xref: /titanic_50/usr/src/uts/intel/dtrace/fasttrap_isa.c (revision 0209230bf1261579beab4f55226bb509e6b850cb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/regset.h>
35 #include <sys/privregs.h>
36 #include <sys/segments.h>
37 #include <sys/sysmacros.h>
38 #include <sys/trap.h>
39 #include <sys/archsystm.h>
40 
41 /*
42  * Lossless User-Land Tracing on x86
43  * ---------------------------------
44  *
45  * The execution of most instructions is not dependent on the address; for
46  * these instructions it is sufficient to copy them into the user process's
47  * address space and execute them. To effectively single-step an instruction
48  * in user-land, we copy out the following sequence of instructions to scratch
49  * space in the user thread's ulwp_t structure.
50  *
51  * We then set the program counter (%eip or %rip) to point to this scratch
52  * space. Once execution resumes, the original instruction is executed and
53  * then control flow is redirected to what was originally the subsequent
54  * instruction. If the kernel attemps to deliver a signal while single-
55  * stepping, the signal is deferred and the program counter is moved into the
56  * second sequence of instructions. The second sequence ends in a trap into
57  * the kernel where the deferred signal is then properly handled and delivered.
58  *
59  * For instructions whose execute is position dependent, we perform simple
60  * emulation. These instructions are limited to control transfer
61  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
62  * of %rip-relative addressing that means that almost any instruction can be
63  * position dependent. For all the details on how we emulate generic
64  * instructions included %rip-relative instructions, see the code in
65  * fasttrap_pid_probe() below where we handle instructions of type
66  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
67  */
68 
69 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
70 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
71 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
72 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
73 
74 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
75 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
76 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
77 
78 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
79 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
80 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
81 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
82 #define	FASTTRAP_REX(w, r, x, b)	\
83 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
84 
85 /*
86  * Single-byte op-codes.
87  */
88 #define	FASTTRAP_PUSHL_EBP	0x55
89 
90 #define	FASTTRAP_JO		0x70
91 #define	FASTTRAP_JNO		0x71
92 #define	FASTTRAP_JB		0x72
93 #define	FASTTRAP_JAE		0x73
94 #define	FASTTRAP_JE		0x74
95 #define	FASTTRAP_JNE		0x75
96 #define	FASTTRAP_JBE		0x76
97 #define	FASTTRAP_JA		0x77
98 #define	FASTTRAP_JS		0x78
99 #define	FASTTRAP_JNS		0x79
100 #define	FASTTRAP_JP		0x7a
101 #define	FASTTRAP_JNP		0x7b
102 #define	FASTTRAP_JL		0x7c
103 #define	FASTTRAP_JGE		0x7d
104 #define	FASTTRAP_JLE		0x7e
105 #define	FASTTRAP_JG		0x7f
106 
107 #define	FASTTRAP_NOP		0x90
108 
109 #define	FASTTRAP_MOV_EAX	0xb8
110 #define	FASTTRAP_MOV_ECX	0xb9
111 
112 #define	FASTTRAP_RET16		0xc2
113 #define	FASTTRAP_RET		0xc3
114 
115 #define	FASTTRAP_LOOPNZ		0xe0
116 #define	FASTTRAP_LOOPZ		0xe1
117 #define	FASTTRAP_LOOP		0xe2
118 #define	FASTTRAP_JCXZ		0xe3
119 
120 #define	FASTTRAP_CALL		0xe8
121 #define	FASTTRAP_JMP32		0xe9
122 #define	FASTTRAP_JMP8		0xeb
123 
124 #define	FASTTRAP_INT3		0xcc
125 #define	FASTTRAP_INT		0xcd
126 
127 #define	FASTTRAP_2_BYTE_OP	0x0f
128 #define	FASTTRAP_GROUP5_OP	0xff
129 
130 /*
131  * Two-byte op-codes (second byte only).
132  */
133 #define	FASTTRAP_0F_JO		0x80
134 #define	FASTTRAP_0F_JNO		0x81
135 #define	FASTTRAP_0F_JB		0x82
136 #define	FASTTRAP_0F_JAE		0x83
137 #define	FASTTRAP_0F_JE		0x84
138 #define	FASTTRAP_0F_JNE		0x85
139 #define	FASTTRAP_0F_JBE		0x86
140 #define	FASTTRAP_0F_JA		0x87
141 #define	FASTTRAP_0F_JS		0x88
142 #define	FASTTRAP_0F_JNS		0x89
143 #define	FASTTRAP_0F_JP		0x8a
144 #define	FASTTRAP_0F_JNP		0x8b
145 #define	FASTTRAP_0F_JL		0x8c
146 #define	FASTTRAP_0F_JGE		0x8d
147 #define	FASTTRAP_0F_JLE		0x8e
148 #define	FASTTRAP_0F_JG		0x8f
149 
150 #define	FASTTRAP_EFLAGS_OF	0x800
151 #define	FASTTRAP_EFLAGS_DF	0x400
152 #define	FASTTRAP_EFLAGS_SF	0x080
153 #define	FASTTRAP_EFLAGS_ZF	0x040
154 #define	FASTTRAP_EFLAGS_AF	0x010
155 #define	FASTTRAP_EFLAGS_PF	0x004
156 #define	FASTTRAP_EFLAGS_CF	0x001
157 
158 /*
159  * Instruction prefixes.
160  */
161 #define	FASTTRAP_PREFIX_OPERAND	0x66
162 #define	FASTTRAP_PREFIX_ADDRESS	0x67
163 #define	FASTTRAP_PREFIX_CS	0x2E
164 #define	FASTTRAP_PREFIX_DS	0x3E
165 #define	FASTTRAP_PREFIX_ES	0x26
166 #define	FASTTRAP_PREFIX_FS	0x64
167 #define	FASTTRAP_PREFIX_GS	0x65
168 #define	FASTTRAP_PREFIX_SS	0x36
169 #define	FASTTRAP_PREFIX_LOCK	0xF0
170 #define	FASTTRAP_PREFIX_REP	0xF3
171 #define	FASTTRAP_PREFIX_REPNE	0xF2
172 
173 #define	FASTTRAP_NOREG	0xff
174 
175 /*
176  * Map between instruction register encodings and the kernel constants which
177  * correspond to indicies into struct regs.
178  */
179 #ifdef __amd64
180 static const uint8_t regmap[16] = {
181 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
182 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
183 };
184 #else
185 static const uint8_t regmap[8] = {
186 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
187 };
188 #endif
189 
190 static ulong_t fasttrap_getreg(struct regs *, uint_t);
191 
192 static uint64_t
193 fasttrap_anarg(struct regs *rp, int function_entry, int argno)
194 {
195 	uint64_t value;
196 	int shift = function_entry ? 1 : 0;
197 
198 #ifdef __amd64
199 	if (curproc->p_model == DATAMODEL_LP64) {
200 		uintptr_t *stack;
201 
202 		/*
203 		 * In 64-bit mode, the first six arguments are stored in
204 		 * registers.
205 		 */
206 		if (argno < 6)
207 			return ((&rp->r_rdi)[argno]);
208 
209 		stack = (uintptr_t *)rp->r_sp;
210 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
211 		value = dtrace_fulword(&stack[argno - 6 + shift]);
212 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
213 	} else {
214 #endif
215 		uint32_t *stack = (uint32_t *)rp->r_sp;
216 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
217 		value = dtrace_fuword32(&stack[argno + shift]);
218 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
219 #ifdef __amd64
220 	}
221 #endif
222 
223 	return (value);
224 }
225 
226 /*ARGSUSED*/
227 int
228 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
229     fasttrap_probe_type_t type)
230 {
231 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
232 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
233 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
234 	uint_t start = 0;
235 	int rmindex, size;
236 	uint8_t seg, rex = 0;
237 
238 	/*
239 	 * Read the instruction at the given address out of the process's
240 	 * address space. We don't have to worry about a debugger
241 	 * changing this instruction before we overwrite it with our trap
242 	 * instruction since P_PR_LOCK is set. Since instructions can span
243 	 * pages, we potentially read the instruction in two parts. If the
244 	 * second part fails, we just zero out that part of the instruction.
245 	 */
246 	if (uread(p, &instr[0], first, pc) != 0)
247 		return (-1);
248 	if (len > first &&
249 	    uread(p, &instr[first], len - first, pc + first) != 0) {
250 		bzero(&instr[first], len - first);
251 		len = first;
252 	}
253 
254 	/*
255 	 * If the disassembly fails, then we have a malformed instruction.
256 	 */
257 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
258 		return (-1);
259 
260 	/*
261 	 * Make sure the disassembler isn't completely broken.
262 	 */
263 	ASSERT(-1 <= rmindex && rmindex < size);
264 
265 	/*
266 	 * If the computed size is greater than the number of bytes read,
267 	 * then it was a malformed instruction possibly because it fell on a
268 	 * page boundary and the subsequent page was missing or because of
269 	 * some malicious user.
270 	 */
271 	if (size > len)
272 		return (-1);
273 
274 	tp->ftt_size = (uint8_t)size;
275 	tp->ftt_segment = FASTTRAP_SEG_NONE;
276 
277 	/*
278 	 * Find the start of the instruction's opcode by processing any
279 	 * legacy prefixes.
280 	 */
281 	for (;;) {
282 		seg = 0;
283 		switch (instr[start]) {
284 		case FASTTRAP_PREFIX_SS:
285 			seg++;
286 			/*FALLTHRU*/
287 		case FASTTRAP_PREFIX_GS:
288 			seg++;
289 			/*FALLTHRU*/
290 		case FASTTRAP_PREFIX_FS:
291 			seg++;
292 			/*FALLTHRU*/
293 		case FASTTRAP_PREFIX_ES:
294 			seg++;
295 			/*FALLTHRU*/
296 		case FASTTRAP_PREFIX_DS:
297 			seg++;
298 			/*FALLTHRU*/
299 		case FASTTRAP_PREFIX_CS:
300 			seg++;
301 			/*FALLTHRU*/
302 		case FASTTRAP_PREFIX_OPERAND:
303 		case FASTTRAP_PREFIX_ADDRESS:
304 		case FASTTRAP_PREFIX_LOCK:
305 		case FASTTRAP_PREFIX_REP:
306 		case FASTTRAP_PREFIX_REPNE:
307 			if (seg != 0) {
308 				/*
309 				 * It's illegal for an instruction to specify
310 				 * two segment prefixes -- give up on this
311 				 * illegal instruction.
312 				 */
313 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
314 					return (-1);
315 
316 				tp->ftt_segment = seg;
317 			}
318 			start++;
319 			continue;
320 		}
321 		break;
322 	}
323 
324 #ifdef __amd64
325 	/*
326 	 * Identify the REX prefix on 64-bit processes.
327 	 */
328 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
329 		rex = instr[start++];
330 #endif
331 
332 	/*
333 	 * Now that we're pretty sure that the instruction is okay, copy the
334 	 * valid part to the tracepoint.
335 	 */
336 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
337 
338 	tp->ftt_type = FASTTRAP_T_COMMON;
339 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
340 		switch (instr[start + 1]) {
341 		case FASTTRAP_0F_JO:
342 		case FASTTRAP_0F_JNO:
343 		case FASTTRAP_0F_JB:
344 		case FASTTRAP_0F_JAE:
345 		case FASTTRAP_0F_JE:
346 		case FASTTRAP_0F_JNE:
347 		case FASTTRAP_0F_JBE:
348 		case FASTTRAP_0F_JA:
349 		case FASTTRAP_0F_JS:
350 		case FASTTRAP_0F_JNS:
351 		case FASTTRAP_0F_JP:
352 		case FASTTRAP_0F_JNP:
353 		case FASTTRAP_0F_JL:
354 		case FASTTRAP_0F_JGE:
355 		case FASTTRAP_0F_JLE:
356 		case FASTTRAP_0F_JG:
357 			tp->ftt_type = FASTTRAP_T_JCC;
358 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
359 			tp->ftt_dest = pc + tp->ftt_size +
360 			    *(int32_t *)&instr[start + 2];
361 			break;
362 		}
363 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
364 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
365 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
366 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
367 
368 		if (reg == 2 || reg == 4) {
369 			uint_t i, sz;
370 
371 			if (reg == 2)
372 				tp->ftt_type = FASTTRAP_T_CALL;
373 			else
374 				tp->ftt_type = FASTTRAP_T_JMP;
375 
376 			if (mod == 3)
377 				tp->ftt_code = 2;
378 			else
379 				tp->ftt_code = 1;
380 
381 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
382 
383 			/*
384 			 * See AMD x86-64 Architecture Programmer's Manual
385 			 * Volume 3, Section 1.2.7, Table 1-12, and
386 			 * Appendix A.3.1, Table A-15.
387 			 */
388 			if (mod != 3 && rm == 4) {
389 				uint8_t sib = instr[start + 2];
390 				uint_t index = FASTTRAP_SIB_INDEX(sib);
391 				uint_t base = FASTTRAP_SIB_BASE(sib);
392 
393 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
394 
395 				tp->ftt_index = (index == 4) ?
396 				    FASTTRAP_NOREG :
397 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
398 				tp->ftt_base = (mod == 0 && base == 5) ?
399 				    FASTTRAP_NOREG :
400 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
401 
402 				i = 3;
403 				sz = mod == 1 ? 1 : 4;
404 			} else {
405 				/*
406 				 * In 64-bit mode, mod == 0 and r/m == 5
407 				 * denotes %rip-relative addressing; in 32-bit
408 				 * mode, the base register isn't used. In both
409 				 * modes, there is a 32-bit operand.
410 				 */
411 				if (mod == 0 && rm == 5) {
412 #ifdef __amd64
413 					if (p->p_model == DATAMODEL_LP64)
414 						tp->ftt_base = REG_RIP;
415 					else
416 #endif
417 						tp->ftt_base = FASTTRAP_NOREG;
418 					sz = 4;
419 				} else  {
420 					uint8_t base = rm |
421 					    (FASTTRAP_REX_B(rex) << 3);
422 
423 					tp->ftt_base = regmap[base];
424 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
425 				}
426 				tp->ftt_index = FASTTRAP_NOREG;
427 				i = 2;
428 			}
429 
430 			if (sz == 1)
431 				tp->ftt_dest = *(int8_t *)&instr[start + i];
432 			else if (sz == 4)
433 				tp->ftt_dest = *(int32_t *)&instr[start + i];
434 			else
435 				tp->ftt_dest = 0;
436 		}
437 	} else {
438 		switch (instr[start]) {
439 		case FASTTRAP_RET:
440 			tp->ftt_type = FASTTRAP_T_RET;
441 			break;
442 
443 		case FASTTRAP_RET16:
444 			tp->ftt_type = FASTTRAP_T_RET16;
445 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
446 			break;
447 
448 		case FASTTRAP_JO:
449 		case FASTTRAP_JNO:
450 		case FASTTRAP_JB:
451 		case FASTTRAP_JAE:
452 		case FASTTRAP_JE:
453 		case FASTTRAP_JNE:
454 		case FASTTRAP_JBE:
455 		case FASTTRAP_JA:
456 		case FASTTRAP_JS:
457 		case FASTTRAP_JNS:
458 		case FASTTRAP_JP:
459 		case FASTTRAP_JNP:
460 		case FASTTRAP_JL:
461 		case FASTTRAP_JGE:
462 		case FASTTRAP_JLE:
463 		case FASTTRAP_JG:
464 			tp->ftt_type = FASTTRAP_T_JCC;
465 			tp->ftt_code = instr[start];
466 			tp->ftt_dest = pc + tp->ftt_size +
467 			    (int8_t)instr[start + 1];
468 			break;
469 
470 		case FASTTRAP_LOOPNZ:
471 		case FASTTRAP_LOOPZ:
472 		case FASTTRAP_LOOP:
473 			tp->ftt_type = FASTTRAP_T_LOOP;
474 			tp->ftt_code = instr[start];
475 			tp->ftt_dest = pc + tp->ftt_size +
476 			    (int8_t)instr[start + 1];
477 			break;
478 
479 		case FASTTRAP_JCXZ:
480 			tp->ftt_type = FASTTRAP_T_JCXZ;
481 			tp->ftt_dest = pc + tp->ftt_size +
482 			    (int8_t)instr[start + 1];
483 			break;
484 
485 		case FASTTRAP_CALL:
486 			tp->ftt_type = FASTTRAP_T_CALL;
487 			tp->ftt_dest = pc + tp->ftt_size +
488 			    *(int32_t *)&instr[start + 1];
489 			tp->ftt_code = 0;
490 			break;
491 
492 		case FASTTRAP_JMP32:
493 			tp->ftt_type = FASTTRAP_T_JMP;
494 			tp->ftt_dest = pc + tp->ftt_size +
495 			    *(int32_t *)&instr[start + 1];
496 			break;
497 		case FASTTRAP_JMP8:
498 			tp->ftt_type = FASTTRAP_T_JMP;
499 			tp->ftt_dest = pc + tp->ftt_size +
500 			    (int8_t)instr[start + 1];
501 			break;
502 
503 		case FASTTRAP_PUSHL_EBP:
504 			if (start == 0)
505 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
506 			break;
507 
508 		case FASTTRAP_NOP:
509 #ifdef __amd64
510 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
511 
512 			/*
513 			 * On amd64 we have to be careful not to confuse a nop
514 			 * (actually xchgl %eax, %eax) with an instruction using
515 			 * the same opcode, but that does something different
516 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
517 			 */
518 			if (FASTTRAP_REX_B(rex) == 0)
519 #endif
520 				tp->ftt_type = FASTTRAP_T_NOP;
521 			break;
522 
523 		case FASTTRAP_INT3:
524 			/*
525 			 * The pid provider shares the int3 trap with debugger
526 			 * breakpoints so we can't instrument them.
527 			 */
528 			ASSERT(instr[start] == FASTTRAP_INSTR);
529 			return (-1);
530 
531 		case FASTTRAP_INT:
532 			/*
533 			 * Interrupts seem like they could be traced with
534 			 * no negative implications, but it's possible that
535 			 * a thread could be redirected by the trap handling
536 			 * code which would eventually return to the
537 			 * instruction after the interrupt. If the interrupt
538 			 * were in our scratch space, the subsequent
539 			 * instruction might be overwritten before we return.
540 			 * Accordingly we refuse to instrument any interrupt.
541 			 */
542 			return (-1);
543 		}
544 	}
545 
546 #ifdef __amd64
547 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
548 		/*
549 		 * If the process is 64-bit and the instruction type is still
550 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
551 		 * execute it -- we need to watch for %rip-relative
552 		 * addressing mode. See the portion of fasttrap_pid_probe()
553 		 * below where we handle tracepoints with type
554 		 * FASTTRAP_T_COMMON for how we emulate instructions that
555 		 * employ %rip-relative addressing.
556 		 */
557 		if (rmindex != -1) {
558 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
559 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
560 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
561 
562 			ASSERT(rmindex > start);
563 
564 			if (mod == 0 && rm == 5) {
565 				/*
566 				 * We need to be sure to avoid other
567 				 * registers used by this instruction. While
568 				 * the reg field may determine the op code
569 				 * rather than denoting a register, assuming
570 				 * that it denotes a register is always safe.
571 				 * We leave the REX field intact and use
572 				 * whatever value's there for simplicity.
573 				 */
574 				if (reg != 0) {
575 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
576 					    (FASTTRAP_RIP_X *
577 					    FASTTRAP_REX_B(rex));
578 					rm = 0;
579 				} else {
580 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
581 					    (FASTTRAP_RIP_X *
582 					    FASTTRAP_REX_B(rex));
583 					rm = 1;
584 				}
585 
586 				tp->ftt_modrm = tp->ftt_instr[rmindex];
587 				tp->ftt_instr[rmindex] =
588 				    FASTTRAP_MODRM(2, reg, rm);
589 			}
590 		}
591 	}
592 #endif
593 
594 	return (0);
595 }
596 
597 int
598 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
599 {
600 	fasttrap_instr_t instr = FASTTRAP_INSTR;
601 
602 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
603 		return (-1);
604 
605 	return (0);
606 }
607 
608 int
609 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
610 {
611 	uint8_t instr;
612 
613 	/*
614 	 * Distinguish between read or write failures and a changed
615 	 * instruction.
616 	 */
617 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
618 		return (0);
619 	if (instr != FASTTRAP_INSTR)
620 		return (0);
621 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
622 		return (-1);
623 
624 	return (0);
625 }
626 
627 static uintptr_t
628 fasttrap_fulword_noerr(const void *uaddr)
629 {
630 	uintptr_t ret;
631 
632 	if (fasttrap_fulword(uaddr, &ret) == 0)
633 		return (ret);
634 
635 	return (0);
636 }
637 
638 static uint32_t
639 fasttrap_fuword32_noerr(const void *uaddr)
640 {
641 	uint32_t ret;
642 
643 	if (fasttrap_fuword32(uaddr, &ret) == 0)
644 		return (ret);
645 
646 	return (0);
647 }
648 
649 static void
650 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
651     uintptr_t new_pc)
652 {
653 	fasttrap_tracepoint_t *tp;
654 	fasttrap_bucket_t *bucket;
655 	fasttrap_id_t *id;
656 	kmutex_t *pid_mtx;
657 
658 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
659 	mutex_enter(pid_mtx);
660 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
661 
662 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
663 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
664 		    !tp->ftt_proc->ftpc_defunct)
665 			break;
666 	}
667 
668 	/*
669 	 * Don't sweat it if we can't find the tracepoint again; unlike
670 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
671 	 * is not essential to the correct execution of the process.
672 	 */
673 	if (tp == NULL) {
674 		mutex_exit(pid_mtx);
675 		return;
676 	}
677 
678 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
679 		/*
680 		 * If there's a branch that could act as a return site, we
681 		 * need to trace it, and check here if the program counter is
682 		 * external to the function.
683 		 */
684 		if (tp->ftt_type != FASTTRAP_T_RET &&
685 		    tp->ftt_type != FASTTRAP_T_RET16 &&
686 		    new_pc - id->fti_probe->ftp_faddr <
687 		    id->fti_probe->ftp_fsize)
688 			continue;
689 
690 		dtrace_probe(id->fti_probe->ftp_id,
691 		    pc - id->fti_probe->ftp_faddr,
692 		    rp->r_r0, rp->r_r1, 0, 0);
693 	}
694 
695 	mutex_exit(pid_mtx);
696 }
697 
698 static void
699 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
700 {
701 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
702 
703 	sqp->sq_info.si_signo = SIGSEGV;
704 	sqp->sq_info.si_code = SEGV_MAPERR;
705 	sqp->sq_info.si_addr = (caddr_t)addr;
706 
707 	mutex_enter(&p->p_lock);
708 	sigaddqa(p, t, sqp);
709 	mutex_exit(&p->p_lock);
710 
711 	if (t != NULL)
712 		aston(t);
713 }
714 
715 #ifdef __amd64
716 static void
717 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct regs *rp, int argc,
718     uintptr_t *argv)
719 {
720 	int i, x, cap = MIN(argc, probe->ftp_nargs);
721 	uintptr_t *stack = (uintptr_t *)rp->r_sp;
722 
723 	for (i = 0; i < cap; i++) {
724 		x = probe->ftp_argmap[i];
725 
726 		if (x < 6)
727 			argv[i] = (&rp->r_rdi)[x];
728 		else
729 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
730 	}
731 
732 	for (; i < argc; i++) {
733 		argv[i] = 0;
734 	}
735 }
736 #endif
737 
738 static void
739 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct regs *rp, int argc,
740     uint32_t *argv)
741 {
742 	int i, x, cap = MIN(argc, probe->ftp_nargs);
743 	uint32_t *stack = (uint32_t *)rp->r_sp;
744 
745 	for (i = 0; i < cap; i++) {
746 		x = probe->ftp_argmap[i];
747 
748 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
749 	}
750 
751 	for (; i < argc; i++) {
752 		argv[i] = 0;
753 	}
754 }
755 
756 static int
757 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct regs *rp, uintptr_t *addr)
758 {
759 	proc_t *p = curproc;
760 	user_desc_t *desc;
761 	uint16_t sel, ndx, type;
762 	uintptr_t limit;
763 
764 	switch (tp->ftt_segment) {
765 	case FASTTRAP_SEG_CS:
766 		sel = rp->r_cs;
767 		break;
768 	case FASTTRAP_SEG_DS:
769 		sel = rp->r_ds;
770 		break;
771 	case FASTTRAP_SEG_ES:
772 		sel = rp->r_es;
773 		break;
774 	case FASTTRAP_SEG_FS:
775 		sel = rp->r_fs;
776 		break;
777 	case FASTTRAP_SEG_GS:
778 		sel = rp->r_gs;
779 		break;
780 	case FASTTRAP_SEG_SS:
781 		sel = rp->r_ss;
782 		break;
783 	}
784 
785 	/*
786 	 * Make sure the given segment register specifies a user priority
787 	 * selector rather than a kernel selector.
788 	 */
789 	if (!SELISUPL(sel))
790 		return (-1);
791 
792 	ndx = SELTOIDX(sel);
793 
794 	/*
795 	 * Check the bounds and grab the descriptor out of the specified
796 	 * descriptor table.
797 	 */
798 	if (SELISLDT(sel)) {
799 		if (ndx > p->p_ldtlimit)
800 			return (-1);
801 
802 		desc = p->p_ldt + ndx;
803 
804 	} else {
805 		if (ndx >= NGDT)
806 			return (-1);
807 
808 		desc = cpu_get_gdt() + ndx;
809 	}
810 
811 	/*
812 	 * The descriptor must have user privilege level and it must be
813 	 * present in memory.
814 	 */
815 	if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
816 		return (-1);
817 
818 	type = desc->usd_type;
819 
820 	/*
821 	 * If the S bit in the type field is not set, this descriptor can
822 	 * only be used in system context.
823 	 */
824 	if ((type & 0x10) != 0x10)
825 		return (-1);
826 
827 	limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
828 
829 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
830 		/*
831 		 * The code/data bit and readable bit must both be set.
832 		 */
833 		if ((type & 0xa) != 0xa)
834 			return (-1);
835 
836 		if (*addr > limit)
837 			return (-1);
838 	} else {
839 		/*
840 		 * The code/data bit must be clear.
841 		 */
842 		if ((type & 0x8) != 0)
843 			return (-1);
844 
845 		/*
846 		 * If the expand-down bit is clear, we just check the limit as
847 		 * it would naturally be applied. Otherwise, we need to check
848 		 * that the address is the range [limit + 1 .. 0xffff] or
849 		 * [limit + 1 ... 0xffffffff] depending on if the default
850 		 * operand size bit is set.
851 		 */
852 		if ((type & 0x4) == 0) {
853 			if (*addr > limit)
854 				return (-1);
855 		} else if (desc->usd_def32) {
856 			if (*addr < limit + 1 || 0xffff < *addr)
857 				return (-1);
858 		} else {
859 			if (*addr < limit + 1 || 0xffffffff < *addr)
860 				return (-1);
861 		}
862 	}
863 
864 	*addr += USEGD_GETBASE(desc);
865 
866 	return (0);
867 }
868 
869 int
870 fasttrap_pid_probe(struct regs *rp)
871 {
872 	proc_t *p = curproc;
873 	uintptr_t pc = rp->r_pc - 1, new_pc = 0;
874 	fasttrap_bucket_t *bucket;
875 	kmutex_t *pid_mtx;
876 	fasttrap_tracepoint_t *tp, tp_local;
877 	pid_t pid;
878 	dtrace_icookie_t cookie;
879 	uint_t is_enabled = 0;
880 
881 	/*
882 	 * It's possible that a user (in a veritable orgy of bad planning)
883 	 * could redirect this thread's flow of control before it reached the
884 	 * return probe fasttrap. In this case we need to kill the process
885 	 * since it's in a unrecoverable state.
886 	 */
887 	if (curthread->t_dtrace_step) {
888 		ASSERT(curthread->t_dtrace_on);
889 		fasttrap_sigtrap(p, curthread, pc);
890 		return (0);
891 	}
892 
893 	/*
894 	 * Clear all user tracing flags.
895 	 */
896 	curthread->t_dtrace_ft = 0;
897 	curthread->t_dtrace_pc = 0;
898 	curthread->t_dtrace_npc = 0;
899 	curthread->t_dtrace_scrpc = 0;
900 	curthread->t_dtrace_astpc = 0;
901 #ifdef __amd64
902 	curthread->t_dtrace_regv = 0;
903 #endif
904 
905 	/*
906 	 * Treat a child created by a call to vfork(2) as if it were its
907 	 * parent. We know that there's only one thread of control in such a
908 	 * process: this one.
909 	 */
910 	while (p->p_flag & SVFORK) {
911 		p = p->p_parent;
912 	}
913 
914 	pid = p->p_pid;
915 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
916 	mutex_enter(pid_mtx);
917 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
918 
919 	/*
920 	 * Lookup the tracepoint that the process just hit.
921 	 */
922 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
923 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
924 		    !tp->ftt_proc->ftpc_defunct)
925 			break;
926 	}
927 
928 	/*
929 	 * If we couldn't find a matching tracepoint, either a tracepoint has
930 	 * been inserted without using the pid<pid> ioctl interface (see
931 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
932 	 */
933 	if (tp == NULL) {
934 		mutex_exit(pid_mtx);
935 		return (-1);
936 	}
937 
938 	/*
939 	 * Set the program counter to the address of the traced instruction
940 	 * so that it looks right in ustack() output.
941 	 */
942 	rp->r_pc = pc;
943 
944 	if (tp->ftt_ids != NULL) {
945 		fasttrap_id_t *id;
946 
947 #ifdef __amd64
948 		if (p->p_model == DATAMODEL_LP64) {
949 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
950 				fasttrap_probe_t *probe = id->fti_probe;
951 
952 				if (id->fti_ptype == DTFTP_ENTRY) {
953 					/*
954 					 * We note that this was an entry
955 					 * probe to help ustack() find the
956 					 * first caller.
957 					 */
958 					cookie = dtrace_interrupt_disable();
959 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
960 					dtrace_probe(probe->ftp_id, rp->r_rdi,
961 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
962 					    rp->r_r8);
963 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
964 					dtrace_interrupt_enable(cookie);
965 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
966 					/*
967 					 * Note that in this case, we don't
968 					 * call dtrace_probe() since it's only
969 					 * an artificial probe meant to change
970 					 * the flow of control so that it
971 					 * encounters the true probe.
972 					 */
973 					is_enabled = 1;
974 				} else if (probe->ftp_argmap == NULL) {
975 					dtrace_probe(probe->ftp_id, rp->r_rdi,
976 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
977 					    rp->r_r8);
978 				} else {
979 					uintptr_t t[5];
980 
981 					fasttrap_usdt_args64(probe, rp,
982 					    sizeof (t) / sizeof (t[0]), t);
983 
984 					dtrace_probe(probe->ftp_id, t[0], t[1],
985 					    t[2], t[3], t[4]);
986 				}
987 			}
988 		} else {
989 #endif
990 			uintptr_t s0, s1, s2, s3, s4, s5;
991 			uint32_t *stack = (uint32_t *)rp->r_sp;
992 
993 			/*
994 			 * In 32-bit mode, all arguments are passed on the
995 			 * stack. If this is a function entry probe, we need
996 			 * to skip the first entry on the stack as it
997 			 * represents the return address rather than a
998 			 * parameter to the function.
999 			 */
1000 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1001 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1002 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1003 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1004 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1005 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1006 
1007 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1008 				fasttrap_probe_t *probe = id->fti_probe;
1009 
1010 				if (id->fti_ptype == DTFTP_ENTRY) {
1011 					/*
1012 					 * We note that this was an entry
1013 					 * probe to help ustack() find the
1014 					 * first caller.
1015 					 */
1016 					cookie = dtrace_interrupt_disable();
1017 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1018 					dtrace_probe(probe->ftp_id, s1, s2,
1019 					    s3, s4, s5);
1020 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1021 					dtrace_interrupt_enable(cookie);
1022 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1023 					/*
1024 					 * Note that in this case, we don't
1025 					 * call dtrace_probe() since it's only
1026 					 * an artificial probe meant to change
1027 					 * the flow of control so that it
1028 					 * encounters the true probe.
1029 					 */
1030 					is_enabled = 1;
1031 				} else if (probe->ftp_argmap == NULL) {
1032 					dtrace_probe(probe->ftp_id, s0, s1,
1033 					    s2, s3, s4);
1034 				} else {
1035 					uint32_t t[5];
1036 
1037 					fasttrap_usdt_args32(probe, rp,
1038 					    sizeof (t) / sizeof (t[0]), t);
1039 
1040 					dtrace_probe(probe->ftp_id, t[0], t[1],
1041 					    t[2], t[3], t[4]);
1042 				}
1043 			}
1044 #ifdef __amd64
1045 		}
1046 #endif
1047 	}
1048 
1049 	/*
1050 	 * We're about to do a bunch of work so we cache a local copy of
1051 	 * the tracepoint to emulate the instruction, and then find the
1052 	 * tracepoint again later if we need to light up any return probes.
1053 	 */
1054 	tp_local = *tp;
1055 	mutex_exit(pid_mtx);
1056 	tp = &tp_local;
1057 
1058 	/*
1059 	 * Set the program counter to appear as though the traced instruction
1060 	 * had completely executed. This ensures that fasttrap_getreg() will
1061 	 * report the expected value for REG_RIP.
1062 	 */
1063 	rp->r_pc = pc + tp->ftt_size;
1064 
1065 	/*
1066 	 * If there's an is-enabled probe connected to this tracepoint it
1067 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1068 	 * instruction that was placed there by DTrace when the binary was
1069 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1070 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1071 	 * emulation logic since we know the inevitable result. It's possible
1072 	 * that a user could construct a scenario where the 'is-enabled'
1073 	 * probe was on some other instruction, but that would be a rather
1074 	 * exotic way to shoot oneself in the foot.
1075 	 */
1076 	if (is_enabled) {
1077 		rp->r_r0 = 1;
1078 		new_pc = rp->r_pc;
1079 		goto done;
1080 	}
1081 
1082 	/*
1083 	 * We emulate certain types of instructions to ensure correctness
1084 	 * (in the case of position dependent instructions) or optimize
1085 	 * common cases. The rest we have the thread execute back in user-
1086 	 * land.
1087 	 */
1088 	switch (tp->ftt_type) {
1089 	case FASTTRAP_T_RET:
1090 	case FASTTRAP_T_RET16:
1091 	{
1092 		uintptr_t dst;
1093 		uintptr_t addr;
1094 		int ret;
1095 
1096 		/*
1097 		 * We have to emulate _every_ facet of the behavior of a ret
1098 		 * instruction including what happens if the load from %esp
1099 		 * fails; in that case, we send a SIGSEGV.
1100 		 */
1101 #ifdef __amd64
1102 		if (p->p_model == DATAMODEL_NATIVE) {
1103 #endif
1104 			ret = fasttrap_fulword((void *)rp->r_sp, &dst);
1105 			addr = rp->r_sp + sizeof (uintptr_t);
1106 #ifdef __amd64
1107 		} else {
1108 			uint32_t dst32;
1109 			ret = fasttrap_fuword32((void *)rp->r_sp, &dst32);
1110 			dst = dst32;
1111 			addr = rp->r_sp + sizeof (uint32_t);
1112 		}
1113 #endif
1114 
1115 		if (ret == -1) {
1116 			fasttrap_sigsegv(p, curthread, rp->r_sp);
1117 			new_pc = pc;
1118 			break;
1119 		}
1120 
1121 		if (tp->ftt_type == FASTTRAP_T_RET16)
1122 			addr += tp->ftt_dest;
1123 
1124 		rp->r_sp = addr;
1125 		new_pc = dst;
1126 		break;
1127 	}
1128 
1129 	case FASTTRAP_T_JCC:
1130 	{
1131 		uint_t taken;
1132 
1133 		switch (tp->ftt_code) {
1134 		case FASTTRAP_JO:
1135 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) != 0;
1136 			break;
1137 		case FASTTRAP_JNO:
1138 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) == 0;
1139 			break;
1140 		case FASTTRAP_JB:
1141 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0;
1142 			break;
1143 		case FASTTRAP_JAE:
1144 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0;
1145 			break;
1146 		case FASTTRAP_JE:
1147 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1148 			break;
1149 		case FASTTRAP_JNE:
1150 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1151 			break;
1152 		case FASTTRAP_JBE:
1153 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0 ||
1154 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1155 			break;
1156 		case FASTTRAP_JA:
1157 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0 &&
1158 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1159 			break;
1160 		case FASTTRAP_JS:
1161 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) != 0;
1162 			break;
1163 		case FASTTRAP_JNS:
1164 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) == 0;
1165 			break;
1166 		case FASTTRAP_JP:
1167 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) != 0;
1168 			break;
1169 		case FASTTRAP_JNP:
1170 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) == 0;
1171 			break;
1172 		case FASTTRAP_JL:
1173 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1174 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1175 			break;
1176 		case FASTTRAP_JGE:
1177 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1178 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1179 			break;
1180 		case FASTTRAP_JLE:
1181 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 ||
1182 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1183 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1184 			break;
1185 		case FASTTRAP_JG:
1186 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1187 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1188 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1189 			break;
1190 
1191 		}
1192 
1193 		if (taken)
1194 			new_pc = tp->ftt_dest;
1195 		else
1196 			new_pc = pc + tp->ftt_size;
1197 		break;
1198 	}
1199 
1200 	case FASTTRAP_T_LOOP:
1201 	{
1202 		uint_t taken;
1203 #ifdef __amd64
1204 		greg_t cx = rp->r_rcx--;
1205 #else
1206 		greg_t cx = rp->r_ecx--;
1207 #endif
1208 
1209 		switch (tp->ftt_code) {
1210 		case FASTTRAP_LOOPNZ:
1211 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1212 			    cx != 0;
1213 			break;
1214 		case FASTTRAP_LOOPZ:
1215 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 &&
1216 			    cx != 0;
1217 			break;
1218 		case FASTTRAP_LOOP:
1219 			taken = (cx != 0);
1220 			break;
1221 		}
1222 
1223 		if (taken)
1224 			new_pc = tp->ftt_dest;
1225 		else
1226 			new_pc = pc + tp->ftt_size;
1227 		break;
1228 	}
1229 
1230 	case FASTTRAP_T_JCXZ:
1231 	{
1232 #ifdef __amd64
1233 		greg_t cx = rp->r_rcx;
1234 #else
1235 		greg_t cx = rp->r_ecx;
1236 #endif
1237 
1238 		if (cx == 0)
1239 			new_pc = tp->ftt_dest;
1240 		else
1241 			new_pc = pc + tp->ftt_size;
1242 		break;
1243 	}
1244 
1245 	case FASTTRAP_T_PUSHL_EBP:
1246 	{
1247 		int ret;
1248 		uintptr_t addr;
1249 #ifdef __amd64
1250 		if (p->p_model == DATAMODEL_NATIVE) {
1251 #endif
1252 			addr = rp->r_sp - sizeof (uintptr_t);
1253 			ret = fasttrap_sulword((void *)addr, rp->r_fp);
1254 #ifdef __amd64
1255 		} else {
1256 			addr = rp->r_sp - sizeof (uint32_t);
1257 			ret = fasttrap_suword32((void *)addr,
1258 			    (uint32_t)rp->r_fp);
1259 		}
1260 #endif
1261 
1262 		if (ret == -1) {
1263 			fasttrap_sigsegv(p, curthread, addr);
1264 			new_pc = pc;
1265 			break;
1266 		}
1267 
1268 		rp->r_sp = addr;
1269 		new_pc = pc + tp->ftt_size;
1270 		break;
1271 	}
1272 
1273 	case FASTTRAP_T_NOP:
1274 		new_pc = pc + tp->ftt_size;
1275 		break;
1276 
1277 	case FASTTRAP_T_JMP:
1278 	case FASTTRAP_T_CALL:
1279 		if (tp->ftt_code == 0) {
1280 			new_pc = tp->ftt_dest;
1281 		} else {
1282 			uintptr_t value, addr = tp->ftt_dest;
1283 
1284 			if (tp->ftt_base != FASTTRAP_NOREG)
1285 				addr += fasttrap_getreg(rp, tp->ftt_base);
1286 			if (tp->ftt_index != FASTTRAP_NOREG)
1287 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1288 				    tp->ftt_scale;
1289 
1290 			if (tp->ftt_code == 1) {
1291 				/*
1292 				 * If there's a segment prefix for this
1293 				 * instruction, we'll need to check permissions
1294 				 * and bounds on the given selector, and adjust
1295 				 * the address accordingly.
1296 				 */
1297 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1298 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1299 					fasttrap_sigsegv(p, curthread, addr);
1300 					new_pc = pc;
1301 					break;
1302 				}
1303 
1304 #ifdef __amd64
1305 				if (p->p_model == DATAMODEL_NATIVE) {
1306 #endif
1307 					if (fasttrap_fulword((void *)addr,
1308 					    &value) == -1) {
1309 						fasttrap_sigsegv(p, curthread,
1310 						    addr);
1311 						new_pc = pc;
1312 						break;
1313 					}
1314 					new_pc = value;
1315 #ifdef __amd64
1316 				} else {
1317 					uint32_t value32;
1318 					addr = (uintptr_t)(uint32_t)addr;
1319 					if (fasttrap_fuword32((void *)addr,
1320 					    &value32) == -1) {
1321 						fasttrap_sigsegv(p, curthread,
1322 						    addr);
1323 						new_pc = pc;
1324 						break;
1325 					}
1326 					new_pc = value32;
1327 				}
1328 #endif
1329 			} else {
1330 				new_pc = addr;
1331 			}
1332 		}
1333 
1334 		/*
1335 		 * If this is a call instruction, we need to push the return
1336 		 * address onto the stack. If this fails, we send the process
1337 		 * a SIGSEGV and reset the pc to emulate what would happen if
1338 		 * this instruction weren't traced.
1339 		 */
1340 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1341 			int ret;
1342 			uintptr_t addr;
1343 #ifdef __amd64
1344 			if (p->p_model == DATAMODEL_NATIVE) {
1345 				addr = rp->r_sp - sizeof (uintptr_t);
1346 				ret = fasttrap_sulword((void *)addr,
1347 				    pc + tp->ftt_size);
1348 			} else {
1349 #endif
1350 				addr = rp->r_sp - sizeof (uint32_t);
1351 				ret = fasttrap_suword32((void *)addr,
1352 				    (uint32_t)(pc + tp->ftt_size));
1353 #ifdef __amd64
1354 			}
1355 #endif
1356 
1357 			if (ret == -1) {
1358 				fasttrap_sigsegv(p, curthread, addr);
1359 				new_pc = pc;
1360 				break;
1361 			}
1362 
1363 			rp->r_sp = addr;
1364 		}
1365 
1366 		break;
1367 
1368 	case FASTTRAP_T_COMMON:
1369 	{
1370 		uintptr_t addr;
1371 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 5 + 2];
1372 		uint_t i = 0;
1373 		klwp_t *lwp = ttolwp(curthread);
1374 
1375 		/*
1376 		 * Compute the address of the ulwp_t and step over the
1377 		 * ul_self pointer. The method used to store the user-land
1378 		 * thread pointer is very different on 32- and 64-bit
1379 		 * kernels.
1380 		 */
1381 #if defined(__amd64)
1382 		if (p->p_model == DATAMODEL_LP64) {
1383 			addr = lwp->lwp_pcb.pcb_fsbase;
1384 			addr += sizeof (void *);
1385 		} else {
1386 			addr = lwp->lwp_pcb.pcb_gsbase;
1387 			addr += sizeof (caddr32_t);
1388 		}
1389 #elif defined(__i386)
1390 		addr = USEGD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1391 		addr += sizeof (void *);
1392 #endif
1393 
1394 		/*
1395 		 * Generic Instruction Tracing
1396 		 * ---------------------------
1397 		 *
1398 		 * This is the layout of the scratch space in the user-land
1399 		 * thread structure for our generated instructions.
1400 		 *
1401 		 *	32-bit mode			bytes
1402 		 *	------------------------	-----
1403 		 * a:	<original instruction>		<= 15
1404 		 *	jmp	<pc + tp->ftt_size>	    5
1405 		 * b:	<original instrction>		<= 15
1406 		 *	int	T_DTRACE_RET		    2
1407 		 *					-----
1408 		 *					<= 37
1409 		 *
1410 		 *	64-bit mode			bytes
1411 		 *	------------------------	-----
1412 		 * a:	<original instruction>		<= 15
1413 		 *	jmp	0(%rip)			    6
1414 		 *	<pc + tp->ftt_size>		    8
1415 		 * b:	<original instruction>		<= 15
1416 		 * 	int	T_DTRACE_RET		    2
1417 		 * 					-----
1418 		 * 					<= 46
1419 		 *
1420 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1421 		 * to b. If we encounter a signal on the way out of the
1422 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1423 		 * so that we execute the original instruction and re-enter
1424 		 * the kernel rather than redirecting to the next instruction.
1425 		 *
1426 		 * If there are return probes (so we know that we're going to
1427 		 * need to reenter the kernel after executing the original
1428 		 * instruction), the scratch space will just contain the
1429 		 * original instruction followed by an interrupt -- the same
1430 		 * data as at b.
1431 		 *
1432 		 * %rip-relative Addressing
1433 		 * ------------------------
1434 		 *
1435 		 * There's a further complication in 64-bit mode due to %rip-
1436 		 * relative addressing. While this is clearly a beneficial
1437 		 * architectural decision for position independent code, it's
1438 		 * hard not to see it as a personal attack against the pid
1439 		 * provider since before there was a relatively small set of
1440 		 * instructions to emulate; with %rip-relative addressing,
1441 		 * almost every instruction can potentially depend on the
1442 		 * address at which it's executed. Rather than emulating
1443 		 * the broad spectrum of instructions that can now be
1444 		 * position dependent, we emulate jumps and others as in
1445 		 * 32-bit mode, and take a different tack for instructions
1446 		 * using %rip-relative addressing.
1447 		 *
1448 		 * For every instruction that uses the ModRM byte, the
1449 		 * in-kernel disassembler reports its location. We use the
1450 		 * ModRM byte to identify that an instruction uses
1451 		 * %rip-relative addressing and to see what other registers
1452 		 * the instruction uses. To emulate those instructions,
1453 		 * we modify the instruction to be %rax-relative rather than
1454 		 * %rip-relative (or %rcx-relative if the instruction uses
1455 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1456 		 * we don't have to rewrite the REX prefix). We then load
1457 		 * the value that %rip would have been into the scratch
1458 		 * register and generate an instruction to reset the scratch
1459 		 * register back to its original value. The instruction
1460 		 * sequence looks like this:
1461 		 *
1462 		 *	64-mode %rip-relative		bytes
1463 		 *	------------------------	-----
1464 		 * a:	<modified instruction>		<= 15
1465 		 *	movq	$<value>, %<scratch>	    6
1466 		 *	jmp	0(%rip)			    6
1467 		 *	<pc + tp->ftt_size>		    8
1468 		 * b:	<modified instruction>  	<= 15
1469 		 * 	int	T_DTRACE_RET		    2
1470 		 * 					-----
1471 		 *					   52
1472 		 *
1473 		 * We set curthread->t_dtrace_regv so that upon receiving
1474 		 * a signal we can reset the value of the scratch register.
1475 		 */
1476 
1477 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1478 
1479 		curthread->t_dtrace_scrpc = addr;
1480 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1481 		i += tp->ftt_size;
1482 
1483 #ifdef __amd64
1484 		if (tp->ftt_ripmode != 0) {
1485 			greg_t *reg;
1486 
1487 			ASSERT(p->p_model == DATAMODEL_LP64);
1488 			ASSERT(tp->ftt_ripmode &
1489 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1490 
1491 			/*
1492 			 * If this was a %rip-relative instruction, we change
1493 			 * it to be either a %rax- or %rcx-relative
1494 			 * instruction (depending on whether those registers
1495 			 * are used as another operand; or %r8- or %r9-
1496 			 * relative depending on the value of REX.B). We then
1497 			 * set that register and generate a movq instruction
1498 			 * to reset the value.
1499 			 */
1500 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1501 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1502 			else
1503 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1504 
1505 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1506 				scratch[i++] = FASTTRAP_MOV_EAX;
1507 			else
1508 				scratch[i++] = FASTTRAP_MOV_ECX;
1509 
1510 			switch (tp->ftt_ripmode) {
1511 			case FASTTRAP_RIP_1:
1512 				reg = &rp->r_rax;
1513 				curthread->t_dtrace_reg = REG_RAX;
1514 				break;
1515 			case FASTTRAP_RIP_2:
1516 				reg = &rp->r_rcx;
1517 				curthread->t_dtrace_reg = REG_RCX;
1518 				break;
1519 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1520 				reg = &rp->r_r8;
1521 				curthread->t_dtrace_reg = REG_R8;
1522 				break;
1523 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1524 				reg = &rp->r_r9;
1525 				curthread->t_dtrace_reg = REG_R9;
1526 				break;
1527 			}
1528 
1529 			*(uint64_t *)&scratch[i] = *reg;
1530 			curthread->t_dtrace_regv = *reg;
1531 			*reg = pc + tp->ftt_size;
1532 			i += sizeof (uint64_t);
1533 		}
1534 #endif
1535 
1536 		/*
1537 		 * Generate the branch instruction to what would have
1538 		 * normally been the subsequent instruction. In 32-bit mode,
1539 		 * this is just a relative branch; in 64-bit mode this is a
1540 		 * %rip-relative branch that loads the 64-bit pc value
1541 		 * immediately after the jmp instruction.
1542 		 */
1543 #ifdef __amd64
1544 		if (p->p_model == DATAMODEL_LP64) {
1545 			scratch[i++] = FASTTRAP_GROUP5_OP;
1546 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1547 			*(uint32_t *)&scratch[i] = 0;
1548 			i += sizeof (uint32_t);
1549 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1550 			i += sizeof (uint64_t);
1551 		} else {
1552 #endif
1553 			/*
1554 			 * Set up the jmp to the next instruction; note that
1555 			 * the size of the traced instruction cancels out.
1556 			 */
1557 			scratch[i++] = FASTTRAP_JMP32;
1558 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1559 			i += sizeof (uint32_t);
1560 #ifdef __amd64
1561 		}
1562 #endif
1563 
1564 		curthread->t_dtrace_astpc = addr + i;
1565 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1566 		i += tp->ftt_size;
1567 		scratch[i++] = FASTTRAP_INT;
1568 		scratch[i++] = T_DTRACE_RET;
1569 
1570 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1571 			fasttrap_sigtrap(p, curthread, pc);
1572 			new_pc = pc;
1573 			break;
1574 		}
1575 
1576 		if (tp->ftt_retids != NULL) {
1577 			curthread->t_dtrace_step = 1;
1578 			curthread->t_dtrace_ret = 1;
1579 			new_pc = curthread->t_dtrace_astpc;
1580 		} else {
1581 			new_pc = curthread->t_dtrace_scrpc;
1582 		}
1583 
1584 		curthread->t_dtrace_pc = pc;
1585 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1586 		curthread->t_dtrace_on = 1;
1587 		break;
1588 	}
1589 
1590 	default:
1591 		panic("fasttrap: mishandled an instruction");
1592 	}
1593 
1594 done:
1595 	/*
1596 	 * If there were no return probes when we first found the tracepoint,
1597 	 * we should feel no obligation to honor any return probes that were
1598 	 * subsequently enabled -- they'll just have to wait until the next
1599 	 * time around.
1600 	 */
1601 	if (tp->ftt_retids != NULL) {
1602 		/*
1603 		 * We need to wait until the results of the instruction are
1604 		 * apparent before invoking any return probes. If this
1605 		 * instruction was emulated we can just call
1606 		 * fasttrap_return_common(); if it needs to be executed, we
1607 		 * need to wait until the user thread returns to the kernel.
1608 		 */
1609 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1610 			/*
1611 			 * Set the program counter to the address of the traced
1612 			 * instruction so that it looks right in ustack()
1613 			 * output. We had previously set it to the end of the
1614 			 * instruction to simplify %rip-relative addressing.
1615 			 */
1616 			rp->r_pc = pc;
1617 
1618 			fasttrap_return_common(rp, pc, pid, new_pc);
1619 		} else {
1620 			ASSERT(curthread->t_dtrace_ret != 0);
1621 			ASSERT(curthread->t_dtrace_pc == pc);
1622 			ASSERT(curthread->t_dtrace_scrpc != 0);
1623 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1624 		}
1625 	}
1626 
1627 	rp->r_pc = new_pc;
1628 
1629 	return (0);
1630 }
1631 
1632 int
1633 fasttrap_return_probe(struct regs *rp)
1634 {
1635 	proc_t *p = curproc;
1636 	uintptr_t pc = curthread->t_dtrace_pc;
1637 	uintptr_t npc = curthread->t_dtrace_npc;
1638 
1639 	curthread->t_dtrace_pc = 0;
1640 	curthread->t_dtrace_npc = 0;
1641 	curthread->t_dtrace_scrpc = 0;
1642 	curthread->t_dtrace_astpc = 0;
1643 
1644 	/*
1645 	 * Treat a child created by a call to vfork(2) as if it were its
1646 	 * parent. We know that there's only one thread of control in such a
1647 	 * process: this one.
1648 	 */
1649 	while (p->p_flag & SVFORK) {
1650 		p = p->p_parent;
1651 	}
1652 
1653 	/*
1654 	 * We set rp->r_pc to the address of the traced instruction so
1655 	 * that it appears to dtrace_probe() that we're on the original
1656 	 * instruction, and so that the user can't easily detect our
1657 	 * complex web of lies. dtrace_return_probe() (our caller)
1658 	 * will correctly set %pc after we return.
1659 	 */
1660 	rp->r_pc = pc;
1661 
1662 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1663 
1664 	return (0);
1665 }
1666 
1667 /*ARGSUSED*/
1668 uint64_t
1669 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1670     int aframes)
1671 {
1672 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 1, argno));
1673 }
1674 
1675 /*ARGSUSED*/
1676 uint64_t
1677 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1678     int aframes)
1679 {
1680 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno));
1681 }
1682 
1683 static ulong_t
1684 fasttrap_getreg(struct regs *rp, uint_t reg)
1685 {
1686 #ifdef __amd64
1687 	switch (reg) {
1688 	case REG_R15:		return (rp->r_r15);
1689 	case REG_R14:		return (rp->r_r14);
1690 	case REG_R13:		return (rp->r_r13);
1691 	case REG_R12:		return (rp->r_r12);
1692 	case REG_R11:		return (rp->r_r11);
1693 	case REG_R10:		return (rp->r_r10);
1694 	case REG_R9:		return (rp->r_r9);
1695 	case REG_R8:		return (rp->r_r8);
1696 	case REG_RDI:		return (rp->r_rdi);
1697 	case REG_RSI:		return (rp->r_rsi);
1698 	case REG_RBP:		return (rp->r_rbp);
1699 	case REG_RBX:		return (rp->r_rbx);
1700 	case REG_RDX:		return (rp->r_rdx);
1701 	case REG_RCX:		return (rp->r_rcx);
1702 	case REG_RAX:		return (rp->r_rax);
1703 	case REG_TRAPNO:	return (rp->r_trapno);
1704 	case REG_ERR:		return (rp->r_err);
1705 	case REG_RIP:		return (rp->r_rip);
1706 	case REG_CS:		return (rp->r_cs);
1707 	case REG_RFL:		return (rp->r_rfl);
1708 	case REG_RSP:		return (rp->r_rsp);
1709 	case REG_SS:		return (rp->r_ss);
1710 	case REG_FS:		return (rp->r_fs);
1711 	case REG_GS:		return (rp->r_gs);
1712 	case REG_DS:		return (rp->r_ds);
1713 	case REG_ES:		return (rp->r_es);
1714 	case REG_FSBASE:	return (rp->r_fsbase);
1715 	case REG_GSBASE:	return (rp->r_gsbase);
1716 	}
1717 
1718 	panic("dtrace: illegal register constant");
1719 	/*NOTREACHED*/
1720 #else
1721 	if (reg >= _NGREG)
1722 		panic("dtrace: illegal register constant");
1723 
1724 	return (((greg_t *)&rp->r_gs)[reg]);
1725 #endif
1726 }
1727