & HAT_LOAD_SHARE)) {
1815 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1816 		    " page executable");
1817 		attr &= ~PROT_EXEC;
1818 	}
1819 #endif
1820 
1821 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1822 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1823 
1824 	/*
1825 	 * Check TSB and TLB page sizes.
1826 	 */
1827 	if ((flags & HAT_LOAD_SHARE) == 0) {
1828 		sfmmu_check_page_sizes(hat, 1);
1829 	}
1830 }
1831 
1832 /*
1833  * hat_devload can be called to map real memory (e.g.
1834  * /dev/kmem) and even though hat_devload will determine pf is
1835  * for memory, it will be unable to get a shared lock on the
1836  * page (because someone else has it exclusively) and will
1837  * pass dp = NULL.  If tteload doesn't get a non-NULL
1838  * page pointer it can't cache memory.
1839  */
1840 void
1841 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1842 	uint_t attr, int flags)
1843 {
1844 	tte_t tte;
1845 	struct page *pp = NULL;
1846 	int use_lgpg = 0;
1847 
1848 	ASSERT(hat != NULL);
1849 
1850 	if (hat->sfmmu_xhat_provider) {
1851 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1852 		return;
1853 	}
1854 
1855 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1856 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1857 	ASSERT((hat == ksfmmup) ||
1858 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1859 	if (len == 0)
1860 		panic("hat_devload: zero len");
1861 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1862 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1863 		    flags & ~SFMMU_LOAD_ALLFLAG);
1864 
1865 #if defined(SF_ERRATA_57)
1866 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1867 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1868 	    !(flags & HAT_LOAD_SHARE)) {
1869 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1870 		    " page executable");
1871 		attr &= ~PROT_EXEC;
1872 	}
1873 #endif
1874 
1875 	/*
1876 	 * If it's a memory page find its pp
1877 	 */
1878 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1879 		pp = page_numtopp_nolock(pfn);
1880 		if (pp == NULL) {
1881 			flags |= HAT_LOAD_NOCONSIST;
1882 		} else {
1883 			if (PP_ISFREE(pp)) {
1884 				panic("hat_memload: loading "
1885 				    "a mapping to free page %p",
1886 				    (void *)pp);
1887 			}
1888 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1889 				panic("hat_memload: loading a mapping "
1890 				    "to unlocked relocatable page %p",
1891 				    (void *)pp);
1892 			}
1893 			ASSERT(len == MMU_PAGESIZE);
1894 		}
1895 	}
1896 
1897 	if (hat->sfmmu_rmstat)
1898 		hat_resvstat(len, hat->sfmmu_as, addr);
1899 
1900 	if (flags & HAT_LOAD_NOCONSIST) {
1901 		attr |= SFMMU_UNCACHEVTTE;
1902 		use_lgpg = 1;
1903 	}
1904 	if (!pf_is_memory(pfn)) {
1905 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1906 		use_lgpg = 1;
1907 		switch (attr & HAT_ORDER_MASK) {
1908 			case HAT_STRICTORDER:
1909 			case HAT_UNORDERED_OK:
1910 				/*
1911 				 * we set the side effect bit for all non
1912 				 * memory mappings unless merging is ok
1913 				 */
1914 				attr |= SFMMU_SIDEFFECT;
1915 				break;
1916 			case HAT_MERGING_OK:
1917 			case HAT_LOADCACHING_OK:
1918 			case HAT_STORECACHING_OK:
1919 				break;
1920 			default:
1921 				panic("hat_devload: bad attr");
1922 				break;
1923 		}
1924 	}
1925 	while (len) {
1926 		if (!use_lgpg) {
1927 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1928 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1929 			    flags);
1930 			len -= MMU_PAGESIZE;
1931 			addr += MMU_PAGESIZE;
1932 			pfn++;
1933 			continue;
1934 		}
1935 		/*
1936 		 *  try to use large pages, check va/pa alignments
1937 		 *  Note that 32M/256M page sizes are not (yet) supported.
1938 		 */
1939 		if ((len >= MMU_PAGESIZE4M) &&
1940 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1941 		    !(disable_large_pages & (1 << TTE4M)) &&
1942 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1943 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1944 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1945 			    flags);
1946 			len -= MMU_PAGESIZE4M;
1947 			addr += MMU_PAGESIZE4M;
1948 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1949 		} else if ((len >= MMU_PAGESIZE512K) &&
1950 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1951 		    !(disable_large_pages & (1 << TTE512K)) &&
1952 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1953 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1954 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1955 			    flags);
1956 			len -= MMU_PAGESIZE512K;
1957 			addr += MMU_PAGESIZE512K;
1958 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1959 		} else if ((len >= MMU_PAGESIZE64K) &&
1960 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1961 		    !(disable_large_pages & (1 << TTE64K)) &&
1962 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1963 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1964 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1965 			    flags);
1966 			len -= MMU_PAGESIZE64K;
1967 			addr += MMU_PAGESIZE64K;
1968 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1969 		} else {
1970 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1971 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1972 			    flags);
1973 			len -= MMU_PAGESIZE;
1974 			addr += MMU_PAGESIZE;
1975 			pfn++;
1976 		}
1977 	}
1978 
1979 	/*
1980 	 * Check TSB and TLB page sizes.
1981 	 */
1982 	if ((flags & HAT_LOAD_SHARE) == 0) {
1983 		sfmmu_check_page_sizes(hat, 1);
1984 	}
1985 }
1986 
1987 /*
1988  * Map the largest extend possible out of the page array. The array may NOT
1989  * be in order.  The largest possible mapping a page can have
1990  * is specified in the p_szc field.  The p_szc field
1991  * cannot change as long as there any mappings (large or small)
1992  * to any of the pages that make up the large page. (ie. any
1993  * promotion/demotion of page size is not up to the hat but up to
1994  * the page free list manager).  The array
1995  * should consist of properly aligned contigous pages that are
1996  * part of a big page for a large mapping to be created.
1997  */
1998 void
1999 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2000 	struct page **pps, uint_t attr, uint_t flags)
2001 {
2002 	int  ttesz;
2003 	size_t mapsz;
2004 	pgcnt_t	numpg, npgs;
2005 	tte_t tte;
2006 	page_t *pp;
2007 	uint_t large_pages_disable;
2008 
2009 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2010 
2011 	if (hat->sfmmu_xhat_provider) {
2012 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2013 		return;
2014 	}
2015 
2016 	if (hat->sfmmu_rmstat)
2017 		hat_resvstat(len, hat->sfmmu_as, addr);
2018 
2019 #if defined(SF_ERRATA_57)
2020 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2021 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2022 	    !(flags & HAT_LOAD_SHARE)) {
2023 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2024 		    "user page executable");
2025 		attr &= ~PROT_EXEC;
2026 	}
2027 #endif
2028 
2029 	/* Get number of pages */
2030 	npgs = len >> MMU_PAGESHIFT;
2031 
2032 	if (flags & HAT_LOAD_SHARE) {
2033 		large_pages_disable = disable_ism_large_pages;
2034 	} else {
2035 		large_pages_disable = disable_large_pages;
2036 	}
2037 
2038 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2039 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2040 		return;
2041 	}
2042 
2043 	while (npgs >= NHMENTS) {
2044 		pp = *pps;
2045 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2046 			/*
2047 			 * Check if this page size is disabled.
2048 			 */
2049 			if (large_pages_disable & (1 << ttesz))
2050 				continue;
2051 
2052 			numpg = TTEPAGES(ttesz);
2053 			mapsz = numpg << MMU_PAGESHIFT;
2054 			if ((npgs >= numpg) &&
2055 			    IS_P2ALIGNED(addr, mapsz) &&
2056 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2057 				/*
2058 				 * At this point we have enough pages and
2059 				 * we know the virtual address and the pfn
2060 				 * are properly aligned.  We still need
2061 				 * to check for physical contiguity but since
2062 				 * it is very likely that this is the case
2063 				 * we will assume they are so and undo
2064 				 * the request if necessary.  It would
2065 				 * be great if we could get a hint flag
2066 				 * like HAT_CONTIG which would tell us
2067 				 * the pages are contigous for sure.
2068 				 */
2069 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2070 					attr, ttesz);
2071 				if (!sfmmu_tteload_array(hat, &tte, addr,
2072 				    pps, flags)) {
2073 					break;
2074 				}
2075 			}
2076 		}
2077 		if (ttesz == TTE8K) {
2078 			/*
2079 			 * We were not able to map array using a large page
2080 			 * batch a hmeblk or fraction at a time.
2081 			 */
2082 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2083 				& (NHMENTS-1);
2084 			numpg = NHMENTS - numpg;
2085 			ASSERT(numpg <= npgs);
2086 			mapsz = numpg * MMU_PAGESIZE;
2087 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2088 							numpg);
2089 		}
2090 		addr += mapsz;
2091 		npgs -= numpg;
2092 		pps += numpg;
2093 	}
2094 
2095 	if (npgs) {
2096 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2097 	}
2098 
2099 	/*
2100 	 * Check TSB and TLB page sizes.
2101 	 */
2102 	if ((flags & HAT_LOAD_SHARE) == 0) {
2103 		sfmmu_check_page_sizes(hat, 1);
2104 	}
2105 }
2106 
2107 /*
2108  * Function tries to batch 8K pages into the same hme blk.
2109  */
2110 static void
2111 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2112 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2113 {
2114 	tte_t	tte;
2115 	page_t *pp;
2116 	struct hmehash_bucket *hmebp;
2117 	struct hme_blk *hmeblkp;
2118 	int	index;
2119 
2120 	while (npgs) {
2121 		/*
2122 		 * Acquire the hash bucket.
2123 		 */
2124 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2125 		ASSERT(hmebp);
2126 
2127 		/*
2128 		 * Find the hment block.
2129 		 */
2130 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2131 				TTE8K, flags);
2132 		ASSERT(hmeblkp);
2133 
2134 		do {
2135 			/*
2136 			 * Make the tte.
2137 			 */
2138 			pp = *pps;
2139 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2140 
2141 			/*
2142 			 * Add the translation.
2143 			 */
2144 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2145 					vaddr, pps, flags);
2146 
2147 			/*
2148 			 * Goto next page.
2149 			 */
2150 			pps++;
2151 			npgs--;
2152 
2153 			/*
2154 			 * Goto next address.
2155 			 */
2156 			vaddr += MMU_PAGESIZE;
2157 
2158 			/*
2159 			 * Don't crossover into a different hmentblk.
2160 			 */
2161 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2162 			    (NHMENTS-1));
2163 
2164 		} while (index != 0 && npgs != 0);
2165 
2166 		/*
2167 		 * Release the hash bucket.
2168 		 */
2169 
2170 		sfmmu_tteload_release_hashbucket(hmebp);
2171 	}
2172 }
2173 
2174 /*
2175  * Construct a tte for a page:
2176  *
2177  * tte_valid = 1
2178  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2179  * tte_size = size
2180  * tte_nfo = attr & HAT_NOFAULT
2181  * tte_ie = attr & HAT_STRUCTURE_LE
2182  * tte_hmenum = hmenum
2183  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2184  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2185  * tte_ref = 1 (optimization)
2186  * tte_wr_perm = attr & PROT_WRITE;
2187  * tte_no_sync = attr & HAT_NOSYNC
2188  * tte_lock = attr & SFMMU_LOCKTTE
2189  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2190  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2191  * tte_e = attr & SFMMU_SIDEFFECT
2192  * tte_priv = !(attr & PROT_USER)
2193  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2194  * tte_glb = 0
2195  */
2196 void
2197 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2198 {
2199 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2200 
2201 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2202 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2203 
2204 	if (TTE_IS_NOSYNC(ttep)) {
2205 		TTE_SET_REF(ttep);
2206 		if (TTE_IS_WRITABLE(ttep)) {
2207 			TTE_SET_MOD(ttep);
2208 		}
2209 	}
2210 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2211 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2212 	}
2213 }
2214 
2215 /*
2216  * This function will add a translation to the hme_blk and allocate the
2217  * hme_blk if one does not exist.
2218  * If a page structure is specified then it will add the
2219  * corresponding hment to the mapping list.
2220  * It will also update the hmenum field for the tte.
2221  */
2222 void
2223 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2224 	uint_t flags)
2225 {
2226 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2227 }
2228 
2229 /*
2230  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2231  * Assumes that a particular page size may only be resident in one TSB.
2232  */
2233 static void
2234 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2235 {
2236 	struct tsb_info *tsbinfop = NULL;
2237 	uint64_t tag;
2238 	struct tsbe *tsbe_addr;
2239 	uint64_t tsb_base;
2240 	uint_t tsb_size;
2241 	int vpshift = MMU_PAGESHIFT;
2242 	int phys = 0;
2243 
2244 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2245 		phys = ktsb_phys;
2246 		if (ttesz >= TTE4M) {
2247 #ifndef sun4v
2248 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2249 #endif
2250 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2251 			tsb_size = ktsb4m_szcode;
2252 		} else {
2253 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2254 			tsb_size = ktsb_szcode;
2255 		}
2256 	} else {
2257 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2258 
2259 		/*
2260 		 * If there isn't a TSB for this page size, or the TSB is
2261 		 * swapped out, there is nothing to do.  Note that the latter
2262 		 * case seems impossible but can occur if hat_pageunload()
2263 		 * is called on an ISM mapping while the process is swapped
2264 		 * out.
2265 		 */
2266 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2267 			return;
2268 
2269 		/*
2270 		 * If another thread is in the middle of relocating a TSB
2271 		 * we can't unload the entry so set a flag so that the
2272 		 * TSB will be flushed before it can be accessed by the
2273 		 * process.
2274 		 */
2275 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2276 			if (ttep == NULL)
2277 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2278 			return;
2279 		}
2280 #if defined(UTSB_PHYS)
2281 		phys = 1;
2282 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2283 #else
2284 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2285 #endif
2286 		tsb_size = tsbinfop->tsb_szc;
2287 	}
2288 	if (ttesz >= TTE4M)
2289 		vpshift = MMU_PAGESHIFT4M;
2290 
2291 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2292 	tag = sfmmu_make_tsbtag(vaddr);
2293 
2294 	if (ttep == NULL) {
2295 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2296 	} else {
2297 		if (ttesz >= TTE4M) {
2298 			SFMMU_STAT(sf_tsb_load4m);
2299 		} else {
2300 			SFMMU_STAT(sf_tsb_load8k);
2301 		}
2302 
2303 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2304 	}
2305 }
2306 
2307 /*
2308  * Unmap all entries from [start, end) matching the given page size.
2309  *
2310  * This function is used primarily to unmap replicated 64K or 512K entries
2311  * from the TSB that are inserted using the base page size TSB pointer, but
2312  * it may also be called to unmap a range of addresses from the TSB.
2313  */
2314 void
2315 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2316 {
2317 	struct tsb_info *tsbinfop;
2318 	uint64_t tag;
2319 	struct tsbe *tsbe_addr;
2320 	caddr_t vaddr;
2321 	uint64_t tsb_base;
2322 	int vpshift, vpgsz;
2323 	uint_t tsb_size;
2324 	int phys = 0;
2325 
2326 	/*
2327 	 * Assumptions:
2328 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2329 	 *  at a time shooting down any valid entries we encounter.
2330 	 *
2331 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2332 	 *  down any valid mappings we find.
2333 	 */
2334 	if (sfmmup == ksfmmup) {
2335 		phys = ktsb_phys;
2336 		if (ttesz >= TTE4M) {
2337 #ifndef sun4v
2338 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2339 #endif
2340 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2341 			tsb_size = ktsb4m_szcode;
2342 		} else {
2343 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2344 			tsb_size = ktsb_szcode;
2345 		}
2346 	} else {
2347 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2348 
2349 		/*
2350 		 * If there isn't a TSB for this page size, or the TSB is
2351 		 * swapped out, there is nothing to do.  Note that the latter
2352 		 * case seems impossible but can occur if hat_pageunload()
2353 		 * is called on an ISM mapping while the process is swapped
2354 		 * out.
2355 		 */
2356 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2357 			return;
2358 
2359 		/*
2360 		 * If another thread is in the middle of relocating a TSB
2361 		 * we can't unload the entry so set a flag so that the
2362 		 * TSB will be flushed before it can be accessed by the
2363 		 * process.
2364 		 */
2365 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2366 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2367 			return;
2368 		}
2369 #if defined(UTSB_PHYS)
2370 		phys = 1;
2371 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2372 #else
2373 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2374 #endif
2375 		tsb_size = tsbinfop->tsb_szc;
2376 	}
2377 	if (ttesz >= TTE4M) {
2378 		vpshift = MMU_PAGESHIFT4M;
2379 		vpgsz = MMU_PAGESIZE4M;
2380 	} else {
2381 		vpshift = MMU_PAGESHIFT;
2382 		vpgsz = MMU_PAGESIZE;
2383 	}
2384 
2385 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2386 		tag = sfmmu_make_tsbtag(vaddr);
2387 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2388 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2389 	}
2390 }
2391 
2392 /*
2393  * Select the optimum TSB size given the number of mappings
2394  * that need to be cached.
2395  */
2396 static int
2397 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2398 {
2399 	int szc = 0;
2400 
2401 #ifdef DEBUG
2402 	if (tsb_grow_stress) {
2403 		uint32_t randval = (uint32_t)gettick() >> 4;
2404 		return (randval % (tsb_max_growsize + 1));
2405 	}
2406 #endif	/* DEBUG */
2407 
2408 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2409 		szc++;
2410 	return (szc);
2411 }
2412 
2413 /*
2414  * This function will add a translation to the hme_blk and allocate the
2415  * hme_blk if one does not exist.
2416  * If a page structure is specified then it will add the
2417  * corresponding hment to the mapping list.
2418  * It will also update the hmenum field for the tte.
2419  * Furthermore, it attempts to create a large page translation
2420  * for <addr,hat> at page array pps.  It assumes addr and first
2421  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2422  */
2423 static int
2424 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2425 	page_t **pps, uint_t flags)
2426 {
2427 	struct hmehash_bucket *hmebp;
2428 	struct hme_blk *hmeblkp;
2429 	int 	ret;
2430 	uint_t	size;
2431 
2432 	/*
2433 	 * Get mapping size.
2434 	 */
2435 	size = TTE_CSZ(ttep);
2436 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2437 
2438 	/*
2439 	 * Acquire the hash bucket.
2440 	 */
2441 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2442 	ASSERT(hmebp);
2443 
2444 	/*
2445 	 * Find the hment block.
2446 	 */
2447 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2448 	ASSERT(hmeblkp);
2449 
2450 	/*
2451 	 * Add the translation.
2452 	 */
2453 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2454 
2455 	/*
2456 	 * Release the hash bucket.
2457 	 */
2458 	sfmmu_tteload_release_hashbucket(hmebp);
2459 
2460 	return (ret);
2461 }
2462 
2463 /*
2464  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2465  */
2466 static struct hmehash_bucket *
2467 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2468 {
2469 	struct hmehash_bucket *hmebp;
2470 	int hmeshift;
2471 
2472 	hmeshift = HME_HASH_SHIFT(size);
2473 
2474 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2475 
2476 	SFMMU_HASH_LOCK(hmebp);
2477 
2478 	return (hmebp);
2479 }
2480 
2481 /*
2482  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2483  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2484  * allocated.
2485  */
2486 static struct hme_blk *
2487 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2488 	caddr_t vaddr, uint_t size, uint_t flags)
2489 {
2490 	hmeblk_tag hblktag;
2491 	int hmeshift;
2492 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2493 	uint64_t hblkpa, prevpa;
2494 	struct kmem_cache *sfmmu_cache;
2495 	uint_t forcefree;
2496 
2497 	hblktag.htag_id = sfmmup;
2498 	hmeshift = HME_HASH_SHIFT(size);
2499 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2500 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2501 
2502 ttearray_realloc:
2503 
2504 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2505 	    pr_hblk, prevpa, &list);
2506 
2507 	/*
2508 	 * We block until hblk_reserve_lock is released; it's held by
2509 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2510 	 * replaced by a hblk from sfmmu8_cache.
2511 	 */
2512 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2513 	    hblk_reserve_thread != curthread) {
2514 		SFMMU_HASH_UNLOCK(hmebp);
2515 		mutex_enter(&hblk_reserve_lock);
2516 		mutex_exit(&hblk_reserve_lock);
2517 		SFMMU_STAT(sf_hblk_reserve_hit);
2518 		SFMMU_HASH_LOCK(hmebp);
2519 		goto ttearray_realloc;
2520 	}
2521 
2522 	if (hmeblkp == NULL) {
2523 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2524 		    hblktag, flags);
2525 	} else {
2526 		/*
2527 		 * It is possible for 8k and 64k hblks to collide since they
2528 		 * have the same rehash value. This is because we
2529 		 * lazily free hblks and 8K/64K blks could be lingering.
2530 		 * If we find size mismatch we free the block and & try again.
2531 		 */
2532 		if (get_hblk_ttesz(hmeblkp) != size) {
2533 			ASSERT(!hmeblkp->hblk_vcnt);
2534 			ASSERT(!hmeblkp->hblk_hmecnt);
2535 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2536 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2537 			goto ttearray_realloc;
2538 		}
2539 		if (hmeblkp->hblk_shw_bit) {
2540 			/*
2541 			 * if the hblk was previously used as a shadow hblk then
2542 			 * we will change it to a normal hblk
2543 			 */
2544 			if (hmeblkp->hblk_shw_mask) {
2545 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2546 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2547 				goto ttearray_realloc;
2548 			} else {
2549 				hmeblkp->hblk_shw_bit = 0;
2550 			}
2551 		}
2552 		SFMMU_STAT(sf_hblk_hit);
2553 	}
2554 
2555 	/*
2556 	 * hat_memload() should never call kmem_cache_free(); see block
2557 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2558 	 * enqueue each hblk in the list to reserve list if it's created
2559 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2560 	 */
2561 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2562 	while ((pr_hblk = list) != NULL) {
2563 		list = pr_hblk->hblk_next;
2564 		sfmmu_cache = get_hblk_cache(pr_hblk);
2565 		if ((sfmmu_cache == sfmmu8_cache) &&
2566 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2567 			continue;
2568 
2569 		ASSERT(sfmmup != KHATID);
2570 		kmem_cache_free(sfmmu_cache, pr_hblk);
2571 	}
2572 
2573 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2574 	ASSERT(!hmeblkp->hblk_shw_bit);
2575 
2576 	return (hmeblkp);
2577 }
2578 
2579 /*
2580  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2581  * otherwise.
2582  */
2583 static int
2584 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2585 	caddr_t vaddr, page_t **pps, uint_t flags)
2586 {
2587 	page_t *pp = *pps;
2588 	int hmenum, size, remap;
2589 	tte_t tteold, flush_tte;
2590 #ifdef DEBUG
2591 	tte_t orig_old;
2592 #endif /* DEBUG */
2593 	struct sf_hment *sfhme;
2594 	kmutex_t *pml, *pmtx;
2595 	hatlock_t *hatlockp;
2596 
2597 	/*
2598 	 * remove this panic when we decide to let user virtual address
2599 	 * space be >= USERLIMIT.
2600 	 */
2601 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2602 		panic("user addr %p in kernel space", vaddr);
2603 #if defined(TTE_IS_GLOBAL)
2604 	if (TTE_IS_GLOBAL(ttep))
2605 		panic("sfmmu_tteload: creating global tte");
2606 #endif
2607 
2608 #ifdef DEBUG
2609 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2610 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2611 		panic("sfmmu_tteload: non cacheable memory tte");
2612 #endif /* DEBUG */
2613 
2614 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2615 	    !TTE_IS_MOD(ttep)) {
2616 		/*
2617 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2618 		 * the TSB if the TTE isn't writable since we're likely to
2619 		 * fault on it again -- preloading can be fairly expensive.
2620 		 */
2621 		flags |= SFMMU_NO_TSBLOAD;
2622 	}
2623 
2624 	size = TTE_CSZ(ttep);
2625 	switch (size) {
2626 	case TTE8K:
2627 		SFMMU_STAT(sf_tteload8k);
2628 		break;
2629 	case TTE64K:
2630 		SFMMU_STAT(sf_tteload64k);
2631 		break;
2632 	case TTE512K:
2633 		SFMMU_STAT(sf_tteload512k);
2634 		break;
2635 	case TTE4M:
2636 		SFMMU_STAT(sf_tteload4m);
2637 		break;
2638 	case (TTE32M):
2639 		SFMMU_STAT(sf_tteload32m);
2640 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2641 		break;
2642 	case (TTE256M):
2643 		SFMMU_STAT(sf_tteload256m);
2644 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2645 		break;
2646 	}
2647 
2648 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2649 
2650 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2651 
2652 	/*
2653 	 * Need to grab mlist lock here so that pageunload
2654 	 * will not change tte behind us.
2655 	 */
2656 	if (pp) {
2657 		pml = sfmmu_mlist_enter(pp);
2658 	}
2659 
2660 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2661 	/*
2662 	 * Look for corresponding hment and if valid verify
2663 	 * pfns are equal.
2664 	 */
2665 	remap = TTE_IS_VALID(&tteold);
2666 	if (remap) {
2667 		pfn_t	new_pfn, old_pfn;
2668 
2669 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2670 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2671 
2672 		if (flags & HAT_LOAD_REMAP) {
2673 			/* make sure we are remapping same type of pages */
2674 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2675 				panic("sfmmu_tteload - tte remap io<->memory");
2676 			}
2677 			if (old_pfn != new_pfn &&
2678 			    (pp != NULL || sfhme->hme_page != NULL)) {
2679 				panic("sfmmu_tteload - tte remap pp != NULL");
2680 			}
2681 		} else if (old_pfn != new_pfn) {
2682 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2683 			    (void *)hmeblkp);
2684 		}
2685 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2686 	}
2687 
2688 	if (pp) {
2689 		if (size == TTE8K) {
2690 #ifdef VAC
2691 			/*
2692 			 * Handle VAC consistency
2693 			 */
2694 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2695 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2696 			}
2697 #endif
2698 
2699 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2700 				pmtx = sfmmu_page_enter(pp);
2701 				PP_CLRRO(pp);
2702 				sfmmu_page_exit(pmtx);
2703 			} else if (!PP_ISMAPPED(pp) &&
2704 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2705 				pmtx = sfmmu_page_enter(pp);
2706 				if (!(PP_ISMOD(pp))) {
2707 					PP_SETRO(pp);
2708 				}
2709 				sfmmu_page_exit(pmtx);
2710 			}
2711 
2712 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2713 			/*
2714 			 * sfmmu_pagearray_setup failed so return
2715 			 */
2716 			sfmmu_mlist_exit(pml);
2717 			return (1);
2718 		}
2719 	}
2720 
2721 	/*
2722 	 * Make sure hment is not on a mapping list.
2723 	 */
2724 	ASSERT(remap || (sfhme->hme_page == NULL));
2725 
2726 	/* if it is not a remap then hme->next better be NULL */
2727 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2728 
2729 	if (flags & HAT_LOAD_LOCK) {
2730 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2731 			panic("too high lckcnt-hmeblk %p",
2732 			    (void *)hmeblkp);
2733 		}
2734 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2735 
2736 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2737 	}
2738 
2739 #ifdef VAC
2740 	if (pp && PP_ISNC(pp)) {
2741 		/*
2742 		 * If the physical page is marked to be uncacheable, like
2743 		 * by a vac conflict, make sure the new mapping is also
2744 		 * uncacheable.
2745 		 */
2746 		TTE_CLR_VCACHEABLE(ttep);
2747 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2748 	}
2749 #endif
2750 	ttep->tte_hmenum = hmenum;
2751 
2752 #ifdef DEBUG
2753 	orig_old = tteold;
2754 #endif /* DEBUG */
2755 
2756 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2757 		if ((sfmmup == KHATID) &&
2758 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2759 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2760 		}
2761 #ifdef DEBUG
2762 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2763 #endif /* DEBUG */
2764 	}
2765 
2766 	if (!TTE_IS_VALID(&tteold)) {
2767 
2768 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2769 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2770 
2771 		/*
2772 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2773 		 */
2774 
2775 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2776 		    sfmmup != ksfmmup) {
2777 			/*
2778 			 * If this is the first large mapping for the process
2779 			 * we must force any CPUs running this process to TL=0
2780 			 * where they will reload the HAT flags from the
2781 			 * tsbmiss area.  This is necessary to make the large
2782 			 * mappings we are about to load visible to those CPUs;
2783 			 * otherwise they'll loop forever calling pagefault()
2784 			 * since we don't search large hash chains by default.
2785 			 */
2786 			hatlockp = sfmmu_hat_enter(sfmmup);
2787 			if (size == TTE512K &&
2788 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2789 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2790 				sfmmu_sync_mmustate(sfmmup);
2791 			} else if (size == TTE4M &&
2792 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2793 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2794 				sfmmu_sync_mmustate(sfmmup);
2795 			} else if (size == TTE64K &&
2796 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2797 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2798 				/* no sync mmustate; 64K shares 8K hashes */
2799 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2800 			    if (size == TTE32M &&
2801 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2802 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2803 				sfmmu_sync_mmustate(sfmmup);
2804 			    } else if (size == TTE256M &&
2805 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2806 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2807 				sfmmu_sync_mmustate(sfmmup);
2808 			    }
2809 			}
2810 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2811 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2812 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2813 			}
2814 			sfmmu_hat_exit(hatlockp);
2815 		}
2816 	}
2817 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2818 
2819 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2820 	    hw_tte.tte_intlo;
2821 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2822 	    hw_tte.tte_inthi;
2823 
2824 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2825 		/*
2826 		 * If remap and new tte differs from old tte we need
2827 		 * to sync the mod bit and flush TLB/TSB.  We don't
2828 		 * need to sync ref bit because we currently always set
2829 		 * ref bit in tteload.
2830 		 */
2831 		ASSERT(TTE_IS_REF(ttep));
2832 		if (TTE_IS_MOD(&tteold)) {
2833 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2834 		}
2835 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2836 		xt_sync(sfmmup->sfmmu_cpusran);
2837 	}
2838 
2839 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2840 		/*
2841 		 * We only preload 8K and 4M mappings into the TSB, since
2842 		 * 64K and 512K mappings are replicated and hence don't
2843 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2844 		 */
2845 		if (size == TTE8K || size == TTE4M) {
2846 			hatlockp = sfmmu_hat_enter(sfmmup);
2847 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2848 			sfmmu_hat_exit(hatlockp);
2849 		}
2850 	}
2851 	if (pp) {
2852 		if (!remap) {
2853 			HME_ADD(sfhme, pp);
2854 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2855 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2856 
2857 			/*
2858 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2859 			 * see pageunload() for comment.
2860 			 */
2861 		}
2862 		sfmmu_mlist_exit(pml);
2863 	}
2864 
2865 	return (0);
2866 }
2867 /*
2868  * Function unlocks hash bucket.
2869  */
2870 static void
2871 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2872 {
2873 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2874 	SFMMU_HASH_UNLOCK(hmebp);
2875 }
2876 
2877 /*
2878  * function which checks and sets up page array for a large
2879  * translation.  Will set p_vcolor, p_index, p_ro fields.
2880  * Assumes addr and pfnum of first page are properly aligned.
2881  * Will check for physical contiguity. If check fails it return
2882  * non null.
2883  */
2884 static int
2885 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2886 {
2887 	int 	i, index, ttesz;
2888 	pfn_t	pfnum;
2889 	pgcnt_t	npgs;
2890 	page_t *pp, *pp1;
2891 	kmutex_t *pmtx;
2892 #ifdef VAC
2893 	int osz;
2894 	int cflags = 0;
2895 	int vac_err = 0;
2896 #endif
2897 	int newidx = 0;
2898 
2899 	ttesz = TTE_CSZ(ttep);
2900 
2901 	ASSERT(ttesz > TTE8K);
2902 
2903 	npgs = TTEPAGES(ttesz);
2904 	index = PAGESZ_TO_INDEX(ttesz);
2905 
2906 	pfnum = (*pps)->p_pagenum;
2907 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2908 
2909 	/*
2910 	 * Save the first pp so we can do HAT_TMPNC at the end.
2911 	 */
2912 	pp1 = *pps;
2913 #ifdef VAC
2914 	osz = fnd_mapping_sz(pp1);
2915 #endif
2916 
2917 	for (i = 0; i < npgs; i++, pps++) {
2918 		pp = *pps;
2919 		ASSERT(PAGE_LOCKED(pp));
2920 		ASSERT(pp->p_szc >= ttesz);
2921 		ASSERT(pp->p_szc == pp1->p_szc);
2922 		ASSERT(sfmmu_mlist_held(pp));
2923 
2924 		/*
2925 		 * XXX is it possible to maintain P_RO on the root only?
2926 		 */
2927 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2928 			pmtx = sfmmu_page_enter(pp);
2929 			PP_CLRRO(pp);
2930 			sfmmu_page_exit(pmtx);
2931 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2932 		    !PP_ISMOD(pp)) {
2933 			pmtx = sfmmu_page_enter(pp);
2934 			if (!(PP_ISMOD(pp))) {
2935 				PP_SETRO(pp);
2936 			}
2937 			sfmmu_page_exit(pmtx);
2938 		}
2939 
2940 		/*
2941 		 * If this is a remap we skip vac & contiguity checks.
2942 		 */
2943 		if (remap)
2944 			continue;
2945 
2946 		/*
2947 		 * set p_vcolor and detect any vac conflicts.
2948 		 */
2949 #ifdef VAC
2950 		if (vac_err == 0) {
2951 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2952 
2953 		}
2954 #endif
2955 
2956 		/*
2957 		 * Save current index in case we need to undo it.
2958 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2959 		 *	"SFMMU_INDEX_SHIFT	6"
2960 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2961 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2962 		 *
2963 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2964 		 *	if ttesz == 1 then index = 0x2
2965 		 *		    2 then index = 0x4
2966 		 *		    3 then index = 0x8
2967 		 *		    4 then index = 0x10
2968 		 *		    5 then index = 0x20
2969 		 * The code below checks if it's a new pagesize (ie, newidx)
2970 		 * in case we need to take it back out of p_index,
2971 		 * and then or's the new index into the existing index.
2972 		 */
2973 		if ((PP_MAPINDEX(pp) & index) == 0)
2974 			newidx = 1;
2975 		pp->p_index = (PP_MAPINDEX(pp) | index);
2976 
2977 		/*
2978 		 * contiguity check
2979 		 */
2980 		if (pp->p_pagenum != pfnum) {
2981 			/*
2982 			 * If we fail the contiguity test then
2983 			 * the only thing we need to fix is the p_index field.
2984 			 * We might get a few extra flushes but since this
2985 			 * path is rare that is ok.  The p_ro field will
2986 			 * get automatically fixed on the next tteload to
2987 			 * the page.  NO TNC bit is set yet.
2988 			 */
2989 			while (i >= 0) {
2990 				pp = *pps;
2991 				if (newidx)
2992 					pp->p_index = (PP_MAPINDEX(pp) &
2993 					    ~index);
2994 				pps--;
2995 				i--;
2996 			}
2997 			return (1);
2998 		}
2999 		pfnum++;
3000 		addr += MMU_PAGESIZE;
3001 	}
3002 
3003 #ifdef VAC
3004 	if (vac_err) {
3005 		if (ttesz > osz) {
3006 			/*
3007 			 * There are some smaller mappings that causes vac
3008 			 * conflicts. Convert all existing small mappings to
3009 			 * TNC.
3010 			 */
3011 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3012 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3013 				npgs);
3014 		} else {
3015 			/* EMPTY */
3016 			/*
3017 			 * If there exists an big page mapping,
3018 			 * that means the whole existing big page
3019 			 * has TNC setting already. No need to covert to
3020 			 * TNC again.
3021 			 */
3022 			ASSERT(PP_ISTNC(pp1));
3023 		}
3024 	}
3025 #endif	/* VAC */
3026 
3027 	return (0);
3028 }
3029 
3030 #ifdef VAC
3031 /*
3032  * Routine that detects vac consistency for a large page. It also
3033  * sets virtual color for all pp's for this big mapping.
3034  */
3035 static int
3036 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3037 {
3038 	int vcolor, ocolor;
3039 
3040 	ASSERT(sfmmu_mlist_held(pp));
3041 
3042 	if (PP_ISNC(pp)) {
3043 		return (HAT_TMPNC);
3044 	}
3045 
3046 	vcolor = addr_to_vcolor(addr);
3047 	if (PP_NEWPAGE(pp)) {
3048 		PP_SET_VCOLOR(pp, vcolor);
3049 		return (0);
3050 	}
3051 
3052 	ocolor = PP_GET_VCOLOR(pp);
3053 	if (ocolor == vcolor) {
3054 		return (0);
3055 	}
3056 
3057 	if (!PP_ISMAPPED(pp)) {
3058 		/*
3059 		 * Previous user of page had a differnet color
3060 		 * but since there are no current users
3061 		 * we just flush the cache and change the color.
3062 		 * As an optimization for large pages we flush the
3063 		 * entire cache of that color and set a flag.
3064 		 */
3065 		SFMMU_STAT(sf_pgcolor_conflict);
3066 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3067 			CacheColor_SetFlushed(*cflags, ocolor);
3068 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3069 		}
3070 		PP_SET_VCOLOR(pp, vcolor);
3071 		return (0);
3072 	}
3073 
3074 	/*
3075 	 * We got a real conflict with a current mapping.
3076 	 * set flags to start unencaching all mappings
3077 	 * and return failure so we restart looping
3078 	 * the pp array from the beginning.
3079 	 */
3080 	return (HAT_TMPNC);
3081 }
3082 #endif	/* VAC */
3083 
3084 /*
3085  * creates a large page shadow hmeblk for a tte.
3086  * The purpose of this routine is to allow us to do quick unloads because
3087  * the vm layer can easily pass a very large but sparsely populated range.
3088  */
3089 static struct hme_blk *
3090 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3091 {
3092 	struct hmehash_bucket *hmebp;
3093 	hmeblk_tag hblktag;
3094 	int hmeshift, size, vshift;
3095 	uint_t shw_mask, newshw_mask;
3096 	struct hme_blk *hmeblkp;
3097 
3098 	ASSERT(sfmmup != KHATID);
3099 	if (mmu_page_sizes == max_mmu_page_sizes) {
3100 		ASSERT(ttesz < TTE256M);
3101 	} else {
3102 		ASSERT(ttesz < TTE4M);
3103 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3104 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3105 	}
3106 
3107 	if (ttesz == TTE8K) {
3108 		size = TTE512K;
3109 	} else {
3110 		size = ++ttesz;
3111 	}
3112 
3113 	hblktag.htag_id = sfmmup;
3114 	hmeshift = HME_HASH_SHIFT(size);
3115 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3116 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3117 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3118 
3119 	SFMMU_HASH_LOCK(hmebp);
3120 
3121 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3122 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3123 	if (hmeblkp == NULL) {
3124 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3125 			hblktag, flags);
3126 	}
3127 	ASSERT(hmeblkp);
3128 	if (!hmeblkp->hblk_shw_mask) {
3129 		/*
3130 		 * if this is a unused hblk it was just allocated or could
3131 		 * potentially be a previous large page hblk so we need to
3132 		 * set the shadow bit.
3133 		 */
3134 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3135 		hmeblkp->hblk_shw_bit = 1;
3136 	} else if (hmeblkp->hblk_shw_bit == 0) {
3137 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3138 		    (void *)hmeblkp);
3139 	}
3140 
3141 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3142 	ASSERT(vshift < 8);
3143 	/*
3144 	 * Atomically set shw mask bit
3145 	 */
3146 	do {
3147 		shw_mask = hmeblkp->hblk_shw_mask;
3148 		newshw_mask = shw_mask | (1 << vshift);
3149 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3150 		    newshw_mask);
3151 	} while (newshw_mask != shw_mask);
3152 
3153 	SFMMU_HASH_UNLOCK(hmebp);
3154 
3155 	return (hmeblkp);
3156 }
3157 
3158 /*
3159  * This routine cleanup a previous shadow hmeblk and changes it to
3160  * a regular hblk.  This happens rarely but it is possible
3161  * when a process wants to use large pages and there are hblks still
3162  * lying around from the previous as that used these hmeblks.
3163  * The alternative was to cleanup the shadow hblks at unload time
3164  * but since so few user processes actually use large pages, it is
3165  * better to be lazy and cleanup at this time.
3166  */
3167 static void
3168 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3169 	struct hmehash_bucket *hmebp)
3170 {
3171 	caddr_t addr, endaddr;
3172 	int hashno, size;
3173 
3174 	ASSERT(hmeblkp->hblk_shw_bit);
3175 
3176 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3177 
3178 	if (!hmeblkp->hblk_shw_mask) {
3179 		hmeblkp->hblk_shw_bit = 0;
3180 		return;
3181 	}
3182 	addr = (caddr_t)get_hblk_base(hmeblkp);
3183 	endaddr = get_hblk_endaddr(hmeblkp);
3184 	size = get_hblk_ttesz(hmeblkp);
3185 	hashno = size - 1;
3186 	ASSERT(hashno > 0);
3187 	SFMMU_HASH_UNLOCK(hmebp);
3188 
3189 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3190 
3191 	SFMMU_HASH_LOCK(hmebp);
3192 }
3193 
3194 static void
3195 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3196 	int hashno)
3197 {
3198 	int hmeshift, shadow = 0;
3199 	hmeblk_tag hblktag;
3200 	struct hmehash_bucket *hmebp;
3201 	struct hme_blk *hmeblkp;
3202 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3203 	uint64_t hblkpa, prevpa, nx_pa;
3204 
3205 	ASSERT(hashno > 0);
3206 	hblktag.htag_id = sfmmup;
3207 	hblktag.htag_rehash = hashno;
3208 
3209 	hmeshift = HME_HASH_SHIFT(hashno);
3210 
3211 	while (addr < endaddr) {
3212 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3213 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3214 		SFMMU_HASH_LOCK(hmebp);
3215 		/* inline HME_HASH_SEARCH */
3216 		hmeblkp = hmebp->hmeblkp;
3217 		hblkpa = hmebp->hmeh_nextpa;
3218 		prevpa = 0;
3219 		pr_hblk = NULL;
3220 		while (hmeblkp) {
3221 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3222 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3223 				/* found hme_blk */
3224 				if (hmeblkp->hblk_shw_bit) {
3225 					if (hmeblkp->hblk_shw_mask) {
3226 						shadow = 1;
3227 						sfmmu_shadow_hcleanup(sfmmup,
3228 						    hmeblkp, hmebp);
3229 						break;
3230 					} else {
3231 						hmeblkp->hblk_shw_bit = 0;
3232 					}
3233 				}
3234 
3235 				/*
3236 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3237 				 * since hblk_unload() does not gurantee that.
3238 				 *
3239 				 * XXX - this could cause tteload() to spin
3240 				 * where sfmmu_shadow_hcleanup() is called.
3241 				 */
3242 			}
3243 
3244 			nx_hblk = hmeblkp->hblk_next;
3245 			nx_pa = hmeblkp->hblk_nextpa;
3246 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3247 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3248 					pr_hblk);
3249 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3250 			} else {
3251 				pr_hblk = hmeblkp;
3252 				prevpa = hblkpa;
3253 			}
3254 			hmeblkp = nx_hblk;
3255 			hblkpa = nx_pa;
3256 		}
3257 
3258 		SFMMU_HASH_UNLOCK(hmebp);
3259 
3260 		if (shadow) {
3261 			/*
3262 			 * We found another shadow hblk so cleaned its
3263 			 * children.  We need to go back and cleanup
3264 			 * the original hblk so we don't change the
3265 			 * addr.
3266 			 */
3267 			shadow = 0;
3268 		} else {
3269 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3270 				(1 << hmeshift));
3271 		}
3272 	}
3273 	sfmmu_hblks_list_purge(&list);
3274 }
3275 
3276 /*
3277  * Release one hardware address translation lock on the given address range.
3278  */
3279 void
3280 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3281 {
3282 	struct hmehash_bucket *hmebp;
3283 	hmeblk_tag hblktag;
3284 	int hmeshift, hashno = 1;
3285 	struct hme_blk *hmeblkp, *list = NULL;
3286 	caddr_t endaddr;
3287 
3288 	ASSERT(sfmmup != NULL);
3289 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3290 
3291 	ASSERT((sfmmup == ksfmmup) ||
3292 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3293 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3294 	endaddr = addr + len;
3295 	hblktag.htag_id = sfmmup;
3296 
3297 	/*
3298 	 * Spitfire supports 4 page sizes.
3299 	 * Most pages are expected to be of the smallest page size (8K) and
3300 	 * these will not need to be rehashed. 64K pages also don't need to be
3301 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3302 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3303 	 */
3304 	while (addr < endaddr) {
3305 		hmeshift = HME_HASH_SHIFT(hashno);
3306 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3307 		hblktag.htag_rehash = hashno;
3308 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3309 
3310 		SFMMU_HASH_LOCK(hmebp);
3311 
3312 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3313 		if (hmeblkp != NULL) {
3314 			/*
3315 			 * If we encounter a shadow hmeblk then
3316 			 * we know there are no valid hmeblks mapping
3317 			 * this address at this size or larger.
3318 			 * Just increment address by the smallest
3319 			 * page size.
3320 			 */
3321 			if (hmeblkp->hblk_shw_bit) {
3322 				addr += MMU_PAGESIZE;
3323 			} else {
3324 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3325 				    endaddr);
3326 			}
3327 			SFMMU_HASH_UNLOCK(hmebp);
3328 			hashno = 1;
3329 			continue;
3330 		}
3331 		SFMMU_HASH_UNLOCK(hmebp);
3332 
3333 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3334 			/*
3335 			 * We have traversed the whole list and rehashed
3336 			 * if necessary without finding the address to unlock
3337 			 * which should never happen.
3338 			 */
3339 			panic("sfmmu_unlock: addr not found. "
3340 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3341 		} else {
3342 			hashno++;
3343 		}
3344 	}
3345 
3346 	sfmmu_hblks_list_purge(&list);
3347 }
3348 
3349 /*
3350  * Function to unlock a range of addresses in an hmeblk.  It returns the
3351  * next address that needs to be unlocked.
3352  * Should be called with the hash lock held.
3353  */
3354 static caddr_t
3355 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3356 {
3357 	struct sf_hment *sfhme;
3358 	tte_t tteold, ttemod;
3359 	int ttesz, ret;
3360 
3361 	ASSERT(in_hblk_range(hmeblkp, addr));
3362 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3363 
3364 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3365 	ttesz = get_hblk_ttesz(hmeblkp);
3366 
3367 	HBLKTOHME(sfhme, hmeblkp, addr);
3368 	while (addr < endaddr) {
3369 readtte:
3370 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3371 		if (TTE_IS_VALID(&tteold)) {
3372 
3373 			ttemod = tteold;
3374 
3375 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3376 			    &sfhme->hme_tte);
3377 
3378 			if (ret < 0)
3379 				goto readtte;
3380 
3381 			if (hmeblkp->hblk_lckcnt == 0)
3382 				panic("zero hblk lckcnt");
3383 
3384 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3385 			    (uintptr_t)endaddr)
3386 				panic("can't unlock large tte");
3387 
3388 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3389 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3390 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3391 		} else {
3392 			panic("sfmmu_hblk_unlock: invalid tte");
3393 		}
3394 		addr += TTEBYTES(ttesz);
3395 		sfhme++;
3396 	}
3397 	return (addr);
3398 }
3399 
3400 /*
3401  * Physical Address Mapping Framework
3402  *
3403  * General rules:
3404  *
3405  * (1) Applies only to seg_kmem memory pages. To make things easier,
3406  *     seg_kpm addresses are also accepted by the routines, but nothing
3407  *     is done with them since by definition their PA mappings are static.
3408  * (2) hat_add_callback() may only be called while holding the page lock
3409  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3410  *     or passing HAC_PAGELOCK flag.
3411  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3412  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3413  *     callbacks may not sleep or acquire adaptive mutex locks.
3414  * (4) Either prehandler() or posthandler() (but not both) may be specified
3415  *     as being NULL.  Specifying an errhandler() is optional.
3416  *
3417  * Details of using the framework:
3418  *
3419  * registering a callback (hat_register_callback())
3420  *
3421  *	Pass prehandler, posthandler, errhandler addresses
3422  *	as described below. If capture_cpus argument is nonzero,
3423  *	suspend callback to the prehandler will occur with CPUs
3424  *	captured and executing xc_loop() and CPUs will remain
3425  *	captured until after the posthandler suspend callback
3426  *	occurs.
3427  *
3428  * adding a callback (hat_add_callback())
3429  *
3430  *      as_pagelock();
3431  *	hat_add_callback();
3432  *      save returned pfn in private data structures or program registers;
3433  *      as_pageunlock();
3434  *
3435  * prehandler()
3436  *
3437  *	Stop all accesses by physical address to this memory page.
3438  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3439  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3440  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3441  *	locks must be XCALL_PIL or higher locks).
3442  *
3443  *	May return the following errors:
3444  *		EIO:	A fatal error has occurred. This will result in panic.
3445  *		EAGAIN:	The page cannot be suspended. This will fail the
3446  *			relocation.
3447  *		0:	Success.
3448  *
3449  * posthandler()
3450  *
3451  *      Save new pfn in private data structures or program registers;
3452  *	not allowed to fail (non-zero return values will result in panic).
3453  *
3454  * errhandler()
3455  *
3456  *	called when an error occurs related to the callback.  Currently
3457  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3458  *	a page is being freed, but there are still outstanding callback(s)
3459  *	registered on the page.
3460  *
3461  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3462  *
3463  *	stop using physical address
3464  *	hat_delete_callback();
3465  *
3466  */
3467 
3468 /*
3469  * Register a callback class.  Each subsystem should do this once and
3470  * cache the id_t returned for use in setting up and tearing down callbacks.
3471  *
3472  * There is no facility for removing callback IDs once they are created;
3473  * the "key" should be unique for each module, so in case a module is unloaded
3474  * and subsequently re-loaded, we can recycle the module's previous entry.
3475  */
3476 id_t
3477 hat_register_callback(int key,
3478 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3479 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3480 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3481 	int capture_cpus)
3482 {
3483 	id_t id;
3484 
3485 	/*
3486 	 * Search the table for a pre-existing callback associated with
3487 	 * the identifier "key".  If one exists, we re-use that entry in
3488 	 * the table for this instance, otherwise we assign the next
3489 	 * available table slot.
3490 	 */
3491 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3492 		if (sfmmu_cb_table[id].key == key)
3493 			break;
3494 	}
3495 
3496 	if (id == sfmmu_max_cb_id) {
3497 		id = sfmmu_cb_nextid++;
3498 		if (id >= sfmmu_max_cb_id)
3499 			panic("hat_register_callback: out of callback IDs");
3500 	}
3501 
3502 	ASSERT(prehandler != NULL || posthandler != NULL);
3503 
3504 	sfmmu_cb_table[id].key = key;
3505 	sfmmu_cb_table[id].prehandler = prehandler;
3506 	sfmmu_cb_table[id].posthandler = posthandler;
3507 	sfmmu_cb_table[id].errhandler = errhandler;
3508 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3509 
3510 	return (id);
3511 }
3512 
3513 #define	HAC_COOKIE_NONE	(void *)-1
3514 
3515 /*
3516  * Add relocation callbacks to the specified addr/len which will be called
3517  * when relocating the associated page. See the description of pre and
3518  * posthandler above for more details.
3519  *
3520  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3521  * locked internally so the caller must be able to deal with the callback
3522  * running even before this function has returned.  If HAC_PAGELOCK is not
3523  * set, it is assumed that the underlying memory pages are locked.
3524  *
3525  * Since the caller must track the individual page boundaries anyway,
3526  * we only allow a callback to be added to a single page (large
3527  * or small).  Thus [addr, addr + len) MUST be contained within a single
3528  * page.
3529  *
3530  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3531  * _provided_that_ a unique parameter is specified for each callback.
3532  * If multiple callbacks are registered on the same range the callback will
3533  * be invoked with each unique parameter. Registering the same callback with
3534  * the same argument more than once will result in corrupted kernel state.
3535  *
3536  * Returns the pfn of the underlying kernel page in *rpfn
3537  * on success, or PFN_INVALID on failure.
3538  *
3539  * cookiep (if passed) provides storage space for an opaque cookie
3540  * to return later to hat_delete_callback(). This cookie makes the callback
3541  * deletion significantly quicker by avoiding a potentially lengthy hash
3542  * search.
3543  *
3544  * Returns values:
3545  *    0:      success
3546  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3547  *    EINVAL: callback ID is not valid
3548  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3549  *            space
3550  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3551  */
3552 int
3553 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3554 	void *pvt, pfn_t *rpfn, void **cookiep)
3555 {
3556 	struct 		hmehash_bucket *hmebp;
3557 	hmeblk_tag 	hblktag;
3558 	struct hme_blk	*hmeblkp;
3559 	int 		hmeshift, hashno;
3560 	caddr_t 	saddr, eaddr, baseaddr;
3561 	struct pa_hment *pahmep;
3562 	struct sf_hment *sfhmep, *osfhmep;
3563 	kmutex_t	*pml;
3564 	tte_t   	tte;
3565 	page_t		*pp;
3566 	vnode_t		*vp;
3567 	u_offset_t	off;
3568 	pfn_t		pfn;
3569 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3570 	int		locked = 0;
3571 
3572 	/*
3573 	 * For KPM mappings, just return the physical address since we
3574 	 * don't need to register any callbacks.
3575 	 */
3576 	if (IS_KPM_ADDR(vaddr)) {
3577 		uint64_t paddr;
3578 		SFMMU_KPM_VTOP(vaddr, paddr);
3579 		*rpfn = btop(paddr);
3580 		if (cookiep != NULL)
3581 			*cookiep = HAC_COOKIE_NONE;
3582 		return (0);
3583 	}
3584 
3585 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3586 		*rpfn = PFN_INVALID;
3587 		return (EINVAL);
3588 	}
3589 
3590 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3591 		*rpfn = PFN_INVALID;
3592 		return (ENOMEM);
3593 	}
3594 
3595 	sfhmep = &pahmep->sfment;
3596 
3597 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3598 	eaddr = saddr + len;
3599 
3600 rehash:
3601 	/* Find the mapping(s) for this page */
3602 	for (hashno = TTE64K, hmeblkp = NULL;
3603 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3604 	    hashno++) {
3605 		hmeshift = HME_HASH_SHIFT(hashno);
3606 		hblktag.htag_id = ksfmmup;
3607 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3608 		hblktag.htag_rehash = hashno;
3609 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3610 
3611 		SFMMU_HASH_LOCK(hmebp);
3612 
3613 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3614 
3615 		if (hmeblkp == NULL)
3616 			SFMMU_HASH_UNLOCK(hmebp);
3617 	}
3618 
3619 	if (hmeblkp == NULL) {
3620 		kmem_cache_free(pa_hment_cache, pahmep);
3621 		*rpfn = PFN_INVALID;
3622 		return (ENXIO);
3623 	}
3624 
3625 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3626 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3627 
3628 	if (!TTE_IS_VALID(&tte)) {
3629 		SFMMU_HASH_UNLOCK(hmebp);
3630 		kmem_cache_free(pa_hment_cache, pahmep);
3631 		*rpfn = PFN_INVALID;
3632 		return (ENXIO);
3633 	}
3634 
3635 	/*
3636 	 * Make sure the boundaries for the callback fall within this
3637 	 * single mapping.
3638 	 */
3639 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3640 	ASSERT(saddr >= baseaddr);
3641 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3642 		SFMMU_HASH_UNLOCK(hmebp);
3643 		kmem_cache_free(pa_hment_cache, pahmep);
3644 		*rpfn = PFN_INVALID;
3645 		return (ERANGE);
3646 	}
3647 
3648 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3649 
3650 	/*
3651 	 * The pfn may not have a page_t underneath in which case we
3652 	 * just return it. This can happen if we are doing I/O to a
3653 	 * static portion of the kernel's address space, for instance.
3654 	 */
3655 	pp = osfhmep->hme_page;
3656 	if (pp == NULL) {
3657 		SFMMU_HASH_UNLOCK(hmebp);
3658 		kmem_cache_free(pa_hment_cache, pahmep);
3659 		*rpfn = pfn;
3660 		if (cookiep)
3661 			*cookiep = HAC_COOKIE_NONE;
3662 		return (0);
3663 	}
3664 	ASSERT(pp == PP_PAGEROOT(pp));
3665 
3666 	vp = pp->p_vnode;
3667 	off = pp->p_offset;
3668 
3669 	pml = sfmmu_mlist_enter(pp);
3670 
3671 	if (flags & HAC_PAGELOCK) {
3672 		if (!page_trylock(pp, SE_SHARED)) {
3673 			/*
3674 			 * Somebody is holding SE_EXCL lock. Might
3675 			 * even be hat_page_relocate(). Drop all
3676 			 * our locks, lookup the page in &kvp, and
3677 			 * retry. If it doesn't exist in &kvp and &zvp,
3678 			 * then we must be dealing with a kernel mapped
3679 			 * page which doesn't actually belong to
3680 			 * segkmem so we punt.
3681 			 */
3682 			sfmmu_mlist_exit(pml);
3683 			SFMMU_HASH_UNLOCK(hmebp);
3684 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3685 
3686 			/* check zvp before giving up */
3687 			if (pp == NULL)
3688 				pp = page_lookup(&zvp, (u_offset_t)saddr,
3689 				    SE_SHARED);
3690 
3691 			/* Okay, we didn't find it, give up */
3692 			if (pp == NULL) {
3693 				kmem_cache_free(pa_hment_cache, pahmep);
3694 				*rpfn = pfn;
3695 				if (cookiep)
3696 					*cookiep = HAC_COOKIE_NONE;
3697 				return (0);
3698 			}
3699 			page_unlock(pp);
3700 			goto rehash;
3701 		}
3702 		locked = 1;
3703 	}
3704 
3705 	if (!PAGE_LOCKED(pp) && !panicstr)
3706 		panic("hat_add_callback: page 0x%p not locked", pp);
3707 
3708 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3709 	    pp->p_offset != off) {
3710 		/*
3711 		 * The page moved before we got our hands on it.  Drop
3712 		 * all the locks and try again.
3713 		 */
3714 		ASSERT((flags & HAC_PAGELOCK) != 0);
3715 		sfmmu_mlist_exit(pml);
3716 		SFMMU_HASH_UNLOCK(hmebp);
3717 		page_unlock(pp);
3718 		locked = 0;
3719 		goto rehash;
3720 	}
3721 
3722 	if (!VN_ISKAS(vp)) {
3723 		/*
3724 		 * This is not a segkmem page but another page which
3725 		 * has been kernel mapped. It had better have at least
3726 		 * a share lock on it. Return the pfn.
3727 		 */
3728 		sfmmu_mlist_exit(pml);
3729 		SFMMU_HASH_UNLOCK(hmebp);
3730 		if (locked)
3731 			page_unlock(pp);
3732 		kmem_cache_free(pa_hment_cache, pahmep);
3733 		ASSERT(PAGE_LOCKED(pp));
3734 		*rpfn = pfn;
3735 		if (cookiep)
3736 			*cookiep = HAC_COOKIE_NONE;
3737 		return (0);
3738 	}
3739 
3740 	/*
3741 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3742 	 * the mapping list.
3743 	 */
3744 	pp->p_share++;
3745 	pahmep->cb_id = callback_id;
3746 	pahmep->addr = vaddr;
3747 	pahmep->len = len;
3748 	pahmep->refcnt = 1;
3749 	pahmep->flags = 0;
3750 	pahmep->pvt = pvt;
3751 
3752 	sfhmep->hme_tte.ll = 0;
3753 	sfhmep->hme_data = pahmep;
3754 	sfhmep->hme_prev = osfhmep;
3755 	sfhmep->hme_next = osfhmep->hme_next;
3756 
3757 	if (osfhmep->hme_next)
3758 		osfhmep->hme_next->hme_prev = sfhmep;
3759 
3760 	osfhmep->hme_next = sfhmep;
3761 
3762 	sfmmu_mlist_exit(pml);
3763 	SFMMU_HASH_UNLOCK(hmebp);
3764 
3765 	if (locked)
3766 		page_unlock(pp);
3767 
3768 	*rpfn = pfn;
3769 	if (cookiep)
3770 		*cookiep = (void *)pahmep;
3771 
3772 	return (0);
3773 }
3774 
3775 /*
3776  * Remove the relocation callbacks from the specified addr/len.
3777  */
3778 void
3779 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3780 	void *cookie)
3781 {
3782 	struct		hmehash_bucket *hmebp;
3783 	hmeblk_tag	hblktag;
3784 	struct hme_blk	*hmeblkp;
3785 	int		hmeshift, hashno;
3786 	caddr_t		saddr;
3787 	struct pa_hment	*pahmep;
3788 	struct sf_hment	*sfhmep, *osfhmep;
3789 	kmutex_t	*pml;
3790 	tte_t		tte;
3791 	page_t		*pp;
3792 	vnode_t		*vp;
3793 	u_offset_t	off;
3794 	int		locked = 0;
3795 
3796 	/*
3797 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3798 	 * remove so just return.
3799 	 */
3800 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3801 		return;
3802 
3803 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3804 
3805 rehash:
3806 	/* Find the mapping(s) for this page */
3807 	for (hashno = TTE64K, hmeblkp = NULL;
3808 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3809 	    hashno++) {
3810 		hmeshift = HME_HASH_SHIFT(hashno);
3811 		hblktag.htag_id = ksfmmup;
3812 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3813 		hblktag.htag_rehash = hashno;
3814 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3815 
3816 		SFMMU_HASH_LOCK(hmebp);
3817 
3818 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3819 
3820 		if (hmeblkp == NULL)
3821 			SFMMU_HASH_UNLOCK(hmebp);
3822 	}
3823 
3824 	if (hmeblkp == NULL)
3825 		return;
3826 
3827 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3828 
3829 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3830 	if (!TTE_IS_VALID(&tte)) {
3831 		SFMMU_HASH_UNLOCK(hmebp);
3832 		return;
3833 	}
3834 
3835 	pp = osfhmep->hme_page;
3836 	if (pp == NULL) {
3837 		SFMMU_HASH_UNLOCK(hmebp);
3838 		ASSERT(cookie == NULL);
3839 		return;
3840 	}
3841 
3842 	vp = pp->p_vnode;
3843 	off = pp->p_offset;
3844 
3845 	pml = sfmmu_mlist_enter(pp);
3846 
3847 	if (flags & HAC_PAGELOCK) {
3848 		if (!page_trylock(pp, SE_SHARED)) {
3849 			/*
3850 			 * Somebody is holding SE_EXCL lock. Might
3851 			 * even be hat_page_relocate(). Drop all
3852 			 * our locks, lookup the page in &kvp, and
3853 			 * retry. If it doesn't exist in &kvp and &zvp,
3854 			 * then we must be dealing with a kernel mapped
3855 			 * page which doesn't actually belong to
3856 			 * segkmem so we punt.
3857 			 */
3858 			sfmmu_mlist_exit(pml);
3859 			SFMMU_HASH_UNLOCK(hmebp);
3860 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3861 			/* check zvp before giving up */
3862 			if (pp == NULL)
3863 				pp = page_lookup(&zvp, (u_offset_t)saddr,
3864 				    SE_SHARED);
3865 
3866 			if (pp == NULL) {
3867 				ASSERT(cookie == NULL);
3868 				return;
3869 			}
3870 			page_unlock(pp);
3871 			goto rehash;
3872 		}
3873 		locked = 1;
3874 	}
3875 
3876 	ASSERT(PAGE_LOCKED(pp));
3877 
3878 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3879 	    pp->p_offset != off) {
3880 		/*
3881 		 * The page moved before we got our hands on it.  Drop
3882 		 * all the locks and try again.
3883 		 */
3884 		ASSERT((flags & HAC_PAGELOCK) != 0);
3885 		sfmmu_mlist_exit(pml);
3886 		SFMMU_HASH_UNLOCK(hmebp);
3887 		page_unlock(pp);
3888 		locked = 0;
3889 		goto rehash;
3890 	}
3891 
3892 	if (!VN_ISKAS(vp)) {
3893 		/*
3894 		 * This is not a segkmem page but another page which
3895 		 * has been kernel mapped.
3896 		 */
3897 		sfmmu_mlist_exit(pml);
3898 		SFMMU_HASH_UNLOCK(hmebp);
3899 		if (locked)
3900 			page_unlock(pp);
3901 		ASSERT(cookie == NULL);
3902 		return;
3903 	}
3904 
3905 	if (cookie != NULL) {
3906 		pahmep = (struct pa_hment *)cookie;
3907 		sfhmep = &pahmep->sfment;
3908 	} else {
3909 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3910 		    sfhmep = sfhmep->hme_next) {
3911 
3912 			/*
3913 			 * skip va<->pa mappings
3914 			 */
3915 			if (!IS_PAHME(sfhmep))
3916 				continue;
3917 
3918 			pahmep = sfhmep->hme_data;
3919 			ASSERT(pahmep != NULL);
3920 
3921 			/*
3922 			 * if pa_hment matches, remove it
3923 			 */
3924 			if ((pahmep->pvt == pvt) &&
3925 			    (pahmep->addr == vaddr) &&
3926 			    (pahmep->len == len)) {
3927 				break;
3928 			}
3929 		}
3930 	}
3931 
3932 	if (sfhmep == NULL) {
3933 		if (!panicstr) {
3934 			panic("hat_delete_callback: pa_hment not found, pp %p",
3935 			    (void *)pp);
3936 		}
3937 		return;
3938 	}
3939 
3940 	/*
3941 	 * Note: at this point a valid kernel mapping must still be
3942 	 * present on this page.
3943 	 */
3944 	pp->p_share--;
3945 	if (pp->p_share <= 0)
3946 		panic("hat_delete_callback: zero p_share");
3947 
3948 	if (--pahmep->refcnt == 0) {
3949 		if (pahmep->flags != 0)
3950 			panic("hat_delete_callback: pa_hment is busy");
3951 
3952 		/*
3953 		 * Remove sfhmep from the mapping list for the page.
3954 		 */
3955 		if (sfhmep->hme_prev) {
3956 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3957 		} else {
3958 			pp->p_mapping = sfhmep->hme_next;
3959 		}
3960 
3961 		if (sfhmep->hme_next)
3962 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3963 
3964 		sfmmu_mlist_exit(pml);
3965 		SFMMU_HASH_UNLOCK(hmebp);
3966 
3967 		if (locked)
3968 			page_unlock(pp);
3969 
3970 		kmem_cache_free(pa_hment_cache, pahmep);
3971 		return;
3972 	}
3973 
3974 	sfmmu_mlist_exit(pml);
3975 	SFMMU_HASH_UNLOCK(hmebp);
3976 	if (locked)
3977 		page_unlock(pp);
3978 }
3979 
3980 /*
3981  * hat_probe returns 1 if the translation for the address 'addr' is
3982  * loaded, zero otherwise.
3983  *
3984  * hat_probe should be used only for advisorary purposes because it may
3985  * occasionally return the wrong value. The implementation must guarantee that
3986  * returning the wrong value is a very rare event. hat_probe is used
3987  * to implement optimizations in the segment drivers.
3988  *
3989  */
3990 int
3991 hat_probe(struct hat *sfmmup, caddr_t addr)
3992 {
3993 	pfn_t pfn;
3994 	tte_t tte;
3995 
3996 	ASSERT(sfmmup != NULL);
3997 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3998 
3999 	ASSERT((sfmmup == ksfmmup) ||
4000 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4001 
4002 	if (sfmmup == ksfmmup) {
4003 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4004 		    == PFN_SUSPENDED) {
4005 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4006 		}
4007 	} else {
4008 		pfn = sfmmu_uvatopfn(addr, sfmmup);
4009 	}
4010 
4011 	if (pfn != PFN_INVALID)
4012 		return (1);
4013 	else
4014 		return (0);
4015 }
4016 
4017 ssize_t
4018 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4019 {
4020 	tte_t tte;
4021 
4022 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4023 
4024 	sfmmu_gettte(sfmmup, addr, &tte);
4025 	if (TTE_IS_VALID(&tte)) {
4026 		return (TTEBYTES(TTE_CSZ(&tte)));
4027 	}
4028 	return (-1);
4029 }
4030 
4031 static void
4032 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
4033 {
4034 	struct hmehash_bucket *hmebp;
4035 	hmeblk_tag hblktag;
4036 	int hmeshift, hashno = 1;
4037 	struct hme_blk *hmeblkp, *list = NULL;
4038 	struct sf_hment *sfhmep;
4039 
4040 	/* support for ISM */
4041 	ism_map_t	*ism_map;
4042 	ism_blk_t	*ism_blkp;
4043 	int		i;
4044 	sfmmu_t		*ism_hatid = NULL;
4045 	sfmmu_t		*locked_hatid = NULL;
4046 
4047 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4048 
4049 	ism_blkp = sfmmup->sfmmu_iblk;
4050 	if (ism_blkp) {
4051 		sfmmu_ismhat_enter(sfmmup, 0);
4052 		locked_hatid = sfmmup;
4053 	}
4054 	while (ism_blkp && ism_hatid == NULL) {
4055 		ism_map = ism_blkp->iblk_maps;
4056 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4057 			if (addr >= ism_start(ism_map[i]) &&
4058 			    addr < ism_end(ism_map[i])) {
4059 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4060 				addr = (caddr_t)(addr -
4061 					ism_start(ism_map[i]));
4062 				break;
4063 			}
4064 		}
4065 		ism_blkp = ism_blkp->iblk_next;
4066 	}
4067 	if (locked_hatid) {
4068 		sfmmu_ismhat_exit(locked_hatid, 0);
4069 	}
4070 
4071 	hblktag.htag_id = sfmmup;
4072 	ttep->ll = 0;
4073 
4074 	do {
4075 		hmeshift = HME_HASH_SHIFT(hashno);
4076 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4077 		hblktag.htag_rehash = hashno;
4078 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4079 
4080 		SFMMU_HASH_LOCK(hmebp);
4081 
4082 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4083 		if (hmeblkp != NULL) {
4084 			HBLKTOHME(sfhmep, hmeblkp, addr);
4085 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4086 			SFMMU_HASH_UNLOCK(hmebp);
4087 			break;
4088 		}
4089 		SFMMU_HASH_UNLOCK(hmebp);
4090 		hashno++;
4091 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4092 
4093 	sfmmu_hblks_list_purge(&list);
4094 }
4095 
4096 uint_t
4097 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4098 {
4099 	tte_t tte;
4100 
4101 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4102 
4103 	sfmmu_gettte(sfmmup, addr, &tte);
4104 	if (TTE_IS_VALID(&tte)) {
4105 		*attr = sfmmu_ptov_attr(&tte);
4106 		return (0);
4107 	}
4108 	*attr = 0;
4109 	return ((uint_t)0xffffffff);
4110 }
4111 
4112 /*
4113  * Enables more attributes on specified address range (ie. logical OR)
4114  */
4115 void
4116 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4117 {
4118 	if (hat->sfmmu_xhat_provider) {
4119 		XHAT_SETATTR(hat, addr, len, attr);
4120 		return;
4121 	} else {
4122 		/*
4123 		 * This must be a CPU HAT. If the address space has
4124 		 * XHATs attached, change attributes for all of them,
4125 		 * just in case
4126 		 */
4127 		ASSERT(hat->sfmmu_as != NULL);
4128 		if (hat->sfmmu_as->a_xhat != NULL)
4129 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4130 	}
4131 
4132 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4133 }
4134 
4135 /*
4136  * Assigns attributes to the specified address range.  All the attributes
4137  * are specified.
4138  */
4139 void
4140 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4141 {
4142 	if (hat->sfmmu_xhat_provider) {
4143 		XHAT_CHGATTR(hat, addr, len, attr);
4144 		return;
4145 	} else {
4146 		/*
4147 		 * This must be a CPU HAT. If the address space has
4148 		 * XHATs attached, change attributes for all of them,
4149 		 * just in case
4150 		 */
4151 		ASSERT(hat->sfmmu_as != NULL);
4152 		if (hat->sfmmu_as->a_xhat != NULL)
4153 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4154 	}
4155 
4156 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4157 }
4158 
4159 /*
4160  * Remove attributes on the specified address range (ie. loginal NAND)
4161  */
4162 void
4163 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4164 {
4165 	if (hat->sfmmu_xhat_provider) {
4166 		XHAT_CLRATTR(hat, addr, len, attr);
4167 		return;
4168 	} else {
4169 		/*
4170 		 * This must be a CPU HAT. If the address space has
4171 		 * XHATs attached, change attributes for all of them,
4172 		 * just in case
4173 		 */
4174 		ASSERT(hat->sfmmu_as != NULL);
4175 		if (hat->sfmmu_as->a_xhat != NULL)
4176 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4177 	}
4178 
4179 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4180 }
4181 
4182 /*
4183  * Change attributes on an address range to that specified by attr and mode.
4184  */
4185 static void
4186 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4187 	int mode)
4188 {
4189 	struct hmehash_bucket *hmebp;
4190 	hmeblk_tag hblktag;
4191 	int hmeshift, hashno = 1;
4192 	struct hme_blk *hmeblkp, *list = NULL;
4193 	caddr_t endaddr;
4194 	cpuset_t cpuset;
4195 	demap_range_t dmr;
4196 
4197 	CPUSET_ZERO(cpuset);
4198 
4199 	ASSERT((sfmmup == ksfmmup) ||
4200 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4201 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4202 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4203 
4204 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4205 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4206 		panic("user addr %p in kernel space",
4207 		    (void *)addr);
4208 	}
4209 
4210 	endaddr = addr + len;
4211 	hblktag.htag_id = sfmmup;
4212 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4213 
4214 	while (addr < endaddr) {
4215 		hmeshift = HME_HASH_SHIFT(hashno);
4216 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4217 		hblktag.htag_rehash = hashno;
4218 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4219 
4220 		SFMMU_HASH_LOCK(hmebp);
4221 
4222 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4223 		if (hmeblkp != NULL) {
4224 			/*
4225 			 * We've encountered a shadow hmeblk so skip the range
4226 			 * of the next smaller mapping size.
4227 			 */
4228 			if (hmeblkp->hblk_shw_bit) {
4229 				ASSERT(sfmmup != ksfmmup);
4230 				ASSERT(hashno > 1);
4231 				addr = (caddr_t)P2END((uintptr_t)addr,
4232 					    TTEBYTES(hashno - 1));
4233 			} else {
4234 				addr = sfmmu_hblk_chgattr(sfmmup,
4235 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4236 			}
4237 			SFMMU_HASH_UNLOCK(hmebp);
4238 			hashno = 1;
4239 			continue;
4240 		}
4241 		SFMMU_HASH_UNLOCK(hmebp);
4242 
4243 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4244 			/*
4245 			 * We have traversed the whole list and rehashed
4246 			 * if necessary without finding the address to chgattr.
4247 			 * This is ok, so we increment the address by the
4248 			 * smallest hmeblk range for kernel mappings or for
4249 			 * user mappings with no large pages, and the largest
4250 			 * hmeblk range, to account for shadow hmeblks, for
4251 			 * user mappings with large pages and continue.
4252 			 */
4253 			if (sfmmup == ksfmmup)
4254 				addr = (caddr_t)P2END((uintptr_t)addr,
4255 					    TTEBYTES(1));
4256 			else
4257 				addr = (caddr_t)P2END((uintptr_t)addr,
4258 					    TTEBYTES(hashno));
4259 			hashno = 1;
4260 		} else {
4261 			hashno++;
4262 		}
4263 	}
4264 
4265 	sfmmu_hblks_list_purge(&list);
4266 	DEMAP_RANGE_FLUSH(&dmr);
4267 	cpuset = sfmmup->sfmmu_cpusran;
4268 	xt_sync(cpuset);
4269 }
4270 
4271 /*
4272  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4273  * next addres that needs to be chgattr.
4274  * It should be called with the hash lock held.
4275  * XXX It should be possible to optimize chgattr by not flushing every time but
4276  * on the other hand:
4277  * 1. do one flush crosscall.
4278  * 2. only flush if we are increasing permissions (make sure this will work)
4279  */
4280 static caddr_t
4281 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4282 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4283 {
4284 	tte_t tte, tteattr, tteflags, ttemod;
4285 	struct sf_hment *sfhmep;
4286 	int ttesz;
4287 	struct page *pp = NULL;
4288 	kmutex_t *pml, *pmtx;
4289 	int ret;
4290 	int use_demap_range;
4291 #if defined(SF_ERRATA_57)
4292 	int check_exec;
4293 #endif
4294 
4295 	ASSERT(in_hblk_range(hmeblkp, addr));
4296 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4297 
4298 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4299 	ttesz = get_hblk_ttesz(hmeblkp);
4300 
4301 	/*
4302 	 * Flush the current demap region if addresses have been
4303 	 * skipped or the page size doesn't match.
4304 	 */
4305 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4306 	if (use_demap_range) {
4307 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4308 	} else {
4309 		DEMAP_RANGE_FLUSH(dmrp);
4310 	}
4311 
4312 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4313 #if defined(SF_ERRATA_57)
4314 	check_exec = (sfmmup != ksfmmup) &&
4315 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4316 	    TTE_IS_EXECUTABLE(&tteattr);
4317 #endif
4318 	HBLKTOHME(sfhmep, hmeblkp, addr);
4319 	while (addr < endaddr) {
4320 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4321 		if (TTE_IS_VALID(&tte)) {
4322 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4323 				/*
4324 				 * if the new attr is the same as old
4325 				 * continue
4326 				 */
4327 				goto next_addr;
4328 			}
4329 			if (!TTE_IS_WRITABLE(&tteattr)) {
4330 				/*
4331 				 * make sure we clear hw modify bit if we
4332 				 * removing write protections
4333 				 */
4334 				tteflags.tte_intlo |= TTE_HWWR_INT;
4335 			}
4336 
4337 			pml = NULL;
4338 			pp = sfhmep->hme_page;
4339 			if (pp) {
4340 				pml = sfmmu_mlist_enter(pp);
4341 			}
4342 
4343 			if (pp != sfhmep->hme_page) {
4344 				/*
4345 				 * tte must have been unloaded.
4346 				 */
4347 				ASSERT(pml);
4348 				sfmmu_mlist_exit(pml);
4349 				continue;
4350 			}
4351 
4352 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4353 
4354 			ttemod = tte;
4355 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4356 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4357 
4358 #if defined(SF_ERRATA_57)
4359 			if (check_exec && addr < errata57_limit)
4360 				ttemod.tte_exec_perm = 0;
4361 #endif
4362 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4363 			    &sfhmep->hme_tte);
4364 
4365 			if (ret < 0) {
4366 				/* tte changed underneath us */
4367 				if (pml) {
4368 					sfmmu_mlist_exit(pml);
4369 				}
4370 				continue;
4371 			}
4372 
4373 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4374 				/*
4375 				 * need to sync if we are clearing modify bit.
4376 				 */
4377 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4378 			}
4379 
4380 			if (pp && PP_ISRO(pp)) {
4381 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4382 					pmtx = sfmmu_page_enter(pp);
4383 					PP_CLRRO(pp);
4384 					sfmmu_page_exit(pmtx);
4385 				}
4386 			}
4387 
4388 			if (ret > 0 && use_demap_range) {
4389 				DEMAP_RANGE_MARKPG(dmrp, addr);
4390 			} else if (ret > 0) {
4391 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4392 			}
4393 
4394 			if (pml) {
4395 				sfmmu_mlist_exit(pml);
4396 			}
4397 		}
4398 next_addr:
4399 		addr += TTEBYTES(ttesz);
4400 		sfhmep++;
4401 		DEMAP_RANGE_NEXTPG(dmrp);
4402 	}
4403 	return (addr);
4404 }
4405 
4406 /*
4407  * This routine converts virtual attributes to physical ones.  It will
4408  * update the tteflags field with the tte mask corresponding to the attributes
4409  * affected and it returns the new attributes.  It will also clear the modify
4410  * bit if we are taking away write permission.  This is necessary since the
4411  * modify bit is the hardware permission bit and we need to clear it in order
4412  * to detect write faults.
4413  */
4414 static uint64_t
4415 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4416 {
4417 	tte_t ttevalue;
4418 
4419 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4420 
4421 	switch (mode) {
4422 	case SFMMU_CHGATTR:
4423 		/* all attributes specified */
4424 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4425 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4426 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4427 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4428 		break;
4429 	case SFMMU_SETATTR:
4430 		ASSERT(!(attr & ~HAT_PROT_MASK));
4431 		ttemaskp->ll = 0;
4432 		ttevalue.ll = 0;
4433 		/*
4434 		 * a valid tte implies exec and read for sfmmu
4435 		 * so no need to do anything about them.
4436 		 * since priviledged access implies user access
4437 		 * PROT_USER doesn't make sense either.
4438 		 */
4439 		if (attr & PROT_WRITE) {
4440 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4441 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4442 		}
4443 		break;
4444 	case SFMMU_CLRATTR:
4445 		/* attributes will be nand with current ones */
4446 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4447 			panic("sfmmu: attr %x not supported", attr);
4448 		}
4449 		ttemaskp->ll = 0;
4450 		ttevalue.ll = 0;
4451 		if (attr & PROT_WRITE) {
4452 			/* clear both writable and modify bit */
4453 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4454 		}
4455 		if (attr & PROT_USER) {
4456 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4457 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4458 		}
4459 		break;
4460 	default:
4461 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4462 	}
4463 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4464 	return (ttevalue.ll);
4465 }
4466 
4467 static uint_t
4468 sfmmu_ptov_attr(tte_t *ttep)
4469 {
4470 	uint_t attr;
4471 
4472 	ASSERT(TTE_IS_VALID(ttep));
4473 
4474 	attr = PROT_READ;
4475 
4476 	if (TTE_IS_WRITABLE(ttep)) {
4477 		attr |= PROT_WRITE;
4478 	}
4479 	if (TTE_IS_EXECUTABLE(ttep)) {
4480 		attr |= PROT_EXEC;
4481 	}
4482 	if (!TTE_IS_PRIVILEGED(ttep)) {
4483 		attr |= PROT_USER;
4484 	}
4485 	if (TTE_IS_NFO(ttep)) {
4486 		attr |= HAT_NOFAULT;
4487 	}
4488 	if (TTE_IS_NOSYNC(ttep)) {
4489 		attr |= HAT_NOSYNC;
4490 	}
4491 	if (TTE_IS_SIDEFFECT(ttep)) {
4492 		attr |= SFMMU_SIDEFFECT;
4493 	}
4494 	if (!TTE_IS_VCACHEABLE(ttep)) {
4495 		attr |= SFMMU_UNCACHEVTTE;
4496 	}
4497 	if (!TTE_IS_PCACHEABLE(ttep)) {
4498 		attr |= SFMMU_UNCACHEPTTE;
4499 	}
4500 	return (attr);
4501 }
4502 
4503 /*
4504  * hat_chgprot is a deprecated hat call.  New segment drivers
4505  * should store all attributes and use hat_*attr calls.
4506  *
4507  * Change the protections in the virtual address range
4508  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4509  * then remove write permission, leaving the other
4510  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4511  *
4512  */
4513 void
4514 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4515 {
4516 	struct hmehash_bucket *hmebp;
4517 	hmeblk_tag hblktag;
4518 	int hmeshift, hashno = 1;
4519 	struct hme_blk *hmeblkp, *list = NULL;
4520 	caddr_t endaddr;
4521 	cpuset_t cpuset;
4522 	demap_range_t dmr;
4523 
4524 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4525 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4526 
4527 	if (sfmmup->sfmmu_xhat_provider) {
4528 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4529 		return;
4530 	} else {
4531 		/*
4532 		 * This must be a CPU HAT. If the address space has
4533 		 * XHATs attached, change attributes for all of them,
4534 		 * just in case
4535 		 */
4536 		ASSERT(sfmmup->sfmmu_as != NULL);
4537 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4538 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4539 	}
4540 
4541 	CPUSET_ZERO(cpuset);
4542 
4543 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4544 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4545 		panic("user addr %p vprot %x in kernel space",
4546 		    (void *)addr, vprot);
4547 	}
4548 	endaddr = addr + len;
4549 	hblktag.htag_id = sfmmup;
4550 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4551 
4552 	while (addr < endaddr) {
4553 		hmeshift = HME_HASH_SHIFT(hashno);
4554 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4555 		hblktag.htag_rehash = hashno;
4556 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4557 
4558 		SFMMU_HASH_LOCK(hmebp);
4559 
4560 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4561 		if (hmeblkp != NULL) {
4562 			/*
4563 			 * We've encountered a shadow hmeblk so skip the range
4564 			 * of the next smaller mapping size.
4565 			 */
4566 			if (hmeblkp->hblk_shw_bit) {
4567 				ASSERT(sfmmup != ksfmmup);
4568 				ASSERT(hashno > 1);
4569 				addr = (caddr_t)P2END((uintptr_t)addr,
4570 					    TTEBYTES(hashno - 1));
4571 			} else {
4572 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4573 					addr, endaddr, &dmr, vprot);
4574 			}
4575 			SFMMU_HASH_UNLOCK(hmebp);
4576 			hashno = 1;
4577 			continue;
4578 		}
4579 		SFMMU_HASH_UNLOCK(hmebp);
4580 
4581 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4582 			/*
4583 			 * We have traversed the whole list and rehashed
4584 			 * if necessary without finding the address to chgprot.
4585 			 * This is ok so we increment the address by the
4586 			 * smallest hmeblk range for kernel mappings and the
4587 			 * largest hmeblk range, to account for shadow hmeblks,
4588 			 * for user mappings and continue.
4589 			 */
4590 			if (sfmmup == ksfmmup)
4591 				addr = (caddr_t)P2END((uintptr_t)addr,
4592 					    TTEBYTES(1));
4593 			else
4594 				addr = (caddr_t)P2END((uintptr_t)addr,
4595 					    TTEBYTES(hashno));
4596 			hashno = 1;
4597 		} else {
4598 			hashno++;
4599 		}
4600 	}
4601 
4602 	sfmmu_hblks_list_purge(&list);
4603 	DEMAP_RANGE_FLUSH(&dmr);
4604 	cpuset = sfmmup->sfmmu_cpusran;
4605 	xt_sync(cpuset);
4606 }
4607 
4608 /*
4609  * This function chgprots a range of addresses in an hmeblk.  It returns the
4610  * next addres that needs to be chgprot.
4611  * It should be called with the hash lock held.
4612  * XXX It shold be possible to optimize chgprot by not flushing every time but
4613  * on the other hand:
4614  * 1. do one flush crosscall.
4615  * 2. only flush if we are increasing permissions (make sure this will work)
4616  */
4617 static caddr_t
4618 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4619 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4620 {
4621 	uint_t pprot;
4622 	tte_t tte, ttemod;
4623 	struct sf_hment *sfhmep;
4624 	uint_t tteflags;
4625 	int ttesz;
4626 	struct page *pp = NULL;
4627 	kmutex_t *pml, *pmtx;
4628 	int ret;
4629 	int use_demap_range;
4630 #if defined(SF_ERRATA_57)
4631 	int check_exec;
4632 #endif
4633 
4634 	ASSERT(in_hblk_range(hmeblkp, addr));
4635 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4636 
4637 #ifdef DEBUG
4638 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4639 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4640 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4641 	}
4642 #endif /* DEBUG */
4643 
4644 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4645 	ttesz = get_hblk_ttesz(hmeblkp);
4646 
4647 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4648 #if defined(SF_ERRATA_57)
4649 	check_exec = (sfmmup != ksfmmup) &&
4650 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4651 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4652 #endif
4653 	HBLKTOHME(sfhmep, hmeblkp, addr);
4654 
4655 	/*
4656 	 * Flush the current demap region if addresses have been
4657 	 * skipped or the page size doesn't match.
4658 	 */
4659 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4660 	if (use_demap_range) {
4661 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4662 	} else {
4663 		DEMAP_RANGE_FLUSH(dmrp);
4664 	}
4665 
4666 	while (addr < endaddr) {
4667 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4668 		if (TTE_IS_VALID(&tte)) {
4669 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4670 				/*
4671 				 * if the new protection is the same as old
4672 				 * continue
4673 				 */
4674 				goto next_addr;
4675 			}
4676 			pml = NULL;
4677 			pp = sfhmep->hme_page;
4678 			if (pp) {
4679 				pml = sfmmu_mlist_enter(pp);
4680 			}
4681 			if (pp != sfhmep->hme_page) {
4682 				/*
4683 				 * tte most have been unloaded
4684 				 * underneath us.  Recheck
4685 				 */
4686 				ASSERT(pml);
4687 				sfmmu_mlist_exit(pml);
4688 				continue;
4689 			}
4690 
4691 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4692 
4693 			ttemod = tte;
4694 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4695 #if defined(SF_ERRATA_57)
4696 			if (check_exec && addr < errata57_limit)
4697 				ttemod.tte_exec_perm = 0;
4698 #endif
4699 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4700 			    &sfhmep->hme_tte);
4701 
4702 			if (ret < 0) {
4703 				/* tte changed underneath us */
4704 				if (pml) {
4705 					sfmmu_mlist_exit(pml);
4706 				}
4707 				continue;
4708 			}
4709 
4710 			if (tteflags & TTE_HWWR_INT) {
4711 				/*
4712 				 * need to sync if we are clearing modify bit.
4713 				 */
4714 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4715 			}
4716 
4717 			if (pp && PP_ISRO(pp)) {
4718 				if (pprot & TTE_WRPRM_INT) {
4719 					pmtx = sfmmu_page_enter(pp);
4720 					PP_CLRRO(pp);
4721 					sfmmu_page_exit(pmtx);
4722 				}
4723 			}
4724 
4725 			if (ret > 0 && use_demap_range) {
4726 				DEMAP_RANGE_MARKPG(dmrp, addr);
4727 			} else if (ret > 0) {
4728 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4729 			}
4730 
4731 			if (pml) {
4732 				sfmmu_mlist_exit(pml);
4733 			}
4734 		}
4735 next_addr:
4736 		addr += TTEBYTES(ttesz);
4737 		sfhmep++;
4738 		DEMAP_RANGE_NEXTPG(dmrp);
4739 	}
4740 	return (addr);
4741 }
4742 
4743 /*
4744  * This routine is deprecated and should only be used by hat_chgprot.
4745  * The correct routine is sfmmu_vtop_attr.
4746  * This routine converts virtual page protections to physical ones.  It will
4747  * update the tteflags field with the tte mask corresponding to the protections
4748  * affected and it returns the new protections.  It will also clear the modify
4749  * bit if we are taking away write permission.  This is necessary since the
4750  * modify bit is the hardware permission bit and we need to clear it in order
4751  * to detect write faults.
4752  * It accepts the following special protections:
4753  * ~PROT_WRITE = remove write permissions.
4754  * ~PROT_USER = remove user permissions.
4755  */
4756 static uint_t
4757 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4758 {
4759 	if (vprot == (uint_t)~PROT_WRITE) {
4760 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4761 		return (0);		/* will cause wrprm to be cleared */
4762 	}
4763 	if (vprot == (uint_t)~PROT_USER) {
4764 		*tteflagsp = TTE_PRIV_INT;
4765 		return (0);		/* will cause privprm to be cleared */
4766 	}
4767 	if ((vprot == 0) || (vprot == PROT_USER) ||
4768 		((vprot & PROT_ALL) != vprot)) {
4769 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4770 	}
4771 
4772 	switch (vprot) {
4773 	case (PROT_READ):
4774 	case (PROT_EXEC):
4775 	case (PROT_EXEC | PROT_READ):
4776 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4777 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4778 	case (PROT_WRITE):
4779 	case (PROT_WRITE | PROT_READ):
4780 	case (PROT_EXEC | PROT_WRITE):
4781 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4782 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4783 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4784 	case (PROT_USER | PROT_READ):
4785 	case (PROT_USER | PROT_EXEC):
4786 	case (PROT_USER | PROT_EXEC | PROT_READ):
4787 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4788 		return (0); 			/* clr prv and wrt */
4789 	case (PROT_USER | PROT_WRITE):
4790 	case (PROT_USER | PROT_WRITE | PROT_READ):
4791 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4792 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4793 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4794 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4795 	default:
4796 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4797 	}
4798 	return (0);
4799 }
4800 
4801 /*
4802  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4803  * the normal algorithm would take too long for a very large VA range with
4804  * few real mappings. This routine just walks thru all HMEs in the global
4805  * hash table to find and remove mappings.
4806  */
4807 static void
4808 hat_unload_large_virtual(
4809 	struct hat		*sfmmup,
4810 	caddr_t			startaddr,
4811 	size_t			len,
4812 	uint_t			flags,
4813 	hat_callback_t		*callback)
4814 {
4815 	struct hmehash_bucket *hmebp;
4816 	struct hme_blk *hmeblkp;
4817 	struct hme_blk *pr_hblk = NULL;
4818 	struct hme_blk *nx_hblk;
4819 	struct hme_blk *list = NULL;
4820 	int i;
4821 	uint64_t hblkpa, prevpa, nx_pa;
4822 	demap_range_t dmr, *dmrp;
4823 	cpuset_t cpuset;
4824 	caddr_t	endaddr = startaddr + len;
4825 	caddr_t	sa;
4826 	caddr_t	ea;
4827 	caddr_t	cb_sa[MAX_CB_ADDR];
4828 	caddr_t	cb_ea[MAX_CB_ADDR];
4829 	int	addr_cnt = 0;
4830 	int	a = 0;
4831 
4832 	if (sfmmup->sfmmu_free) {
4833 		dmrp = NULL;
4834 	} else {
4835 		dmrp = &dmr;
4836 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4837 	}
4838 
4839 	/*
4840 	 * Loop through all the hash buckets of HME blocks looking for matches.
4841 	 */
4842 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4843 		hmebp = &uhme_hash[i];
4844 		SFMMU_HASH_LOCK(hmebp);
4845 		hmeblkp = hmebp->hmeblkp;
4846 		hblkpa = hmebp->hmeh_nextpa;
4847 		prevpa = 0;
4848 		pr_hblk = NULL;
4849 		while (hmeblkp) {
4850 			nx_hblk = hmeblkp->hblk_next;
4851 			nx_pa = hmeblkp->hblk_nextpa;
4852 
4853 			/*
4854 			 * skip if not this context, if a shadow block or
4855 			 * if the mapping is not in the requested range
4856 			 */
4857 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4858 			    hmeblkp->hblk_shw_bit ||
4859 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4860 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4861 				pr_hblk = hmeblkp;
4862 				prevpa = hblkpa;
4863 				goto next_block;
4864 			}
4865 
4866 			/*
4867 			 * unload if there are any current valid mappings
4868 			 */
4869 			if (hmeblkp->hblk_vcnt != 0 ||
4870 			    hmeblkp->hblk_hmecnt != 0)
4871 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4872 				    sa, ea, dmrp, flags);
4873 
4874 			/*
4875 			 * on unmap we also release the HME block itself, once
4876 			 * all mappings are gone.
4877 			 */
4878 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4879 			    !hmeblkp->hblk_vcnt &&
4880 			    !hmeblkp->hblk_hmecnt) {
4881 				ASSERT(!hmeblkp->hblk_lckcnt);
4882 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4883 					prevpa, pr_hblk);
4884 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4885 			} else {
4886 				pr_hblk = hmeblkp;
4887 				prevpa = hblkpa;
4888 			}
4889 
4890 			if (callback == NULL)
4891 				goto next_block;
4892 
4893 			/*
4894 			 * HME blocks may span more than one page, but we may be
4895 			 * unmapping only one page, so check for a smaller range
4896 			 * for the callback
4897 			 */
4898 			if (sa < startaddr)
4899 				sa = startaddr;
4900 			if (--ea > endaddr)
4901 				ea = endaddr - 1;
4902 
4903 			cb_sa[addr_cnt] = sa;
4904 			cb_ea[addr_cnt] = ea;
4905 			if (++addr_cnt == MAX_CB_ADDR) {
4906 				if (dmrp != NULL) {
4907 					DEMAP_RANGE_FLUSH(dmrp);
4908 					cpuset = sfmmup->sfmmu_cpusran;
4909 					xt_sync(cpuset);
4910 				}
4911 
4912 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4913 					callback->hcb_start_addr = cb_sa[a];
4914 					callback->hcb_end_addr = cb_ea[a];
4915 					callback->hcb_function(callback);
4916 				}
4917 				addr_cnt = 0;
4918 			}
4919 
4920 next_block:
4921 			hmeblkp = nx_hblk;
4922 			hblkpa = nx_pa;
4923 		}
4924 		SFMMU_HASH_UNLOCK(hmebp);
4925 	}
4926 
4927 	sfmmu_hblks_list_purge(&list);
4928 	if (dmrp != NULL) {
4929 		DEMAP_RANGE_FLUSH(dmrp);
4930 		cpuset = sfmmup->sfmmu_cpusran;
4931 		xt_sync(cpuset);
4932 	}
4933 
4934 	for (a = 0; a < addr_cnt; ++a) {
4935 		callback->hcb_start_addr = cb_sa[a];
4936 		callback->hcb_end_addr = cb_ea[a];
4937 		callback->hcb_function(callback);
4938 	}
4939 
4940 	/*
4941 	 * Check TSB and TLB page sizes if the process isn't exiting.
4942 	 */
4943 	if (!sfmmup->sfmmu_free)
4944 		sfmmu_check_page_sizes(sfmmup, 0);
4945 }
4946 
4947 /*
4948  * Unload all the mappings in the range [addr..addr+len). addr and len must
4949  * be MMU_PAGESIZE aligned.
4950  */
4951 
4952 extern struct seg *segkmap;
4953 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4954 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4955 
4956 
4957 void
4958 hat_unload_callback(
4959 	struct hat *sfmmup,
4960 	caddr_t addr,
4961 	size_t len,
4962 	uint_t flags,
4963 	hat_callback_t *callback)
4964 {
4965 	struct hmehash_bucket *hmebp;
4966 	hmeblk_tag hblktag;
4967 	int hmeshift, hashno, iskernel;
4968 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4969 	caddr_t endaddr;
4970 	cpuset_t cpuset;
4971 	uint64_t hblkpa, prevpa;
4972 	int addr_count = 0;
4973 	int a;
4974 	caddr_t cb_start_addr[MAX_CB_ADDR];
4975 	caddr_t cb_end_addr[MAX_CB_ADDR];
4976 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4977 	demap_range_t dmr, *dmrp;
4978 
4979 	if (sfmmup->sfmmu_xhat_provider) {
4980 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4981 		return;
4982 	} else {
4983 		/*
4984 		 * This must be a CPU HAT. If the address space has
4985 		 * XHATs attached, unload the mappings for all of them,
4986 		 * just in case
4987 		 */
4988 		ASSERT(sfmmup->sfmmu_as != NULL);
4989 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4990 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4991 			    len, flags, callback);
4992 	}
4993 
4994 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4995 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4996 
4997 	ASSERT(sfmmup != NULL);
4998 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4999 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5000 
5001 	/*
5002 	 * Probing through a large VA range (say 63 bits) will be slow, even
5003 	 * at 4 Meg steps between the probes. So, when the virtual address range
5004 	 * is very large, search the HME entries for what to unload.
5005 	 *
5006 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5007 	 *
5008 	 *	UHMEHASH_SZ is number of hash buckets to examine
5009 	 *
5010 	 */
5011 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5012 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5013 		return;
5014 	}
5015 
5016 	CPUSET_ZERO(cpuset);
5017 
5018 	/*
5019 	 * If the process is exiting, we can save a lot of fuss since
5020 	 * we'll flush the TLB when we free the ctx anyway.
5021 	 */
5022 	if (sfmmup->sfmmu_free)
5023 		dmrp = NULL;
5024 	else
5025 		dmrp = &dmr;
5026 
5027 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5028 	endaddr = addr + len;
5029 	hblktag.htag_id = sfmmup;
5030 
5031 	/*
5032 	 * It is likely for the vm to call unload over a wide range of
5033 	 * addresses that are actually very sparsely populated by
5034 	 * translations.  In order to speed this up the sfmmu hat supports
5035 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5036 	 * correspond to actual small translations are allocated at tteload
5037 	 * time and are referred to as shadow hmeblks.  Now, during unload
5038 	 * time, we first check if we have a shadow hmeblk for that
5039 	 * translation.  The absence of one means the corresponding address
5040 	 * range is empty and can be skipped.
5041 	 *
5042 	 * The kernel is an exception to above statement and that is why
5043 	 * we don't use shadow hmeblks and hash starting from the smallest
5044 	 * page size.
5045 	 */
5046 	if (sfmmup == KHATID) {
5047 		iskernel = 1;
5048 		hashno = TTE64K;
5049 	} else {
5050 		iskernel = 0;
5051 		if (mmu_page_sizes == max_mmu_page_sizes) {
5052 			hashno = TTE256M;
5053 		} else {
5054 			hashno = TTE4M;
5055 		}
5056 	}
5057 	while (addr < endaddr) {
5058 		hmeshift = HME_HASH_SHIFT(hashno);
5059 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5060 		hblktag.htag_rehash = hashno;
5061 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5062 
5063 		SFMMU_HASH_LOCK(hmebp);
5064 
5065 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5066 			prevpa, &list);
5067 		if (hmeblkp == NULL) {
5068 			/*
5069 			 * didn't find an hmeblk. skip the appropiate
5070 			 * address range.
5071 			 */
5072 			SFMMU_HASH_UNLOCK(hmebp);
5073 			if (iskernel) {
5074 				if (hashno < mmu_hashcnt) {
5075 					hashno++;
5076 					continue;
5077 				} else {
5078 					hashno = TTE64K;
5079 					addr = (caddr_t)roundup((uintptr_t)addr
5080 						+ 1, MMU_PAGESIZE64K);
5081 					continue;
5082 				}
5083 			}
5084 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5085 				(1 << hmeshift));
5086 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5087 				ASSERT(hashno == TTE64K);
5088 				continue;
5089 			}
5090 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5091 				hashno = TTE512K;
5092 				continue;
5093 			}
5094 			if (mmu_page_sizes == max_mmu_page_sizes) {
5095 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5096 					hashno = TTE4M;
5097 					continue;
5098 				}
5099 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5100 					hashno = TTE32M;
5101 					continue;
5102 				}
5103 				hashno = TTE256M;
5104 				continue;
5105 			} else {
5106 				hashno = TTE4M;
5107 				continue;
5108 			}
5109 		}
5110 		ASSERT(hmeblkp);
5111 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5112 			/*
5113 			 * If the valid count is zero we can skip the range
5114 			 * mapped by this hmeblk.
5115 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5116 			 * is used by segment drivers as a hint
5117 			 * that the mapping resource won't be used any longer.
5118 			 * The best example of this is during exit().
5119 			 */
5120 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5121 				get_hblk_span(hmeblkp));
5122 			if ((flags & HAT_UNLOAD_UNMAP) ||
5123 			    (iskernel && !issegkmap)) {
5124 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5125 				    pr_hblk);
5126 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5127 			}
5128 			SFMMU_HASH_UNLOCK(hmebp);
5129 
5130 			if (iskernel) {
5131 				hashno = TTE64K;
5132 				continue;
5133 			}
5134 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5135 				ASSERT(hashno == TTE64K);
5136 				continue;
5137 			}
5138 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5139 				hashno = TTE512K;
5140 				continue;
5141 			}
5142 			if (mmu_page_sizes == max_mmu_page_sizes) {
5143 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5144 					hashno = TTE4M;
5145 					continue;
5146 				}
5147 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5148 					hashno = TTE32M;
5149 					continue;
5150 				}
5151 				hashno = TTE256M;
5152 				continue;
5153 			} else {
5154 				hashno = TTE4M;
5155 				continue;
5156 			}
5157 		}
5158 		if (hmeblkp->hblk_shw_bit) {
5159 			/*
5160 			 * If we encounter a shadow hmeblk we know there is
5161 			 * smaller sized hmeblks mapping the same address space.
5162 			 * Decrement the hash size and rehash.
5163 			 */
5164 			ASSERT(sfmmup != KHATID);
5165 			hashno--;
5166 			SFMMU_HASH_UNLOCK(hmebp);
5167 			continue;
5168 		}
5169 
5170 		/*
5171 		 * track callback address ranges.
5172 		 * only start a new range when it's not contiguous
5173 		 */
5174 		if (callback != NULL) {
5175 			if (addr_count > 0 &&
5176 			    addr == cb_end_addr[addr_count - 1])
5177 				--addr_count;
5178 			else
5179 				cb_start_addr[addr_count] = addr;
5180 		}
5181 
5182 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5183 				dmrp, flags);
5184 
5185 		if (callback != NULL)
5186 			cb_end_addr[addr_count++] = addr;
5187 
5188 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5189 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5190 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5191 			    pr_hblk);
5192 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5193 		}
5194 		SFMMU_HASH_UNLOCK(hmebp);
5195 
5196 		/*
5197 		 * Notify our caller as to exactly which pages
5198 		 * have been unloaded. We do these in clumps,
5199 		 * to minimize the number of xt_sync()s that need to occur.
5200 		 */
5201 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5202 			DEMAP_RANGE_FLUSH(dmrp);
5203 			if (dmrp != NULL) {
5204 				cpuset = sfmmup->sfmmu_cpusran;
5205 				xt_sync(cpuset);
5206 			}
5207 
5208 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5209 				callback->hcb_start_addr = cb_start_addr[a];
5210 				callback->hcb_end_addr = cb_end_addr[a];
5211 				callback->hcb_function(callback);
5212 			}
5213 			addr_count = 0;
5214 		}
5215 		if (iskernel) {
5216 			hashno = TTE64K;
5217 			continue;
5218 		}
5219 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5220 			ASSERT(hashno == TTE64K);
5221 			continue;
5222 		}
5223 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5224 			hashno = TTE512K;
5225 			continue;
5226 		}
5227 		if (mmu_page_sizes == max_mmu_page_sizes) {
5228 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5229 				hashno = TTE4M;
5230 				continue;
5231 			}
5232 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5233 				hashno = TTE32M;
5234 				continue;
5235 			}
5236 			hashno = TTE256M;
5237 		} else {
5238 			hashno = TTE4M;
5239 		}
5240 	}
5241 
5242 	sfmmu_hblks_list_purge(&list);
5243 	DEMAP_RANGE_FLUSH(dmrp);
5244 	if (dmrp != NULL) {
5245 		cpuset = sfmmup->sfmmu_cpusran;
5246 		xt_sync(cpuset);
5247 	}
5248 	if (callback && addr_count != 0) {
5249 		for (a = 0; a < addr_count; ++a) {
5250 			callback->hcb_start_addr = cb_start_addr[a];
5251 			callback->hcb_end_addr = cb_end_addr[a];
5252 			callback->hcb_function(callback);
5253 		}
5254 	}
5255 
5256 	/*
5257 	 * Check TSB and TLB page sizes if the process isn't exiting.
5258 	 */
5259 	if (!sfmmup->sfmmu_free)
5260 		sfmmu_check_page_sizes(sfmmup, 0);
5261 }
5262 
5263 /*
5264  * Unload all the mappings in the range [addr..addr+len). addr and len must
5265  * be MMU_PAGESIZE aligned.
5266  */
5267 void
5268 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5269 {
5270 	if (sfmmup->sfmmu_xhat_provider) {
5271 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5272 		return;
5273 	}
5274 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5275 }
5276 
5277 
5278 /*
5279  * Find the largest mapping size for this page.
5280  */
5281 int
5282 fnd_mapping_sz(page_t *pp)
5283 {
5284 	int sz;
5285 	int p_index;
5286 
5287 	p_index = PP_MAPINDEX(pp);
5288 
5289 	sz = 0;
5290 	p_index >>= 1;	/* don't care about 8K bit */
5291 	for (; p_index; p_index >>= 1) {
5292 		sz++;
5293 	}
5294 
5295 	return (sz);
5296 }
5297 
5298 /*
5299  * This function unloads a range of addresses for an hmeblk.
5300  * It returns the next address to be unloaded.
5301  * It should be called with the hash lock held.
5302  */
5303 static caddr_t
5304 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5305 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5306 {
5307 	tte_t	tte, ttemod;
5308 	struct	sf_hment *sfhmep;
5309 	int	ttesz;
5310 	long	ttecnt;
5311 	page_t *pp;
5312 	kmutex_t *pml;
5313 	int ret;
5314 	int use_demap_range;
5315 
5316 	ASSERT(in_hblk_range(hmeblkp, addr));
5317 	ASSERT(!hmeblkp->hblk_shw_bit);
5318 #ifdef DEBUG
5319 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5320 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5321 		panic("sfmmu_hblk_unload: partial unload of large page");
5322 	}
5323 #endif /* DEBUG */
5324 
5325 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5326 	ttesz = get_hblk_ttesz(hmeblkp);
5327 
5328 	use_demap_range = (do_virtual_coloring &&
5329 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5330 	if (use_demap_range) {
5331 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5332 	} else {
5333 		DEMAP_RANGE_FLUSH(dmrp);
5334 	}
5335 	ttecnt = 0;
5336 	HBLKTOHME(sfhmep, hmeblkp, addr);
5337 
5338 	while (addr < endaddr) {
5339 		pml = NULL;
5340 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5341 		if (TTE_IS_VALID(&tte)) {
5342 			pp = sfhmep->hme_page;
5343 			if (pp != NULL) {
5344 				pml = sfmmu_mlist_enter(pp);
5345 			}
5346 
5347 			/*
5348 			 * Verify if hme still points to 'pp' now that
5349 			 * we have p_mapping lock.
5350 			 */
5351 			if (sfhmep->hme_page != pp) {
5352 				if (pp != NULL && sfhmep->hme_page != NULL) {
5353 					ASSERT(pml != NULL);
5354 					sfmmu_mlist_exit(pml);
5355 					/* Re-start this iteration. */
5356 					continue;
5357 				}
5358 				ASSERT((pp != NULL) &&
5359 				    (sfhmep->hme_page == NULL));
5360 				goto tte_unloaded;
5361 			}
5362 
5363 			/*
5364 			 * This point on we have both HASH and p_mapping
5365 			 * lock.
5366 			 */
5367 			ASSERT(pp == sfhmep->hme_page);
5368 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5369 
5370 			/*
5371 			 * We need to loop on modify tte because it is
5372 			 * possible for pagesync to come along and
5373 			 * change the software bits beneath us.
5374 			 *
5375 			 * Page_unload can also invalidate the tte after
5376 			 * we read tte outside of p_mapping lock.
5377 			 */
5378 again:
5379 			ttemod = tte;
5380 
5381 			TTE_SET_INVALID(&ttemod);
5382 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5383 			    &sfhmep->hme_tte);
5384 
5385 			if (ret <= 0) {
5386 				if (TTE_IS_VALID(&tte)) {
5387 					ASSERT(ret < 0);
5388 					goto again;
5389 				}
5390 				if (pp != NULL) {
5391 					panic("sfmmu_hblk_unload: pp = 0x%p "
5392 					    "tte became invalid under mlist"
5393 					    " lock = 0x%p", pp, pml);
5394 				}
5395 				continue;
5396 			}
5397 
5398 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5399 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5400 			}
5401 
5402 			/*
5403 			 * Ok- we invalidated the tte. Do the rest of the job.
5404 			 */
5405 			ttecnt++;
5406 
5407 			if (flags & HAT_UNLOAD_UNLOCK) {
5408 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5409 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5410 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5411 			}
5412 
5413 			/*
5414 			 * Normally we would need to flush the page
5415 			 * from the virtual cache at this point in
5416 			 * order to prevent a potential cache alias
5417 			 * inconsistency.
5418 			 * The particular scenario we need to worry
5419 			 * about is:
5420 			 * Given:  va1 and va2 are two virtual address
5421 			 * that alias and map the same physical
5422 			 * address.
5423 			 * 1.	mapping exists from va1 to pa and data
5424 			 * has been read into the cache.
5425 			 * 2.	unload va1.
5426 			 * 3.	load va2 and modify data using va2.
5427 			 * 4	unload va2.
5428 			 * 5.	load va1 and reference data.  Unless we
5429 			 * flush the data cache when we unload we will
5430 			 * get stale data.
5431 			 * Fortunately, page coloring eliminates the
5432 			 * above scenario by remembering the color a
5433 			 * physical page was last or is currently
5434 			 * mapped to.  Now, we delay the flush until
5435 			 * the loading of translations.  Only when the
5436 			 * new translation is of a different color
5437 			 * are we forced to flush.
5438 			 */
5439 			if (use_demap_range) {
5440 				/*
5441 				 * Mark this page as needing a demap.
5442 				 */
5443 				DEMAP_RANGE_MARKPG(dmrp, addr);
5444 			} else {
5445 				if (do_virtual_coloring) {
5446 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5447 					    sfmmup->sfmmu_free, 0);
5448 				} else {
5449 					pfn_t pfnum;
5450 
5451 					pfnum = TTE_TO_PFN(addr, &tte);
5452 					sfmmu_tlbcache_demap(addr, sfmmup,
5453 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5454 					    FLUSH_NECESSARY_CPUS,
5455 					    CACHE_FLUSH, 0);
5456 				}
5457 			}
5458 
5459 			if (pp) {
5460 				/*
5461 				 * Remove the hment from the mapping list
5462 				 */
5463 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5464 
5465 				/*
5466 				 * Again, we cannot
5467 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5468 				 */
5469 				HME_SUB(sfhmep, pp);
5470 				membar_stst();
5471 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5472 			}
5473 
5474 			ASSERT(hmeblkp->hblk_vcnt > 0);
5475 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5476 
5477 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5478 			    !hmeblkp->hblk_lckcnt);
5479 
5480 #ifdef VAC
5481 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5482 				if (PP_ISTNC(pp)) {
5483 					/*
5484 					 * If page was temporary
5485 					 * uncached, try to recache
5486 					 * it. Note that HME_SUB() was
5487 					 * called above so p_index and
5488 					 * mlist had been updated.
5489 					 */
5490 					conv_tnc(pp, ttesz);
5491 				} else if (pp->p_mapping == NULL) {
5492 					ASSERT(kpm_enable);
5493 					/*
5494 					 * Page is marked to be in VAC conflict
5495 					 * to an existing kpm mapping and/or is
5496 					 * kpm mapped using only the regular
5497 					 * pagesize.
5498 					 */
5499 					sfmmu_kpm_hme_unload(pp);
5500 				}
5501 			}
5502 #endif	/* VAC */
5503 		} else if ((pp = sfhmep->hme_page) != NULL) {
5504 				/*
5505 				 * TTE is invalid but the hme
5506 				 * still exists. let pageunload
5507 				 * complete its job.
5508 				 */
5509 				ASSERT(pml == NULL);
5510 				pml = sfmmu_mlist_enter(pp);
5511 				if (sfhmep->hme_page != NULL) {
5512 					sfmmu_mlist_exit(pml);
5513 					continue;
5514 				}
5515 				ASSERT(sfhmep->hme_page == NULL);
5516 		} else if (hmeblkp->hblk_hmecnt != 0) {
5517 			/*
5518 			 * pageunload may have not finished decrementing
5519 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5520 			 * wait for pageunload to finish. Rely on pageunload
5521 			 * to decrement hblk_hmecnt after hblk_vcnt.
5522 			 */
5523 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5524 			ASSERT(pml == NULL);
5525 			if (pf_is_memory(pfn)) {
5526 				pp = page_numtopp_nolock(pfn);
5527 				if (pp != NULL) {
5528 					pml = sfmmu_mlist_enter(pp);
5529 					sfmmu_mlist_exit(pml);
5530 					pml = NULL;
5531 				}
5532 			}
5533 		}
5534 
5535 tte_unloaded:
5536 		/*
5537 		 * At this point, the tte we are looking at
5538 		 * should be unloaded, and hme has been unlinked
5539 		 * from page too. This is important because in
5540 		 * pageunload, it does ttesync() then HME_SUB.
5541 		 * We need to make sure HME_SUB has been completed
5542 		 * so we know ttesync() has been completed. Otherwise,
5543 		 * at exit time, after return from hat layer, VM will
5544 		 * release as structure which hat_setstat() (called
5545 		 * by ttesync()) needs.
5546 		 */
5547 #ifdef DEBUG
5548 		{
5549 			tte_t	dtte;
5550 
5551 			ASSERT(sfhmep->hme_page == NULL);
5552 
5553 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5554 			ASSERT(!TTE_IS_VALID(&dtte));
5555 		}
5556 #endif
5557 
5558 		if (pml) {
5559 			sfmmu_mlist_exit(pml);
5560 		}
5561 
5562 		addr += TTEBYTES(ttesz);
5563 		sfhmep++;
5564 		DEMAP_RANGE_NEXTPG(dmrp);
5565 	}
5566 	if (ttecnt > 0)
5567 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5568 	return (addr);
5569 }
5570 
5571 /*
5572  * Synchronize all the mappings in the range [addr..addr+len).
5573  * Can be called with clearflag having two states:
5574  * HAT_SYNC_DONTZERO means just return the rm stats
5575  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5576  */
5577 void
5578 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5579 {
5580 	struct hmehash_bucket *hmebp;
5581 	hmeblk_tag hblktag;
5582 	int hmeshift, hashno = 1;
5583 	struct hme_blk *hmeblkp, *list = NULL;
5584 	caddr_t endaddr;
5585 	cpuset_t cpuset;
5586 
5587 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5588 	ASSERT((sfmmup == ksfmmup) ||
5589 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5590 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5591 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5592 		(clearflag == HAT_SYNC_ZERORM));
5593 
5594 	CPUSET_ZERO(cpuset);
5595 
5596 	endaddr = addr + len;
5597 	hblktag.htag_id = sfmmup;
5598 	/*
5599 	 * Spitfire supports 4 page sizes.
5600 	 * Most pages are expected to be of the smallest page
5601 	 * size (8K) and these will not need to be rehashed. 64K
5602 	 * pages also don't need to be rehashed because the an hmeblk
5603 	 * spans 64K of address space. 512K pages might need 1 rehash and
5604 	 * and 4M pages 2 rehashes.
5605 	 */
5606 	while (addr < endaddr) {
5607 		hmeshift = HME_HASH_SHIFT(hashno);
5608 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5609 		hblktag.htag_rehash = hashno;
5610 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5611 
5612 		SFMMU_HASH_LOCK(hmebp);
5613 
5614 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5615 		if (hmeblkp != NULL) {
5616 			/*
5617 			 * We've encountered a shadow hmeblk so skip the range
5618 			 * of the next smaller mapping size.
5619 			 */
5620 			if (hmeblkp->hblk_shw_bit) {
5621 				ASSERT(sfmmup != ksfmmup);
5622 				ASSERT(hashno > 1);
5623 				addr = (caddr_t)P2END((uintptr_t)addr,
5624 					    TTEBYTES(hashno - 1));
5625 			} else {
5626 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5627 				    addr, endaddr, clearflag);
5628 			}
5629 			SFMMU_HASH_UNLOCK(hmebp);
5630 			hashno = 1;
5631 			continue;
5632 		}
5633 		SFMMU_HASH_UNLOCK(hmebp);
5634 
5635 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5636 			/*
5637 			 * We have traversed the whole list and rehashed
5638 			 * if necessary without finding the address to sync.
5639 			 * This is ok so we increment the address by the
5640 			 * smallest hmeblk range for kernel mappings and the
5641 			 * largest hmeblk range, to account for shadow hmeblks,
5642 			 * for user mappings and continue.
5643 			 */
5644 			if (sfmmup == ksfmmup)
5645 				addr = (caddr_t)P2END((uintptr_t)addr,
5646 					    TTEBYTES(1));
5647 			else
5648 				addr = (caddr_t)P2END((uintptr_t)addr,
5649 					    TTEBYTES(hashno));
5650 			hashno = 1;
5651 		} else {
5652 			hashno++;
5653 		}
5654 	}
5655 	sfmmu_hblks_list_purge(&list);
5656 	cpuset = sfmmup->sfmmu_cpusran;
5657 	xt_sync(cpuset);
5658 }
5659 
5660 static caddr_t
5661 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5662 	caddr_t endaddr, int clearflag)
5663 {
5664 	tte_t	tte, ttemod;
5665 	struct sf_hment *sfhmep;
5666 	int ttesz;
5667 	struct page *pp;
5668 	kmutex_t *pml;
5669 	int ret;
5670 
5671 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5672 
5673 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5674 
5675 	ttesz = get_hblk_ttesz(hmeblkp);
5676 	HBLKTOHME(sfhmep, hmeblkp, addr);
5677 
5678 	while (addr < endaddr) {
5679 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5680 		if (TTE_IS_VALID(&tte)) {
5681 			pml = NULL;
5682 			pp = sfhmep->hme_page;
5683 			if (pp) {
5684 				pml = sfmmu_mlist_enter(pp);
5685 			}
5686 			if (pp != sfhmep->hme_page) {
5687 				/*
5688 				 * tte most have been unloaded
5689 				 * underneath us.  Recheck
5690 				 */
5691 				ASSERT(pml);
5692 				sfmmu_mlist_exit(pml);
5693 				continue;
5694 			}
5695 
5696 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5697 
5698 			if (clearflag == HAT_SYNC_ZERORM) {
5699 				ttemod = tte;
5700 				TTE_CLR_RM(&ttemod);
5701 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5702 				    &sfhmep->hme_tte);
5703 				if (ret < 0) {
5704 					if (pml) {
5705 						sfmmu_mlist_exit(pml);
5706 					}
5707 					continue;
5708 				}
5709 
5710 				if (ret > 0) {
5711 					sfmmu_tlb_demap(addr, sfmmup,
5712 						hmeblkp, 0, 0);
5713 				}
5714 			}
5715 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5716 			if (pml) {
5717 				sfmmu_mlist_exit(pml);
5718 			}
5719 		}
5720 		addr += TTEBYTES(ttesz);
5721 		sfhmep++;
5722 	}
5723 	return (addr);
5724 }
5725 
5726 /*
5727  * This function will sync a tte to the page struct and it will
5728  * update the hat stats. Currently it allows us to pass a NULL pp
5729  * and we will simply update the stats.  We may want to change this
5730  * so we only keep stats for pages backed by pp's.
5731  */
5732 static void
5733 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5734 {
5735 	uint_t rm = 0;
5736 	int   	sz;
5737 	pgcnt_t	npgs;
5738 
5739 	ASSERT(TTE_IS_VALID(ttep));
5740 
5741 	if (TTE_IS_NOSYNC(ttep)) {
5742 		return;
5743 	}
5744 
5745 	if (TTE_IS_REF(ttep))  {
5746 		rm = P_REF;
5747 	}
5748 	if (TTE_IS_MOD(ttep))  {
5749 		rm |= P_MOD;
5750 	}
5751 
5752 	if (rm == 0) {
5753 		return;
5754 	}
5755 
5756 	sz = TTE_CSZ(ttep);
5757 	if (sfmmup->sfmmu_rmstat) {
5758 		int i;
5759 		caddr_t	vaddr = addr;
5760 
5761 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5762 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5763 		}
5764 
5765 	}
5766 
5767 	/*
5768 	 * XXX I want to use cas to update nrm bits but they
5769 	 * currently belong in common/vm and not in hat where
5770 	 * they should be.
5771 	 * The nrm bits are protected by the same mutex as
5772 	 * the one that protects the page's mapping list.
5773 	 */
5774 	if (!pp)
5775 		return;
5776 	ASSERT(sfmmu_mlist_held(pp));
5777 	/*
5778 	 * If the tte is for a large page, we need to sync all the
5779 	 * pages covered by the tte.
5780 	 */
5781 	if (sz != TTE8K) {
5782 		ASSERT(pp->p_szc != 0);
5783 		pp = PP_GROUPLEADER(pp, sz);
5784 		ASSERT(sfmmu_mlist_held(pp));
5785 	}
5786 
5787 	/* Get number of pages from tte size. */
5788 	npgs = TTEPAGES(sz);
5789 
5790 	do {
5791 		ASSERT(pp);
5792 		ASSERT(sfmmu_mlist_held(pp));
5793 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5794 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5795 			hat_page_setattr(pp, rm);
5796 
5797 		/*
5798 		 * Are we done? If not, we must have a large mapping.
5799 		 * For large mappings we need to sync the rest of the pages
5800 		 * covered by this tte; goto the next page.
5801 		 */
5802 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5803 }
5804 
5805 /*
5806  * Execute pre-callback handler of each pa_hment linked to pp
5807  *
5808  * Inputs:
5809  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5810  *   capture_cpus: pointer to return value (below)
5811  *
5812  * Returns:
5813  *   Propagates the subsystem callback return values back to the caller;
5814  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5815  *   is zero if all of the pa_hments are of a type that do not require
5816  *   capturing CPUs prior to suspending the mapping, else it is 1.
5817  */
5818 static int
5819 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5820 {
5821 	struct sf_hment	*sfhmep;
5822 	struct pa_hment *pahmep;
5823 	int (*f)(caddr_t, uint_t, uint_t, void *);
5824 	int		ret;
5825 	id_t		id;
5826 	int		locked = 0;
5827 	kmutex_t	*pml;
5828 
5829 	ASSERT(PAGE_EXCL(pp));
5830 	if (!sfmmu_mlist_held(pp)) {
5831 		pml = sfmmu_mlist_enter(pp);
5832 		locked = 1;
5833 	}
5834 
5835 	if (capture_cpus)
5836 		*capture_cpus = 0;
5837 
5838 top:
5839 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5840 		/*
5841 		 * skip sf_hments corresponding to VA<->PA mappings;
5842 		 * for pa_hment's, hme_tte.ll is zero
5843 		 */
5844 		if (!IS_PAHME(sfhmep))
5845 			continue;
5846 
5847 		pahmep = sfhmep->hme_data;
5848 		ASSERT(pahmep != NULL);
5849 
5850 		/*
5851 		 * skip if pre-handler has been called earlier in this loop
5852 		 */
5853 		if (pahmep->flags & flag)
5854 			continue;
5855 
5856 		id = pahmep->cb_id;
5857 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5858 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5859 			*capture_cpus = 1;
5860 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5861 			pahmep->flags |= flag;
5862 			continue;
5863 		}
5864 
5865 		/*
5866 		 * Drop the mapping list lock to avoid locking order issues.
5867 		 */
5868 		if (locked)
5869 			sfmmu_mlist_exit(pml);
5870 
5871 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5872 		if (ret != 0)
5873 			return (ret);	/* caller must do the cleanup */
5874 
5875 		if (locked) {
5876 			pml = sfmmu_mlist_enter(pp);
5877 			pahmep->flags |= flag;
5878 			goto top;
5879 		}
5880 
5881 		pahmep->flags |= flag;
5882 	}
5883 
5884 	if (locked)
5885 		sfmmu_mlist_exit(pml);
5886 
5887 	return (0);
5888 }
5889 
5890 /*
5891  * Execute post-callback handler of each pa_hment linked to pp
5892  *
5893  * Same overall assumptions and restrictions apply as for
5894  * hat_pageprocess_precallbacks().
5895  */
5896 static void
5897 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5898 {
5899 	pfn_t pgpfn = pp->p_pagenum;
5900 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5901 	pfn_t newpfn;
5902 	struct sf_hment *sfhmep;
5903 	struct pa_hment *pahmep;
5904 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5905 	id_t	id;
5906 	int	locked = 0;
5907 	kmutex_t *pml;
5908 
5909 	ASSERT(PAGE_EXCL(pp));
5910 	if (!sfmmu_mlist_held(pp)) {
5911 		pml = sfmmu_mlist_enter(pp);
5912 		locked = 1;
5913 	}
5914 
5915 top:
5916 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5917 		/*
5918 		 * skip sf_hments corresponding to VA<->PA mappings;
5919 		 * for pa_hment's, hme_tte.ll is zero
5920 		 */
5921 		if (!IS_PAHME(sfhmep))
5922 			continue;
5923 
5924 		pahmep = sfhmep->hme_data;
5925 		ASSERT(pahmep != NULL);
5926 
5927 		if ((pahmep->flags & flag) == 0)
5928 			continue;
5929 
5930 		pahmep->flags &= ~flag;
5931 
5932 		id = pahmep->cb_id;
5933 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5934 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5935 			continue;
5936 
5937 		/*
5938 		 * Convert the base page PFN into the constituent PFN
5939 		 * which is needed by the callback handler.
5940 		 */
5941 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5942 
5943 		/*
5944 		 * Drop the mapping list lock to avoid locking order issues.
5945 		 */
5946 		if (locked)
5947 			sfmmu_mlist_exit(pml);
5948 
5949 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5950 		    != 0)
5951 			panic("sfmmu: posthandler failed");
5952 
5953 		if (locked) {
5954 			pml = sfmmu_mlist_enter(pp);
5955 			goto top;
5956 		}
5957 	}
5958 
5959 	if (locked)
5960 		sfmmu_mlist_exit(pml);
5961 }
5962 
5963 /*
5964  * Suspend locked kernel mapping
5965  */
5966 void
5967 hat_pagesuspend(struct page *pp)
5968 {
5969 	struct sf_hment *sfhmep;
5970 	sfmmu_t *sfmmup;
5971 	tte_t tte, ttemod;
5972 	struct hme_blk *hmeblkp;
5973 	caddr_t addr;
5974 	int index, cons;
5975 	cpuset_t cpuset;
5976 
5977 	ASSERT(PAGE_EXCL(pp));
5978 	ASSERT(sfmmu_mlist_held(pp));
5979 
5980 	mutex_enter(&kpr_suspendlock);
5981 
5982 	/*
5983 	 * Call into dtrace to tell it we're about to suspend a
5984 	 * kernel mapping. This prevents us from running into issues
5985 	 * with probe context trying to touch a suspended page
5986 	 * in the relocation codepath itself.
5987 	 */
5988 	if (dtrace_kreloc_init)
5989 		(*dtrace_kreloc_init)();
5990 
5991 	index = PP_MAPINDEX(pp);
5992 	cons = TTE8K;
5993 
5994 retry:
5995 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5996 
5997 		if (IS_PAHME(sfhmep))
5998 			continue;
5999 
6000 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6001 			continue;
6002 
6003 		/*
6004 		 * Loop until we successfully set the suspend bit in
6005 		 * the TTE.
6006 		 */
6007 again:
6008 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6009 		ASSERT(TTE_IS_VALID(&tte));
6010 
6011 		ttemod = tte;
6012 		TTE_SET_SUSPEND(&ttemod);
6013 		if (sfmmu_modifytte_try(&tte, &ttemod,
6014 		    &sfhmep->hme_tte) < 0)
6015 			goto again;
6016 
6017 		/*
6018 		 * Invalidate TSB entry
6019 		 */
6020 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6021 
6022 		sfmmup = hblktosfmmu(hmeblkp);
6023 		ASSERT(sfmmup == ksfmmup);
6024 
6025 		addr = tte_to_vaddr(hmeblkp, tte);
6026 
6027 		/*
6028 		 * No need to make sure that the TSB for this sfmmu is
6029 		 * not being relocated since it is ksfmmup and thus it
6030 		 * will never be relocated.
6031 		 */
6032 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6033 
6034 		/*
6035 		 * Update xcall stats
6036 		 */
6037 		cpuset = cpu_ready_set;
6038 		CPUSET_DEL(cpuset, CPU->cpu_id);
6039 
6040 		/* LINTED: constant in conditional context */
6041 		SFMMU_XCALL_STATS(ksfmmup);
6042 
6043 		/*
6044 		 * Flush TLB entry on remote CPU's
6045 		 */
6046 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6047 		    (uint64_t)ksfmmup);
6048 		xt_sync(cpuset);
6049 
6050 		/*
6051 		 * Flush TLB entry on local CPU
6052 		 */
6053 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6054 	}
6055 
6056 	while (index != 0) {
6057 		index = index >> 1;
6058 		if (index != 0)
6059 			cons++;
6060 		if (index & 0x1) {
6061 			pp = PP_GROUPLEADER(pp, cons);
6062 			goto retry;
6063 		}
6064 	}
6065 }
6066 
6067 #ifdef	DEBUG
6068 
6069 #define	N_PRLE	1024
6070 struct prle {
6071 	page_t *targ;
6072 	page_t *repl;
6073 	int status;
6074 	int pausecpus;
6075 	hrtime_t whence;
6076 };
6077 
6078 static struct prle page_relocate_log[N_PRLE];
6079 static int prl_entry;
6080 static kmutex_t prl_mutex;
6081 
6082 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6083 	mutex_enter(&prl_mutex);					\
6084 	page_relocate_log[prl_entry].targ = *(t);			\
6085 	page_relocate_log[prl_entry].repl = *(r);			\
6086 	page_relocate_log[prl_entry].status = (s);			\
6087 	page_relocate_log[prl_entry].pausecpus = (p);			\
6088 	page_relocate_log[prl_entry].whence = gethrtime();		\
6089 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6090 	mutex_exit(&prl_mutex);
6091 
6092 #else	/* !DEBUG */
6093 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6094 #endif
6095 
6096 /*
6097  * Core Kernel Page Relocation Algorithm
6098  *
6099  * Input:
6100  *
6101  * target : 	constituent pages are SE_EXCL locked.
6102  * replacement:	constituent pages are SE_EXCL locked.
6103  *
6104  * Output:
6105  *
6106  * nrelocp:	number of pages relocated
6107  */
6108 int
6109 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6110 {
6111 	page_t		*targ, *repl;
6112 	page_t		*tpp, *rpp;
6113 	kmutex_t	*low, *high;
6114 	spgcnt_t	npages, i;
6115 	page_t		*pl = NULL;
6116 	int		old_pil;
6117 	cpuset_t	cpuset;
6118 	int		cap_cpus;
6119 	int		ret;
6120 
6121 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6122 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6123 		return (EAGAIN);
6124 	}
6125 
6126 	mutex_enter(&kpr_mutex);
6127 	kreloc_thread = curthread;
6128 
6129 	targ = *target;
6130 	repl = *replacement;
6131 	ASSERT(repl != NULL);
6132 	ASSERT(targ->p_szc == repl->p_szc);
6133 
6134 	npages = page_get_pagecnt(targ->p_szc);
6135 
6136 	/*
6137 	 * unload VA<->PA mappings that are not locked
6138 	 */
6139 	tpp = targ;
6140 	for (i = 0; i < npages; i++) {
6141 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6142 		tpp++;
6143 	}
6144 
6145 	/*
6146 	 * Do "presuspend" callbacks, in a context from which we can still
6147 	 * block as needed. Note that we don't hold the mapping list lock
6148 	 * of "targ" at this point due to potential locking order issues;
6149 	 * we assume that between the hat_pageunload() above and holding
6150 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6151 	 * point.
6152 	 */
6153 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6154 	if (ret != 0) {
6155 		/*
6156 		 * EIO translates to fatal error, for all others cleanup
6157 		 * and return EAGAIN.
6158 		 */
6159 		ASSERT(ret != EIO);
6160 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6161 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6162 		kreloc_thread = NULL;
6163 		mutex_exit(&kpr_mutex);
6164 		return (EAGAIN);
6165 	}
6166 
6167 	/*
6168 	 * acquire p_mapping list lock for both the target and replacement
6169 	 * root pages.
6170 	 *
6171 	 * low and high refer to the need to grab the mlist locks in a
6172 	 * specific order in order to prevent race conditions.  Thus the
6173 	 * lower lock must be grabbed before the higher lock.
6174 	 *
6175 	 * This will block hat_unload's accessing p_mapping list.  Since
6176 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6177 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6178 	 * while we suspend and reload the locked mapping below.
6179 	 */
6180 	tpp = targ;
6181 	rpp = repl;
6182 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6183 
6184 	kpreempt_disable();
6185 
6186 #ifdef VAC
6187 	/*
6188 	 * If the replacement page is of a different virtual color
6189 	 * than the page it is replacing, we need to handle the VAC
6190 	 * consistency for it just as we would if we were setting up
6191 	 * a new mapping to a page.
6192 	 */
6193 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6194 		if (tpp->p_vcolor != rpp->p_vcolor) {
6195 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6196 			    rpp->p_pagenum);
6197 		}
6198 	}
6199 #endif
6200 
6201 	/*
6202 	 * We raise our PIL to 13 so that we don't get captured by
6203 	 * another CPU or pinned by an interrupt thread.  We can't go to
6204 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6205 	 * that level in the case of IOMMU pseudo mappings.
6206 	 */
6207 	cpuset = cpu_ready_set;
6208 	CPUSET_DEL(cpuset, CPU->cpu_id);
6209 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6210 		old_pil = splr(XCALL_PIL);
6211 	} else {
6212 		old_pil = -1;
6213 		xc_attention(cpuset);
6214 	}
6215 	ASSERT(getpil() == XCALL_PIL);
6216 
6217 	/*
6218 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6219 	 * this will suspend all DMA activity to the page while it is
6220 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6221 	 * may be captured at this point we should have acquired any needed
6222 	 * locks in the presuspend callback.
6223 	 */
6224 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6225 	if (ret != 0) {
6226 		repl = targ;
6227 		goto suspend_fail;
6228 	}
6229 
6230 	/*
6231 	 * Raise the PIL yet again, this time to block all high-level
6232 	 * interrupts on this CPU. This is necessary to prevent an
6233 	 * interrupt routine from pinning the thread which holds the
6234 	 * mapping suspended and then touching the suspended page.
6235 	 *
6236 	 * Once the page is suspended we also need to be careful to
6237 	 * avoid calling any functions which touch any seg_kmem memory
6238 	 * since that memory may be backed by the very page we are
6239 	 * relocating in here!
6240 	 */
6241 	hat_pagesuspend(targ);
6242 
6243 	/*
6244 	 * Now that we are confident everybody has stopped using this page,
6245 	 * copy the page contents.  Note we use a physical copy to prevent
6246 	 * locking issues and to avoid fpRAS because we can't handle it in
6247 	 * this context.
6248 	 */
6249 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6250 		/*
6251 		 * Copy the contents of the page.
6252 		 */
6253 		ppcopy_kernel(tpp, rpp);
6254 	}
6255 
6256 	tpp = targ;
6257 	rpp = repl;
6258 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6259 		/*
6260 		 * Copy attributes.  VAC consistency was handled above,
6261 		 * if required.
6262 		 */
6263 		rpp->p_nrm = tpp->p_nrm;
6264 		tpp->p_nrm = 0;
6265 		rpp->p_index = tpp->p_index;
6266 		tpp->p_index = 0;
6267 #ifdef VAC
6268 		rpp->p_vcolor = tpp->p_vcolor;
6269 #endif
6270 	}
6271 
6272 	/*
6273 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6274 	 * the mapping list from the target page to the replacement page.
6275 	 * Next process postcallbacks; since pa_hment's are linked only to the
6276 	 * p_mapping list of root page, we don't iterate over the constituent
6277 	 * pages.
6278 	 */
6279 	hat_pagereload(targ, repl);
6280 
6281 suspend_fail:
6282 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6283 
6284 	/*
6285 	 * Now lower our PIL and release any captured CPUs since we
6286 	 * are out of the "danger zone".  After this it will again be
6287 	 * safe to acquire adaptive mutex locks, or to drop them...
6288 	 */
6289 	if (old_pil != -1) {
6290 		splx(old_pil);
6291 	} else {
6292 		xc_dismissed(cpuset);
6293 	}
6294 
6295 	kpreempt_enable();
6296 
6297 	sfmmu_mlist_reloc_exit(low, high);
6298 
6299 	/*
6300 	 * Postsuspend callbacks should drop any locks held across
6301 	 * the suspend callbacks.  As before, we don't hold the mapping
6302 	 * list lock at this point.. our assumption is that the mapping
6303 	 * list still can't change due to our holding SE_EXCL lock and
6304 	 * there being no unlocked mappings left. Hence the restriction
6305 	 * on calling context to hat_delete_callback()
6306 	 */
6307 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6308 	if (ret != 0) {
6309 		/*
6310 		 * The second presuspend call failed: we got here through
6311 		 * the suspend_fail label above.
6312 		 */
6313 		ASSERT(ret != EIO);
6314 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6315 		kreloc_thread = NULL;
6316 		mutex_exit(&kpr_mutex);
6317 		return (EAGAIN);
6318 	}
6319 
6320 	/*
6321 	 * Now that we're out of the performance critical section we can
6322 	 * take care of updating the hash table, since we still
6323 	 * hold all the pages locked SE_EXCL at this point we
6324 	 * needn't worry about things changing out from under us.
6325 	 */
6326 	tpp = targ;
6327 	rpp = repl;
6328 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6329 
6330 		/*
6331 		 * replace targ with replacement in page_hash table
6332 		 */
6333 		targ = tpp;
6334 		page_relocate_hash(rpp, targ);
6335 
6336 		/*
6337 		 * concatenate target; caller of platform_page_relocate()
6338 		 * expects target to be concatenated after returning.
6339 		 */
6340 		ASSERT(targ->p_next == targ);
6341 		ASSERT(targ->p_prev == targ);
6342 		page_list_concat(&pl, &targ);
6343 	}
6344 
6345 	ASSERT(*target == pl);
6346 	*nrelocp = npages;
6347 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6348 	kreloc_thread = NULL;
6349 	mutex_exit(&kpr_mutex);
6350 	return (0);
6351 }
6352 
6353 /*
6354  * Called when stray pa_hments are found attached to a page which is
6355  * being freed.  Notify the subsystem which attached the pa_hment of
6356  * the error if it registered a suitable handler, else panic.
6357  */
6358 static void
6359 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6360 {
6361 	id_t cb_id = pahmep->cb_id;
6362 
6363 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6364 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6365 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6366 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6367 			return;		/* non-fatal */
6368 	}
6369 	panic("pa_hment leaked: 0x%p", pahmep);
6370 }
6371 
6372 /*
6373  * Remove all mappings to page 'pp'.
6374  */
6375 int
6376 hat_pageunload(struct page *pp, uint_t forceflag)
6377 {
6378 	struct page *origpp = pp;
6379 	struct sf_hment *sfhme, *tmphme;
6380 	struct hme_blk *hmeblkp;
6381 	kmutex_t *pml;
6382 #ifdef VAC
6383 	kmutex_t *pmtx;
6384 #endif
6385 	cpuset_t cpuset, tset;
6386 	int index, cons;
6387 	int xhme_blks;
6388 	int pa_hments;
6389 
6390 	ASSERT(PAGE_EXCL(pp));
6391 
6392 retry_xhat:
6393 	tmphme = NULL;
6394 	xhme_blks = 0;
6395 	pa_hments = 0;
6396 	CPUSET_ZERO(cpuset);
6397 
6398 	pml = sfmmu_mlist_enter(pp);
6399 
6400 #ifdef VAC
6401 	if (pp->p_kpmref)
6402 		sfmmu_kpm_pageunload(pp);
6403 	ASSERT(!PP_ISMAPPED_KPM(pp));
6404 #endif
6405 
6406 	index = PP_MAPINDEX(pp);
6407 	cons = TTE8K;
6408 retry:
6409 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6410 		tmphme = sfhme->hme_next;
6411 
6412 		if (IS_PAHME(sfhme)) {
6413 			ASSERT(sfhme->hme_data != NULL);
6414 			pa_hments++;
6415 			continue;
6416 		}
6417 
6418 		hmeblkp = sfmmu_hmetohblk(sfhme);
6419 		if (hmeblkp->hblk_xhat_bit) {
6420 			struct xhat_hme_blk *xblk =
6421 			    (struct xhat_hme_blk *)hmeblkp;
6422 
6423 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6424 			    pp, forceflag, XBLK2PROVBLK(xblk));
6425 
6426 			xhme_blks = 1;
6427 			continue;
6428 		}
6429 
6430 		/*
6431 		 * If there are kernel mappings don't unload them, they will
6432 		 * be suspended.
6433 		 */
6434 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6435 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6436 			continue;
6437 
6438 		tset = sfmmu_pageunload(pp, sfhme, cons);
6439 		CPUSET_OR(cpuset, tset);
6440 	}
6441 
6442 	while (index != 0) {
6443 		index = index >> 1;
6444 		if (index != 0)
6445 			cons++;
6446 		if (index & 0x1) {
6447 			/* Go to leading page */
6448 			pp = PP_GROUPLEADER(pp, cons);
6449 			ASSERT(sfmmu_mlist_held(pp));
6450 			goto retry;
6451 		}
6452 	}
6453 
6454 	/*
6455 	 * cpuset may be empty if the page was only mapped by segkpm,
6456 	 * in which case we won't actually cross-trap.
6457 	 */
6458 	xt_sync(cpuset);
6459 
6460 	/*
6461 	 * The page should have no mappings at this point, unless
6462 	 * we were called from hat_page_relocate() in which case we
6463 	 * leave the locked mappings which will be suspended later.
6464 	 */
6465 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6466 	    (forceflag == SFMMU_KERNEL_RELOC));
6467 
6468 #ifdef VAC
6469 	if (PP_ISTNC(pp)) {
6470 		if (cons == TTE8K) {
6471 			pmtx = sfmmu_page_enter(pp);
6472 			PP_CLRTNC(pp);
6473 			sfmmu_page_exit(pmtx);
6474 		} else {
6475 			conv_tnc(pp, cons);
6476 		}
6477 	}
6478 #endif	/* VAC */
6479 
6480 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6481 		/*
6482 		 * Unlink any pa_hments and free them, calling back
6483 		 * the responsible subsystem to notify it of the error.
6484 		 * This can occur in situations such as drivers leaking
6485 		 * DMA handles: naughty, but common enough that we'd like
6486 		 * to keep the system running rather than bringing it
6487 		 * down with an obscure error like "pa_hment leaked"
6488 		 * which doesn't aid the user in debugging their driver.
6489 		 */
6490 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6491 			tmphme = sfhme->hme_next;
6492 			if (IS_PAHME(sfhme)) {
6493 				struct pa_hment *pahmep = sfhme->hme_data;
6494 				sfmmu_pahment_leaked(pahmep);
6495 				HME_SUB(sfhme, pp);
6496 				kmem_cache_free(pa_hment_cache, pahmep);
6497 			}
6498 		}
6499 
6500 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6501 	}
6502 
6503 	sfmmu_mlist_exit(pml);
6504 
6505 	/*
6506 	 * XHAT may not have finished unloading pages
6507 	 * because some other thread was waiting for
6508 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6509 	 * the job.
6510 	 */
6511 	if (xhme_blks) {
6512 		pp = origpp;
6513 		goto retry_xhat;
6514 	}
6515 
6516 	return (0);
6517 }
6518 
6519 cpuset_t
6520 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6521 {
6522 	struct hme_blk *hmeblkp;
6523 	sfmmu_t *sfmmup;
6524 	tte_t tte, ttemod;
6525 #ifdef DEBUG
6526 	tte_t orig_old;
6527 #endif /* DEBUG */
6528 	caddr_t addr;
6529 	int ttesz;
6530 	int ret;
6531 	cpuset_t cpuset;
6532 
6533 	ASSERT(pp != NULL);
6534 	ASSERT(sfmmu_mlist_held(pp));
6535 	ASSERT(!PP_ISKAS(pp));
6536 
6537 	CPUSET_ZERO(cpuset);
6538 
6539 	hmeblkp = sfmmu_hmetohblk(sfhme);
6540 
6541 readtte:
6542 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6543 	if (TTE_IS_VALID(&tte)) {
6544 		sfmmup = hblktosfmmu(hmeblkp);
6545 		ttesz = get_hblk_ttesz(hmeblkp);
6546 		/*
6547 		 * Only unload mappings of 'cons' size.
6548 		 */
6549 		if (ttesz != cons)
6550 			return (cpuset);
6551 
6552 		/*
6553 		 * Note that we have p_mapping lock, but no hash lock here.
6554 		 * hblk_unload() has to have both hash lock AND p_mapping
6555 		 * lock before it tries to modify tte. So, the tte could
6556 		 * not become invalid in the sfmmu_modifytte_try() below.
6557 		 */
6558 		ttemod = tte;
6559 #ifdef DEBUG
6560 		orig_old = tte;
6561 #endif /* DEBUG */
6562 
6563 		TTE_SET_INVALID(&ttemod);
6564 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6565 		if (ret < 0) {
6566 #ifdef DEBUG
6567 			/* only R/M bits can change. */
6568 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6569 #endif /* DEBUG */
6570 			goto readtte;
6571 		}
6572 
6573 		if (ret == 0) {
6574 			panic("pageunload: cas failed?");
6575 		}
6576 
6577 		addr = tte_to_vaddr(hmeblkp, tte);
6578 
6579 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6580 
6581 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6582 
6583 		/*
6584 		 * We need to flush the page from the virtual cache
6585 		 * in order to prevent a virtual cache alias
6586 		 * inconsistency. The particular scenario we need
6587 		 * to worry about is:
6588 		 * Given:  va1 and va2 are two virtual address that
6589 		 * alias and will map the same physical address.
6590 		 * 1.	mapping exists from va1 to pa and data has
6591 		 *	been read into the cache.
6592 		 * 2.	unload va1.
6593 		 * 3.	load va2 and modify data using va2.
6594 		 * 4	unload va2.
6595 		 * 5.	load va1 and reference data.  Unless we flush
6596 		 *	the data cache when we unload we will get
6597 		 *	stale data.
6598 		 * This scenario is taken care of by using virtual
6599 		 * page coloring.
6600 		 */
6601 		if (sfmmup->sfmmu_ismhat) {
6602 			/*
6603 			 * Flush TSBs, TLBs and caches
6604 			 * of every process
6605 			 * sharing this ism segment.
6606 			 */
6607 			sfmmu_hat_lock_all();
6608 			mutex_enter(&ism_mlist_lock);
6609 			kpreempt_disable();
6610 			if (do_virtual_coloring)
6611 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6612 					pp->p_pagenum, CACHE_NO_FLUSH);
6613 			else
6614 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6615 					pp->p_pagenum, CACHE_FLUSH);
6616 			kpreempt_enable();
6617 			mutex_exit(&ism_mlist_lock);
6618 			sfmmu_hat_unlock_all();
6619 			cpuset = cpu_ready_set;
6620 		} else if (do_virtual_coloring) {
6621 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6622 			cpuset = sfmmup->sfmmu_cpusran;
6623 		} else {
6624 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6625 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6626 				CACHE_FLUSH, 0);
6627 			cpuset = sfmmup->sfmmu_cpusran;
6628 		}
6629 
6630 		/*
6631 		 * Hme_sub has to run after ttesync() and a_rss update.
6632 		 * See hblk_unload().
6633 		 */
6634 		HME_SUB(sfhme, pp);
6635 		membar_stst();
6636 
6637 		/*
6638 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6639 		 * since pteload may have done a HME_ADD() right after
6640 		 * we did the HME_SUB() above. Hmecnt is now maintained
6641 		 * by cas only. no lock guranteed its value. The only
6642 		 * gurantee we have is the hmecnt should not be less than
6643 		 * what it should be so the hblk will not be taken away.
6644 		 * It's also important that we decremented the hmecnt after
6645 		 * we are done with hmeblkp so that this hmeblk won't be
6646 		 * stolen.
6647 		 */
6648 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6649 		ASSERT(hmeblkp->hblk_vcnt > 0);
6650 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6651 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6652 		/*
6653 		 * This is bug 4063182.
6654 		 * XXX: fixme
6655 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6656 		 *	!hmeblkp->hblk_lckcnt);
6657 		 */
6658 	} else {
6659 		panic("invalid tte? pp %p &tte %p",
6660 		    (void *)pp, (void *)&tte);
6661 	}
6662 
6663 	return (cpuset);
6664 }
6665 
6666 /*
6667  * While relocating a kernel page, this function will move the mappings
6668  * from tpp to dpp and modify any associated data with these mappings.
6669  * It also unsuspends the suspended kernel mapping.
6670  */
6671 static void
6672 hat_pagereload(struct page *tpp, struct page *dpp)
6673 {
6674 	struct sf_hment *sfhme;
6675 	tte_t tte, ttemod;
6676 	int index, cons;
6677 
6678 	ASSERT(getpil() == PIL_MAX);
6679 	ASSERT(sfmmu_mlist_held(tpp));
6680 	ASSERT(sfmmu_mlist_held(dpp));
6681 
6682 	index = PP_MAPINDEX(tpp);
6683 	cons = TTE8K;
6684 
6685 	/* Update real mappings to the page */
6686 retry:
6687 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6688 		if (IS_PAHME(sfhme))
6689 			continue;
6690 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6691 		ttemod = tte;
6692 
6693 		/*
6694 		 * replace old pfn with new pfn in TTE
6695 		 */
6696 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6697 
6698 		/*
6699 		 * clear suspend bit
6700 		 */
6701 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6702 		TTE_CLR_SUSPEND(&ttemod);
6703 
6704 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6705 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6706 
6707 		/*
6708 		 * set hme_page point to new page
6709 		 */
6710 		sfhme->hme_page = dpp;
6711 	}
6712 
6713 	/*
6714 	 * move p_mapping list from old page to new page
6715 	 */
6716 	dpp->p_mapping = tpp->p_mapping;
6717 	tpp->p_mapping = NULL;
6718 	dpp->p_share = tpp->p_share;
6719 	tpp->p_share = 0;
6720 
6721 	while (index != 0) {
6722 		index = index >> 1;
6723 		if (index != 0)
6724 			cons++;
6725 		if (index & 0x1) {
6726 			tpp = PP_GROUPLEADER(tpp, cons);
6727 			dpp = PP_GROUPLEADER(dpp, cons);
6728 			goto retry;
6729 		}
6730 	}
6731 
6732 	if (dtrace_kreloc_fini)
6733 		(*dtrace_kreloc_fini)();
6734 	mutex_exit(&kpr_suspendlock);
6735 }
6736 
6737 uint_t
6738 hat_pagesync(struct page *pp, uint_t clearflag)
6739 {
6740 	struct sf_hment *sfhme, *tmphme = NULL;
6741 	struct hme_blk *hmeblkp;
6742 	kmutex_t *pml;
6743 	cpuset_t cpuset, tset;
6744 	int	index, cons;
6745 	extern	ulong_t po_share;
6746 	page_t	*save_pp = pp;
6747 
6748 	CPUSET_ZERO(cpuset);
6749 
6750 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6751 		return (PP_GENERIC_ATTR(pp));
6752 	}
6753 
6754 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6755 	    PP_ISREF(pp)) {
6756 		return (PP_GENERIC_ATTR(pp));
6757 	}
6758 
6759 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6760 	    PP_ISMOD(pp)) {
6761 		return (PP_GENERIC_ATTR(pp));
6762 	}
6763 
6764 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6765 	    (pp->p_share > po_share) &&
6766 	    !(clearflag & HAT_SYNC_ZERORM)) {
6767 		if (PP_ISRO(pp))
6768 			hat_page_setattr(pp, P_REF);
6769 		return (PP_GENERIC_ATTR(pp));
6770 	}
6771 
6772 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6773 	pml = sfmmu_mlist_enter(pp);
6774 	index = PP_MAPINDEX(pp);
6775 	cons = TTE8K;
6776 retry:
6777 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6778 		/*
6779 		 * We need to save the next hment on the list since
6780 		 * it is possible for pagesync to remove an invalid hment
6781 		 * from the list.
6782 		 */
6783 		tmphme = sfhme->hme_next;
6784 		/*
6785 		 * If we are looking for large mappings and this hme doesn't
6786 		 * reach the range we are seeking, just ignore its.
6787 		 */
6788 		hmeblkp = sfmmu_hmetohblk(sfhme);
6789 		if (hmeblkp->hblk_xhat_bit)
6790 			continue;
6791 
6792 		if (hme_size(sfhme) < cons)
6793 			continue;
6794 		tset = sfmmu_pagesync(pp, sfhme,
6795 			clearflag & ~HAT_SYNC_STOPON_RM);
6796 		CPUSET_OR(cpuset, tset);
6797 		/*
6798 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6799 		 * as the "ref" or "mod" is set.
6800 		 */
6801 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6802 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6803 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6804 			index = 0;
6805 			break;
6806 		}
6807 	}
6808 
6809 	while (index) {
6810 		index = index >> 1;
6811 		cons++;
6812 		if (index & 0x1) {
6813 			/* Go to leading page */
6814 			pp = PP_GROUPLEADER(pp, cons);
6815 			goto retry;
6816 		}
6817 	}
6818 
6819 	xt_sync(cpuset);
6820 	sfmmu_mlist_exit(pml);
6821 	return (PP_GENERIC_ATTR(save_pp));
6822 }
6823 
6824 /*
6825  * Get all the hardware dependent attributes for a page struct
6826  */
6827 static cpuset_t
6828 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6829 	uint_t clearflag)
6830 {
6831 	caddr_t addr;
6832 	tte_t tte, ttemod;
6833 	struct hme_blk *hmeblkp;
6834 	int ret;
6835 	sfmmu_t *sfmmup;
6836 	cpuset_t cpuset;
6837 
6838 	ASSERT(pp != NULL);
6839 	ASSERT(sfmmu_mlist_held(pp));
6840 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6841 		(clearflag == HAT_SYNC_ZERORM));
6842 
6843 	SFMMU_STAT(sf_pagesync);
6844 
6845 	CPUSET_ZERO(cpuset);
6846 
6847 sfmmu_pagesync_retry:
6848 
6849 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6850 	if (TTE_IS_VALID(&tte)) {
6851 		hmeblkp = sfmmu_hmetohblk(sfhme);
6852 		sfmmup = hblktosfmmu(hmeblkp);
6853 		addr = tte_to_vaddr(hmeblkp, tte);
6854 		if (clearflag == HAT_SYNC_ZERORM) {
6855 			ttemod = tte;
6856 			TTE_CLR_RM(&ttemod);
6857 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6858 				&sfhme->hme_tte);
6859 			if (ret < 0) {
6860 				/*
6861 				 * cas failed and the new value is not what
6862 				 * we want.
6863 				 */
6864 				goto sfmmu_pagesync_retry;
6865 			}
6866 
6867 			if (ret > 0) {
6868 				/* we win the cas */
6869 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6870 				cpuset = sfmmup->sfmmu_cpusran;
6871 			}
6872 		}
6873 
6874 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6875 	}
6876 	return (cpuset);
6877 }
6878 
6879 /*
6880  * Remove write permission from a mappings to a page, so that
6881  * we can detect the next modification of it. This requires modifying
6882  * the TTE then invalidating (demap) any TLB entry using that TTE.
6883  * This code is similar to sfmmu_pagesync().
6884  */
6885 static cpuset_t
6886 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6887 {
6888 	caddr_t addr;
6889 	tte_t tte;
6890 	tte_t ttemod;
6891 	struct hme_blk *hmeblkp;
6892 	int ret;
6893 	sfmmu_t *sfmmup;
6894 	cpuset_t cpuset;
6895 
6896 	ASSERT(pp != NULL);
6897 	ASSERT(sfmmu_mlist_held(pp));
6898 
6899 	CPUSET_ZERO(cpuset);
6900 	SFMMU_STAT(sf_clrwrt);
6901 
6902 retry:
6903 
6904 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6905 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6906 		hmeblkp = sfmmu_hmetohblk(sfhme);
6907 
6908 		/*
6909 		 * xhat mappings should never be to a VMODSORT page.
6910 		 */
6911 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6912 
6913 		sfmmup = hblktosfmmu(hmeblkp);
6914 		addr = tte_to_vaddr(hmeblkp, tte);
6915 
6916 		ttemod = tte;
6917 		TTE_CLR_WRT(&ttemod);
6918 		TTE_CLR_MOD(&ttemod);
6919 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6920 
6921 		/*
6922 		 * if cas failed and the new value is not what
6923 		 * we want retry
6924 		 */
6925 		if (ret < 0)
6926 			goto retry;
6927 
6928 		/* we win the cas */
6929 		if (ret > 0) {
6930 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6931 			cpuset = sfmmup->sfmmu_cpusran;
6932 		}
6933 	}
6934 
6935 	return (cpuset);
6936 }
6937 
6938 /*
6939  * Walk all mappings of a page, removing write permission and clearing the
6940  * ref/mod bits. This code is similar to hat_pagesync()
6941  */
6942 static void
6943 hat_page_clrwrt(page_t *pp)
6944 {
6945 	struct sf_hment *sfhme;
6946 	struct sf_hment *tmphme = NULL;
6947 	kmutex_t *pml;
6948 	cpuset_t cpuset;
6949 	cpuset_t tset;
6950 	int	index;
6951 	int	 cons;
6952 
6953 	CPUSET_ZERO(cpuset);
6954 
6955 	pml = sfmmu_mlist_enter(pp);
6956 	index = PP_MAPINDEX(pp);
6957 	cons = TTE8K;
6958 retry:
6959 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6960 		tmphme = sfhme->hme_next;
6961 
6962 		/*
6963 		 * If we are looking for large mappings and this hme doesn't
6964 		 * reach the range we are seeking, just ignore its.
6965 		 */
6966 
6967 		if (hme_size(sfhme) < cons)
6968 			continue;
6969 
6970 		tset = sfmmu_pageclrwrt(pp, sfhme);
6971 		CPUSET_OR(cpuset, tset);
6972 	}
6973 
6974 	while (index) {
6975 		index = index >> 1;
6976 		cons++;
6977 		if (index & 0x1) {
6978 			/* Go to leading page */
6979 			pp = PP_GROUPLEADER(pp, cons);
6980 			goto retry;
6981 		}
6982 	}
6983 
6984 	xt_sync(cpuset);
6985 	sfmmu_mlist_exit(pml);
6986 }
6987 
6988 /*
6989  * Set the given REF/MOD/RO bits for the given page.
6990  * For a vnode with a sorted v_pages list, we need to change
6991  * the attributes and the v_pages list together under page_vnode_mutex.
6992  */
6993 void
6994 hat_page_setattr(page_t *pp, uint_t flag)
6995 {
6996 	vnode_t		*vp = pp->p_vnode;
6997 	page_t		**listp;
6998 	kmutex_t	*pmtx;
6999 	kmutex_t	*vphm = NULL;
7000 
7001 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7002 
7003 	/*
7004 	 * nothing to do if attribute already set
7005 	 */
7006 	if ((pp->p_nrm & flag) == flag)
7007 		return;
7008 
7009 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7010 		vphm = page_vnode_mutex(vp);
7011 		mutex_enter(vphm);
7012 	}
7013 
7014 	pmtx = sfmmu_page_enter(pp);
7015 	pp->p_nrm |= flag;
7016 	sfmmu_page_exit(pmtx);
7017 
7018 	if (vphm != NULL) {
7019 		/*
7020 		 * Some File Systems examine v_pages for NULL w/o
7021 		 * grabbing the vphm mutex. Must not let it become NULL when
7022 		 * pp is the only page on the list.
7023 		 */
7024 		if (pp->p_vpnext != pp) {
7025 			page_vpsub(&vp->v_pages, pp);
7026 			if (vp->v_pages != NULL)
7027 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7028 			else
7029 				listp = &vp->v_pages;
7030 			page_vpadd(listp, pp);
7031 		}
7032 		mutex_exit(vphm);
7033 	}
7034 }
7035 
7036 void
7037 hat_page_clrattr(page_t *pp, uint_t flag)
7038 {
7039 	vnode_t		*vp = pp->p_vnode;
7040 	kmutex_t	*pmtx;
7041 
7042 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7043 
7044 	pmtx = sfmmu_page_enter(pp);
7045 
7046 	/*
7047 	 * Caller is expected to hold page's io lock for VMODSORT to work
7048 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7049 	 * bit is cleared.
7050 	 * We don't have assert to avoid tripping some existing third party
7051 	 * code. The dirty page is moved back to top of the v_page list
7052 	 * after IO is done in pvn_write_done().
7053 	 */
7054 	pp->p_nrm &= ~flag;
7055 	sfmmu_page_exit(pmtx);
7056 
7057 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7058 
7059 		/*
7060 		 * VMODSORT works by removing write permissions and getting
7061 		 * a fault when a page is made dirty. At this point
7062 		 * we need to remove write permission from all mappings
7063 		 * to this page.
7064 		 */
7065 		hat_page_clrwrt(pp);
7066 	}
7067 }
7068 
7069 uint_t
7070 hat_page_getattr(page_t *pp, uint_t flag)
7071 {
7072 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7073 	return ((uint_t)(pp->p_nrm & flag));
7074 }
7075 
7076 /*
7077  * DEBUG kernels: verify that a kernel va<->pa translation
7078  * is safe by checking the underlying page_t is in a page
7079  * relocation-safe state.
7080  */
7081 #ifdef	DEBUG
7082 void
7083 sfmmu_check_kpfn(pfn_t pfn)
7084 {
7085 	page_t *pp;
7086 	int index, cons;
7087 
7088 	if (hat_check_vtop == 0)
7089 		return;
7090 
7091 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7092 		return;
7093 
7094 	pp = page_numtopp_nolock(pfn);
7095 	if (!pp)
7096 		return;
7097 
7098 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7099 		return;
7100 
7101 	/*
7102 	 * Handed a large kernel page, we dig up the root page since we
7103 	 * know the root page might have the lock also.
7104 	 */
7105 	if (pp->p_szc != 0) {
7106 		index = PP_MAPINDEX(pp);
7107 		cons = TTE8K;
7108 again:
7109 		while (index != 0) {
7110 			index >>= 1;
7111 			if (index != 0)
7112 				cons++;
7113 			if (index & 0x1) {
7114 				pp = PP_GROUPLEADER(pp, cons);
7115 				goto again;
7116 			}
7117 		}
7118 	}
7119 
7120 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7121 		return;
7122 
7123 	/*
7124 	 * Pages need to be locked or allocated "permanent" (either from
7125 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7126 	 * page_create_va()) for VA->PA translations to be valid.
7127 	 */
7128 	if (!PP_ISNORELOC(pp))
7129 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7130 	else
7131 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7132 }
7133 #endif	/* DEBUG */
7134 
7135 /*
7136  * Returns a page frame number for a given virtual address.
7137  * Returns PFN_INVALID to indicate an invalid mapping
7138  */
7139 pfn_t
7140 hat_getpfnum(struct hat *hat, caddr_t addr)
7141 {
7142 	pfn_t pfn;
7143 	tte_t tte;
7144 
7145 	/*
7146 	 * We would like to
7147 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7148 	 * but we can't because the iommu driver will call this
7149 	 * routine at interrupt time and it can't grab the as lock
7150 	 * or it will deadlock: A thread could have the as lock
7151 	 * and be waiting for io.  The io can't complete
7152 	 * because the interrupt thread is blocked trying to grab
7153 	 * the as lock.
7154 	 */
7155 
7156 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7157 
7158 	if (hat == ksfmmup) {
7159 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7160 			ASSERT(segkmem_lpszc > 0);
7161 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7162 			if (pfn != PFN_INVALID) {
7163 				sfmmu_check_kpfn(pfn);
7164 				return (pfn);
7165 			}
7166 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7167 			return (sfmmu_kpm_vatopfn(addr));
7168 		}
7169 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7170 		    == PFN_SUSPENDED) {
7171 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7172 		}
7173 		sfmmu_check_kpfn(pfn);
7174 		return (pfn);
7175 	} else {
7176 		return (sfmmu_uvatopfn(addr, hat));
7177 	}
7178 }
7179 
7180 /*
7181  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7182  * Use hat_getpfnum(kas.a_hat, ...) instead.
7183  *
7184  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7185  * but can't right now due to the fact that some software has grown to use
7186  * this interface incorrectly. So for now when the interface is misused,
7187  * return a warning to the user that in the future it won't work in the
7188  * way they're abusing it, and carry on (after disabling page relocation).
7189  */
7190 pfn_t
7191 hat_getkpfnum(caddr_t addr)
7192 {
7193 	pfn_t pfn;
7194 	tte_t tte;
7195 	int badcaller = 0;
7196 	extern int segkmem_reloc;
7197 
7198 	if (segkpm && IS_KPM_ADDR(addr)) {
7199 		badcaller = 1;
7200 		pfn = sfmmu_kpm_vatopfn(addr);
7201 	} else {
7202 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7203 		    == PFN_SUSPENDED) {
7204 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7205 		}
7206 		badcaller = pf_is_memory(pfn);
7207 	}
7208 
7209 	if (badcaller) {
7210 		/*
7211 		 * We can't return PFN_INVALID or the caller may panic
7212 		 * or corrupt the system.  The only alternative is to
7213 		 * disable page relocation at this point for all kernel
7214 		 * memory.  This will impact any callers of page_relocate()
7215 		 * such as FMA or DR.
7216 		 *
7217 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7218 		 * can be advised that he should upgrade his device driver
7219 		 * so that this doesn't happen.
7220 		 */
7221 		hat_getkpfnum_badcall(caller());
7222 		if (hat_kpr_enabled && segkmem_reloc) {
7223 			hat_kpr_enabled = 0;
7224 			segkmem_reloc = 0;
7225 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7226 		}
7227 	}
7228 	return (pfn);
7229 }
7230 
7231 pfn_t
7232 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7233 {
7234 	struct hmehash_bucket *hmebp;
7235 	hmeblk_tag hblktag;
7236 	int hmeshift, hashno = 1;
7237 	struct hme_blk *hmeblkp = NULL;
7238 
7239 	struct sf_hment *sfhmep;
7240 	tte_t tte;
7241 	pfn_t pfn;
7242 
7243 	/* support for ISM */
7244 	ism_map_t	*ism_map;
7245 	ism_blk_t	*ism_blkp;
7246 	int		i;
7247 	sfmmu_t *ism_hatid = NULL;
7248 	sfmmu_t *locked_hatid = NULL;
7249 
7250 
7251 	ASSERT(sfmmup != ksfmmup);
7252 	SFMMU_STAT(sf_user_vtop);
7253 	/*
7254 	 * Set ism_hatid if vaddr falls in a ISM segment.
7255 	 */
7256 	ism_blkp = sfmmup->sfmmu_iblk;
7257 	if (ism_blkp) {
7258 		sfmmu_ismhat_enter(sfmmup, 0);
7259 		locked_hatid = sfmmup;
7260 	}
7261 	while (ism_blkp && ism_hatid == NULL) {
7262 		ism_map = ism_blkp->iblk_maps;
7263 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7264 			if (vaddr >= ism_start(ism_map[i]) &&
7265 			    vaddr < ism_end(ism_map[i])) {
7266 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7267 				vaddr = (caddr_t)(vaddr -
7268 					ism_start(ism_map[i]));
7269 				break;
7270 			}
7271 		}
7272 		ism_blkp = ism_blkp->iblk_next;
7273 	}
7274 	if (locked_hatid) {
7275 		sfmmu_ismhat_exit(locked_hatid, 0);
7276 	}
7277 
7278 	hblktag.htag_id = sfmmup;
7279 	do {
7280 		hmeshift = HME_HASH_SHIFT(hashno);
7281 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7282 		hblktag.htag_rehash = hashno;
7283 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7284 
7285 		SFMMU_HASH_LOCK(hmebp);
7286 
7287 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7288 		if (hmeblkp != NULL) {
7289 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7290 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7291 			if (TTE_IS_VALID(&tte)) {
7292 				pfn = TTE_TO_PFN(vaddr, &tte);
7293 			} else {
7294 				pfn = PFN_INVALID;
7295 			}
7296 			SFMMU_HASH_UNLOCK(hmebp);
7297 			return (pfn);
7298 		}
7299 		SFMMU_HASH_UNLOCK(hmebp);
7300 		hashno++;
7301 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7302 	return (PFN_INVALID);
7303 }
7304 
7305 
7306 /*
7307  * For compatability with AT&T and later optimizations
7308  */
7309 /* ARGSUSED */
7310 void
7311 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7312 {
7313 	ASSERT(hat != NULL);
7314 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7315 }
7316 
7317 /*
7318  * Return the number of mappings to a particular page.
7319  * This number is an approximation of the number of
7320  * number of people sharing the page.
7321  */
7322 ulong_t
7323 hat_page_getshare(page_t *pp)
7324 {
7325 	page_t *spp = pp;	/* start page */
7326 	kmutex_t *pml;
7327 	ulong_t	cnt;
7328 	int index, sz = TTE64K;
7329 
7330 	/*
7331 	 * We need to grab the mlist lock to make sure any outstanding
7332 	 * load/unloads complete.  Otherwise we could return zero
7333 	 * even though the unload(s) hasn't finished yet.
7334 	 */
7335 	pml = sfmmu_mlist_enter(spp);
7336 	cnt = spp->p_share;
7337 
7338 #ifdef VAC
7339 	if (kpm_enable)
7340 		cnt += spp->p_kpmref;
7341 #endif
7342 
7343 	/*
7344 	 * If we have any large mappings, we count the number of
7345 	 * mappings that this large page is part of.
7346 	 */
7347 	index = PP_MAPINDEX(spp);
7348 	index >>= 1;
7349 	while (index) {
7350 		pp = PP_GROUPLEADER(spp, sz);
7351 		if ((index & 0x1) && pp != spp) {
7352 			cnt += pp->p_share;
7353 			spp = pp;
7354 		}
7355 		index >>= 1;
7356 		sz++;
7357 	}
7358 	sfmmu_mlist_exit(pml);
7359 	return (cnt);
7360 }
7361 
7362 /*
7363  * Unload all large mappings to the pp and reset the p_szc field of every
7364  * constituent page according to the remaining mappings.
7365  *
7366  * pp must be locked SE_EXCL. Even though no other constituent pages are
7367  * locked it's legal to unload the large mappings to the pp because all
7368  * constituent pages of large locked mappings have to be locked SE_SHARED.
7369  * This means if we have SE_EXCL lock on one of constituent pages none of the
7370  * large mappings to pp are locked.
7371  *
7372  * Decrease p_szc field starting from the last constituent page and ending
7373  * with the root page. This method is used because other threads rely on the
7374  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7375  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7376  * ensures that p_szc changes of the constituent pages appears atomic for all
7377  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7378  *
7379  * This mechanism is only used for file system pages where it's not always
7380  * possible to get SE_EXCL locks on all constituent pages to demote the size
7381  * code (as is done for anonymous or kernel large pages).
7382  *
7383  * See more comments in front of sfmmu_mlspl_enter().
7384  */
7385 void
7386 hat_page_demote(page_t *pp)
7387 {
7388 	int index;
7389 	int sz;
7390 	cpuset_t cpuset;
7391 	int sync = 0;
7392 	page_t *rootpp;
7393 	struct sf_hment *sfhme;
7394 	struct sf_hment *tmphme = NULL;
7395 	struct hme_blk *hmeblkp;
7396 	uint_t pszc;
7397 	page_t *lastpp;
7398 	cpuset_t tset;
7399 	pgcnt_t npgs;
7400 	kmutex_t *pml;
7401 	kmutex_t *pmtx = NULL;
7402 
7403 	ASSERT(PAGE_EXCL(pp));
7404 	ASSERT(!PP_ISFREE(pp));
7405 	ASSERT(page_szc_lock_assert(pp));
7406 	pml = sfmmu_mlist_enter(pp);
7407 
7408 	pszc = pp->p_szc;
7409 	if (pszc == 0) {
7410 		goto out;
7411 	}
7412 
7413 	index = PP_MAPINDEX(pp) >> 1;
7414 
7415 	if (index) {
7416 		CPUSET_ZERO(cpuset);
7417 		sz = TTE64K;
7418 		sync = 1;
7419 	}
7420 
7421 	while (index) {
7422 		if (!(index & 0x1)) {
7423 			index >>= 1;
7424 			sz++;
7425 			continue;
7426 		}
7427 		ASSERT(sz <= pszc);
7428 		rootpp = PP_GROUPLEADER(pp, sz);
7429 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7430 			tmphme = sfhme->hme_next;
7431 			hmeblkp = sfmmu_hmetohblk(sfhme);
7432 			if (hme_size(sfhme) != sz) {
7433 				continue;
7434 			}
7435 			if (hmeblkp->hblk_xhat_bit) {
7436 				cmn_err(CE_PANIC,
7437 				    "hat_page_demote: xhat hmeblk");
7438 			}
7439 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7440 			CPUSET_OR(cpuset, tset);
7441 		}
7442 		if (index >>= 1) {
7443 			sz++;
7444 		}
7445 	}
7446 
7447 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7448 
7449 	if (sync) {
7450 		xt_sync(cpuset);
7451 #ifdef VAC
7452 		if (PP_ISTNC(pp)) {
7453 			conv_tnc(rootpp, sz);
7454 		}
7455 #endif	/* VAC */
7456 	}
7457 
7458 	pmtx = sfmmu_page_enter(pp);
7459 
7460 	ASSERT(pp->p_szc == pszc);
7461 	rootpp = PP_PAGEROOT(pp);
7462 	ASSERT(rootpp->p_szc == pszc);
7463 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7464 
7465 	while (lastpp != rootpp) {
7466 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7467 		ASSERT(sz < pszc);
7468 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7469 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7470 		while (--npgs > 0) {
7471 			lastpp->p_szc = (uchar_t)sz;
7472 			lastpp = PP_PAGEPREV(lastpp);
7473 		}
7474 		if (sz) {
7475 			/*
7476 			 * make sure before current root's pszc
7477 			 * is updated all updates to constituent pages pszc
7478 			 * fields are globally visible.
7479 			 */
7480 			membar_producer();
7481 		}
7482 		lastpp->p_szc = sz;
7483 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7484 		if (lastpp != rootpp) {
7485 			lastpp = PP_PAGEPREV(lastpp);
7486 		}
7487 	}
7488 	if (sz == 0) {
7489 		/* the loop above doesn't cover this case */
7490 		rootpp->p_szc = 0;
7491 	}
7492 out:
7493 	ASSERT(pp->p_szc == 0);
7494 	if (pmtx != NULL) {
7495 		sfmmu_page_exit(pmtx);
7496 	}
7497 	sfmmu_mlist_exit(pml);
7498 }
7499 
7500 /*
7501  * Refresh the HAT ismttecnt[] element for size szc.
7502  * Caller must have set ISM busy flag to prevent mapping
7503  * lists from changing while we're traversing them.
7504  */
7505 pgcnt_t
7506 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7507 {
7508 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7509 	ism_map_t	*ism_map;
7510 	pgcnt_t		npgs = 0;
7511 	int		j;
7512 
7513 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7514 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7515 		ism_map = ism_blkp->iblk_maps;
7516 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7517 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7518 	}
7519 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7520 	return (npgs);
7521 }
7522 
7523 /*
7524  * Yield the memory claim requirement for an address space.
7525  *
7526  * This is currently implemented as the number of bytes that have active
7527  * hardware translations that have page structures.  Therefore, it can
7528  * underestimate the traditional resident set size, eg, if the
7529  * physical page is present and the hardware translation is missing;
7530  * and it can overestimate the rss, eg, if there are active
7531  * translations to a frame buffer with page structs.
7532  * Also, it does not take sharing into account.
7533  *
7534  * Note that we don't acquire locks here since this function is most often
7535  * called from the clock thread.
7536  */
7537 size_t
7538 hat_get_mapped_size(struct hat *hat)
7539 {
7540 	size_t		assize = 0;
7541 	int 		i;
7542 
7543 	if (hat == NULL)
7544 		return (0);
7545 
7546 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7547 
7548 	for (i = 0; i < mmu_page_sizes; i++)
7549 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7550 
7551 	if (hat->sfmmu_iblk == NULL)
7552 		return (assize);
7553 
7554 	for (i = 0; i < mmu_page_sizes; i++)
7555 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7556 
7557 	return (assize);
7558 }
7559 
7560 int
7561 hat_stats_enable(struct hat *hat)
7562 {
7563 	hatlock_t	*hatlockp;
7564 
7565 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7566 
7567 	hatlockp = sfmmu_hat_enter(hat);
7568 	hat->sfmmu_rmstat++;
7569 	sfmmu_hat_exit(hatlockp);
7570 	return (1);
7571 }
7572 
7573 void
7574 hat_stats_disable(struct hat *hat)
7575 {
7576 	hatlock_t	*hatlockp;
7577 
7578 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7579 
7580 	hatlockp = sfmmu_hat_enter(hat);
7581 	hat->sfmmu_rmstat--;
7582 	sfmmu_hat_exit(hatlockp);
7583 }
7584 
7585 /*
7586  * Routines for entering or removing  ourselves from the
7587  * ism_hat's mapping list.
7588  */
7589 static void
7590 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7591 {
7592 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7593 
7594 	iment->iment_prev = NULL;
7595 	iment->iment_next = ism_hat->sfmmu_iment;
7596 	if (ism_hat->sfmmu_iment) {
7597 		ism_hat->sfmmu_iment->iment_prev = iment;
7598 	}
7599 	ism_hat->sfmmu_iment = iment;
7600 }
7601 
7602 static void
7603 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7604 {
7605 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7606 
7607 	if (ism_hat->sfmmu_iment == NULL) {
7608 		panic("ism map entry remove - no entries");
7609 	}
7610 
7611 	if (iment->iment_prev) {
7612 		ASSERT(ism_hat->sfmmu_iment != iment);
7613 		iment->iment_prev->iment_next = iment->iment_next;
7614 	} else {
7615 		ASSERT(ism_hat->sfmmu_iment == iment);
7616 		ism_hat->sfmmu_iment = iment->iment_next;
7617 	}
7618 
7619 	if (iment->iment_next) {
7620 		iment->iment_next->iment_prev = iment->iment_prev;
7621 	}
7622 
7623 	/*
7624 	 * zero out the entry
7625 	 */
7626 	iment->iment_next = NULL;
7627 	iment->iment_prev = NULL;
7628 	iment->iment_hat =  NULL;
7629 }
7630 
7631 /*
7632  * Hat_share()/unshare() return an (non-zero) error
7633  * when saddr and daddr are not properly aligned.
7634  *
7635  * The top level mapping element determines the alignment
7636  * requirement for saddr and daddr, depending on different
7637  * architectures.
7638  *
7639  * When hat_share()/unshare() are not supported,
7640  * HATOP_SHARE()/UNSHARE() return 0
7641  */
7642 int
7643 hat_share(struct hat *sfmmup, caddr_t addr,
7644 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7645 {
7646 	ism_blk_t	*ism_blkp;
7647 	ism_blk_t	*new_iblk;
7648 	ism_map_t 	*ism_map;
7649 	ism_ment_t	*ism_ment;
7650 	int		i, added;
7651 	hatlock_t	*hatlockp;
7652 	int		reload_mmu = 0;
7653 	uint_t		ismshift = page_get_shift(ismszc);
7654 	size_t		ismpgsz = page_get_pagesize(ismszc);
7655 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7656 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7657 	ushort_t	ismhatflag;
7658 
7659 #ifdef DEBUG
7660 	caddr_t		eaddr = addr + len;
7661 #endif /* DEBUG */
7662 
7663 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7664 	ASSERT(sptaddr == ISMID_STARTADDR);
7665 	/*
7666 	 * Check the alignment.
7667 	 */
7668 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7669 		return (EINVAL);
7670 
7671 	/*
7672 	 * Check size alignment.
7673 	 */
7674 	if (!ISM_ALIGNED(ismshift, len))
7675 		return (EINVAL);
7676 
7677 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7678 
7679 	/*
7680 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7681 	 * ism map blk in case we need one.  We must do our
7682 	 * allocations before acquiring locks to prevent a deadlock
7683 	 * in the kmem allocator on the mapping list lock.
7684 	 */
7685 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7686 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7687 
7688 	/*
7689 	 * Serialize ISM mappings with the ISM busy flag, and also the
7690 	 * trap handlers.
7691 	 */
7692 	sfmmu_ismhat_enter(sfmmup, 0);
7693 
7694 	/*
7695 	 * Allocate an ism map blk if necessary.
7696 	 */
7697 	if (sfmmup->sfmmu_iblk == NULL) {
7698 		sfmmup->sfmmu_iblk = new_iblk;
7699 		bzero(new_iblk, sizeof (*new_iblk));
7700 		new_iblk->iblk_nextpa = (uint64_t)-1;
7701 		membar_stst();	/* make sure next ptr visible to all CPUs */
7702 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7703 		reload_mmu = 1;
7704 		new_iblk = NULL;
7705 	}
7706 
7707 #ifdef DEBUG
7708 	/*
7709 	 * Make sure mapping does not already exist.
7710 	 */
7711 	ism_blkp = sfmmup->sfmmu_iblk;
7712 	while (ism_blkp) {
7713 		ism_map = ism_blkp->iblk_maps;
7714 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7715 			if ((addr >= ism_start(ism_map[i]) &&
7716 			    addr < ism_end(ism_map[i])) ||
7717 			    eaddr > ism_start(ism_map[i]) &&
7718 			    eaddr <= ism_end(ism_map[i])) {
7719 				panic("sfmmu_share: Already mapped!");
7720 			}
7721 		}
7722 		ism_blkp = ism_blkp->iblk_next;
7723 	}
7724 #endif /* DEBUG */
7725 
7726 	ASSERT(ismszc >= TTE4M);
7727 	if (ismszc == TTE4M) {
7728 		ismhatflag = HAT_4M_FLAG;
7729 	} else if (ismszc == TTE32M) {
7730 		ismhatflag = HAT_32M_FLAG;
7731 	} else if (ismszc == TTE256M) {
7732 		ismhatflag = HAT_256M_FLAG;
7733 	}
7734 	/*
7735 	 * Add mapping to first available mapping slot.
7736 	 */
7737 	ism_blkp = sfmmup->sfmmu_iblk;
7738 	added = 0;
7739 	while (!added) {
7740 		ism_map = ism_blkp->iblk_maps;
7741 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7742 			if (ism_map[i].imap_ismhat == NULL) {
7743 
7744 				ism_map[i].imap_ismhat = ism_hatid;
7745 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7746 				ism_map[i].imap_hatflags = ismhatflag;
7747 				ism_map[i].imap_sz_mask = ismmask;
7748 				/*
7749 				 * imap_seg is checked in ISM_CHECK to see if
7750 				 * non-NULL, then other info assumed valid.
7751 				 */
7752 				membar_stst();
7753 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7754 				ism_map[i].imap_ment = ism_ment;
7755 
7756 				/*
7757 				 * Now add ourselves to the ism_hat's
7758 				 * mapping list.
7759 				 */
7760 				ism_ment->iment_hat = sfmmup;
7761 				ism_ment->iment_base_va = addr;
7762 				ism_hatid->sfmmu_ismhat = 1;
7763 				ism_hatid->sfmmu_flags = 0;
7764 				mutex_enter(&ism_mlist_lock);
7765 				iment_add(ism_ment, ism_hatid);
7766 				mutex_exit(&ism_mlist_lock);
7767 				added = 1;
7768 				break;
7769 			}
7770 		}
7771 		if (!added && ism_blkp->iblk_next == NULL) {
7772 			ism_blkp->iblk_next = new_iblk;
7773 			new_iblk = NULL;
7774 			bzero(ism_blkp->iblk_next,
7775 			    sizeof (*ism_blkp->iblk_next));
7776 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7777 			membar_stst();
7778 			ism_blkp->iblk_nextpa =
7779 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7780 		}
7781 		ism_blkp = ism_blkp->iblk_next;
7782 	}
7783 
7784 	/*
7785 	 * Update our counters for this sfmmup's ism mappings.
7786 	 */
7787 	for (i = 0; i <= ismszc; i++) {
7788 		if (!(disable_ism_large_pages & (1 << i)))
7789 			(void) ism_tsb_entries(sfmmup, i);
7790 	}
7791 
7792 	hatlockp = sfmmu_hat_enter(sfmmup);
7793 
7794 	/*
7795 	 * For ISM and DISM we do not support 512K pages, so we only
7796 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7797 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7798 	 */
7799 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7800 
7801 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7802 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7803 
7804 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7805 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7806 
7807 	/*
7808 	 * If we updated the ismblkpa for this HAT or we need
7809 	 * to start searching the 256M or 32M or 4M hash, we must
7810 	 * make sure all CPUs running this process reload their
7811 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7812 	 * in the tsbmiss handler and will loop calling pagefault().
7813 	 */
7814 	switch (ismszc) {
7815 	case TTE256M:
7816 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7817 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7818 			sfmmu_sync_mmustate(sfmmup);
7819 		}
7820 		break;
7821 	case TTE32M:
7822 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7823 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7824 			sfmmu_sync_mmustate(sfmmup);
7825 		}
7826 		break;
7827 	case TTE4M:
7828 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7829 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7830 			sfmmu_sync_mmustate(sfmmup);
7831 		}
7832 		break;
7833 	default:
7834 		break;
7835 	}
7836 
7837 	/*
7838 	 * Now we can drop the locks.
7839 	 */
7840 	sfmmu_ismhat_exit(sfmmup, 1);
7841 	sfmmu_hat_exit(hatlockp);
7842 
7843 	/*
7844 	 * Free up ismblk if we didn't use it.
7845 	 */
7846 	if (new_iblk != NULL)
7847 		kmem_cache_free(ism_blk_cache, new_iblk);
7848 
7849 	/*
7850 	 * Check TSB and TLB page sizes.
7851 	 */
7852 	sfmmu_check_page_sizes(sfmmup, 1);
7853 
7854 	return (0);
7855 }
7856 
7857 /*
7858  * hat_unshare removes exactly one ism_map from
7859  * this process's as.  It expects multiple calls
7860  * to hat_unshare for multiple shm segments.
7861  */
7862 void
7863 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7864 {
7865 	ism_map_t 	*ism_map;
7866 	ism_ment_t	*free_ment = NULL;
7867 	ism_blk_t	*ism_blkp;
7868 	struct hat	*ism_hatid;
7869 	int 		found, i;
7870 	hatlock_t	*hatlockp;
7871 	struct tsb_info	*tsbinfo;
7872 	uint_t		ismshift = page_get_shift(ismszc);
7873 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7874 
7875 	ASSERT(ISM_ALIGNED(ismshift, addr));
7876 	ASSERT(ISM_ALIGNED(ismshift, len));
7877 	ASSERT(sfmmup != NULL);
7878 	ASSERT(sfmmup != ksfmmup);
7879 
7880 	if (sfmmup->sfmmu_xhat_provider) {
7881 		XHAT_UNSHARE(sfmmup, addr, len);
7882 		return;
7883 	} else {
7884 		/*
7885 		 * This must be a CPU HAT. If the address space has
7886 		 * XHATs attached, inform all XHATs that ISM segment
7887 		 * is going away
7888 		 */
7889 		ASSERT(sfmmup->sfmmu_as != NULL);
7890 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7891 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7892 	}
7893 
7894 	/*
7895 	 * Make sure that during the entire time ISM mappings are removed,
7896 	 * the trap handlers serialize behind us, and that no one else
7897 	 * can be mucking with ISM mappings.  This also lets us get away
7898 	 * with not doing expensive cross calls to flush the TLB -- we
7899 	 * just discard the context, flush the entire TSB, and call it
7900 	 * a day.
7901 	 */
7902 	sfmmu_ismhat_enter(sfmmup, 0);
7903 
7904 	/*
7905 	 * Remove the mapping.
7906 	 *
7907 	 * We can't have any holes in the ism map.
7908 	 * The tsb miss code while searching the ism map will
7909 	 * stop on an empty map slot.  So we must move
7910 	 * everyone past the hole up 1 if any.
7911 	 *
7912 	 * Also empty ism map blks are not freed until the
7913 	 * process exits. This is to prevent a MT race condition
7914 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7915 	 */
7916 	found = 0;
7917 	ism_blkp = sfmmup->sfmmu_iblk;
7918 	while (!found && ism_blkp) {
7919 		ism_map = ism_blkp->iblk_maps;
7920 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7921 			if (addr == ism_start(ism_map[i]) &&
7922 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7923 				found = 1;
7924 				break;
7925 			}
7926 		}
7927 		if (!found)
7928 			ism_blkp = ism_blkp->iblk_next;
7929 	}
7930 
7931 	if (found) {
7932 		ism_hatid = ism_map[i].imap_ismhat;
7933 		ASSERT(ism_hatid != NULL);
7934 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7935 
7936 		/*
7937 		 * First remove ourselves from the ism mapping list.
7938 		 */
7939 		mutex_enter(&ism_mlist_lock);
7940 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7941 		mutex_exit(&ism_mlist_lock);
7942 		free_ment = ism_map[i].imap_ment;
7943 
7944 		/*
7945 		 * Now gurantee that any other cpu
7946 		 * that tries to process an ISM miss
7947 		 * will go to tl=0.
7948 		 */
7949 		hatlockp = sfmmu_hat_enter(sfmmup);
7950 
7951 		sfmmu_invalidate_ctx(sfmmup);
7952 
7953 		sfmmu_hat_exit(hatlockp);
7954 
7955 		/*
7956 		 * We delete the ism map by copying
7957 		 * the next map over the current one.
7958 		 * We will take the next one in the maps
7959 		 * array or from the next ism_blk.
7960 		 */
7961 		while (ism_blkp) {
7962 			ism_map = ism_blkp->iblk_maps;
7963 			while (i < (ISM_MAP_SLOTS - 1)) {
7964 				ism_map[i] = ism_map[i + 1];
7965 				i++;
7966 			}
7967 			/* i == (ISM_MAP_SLOTS - 1) */
7968 			ism_blkp = ism_blkp->iblk_next;
7969 			if (ism_blkp) {
7970 				ism_map[i] = ism_blkp->iblk_maps[0];
7971 				i = 0;
7972 			} else {
7973 				ism_map[i].imap_seg = 0;
7974 				ism_map[i].imap_vb_shift = 0;
7975 				ism_map[i].imap_hatflags = 0;
7976 				ism_map[i].imap_sz_mask = 0;
7977 				ism_map[i].imap_ismhat = NULL;
7978 				ism_map[i].imap_ment = NULL;
7979 			}
7980 		}
7981 
7982 		/*
7983 		 * Now flush entire TSB for the process, since
7984 		 * demapping page by page can be too expensive.
7985 		 * We don't have to flush the TLB here anymore
7986 		 * since we switch to a new TLB ctx instead.
7987 		 * Also, there is no need to flush if the process
7988 		 * is exiting since the TSB will be freed later.
7989 		 */
7990 		if (!sfmmup->sfmmu_free) {
7991 			hatlockp = sfmmu_hat_enter(sfmmup);
7992 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7993 			    tsbinfo = tsbinfo->tsb_next) {
7994 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7995 					continue;
7996 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7997 				    TSB_BYTES(tsbinfo->tsb_szc));
7998 			}
7999 			sfmmu_hat_exit(hatlockp);
8000 		}
8001 	}
8002 
8003 	/*
8004 	 * Update our counters for this sfmmup's ism mappings.
8005 	 */
8006 	for (i = 0; i <= ismszc; i++) {
8007 		if (!(disable_ism_large_pages & (1 << i)))
8008 			(void) ism_tsb_entries(sfmmup, i);
8009 	}
8010 
8011 	sfmmu_ismhat_exit(sfmmup, 0);
8012 
8013 	/*
8014 	 * We must do our freeing here after dropping locks
8015 	 * to prevent a deadlock in the kmem allocator on the
8016 	 * mapping list lock.
8017 	 */
8018 	if (free_ment != NULL)
8019 		kmem_cache_free(ism_ment_cache, free_ment);
8020 
8021 	/*
8022 	 * Check TSB and TLB page sizes if the process isn't exiting.
8023 	 */
8024 	if (!sfmmup->sfmmu_free)
8025 		sfmmu_check_page_sizes(sfmmup, 0);
8026 }
8027 
8028 /* ARGSUSED */
8029 static int
8030 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8031 {
8032 	/* void *buf is sfmmu_t pointer */
8033 	return (0);
8034 }
8035 
8036 /* ARGSUSED */
8037 static void
8038 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8039 {
8040 	/* void *buf is sfmmu_t pointer */
8041 }
8042 
8043 /*
8044  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8045  * field to be the pa of this hmeblk
8046  */
8047 /* ARGSUSED */
8048 static int
8049 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8050 {
8051 	struct hme_blk *hmeblkp;
8052 
8053 	bzero(buf, (size_t)cdrarg);
8054 	hmeblkp = (struct hme_blk *)buf;
8055 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8056 
8057 #ifdef	HBLK_TRACE
8058 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8059 #endif	/* HBLK_TRACE */
8060 
8061 	return (0);
8062 }
8063 
8064 /* ARGSUSED */
8065 static void
8066 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8067 {
8068 
8069 #ifdef	HBLK_TRACE
8070 
8071 	struct hme_blk *hmeblkp;
8072 
8073 	hmeblkp = (struct hme_blk *)buf;
8074 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8075 
8076 #endif	/* HBLK_TRACE */
8077 }
8078 
8079 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8080 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8081 /*
8082  * The kmem allocator will callback into our reclaim routine when the system
8083  * is running low in memory.  We traverse the hash and free up all unused but
8084  * still cached hme_blks.  We also traverse the free list and free them up
8085  * as well.
8086  */
8087 /*ARGSUSED*/
8088 static void
8089 sfmmu_hblkcache_reclaim(void *cdrarg)
8090 {
8091 	int i;
8092 	uint64_t hblkpa, prevpa, nx_pa;
8093 	struct hmehash_bucket *hmebp;
8094 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8095 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8096 	static struct hmehash_bucket *khmehash_reclaim_hand;
8097 	struct hme_blk *list = NULL;
8098 
8099 	hmebp = uhmehash_reclaim_hand;
8100 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8101 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8102 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8103 
8104 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8105 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8106 			hmeblkp = hmebp->hmeblkp;
8107 			hblkpa = hmebp->hmeh_nextpa;
8108 			prevpa = 0;
8109 			pr_hblk = NULL;
8110 			while (hmeblkp) {
8111 				nx_hblk = hmeblkp->hblk_next;
8112 				nx_pa = hmeblkp->hblk_nextpa;
8113 				if (!hmeblkp->hblk_vcnt &&
8114 				    !hmeblkp->hblk_hmecnt) {
8115 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8116 						prevpa, pr_hblk);
8117 					sfmmu_hblk_free(hmebp, hmeblkp,
8118 					    hblkpa, &list);
8119 				} else {
8120 					pr_hblk = hmeblkp;
8121 					prevpa = hblkpa;
8122 				}
8123 				hmeblkp = nx_hblk;
8124 				hblkpa = nx_pa;
8125 			}
8126 			SFMMU_HASH_UNLOCK(hmebp);
8127 		}
8128 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8129 			hmebp = uhme_hash;
8130 	}
8131 
8132 	hmebp = khmehash_reclaim_hand;
8133 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8134 		khmehash_reclaim_hand = hmebp = khme_hash;
8135 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8136 
8137 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8138 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8139 			hmeblkp = hmebp->hmeblkp;
8140 			hblkpa = hmebp->hmeh_nextpa;
8141 			prevpa = 0;
8142 			pr_hblk = NULL;
8143 			while (hmeblkp) {
8144 				nx_hblk = hmeblkp->hblk_next;
8145 				nx_pa = hmeblkp->hblk_nextpa;
8146 				if (!hmeblkp->hblk_vcnt &&
8147 				    !hmeblkp->hblk_hmecnt) {
8148 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8149 						prevpa, pr_hblk);
8150 					sfmmu_hblk_free(hmebp, hmeblkp,
8151 					    hblkpa, &list);
8152 				} else {
8153 					pr_hblk = hmeblkp;
8154 					prevpa = hblkpa;
8155 				}
8156 				hmeblkp = nx_hblk;
8157 				hblkpa = nx_pa;
8158 			}
8159 			SFMMU_HASH_UNLOCK(hmebp);
8160 		}
8161 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8162 			hmebp = khme_hash;
8163 	}
8164 	sfmmu_hblks_list_purge(&list);
8165 }
8166 
8167 /*
8168  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8169  * same goes for sfmmu_get_addrvcolor().
8170  *
8171  * This function will return the virtual color for the specified page. The
8172  * virtual color corresponds to this page current mapping or its last mapping.
8173  * It is used by memory allocators to choose addresses with the correct
8174  * alignment so vac consistency is automatically maintained.  If the page
8175  * has no color it returns -1.
8176  */
8177 /*ARGSUSED*/
8178 int
8179 sfmmu_get_ppvcolor(struct page *pp)
8180 {
8181 #ifdef VAC
8182 	int color;
8183 
8184 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8185 		return (-1);
8186 	}
8187 	color = PP_GET_VCOLOR(pp);
8188 	ASSERT(color < mmu_btop(shm_alignment));
8189 	return (color);
8190 #else
8191 	return (-1);
8192 #endif	/* VAC */
8193 }
8194 
8195 /*
8196  * This function will return the desired alignment for vac consistency
8197  * (vac color) given a virtual address.  If no vac is present it returns -1.
8198  */
8199 /*ARGSUSED*/
8200 int
8201 sfmmu_get_addrvcolor(caddr_t vaddr)
8202 {
8203 #ifdef VAC
8204 	if (cache & CACHE_VAC) {
8205 		return (addr_to_vcolor(vaddr));
8206 	} else {
8207 		return (-1);
8208 	}
8209 #else
8210 	return (-1);
8211 #endif	/* VAC */
8212 }
8213 
8214 #ifdef VAC
8215 /*
8216  * Check for conflicts.
8217  * A conflict exists if the new and existent mappings do not match in
8218  * their "shm_alignment fields. If conflicts exist, the existant mappings
8219  * are flushed unless one of them is locked. If one of them is locked, then
8220  * the mappings are flushed and converted to non-cacheable mappings.
8221  */
8222 static void
8223 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8224 {
8225 	struct hat *tmphat;
8226 	struct sf_hment *sfhmep, *tmphme = NULL;
8227 	struct hme_blk *hmeblkp;
8228 	int vcolor;
8229 	tte_t tte;
8230 
8231 	ASSERT(sfmmu_mlist_held(pp));
8232 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8233 
8234 	vcolor = addr_to_vcolor(addr);
8235 	if (PP_NEWPAGE(pp)) {
8236 		PP_SET_VCOLOR(pp, vcolor);
8237 		return;
8238 	}
8239 
8240 	if (PP_GET_VCOLOR(pp) == vcolor) {
8241 		return;
8242 	}
8243 
8244 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8245 		/*
8246 		 * Previous user of page had a different color
8247 		 * but since there are no current users
8248 		 * we just flush the cache and change the color.
8249 		 */
8250 		SFMMU_STAT(sf_pgcolor_conflict);
8251 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8252 		PP_SET_VCOLOR(pp, vcolor);
8253 		return;
8254 	}
8255 
8256 	/*
8257 	 * If we get here we have a vac conflict with a current
8258 	 * mapping.  VAC conflict policy is as follows.
8259 	 * - The default is to unload the other mappings unless:
8260 	 * - If we have a large mapping we uncache the page.
8261 	 * We need to uncache the rest of the large page too.
8262 	 * - If any of the mappings are locked we uncache the page.
8263 	 * - If the requested mapping is inconsistent
8264 	 * with another mapping and that mapping
8265 	 * is in the same address space we have to
8266 	 * make it non-cached.  The default thing
8267 	 * to do is unload the inconsistent mapping
8268 	 * but if they are in the same address space
8269 	 * we run the risk of unmapping the pc or the
8270 	 * stack which we will use as we return to the user,
8271 	 * in which case we can then fault on the thing
8272 	 * we just unloaded and get into an infinite loop.
8273 	 */
8274 	if (PP_ISMAPPED_LARGE(pp)) {
8275 		int sz;
8276 
8277 		/*
8278 		 * Existing mapping is for big pages. We don't unload
8279 		 * existing big mappings to satisfy new mappings.
8280 		 * Always convert all mappings to TNC.
8281 		 */
8282 		sz = fnd_mapping_sz(pp);
8283 		pp = PP_GROUPLEADER(pp, sz);
8284 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8285 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8286 			TTEPAGES(sz));
8287 
8288 		return;
8289 	}
8290 
8291 	/*
8292 	 * check if any mapping is in same as or if it is locked
8293 	 * since in that case we need to uncache.
8294 	 */
8295 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8296 		tmphme = sfhmep->hme_next;
8297 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8298 		if (hmeblkp->hblk_xhat_bit)
8299 			continue;
8300 		tmphat = hblktosfmmu(hmeblkp);
8301 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8302 		ASSERT(TTE_IS_VALID(&tte));
8303 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8304 			/*
8305 			 * We have an uncache conflict
8306 			 */
8307 			SFMMU_STAT(sf_uncache_conflict);
8308 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8309 			return;
8310 		}
8311 	}
8312 
8313 	/*
8314 	 * We have an unload conflict
8315 	 * We have already checked for LARGE mappings, therefore
8316 	 * the remaining mapping(s) must be TTE8K.
8317 	 */
8318 	SFMMU_STAT(sf_unload_conflict);
8319 
8320 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8321 		tmphme = sfhmep->hme_next;
8322 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8323 		if (hmeblkp->hblk_xhat_bit)
8324 			continue;
8325 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8326 	}
8327 
8328 	if (PP_ISMAPPED_KPM(pp))
8329 		sfmmu_kpm_vac_unload(pp, addr);
8330 
8331 	/*
8332 	 * Unloads only do TLB flushes so we need to flush the
8333 	 * cache here.
8334 	 */
8335 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8336 	PP_SET_VCOLOR(pp, vcolor);
8337 }
8338 
8339 /*
8340  * Whenever a mapping is unloaded and the page is in TNC state,
8341  * we see if the page can be made cacheable again. 'pp' is
8342  * the page that we just unloaded a mapping from, the size
8343  * of mapping that was unloaded is 'ottesz'.
8344  * Remark:
8345  * The recache policy for mpss pages can leave a performance problem
8346  * under the following circumstances:
8347  * . A large page in uncached mode has just been unmapped.
8348  * . All constituent pages are TNC due to a conflicting small mapping.
8349  * . There are many other, non conflicting, small mappings around for
8350  *   a lot of the constituent pages.
8351  * . We're called w/ the "old" groupleader page and the old ottesz,
8352  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8353  *   we end up w/ TTE8K or npages == 1.
8354  * . We call tst_tnc w/ the old groupleader only, and if there is no
8355  *   conflict, we re-cache only this page.
8356  * . All other small mappings are not checked and will be left in TNC mode.
8357  * The problem is not very serious because:
8358  * . mpss is actually only defined for heap and stack, so the probability
8359  *   is not very high that a large page mapping exists in parallel to a small
8360  *   one (this is possible, but seems to be bad programming style in the
8361  *   appl).
8362  * . The problem gets a little bit more serious, when those TNC pages
8363  *   have to be mapped into kernel space, e.g. for networking.
8364  * . When VAC alias conflicts occur in applications, this is regarded
8365  *   as an application bug. So if kstat's show them, the appl should
8366  *   be changed anyway.
8367  */
8368 void
8369 conv_tnc(page_t *pp, int ottesz)
8370 {
8371 	int cursz, dosz;
8372 	pgcnt_t curnpgs, dopgs;
8373 	pgcnt_t pg64k;
8374 	page_t *pp2;
8375 
8376 	/*
8377 	 * Determine how big a range we check for TNC and find
8378 	 * leader page. cursz is the size of the biggest
8379 	 * mapping that still exist on 'pp'.
8380 	 */
8381 	if (PP_ISMAPPED_LARGE(pp)) {
8382 		cursz = fnd_mapping_sz(pp);
8383 	} else {
8384 		cursz = TTE8K;
8385 	}
8386 
8387 	if (ottesz >= cursz) {
8388 		dosz = ottesz;
8389 		pp2 = pp;
8390 	} else {
8391 		dosz = cursz;
8392 		pp2 = PP_GROUPLEADER(pp, dosz);
8393 	}
8394 
8395 	pg64k = TTEPAGES(TTE64K);
8396 	dopgs = TTEPAGES(dosz);
8397 
8398 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8399 
8400 	while (dopgs != 0) {
8401 		curnpgs = TTEPAGES(cursz);
8402 		if (tst_tnc(pp2, curnpgs)) {
8403 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8404 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8405 				curnpgs);
8406 		}
8407 
8408 		ASSERT(dopgs >= curnpgs);
8409 		dopgs -= curnpgs;
8410 
8411 		if (dopgs == 0) {
8412 			break;
8413 		}
8414 
8415 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8416 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8417 			cursz = fnd_mapping_sz(pp2);
8418 		} else {
8419 			cursz = TTE8K;
8420 		}
8421 	}
8422 }
8423 
8424 /*
8425  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8426  * returns 0 otherwise. Note that oaddr argument is valid for only
8427  * 8k pages.
8428  */
8429 int
8430 tst_tnc(page_t *pp, pgcnt_t npages)
8431 {
8432 	struct	sf_hment *sfhme;
8433 	struct	hme_blk *hmeblkp;
8434 	tte_t	tte;
8435 	caddr_t	vaddr;
8436 	int	clr_valid = 0;
8437 	int 	color, color1, bcolor;
8438 	int	i, ncolors;
8439 
8440 	ASSERT(pp != NULL);
8441 	ASSERT(!(cache & CACHE_WRITEBACK));
8442 
8443 	if (npages > 1) {
8444 		ncolors = CACHE_NUM_COLOR;
8445 	}
8446 
8447 	for (i = 0; i < npages; i++) {
8448 		ASSERT(sfmmu_mlist_held(pp));
8449 		ASSERT(PP_ISTNC(pp));
8450 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8451 
8452 		if (PP_ISPNC(pp)) {
8453 			return (0);
8454 		}
8455 
8456 		clr_valid = 0;
8457 		if (PP_ISMAPPED_KPM(pp)) {
8458 			caddr_t kpmvaddr;
8459 
8460 			ASSERT(kpm_enable);
8461 			kpmvaddr = hat_kpm_page2va(pp, 1);
8462 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8463 			color1 = addr_to_vcolor(kpmvaddr);
8464 			clr_valid = 1;
8465 		}
8466 
8467 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8468 			hmeblkp = sfmmu_hmetohblk(sfhme);
8469 			if (hmeblkp->hblk_xhat_bit)
8470 				continue;
8471 
8472 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8473 			ASSERT(TTE_IS_VALID(&tte));
8474 
8475 			vaddr = tte_to_vaddr(hmeblkp, tte);
8476 			color = addr_to_vcolor(vaddr);
8477 
8478 			if (npages > 1) {
8479 				/*
8480 				 * If there is a big mapping, make sure
8481 				 * 8K mapping is consistent with the big
8482 				 * mapping.
8483 				 */
8484 				bcolor = i % ncolors;
8485 				if (color != bcolor) {
8486 					return (0);
8487 				}
8488 			}
8489 			if (!clr_valid) {
8490 				clr_valid = 1;
8491 				color1 = color;
8492 			}
8493 
8494 			if (color1 != color) {
8495 				return (0);
8496 			}
8497 		}
8498 
8499 		pp = PP_PAGENEXT(pp);
8500 	}
8501 
8502 	return (1);
8503 }
8504 
8505 void
8506 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8507 	pgcnt_t npages)
8508 {
8509 	kmutex_t *pmtx;
8510 	int i, ncolors, bcolor;
8511 	kpm_hlk_t *kpmp;
8512 	cpuset_t cpuset;
8513 
8514 	ASSERT(pp != NULL);
8515 	ASSERT(!(cache & CACHE_WRITEBACK));
8516 
8517 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8518 	pmtx = sfmmu_page_enter(pp);
8519 
8520 	/*
8521 	 * Fast path caching single unmapped page
8522 	 */
8523 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8524 	    flags == HAT_CACHE) {
8525 		PP_CLRTNC(pp);
8526 		PP_CLRPNC(pp);
8527 		sfmmu_page_exit(pmtx);
8528 		sfmmu_kpm_kpmp_exit(kpmp);
8529 		return;
8530 	}
8531 
8532 	/*
8533 	 * We need to capture all cpus in order to change cacheability
8534 	 * because we can't allow one cpu to access the same physical
8535 	 * page using a cacheable and a non-cachebale mapping at the same
8536 	 * time. Since we may end up walking the ism mapping list
8537 	 * have to grab it's lock now since we can't after all the
8538 	 * cpus have been captured.
8539 	 */
8540 	sfmmu_hat_lock_all();
8541 	mutex_enter(&ism_mlist_lock);
8542 	kpreempt_disable();
8543 	cpuset = cpu_ready_set;
8544 	xc_attention(cpuset);
8545 
8546 	if (npages > 1) {
8547 		/*
8548 		 * Make sure all colors are flushed since the
8549 		 * sfmmu_page_cache() only flushes one color-
8550 		 * it does not know big pages.
8551 		 */
8552 		ncolors = CACHE_NUM_COLOR;
8553 		if (flags & HAT_TMPNC) {
8554 			for (i = 0; i < ncolors; i++) {
8555 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8556 			}
8557 			cache_flush_flag = CACHE_NO_FLUSH;
8558 		}
8559 	}
8560 
8561 	for (i = 0; i < npages; i++) {
8562 
8563 		ASSERT(sfmmu_mlist_held(pp));
8564 
8565 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8566 
8567 			if (npages > 1) {
8568 				bcolor = i % ncolors;
8569 			} else {
8570 				bcolor = NO_VCOLOR;
8571 			}
8572 
8573 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8574 			    bcolor);
8575 		}
8576 
8577 		pp = PP_PAGENEXT(pp);
8578 	}
8579 
8580 	xt_sync(cpuset);
8581 	xc_dismissed(cpuset);
8582 	mutex_exit(&ism_mlist_lock);
8583 	sfmmu_hat_unlock_all();
8584 	sfmmu_page_exit(pmtx);
8585 	sfmmu_kpm_kpmp_exit(kpmp);
8586 	kpreempt_enable();
8587 }
8588 
8589 /*
8590  * This function changes the virtual cacheability of all mappings to a
8591  * particular page.  When changing from uncache to cacheable the mappings will
8592  * only be changed if all of them have the same virtual color.
8593  * We need to flush the cache in all cpus.  It is possible that
8594  * a process referenced a page as cacheable but has sinced exited
8595  * and cleared the mapping list.  We still to flush it but have no
8596  * state so all cpus is the only alternative.
8597  */
8598 static void
8599 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8600 {
8601 	struct	sf_hment *sfhme;
8602 	struct	hme_blk *hmeblkp;
8603 	sfmmu_t *sfmmup;
8604 	tte_t	tte, ttemod;
8605 	caddr_t	vaddr;
8606 	int	ret, color;
8607 	pfn_t	pfn;
8608 
8609 	color = bcolor;
8610 	pfn = pp->p_pagenum;
8611 
8612 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8613 
8614 		hmeblkp = sfmmu_hmetohblk(sfhme);
8615 
8616 		if (hmeblkp->hblk_xhat_bit)
8617 			continue;
8618 
8619 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8620 		ASSERT(TTE_IS_VALID(&tte));
8621 		vaddr = tte_to_vaddr(hmeblkp, tte);
8622 		color = addr_to_vcolor(vaddr);
8623 
8624 #ifdef DEBUG
8625 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8626 			ASSERT(color == bcolor);
8627 		}
8628 #endif
8629 
8630 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8631 
8632 		ttemod = tte;
8633 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8634 			TTE_CLR_VCACHEABLE(&ttemod);
8635 		} else {	/* flags & HAT_CACHE */
8636 			TTE_SET_VCACHEABLE(&ttemod);
8637 		}
8638 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8639 		if (ret < 0) {
8640 			/*
8641 			 * Since all cpus are captured modifytte should not
8642 			 * fail.
8643 			 */
8644 			panic("sfmmu_page_cache: write to tte failed");
8645 		}
8646 
8647 		sfmmup = hblktosfmmu(hmeblkp);
8648 		if (cache_flush_flag == CACHE_FLUSH) {
8649 			/*
8650 			 * Flush TSBs, TLBs and caches
8651 			 */
8652 			if (sfmmup->sfmmu_ismhat) {
8653 				if (flags & HAT_CACHE) {
8654 					SFMMU_STAT(sf_ism_recache);
8655 				} else {
8656 					SFMMU_STAT(sf_ism_uncache);
8657 				}
8658 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8659 				    pfn, CACHE_FLUSH);
8660 			} else {
8661 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8662 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8663 			}
8664 
8665 			/*
8666 			 * all cache entries belonging to this pfn are
8667 			 * now flushed.
8668 			 */
8669 			cache_flush_flag = CACHE_NO_FLUSH;
8670 		} else {
8671 
8672 			/*
8673 			 * Flush only TSBs and TLBs.
8674 			 */
8675 			if (sfmmup->sfmmu_ismhat) {
8676 				if (flags & HAT_CACHE) {
8677 					SFMMU_STAT(sf_ism_recache);
8678 				} else {
8679 					SFMMU_STAT(sf_ism_uncache);
8680 				}
8681 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8682 				    pfn, CACHE_NO_FLUSH);
8683 			} else {
8684 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8685 			}
8686 		}
8687 	}
8688 
8689 	if (PP_ISMAPPED_KPM(pp))
8690 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8691 
8692 	switch (flags) {
8693 
8694 		default:
8695 			panic("sfmmu_pagecache: unknown flags");
8696 			break;
8697 
8698 		case HAT_CACHE:
8699 			PP_CLRTNC(pp);
8700 			PP_CLRPNC(pp);
8701 			PP_SET_VCOLOR(pp, color);
8702 			break;
8703 
8704 		case HAT_TMPNC:
8705 			PP_SETTNC(pp);
8706 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8707 			break;
8708 
8709 		case HAT_UNCACHE:
8710 			PP_SETPNC(pp);
8711 			PP_CLRTNC(pp);
8712 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8713 			break;
8714 	}
8715 }
8716 #endif	/* VAC */
8717 
8718 
8719 /*
8720  * Wrapper routine used to return a context.
8721  *
8722  * It's the responsibility of the caller to guarantee that the
8723  * process serializes on calls here by taking the HAT lock for
8724  * the hat.
8725  *
8726  */
8727 static void
8728 sfmmu_get_ctx(sfmmu_t *sfmmup)
8729 {
8730 	mmu_ctx_t *mmu_ctxp;
8731 	uint_t pstate_save;
8732 
8733 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8734 	ASSERT(sfmmup != ksfmmup);
8735 
8736 	kpreempt_disable();
8737 
8738 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8739 	ASSERT(mmu_ctxp);
8740 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8741 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8742 
8743 	/*
8744 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8745 	 */
8746 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8747 		sfmmu_ctx_wrap_around(mmu_ctxp);
8748 
8749 	/*
8750 	 * Let the MMU set up the page sizes to use for
8751 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8752 	 */
8753 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8754 		mmu_set_ctx_page_sizes(sfmmup);
8755 	}
8756 
8757 	/*
8758 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8759 	 * interrupts disabled to prevent race condition with wrap-around
8760 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8761 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8762 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8763 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8764 	 */
8765 	pstate_save = sfmmu_disable_intrs();
8766 
8767 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8768 	sfmmu_load_mmustate(sfmmup);
8769 
8770 	sfmmu_enable_intrs(pstate_save);
8771 
8772 	kpreempt_enable();
8773 }
8774 
8775 /*
8776  * When all cnums are used up in a MMU, cnum will wrap around to the
8777  * next generation and start from 2.
8778  */
8779 static void
8780 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8781 {
8782 
8783 	/* caller must have disabled the preemption */
8784 	ASSERT(curthread->t_preempt >= 1);
8785 	ASSERT(mmu_ctxp != NULL);
8786 
8787 	/* acquire Per-MMU (PM) spin lock */
8788 	mutex_enter(&mmu_ctxp->mmu_lock);
8789 
8790 	/* re-check to see if wrap-around is needed */
8791 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8792 		goto done;
8793 
8794 	SFMMU_MMU_STAT(mmu_wrap_around);
8795 
8796 	/* update gnum */
8797 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8798 	mmu_ctxp->mmu_gnum++;
8799 	if (mmu_ctxp->mmu_gnum == 0 ||
8800 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8801 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8802 		    (void *)mmu_ctxp);
8803 	}
8804 
8805 	if (mmu_ctxp->mmu_ncpus > 1) {
8806 		cpuset_t cpuset;
8807 
8808 		membar_enter(); /* make sure updated gnum visible */
8809 
8810 		SFMMU_XCALL_STATS(NULL);
8811 
8812 		/* xcall to others on the same MMU to invalidate ctx */
8813 		cpuset = mmu_ctxp->mmu_cpuset;
8814 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8815 		CPUSET_DEL(cpuset, CPU->cpu_id);
8816 		CPUSET_AND(cpuset, cpu_ready_set);
8817 
8818 		/*
8819 		 * Pass in INVALID_CONTEXT as the first parameter to
8820 		 * sfmmu_raise_tsb_exception, which invalidates the context
8821 		 * of any process running on the CPUs in the MMU.
8822 		 */
8823 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8824 		    INVALID_CONTEXT, INVALID_CONTEXT);
8825 		xt_sync(cpuset);
8826 
8827 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8828 	}
8829 
8830 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8831 		sfmmu_setctx_sec(INVALID_CONTEXT);
8832 		sfmmu_clear_utsbinfo();
8833 	}
8834 
8835 	/*
8836 	 * No xcall is needed here. For sun4u systems all CPUs in context
8837 	 * domain share a single physical MMU therefore it's enough to flush
8838 	 * TLB on local CPU. On sun4v systems we use 1 global context
8839 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8840 	 * handler. Note that vtag_flushall_uctxs() is called
8841 	 * for Ultra II machine, where the equivalent flushall functionality
8842 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8843 	 */
8844 	if (&vtag_flushall_uctxs != NULL) {
8845 		vtag_flushall_uctxs();
8846 	} else {
8847 		vtag_flushall();
8848 	}
8849 
8850 	/* reset mmu cnum, skips cnum 0 and 1 */
8851 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8852 
8853 done:
8854 	mutex_exit(&mmu_ctxp->mmu_lock);
8855 }
8856 
8857 
8858 /*
8859  * For multi-threaded process, set the process context to INVALID_CONTEXT
8860  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8861  * process, we can just load the MMU state directly without having to
8862  * set context invalid. Caller must hold the hat lock since we don't
8863  * acquire it here.
8864  */
8865 static void
8866 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8867 {
8868 	uint_t cnum;
8869 	uint_t pstate_save;
8870 
8871 	ASSERT(sfmmup != ksfmmup);
8872 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8873 
8874 	kpreempt_disable();
8875 
8876 	/*
8877 	 * We check whether the pass'ed-in sfmmup is the same as the
8878 	 * current running proc. This is to makes sure the current proc
8879 	 * stays single-threaded if it already is.
8880 	 */
8881 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8882 	    (curthread->t_procp->p_lwpcnt == 1)) {
8883 		/* single-thread */
8884 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8885 		if (cnum != INVALID_CONTEXT) {
8886 			uint_t curcnum;
8887 			/*
8888 			 * Disable interrupts to prevent race condition
8889 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8890 			 * In sun4v, ctx invalidation involves setting
8891 			 * TSB to NULL, hence, interrupts should be disabled
8892 			 * untill after sfmmu_load_mmustate is completed.
8893 			 */
8894 			pstate_save = sfmmu_disable_intrs();
8895 			curcnum = sfmmu_getctx_sec();
8896 			if (curcnum == cnum)
8897 				sfmmu_load_mmustate(sfmmup);
8898 			sfmmu_enable_intrs(pstate_save);
8899 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8900 		}
8901 	} else {
8902 		/*
8903 		 * multi-thread
8904 		 * or when sfmmup is not the same as the curproc.
8905 		 */
8906 		sfmmu_invalidate_ctx(sfmmup);
8907 	}
8908 
8909 	kpreempt_enable();
8910 }
8911 
8912 
8913 /*
8914  * Replace the specified TSB with a new TSB.  This function gets called when
8915  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8916  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8917  * (8K).
8918  *
8919  * Caller must hold the HAT lock, but should assume any tsb_info
8920  * pointers it has are no longer valid after calling this function.
8921  *
8922  * Return values:
8923  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8924  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8925  *			something to this tsbinfo/TSB
8926  *	TSB_SUCCESS	Operation succeeded
8927  */
8928 static tsb_replace_rc_t
8929 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8930     hatlock_t *hatlockp, uint_t flags)
8931 {
8932 	struct tsb_info *new_tsbinfo = NULL;
8933 	struct tsb_info *curtsb, *prevtsb;
8934 	uint_t tte_sz_mask;
8935 	int i;
8936 
8937 	ASSERT(sfmmup != ksfmmup);
8938 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8939 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8940 	ASSERT(szc <= tsb_max_growsize);
8941 
8942 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8943 		return (TSB_LOSTRACE);
8944 
8945 	/*
8946 	 * Find the tsb_info ahead of this one in the list, and
8947 	 * also make sure that the tsb_info passed in really
8948 	 * exists!
8949 	 */
8950 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8951 	    curtsb != old_tsbinfo && curtsb != NULL;
8952 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8953 	ASSERT(curtsb != NULL);
8954 
8955 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8956 		/*
8957 		 * The process is swapped out, so just set the new size
8958 		 * code.  When it swaps back in, we'll allocate a new one
8959 		 * of the new chosen size.
8960 		 */
8961 		curtsb->tsb_szc = szc;
8962 		return (TSB_SUCCESS);
8963 	}
8964 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8965 
8966 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8967 
8968 	/*
8969 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8970 	 * If we fail to allocate a TSB, exit.
8971 	 */
8972 	sfmmu_hat_exit(hatlockp);
8973 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8974 	    flags, sfmmup)) {
8975 		(void) sfmmu_hat_enter(sfmmup);
8976 		if (!(flags & TSB_SWAPIN))
8977 			SFMMU_STAT(sf_tsb_resize_failures);
8978 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8979 		return (TSB_ALLOCFAIL);
8980 	}
8981 	(void) sfmmu_hat_enter(sfmmup);
8982 
8983 	/*
8984 	 * Re-check to make sure somebody else didn't muck with us while we
8985 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8986 	 * exit; this can happen if we try to shrink the TSB from the context
8987 	 * of another process (such as on an ISM unmap), though it is rare.
8988 	 */
8989 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8990 		SFMMU_STAT(sf_tsb_resize_failures);
8991 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8992 		sfmmu_hat_exit(hatlockp);
8993 		sfmmu_tsbinfo_free(new_tsbinfo);
8994 		(void) sfmmu_hat_enter(sfmmup);
8995 		return (TSB_LOSTRACE);
8996 	}
8997 
8998 #ifdef	DEBUG
8999 	/* Reverify that the tsb_info still exists.. for debugging only */
9000 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9001 	    curtsb != old_tsbinfo && curtsb != NULL;
9002 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
9003 	ASSERT(curtsb != NULL);
9004 #endif	/* DEBUG */
9005 
9006 	/*
9007 	 * Quiesce any CPUs running this process on their next TLB miss
9008 	 * so they atomically see the new tsb_info.  We temporarily set the
9009 	 * context to invalid context so new threads that come on processor
9010 	 * after we do the xcall to cpusran will also serialize behind the
9011 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9012 	 * race with a new thread coming on processor is relatively rare,
9013 	 * this synchronization mechanism should be cheaper than always
9014 	 * pausing all CPUs for the duration of the setup, which is what
9015 	 * the old implementation did.  This is particuarly true if we are
9016 	 * copying a huge chunk of memory around during that window.
9017 	 *
9018 	 * The memory barriers are to make sure things stay consistent
9019 	 * with resume() since it does not hold the HAT lock while
9020 	 * walking the list of tsb_info structures.
9021 	 */
9022 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9023 		/* The TSB is either growing or shrinking. */
9024 		sfmmu_invalidate_ctx(sfmmup);
9025 	} else {
9026 		/*
9027 		 * It is illegal to swap in TSBs from a process other
9028 		 * than a process being swapped in.  This in turn
9029 		 * implies we do not have a valid MMU context here
9030 		 * since a process needs one to resolve translation
9031 		 * misses.
9032 		 */
9033 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9034 	}
9035 
9036 #ifdef DEBUG
9037 	ASSERT(max_mmu_ctxdoms > 0);
9038 
9039 	/*
9040 	 * Process should have INVALID_CONTEXT on all MMUs
9041 	 */
9042 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9043 
9044 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9045 	}
9046 #endif
9047 
9048 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9049 	membar_stst();	/* strict ordering required */
9050 	if (prevtsb)
9051 		prevtsb->tsb_next = new_tsbinfo;
9052 	else
9053 		sfmmup->sfmmu_tsb = new_tsbinfo;
9054 	membar_enter();	/* make sure new TSB globally visible */
9055 	sfmmu_setup_tsbinfo(sfmmup);
9056 
9057 	/*
9058 	 * We need to migrate TSB entries from the old TSB to the new TSB
9059 	 * if tsb_remap_ttes is set and the TSB is growing.
9060 	 */
9061 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9062 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9063 
9064 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9065 
9066 	/*
9067 	 * Drop the HAT lock to free our old tsb_info.
9068 	 */
9069 	sfmmu_hat_exit(hatlockp);
9070 
9071 	if ((flags & TSB_GROW) == TSB_GROW) {
9072 		SFMMU_STAT(sf_tsb_grow);
9073 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9074 		SFMMU_STAT(sf_tsb_shrink);
9075 	}
9076 
9077 	sfmmu_tsbinfo_free(old_tsbinfo);
9078 
9079 	(void) sfmmu_hat_enter(sfmmup);
9080 	return (TSB_SUCCESS);
9081 }
9082 
9083 /*
9084  * This function will re-program hat pgsz array, and invalidate the
9085  * process' context, forcing the process to switch to another
9086  * context on the next TLB miss, and therefore start using the
9087  * TLB that is reprogrammed for the new page sizes.
9088  */
9089 void
9090 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9091 {
9092 	int i;
9093 	hatlock_t *hatlockp = NULL;
9094 
9095 	hatlockp = sfmmu_hat_enter(sfmmup);
9096 	/* USIII+-IV+ optimization, requires hat lock */
9097 	if (tmp_pgsz) {
9098 		for (i = 0; i < mmu_page_sizes; i++)
9099 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9100 	}
9101 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9102 
9103 	sfmmu_invalidate_ctx(sfmmup);
9104 
9105 	sfmmu_hat_exit(hatlockp);
9106 }
9107 
9108 /*
9109  * This function assumes that there are either four or six supported page
9110  * sizes and at most two programmable TLBs, so we need to decide which
9111  * page sizes are most important and then tell the MMU layer so it
9112  * can adjust the TLB page sizes accordingly (if supported).
9113  *
9114  * If these assumptions change, this function will need to be
9115  * updated to support whatever the new limits are.
9116  *
9117  * The growing flag is nonzero if we are growing the address space,
9118  * and zero if it is shrinking.  This allows us to decide whether
9119  * to grow or shrink our TSB, depending upon available memory
9120  * conditions.
9121  */
9122 static void
9123 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9124 {
9125 	uint64_t ttecnt[MMU_PAGE_SIZES];
9126 	uint64_t tte8k_cnt, tte4m_cnt;
9127 	uint8_t i;
9128 	int sectsb_thresh;
9129 
9130 	/*
9131 	 * Kernel threads, processes with small address spaces not using
9132 	 * large pages, and dummy ISM HATs need not apply.
9133 	 */
9134 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9135 		return;
9136 
9137 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9138 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9139 		return;
9140 
9141 	for (i = 0; i < mmu_page_sizes; i++) {
9142 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9143 	}
9144 
9145 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9146 	if (&mmu_check_page_sizes)
9147 		mmu_check_page_sizes(sfmmup, ttecnt);
9148 
9149 	/*
9150 	 * Calculate the number of 8k ttes to represent the span of these
9151 	 * pages.
9152 	 */
9153 	tte8k_cnt = ttecnt[TTE8K] +
9154 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9155 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9156 	if (mmu_page_sizes == max_mmu_page_sizes) {
9157 		tte4m_cnt = ttecnt[TTE4M] +
9158 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9159 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9160 	} else {
9161 		tte4m_cnt = ttecnt[TTE4M];
9162 	}
9163 
9164 	/*
9165 	 * Inflate TSB sizes by a factor of 2 if this process
9166 	 * uses 4M text pages to minimize extra conflict misses
9167 	 * in the first TSB since without counting text pages
9168 	 * 8K TSB may become too small.
9169 	 *
9170 	 * Also double the size of the second TSB to minimize
9171 	 * extra conflict misses due to competition between 4M text pages
9172 	 * and data pages.
9173 	 *
9174 	 * We need to adjust the second TSB allocation threshold by the
9175 	 * inflation factor, since there is no point in creating a second
9176 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9177 	 */
9178 	sectsb_thresh = tsb_sectsb_threshold;
9179 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9180 		tte8k_cnt <<= 1;
9181 		tte4m_cnt <<= 1;
9182 		sectsb_thresh <<= 1;
9183 	}
9184 
9185 	/*
9186 	 * Check to see if our TSB is the right size; we may need to
9187 	 * grow or shrink it.  If the process is small, our work is
9188 	 * finished at this point.
9189 	 */
9190 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9191 		return;
9192 	}
9193 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9194 }
9195 
9196 static void
9197 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9198 	uint64_t tte4m_cnt, int sectsb_thresh)
9199 {
9200 	int tsb_bits;
9201 	uint_t tsb_szc;
9202 	struct tsb_info *tsbinfop;
9203 	hatlock_t *hatlockp = NULL;
9204 
9205 	hatlockp = sfmmu_hat_enter(sfmmup);
9206 	ASSERT(hatlockp != NULL);
9207 	tsbinfop = sfmmup->sfmmu_tsb;
9208 	ASSERT(tsbinfop != NULL);
9209 
9210 	/*
9211 	 * If we're growing, select the size based on RSS.  If we're
9212 	 * shrinking, leave some room so we don't have to turn around and
9213 	 * grow again immediately.
9214 	 */
9215 	if (growing)
9216 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9217 	else
9218 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9219 
9220 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9221 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9222 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9223 		    hatlockp, TSB_SHRINK);
9224 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9225 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9226 		    hatlockp, TSB_GROW);
9227 	}
9228 	tsbinfop = sfmmup->sfmmu_tsb;
9229 
9230 	/*
9231 	 * With the TLB and first TSB out of the way, we need to see if
9232 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9233 	 * the TLB page sizes above, the process will start using this new
9234 	 * TSB right away; otherwise, it will start using it on the next
9235 	 * context switch.  Either way, it's no big deal so there's no
9236 	 * synchronization with the trap handlers here unless we grow the
9237 	 * TSB (in which case it's required to prevent using the old one
9238 	 * after it's freed). Note: second tsb is required for 32M/256M
9239 	 * page sizes.
9240 	 */
9241 	if (tte4m_cnt > sectsb_thresh) {
9242 		/*
9243 		 * If we're growing, select the size based on RSS.  If we're
9244 		 * shrinking, leave some room so we don't have to turn
9245 		 * around and grow again immediately.
9246 		 */
9247 		if (growing)
9248 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9249 		else
9250 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9251 		if (tsbinfop->tsb_next == NULL) {
9252 			struct tsb_info *newtsb;
9253 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9254 			    0 : TSB_ALLOC;
9255 
9256 			sfmmu_hat_exit(hatlockp);
9257 
9258 			/*
9259 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9260 			 * can't get the size we want, retry w/a minimum sized
9261 			 * TSB.  If that still didn't work, give up; we can
9262 			 * still run without one.
9263 			 */
9264 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9265 			    TSB4M|TSB32M|TSB256M:TSB4M;
9266 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9267 			    allocflags, sfmmup) != 0) &&
9268 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9269 			    tsb_bits, allocflags, sfmmup) != 0)) {
9270 				return;
9271 			}
9272 
9273 			hatlockp = sfmmu_hat_enter(sfmmup);
9274 
9275 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9276 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9277 				SFMMU_STAT(sf_tsb_sectsb_create);
9278 				sfmmu_setup_tsbinfo(sfmmup);
9279 				sfmmu_hat_exit(hatlockp);
9280 				return;
9281 			} else {
9282 				/*
9283 				 * It's annoying, but possible for us
9284 				 * to get here.. we dropped the HAT lock
9285 				 * because of locking order in the kmem
9286 				 * allocator, and while we were off getting
9287 				 * our memory, some other thread decided to
9288 				 * do us a favor and won the race to get a
9289 				 * second TSB for this process.  Sigh.
9290 				 */
9291 				sfmmu_hat_exit(hatlockp);
9292 				sfmmu_tsbinfo_free(newtsb);
9293 				return;
9294 			}
9295 		}
9296 
9297 		/*
9298 		 * We have a second TSB, see if it's big enough.
9299 		 */
9300 		tsbinfop = tsbinfop->tsb_next;
9301 
9302 		/*
9303 		 * Check to see if our second TSB is the right size;
9304 		 * we may need to grow or shrink it.
9305 		 * To prevent thrashing (e.g. growing the TSB on a
9306 		 * subsequent map operation), only try to shrink if
9307 		 * the TSB reach exceeds twice the virtual address
9308 		 * space size.
9309 		 */
9310 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9311 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9312 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9313 			    tsb_szc, hatlockp, TSB_SHRINK);
9314 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9315 		    TSB_OK_GROW()) {
9316 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9317 			    tsb_szc, hatlockp, TSB_GROW);
9318 		}
9319 	}
9320 
9321 	sfmmu_hat_exit(hatlockp);
9322 }
9323 
9324 /*
9325  * Free up a sfmmu
9326  * Since the sfmmu is currently embedded in the hat struct we simply zero
9327  * out our fields and free up the ism map blk list if any.
9328  */
9329 static void
9330 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9331 {
9332 	ism_blk_t	*blkp, *nx_blkp;
9333 #ifdef	DEBUG
9334 	ism_map_t	*map;
9335 	int 		i;
9336 #endif
9337 
9338 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9339 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9340 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9341 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9342 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9343 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9344 
9345 	sfmmup->sfmmu_free = 0;
9346 	sfmmup->sfmmu_ismhat = 0;
9347 
9348 	blkp = sfmmup->sfmmu_iblk;
9349 	sfmmup->sfmmu_iblk = NULL;
9350 
9351 	while (blkp) {
9352 #ifdef	DEBUG
9353 		map = blkp->iblk_maps;
9354 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9355 			ASSERT(map[i].imap_seg == 0);
9356 			ASSERT(map[i].imap_ismhat == NULL);
9357 			ASSERT(map[i].imap_ment == NULL);
9358 		}
9359 #endif
9360 		nx_blkp = blkp->iblk_next;
9361 		blkp->iblk_next = NULL;
9362 		blkp->iblk_nextpa = (uint64_t)-1;
9363 		kmem_cache_free(ism_blk_cache, blkp);
9364 		blkp = nx_blkp;
9365 	}
9366 }
9367 
9368 /*
9369  * Locking primitves accessed by HATLOCK macros
9370  */
9371 
9372 #define	SFMMU_SPL_MTX	(0x0)
9373 #define	SFMMU_ML_MTX	(0x1)
9374 
9375 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9376 					    SPL_HASH(pg) : MLIST_HASH(pg))
9377 
9378 kmutex_t *
9379 sfmmu_page_enter(struct page *pp)
9380 {
9381 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9382 }
9383 
9384 void
9385 sfmmu_page_exit(kmutex_t *spl)
9386 {
9387 	mutex_exit(spl);
9388 }
9389 
9390 int
9391 sfmmu_page_spl_held(struct page *pp)
9392 {
9393 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9394 }
9395 
9396 kmutex_t *
9397 sfmmu_mlist_enter(struct page *pp)
9398 {
9399 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9400 }
9401 
9402 void
9403 sfmmu_mlist_exit(kmutex_t *mml)
9404 {
9405 	mutex_exit(mml);
9406 }
9407 
9408 int
9409 sfmmu_mlist_held(struct page *pp)
9410 {
9411 
9412 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9413 }
9414 
9415 /*
9416  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9417  * sfmmu_mlist_enter() case mml_table lock array is used and for
9418  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9419  *
9420  * The lock is taken on a root page so that it protects an operation on all
9421  * constituent pages of a large page pp belongs to.
9422  *
9423  * The routine takes a lock from the appropriate array. The lock is determined
9424  * by hashing the root page. After taking the lock this routine checks if the
9425  * root page has the same size code that was used to determine the root (i.e
9426  * that root hasn't changed).  If root page has the expected p_szc field we
9427  * have the right lock and it's returned to the caller. If root's p_szc
9428  * decreased we release the lock and retry from the beginning.  This case can
9429  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9430  * value and taking the lock. The number of retries due to p_szc decrease is
9431  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9432  * determined by hashing pp itself.
9433  *
9434  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9435  * possible that p_szc can increase. To increase p_szc a thread has to lock
9436  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9437  * callers that don't hold a page locked recheck if hmeblk through which pp
9438  * was found still maps this pp.  If it doesn't map it anymore returned lock
9439  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9440  * p_szc increase after taking the lock it returns this lock without further
9441  * retries because in this case the caller doesn't care about which lock was
9442  * taken. The caller will drop it right away.
9443  *
9444  * After the routine returns it's guaranteed that hat_page_demote() can't
9445  * change p_szc field of any of constituent pages of a large page pp belongs
9446  * to as long as pp was either locked at least SHARED prior to this call or
9447  * the caller finds that hment that pointed to this pp still references this
9448  * pp (this also assumes that the caller holds hme hash bucket lock so that
9449  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9450  * hat_pageunload()).
9451  */
9452 static kmutex_t *
9453 sfmmu_mlspl_enter(struct page *pp, int type)
9454 {
9455 	kmutex_t	*mtx;
9456 	uint_t		prev_rszc = UINT_MAX;
9457 	page_t		*rootpp;
9458 	uint_t		szc;
9459 	uint_t		rszc;
9460 	uint_t		pszc = pp->p_szc;
9461 
9462 	ASSERT(pp != NULL);
9463 
9464 again:
9465 	if (pszc == 0) {
9466 		mtx = SFMMU_MLSPL_MTX(type, pp);
9467 		mutex_enter(mtx);
9468 		return (mtx);
9469 	}
9470 
9471 	/* The lock lives in the root page */
9472 	rootpp = PP_GROUPLEADER(pp, pszc);
9473 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9474 	mutex_enter(mtx);
9475 
9476 	/*
9477 	 * Return mml in the following 3 cases:
9478 	 *
9479 	 * 1) If pp itself is root since if its p_szc decreased before we took
9480 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9481 	 * increased it doesn't matter what lock we return (see comment in
9482 	 * front of this routine).
9483 	 *
9484 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9485 	 * large page we have the right lock since any previous potential
9486 	 * hat_page_demote() is done demoting from greater than current root's
9487 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9488 	 * further hat_page_demote() can start or be in progress since it
9489 	 * would need the same lock we currently hold.
9490 	 *
9491 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9492 	 * matter what lock we return (see comment in front of this routine).
9493 	 */
9494 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9495 	    rszc >= prev_rszc) {
9496 		return (mtx);
9497 	}
9498 
9499 	/*
9500 	 * hat_page_demote() could have decreased root's p_szc.
9501 	 * In this case pp's p_szc must also be smaller than pszc.
9502 	 * Retry.
9503 	 */
9504 	if (rszc < pszc) {
9505 		szc = pp->p_szc;
9506 		if (szc < pszc) {
9507 			mutex_exit(mtx);
9508 			pszc = szc;
9509 			goto again;
9510 		}
9511 		/*
9512 		 * pp's p_szc increased after it was decreased.
9513 		 * page cannot be mapped. Return current lock. The caller
9514 		 * will drop it right away.
9515 		 */
9516 		return (mtx);
9517 	}
9518 
9519 	/*
9520 	 * root's p_szc is greater than pp's p_szc.
9521 	 * hat_page_demote() is not done with all pages
9522 	 * yet. Wait for it to complete.
9523 	 */
9524 	mutex_exit(mtx);
9525 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9526 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9527 	mutex_enter(mtx);
9528 	mutex_exit(mtx);
9529 	prev_rszc = rszc;
9530 	goto again;
9531 }
9532 
9533 static int
9534 sfmmu_mlspl_held(struct page *pp, int type)
9535 {
9536 	kmutex_t	*mtx;
9537 
9538 	ASSERT(pp != NULL);
9539 	/* The lock lives in the root page */
9540 	pp = PP_PAGEROOT(pp);
9541 	ASSERT(pp != NULL);
9542 
9543 	mtx = SFMMU_MLSPL_MTX(type, pp);
9544 	return (MUTEX_HELD(mtx));
9545 }
9546 
9547 static uint_t
9548 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9549 {
9550 	struct  hme_blk *hblkp;
9551 
9552 	if (freehblkp != NULL) {
9553 		mutex_enter(&freehblkp_lock);
9554 		if (freehblkp != NULL) {
9555 			/*
9556 			 * If the current thread is owning hblk_reserve OR
9557 			 * critical request from sfmmu_hblk_steal()
9558 			 * let it succeed even if freehblkcnt is really low.
9559 			 */
9560 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9561 				SFMMU_STAT(sf_get_free_throttle);
9562 				mutex_exit(&freehblkp_lock);
9563 				return (0);
9564 			}
9565 			freehblkcnt--;
9566 			*hmeblkpp = freehblkp;
9567 			hblkp = *hmeblkpp;
9568 			freehblkp = hblkp->hblk_next;
9569 			mutex_exit(&freehblkp_lock);
9570 			hblkp->hblk_next = NULL;
9571 			SFMMU_STAT(sf_get_free_success);
9572 			return (1);
9573 		}
9574 		mutex_exit(&freehblkp_lock);
9575 	}
9576 	SFMMU_STAT(sf_get_free_fail);
9577 	return (0);
9578 }
9579 
9580 static uint_t
9581 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9582 {
9583 	struct  hme_blk *hblkp;
9584 
9585 	/*
9586 	 * If the current thread is mapping into kernel space,
9587 	 * let it succede even if freehblkcnt is max
9588 	 * so that it will avoid freeing it to kmem.
9589 	 * This will prevent stack overflow due to
9590 	 * possible recursion since kmem_cache_free()
9591 	 * might require creation of a slab which
9592 	 * in turn needs an hmeblk to map that slab;
9593 	 * let's break this vicious chain at the first
9594 	 * opportunity.
9595 	 */
9596 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9597 		mutex_enter(&freehblkp_lock);
9598 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9599 			SFMMU_STAT(sf_put_free_success);
9600 			freehblkcnt++;
9601 			hmeblkp->hblk_next = freehblkp;
9602 			freehblkp = hmeblkp;
9603 			mutex_exit(&freehblkp_lock);
9604 			return (1);
9605 		}
9606 		mutex_exit(&freehblkp_lock);
9607 	}
9608 
9609 	/*
9610 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9611 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9612 	 * we are not in the process of mapping into kernel space.
9613 	 */
9614 	ASSERT(!critical);
9615 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9616 		mutex_enter(&freehblkp_lock);
9617 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9618 			freehblkcnt--;
9619 			hblkp = freehblkp;
9620 			freehblkp = hblkp->hblk_next;
9621 			mutex_exit(&freehblkp_lock);
9622 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9623 			kmem_cache_free(sfmmu8_cache, hblkp);
9624 			continue;
9625 		}
9626 		mutex_exit(&freehblkp_lock);
9627 	}
9628 	SFMMU_STAT(sf_put_free_fail);
9629 	return (0);
9630 }
9631 
9632 static void
9633 sfmmu_hblk_swap(struct hme_blk *new)
9634 {
9635 	struct hme_blk *old, *hblkp, *prev;
9636 	uint64_t hblkpa, prevpa, newpa;
9637 	caddr_t	base, vaddr, endaddr;
9638 	struct hmehash_bucket *hmebp;
9639 	struct sf_hment *osfhme, *nsfhme;
9640 	page_t *pp;
9641 	kmutex_t *pml;
9642 	tte_t tte;
9643 
9644 #ifdef	DEBUG
9645 	hmeblk_tag		hblktag;
9646 	struct hme_blk		*found;
9647 #endif
9648 	old = HBLK_RESERVE;
9649 
9650 	/*
9651 	 * save pa before bcopy clobbers it
9652 	 */
9653 	newpa = new->hblk_nextpa;
9654 
9655 	base = (caddr_t)get_hblk_base(old);
9656 	endaddr = base + get_hblk_span(old);
9657 
9658 	/*
9659 	 * acquire hash bucket lock.
9660 	 */
9661 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9662 
9663 	/*
9664 	 * copy contents from old to new
9665 	 */
9666 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9667 
9668 	/*
9669 	 * add new to hash chain
9670 	 */
9671 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9672 
9673 	/*
9674 	 * search hash chain for hblk_reserve; this needs to be performed
9675 	 * after adding new, otherwise prevpa and prev won't correspond
9676 	 * to the hblk which is prior to old in hash chain when we call
9677 	 * sfmmu_hblk_hash_rm to remove old later.
9678 	 */
9679 	for (prevpa = 0, prev = NULL,
9680 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9681 	    hblkp != NULL && hblkp != old;
9682 	    prevpa = hblkpa, prev = hblkp,
9683 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9684 
9685 	if (hblkp != old)
9686 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9687 
9688 	/*
9689 	 * p_mapping list is still pointing to hments in hblk_reserve;
9690 	 * fix up p_mapping list so that they point to hments in new.
9691 	 *
9692 	 * Since all these mappings are created by hblk_reserve_thread
9693 	 * on the way and it's using at least one of the buffers from each of
9694 	 * the newly minted slabs, there is no danger of any of these
9695 	 * mappings getting unloaded by another thread.
9696 	 *
9697 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9698 	 * Since all of these hments hold mappings established by segkmem
9699 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9700 	 * have no meaning for the mappings in hblk_reserve.  hments in
9701 	 * old and new are identical except for ref/mod bits.
9702 	 */
9703 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9704 
9705 		HBLKTOHME(osfhme, old, vaddr);
9706 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9707 
9708 		if (TTE_IS_VALID(&tte)) {
9709 			if ((pp = osfhme->hme_page) == NULL)
9710 				panic("sfmmu_hblk_swap: page not mapped");
9711 
9712 			pml = sfmmu_mlist_enter(pp);
9713 
9714 			if (pp != osfhme->hme_page)
9715 				panic("sfmmu_hblk_swap: mapping changed");
9716 
9717 			HBLKTOHME(nsfhme, new, vaddr);
9718 
9719 			HME_ADD(nsfhme, pp);
9720 			HME_SUB(osfhme, pp);
9721 
9722 			sfmmu_mlist_exit(pml);
9723 		}
9724 	}
9725 
9726 	/*
9727 	 * remove old from hash chain
9728 	 */
9729 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9730 
9731 #ifdef	DEBUG
9732 
9733 	hblktag.htag_id = ksfmmup;
9734 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9735 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9736 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9737 
9738 	if (found != new)
9739 		panic("sfmmu_hblk_swap: new hblk not found");
9740 #endif
9741 
9742 	SFMMU_HASH_UNLOCK(hmebp);
9743 
9744 	/*
9745 	 * Reset hblk_reserve
9746 	 */
9747 	bzero((void *)old, HME8BLK_SZ);
9748 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9749 }
9750 
9751 /*
9752  * Grab the mlist mutex for both pages passed in.
9753  *
9754  * low and high will be returned as pointers to the mutexes for these pages.
9755  * low refers to the mutex residing in the lower bin of the mlist hash, while
9756  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9757  * is due to the locking order restrictions on the same thread grabbing
9758  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9759  *
9760  * If both pages hash to the same mutex, only grab that single mutex, and
9761  * high will be returned as NULL
9762  * If the pages hash to different bins in the hash, grab the lower addressed
9763  * lock first and then the higher addressed lock in order to follow the locking
9764  * rules involved with the same thread grabbing multiple mlist mutexes.
9765  * low and high will both have non-NULL values.
9766  */
9767 static void
9768 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9769     kmutex_t **low, kmutex_t **high)
9770 {
9771 	kmutex_t	*mml_targ, *mml_repl;
9772 
9773 	/*
9774 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9775 	 * because this routine is only called by hat_page_relocate() and all
9776 	 * targ and repl pages are already locked EXCL so szc can't change.
9777 	 */
9778 
9779 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9780 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9781 
9782 	if (mml_targ == mml_repl) {
9783 		*low = mml_targ;
9784 		*high = NULL;
9785 	} else {
9786 		if (mml_targ < mml_repl) {
9787 			*low = mml_targ;
9788 			*high = mml_repl;
9789 		} else {
9790 			*low = mml_repl;
9791 			*high = mml_targ;
9792 		}
9793 	}
9794 
9795 	mutex_enter(*low);
9796 	if (*high)
9797 		mutex_enter(*high);
9798 }
9799 
9800 static void
9801 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9802 {
9803 	if (high)
9804 		mutex_exit(high);
9805 	mutex_exit(low);
9806 }
9807 
9808 static hatlock_t *
9809 sfmmu_hat_enter(sfmmu_t *sfmmup)
9810 {
9811 	hatlock_t	*hatlockp;
9812 
9813 	if (sfmmup != ksfmmup) {
9814 		hatlockp = TSB_HASH(sfmmup);
9815 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9816 		return (hatlockp);
9817 	}
9818 	return (NULL);
9819 }
9820 
9821 static hatlock_t *
9822 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9823 {
9824 	hatlock_t	*hatlockp;
9825 
9826 	if (sfmmup != ksfmmup) {
9827 		hatlockp = TSB_HASH(sfmmup);
9828 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9829 			return (NULL);
9830 		return (hatlockp);
9831 	}
9832 	return (NULL);
9833 }
9834 
9835 static void
9836 sfmmu_hat_exit(hatlock_t *hatlockp)
9837 {
9838 	if (hatlockp != NULL)
9839 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9840 }
9841 
9842 static void
9843 sfmmu_hat_lock_all(void)
9844 {
9845 	int i;
9846 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9847 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9848 }
9849 
9850 static void
9851 sfmmu_hat_unlock_all(void)
9852 {
9853 	int i;
9854 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9855 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9856 }
9857 
9858 int
9859 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9860 {
9861 	ASSERT(sfmmup != ksfmmup);
9862 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9863 }
9864 
9865 /*
9866  * Locking primitives to provide consistency between ISM unmap
9867  * and other operations.  Since ISM unmap can take a long time, we
9868  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9869  * contention on the hatlock buckets while ISM segments are being
9870  * unmapped.  The tradeoff is that the flags don't prevent priority
9871  * inversion from occurring, so we must request kernel priority in
9872  * case we have to sleep to keep from getting buried while holding
9873  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9874  * threads from running (for example, in sfmmu_uvatopfn()).
9875  */
9876 static void
9877 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9878 {
9879 	hatlock_t *hatlockp;
9880 
9881 	THREAD_KPRI_REQUEST();
9882 	if (!hatlock_held)
9883 		hatlockp = sfmmu_hat_enter(sfmmup);
9884 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9885 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9886 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9887 	if (!hatlock_held)
9888 		sfmmu_hat_exit(hatlockp);
9889 }
9890 
9891 static void
9892 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9893 {
9894 	hatlock_t *hatlockp;
9895 
9896 	if (!hatlock_held)
9897 		hatlockp = sfmmu_hat_enter(sfmmup);
9898 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9899 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9900 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9901 	if (!hatlock_held)
9902 		sfmmu_hat_exit(hatlockp);
9903 	THREAD_KPRI_RELEASE();
9904 }
9905 
9906 /*
9907  *
9908  * Algorithm:
9909  *
9910  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9911  *	hblks.
9912  *
9913  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9914  *
9915  * 		(a) try to return an hblk from reserve pool of free hblks;
9916  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9917  *		    and return hblk_reserve.
9918  *
9919  * (3) call kmem_cache_alloc() to allocate hblk;
9920  *
9921  *		(a) if hblk_reserve_lock is held by the current thread,
9922  *		    atomically replace hblk_reserve by the hblk that is
9923  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9924  *		    and call kmem_cache_alloc() again.
9925  *		(b) if reserve pool is not full, add the hblk that is
9926  *		    returned by kmem_cache_alloc to reserve pool and
9927  *		    call kmem_cache_alloc again.
9928  *
9929  */
9930 static struct hme_blk *
9931 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9932 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9933 	uint_t flags)
9934 {
9935 	struct hme_blk *hmeblkp = NULL;
9936 	struct hme_blk *newhblkp;
9937 	struct hme_blk *shw_hblkp = NULL;
9938 	struct kmem_cache *sfmmu_cache = NULL;
9939 	uint64_t hblkpa;
9940 	ulong_t index;
9941 	uint_t owner;		/* set to 1 if using hblk_reserve */
9942 	uint_t forcefree;
9943 	int sleep;
9944 
9945 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9946 
9947 	/*
9948 	 * If segkmem is not created yet, allocate from static hmeblks
9949 	 * created at the end of startup_modules().  See the block comment
9950 	 * in startup_modules() describing how we estimate the number of
9951 	 * static hmeblks that will be needed during re-map.
9952 	 */
9953 	if (!hblk_alloc_dynamic) {
9954 
9955 		if (size == TTE8K) {
9956 			index = nucleus_hblk8.index;
9957 			if (index >= nucleus_hblk8.len) {
9958 				/*
9959 				 * If we panic here, see startup_modules() to
9960 				 * make sure that we are calculating the
9961 				 * number of hblk8's that we need correctly.
9962 				 */
9963 				prom_panic("no nucleus hblk8 to allocate");
9964 			}
9965 			hmeblkp =
9966 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9967 			nucleus_hblk8.index++;
9968 			SFMMU_STAT(sf_hblk8_nalloc);
9969 		} else {
9970 			index = nucleus_hblk1.index;
9971 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9972 				/*
9973 				 * If we panic here, see startup_modules().
9974 				 * Most likely you need to update the
9975 				 * calculation of the number of hblk1 elements
9976 				 * that the kernel needs to boot.
9977 				 */
9978 				prom_panic("no nucleus hblk1 to allocate");
9979 			}
9980 			hmeblkp =
9981 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9982 			nucleus_hblk1.index++;
9983 			SFMMU_STAT(sf_hblk1_nalloc);
9984 		}
9985 
9986 		goto hblk_init;
9987 	}
9988 
9989 	SFMMU_HASH_UNLOCK(hmebp);
9990 
9991 	if (sfmmup != KHATID) {
9992 		if (mmu_page_sizes == max_mmu_page_sizes) {
9993 			if (size < TTE256M)
9994 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9995 				    size, flags);
9996 		} else {
9997 			if (size < TTE4M)
9998 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
9999 				    size, flags);
10000 		}
10001 	}
10002 
10003 fill_hblk:
10004 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10005 
10006 	if (owner && size == TTE8K) {
10007 
10008 		/*
10009 		 * We are really in a tight spot. We already own
10010 		 * hblk_reserve and we need another hblk.  In anticipation
10011 		 * of this kind of scenario, we specifically set aside
10012 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10013 		 * by owner of hblk_reserve.
10014 		 */
10015 		SFMMU_STAT(sf_hblk_recurse_cnt);
10016 
10017 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10018 			panic("sfmmu_hblk_alloc: reserve list is empty");
10019 
10020 		goto hblk_verify;
10021 	}
10022 
10023 	ASSERT(!owner);
10024 
10025 	if ((flags & HAT_NO_KALLOC) == 0) {
10026 
10027 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10028 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10029 
10030 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10031 			hmeblkp = sfmmu_hblk_steal(size);
10032 		} else {
10033 			/*
10034 			 * if we are the owner of hblk_reserve,
10035 			 * swap hblk_reserve with hmeblkp and
10036 			 * start a fresh life.  Hope things go
10037 			 * better this time.
10038 			 */
10039 			if (hblk_reserve_thread == curthread) {
10040 				ASSERT(sfmmu_cache == sfmmu8_cache);
10041 				sfmmu_hblk_swap(hmeblkp);
10042 				hblk_reserve_thread = NULL;
10043 				mutex_exit(&hblk_reserve_lock);
10044 				goto fill_hblk;
10045 			}
10046 			/*
10047 			 * let's donate this hblk to our reserve list if
10048 			 * we are not mapping kernel range
10049 			 */
10050 			if (size == TTE8K && sfmmup != KHATID)
10051 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10052 					goto fill_hblk;
10053 		}
10054 	} else {
10055 		/*
10056 		 * We are here to map the slab in sfmmu8_cache; let's
10057 		 * check if we could tap our reserve list; if successful,
10058 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10059 		 */
10060 		SFMMU_STAT(sf_hblk_slab_cnt);
10061 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10062 			/*
10063 			 * let's start hblk_reserve dance
10064 			 */
10065 			SFMMU_STAT(sf_hblk_reserve_cnt);
10066 			owner = 1;
10067 			mutex_enter(&hblk_reserve_lock);
10068 			hmeblkp = HBLK_RESERVE;
10069 			hblk_reserve_thread = curthread;
10070 		}
10071 	}
10072 
10073 hblk_verify:
10074 	ASSERT(hmeblkp != NULL);
10075 	set_hblk_sz(hmeblkp, size);
10076 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10077 	SFMMU_HASH_LOCK(hmebp);
10078 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10079 	if (newhblkp != NULL) {
10080 		SFMMU_HASH_UNLOCK(hmebp);
10081 		if (hmeblkp != HBLK_RESERVE) {
10082 			/*
10083 			 * This is really tricky!
10084 			 *
10085 			 * vmem_alloc(vmem_seg_arena)
10086 			 *  vmem_alloc(vmem_internal_arena)
10087 			 *   segkmem_alloc(heap_arena)
10088 			 *    vmem_alloc(heap_arena)
10089 			 *    page_create()
10090 			 *    hat_memload()
10091 			 *	kmem_cache_free()
10092 			 *	 kmem_cache_alloc()
10093 			 *	  kmem_slab_create()
10094 			 *	   vmem_alloc(kmem_internal_arena)
10095 			 *	    segkmem_alloc(heap_arena)
10096 			 *		vmem_alloc(heap_arena)
10097 			 *		page_create()
10098 			 *		hat_memload()
10099 			 *		  kmem_cache_free()
10100 			 *		...
10101 			 *
10102 			 * Thus, hat_memload() could call kmem_cache_free
10103 			 * for enough number of times that we could easily
10104 			 * hit the bottom of the stack or run out of reserve
10105 			 * list of vmem_seg structs.  So, we must donate
10106 			 * this hblk to reserve list if it's allocated
10107 			 * from sfmmu8_cache *and* mapping kernel range.
10108 			 * We don't need to worry about freeing hmeblk1's
10109 			 * to kmem since they don't map any kmem slabs.
10110 			 *
10111 			 * Note: When segkmem supports largepages, we must
10112 			 * free hmeblk1's to reserve list as well.
10113 			 */
10114 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10115 			if (size == TTE8K &&
10116 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10117 				goto re_verify;
10118 			}
10119 			ASSERT(sfmmup != KHATID);
10120 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10121 		} else {
10122 			/*
10123 			 * Hey! we don't need hblk_reserve any more.
10124 			 */
10125 			ASSERT(owner);
10126 			hblk_reserve_thread = NULL;
10127 			mutex_exit(&hblk_reserve_lock);
10128 			owner = 0;
10129 		}
10130 re_verify:
10131 		/*
10132 		 * let's check if the goodies are still present
10133 		 */
10134 		SFMMU_HASH_LOCK(hmebp);
10135 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10136 		if (newhblkp != NULL) {
10137 			/*
10138 			 * return newhblkp if it's not hblk_reserve;
10139 			 * if newhblkp is hblk_reserve, return it
10140 			 * _only if_ we are the owner of hblk_reserve.
10141 			 */
10142 			if (newhblkp != HBLK_RESERVE || owner) {
10143 				return (newhblkp);
10144 			} else {
10145 				/*
10146 				 * we just hit hblk_reserve in the hash and
10147 				 * we are not the owner of that;
10148 				 *
10149 				 * block until hblk_reserve_thread completes
10150 				 * swapping hblk_reserve and try the dance
10151 				 * once again.
10152 				 */
10153 				SFMMU_HASH_UNLOCK(hmebp);
10154 				mutex_enter(&hblk_reserve_lock);
10155 				mutex_exit(&hblk_reserve_lock);
10156 				SFMMU_STAT(sf_hblk_reserve_hit);
10157 				goto fill_hblk;
10158 			}
10159 		} else {
10160 			/*
10161 			 * it's no more! try the dance once again.
10162 			 */
10163 			SFMMU_HASH_UNLOCK(hmebp);
10164 			goto fill_hblk;
10165 		}
10166 	}
10167 
10168 hblk_init:
10169 	set_hblk_sz(hmeblkp, size);
10170 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10171 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10172 	hmeblkp->hblk_tag = hblktag;
10173 	hmeblkp->hblk_shadow = shw_hblkp;
10174 	hblkpa = hmeblkp->hblk_nextpa;
10175 	hmeblkp->hblk_nextpa = 0;
10176 
10177 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10178 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10179 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10180 	ASSERT(hmeblkp->hblk_vcnt == 0);
10181 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10182 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10183 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10184 	return (hmeblkp);
10185 }
10186 
10187 /*
10188  * This function performs any cleanup required on the hme_blk
10189  * and returns it to the free list.
10190  */
10191 /* ARGSUSED */
10192 static void
10193 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10194 	uint64_t hblkpa, struct hme_blk **listp)
10195 {
10196 	int shw_size, vshift;
10197 	struct hme_blk *shw_hblkp;
10198 	uint_t		shw_mask, newshw_mask;
10199 	uintptr_t	vaddr;
10200 	int		size;
10201 	uint_t		critical;
10202 
10203 	ASSERT(hmeblkp);
10204 	ASSERT(!hmeblkp->hblk_hmecnt);
10205 	ASSERT(!hmeblkp->hblk_vcnt);
10206 	ASSERT(!hmeblkp->hblk_lckcnt);
10207 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10208 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10209 
10210 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10211 
10212 	size = get_hblk_ttesz(hmeblkp);
10213 	shw_hblkp = hmeblkp->hblk_shadow;
10214 	if (shw_hblkp) {
10215 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10216 		if (mmu_page_sizes == max_mmu_page_sizes) {
10217 			ASSERT(size < TTE256M);
10218 		} else {
10219 			ASSERT(size < TTE4M);
10220 		}
10221 
10222 		shw_size = get_hblk_ttesz(shw_hblkp);
10223 		vaddr = get_hblk_base(hmeblkp);
10224 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10225 		ASSERT(vshift < 8);
10226 		/*
10227 		 * Atomically clear shadow mask bit
10228 		 */
10229 		do {
10230 			shw_mask = shw_hblkp->hblk_shw_mask;
10231 			ASSERT(shw_mask & (1 << vshift));
10232 			newshw_mask = shw_mask & ~(1 << vshift);
10233 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10234 				shw_mask, newshw_mask);
10235 		} while (newshw_mask != shw_mask);
10236 		hmeblkp->hblk_shadow = NULL;
10237 	}
10238 	hmeblkp->hblk_next = NULL;
10239 	hmeblkp->hblk_nextpa = hblkpa;
10240 	hmeblkp->hblk_shw_bit = 0;
10241 
10242 	if (hmeblkp->hblk_nuc_bit == 0) {
10243 
10244 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10245 			return;
10246 
10247 		hmeblkp->hblk_next = *listp;
10248 		*listp = hmeblkp;
10249 	}
10250 }
10251 
10252 static void
10253 sfmmu_hblks_list_purge(struct hme_blk **listp)
10254 {
10255 	struct hme_blk	*hmeblkp;
10256 
10257 	while ((hmeblkp = *listp) != NULL) {
10258 		*listp = hmeblkp->hblk_next;
10259 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10260 	}
10261 }
10262 
10263 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10264 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
10265 
10266 static uint_t sfmmu_hblk_steal_twice;
10267 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10268 
10269 /*
10270  * Steal a hmeblk from user or kernel hme hash lists.
10271  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
10272  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
10273  * tap into critical reserve of freehblkp.
10274  * Note: We remain looping in this routine until we find one.
10275  */
10276 static struct hme_blk *
10277 sfmmu_hblk_steal(int size)
10278 {
10279 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10280 	struct hmehash_bucket *hmebp;
10281 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10282 	uint64_t hblkpa, prevpa;
10283 	int i;
10284 	uint_t loop_cnt = 0, critical;
10285 
10286 	for (;;) {
10287 		if (size == TTE8K) {
10288 			critical =
10289 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
10290 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
10291 				return (hmeblkp);
10292 		}
10293 
10294 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10295 			uhmehash_steal_hand;
10296 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10297 
10298 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10299 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10300 			SFMMU_HASH_LOCK(hmebp);
10301 			hmeblkp = hmebp->hmeblkp;
10302 			hblkpa = hmebp->hmeh_nextpa;
10303 			prevpa = 0;
10304 			pr_hblk = NULL;
10305 			while (hmeblkp) {
10306 				/*
10307 				 * check if it is a hmeblk that is not locked
10308 				 * and not shared. skip shadow hmeblks with
10309 				 * shadow_mask set i.e valid count non zero.
10310 				 */
10311 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10312 				    (hmeblkp->hblk_shw_bit == 0 ||
10313 					hmeblkp->hblk_vcnt == 0) &&
10314 				    (hmeblkp->hblk_lckcnt == 0)) {
10315 					/*
10316 					 * there is a high probability that we
10317 					 * will find a free one. search some
10318 					 * buckets for a free hmeblk initially
10319 					 * before unloading a valid hmeblk.
10320 					 */
10321 					if ((hmeblkp->hblk_vcnt == 0 &&
10322 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10323 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10324 						if (sfmmu_steal_this_hblk(hmebp,
10325 						    hmeblkp, hblkpa, prevpa,
10326 						    pr_hblk)) {
10327 							/*
10328 							 * Hblk is unloaded
10329 							 * successfully
10330 							 */
10331 							break;
10332 						}
10333 					}
10334 				}
10335 				pr_hblk = hmeblkp;
10336 				prevpa = hblkpa;
10337 				hblkpa = hmeblkp->hblk_nextpa;
10338 				hmeblkp = hmeblkp->hblk_next;
10339 			}
10340 
10341 			SFMMU_HASH_UNLOCK(hmebp);
10342 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10343 				hmebp = uhme_hash;
10344 		}
10345 		uhmehash_steal_hand = hmebp;
10346 
10347 		if (hmeblkp != NULL)
10348 			break;
10349 
10350 		/*
10351 		 * in the worst case, look for a free one in the kernel
10352 		 * hash table.
10353 		 */
10354 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10355 			SFMMU_HASH_LOCK(hmebp);
10356 			hmeblkp = hmebp->hmeblkp;
10357 			hblkpa = hmebp->hmeh_nextpa;
10358 			prevpa = 0;
10359 			pr_hblk = NULL;
10360 			while (hmeblkp) {
10361 				/*
10362 				 * check if it is free hmeblk
10363 				 */
10364 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10365 				    (hmeblkp->hblk_lckcnt == 0) &&
10366 				    (hmeblkp->hblk_vcnt == 0) &&
10367 				    (hmeblkp->hblk_hmecnt == 0)) {
10368 					if (sfmmu_steal_this_hblk(hmebp,
10369 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10370 						break;
10371 					} else {
10372 						/*
10373 						 * Cannot fail since we have
10374 						 * hash lock.
10375 						 */
10376 						panic("fail to steal?");
10377 					}
10378 				}
10379 
10380 				pr_hblk = hmeblkp;
10381 				prevpa = hblkpa;
10382 				hblkpa = hmeblkp->hblk_nextpa;
10383 				hmeblkp = hmeblkp->hblk_next;
10384 			}
10385 
10386 			SFMMU_HASH_UNLOCK(hmebp);
10387 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10388 				hmebp = khme_hash;
10389 		}
10390 
10391 		if (hmeblkp != NULL)
10392 			break;
10393 		sfmmu_hblk_steal_twice++;
10394 	}
10395 	return (hmeblkp);
10396 }
10397 
10398 /*
10399  * This routine does real work to prepare a hblk to be "stolen" by
10400  * unloading the mappings, updating shadow counts ....
10401  * It returns 1 if the block is ready to be reused (stolen), or 0
10402  * means the block cannot be stolen yet- pageunload is still working
10403  * on this hblk.
10404  */
10405 static int
10406 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10407 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10408 {
10409 	int shw_size, vshift;
10410 	struct hme_blk *shw_hblkp;
10411 	uintptr_t vaddr;
10412 	uint_t shw_mask, newshw_mask;
10413 
10414 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10415 
10416 	/*
10417 	 * check if the hmeblk is free, unload if necessary
10418 	 */
10419 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10420 		sfmmu_t *sfmmup;
10421 		demap_range_t dmr;
10422 
10423 		sfmmup = hblktosfmmu(hmeblkp);
10424 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10425 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10426 		    (caddr_t)get_hblk_base(hmeblkp),
10427 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10428 		DEMAP_RANGE_FLUSH(&dmr);
10429 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10430 			/*
10431 			 * Pageunload is working on the same hblk.
10432 			 */
10433 			return (0);
10434 		}
10435 
10436 		sfmmu_hblk_steal_unload_count++;
10437 	}
10438 
10439 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10440 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10441 
10442 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10443 	hmeblkp->hblk_nextpa = hblkpa;
10444 
10445 	shw_hblkp = hmeblkp->hblk_shadow;
10446 	if (shw_hblkp) {
10447 		shw_size = get_hblk_ttesz(shw_hblkp);
10448 		vaddr = get_hblk_base(hmeblkp);
10449 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10450 		ASSERT(vshift < 8);
10451 		/*
10452 		 * Atomically clear shadow mask bit
10453 		 */
10454 		do {
10455 			shw_mask = shw_hblkp->hblk_shw_mask;
10456 			ASSERT(shw_mask & (1 << vshift));
10457 			newshw_mask = shw_mask & ~(1 << vshift);
10458 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10459 				shw_mask, newshw_mask);
10460 		} while (newshw_mask != shw_mask);
10461 		hmeblkp->hblk_shadow = NULL;
10462 	}
10463 
10464 	/*
10465 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10466 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10467 	 * we are indeed allocating a shadow hmeblk.
10468 	 */
10469 	hmeblkp->hblk_shw_bit = 0;
10470 
10471 	sfmmu_hblk_steal_count++;
10472 	SFMMU_STAT(sf_steal_count);
10473 
10474 	return (1);
10475 }
10476 
10477 struct hme_blk *
10478 sfmmu_hmetohblk(struct sf_hment *sfhme)
10479 {
10480 	struct hme_blk *hmeblkp;
10481 	struct sf_hment *sfhme0;
10482 	struct hme_blk *hblk_dummy = 0;
10483 
10484 	/*
10485 	 * No dummy sf_hments, please.
10486 	 */
10487 	ASSERT(sfhme->hme_tte.ll != 0);
10488 
10489 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10490 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10491 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10492 
10493 	return (hmeblkp);
10494 }
10495 
10496 /*
10497  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10498  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10499  * KM_SLEEP allocation.
10500  *
10501  * Return 0 on success, -1 otherwise.
10502  */
10503 static void
10504 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10505 {
10506 	struct tsb_info *tsbinfop, *next;
10507 	tsb_replace_rc_t rc;
10508 	boolean_t gotfirst = B_FALSE;
10509 
10510 	ASSERT(sfmmup != ksfmmup);
10511 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10512 
10513 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10514 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10515 	}
10516 
10517 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10518 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10519 	} else {
10520 		return;
10521 	}
10522 
10523 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10524 
10525 	/*
10526 	 * Loop over all tsbinfo's replacing them with ones that actually have
10527 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10528 	 */
10529 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10530 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10531 		next = tsbinfop->tsb_next;
10532 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10533 		    hatlockp, TSB_SWAPIN);
10534 		if (rc != TSB_SUCCESS) {
10535 			break;
10536 		}
10537 		gotfirst = B_TRUE;
10538 	}
10539 
10540 	switch (rc) {
10541 	case TSB_SUCCESS:
10542 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10543 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10544 		return;
10545 	case TSB_ALLOCFAIL:
10546 		break;
10547 	default:
10548 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10549 		    "%d", rc);
10550 	}
10551 
10552 	/*
10553 	 * In this case, we failed to get one of our TSBs.  If we failed to
10554 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10555 	 * and throw away the tsbinfos, starting where the allocation failed;
10556 	 * we can get by with just one TSB as long as we don't leave the
10557 	 * SWAPPED tsbinfo structures lying around.
10558 	 */
10559 	tsbinfop = sfmmup->sfmmu_tsb;
10560 	next = tsbinfop->tsb_next;
10561 	tsbinfop->tsb_next = NULL;
10562 
10563 	sfmmu_hat_exit(hatlockp);
10564 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10565 		next = tsbinfop->tsb_next;
10566 		sfmmu_tsbinfo_free(tsbinfop);
10567 	}
10568 	hatlockp = sfmmu_hat_enter(sfmmup);
10569 
10570 	/*
10571 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10572 	 * pages.
10573 	 */
10574 	if (!gotfirst) {
10575 		tsbinfop = sfmmup->sfmmu_tsb;
10576 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10577 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10578 		ASSERT(rc == TSB_SUCCESS);
10579 	} else {
10580 		/* update machine specific tsbinfo */
10581 		sfmmu_setup_tsbinfo(sfmmup);
10582 	}
10583 
10584 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10585 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10586 }
10587 
10588 /*
10589  * Handle exceptions for low level tsb_handler.
10590  *
10591  * There are many scenarios that could land us here:
10592  *
10593  * If the context is invalid we land here. The context can be invalid
10594  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10595  * perform a wrap around operation in order to allocate a new context.
10596  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10597  * TSBs configuration is changeing for this process and we are forced into
10598  * here to do a syncronization operation. If the context is valid we can
10599  * be here from window trap hanlder. In this case just call trap to handle
10600  * the fault.
10601  *
10602  * Note that the process will run in INVALID_CONTEXT before
10603  * faulting into here and subsequently loading the MMU registers
10604  * (including the TSB base register) associated with this process.
10605  * For this reason, the trap handlers must all test for
10606  * INVALID_CONTEXT before attempting to access any registers other
10607  * than the context registers.
10608  */
10609 void
10610 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10611 {
10612 	sfmmu_t *sfmmup;
10613 	uint_t ctxtype;
10614 	klwp_id_t lwp;
10615 	char lwp_save_state;
10616 	hatlock_t *hatlockp;
10617 	struct tsb_info *tsbinfop;
10618 
10619 	SFMMU_STAT(sf_tsb_exceptions);
10620 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10621 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10622 	/*
10623 	 * note that in sun4u, tagacces register contains ctxnum
10624 	 * while sun4v passes ctxtype in the tagaccess register.
10625 	 */
10626 	ctxtype = tagaccess & TAGACC_CTX_MASK;
10627 
10628 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
10629 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10630 	/*
10631 	 * First, make sure we come out of here with a valid ctx,
10632 	 * since if we don't get one we'll simply loop on the
10633 	 * faulting instruction.
10634 	 *
10635 	 * If the ISM mappings are changing, the TSB is being relocated, or
10636 	 * the process is swapped out we serialize behind the controlling
10637 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10638 	 * Otherwise we synchronize with the context stealer or the thread
10639 	 * that required us to change out our MMU registers (such
10640 	 * as a thread changing out our TSB while we were running) by
10641 	 * locking the HAT and grabbing the rwlock on the context as a
10642 	 * reader temporarily.
10643 	 */
10644 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10645 	    ctxtype == INVALID_CONTEXT);
10646 
10647 	if (ctxtype == INVALID_CONTEXT) {
10648 		/*
10649 		 * Must set lwp state to LWP_SYS before
10650 		 * trying to acquire any adaptive lock
10651 		 */
10652 		lwp = ttolwp(curthread);
10653 		ASSERT(lwp);
10654 		lwp_save_state = lwp->lwp_state;
10655 		lwp->lwp_state = LWP_SYS;
10656 
10657 		hatlockp = sfmmu_hat_enter(sfmmup);
10658 retry:
10659 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10660 		    tsbinfop = tsbinfop->tsb_next) {
10661 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10662 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10663 				    HATLOCK_MUTEXP(hatlockp));
10664 				goto retry;
10665 			}
10666 		}
10667 
10668 		/*
10669 		 * Wait for ISM maps to be updated.
10670 		 */
10671 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10672 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10673 			    HATLOCK_MUTEXP(hatlockp));
10674 			goto retry;
10675 		}
10676 
10677 		/*
10678 		 * If we're swapping in, get TSB(s).  Note that we must do
10679 		 * this before we get a ctx or load the MMU state.  Once
10680 		 * we swap in we have to recheck to make sure the TSB(s) and
10681 		 * ISM mappings didn't change while we slept.
10682 		 */
10683 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10684 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10685 			goto retry;
10686 		}
10687 
10688 		sfmmu_get_ctx(sfmmup);
10689 
10690 		sfmmu_hat_exit(hatlockp);
10691 		/*
10692 		 * Must restore lwp_state if not calling
10693 		 * trap() for further processing. Restore
10694 		 * it anyway.
10695 		 */
10696 		lwp->lwp_state = lwp_save_state;
10697 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10698 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10699 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10700 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10701 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10702 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10703 			return;
10704 		}
10705 		if (traptype == T_DATA_PROT) {
10706 			traptype = T_DATA_MMU_MISS;
10707 		}
10708 	}
10709 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10710 }
10711 
10712 /*
10713  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10714  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10715  * rather than spinning to avoid send mondo timeouts with
10716  * interrupts enabled. When the lock is acquired it is immediately
10717  * released and we return back to sfmmu_vatopfn just after
10718  * the GET_TTE call.
10719  */
10720 void
10721 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10722 {
10723 	struct page	**pp;
10724 
10725 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10726 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10727 }
10728 
10729 /*
10730  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10731  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10732  * cross traps which cannot be handled while spinning in the
10733  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10734  * mutex, which is held by the holder of the suspend bit, and then
10735  * retry the trapped instruction after unwinding.
10736  */
10737 /*ARGSUSED*/
10738 void
10739 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10740 {
10741 	ASSERT(curthread != kreloc_thread);
10742 	mutex_enter(&kpr_suspendlock);
10743 	mutex_exit(&kpr_suspendlock);
10744 }
10745 
10746 /*
10747  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10748  * This routine may be called with all cpu's captured. Therefore, the
10749  * caller is responsible for holding all locks and disabling kernel
10750  * preemption.
10751  */
10752 /* ARGSUSED */
10753 static void
10754 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10755 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10756 {
10757 	cpuset_t 	cpuset;
10758 	caddr_t 	va;
10759 	ism_ment_t	*ment;
10760 	sfmmu_t		*sfmmup;
10761 #ifdef VAC
10762 	int 		vcolor;
10763 #endif
10764 	int		ttesz;
10765 
10766 	/*
10767 	 * Walk the ism_hat's mapping list and flush the page
10768 	 * from every hat sharing this ism_hat. This routine
10769 	 * may be called while all cpu's have been captured.
10770 	 * Therefore we can't attempt to grab any locks. For now
10771 	 * this means we will protect the ism mapping list under
10772 	 * a single lock which will be grabbed by the caller.
10773 	 * If hat_share/unshare scalibility becomes a performance
10774 	 * problem then we may need to re-think ism mapping list locking.
10775 	 */
10776 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10777 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10778 	addr = addr - ISMID_STARTADDR;
10779 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10780 
10781 		sfmmup = ment->iment_hat;
10782 
10783 		va = ment->iment_base_va;
10784 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10785 
10786 		/*
10787 		 * Flush TSB of ISM mappings.
10788 		 */
10789 		ttesz = get_hblk_ttesz(hmeblkp);
10790 		if (ttesz == TTE8K || ttesz == TTE4M) {
10791 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10792 		} else {
10793 			caddr_t sva = va;
10794 			caddr_t eva;
10795 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10796 			eva = sva + get_hblk_span(hmeblkp);
10797 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10798 		}
10799 
10800 		cpuset = sfmmup->sfmmu_cpusran;
10801 		CPUSET_AND(cpuset, cpu_ready_set);
10802 		CPUSET_DEL(cpuset, CPU->cpu_id);
10803 
10804 		SFMMU_XCALL_STATS(sfmmup);
10805 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10806 		    (uint64_t)sfmmup);
10807 
10808 		vtag_flushpage(va, (uint64_t)sfmmup);
10809 
10810 #ifdef VAC
10811 		/*
10812 		 * Flush D$
10813 		 * When flushing D$ we must flush all
10814 		 * cpu's. See sfmmu_cache_flush().
10815 		 */
10816 		if (cache_flush_flag == CACHE_FLUSH) {
10817 			cpuset = cpu_ready_set;
10818 			CPUSET_DEL(cpuset, CPU->cpu_id);
10819 
10820 			SFMMU_XCALL_STATS(sfmmup);
10821 			vcolor = addr_to_vcolor(va);
10822 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10823 			vac_flushpage(pfnum, vcolor);
10824 		}
10825 #endif	/* VAC */
10826 	}
10827 }
10828 
10829 /*
10830  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10831  * a particular virtual address and ctx.  If noflush is set we do not
10832  * flush the TLB/TSB.  This function may or may not be called with the
10833  * HAT lock held.
10834  */
10835 static void
10836 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10837 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10838 	int hat_lock_held)
10839 {
10840 #ifdef VAC
10841 	int vcolor;
10842 #endif
10843 	cpuset_t cpuset;
10844 	hatlock_t *hatlockp;
10845 
10846 #if defined(lint) && !defined(VAC)
10847 	pfnum = pfnum;
10848 	cpu_flag = cpu_flag;
10849 	cache_flush_flag = cache_flush_flag;
10850 #endif
10851 	/*
10852 	 * There is no longer a need to protect against ctx being
10853 	 * stolen here since we don't store the ctx in the TSB anymore.
10854 	 */
10855 #ifdef VAC
10856 	vcolor = addr_to_vcolor(addr);
10857 #endif
10858 
10859 	/*
10860 	 * We must hold the hat lock during the flush of TLB,
10861 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10862 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10863 	 * causing TLB demap routine to skip flush on that MMU.
10864 	 * If the context on a MMU has already been set to
10865 	 * INVALID_CONTEXT, we just get an extra flush on
10866 	 * that MMU.
10867 	 */
10868 	if (!hat_lock_held && !tlb_noflush)
10869 		hatlockp = sfmmu_hat_enter(sfmmup);
10870 
10871 	kpreempt_disable();
10872 	if (!tlb_noflush) {
10873 		/*
10874 		 * Flush the TSB and TLB.
10875 		 */
10876 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10877 
10878 		cpuset = sfmmup->sfmmu_cpusran;
10879 		CPUSET_AND(cpuset, cpu_ready_set);
10880 		CPUSET_DEL(cpuset, CPU->cpu_id);
10881 
10882 		SFMMU_XCALL_STATS(sfmmup);
10883 
10884 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10885 		    (uint64_t)sfmmup);
10886 
10887 		vtag_flushpage(addr, (uint64_t)sfmmup);
10888 	}
10889 
10890 	if (!hat_lock_held && !tlb_noflush)
10891 		sfmmu_hat_exit(hatlockp);
10892 
10893 #ifdef VAC
10894 	/*
10895 	 * Flush the D$
10896 	 *
10897 	 * Even if the ctx is stolen, we need to flush the
10898 	 * cache. Our ctx stealer only flushes the TLBs.
10899 	 */
10900 	if (cache_flush_flag == CACHE_FLUSH) {
10901 		if (cpu_flag & FLUSH_ALL_CPUS) {
10902 			cpuset = cpu_ready_set;
10903 		} else {
10904 			cpuset = sfmmup->sfmmu_cpusran;
10905 			CPUSET_AND(cpuset, cpu_ready_set);
10906 		}
10907 		CPUSET_DEL(cpuset, CPU->cpu_id);
10908 		SFMMU_XCALL_STATS(sfmmup);
10909 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10910 		vac_flushpage(pfnum, vcolor);
10911 	}
10912 #endif	/* VAC */
10913 	kpreempt_enable();
10914 }
10915 
10916 /*
10917  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10918  * address and ctx.  If noflush is set we do not currently do anything.
10919  * This function may or may not be called with the HAT lock held.
10920  */
10921 static void
10922 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10923 	int tlb_noflush, int hat_lock_held)
10924 {
10925 	cpuset_t cpuset;
10926 	hatlock_t *hatlockp;
10927 
10928 	/*
10929 	 * If the process is exiting we have nothing to do.
10930 	 */
10931 	if (tlb_noflush)
10932 		return;
10933 
10934 	/*
10935 	 * Flush TSB.
10936 	 */
10937 	if (!hat_lock_held)
10938 		hatlockp = sfmmu_hat_enter(sfmmup);
10939 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10940 
10941 	kpreempt_disable();
10942 
10943 	cpuset = sfmmup->sfmmu_cpusran;
10944 	CPUSET_AND(cpuset, cpu_ready_set);
10945 	CPUSET_DEL(cpuset, CPU->cpu_id);
10946 
10947 	SFMMU_XCALL_STATS(sfmmup);
10948 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10949 
10950 	vtag_flushpage(addr, (uint64_t)sfmmup);
10951 
10952 	if (!hat_lock_held)
10953 		sfmmu_hat_exit(hatlockp);
10954 
10955 	kpreempt_enable();
10956 
10957 }
10958 
10959 /*
10960  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10961  * call handler that can flush a range of pages to save on xcalls.
10962  */
10963 static int sfmmu_xcall_save;
10964 
10965 static void
10966 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10967 {
10968 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10969 	hatlock_t *hatlockp;
10970 	cpuset_t cpuset;
10971 	uint64_t sfmmu_pgcnt;
10972 	pgcnt_t pgcnt = 0;
10973 	int pgunload = 0;
10974 	int dirtypg = 0;
10975 	caddr_t addr = dmrp->dmr_addr;
10976 	caddr_t eaddr;
10977 	uint64_t bitvec = dmrp->dmr_bitvec;
10978 
10979 	ASSERT(bitvec & 1);
10980 
10981 	/*
10982 	 * Flush TSB and calculate number of pages to flush.
10983 	 */
10984 	while (bitvec != 0) {
10985 		dirtypg = 0;
10986 		/*
10987 		 * Find the first page to flush and then count how many
10988 		 * pages there are after it that also need to be flushed.
10989 		 * This way the number of TSB flushes is minimized.
10990 		 */
10991 		while ((bitvec & 1) == 0) {
10992 			pgcnt++;
10993 			addr += MMU_PAGESIZE;
10994 			bitvec >>= 1;
10995 		}
10996 		while (bitvec & 1) {
10997 			dirtypg++;
10998 			bitvec >>= 1;
10999 		}
11000 		eaddr = addr + ptob(dirtypg);
11001 		hatlockp = sfmmu_hat_enter(sfmmup);
11002 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
11003 		sfmmu_hat_exit(hatlockp);
11004 		pgunload += dirtypg;
11005 		addr = eaddr;
11006 		pgcnt += dirtypg;
11007 	}
11008 
11009 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11010 	if (sfmmup->sfmmu_free == 0) {
11011 		addr = dmrp->dmr_addr;
11012 		bitvec = dmrp->dmr_bitvec;
11013 
11014 		/*
11015 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
11016 		 * as it will be used to pack argument for xt_some
11017 		 */
11018 		ASSERT((pgcnt > 0) &&
11019 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
11020 
11021 		/*
11022 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
11023 		 * the low 6 bits of sfmmup. This is doable since pgcnt
11024 		 * always >= 1.
11025 		 */
11026 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
11027 		sfmmu_pgcnt = (uint64_t)sfmmup |
11028 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
11029 
11030 		/*
11031 		 * We must hold the hat lock during the flush of TLB,
11032 		 * to avoid a race with sfmmu_invalidate_ctx(), where
11033 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
11034 		 * causing TLB demap routine to skip flush on that MMU.
11035 		 * If the context on a MMU has already been set to
11036 		 * INVALID_CONTEXT, we just get an extra flush on
11037 		 * that MMU.
11038 		 */
11039 		hatlockp = sfmmu_hat_enter(sfmmup);
11040 		kpreempt_disable();
11041 
11042 		cpuset = sfmmup->sfmmu_cpusran;
11043 		CPUSET_AND(cpuset, cpu_ready_set);
11044 		CPUSET_DEL(cpuset, CPU->cpu_id);
11045 
11046 		SFMMU_XCALL_STATS(sfmmup);
11047 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11048 		    sfmmu_pgcnt);
11049 
11050 		for (; bitvec != 0; bitvec >>= 1) {
11051 			if (bitvec & 1)
11052 				vtag_flushpage(addr, (uint64_t)sfmmup);
11053 			addr += MMU_PAGESIZE;
11054 		}
11055 		kpreempt_enable();
11056 		sfmmu_hat_exit(hatlockp);
11057 
11058 		sfmmu_xcall_save += (pgunload-1);
11059 	}
11060 	dmrp->dmr_bitvec = 0;
11061 }
11062 
11063 /*
11064  * In cases where we need to synchronize with TLB/TSB miss trap
11065  * handlers, _and_ need to flush the TLB, it's a lot easier to
11066  * throw away the context from the process than to do a
11067  * special song and dance to keep things consistent for the
11068  * handlers.
11069  *
11070  * Since the process suddenly ends up without a context and our caller
11071  * holds the hat lock, threads that fault after this function is called
11072  * will pile up on the lock.  We can then do whatever we need to
11073  * atomically from the context of the caller.  The first blocked thread
11074  * to resume executing will get the process a new context, and the
11075  * process will resume executing.
11076  *
11077  * One added advantage of this approach is that on MMUs that
11078  * support a "flush all" operation, we will delay the flush until
11079  * cnum wrap-around, and then flush the TLB one time.  This
11080  * is rather rare, so it's a lot less expensive than making 8000
11081  * x-calls to flush the TLB 8000 times.
11082  *
11083  * A per-process (PP) lock is used to synchronize ctx allocations in
11084  * resume() and ctx invalidations here.
11085  */
11086 static void
11087 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11088 {
11089 	cpuset_t cpuset;
11090 	int cnum, currcnum;
11091 	mmu_ctx_t *mmu_ctxp;
11092 	int i;
11093 	uint_t pstate_save;
11094 
11095 	SFMMU_STAT(sf_ctx_inv);
11096 
11097 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11098 	ASSERT(sfmmup != ksfmmup);
11099 
11100 	kpreempt_disable();
11101 
11102 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11103 	ASSERT(mmu_ctxp);
11104 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11105 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11106 
11107 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11108 
11109 	pstate_save = sfmmu_disable_intrs();
11110 
11111 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11112 	/* set HAT cnum invalid across all context domains. */
11113 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11114 
11115 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11116 		if (cnum == INVALID_CONTEXT) {
11117 			continue;
11118 		}
11119 
11120 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11121 	}
11122 	membar_enter();	/* make sure globally visible to all CPUs */
11123 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11124 
11125 	sfmmu_enable_intrs(pstate_save);
11126 
11127 	cpuset = sfmmup->sfmmu_cpusran;
11128 	CPUSET_DEL(cpuset, CPU->cpu_id);
11129 	CPUSET_AND(cpuset, cpu_ready_set);
11130 	if (!CPUSET_ISNULL(cpuset)) {
11131 		SFMMU_XCALL_STATS(sfmmup);
11132 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11133 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11134 		xt_sync(cpuset);
11135 		SFMMU_STAT(sf_tsb_raise_exception);
11136 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11137 	}
11138 
11139 	/*
11140 	 * If the hat to-be-invalidated is the same as the current
11141 	 * process on local CPU we need to invalidate
11142 	 * this CPU context as well.
11143 	 */
11144 	if ((sfmmu_getctx_sec() == currcnum) &&
11145 	    (currcnum != INVALID_CONTEXT)) {
11146 		sfmmu_setctx_sec(INVALID_CONTEXT);
11147 		sfmmu_clear_utsbinfo();
11148 	}
11149 
11150 	kpreempt_enable();
11151 
11152 	/*
11153 	 * we hold the hat lock, so nobody should allocate a context
11154 	 * for us yet
11155 	 */
11156 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11157 }
11158 
11159 #ifdef VAC
11160 /*
11161  * We need to flush the cache in all cpus.  It is possible that
11162  * a process referenced a page as cacheable but has sinced exited
11163  * and cleared the mapping list.  We still to flush it but have no
11164  * state so all cpus is the only alternative.
11165  */
11166 void
11167 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11168 {
11169 	cpuset_t cpuset;
11170 
11171 	kpreempt_disable();
11172 	cpuset = cpu_ready_set;
11173 	CPUSET_DEL(cpuset, CPU->cpu_id);
11174 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11175 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11176 	xt_sync(cpuset);
11177 	vac_flushpage(pfnum, vcolor);
11178 	kpreempt_enable();
11179 }
11180 
11181 void
11182 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11183 {
11184 	cpuset_t cpuset;
11185 
11186 	ASSERT(vcolor >= 0);
11187 
11188 	kpreempt_disable();
11189 	cpuset = cpu_ready_set;
11190 	CPUSET_DEL(cpuset, CPU->cpu_id);
11191 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11192 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11193 	xt_sync(cpuset);
11194 	vac_flushcolor(vcolor, pfnum);
11195 	kpreempt_enable();
11196 }
11197 #endif	/* VAC */
11198 
11199 /*
11200  * We need to prevent processes from accessing the TSB using a cached physical
11201  * address.  It's alright if they try to access the TSB via virtual address
11202  * since they will just fault on that virtual address once the mapping has
11203  * been suspended.
11204  */
11205 #pragma weak sendmondo_in_recover
11206 
11207 /* ARGSUSED */
11208 static int
11209 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11210 {
11211 	hatlock_t *hatlockp;
11212 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11213 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11214 	extern uint32_t sendmondo_in_recover;
11215 
11216 	if (flags != HAT_PRESUSPEND)
11217 		return (0);
11218 
11219 	hatlockp = sfmmu_hat_enter(sfmmup);
11220 
11221 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11222 
11223 	/*
11224 	 * For Cheetah+ Erratum 25:
11225 	 * Wait for any active recovery to finish.  We can't risk
11226 	 * relocating the TSB of the thread running mondo_recover_proc()
11227 	 * since, if we did that, we would deadlock.  The scenario we are
11228 	 * trying to avoid is as follows:
11229 	 *
11230 	 * THIS CPU			RECOVER CPU
11231 	 * --------			-----------
11232 	 *				Begins recovery, walking through TSB
11233 	 * hat_pagesuspend() TSB TTE
11234 	 *				TLB miss on TSB TTE, spins at TL1
11235 	 * xt_sync()
11236 	 *	send_mondo_timeout()
11237 	 *	mondo_recover_proc()
11238 	 *	((deadlocked))
11239 	 *
11240 	 * The second half of the workaround is that mondo_recover_proc()
11241 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11242 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11243 	 * and hence avoiding the TLB miss that could result in a deadlock.
11244 	 */
11245 	if (&sendmondo_in_recover) {
11246 		membar_enter();	/* make sure RELOC flag visible */
11247 		while (sendmondo_in_recover) {
11248 			drv_usecwait(1);
11249 			membar_consumer();
11250 		}
11251 	}
11252 
11253 	sfmmu_invalidate_ctx(sfmmup);
11254 	sfmmu_hat_exit(hatlockp);
11255 
11256 	return (0);
11257 }
11258 
11259 /* ARGSUSED */
11260 static int
11261 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11262 	void *tsbinfo, pfn_t newpfn)
11263 {
11264 	hatlock_t *hatlockp;
11265 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11266 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11267 
11268 	if (flags != HAT_POSTUNSUSPEND)
11269 		return (0);
11270 
11271 	hatlockp = sfmmu_hat_enter(sfmmup);
11272 
11273 	SFMMU_STAT(sf_tsb_reloc);
11274 
11275 	/*
11276 	 * The process may have swapped out while we were relocating one
11277 	 * of its TSBs.  If so, don't bother doing the setup since the
11278 	 * process can't be using the memory anymore.
11279 	 */
11280 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11281 		ASSERT(va == tsbinfop->tsb_va);
11282 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11283 		sfmmu_setup_tsbinfo(sfmmup);
11284 
11285 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11286 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11287 			    TSB_BYTES(tsbinfop->tsb_szc));
11288 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11289 		}
11290 	}
11291 
11292 	membar_exit();
11293 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11294 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11295 
11296 	sfmmu_hat_exit(hatlockp);
11297 
11298 	return (0);
11299 }
11300 
11301 /*
11302  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11303  * allocate a TSB here, depending on the flags passed in.
11304  */
11305 static int
11306 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11307 	uint_t flags, sfmmu_t *sfmmup)
11308 {
11309 	int err;
11310 
11311 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11312 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11313 
11314 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11315 	    tsb_szc, flags, sfmmup)) != 0) {
11316 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11317 		SFMMU_STAT(sf_tsb_allocfail);
11318 		*tsbinfopp = NULL;
11319 		return (err);
11320 	}
11321 	SFMMU_STAT(sf_tsb_alloc);
11322 
11323 	/*
11324 	 * Bump the TSB size counters for this TSB size.
11325 	 */
11326 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11327 	return (0);
11328 }
11329 
11330 static void
11331 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11332 {
11333 	caddr_t tsbva = tsbinfo->tsb_va;
11334 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11335 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11336 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11337 
11338 	/*
11339 	 * If we allocated this TSB from relocatable kernel memory, then we
11340 	 * need to uninstall the callback handler.
11341 	 */
11342 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11343 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11344 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11345 		page_t **ppl;
11346 		int ret;
11347 
11348 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11349 		ASSERT(ret == 0);
11350 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11351 		    0, NULL);
11352 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11353 	}
11354 
11355 	if (kmem_cachep != NULL) {
11356 		kmem_cache_free(kmem_cachep, tsbva);
11357 	} else {
11358 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11359 	}
11360 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11361 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11362 }
11363 
11364 static void
11365 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11366 {
11367 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11368 		sfmmu_tsb_free(tsbinfo);
11369 	}
11370 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11371 
11372 }
11373 
11374 /*
11375  * Setup all the references to physical memory for this tsbinfo.
11376  * The underlying page(s) must be locked.
11377  */
11378 static void
11379 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11380 {
11381 	ASSERT(pfn != PFN_INVALID);
11382 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11383 
11384 #ifndef sun4v
11385 	if (tsbinfo->tsb_szc == 0) {
11386 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11387 		    PROT_WRITE|PROT_READ, TTE8K);
11388 	} else {
11389 		/*
11390 		 * Round down PA and use a large mapping; the handlers will
11391 		 * compute the TSB pointer at the correct offset into the
11392 		 * big virtual page.  NOTE: this assumes all TSBs larger
11393 		 * than 8K must come from physically contiguous slabs of
11394 		 * size tsb_slab_size.
11395 		 */
11396 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11397 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11398 	}
11399 	tsbinfo->tsb_pa = ptob(pfn);
11400 
11401 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11402 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11403 
11404 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11405 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11406 #else /* sun4v */
11407 	tsbinfo->tsb_pa = ptob(pfn);
11408 #endif /* sun4v */
11409 }
11410 
11411 
11412 /*
11413  * Returns zero on success, ENOMEM if over the high water mark,
11414  * or EAGAIN if the caller needs to retry with a smaller TSB
11415  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11416  *
11417  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11418  * is specified and the TSB requested is PAGESIZE, though it
11419  * may sleep waiting for memory if sufficient memory is not
11420  * available.
11421  */
11422 static int
11423 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11424     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11425 {
11426 	caddr_t vaddr = NULL;
11427 	caddr_t slab_vaddr;
11428 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11429 	int tsbbytes = TSB_BYTES(tsbcode);
11430 	int lowmem = 0;
11431 	struct kmem_cache *kmem_cachep = NULL;
11432 	vmem_t *vmp = NULL;
11433 	lgrp_id_t lgrpid = LGRP_NONE;
11434 	pfn_t pfn;
11435 	uint_t cbflags = HAC_SLEEP;
11436 	page_t **pplist;
11437 	int ret;
11438 
11439 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11440 		flags |= TSB_ALLOC;
11441 
11442 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11443 
11444 	tsbinfo->tsb_sfmmu = sfmmup;
11445 
11446 	/*
11447 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11448 	 * return.
11449 	 */
11450 	if ((flags & TSB_ALLOC) == 0) {
11451 		tsbinfo->tsb_szc = tsbcode;
11452 		tsbinfo->tsb_ttesz_mask = tteszmask;
11453 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11454 		tsbinfo->tsb_pa = -1;
11455 		tsbinfo->tsb_tte.ll = 0;
11456 		tsbinfo->tsb_next = NULL;
11457 		tsbinfo->tsb_flags = TSB_SWAPPED;
11458 		tsbinfo->tsb_cache = NULL;
11459 		tsbinfo->tsb_vmp = NULL;
11460 		return (0);
11461 	}
11462 
11463 #ifdef DEBUG
11464 	/*
11465 	 * For debugging:
11466 	 * Randomly force allocation failures every tsb_alloc_mtbf
11467 	 * tries if TSB_FORCEALLOC is not specified.  This will
11468 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11469 	 * it is even, to allow testing of both failure paths...
11470 	 */
11471 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11472 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11473 		tsb_alloc_count = 0;
11474 		tsb_alloc_fail_mtbf++;
11475 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11476 	}
11477 #endif	/* DEBUG */
11478 
11479 	/*
11480 	 * Enforce high water mark if we are not doing a forced allocation
11481 	 * and are not shrinking a process' TSB.
11482 	 */
11483 	if ((flags & TSB_SHRINK) == 0 &&
11484 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11485 		if ((flags & TSB_FORCEALLOC) == 0)
11486 			return (ENOMEM);
11487 		lowmem = 1;
11488 	}
11489 
11490 	/*
11491 	 * Allocate from the correct location based upon the size of the TSB
11492 	 * compared to the base page size, and what memory conditions dictate.
11493 	 * Note we always do nonblocking allocations from the TSB arena since
11494 	 * we don't want memory fragmentation to cause processes to block
11495 	 * indefinitely waiting for memory; until the kernel algorithms that
11496 	 * coalesce large pages are improved this is our best option.
11497 	 *
11498 	 * Algorithm:
11499 	 *	If allocating a "large" TSB (>8K), allocate from the
11500 	 *		appropriate kmem_tsb_default_arena vmem arena
11501 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11502 	 *	tsb_forceheap is set
11503 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11504 	 *		KM_SLEEP (never fails)
11505 	 *	else
11506 	 *		Allocate from appropriate sfmmu_tsb_cache with
11507 	 *		KM_NOSLEEP
11508 	 *	endif
11509 	 */
11510 	if (tsb_lgrp_affinity)
11511 		lgrpid = lgrp_home_id(curthread);
11512 	if (lgrpid == LGRP_NONE)
11513 		lgrpid = 0;	/* use lgrp of boot CPU */
11514 
11515 	if (tsbbytes > MMU_PAGESIZE) {
11516 		vmp = kmem_tsb_default_arena[lgrpid];
11517 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11518 		    NULL, NULL, VM_NOSLEEP);
11519 #ifdef	DEBUG
11520 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11521 #else	/* !DEBUG */
11522 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11523 #endif	/* DEBUG */
11524 		kmem_cachep = sfmmu_tsb8k_cache;
11525 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11526 		ASSERT(vaddr != NULL);
11527 	} else {
11528 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11529 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11530 	}
11531 
11532 	tsbinfo->tsb_cache = kmem_cachep;
11533 	tsbinfo->tsb_vmp = vmp;
11534 
11535 	if (vaddr == NULL) {
11536 		return (EAGAIN);
11537 	}
11538 
11539 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11540 	kmem_cachep = tsbinfo->tsb_cache;
11541 
11542 	/*
11543 	 * If we are allocating from outside the cage, then we need to
11544 	 * register a relocation callback handler.  Note that for now
11545 	 * since pseudo mappings always hang off of the slab's root page,
11546 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11547 	 * hacky but it is good for performance.
11548 	 */
11549 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11550 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11551 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11552 		ASSERT(ret == 0);
11553 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11554 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11555 
11556 		/*
11557 		 * Need to free up resources if we could not successfully
11558 		 * add the callback function and return an error condition.
11559 		 */
11560 		if (ret != 0) {
11561 			if (kmem_cachep) {
11562 				kmem_cache_free(kmem_cachep, vaddr);
11563 			} else {
11564 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11565 			}
11566 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11567 			    S_WRITE);
11568 			return (EAGAIN);
11569 		}
11570 	} else {
11571 		/*
11572 		 * Since allocation of 8K TSBs from heap is rare and occurs
11573 		 * during memory pressure we allocate them from permanent
11574 		 * memory rather than using callbacks to get the PFN.
11575 		 */
11576 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11577 	}
11578 
11579 	tsbinfo->tsb_va = vaddr;
11580 	tsbinfo->tsb_szc = tsbcode;
11581 	tsbinfo->tsb_ttesz_mask = tteszmask;
11582 	tsbinfo->tsb_next = NULL;
11583 	tsbinfo->tsb_flags = 0;
11584 
11585 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11586 
11587 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11588 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11589 	}
11590 
11591 	sfmmu_inv_tsb(vaddr, tsbbytes);
11592 	return (0);
11593 }
11594 
11595 /*
11596  * Initialize per cpu tsb and per cpu tsbmiss_area
11597  */
11598 void
11599 sfmmu_init_tsbs(void)
11600 {
11601 	int i;
11602 	struct tsbmiss	*tsbmissp;
11603 	struct kpmtsbm	*kpmtsbmp;
11604 #ifndef sun4v
11605 	extern int	dcache_line_mask;
11606 #endif /* sun4v */
11607 	extern uint_t	vac_colors;
11608 
11609 	/*
11610 	 * Init. tsb miss area.
11611 	 */
11612 	tsbmissp = tsbmiss_area;
11613 
11614 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11615 		/*
11616 		 * initialize the tsbmiss area.
11617 		 * Do this for all possible CPUs as some may be added
11618 		 * while the system is running. There is no cost to this.
11619 		 */
11620 		tsbmissp->ksfmmup = ksfmmup;
11621 #ifndef sun4v
11622 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11623 #endif /* sun4v */
11624 		tsbmissp->khashstart =
11625 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11626 		tsbmissp->uhashstart =
11627 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11628 		tsbmissp->khashsz = khmehash_num;
11629 		tsbmissp->uhashsz = uhmehash_num;
11630 	}
11631 
11632 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11633 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11634 
11635 	if (kpm_enable == 0)
11636 		return;
11637 
11638 	/* -- Begin KPM specific init -- */
11639 
11640 	if (kpm_smallpages) {
11641 		/*
11642 		 * If we're using base pagesize pages for seg_kpm
11643 		 * mappings, we use the kernel TSB since we can't afford
11644 		 * to allocate a second huge TSB for these mappings.
11645 		 */
11646 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11647 		kpm_tsbsz = ktsb_szcode;
11648 		kpmsm_tsbbase = kpm_tsbbase;
11649 		kpmsm_tsbsz = kpm_tsbsz;
11650 	} else {
11651 		/*
11652 		 * In VAC conflict case, just put the entries in the
11653 		 * kernel 8K indexed TSB for now so we can find them.
11654 		 * This could really be changed in the future if we feel
11655 		 * the need...
11656 		 */
11657 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11658 		kpmsm_tsbsz = ktsb_szcode;
11659 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11660 		kpm_tsbsz = ktsb4m_szcode;
11661 	}
11662 
11663 	kpmtsbmp = kpmtsbm_area;
11664 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11665 		/*
11666 		 * Initialize the kpmtsbm area.
11667 		 * Do this for all possible CPUs as some may be added
11668 		 * while the system is running. There is no cost to this.
11669 		 */
11670 		kpmtsbmp->vbase = kpm_vbase;
11671 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11672 		kpmtsbmp->sz_shift = kpm_size_shift;
11673 		kpmtsbmp->kpmp_shift = kpmp_shift;
11674 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11675 		if (kpm_smallpages == 0) {
11676 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11677 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11678 		} else {
11679 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11680 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11681 		}
11682 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11683 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11684 #ifdef	DEBUG
11685 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11686 #endif	/* DEBUG */
11687 		if (ktsb_phys)
11688 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11689 	}
11690 
11691 	/* -- End KPM specific init -- */
11692 }
11693 
11694 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11695 struct tsb_info ktsb_info[2];
11696 
11697 /*
11698  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11699  */
11700 void
11701 sfmmu_init_ktsbinfo()
11702 {
11703 	ASSERT(ksfmmup != NULL);
11704 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11705 	/*
11706 	 * Allocate tsbinfos for kernel and copy in data
11707 	 * to make debug easier and sun4v setup easier.
11708 	 */
11709 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11710 	ktsb_info[0].tsb_szc = ktsb_szcode;
11711 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11712 	ktsb_info[0].tsb_va = ktsb_base;
11713 	ktsb_info[0].tsb_pa = ktsb_pbase;
11714 	ktsb_info[0].tsb_flags = 0;
11715 	ktsb_info[0].tsb_tte.ll = 0;
11716 	ktsb_info[0].tsb_cache = NULL;
11717 
11718 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11719 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11720 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11721 	ktsb_info[1].tsb_va = ktsb4m_base;
11722 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11723 	ktsb_info[1].tsb_flags = 0;
11724 	ktsb_info[1].tsb_tte.ll = 0;
11725 	ktsb_info[1].tsb_cache = NULL;
11726 
11727 	/* Link them into ksfmmup. */
11728 	ktsb_info[0].tsb_next = &ktsb_info[1];
11729 	ktsb_info[1].tsb_next = NULL;
11730 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11731 
11732 	sfmmu_setup_tsbinfo(ksfmmup);
11733 }
11734 
11735 /*
11736  * Cache the last value returned from va_to_pa().  If the VA specified
11737  * in the current call to cached_va_to_pa() maps to the same Page (as the
11738  * previous call to cached_va_to_pa()), then compute the PA using
11739  * cached info, else call va_to_pa().
11740  *
11741  * Note: this function is neither MT-safe nor consistent in the presence
11742  * of multiple, interleaved threads.  This function was created to enable
11743  * an optimization used during boot (at a point when there's only one thread
11744  * executing on the "boot CPU", and before startup_vm() has been called).
11745  */
11746 static uint64_t
11747 cached_va_to_pa(void *vaddr)
11748 {
11749 	static uint64_t prev_vaddr_base = 0;
11750 	static uint64_t prev_pfn = 0;
11751 
11752 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11753 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11754 	} else {
11755 		uint64_t pa = va_to_pa(vaddr);
11756 
11757 		if (pa != ((uint64_t)-1)) {
11758 			/*
11759 			 * Computed physical address is valid.  Cache its
11760 			 * related info for the next cached_va_to_pa() call.
11761 			 */
11762 			prev_pfn = pa & MMU_PAGEMASK;
11763 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11764 		}
11765 
11766 		return (pa);
11767 	}
11768 }
11769 
11770 /*
11771  * Carve up our nucleus hblk region.  We may allocate more hblks than
11772  * asked due to rounding errors but we are guaranteed to have at least
11773  * enough space to allocate the requested number of hblk8's and hblk1's.
11774  */
11775 void
11776 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11777 {
11778 	struct hme_blk *hmeblkp;
11779 	size_t hme8blk_sz, hme1blk_sz;
11780 	size_t i;
11781 	size_t hblk8_bound;
11782 	ulong_t j = 0, k = 0;
11783 
11784 	ASSERT(addr != NULL && size != 0);
11785 
11786 	/* Need to use proper structure alignment */
11787 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11788 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11789 
11790 	nucleus_hblk8.list = (void *)addr;
11791 	nucleus_hblk8.index = 0;
11792 
11793 	/*
11794 	 * Use as much memory as possible for hblk8's since we
11795 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11796 	 * We need to hold back enough space for the hblk1's which
11797 	 * we'll allocate next.
11798 	 */
11799 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11800 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11801 		hmeblkp = (struct hme_blk *)addr;
11802 		addr += hme8blk_sz;
11803 		hmeblkp->hblk_nuc_bit = 1;
11804 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11805 	}
11806 	nucleus_hblk8.len = j;
11807 	ASSERT(j >= nhblk8);
11808 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11809 
11810 	nucleus_hblk1.list = (void *)addr;
11811 	nucleus_hblk1.index = 0;
11812 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11813 		hmeblkp = (struct hme_blk *)addr;
11814 		addr += hme1blk_sz;
11815 		hmeblkp->hblk_nuc_bit = 1;
11816 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11817 	}
11818 	ASSERT(k >= nhblk1);
11819 	nucleus_hblk1.len = k;
11820 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11821 }
11822 
11823 /*
11824  * This function is currently not supported on this platform. For what
11825  * it's supposed to do, see hat.c and hat_srmmu.c
11826  */
11827 /* ARGSUSED */
11828 faultcode_t
11829 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11830     uint_t flags)
11831 {
11832 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11833 	return (FC_NOSUPPORT);
11834 }
11835 
11836 /*
11837  * Searchs the mapping list of the page for a mapping of the same size. If not
11838  * found the corresponding bit is cleared in the p_index field. When large
11839  * pages are more prevalent in the system, we can maintain the mapping list
11840  * in order and we don't have to traverse the list each time. Just check the
11841  * next and prev entries, and if both are of different size, we clear the bit.
11842  */
11843 static void
11844 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11845 {
11846 	struct sf_hment *sfhmep;
11847 	struct hme_blk *hmeblkp;
11848 	int	index;
11849 	pgcnt_t	npgs;
11850 
11851 	ASSERT(ttesz > TTE8K);
11852 
11853 	ASSERT(sfmmu_mlist_held(pp));
11854 
11855 	ASSERT(PP_ISMAPPED_LARGE(pp));
11856 
11857 	/*
11858 	 * Traverse mapping list looking for another mapping of same size.
11859 	 * since we only want to clear index field if all mappings of
11860 	 * that size are gone.
11861 	 */
11862 
11863 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11864 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11865 		if (hmeblkp->hblk_xhat_bit)
11866 			continue;
11867 		if (hme_size(sfhmep) == ttesz) {
11868 			/*
11869 			 * another mapping of the same size. don't clear index.
11870 			 */
11871 			return;
11872 		}
11873 	}
11874 
11875 	/*
11876 	 * Clear the p_index bit for large page.
11877 	 */
11878 	index = PAGESZ_TO_INDEX(ttesz);
11879 	npgs = TTEPAGES(ttesz);
11880 	while (npgs-- > 0) {
11881 		ASSERT(pp->p_index & index);
11882 		pp->p_index &= ~index;
11883 		pp = PP_PAGENEXT(pp);
11884 	}
11885 }
11886 
11887 /*
11888  * return supported features
11889  */
11890 /* ARGSUSED */
11891 int
11892 hat_supported(enum hat_features feature, void *arg)
11893 {
11894 	switch (feature) {
11895 	case    HAT_SHARED_PT:
11896 	case	HAT_DYNAMIC_ISM_UNMAP:
11897 	case	HAT_VMODSORT:
11898 		return (1);
11899 	default:
11900 		return (0);
11901 	}
11902 }
11903 
11904 void
11905 hat_enter(struct hat *hat)
11906 {
11907 	hatlock_t	*hatlockp;
11908 
11909 	if (hat != ksfmmup) {
11910 		hatlockp = TSB_HASH(hat);
11911 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11912 	}
11913 }
11914 
11915 void
11916 hat_exit(struct hat *hat)
11917 {
11918 	hatlock_t	*hatlockp;
11919 
11920 	if (hat != ksfmmup) {
11921 		hatlockp = TSB_HASH(hat);
11922 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11923 	}
11924 }
11925 
11926 /*ARGSUSED*/
11927 void
11928 hat_reserve(struct as *as, caddr_t addr, size_t len)
11929 {
11930 }
11931 
11932 static void
11933 hat_kstat_init(void)
11934 {
11935 	kstat_t *ksp;
11936 
11937 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11938 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11939 		KSTAT_FLAG_VIRTUAL);
11940 	if (ksp) {
11941 		ksp->ks_data = (void *) &sfmmu_global_stat;
11942 		kstat_install(ksp);
11943 	}
11944 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11945 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11946 		KSTAT_FLAG_VIRTUAL);
11947 	if (ksp) {
11948 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11949 		kstat_install(ksp);
11950 	}
11951 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11952 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11953 		KSTAT_FLAG_WRITABLE);
11954 	if (ksp) {
11955 		ksp->ks_update = sfmmu_kstat_percpu_update;
11956 		kstat_install(ksp);
11957 	}
11958 }
11959 
11960 /* ARGSUSED */
11961 static int
11962 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11963 {
11964 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11965 	struct tsbmiss *tsbm = tsbmiss_area;
11966 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11967 	int i;
11968 
11969 	ASSERT(cpu_kstat);
11970 	if (rw == KSTAT_READ) {
11971 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11972 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11973 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11974 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11975 				tsbm->uprot_traps;
11976 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11977 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11978 
11979 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11980 				cpu_kstat->sf_tsb_hits =
11981 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11982 				(tsbm->utsb_misses + tsbm->ktsb_misses +
11983 				kpmtsbm->kpm_tsb_misses);
11984 			} else {
11985 				cpu_kstat->sf_tsb_hits = 0;
11986 			}
11987 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11988 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
11989 		}
11990 	} else {
11991 		/* KSTAT_WRITE is used to clear stats */
11992 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
11993 			tsbm->itlb_misses = 0;
11994 			tsbm->dtlb_misses = 0;
11995 			tsbm->utsb_misses = 0;
11996 			tsbm->ktsb_misses = 0;
11997 			tsbm->uprot_traps = 0;
11998 			tsbm->kprot_traps = 0;
11999 			kpmtsbm->kpm_dtlb_misses = 0;
12000 			kpmtsbm->kpm_tsb_misses = 0;
12001 		}
12002 	}
12003 	return (0);
12004 }
12005 
12006 #ifdef	DEBUG
12007 
12008 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12009 
12010 /*
12011  * A tte checker. *orig_old is the value we read before cas.
12012  *	*cur is the value returned by cas.
12013  *	*new is the desired value when we do the cas.
12014  *
12015  *	*hmeblkp is currently unused.
12016  */
12017 
12018 /* ARGSUSED */
12019 void
12020 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12021 {
12022 	pfn_t i, j, k;
12023 	int cpuid = CPU->cpu_id;
12024 
12025 	gorig[cpuid] = orig_old;
12026 	gcur[cpuid] = cur;
12027 	gnew[cpuid] = new;
12028 
12029 #ifdef lint
12030 	hmeblkp = hmeblkp;
12031 #endif
12032 
12033 	if (TTE_IS_VALID(orig_old)) {
12034 		if (TTE_IS_VALID(cur)) {
12035 			i = TTE_TO_TTEPFN(orig_old);
12036 			j = TTE_TO_TTEPFN(cur);
12037 			k = TTE_TO_TTEPFN(new);
12038 			if (i != j) {
12039 				/* remap error? */
12040 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
12041 			}
12042 
12043 			if (i != k) {
12044 				/* remap error? */
12045 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12046 			}
12047 		} else {
12048 			if (TTE_IS_VALID(new)) {
12049 				panic("chk_tte: invalid cur? ");
12050 			}
12051 
12052 			i = TTE_TO_TTEPFN(orig_old);
12053 			k = TTE_TO_TTEPFN(new);
12054 			if (i != k) {
12055 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12056 			}
12057 		}
12058 	} else {
12059 		if (TTE_IS_VALID(cur)) {
12060 			j = TTE_TO_TTEPFN(cur);
12061 			if (TTE_IS_VALID(new)) {
12062 				k = TTE_TO_TTEPFN(new);
12063 				if (j != k) {
12064 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12065 					    j, k);
12066 				}
12067 			} else {
12068 				panic("chk_tte: why here?");
12069 			}
12070 		} else {
12071 			if (!TTE_IS_VALID(new)) {
12072 				panic("chk_tte: why here2 ?");
12073 			}
12074 		}
12075 	}
12076 }
12077 
12078 #endif /* DEBUG */
12079 
12080 extern void prefetch_tsbe_read(struct tsbe *);
12081 extern void prefetch_tsbe_write(struct tsbe *);
12082 
12083 
12084 /*
12085  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12086  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12087  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12088  * prefetch to make the most utilization of the prefetch capability.
12089  */
12090 #define	TSBE_PREFETCH_STRIDE (7)
12091 
12092 void
12093 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12094 {
12095 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12096 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12097 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12098 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12099 	struct tsbe *old;
12100 	struct tsbe *new;
12101 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12102 	uint64_t va;
12103 	int new_offset;
12104 	int i;
12105 	int vpshift;
12106 	int last_prefetch;
12107 
12108 	if (old_bytes == new_bytes) {
12109 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12110 	} else {
12111 
12112 		/*
12113 		 * A TSBE is 16 bytes which means there are four TSBE's per
12114 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12115 		 */
12116 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12117 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12118 		for (i = 0; i < old_entries; i++, old++) {
12119 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12120 				prefetch_tsbe_read(old);
12121 			if (!old->tte_tag.tag_invalid) {
12122 				/*
12123 				 * We have a valid TTE to remap.  Check the
12124 				 * size.  We won't remap 64K or 512K TTEs
12125 				 * because they span more than one TSB entry
12126 				 * and are indexed using an 8K virt. page.
12127 				 * Ditto for 32M and 256M TTEs.
12128 				 */
12129 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12130 				    TTE_CSZ(&old->tte_data) == TTE512K)
12131 					continue;
12132 				if (mmu_page_sizes == max_mmu_page_sizes) {
12133 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12134 					TTE_CSZ(&old->tte_data) == TTE256M)
12135 					    continue;
12136 				}
12137 
12138 				/* clear the lower 22 bits of the va */
12139 				va = *(uint64_t *)old << 22;
12140 				/* turn va into a virtual pfn */
12141 				va >>= 22 - TSB_START_SIZE;
12142 				/*
12143 				 * or in bits from the offset in the tsb
12144 				 * to get the real virtual pfn. These
12145 				 * correspond to bits [21:13] in the va
12146 				 */
12147 				vpshift =
12148 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12149 				    0x1ff;
12150 				va |= (i << vpshift);
12151 				va >>= vpshift;
12152 				new_offset = va & (new_entries - 1);
12153 				new = new_base + new_offset;
12154 				prefetch_tsbe_write(new);
12155 				*new = *old;
12156 			}
12157 		}
12158 	}
12159 }
12160 
12161 /*
12162  * unused in sfmmu
12163  */
12164 void
12165 hat_dump(void)
12166 {
12167 }
12168 
12169 /*
12170  * Called when a thread is exiting and we have switched to the kernel address
12171  * space.  Perform the same VM initialization resume() uses when switching
12172  * processes.
12173  *
12174  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12175  * we call it anyway in case the semantics change in the future.
12176  */
12177 /*ARGSUSED*/
12178 void
12179 hat_thread_exit(kthread_t *thd)
12180 {
12181 	uint64_t pgsz_cnum;
12182 	uint_t pstate_save;
12183 
12184 	ASSERT(thd->t_procp->p_as == &kas);
12185 
12186 	pgsz_cnum = KCONTEXT;
12187 #ifdef sun4u
12188 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12189 #endif
12190 	/*
12191 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12192 	 * kernel threads. We need to disable interrupts here,
12193 	 * simply because otherwise sfmmu_load_mmustate() would panic
12194 	 * if the caller does not disable interrupts.
12195 	 */
12196 	pstate_save = sfmmu_disable_intrs();
12197 	sfmmu_setctx_sec(pgsz_cnum);
12198 	sfmmu_load_mmustate(ksfmmup);
12199 	sfmmu_enable_intrs(pstate_save);
12200 }
12201