1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for i386 and amd64 30 * 31 * Implementation of the interfaces described in <common/vm/hat.h> 32 * 33 * Nearly all the details of how the hardware is managed should not be 34 * visible outside this layer except for misc. machine specific functions 35 * that work in conjunction with this code. 36 * 37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 38 */ 39 40 #include <sys/machparam.h> 41 #include <sys/machsystm.h> 42 #include <sys/mman.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/cpu.h> 49 #include <sys/kmem.h> 50 #include <sys/disp.h> 51 #include <sys/shm.h> 52 #include <sys/sysmacros.h> 53 #include <sys/machparam.h> 54 #include <sys/vmem.h> 55 #include <sys/vmsystm.h> 56 #include <sys/promif.h> 57 #include <sys/var.h> 58 #include <sys/x86_archext.h> 59 #include <sys/atomic.h> 60 #include <sys/bitmap.h> 61 62 #include <vm/seg_kmem.h> 63 #include <vm/hat_i86.h> 64 #include <vm/as.h> 65 #include <vm/seg.h> 66 #include <vm/page.h> 67 #include <vm/seg_kp.h> 68 #include <vm/seg_kpm.h> 69 #include <vm/vm_dep.h> 70 71 #include <sys/cmn_err.h> 72 73 74 /* 75 * Basic parameters for hat operation. 76 */ 77 struct hat_mmu_info mmu; 78 uint_t force_pae_off = 0; /* for testing, change with kernel debugger */ 79 uint_t force_pae_on = 0; /* for testing, change with kernel debugger */ 80 81 /* 82 * The page that is the kernel's top level pagetable. 83 * 84 * For 32 bit VLP support, the kernel hat will use the 1st 4 entries 85 * on this 4K page for its top level page table. The remaining groups of 86 * 4 entries are used for per processor copies of user VLP pagetables for 87 * running threads. See hat_switch() and reload_pae32() for details. 88 * 89 * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero) 90 * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero) 91 * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory) 92 * vlp_page[3] - 3rd level==2 PTE for kernel 93 * 94 * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0 95 * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0 96 * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0 97 * vlp_page[7] - probably copy of kernel PTE 98 * 99 * vlp_page[8] - 0th level==2 PTE for user thread on cpu 1 100 * vlp_page[9] - 1st level==2 PTE for user thread on cpu 1 101 * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1 102 * vlp_page[11] - probably copy of kernel PTE 103 * ... 104 * 105 * when / where the kernel PTE's are (entry 2 or 3 or none) depends 106 * on kernelbase. 107 */ 108 static x86pte_t *vlp_page; 109 110 /* 111 * forward declaration of internal utility routines 112 */ 113 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 114 x86pte_t new); 115 116 /* 117 * The kernel address space exists in all HATs. To implement this the 118 * kernel reserves a fixed number of entries in every topmost level page 119 * table. The values are setup in hat_init() and then copied to every hat 120 * created by hat_alloc(). This means that kernelbase must be: 121 * 122 * 4Meg aligned for 32 bit kernels 123 * 512Gig aligned for x86_64 64 bit kernel 124 * 125 * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig 126 * alignment would use too much VA for the kernel. 127 * 128 */ 129 static uint_t khat_start; /* index of 1st entry in kernel's top ptable */ 130 static uint_t khat_entries; /* number of entries in kernel's top ptable */ 131 132 #if defined(__i386) 133 134 static htable_t *khat_pae32_htable = NULL; 135 static uint_t khat_pae32_start; 136 static uint_t khat_pae32_entries; 137 138 #endif 139 140 /* 141 * Locks, etc. to control use of the hat reserves when recursively 142 * allocating pagetables for the hat data structures. 143 */ 144 static kmutex_t hat_reserves_lock; 145 static kcondvar_t hat_reserves_cv; 146 kthread_t *hat_reserves_thread; 147 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 148 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 149 150 /* 151 * A cpuset for all cpus. This is used for kernel address cross calls, since 152 * the kernel addresses apply to all cpus. 153 */ 154 cpuset_t khat_cpuset; 155 156 /* 157 * management stuff for hat structures 158 */ 159 kmutex_t hat_list_lock; 160 kcondvar_t hat_list_cv; 161 kmem_cache_t *hat_cache; 162 kmem_cache_t *hat_hash_cache; 163 kmem_cache_t *vlp_hash_cache; 164 165 /* 166 * Simple statistics 167 */ 168 struct hatstats hatstat; 169 170 /* 171 * macros to detect addresses in use by kernel only during boot 172 */ 173 #if defined(__amd64) 174 175 #define BOOT_VA(va) ((va) < kernelbase || \ 176 ((va) >= BOOT_DOUBLEMAP_BASE && \ 177 (va) < BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE)) 178 179 #elif defined(__i386) 180 181 #define BOOT_VA(va) ((va) < kernelbase) 182 183 #endif /* __i386 */ 184 185 /* 186 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 187 */ 188 extern void atomic_orb(uchar_t *addr, uchar_t val); 189 extern void atomic_andb(uchar_t *addr, uchar_t val); 190 191 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 192 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 193 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 194 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 195 196 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 197 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 198 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 199 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 200 201 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 202 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 203 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 204 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 205 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 206 207 /* 208 * some useful tracing macros 209 */ 210 211 int hattrace = 0; 212 #ifdef DEBUG 213 214 #define HATIN(r, h, a, l) \ 215 if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l) 216 217 #define HATOUT(r, h, a) \ 218 if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a) 219 #else 220 221 #define HATIN(r, h, a, l) 222 #define HATOUT(r, h, a) 223 224 #endif 225 226 227 /* 228 * kmem cache constructor for struct hat 229 */ 230 /*ARGSUSED*/ 231 static int 232 hati_constructor(void *buf, void *handle, int kmflags) 233 { 234 hat_t *hat = buf; 235 236 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 237 bzero(hat->hat_pages_mapped, 238 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 239 hat->hat_stats = 0; 240 hat->hat_flags = 0; 241 mutex_init(&hat->hat_switch_mutex, NULL, MUTEX_DRIVER, 242 (void *)ipltospl(DISP_LEVEL)); 243 CPUSET_ZERO(hat->hat_cpus); 244 hat->hat_htable = NULL; 245 hat->hat_ht_hash = NULL; 246 return (0); 247 } 248 249 /* 250 * Allocate a hat structure for as. We also create the top level 251 * htable and initialize it to contain the kernel hat entries. 252 */ 253 hat_t * 254 hat_alloc(struct as *as) 255 { 256 hat_t *hat; 257 htable_t *ht; /* top level htable */ 258 uint_t use_vlp; 259 260 /* 261 * Once we start creating user process HATs we can enable 262 * the htable_steal() code. 263 */ 264 if (can_steal_post_boot == 0) 265 can_steal_post_boot = 1; 266 267 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 268 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 269 hat->hat_as = as; 270 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 271 ASSERT(hat->hat_flags == 0); 272 273 /* 274 * a 32 bit process uses a VLP style hat when using PAE 275 */ 276 #if defined(__amd64) 277 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 278 #elif defined(__i386) 279 use_vlp = mmu.pae_hat; 280 #endif 281 if (use_vlp) { 282 hat->hat_flags = HAT_VLP; 283 bzero(hat->hat_vlp_ptes, VLP_SIZE); 284 } 285 286 /* 287 * Allocate the htable hash 288 */ 289 if ((hat->hat_flags & HAT_VLP)) { 290 hat->hat_num_hash = mmu.vlp_hash_cnt; 291 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 292 } else { 293 hat->hat_num_hash = mmu.hash_cnt; 294 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 295 } 296 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 297 298 /* 299 * Initialize Kernel HAT entries at the top of the top level page 300 * table for the new hat. 301 * 302 * Note that we don't call htable_release() for the top level, that 303 * happens when the hat is destroyed in hat_free_end() 304 */ 305 hat->hat_htable = NULL; 306 hat->hat_ht_cached = NULL; 307 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 308 if (!(hat->hat_flags & HAT_VLP)) 309 x86pte_copy(kas.a_hat->hat_htable, ht, khat_start, 310 khat_entries); 311 #if defined(__i386) 312 else if (khat_entries > 0) 313 bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start, 314 khat_entries * sizeof (x86pte_t)); 315 #endif 316 hat->hat_htable = ht; 317 318 #if defined(__i386) 319 /* 320 * PAE32 HAT alignment is less restrictive than the others to keep 321 * the kernel from using too much VA. Because of this we may need 322 * one layer further down when kernelbase isn't 1Gig aligned. 323 * See hat_free_end() for the htable_release() that goes with this 324 * htable_create() 325 */ 326 if (khat_pae32_htable != NULL) { 327 ht = htable_create(hat, kernelbase, 328 khat_pae32_htable->ht_level, NULL); 329 x86pte_copy(khat_pae32_htable, ht, khat_pae32_start, 330 khat_pae32_entries); 331 ht->ht_valid_cnt = khat_pae32_entries; 332 } 333 #endif 334 335 /* 336 * Put it at the start of the global list of all hats (used by stealing) 337 * 338 * kas.a_hat is not in the list but is instead used to find the 339 * first and last items in the list. 340 * 341 * - kas.a_hat->hat_next points to the start of the user hats. 342 * The list ends where hat->hat_next == NULL 343 * 344 * - kas.a_hat->hat_prev points to the last of the user hats. 345 * The list begins where hat->hat_prev == NULL 346 */ 347 mutex_enter(&hat_list_lock); 348 hat->hat_prev = NULL; 349 hat->hat_next = kas.a_hat->hat_next; 350 if (hat->hat_next) 351 hat->hat_next->hat_prev = hat; 352 else 353 kas.a_hat->hat_prev = hat; 354 kas.a_hat->hat_next = hat; 355 mutex_exit(&hat_list_lock); 356 357 return (hat); 358 } 359 360 /* 361 * process has finished executing but as has not been cleaned up yet. 362 */ 363 /*ARGSUSED*/ 364 void 365 hat_free_start(hat_t *hat) 366 { 367 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 368 369 /* 370 * If the hat is currently a stealing victim, wait for the stealing 371 * to finish. Once we mark it as HAT_FREEING, htable_steal() 372 * won't look at its pagetables anymore. 373 */ 374 mutex_enter(&hat_list_lock); 375 while (hat->hat_flags & HAT_VICTIM) 376 cv_wait(&hat_list_cv, &hat_list_lock); 377 hat->hat_flags |= HAT_FREEING; 378 mutex_exit(&hat_list_lock); 379 } 380 381 /* 382 * An address space is being destroyed, so we destroy the associated hat. 383 */ 384 void 385 hat_free_end(hat_t *hat) 386 { 387 int i; 388 kmem_cache_t *cache; 389 390 #ifdef DEBUG 391 for (i = 0; i <= mmu.max_page_level; i++) 392 ASSERT(hat->hat_pages_mapped[i] == 0); 393 #endif 394 ASSERT(hat->hat_flags & HAT_FREEING); 395 396 /* 397 * must not be running on the given hat 398 */ 399 ASSERT(CPU->cpu_current_hat != hat); 400 401 /* 402 * Remove it from the list of HATs 403 */ 404 mutex_enter(&hat_list_lock); 405 if (hat->hat_prev) 406 hat->hat_prev->hat_next = hat->hat_next; 407 else 408 kas.a_hat->hat_next = hat->hat_next; 409 if (hat->hat_next) 410 hat->hat_next->hat_prev = hat->hat_prev; 411 else 412 kas.a_hat->hat_prev = hat->hat_prev; 413 mutex_exit(&hat_list_lock); 414 hat->hat_next = hat->hat_prev = NULL; 415 416 /* 417 * Make a pass through the htables freeing them all up. 418 */ 419 htable_purge_hat(hat); 420 421 /* 422 * Decide which kmem cache the hash table came from, then free it. 423 */ 424 if (hat->hat_flags & HAT_VLP) 425 cache = vlp_hash_cache; 426 else 427 cache = hat_hash_cache; 428 kmem_cache_free(cache, hat->hat_ht_hash); 429 hat->hat_ht_hash = NULL; 430 431 hat->hat_flags = 0; 432 kmem_cache_free(hat_cache, hat); 433 } 434 435 /* 436 * round kernelbase down to a supported value to use for _userlimit 437 * 438 * userlimit must be aligned down to an entry in the top level htable. 439 * The one exception is for 32 bit HAT's running PAE. 440 */ 441 uintptr_t 442 hat_kernelbase(uintptr_t va) 443 { 444 #if defined(__i386) 445 va &= LEVEL_MASK(1); 446 #endif 447 if (IN_VA_HOLE(va)) 448 panic("_userlimit %p will fall in VA hole\n", (void *)va); 449 return (va); 450 } 451 452 /* 453 * Initialize hat data structures based on processor MMU information. 454 */ 455 void 456 mmu_init(void) 457 { 458 uint_t max_htables; 459 uint_t pa_bits; 460 uint_t va_bits; 461 int i; 462 463 /* 464 * if CPU enabled the page table global bit, use it for the kernel 465 * This is bit 7 in CR4 (PGE - Page Global Enable) 466 */ 467 if ((x86_feature & X86_PGE) != 0 && (getcr4() & 0x80) != 0) 468 mmu.pt_global = PT_GLOBAL; 469 470 /* 471 * We use PAE except when we aren't on an AMD64 and this is 472 * a 32 bit kernel with all physical addresses less than 4 Gig. 473 */ 474 mmu.pae_hat = 1; 475 if (x86_feature & X86_NX) { 476 mmu.pt_nx = PT_NX; 477 } else { 478 mmu.pt_nx = 0; 479 #if defined(__i386) 480 if (!PFN_ABOVE4G(physmax)) 481 mmu.pae_hat = 0; 482 #endif 483 } 484 485 #if defined(__i386) 486 /* 487 * Setting one of these two lets you force testing of the different 488 * hat modes for 32 bit, regardless of the hardware setup. 489 */ 490 if (force_pae_on) { 491 mmu.pae_hat = 1; 492 } else if (force_pae_off) { 493 mmu.pae_hat = 0; 494 mmu.pt_nx = 0; 495 } 496 #endif 497 498 /* 499 * Use CPU info to set various MMU parameters 500 */ 501 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 502 503 if (va_bits < sizeof (void *) * NBBY) { 504 mmu.hole_start = (1ul << (va_bits - 1)); 505 mmu.hole_end = 0ul - mmu.hole_start - 1; 506 } else { 507 mmu.hole_end = 0; 508 mmu.hole_start = mmu.hole_end - 1; 509 } 510 #if defined(OPTERON_ERRATUM_121) 511 /* 512 * If erratum 121 has already been detected at this time, hole_start 513 * contains the value to be subtracted from mmu.hole_start. 514 */ 515 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 516 hole_start = mmu.hole_start - hole_start; 517 #else 518 hole_start = mmu.hole_start; 519 #endif 520 hole_end = mmu.hole_end; 521 522 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 523 if (mmu.pae_hat == 0 && pa_bits > 32) 524 mmu.highest_pfn = PFN_4G - 1; 525 526 if (mmu.pae_hat) { 527 mmu.pte_size = 8; /* 8 byte PTEs */ 528 mmu.pte_size_shift = 3; 529 } else { 530 mmu.pte_size = 4; /* 4 byte PTEs */ 531 mmu.pte_size_shift = 2; 532 } 533 534 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 535 panic("Processor does not support PAE"); 536 537 if ((x86_feature & X86_CX8) == 0) 538 panic("Processor does not support cmpxchg8b instruction"); 539 540 /* 541 * Initialize parameters based on the 64 or 32 bit kernels and 542 * for the 32 bit kernel decide if we should use PAE. 543 */ 544 if (x86_feature & X86_LARGEPAGE) 545 mmu.max_page_level = 1; 546 else 547 mmu.max_page_level = 0; 548 mmu_page_sizes = mmu.max_page_level + 1; 549 mmu_exported_page_sizes = mmu_page_sizes; 550 551 #if defined(__amd64) 552 553 mmu.num_level = 4; 554 mmu.max_level = 3; 555 mmu.ptes_per_table = 512; 556 mmu.top_level_count = 512; 557 558 mmu.level_shift[0] = 12; 559 mmu.level_shift[1] = 21; 560 mmu.level_shift[2] = 30; 561 mmu.level_shift[3] = 39; 562 563 #elif defined(__i386) 564 565 if (mmu.pae_hat) { 566 mmu.num_level = 3; 567 mmu.max_level = 2; 568 mmu.ptes_per_table = 512; 569 mmu.top_level_count = 4; 570 571 mmu.level_shift[0] = 12; 572 mmu.level_shift[1] = 21; 573 mmu.level_shift[2] = 30; 574 575 } else { 576 mmu.num_level = 2; 577 mmu.max_level = 1; 578 mmu.ptes_per_table = 1024; 579 mmu.top_level_count = 1024; 580 581 mmu.level_shift[0] = 12; 582 mmu.level_shift[1] = 22; 583 } 584 585 #endif /* __i386 */ 586 587 for (i = 0; i < mmu.num_level; ++i) { 588 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 589 mmu.level_offset[i] = mmu.level_size[i] - 1; 590 mmu.level_mask[i] = ~mmu.level_offset[i]; 591 } 592 593 mmu.pte_bits[0] = PT_VALID; 594 for (i = 1; i <= mmu.max_page_level; ++i) 595 mmu.pte_bits[i] = PT_VALID | PT_PAGESIZE; 596 597 /* 598 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 599 */ 600 for (i = 1; i < mmu.num_level; ++i) 601 mmu.ptp_bits[i] = PT_PTPBITS; 602 #if defined(__i386) 603 mmu.ptp_bits[2] = PT_VALID; 604 #endif 605 606 /* 607 * Compute how many hash table entries to have per process for htables. 608 * We start with 1 page's worth of entries. 609 * 610 * If physical memory is small, reduce the amount need to cover it. 611 */ 612 max_htables = physmax / mmu.ptes_per_table; 613 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 614 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 615 mmu.hash_cnt >>= 1; 616 mmu.vlp_hash_cnt = mmu.hash_cnt; 617 618 #if defined(__amd64) 619 /* 620 * If running in 64 bits and physical memory is large, 621 * increase the size of the cache to cover all of memory for 622 * a 64 bit process. 623 */ 624 #define HASH_MAX_LENGTH 4 625 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 626 mmu.hash_cnt <<= 1; 627 #endif 628 629 /* 630 * This code knows that there are only 2 pagesizes. 631 * We ignore 4MB (non-PAE) for now. The value is only used 632 * for optimizing demaps across large ranges. 633 * These return zero if no information is known. 634 */ 635 mmu.tlb_entries[0] = cpuid_get_dtlb_nent(NULL, MMU_PAGESIZE); 636 mmu.tlb_entries[1] = cpuid_get_dtlb_nent(NULL, 2 * 1024 * 1024); 637 } 638 639 640 /* 641 * initialize hat data structures 642 */ 643 void 644 hat_init() 645 { 646 #if defined(__i386) 647 /* 648 * _userlimit must be aligned correctly 649 */ 650 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 651 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 652 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 653 halt("hat_init(): Unable to continue"); 654 } 655 #endif 656 657 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 658 659 /* 660 * initialize kmem caches 661 */ 662 htable_init(); 663 hment_init(); 664 665 hat_cache = kmem_cache_create("hat_t", 666 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 667 NULL, 0, 0); 668 669 hat_hash_cache = kmem_cache_create("HatHash", 670 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 671 NULL, 0, 0); 672 673 /* 674 * VLP hats can use a smaller hash table size on large memroy machines 675 */ 676 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 677 vlp_hash_cache = hat_hash_cache; 678 } else { 679 vlp_hash_cache = kmem_cache_create("HatVlpHash", 680 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 681 NULL, 0, 0); 682 } 683 684 /* 685 * Set up the kernel's hat 686 */ 687 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 688 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 689 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 690 kas.a_hat->hat_as = &kas; 691 kas.a_hat->hat_flags = 0; 692 AS_LOCK_EXIT(&kas, &kas.a_lock); 693 694 CPUSET_ZERO(khat_cpuset); 695 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 696 697 /* 698 * The kernel hat's next pointer serves as the head of the hat list . 699 * The kernel hat's prev pointer tracks the last hat on the list for 700 * htable_steal() to use. 701 */ 702 kas.a_hat->hat_next = NULL; 703 kas.a_hat->hat_prev = NULL; 704 705 /* 706 * Allocate an htable hash bucket for the kernel 707 * XX64 - tune for 64 bit procs 708 */ 709 kas.a_hat->hat_num_hash = mmu.hash_cnt; 710 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 711 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 712 713 /* 714 * zero out the top level and cached htable pointers 715 */ 716 kas.a_hat->hat_ht_cached = NULL; 717 kas.a_hat->hat_htable = NULL; 718 } 719 720 /* 721 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 722 * 723 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 724 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 725 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 726 */ 727 /*ARGSUSED*/ 728 static void 729 hat_vlp_setup(struct cpu *cpu) 730 { 731 #if defined(__amd64) 732 struct hat_cpu_info *hci = cpu->cpu_hat_info; 733 pfn_t pfn; 734 735 /* 736 * allocate the level==2 page table for the bottom most 737 * 512Gig of address space (this is where 32 bit apps live) 738 */ 739 ASSERT(hci != NULL); 740 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 741 742 /* 743 * Allocate a top level pagetable and copy the kernel's 744 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 745 */ 746 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 747 hci->hci_vlp_pfn = 748 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 749 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 750 bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start, 751 khat_entries * sizeof (x86pte_t)); 752 753 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 754 ASSERT(pfn != PFN_INVALID); 755 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 756 #endif /* __amd64 */ 757 } 758 759 /* 760 * Finish filling in the kernel hat. 761 * Pre fill in all top level kernel page table entries for the kernel's 762 * part of the address range. From this point on we can't use any new 763 * kernel large pages if they need PTE's at max_level 764 */ 765 void 766 hat_init_finish(void) 767 { 768 htable_t *top = kas.a_hat->hat_htable; 769 htable_t *ht; 770 uint_t e; 771 x86pte_t pte; 772 uintptr_t va = kernelbase; 773 774 775 #if defined(__i386) 776 ASSERT((va & LEVEL_MASK(1)) == va); 777 778 /* 779 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats. 780 */ 781 if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) { 782 khat_pae32_htable = NULL; 783 } else { 784 ASSERT(mmu.max_level == 2); 785 ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0); 786 khat_pae32_htable = 787 htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 788 khat_pae32_start = htable_va2entry(va, khat_pae32_htable); 789 khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start; 790 for (e = khat_pae32_start; e < mmu.ptes_per_table; 791 ++e, va += LEVEL_SIZE(mmu.max_level - 1)) { 792 pte = x86pte_get(khat_pae32_htable, e); 793 if (PTE_ISVALID(pte)) 794 continue; 795 ht = htable_create(kas.a_hat, va, mmu.max_level - 2, 796 NULL); 797 ASSERT(ht != NULL); 798 } 799 } 800 #endif 801 802 /* 803 * The kernel hat will need fixed values in the highest level 804 * ptable for copying to all other hat's. This implies 805 * alignment restrictions on _userlimit. 806 * 807 * Note we don't htable_release() these htables. This keeps them 808 * from ever being stolen or free'd. 809 * 810 * top_level_count is used instead of ptes_per_table, since 811 * on 32-bit PAE we only have 4 usable entries at the top level ptable. 812 */ 813 if (va == 0) 814 khat_start = mmu.top_level_count; 815 else 816 khat_start = htable_va2entry(va, kas.a_hat->hat_htable); 817 khat_entries = mmu.top_level_count - khat_start; 818 for (e = khat_start; e < mmu.top_level_count; 819 ++e, va += LEVEL_SIZE(mmu.max_level)) { 820 pte = x86pte_get(top, e); 821 if (PTE_ISVALID(pte)) 822 continue; 823 ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 824 ASSERT(ht != NULL); 825 } 826 827 /* 828 * We are now effectively running on the kernel hat. 829 * Clearing use_boot_reserve shuts off using the pre-allocated boot 830 * reserve for all HAT allocations. From here on, the reserves are 831 * only used when mapping in memory for the hat's own allocations. 832 */ 833 use_boot_reserve = 0; 834 htable_adjust_reserve(); 835 836 /* 837 * 32 bit kernels use only 4 of the 512 entries in its top level 838 * pagetable. We'll use the remainder for the "per CPU" page tables 839 * for VLP processes. 840 * 841 * We map the top level kernel pagetable into the kernel's AS to make 842 * it easy to use bcopy for kernel entry PTEs. 843 * 844 * We were guaranteed to get a physical address < 4Gig, since the 32 bit 845 * boot loader uses non-PAE page tables. 846 */ 847 if (mmu.pae_hat) { 848 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 849 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 850 kas.a_hat->hat_htable->ht_pfn, 851 PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, 852 HAT_LOAD | HAT_LOAD_NOCONSIST); 853 } 854 hat_vlp_setup(CPU); 855 } 856 857 /* 858 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 859 * are 32 bit, so for safety we must use cas64() to install these. 860 */ 861 #ifdef __i386 862 static void 863 reload_pae32(hat_t *hat, cpu_t *cpu) 864 { 865 x86pte_t *src; 866 x86pte_t *dest; 867 x86pte_t pte; 868 int i; 869 870 /* 871 * Load the 4 entries of the level 2 page table into this 872 * cpu's range of the vlp_page and point cr3 at them. 873 */ 874 ASSERT(mmu.pae_hat); 875 src = hat->hat_vlp_ptes; 876 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 877 for (i = 0; i < VLP_NUM_PTES; ++i) { 878 for (;;) { 879 pte = dest[i]; 880 if (pte == src[i]) 881 break; 882 if (cas64(dest + i, pte, src[i]) != src[i]) 883 break; 884 } 885 } 886 } 887 #endif 888 889 /* 890 * Switch to a new active hat, maintaining bit masks to track active CPUs. 891 */ 892 void 893 hat_switch(hat_t *hat) 894 { 895 uintptr_t newcr3; 896 cpu_t *cpu = CPU; 897 hat_t *old = cpu->cpu_current_hat; 898 899 /* 900 * set up this information first, so we don't miss any cross calls 901 */ 902 if (old != NULL) { 903 if (old == hat) 904 return; 905 if (old != kas.a_hat) 906 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 907 } 908 909 /* 910 * Wait for any in flight pagetable invalidates on this hat to finish. 911 * This is a spin lock at DISP_LEVEL 912 */ 913 if (hat != kas.a_hat) { 914 mutex_enter(&hat->hat_switch_mutex); 915 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 916 mutex_exit(&hat->hat_switch_mutex); 917 } 918 cpu->cpu_current_hat = hat; 919 920 /* 921 * now go ahead and load cr3 922 */ 923 if (hat->hat_flags & HAT_VLP) { 924 #if defined(__amd64) 925 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 926 927 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 928 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 929 #elif defined(__i386) 930 reload_pae32(hat, cpu); 931 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 932 (cpu->cpu_id + 1) * VLP_SIZE; 933 #endif 934 } else { 935 newcr3 = MAKECR3(hat->hat_htable->ht_pfn); 936 } 937 setcr3(newcr3); 938 ASSERT(cpu == CPU); 939 } 940 941 /* 942 * Utility to return a valid x86pte_t from protections, pfn, and level number 943 */ 944 static x86pte_t 945 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 946 { 947 x86pte_t pte; 948 uint_t cache_attr = attr & HAT_ORDER_MASK; 949 950 pte = MAKEPTE(pfn, level); 951 952 if (attr & PROT_WRITE) 953 PTE_SET(pte, PT_WRITABLE); 954 955 if (attr & PROT_USER) 956 PTE_SET(pte, PT_USER); 957 958 if (!(attr & PROT_EXEC)) 959 PTE_SET(pte, mmu.pt_nx); 960 961 /* 962 * set the software bits used track ref/mod sync's and hments 963 */ 964 if (attr & HAT_NOSYNC) 965 PTE_SET(pte, PT_NOSYNC); 966 if (flags & HAT_LOAD_NOCONSIST) 967 PTE_SET(pte, PT_NOCONSIST | PT_NOSYNC); 968 969 /* 970 * Set the caching attributes in the PTE. The combination 971 * of attributes are poorly defined, so we pay attention 972 * to them in the given order. 973 * 974 * The test for HAT_STRICTORDER is different because it's defined 975 * as "0" - which was a stupid thing to do, but is too late to change! 976 */ 977 if (cache_attr == HAT_STRICTORDER) { 978 PTE_SET(pte, PT_NOCACHE); 979 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 980 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 981 /* nothing to set */; 982 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 983 PTE_SET(pte, PT_NOCACHE); 984 if (x86_feature & X86_PAT) 985 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 986 else 987 PTE_SET(pte, PT_WRITETHRU); 988 } else { 989 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 990 } 991 992 return (pte); 993 } 994 995 /* 996 * Duplicate address translations of the parent to the child. 997 * This function really isn't used anymore. 998 */ 999 /*ARGSUSED*/ 1000 int 1001 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1002 { 1003 ASSERT((uintptr_t)addr < kernelbase); 1004 ASSERT(new != kas.a_hat); 1005 ASSERT(old != kas.a_hat); 1006 return (0); 1007 } 1008 1009 /* 1010 * Allocate any hat resources required for a process being swapped in. 1011 */ 1012 /*ARGSUSED*/ 1013 void 1014 hat_swapin(hat_t *hat) 1015 { 1016 /* do nothing - we let everything fault back in */ 1017 } 1018 1019 /* 1020 * Unload all translations associated with an address space of a process 1021 * that is being swapped out. 1022 */ 1023 void 1024 hat_swapout(hat_t *hat) 1025 { 1026 uintptr_t vaddr = (uintptr_t)0; 1027 uintptr_t eaddr = _userlimit; 1028 htable_t *ht = NULL; 1029 level_t l; 1030 1031 /* 1032 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1033 * seg_spt and shared pagetables can't be swapped out. 1034 * Take a look at segspt_shmswapout() - it's a big no-op. 1035 * 1036 * Instead we'll walk through all the address space and unload 1037 * any mappings which we are sure are not shared, not locked. 1038 */ 1039 ASSERT(IS_PAGEALIGNED(vaddr)); 1040 ASSERT(IS_PAGEALIGNED(eaddr)); 1041 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1042 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1043 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1044 1045 while (vaddr < eaddr) { 1046 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1047 if (ht == NULL) 1048 break; 1049 1050 ASSERT(!IN_VA_HOLE(vaddr)); 1051 1052 /* 1053 * If the page table is shared skip its entire range. 1054 * This code knows that only level 0 page tables are shared 1055 */ 1056 l = ht->ht_level; 1057 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1058 ASSERT(l == 0); 1059 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1060 htable_release(ht); 1061 ht = NULL; 1062 continue; 1063 } 1064 1065 /* 1066 * If the page table has no locked entries, unload this one. 1067 */ 1068 if (ht->ht_lock_cnt == 0) 1069 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1070 HAT_UNLOAD_UNMAP); 1071 1072 /* 1073 * If we have a level 0 page table with locked entries, 1074 * skip the entire page table, otherwise skip just one entry. 1075 */ 1076 if (ht->ht_lock_cnt > 0 && l == 0) 1077 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1078 else 1079 vaddr += LEVEL_SIZE(l); 1080 } 1081 if (ht) 1082 htable_release(ht); 1083 1084 /* 1085 * We're in swapout because the system is low on memory, so 1086 * go back and flush all the htables off the cached list. 1087 */ 1088 htable_purge_hat(hat); 1089 } 1090 1091 /* 1092 * returns number of bytes that have valid mappings in hat. 1093 */ 1094 size_t 1095 hat_get_mapped_size(hat_t *hat) 1096 { 1097 size_t total = 0; 1098 int l; 1099 1100 for (l = 0; l <= mmu.max_page_level; l++) 1101 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1102 1103 return (total); 1104 } 1105 1106 /* 1107 * enable/disable collection of stats for hat. 1108 */ 1109 int 1110 hat_stats_enable(hat_t *hat) 1111 { 1112 atomic_add_32(&hat->hat_stats, 1); 1113 return (1); 1114 } 1115 1116 void 1117 hat_stats_disable(hat_t *hat) 1118 { 1119 atomic_add_32(&hat->hat_stats, -1); 1120 } 1121 1122 /* 1123 * Utility to sync the ref/mod bits from a page table entry to the page_t 1124 * We must be holding the mapping list lock when this is called. 1125 */ 1126 static void 1127 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1128 { 1129 uint_t rm = 0; 1130 pgcnt_t pgcnt; 1131 1132 if (PTE_GET(pte, PT_NOSYNC)) 1133 return; 1134 1135 if (PTE_GET(pte, PT_REF)) 1136 rm |= P_REF; 1137 1138 if (PTE_GET(pte, PT_MOD)) 1139 rm |= P_MOD; 1140 1141 if (rm == 0) 1142 return; 1143 1144 /* 1145 * sync to all constituent pages of a large page 1146 */ 1147 ASSERT(x86_hm_held(pp)); 1148 pgcnt = page_get_pagecnt(level); 1149 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1150 for (; pgcnt > 0; --pgcnt) { 1151 /* 1152 * hat_page_demote() can't decrease 1153 * pszc below this mapping size 1154 * since this large mapping existed after we 1155 * took mlist lock. 1156 */ 1157 ASSERT(pp->p_szc >= level); 1158 hat_page_setattr(pp, rm); 1159 ++pp; 1160 } 1161 } 1162 1163 /* 1164 * This the set of PTE bits for PFN, permissions and caching 1165 * that require a TLB flush (hat_demap) if changed on a HAT_LOAD_REMAP 1166 */ 1167 #define PT_REMAP_BITS \ 1168 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1169 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE) 1170 1171 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1172 /* 1173 * Do the low-level work to get a mapping entered into a HAT's pagetables 1174 * and in the mapping list of the associated page_t. 1175 */ 1176 static void 1177 hati_pte_map( 1178 htable_t *ht, 1179 uint_t entry, 1180 page_t *pp, 1181 x86pte_t pte, 1182 int flags, 1183 void *pte_ptr) 1184 { 1185 hat_t *hat = ht->ht_hat; 1186 x86pte_t old_pte; 1187 level_t l = ht->ht_level; 1188 hment_t *hm; 1189 uint_t is_consist; 1190 1191 /* 1192 * Is this a consistant (ie. need mapping list lock) mapping? 1193 */ 1194 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1195 1196 /* 1197 * Track locked mapping count in the htable. Do this first, 1198 * as we track locking even if there already is a mapping present. 1199 */ 1200 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1201 HTABLE_LOCK_INC(ht); 1202 1203 /* 1204 * Acquire the page's mapping list lock and get an hment to use. 1205 * Note that hment_prepare() might return NULL. 1206 */ 1207 if (is_consist) { 1208 x86_hm_enter(pp); 1209 hm = hment_prepare(ht, entry, pp); 1210 } 1211 1212 /* 1213 * Set the new pte, retrieving the old one at the same time. 1214 */ 1215 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1216 1217 /* 1218 * If the mapping didn't change there is nothing more to do. 1219 */ 1220 if (PTE_EQUIV(pte, old_pte)) { 1221 if (is_consist) { 1222 x86_hm_exit(pp); 1223 if (hm != NULL) 1224 hment_free(hm); 1225 } 1226 return; 1227 } 1228 1229 /* 1230 * Install a new mapping in the page's mapping list 1231 */ 1232 if (!PTE_ISVALID(old_pte)) { 1233 if (is_consist) { 1234 hment_assign(ht, entry, pp, hm); 1235 x86_hm_exit(pp); 1236 } else { 1237 ASSERT(flags & HAT_LOAD_NOCONSIST); 1238 } 1239 HTABLE_INC(ht->ht_valid_cnt); 1240 PGCNT_INC(hat, l); 1241 return; 1242 } 1243 1244 /* 1245 * Remap's are more complicated: 1246 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1247 * We also require that NOCONSIST be specified. 1248 * - Otherwise only permission or caching bits may change. 1249 */ 1250 if (!PTE_ISPAGE(old_pte, l)) 1251 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1252 1253 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1254 REMAPASSERT(flags & HAT_LOAD_REMAP); 1255 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1256 REMAPASSERT(PTE_GET(old_pte, PT_NOCONSIST)); 1257 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1258 pf_is_memory(PTE2PFN(pte, l))); 1259 REMAPASSERT(!is_consist); 1260 } 1261 1262 /* 1263 * We only let remaps change the bits for PFNs, permissions 1264 * or caching type. 1265 */ 1266 ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) == 1267 PTE_GET(pte, ~PT_REMAP_BITS)); 1268 1269 /* 1270 * A remap requires invalidating the TLBs, since remapping the 1271 * same PFN requires NOCONSIST, we don't have to sync R/M bits. 1272 */ 1273 hat_demap(hat, htable_e2va(ht, entry)); 1274 1275 /* 1276 * We don't create any mapping list entries on a remap, so release 1277 * any allocated hment after we drop the mapping list lock. 1278 */ 1279 if (is_consist) { 1280 x86_hm_exit(pp); 1281 if (hm != NULL) 1282 hment_free(hm); 1283 } 1284 } 1285 1286 /* 1287 * The t_hatdepth field is an 8-bit counter. We use the lower seven bits 1288 * to track exactly how deep we are in the memload->kmem_alloc recursion. 1289 * If the depth is greater than 1, that indicates that we are performing a 1290 * hat operation to satisfy another hat operation. To prevent infinite 1291 * recursion, we switch over to using pre-allocated "reserves" of htables 1292 * and hments. 1293 * 1294 * The uppermost bit is used to indicate that we are transitioning away 1295 * from being the reserves thread. See hati_reserves_exit() for the 1296 * details. 1297 */ 1298 #define EXITING_FLAG (1 << 7) 1299 #define DEPTH_MASK (~EXITING_FLAG) 1300 #define HAT_DEPTH(t) ((t)->t_hatdepth & DEPTH_MASK) 1301 #define EXITING_RESERVES(t) ((t)->t_hatdepth & EXITING_FLAG) 1302 1303 /* 1304 * Access to reserves for HAT_NO_KALLOC is single threaded. 1305 * If someone else is in the reserves, we'll politely wait for them 1306 * to finish. This keeps normal hat_memload()s from eating up 1307 * the mappings needed to replenish the reserve. 1308 */ 1309 static void 1310 hati_reserves_enter(uint_t kmem_for_hat) 1311 { 1312 /* 1313 * 64 is an arbitrary number to catch serious problems. I'm not 1314 * sure what the absolute maximum depth is, but it should be 1315 * substantially less than this. 1316 */ 1317 ASSERT(HAT_DEPTH(curthread) < 64); 1318 1319 /* 1320 * If we are doing a memload to satisfy a kmem operation, we enter 1321 * the reserves immediately; we don't wait to recurse to a second 1322 * level of memload. 1323 */ 1324 ASSERT(kmem_for_hat < 2); 1325 curthread->t_hatdepth += (1 + kmem_for_hat); 1326 1327 if (hat_reserves_thread == curthread || use_boot_reserve) 1328 return; 1329 1330 if (HAT_DEPTH(curthread) > 1 || hat_reserves_thread != NULL) { 1331 mutex_enter(&hat_reserves_lock); 1332 while (hat_reserves_thread != NULL) 1333 cv_wait(&hat_reserves_cv, &hat_reserves_lock); 1334 1335 if (HAT_DEPTH(curthread) > 1) 1336 hat_reserves_thread = curthread; 1337 1338 mutex_exit(&hat_reserves_lock); 1339 } 1340 } 1341 1342 /* 1343 * If we are the reserves_thread and we've finally finished with all our 1344 * memloads (ie. no longer doing hat slabs), we can release our use of the 1345 * reserve. 1346 */ 1347 static void 1348 hati_reserves_exit(uint_t kmem_for_hat) 1349 { 1350 ASSERT(kmem_for_hat < 2); 1351 curthread->t_hatdepth -= (1 + kmem_for_hat); 1352 1353 /* 1354 * Simple case: either we are not the reserves thread, or we are 1355 * the reserves thread and we are nested deeply enough that we 1356 * should still be the reserves thread. 1357 * 1358 * Note: we may not become the reserves thread after we recursively 1359 * enter our second HAT routine, but we don't stop being the 1360 * reserves thread until we exit the toplevel HAT routine. This is 1361 * to work around vmem's inability to determine when an allocation 1362 * should be satisfied from the hat_memload arena, which can lead 1363 * to an infinite loop of memload->vmem_populate->memload->. 1364 */ 1365 if (curthread != hat_reserves_thread || HAT_DEPTH(curthread) > 0 || 1366 use_boot_reserve) 1367 return; 1368 1369 mutex_enter(&hat_reserves_lock); 1370 ASSERT(hat_reserves_thread == curthread); 1371 hat_reserves_thread = NULL; 1372 cv_broadcast(&hat_reserves_cv); 1373 mutex_exit(&hat_reserves_lock); 1374 1375 /* 1376 * As we leave the reserves, we want to be sure the reserve lists 1377 * aren't overstocked. Freeing excess reserves requires that we 1378 * call kmem_free(), which may require additional allocations, 1379 * causing us to re-enter the reserves. To avoid infinite 1380 * recursion, we only try to adjust reserves at the very top level. 1381 */ 1382 if (!kmem_for_hat && !EXITING_RESERVES(curthread)) { 1383 curthread->t_hatdepth |= EXITING_FLAG; 1384 htable_adjust_reserve(); 1385 hment_adjust_reserve(); 1386 curthread->t_hatdepth &= (~EXITING_FLAG); 1387 } 1388 1389 /* 1390 * just in case something went wrong in doing adjust reserves 1391 */ 1392 ASSERT(hat_reserves_thread != curthread); 1393 } 1394 1395 /* 1396 * Internal routine to load a single page table entry. 1397 */ 1398 static void 1399 hati_load_common( 1400 hat_t *hat, 1401 uintptr_t va, 1402 page_t *pp, 1403 uint_t attr, 1404 uint_t flags, 1405 level_t level, 1406 pfn_t pfn) 1407 { 1408 htable_t *ht; 1409 uint_t entry; 1410 x86pte_t pte; 1411 uint_t kmem_for_hat = (flags & HAT_NO_KALLOC) ? 1 : 0; 1412 1413 ASSERT(hat == kas.a_hat || 1414 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1415 1416 if (flags & HAT_LOAD_SHARE) 1417 hat->hat_flags |= HAT_SHARED; 1418 1419 /* 1420 * Find the page table that maps this page if it already exists. 1421 */ 1422 ht = htable_lookup(hat, va, level); 1423 1424 /* 1425 * All threads go through hati_reserves_enter() to at least wait 1426 * for any existing reserves user to finish. This helps reduce 1427 * pressure on the reserves. In addition, if this thread needs 1428 * to become the new reserve user it will. 1429 */ 1430 hati_reserves_enter(kmem_for_hat); 1431 1432 ASSERT(HAT_DEPTH(curthread) == 1 || va >= kernelbase); 1433 1434 /* 1435 * Kernel memloads for HAT data should never use hments! 1436 * If it did that would seriously complicate the reserves system, since 1437 * hment_alloc() would need to know about HAT_NO_KALLOC. 1438 * 1439 * We also must have HAT_LOAD_NOCONSIST if page_t is NULL. 1440 */ 1441 if (HAT_DEPTH(curthread) > 1 || pp == NULL) 1442 flags |= HAT_LOAD_NOCONSIST; 1443 1444 if (ht == NULL) { 1445 ht = htable_create(hat, va, level, NULL); 1446 ASSERT(ht != NULL); 1447 } 1448 entry = htable_va2entry(va, ht); 1449 1450 /* 1451 * a bunch of paranoid error checking 1452 */ 1453 ASSERT(ht->ht_busy > 0); 1454 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1455 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1456 ASSERT(ht->ht_level == level); 1457 1458 /* 1459 * construct the new PTE 1460 */ 1461 if (hat == kas.a_hat) 1462 attr &= ~PROT_USER; 1463 pte = hati_mkpte(pfn, attr, level, flags); 1464 if (hat == kas.a_hat && va >= kernelbase) 1465 PTE_SET(pte, mmu.pt_global); 1466 1467 /* 1468 * establish the mapping 1469 */ 1470 hati_pte_map(ht, entry, pp, pte, flags, NULL); 1471 1472 /* 1473 * release the htable and any reserves 1474 */ 1475 htable_release(ht); 1476 hati_reserves_exit(kmem_for_hat); 1477 } 1478 1479 /* 1480 * special case of hat_memload to deal with some kernel addrs for performance 1481 */ 1482 static void 1483 hat_kmap_load( 1484 caddr_t addr, 1485 page_t *pp, 1486 uint_t attr, 1487 uint_t flags) 1488 { 1489 uintptr_t va = (uintptr_t)addr; 1490 x86pte_t pte; 1491 pfn_t pfn = page_pptonum(pp); 1492 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1493 htable_t *ht; 1494 uint_t entry; 1495 void *pte_ptr; 1496 1497 /* 1498 * construct the requested PTE 1499 */ 1500 attr &= ~PROT_USER; 1501 attr |= HAT_STORECACHING_OK; 1502 pte = hati_mkpte(pfn, attr, 0, flags); 1503 PTE_SET(pte, mmu.pt_global); 1504 1505 /* 1506 * Figure out the pte_ptr and htable and use common code to finish up 1507 */ 1508 if (mmu.pae_hat) 1509 pte_ptr = mmu.kmap_ptes + pg_off; 1510 else 1511 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1512 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1513 LEVEL_SHIFT(1)]; 1514 entry = htable_va2entry(va, ht); 1515 hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1516 } 1517 1518 /* 1519 * hat_memload() - load a translation to the given page struct 1520 * 1521 * Flags for hat_memload/hat_devload/hat_*attr. 1522 * 1523 * HAT_LOAD Default flags to load a translation to the page. 1524 * 1525 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1526 * and hat_devload(). 1527 * 1528 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1529 * sets PT_NOCONSIST (soft bit) 1530 * 1531 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1532 * that map some user pages (not kas) is shared by more 1533 * than one process (eg. ISM). 1534 * 1535 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1536 * 1537 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1538 * point, it's setting up mapping to allocate internal 1539 * hat layer data structures. This flag forces hat layer 1540 * to tap its reserves in order to prevent infinite 1541 * recursion. 1542 * 1543 * The following is a protection attribute (like PROT_READ, etc.) 1544 * 1545 * HAT_NOSYNC set PT_NOSYNC (soft bit) - this mapping's ref/mod bits 1546 * are never cleared. 1547 * 1548 * Installing new valid PTE's and creation of the mapping list 1549 * entry are controlled under the same lock. It's derived from the 1550 * page_t being mapped. 1551 */ 1552 static uint_t supported_memload_flags = 1553 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1554 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1555 1556 void 1557 hat_memload( 1558 hat_t *hat, 1559 caddr_t addr, 1560 page_t *pp, 1561 uint_t attr, 1562 uint_t flags) 1563 { 1564 uintptr_t va = (uintptr_t)addr; 1565 level_t level = 0; 1566 pfn_t pfn = page_pptonum(pp); 1567 1568 HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE); 1569 ASSERT(IS_PAGEALIGNED(va)); 1570 ASSERT(hat == kas.a_hat || va <= kernelbase); 1571 ASSERT(hat == kas.a_hat || 1572 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1573 ASSERT((flags & supported_memload_flags) == flags); 1574 1575 ASSERT(!IN_VA_HOLE(va)); 1576 ASSERT(!PP_ISFREE(pp)); 1577 1578 /* 1579 * kernel address special case for performance. 1580 */ 1581 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1582 ASSERT(hat == kas.a_hat); 1583 hat_kmap_load(addr, pp, attr, flags); 1584 return; 1585 } 1586 1587 /* 1588 * This is used for memory with normal caching enabled, so 1589 * always set HAT_STORECACHING_OK. 1590 */ 1591 attr |= HAT_STORECACHING_OK; 1592 hati_load_common(hat, va, pp, attr, flags, level, pfn); 1593 HATOUT(hat_memload, hat, addr); 1594 } 1595 1596 /* 1597 * Load the given array of page structs using large pages when possible 1598 */ 1599 void 1600 hat_memload_array( 1601 hat_t *hat, 1602 caddr_t addr, 1603 size_t len, 1604 page_t **pages, 1605 uint_t attr, 1606 uint_t flags) 1607 { 1608 uintptr_t va = (uintptr_t)addr; 1609 uintptr_t eaddr = va + len; 1610 level_t level; 1611 size_t pgsize; 1612 pgcnt_t pgindx = 0; 1613 pfn_t pfn; 1614 pgcnt_t i; 1615 1616 HATIN(hat_memload_array, hat, addr, len); 1617 ASSERT(IS_PAGEALIGNED(va)); 1618 ASSERT(hat == kas.a_hat || va + len <= kernelbase); 1619 ASSERT(hat == kas.a_hat || 1620 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1621 ASSERT((flags & supported_memload_flags) == flags); 1622 1623 /* 1624 * memload is used for memory with full caching enabled, so 1625 * set HAT_STORECACHING_OK. 1626 */ 1627 attr |= HAT_STORECACHING_OK; 1628 1629 /* 1630 * handle all pages using largest possible pagesize 1631 */ 1632 while (va < eaddr) { 1633 /* 1634 * decide what level mapping to use (ie. pagesize) 1635 */ 1636 pfn = page_pptonum(pages[pgindx]); 1637 for (level = mmu.max_page_level; ; --level) { 1638 pgsize = LEVEL_SIZE(level); 1639 if (level == 0) 1640 break; 1641 if (!IS_P2ALIGNED(va, pgsize) || 1642 (eaddr - va) < pgsize || 1643 !IS_P2ALIGNED(pfn << MMU_PAGESHIFT, pgsize)) 1644 continue; 1645 1646 /* 1647 * To use a large mapping of this size, all the 1648 * pages we are passed must be sequential subpages 1649 * of the large page. 1650 * hat_page_demote() can't change p_szc because 1651 * all pages are locked. 1652 */ 1653 if (pages[pgindx]->p_szc >= level) { 1654 for (i = 0; i < mmu_btop(pgsize); ++i) { 1655 if (pfn + i != 1656 page_pptonum(pages[pgindx + i])) 1657 break; 1658 ASSERT(pages[pgindx + i]->p_szc >= 1659 level); 1660 ASSERT(pages[pgindx] + i == 1661 pages[pgindx + i]); 1662 } 1663 if (i == mmu_btop(pgsize)) 1664 break; 1665 } 1666 } 1667 1668 /* 1669 * Shared page tables for DISM might have a pre-existing 1670 * level 0 page table that wasn't unlinked from all the 1671 * sharing hats. If we hit this for a large page, back off 1672 * to using level 0 pages. 1673 * 1674 * This can't be made better (ie. use large pages) until we 1675 * track all the htable's sharing and rewrite hat_pageunload(). 1676 * Note that would cost a pointer in htable_t for a rare case. 1677 * 1678 * Since the 32 bit kernel caches empty page tables, check 1679 * the kernel too. 1680 */ 1681 if ((hat == kas.a_hat || (hat->hat_flags & HAT_SHARED)) && 1682 level > 0) { 1683 htable_t *lower; 1684 1685 lower = htable_getpte(hat, va, NULL, NULL, level - 1); 1686 if (lower != NULL) { 1687 level = 0; 1688 pgsize = LEVEL_SIZE(0); 1689 htable_release(lower); 1690 } 1691 } 1692 1693 /* 1694 * load this page mapping 1695 */ 1696 ASSERT(!IN_VA_HOLE(va)); 1697 hati_load_common(hat, va, pages[pgindx], attr, flags, 1698 level, pfn); 1699 1700 /* 1701 * move to next page 1702 */ 1703 va += pgsize; 1704 pgindx += mmu_btop(pgsize); 1705 } 1706 HATOUT(hat_memload_array, hat, addr); 1707 } 1708 1709 /* 1710 * void hat_devload(hat, addr, len, pf, attr, flags) 1711 * load/lock the given page frame number 1712 * 1713 * Advisory ordering attributes. Apply only to device mappings. 1714 * 1715 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1716 * programmer specified. This is the default. 1717 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1718 * of reordering; store or load with store or load). 1719 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1720 * to consecutive locations (for example, turn two consecutive byte 1721 * stores into one halfword store), and it may batch individual loads 1722 * (for example, turn two consecutive byte loads into one halfword load). 1723 * This also implies re-ordering. 1724 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1725 * until another store occurs. The default is to fetch new data 1726 * on every load. This also implies merging. 1727 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1728 * the device (perhaps with other data) at a later time. The default is 1729 * to push the data right away. This also implies load caching. 1730 * 1731 * Equivalent of hat_memload(), but can be used for device memory where 1732 * there are no page_t's and we support additional flags (write merging, etc). 1733 * Note that we can have large page mappings with this interface. 1734 */ 1735 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1736 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1737 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1738 1739 void 1740 hat_devload( 1741 hat_t *hat, 1742 caddr_t addr, 1743 size_t len, 1744 pfn_t pfn, 1745 uint_t attr, 1746 int flags) 1747 { 1748 uintptr_t va = ALIGN2PAGE(addr); 1749 uintptr_t eva = va + len; 1750 level_t level; 1751 size_t pgsize; 1752 page_t *pp; 1753 int f; /* per PTE copy of flags - maybe modified */ 1754 uint_t a; /* per PTE copy of attr */ 1755 1756 HATIN(hat_devload, hat, addr, len); 1757 ASSERT(IS_PAGEALIGNED(va)); 1758 ASSERT(hat == kas.a_hat || eva <= kernelbase); 1759 ASSERT(hat == kas.a_hat || 1760 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1761 ASSERT((flags & supported_devload_flags) == flags); 1762 1763 /* 1764 * handle all pages 1765 */ 1766 while (va < eva) { 1767 1768 /* 1769 * decide what level mapping to use (ie. pagesize) 1770 */ 1771 for (level = mmu.max_page_level; ; --level) { 1772 pgsize = LEVEL_SIZE(level); 1773 if (level == 0) 1774 break; 1775 if (IS_P2ALIGNED(va, pgsize) && 1776 (eva - va) >= pgsize && 1777 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) 1778 break; 1779 } 1780 1781 /* 1782 * Some kernel addresses have permanently existing page tables, 1783 * so be sure to use a compatible pagesize. 1784 */ 1785 if (hat == kas.a_hat && level > 0) { 1786 htable_t *lower; 1787 1788 lower = htable_getpte(hat, va, NULL, NULL, level - 1); 1789 if (lower != NULL) { 1790 level = 0; 1791 pgsize = LEVEL_SIZE(0); 1792 htable_release(lower); 1793 } 1794 } 1795 1796 /* 1797 * If it is memory get page_t and allow caching (this happens 1798 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1799 * to override that. If we don't have a page_t, make sure 1800 * NOCONSIST is set. 1801 */ 1802 a = attr; 1803 f = flags; 1804 if (pf_is_memory(pfn)) { 1805 if (!(a & HAT_PLAT_NOCACHE)) 1806 a |= HAT_STORECACHING_OK; 1807 1808 if (f & HAT_LOAD_NOCONSIST) 1809 pp = NULL; 1810 else 1811 pp = page_numtopp_nolock(pfn); 1812 } else { 1813 pp = NULL; 1814 f |= HAT_LOAD_NOCONSIST; 1815 } 1816 1817 /* 1818 * load this page mapping 1819 */ 1820 ASSERT(!IN_VA_HOLE(va)); 1821 hati_load_common(hat, va, pp, a, f, level, pfn); 1822 1823 /* 1824 * move to next page 1825 */ 1826 va += pgsize; 1827 pfn += mmu_btop(pgsize); 1828 } 1829 HATOUT(hat_devload, hat, addr); 1830 } 1831 1832 /* 1833 * void hat_unlock(hat, addr, len) 1834 * unlock the mappings to a given range of addresses 1835 * 1836 * Locks are tracked by ht_lock_cnt in the htable. 1837 */ 1838 void 1839 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1840 { 1841 uintptr_t vaddr = (uintptr_t)addr; 1842 uintptr_t eaddr = vaddr + len; 1843 htable_t *ht = NULL; 1844 1845 /* 1846 * kernel entries are always locked, we don't track lock counts 1847 */ 1848 ASSERT(hat == kas.a_hat || eaddr <= kernelbase); 1849 ASSERT(IS_PAGEALIGNED(vaddr)); 1850 ASSERT(IS_PAGEALIGNED(eaddr)); 1851 if (hat == kas.a_hat) 1852 return; 1853 if (eaddr > _userlimit) 1854 panic("hat_unlock() address out of range - above _userlimit"); 1855 1856 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1857 while (vaddr < eaddr) { 1858 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1859 if (ht == NULL) 1860 break; 1861 1862 ASSERT(!IN_VA_HOLE(vaddr)); 1863 1864 if (ht->ht_lock_cnt < 1) 1865 panic("hat_unlock(): lock_cnt < 1, " 1866 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1867 HTABLE_LOCK_DEC(ht); 1868 1869 vaddr += LEVEL_SIZE(ht->ht_level); 1870 } 1871 if (ht) 1872 htable_release(ht); 1873 } 1874 1875 /* 1876 * Cross call service routine to demap a virtual page on 1877 * the current CPU or flush all mappings in TLB. 1878 */ 1879 /*ARGSUSED*/ 1880 static int 1881 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1882 { 1883 hat_t *hat = (hat_t *)a1; 1884 caddr_t addr = (caddr_t)a2; 1885 1886 /* 1887 * If the target hat isn't the kernel and this CPU isn't operating 1888 * in the target hat, we can ignore the cross call. 1889 */ 1890 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1891 return (0); 1892 1893 /* 1894 * For a normal address, we just flush one page mapping 1895 */ 1896 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1897 mmu_tlbflush_entry((caddr_t)addr); 1898 return (0); 1899 } 1900 1901 /* 1902 * Otherwise we reload cr3 to effect a complete TLB flush. 1903 * 1904 * A reload of cr3 on a VLP process also means we must also recopy in 1905 * the pte values from the struct hat 1906 */ 1907 if (hat->hat_flags & HAT_VLP) { 1908 #if defined(__amd64) 1909 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1910 1911 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1912 #elif defined(__i386) 1913 reload_pae32(hat, CPU); 1914 #endif 1915 } 1916 reload_cr3(); 1917 return (0); 1918 } 1919 1920 /* 1921 * Internal routine to do cross calls to invalidate a range of pages on 1922 * all CPUs using a given hat. 1923 */ 1924 void 1925 hat_demap(hat_t *hat, uintptr_t va) 1926 { 1927 extern int flushes_require_xcalls; /* from mp_startup.c */ 1928 cpuset_t justme; 1929 1930 /* 1931 * If the hat is being destroyed, there are no more users, so 1932 * demap need not do anything. 1933 */ 1934 if (hat->hat_flags & HAT_FREEING) 1935 return; 1936 1937 /* 1938 * If demapping from a shared pagetable, we best demap the 1939 * entire set of user TLBs, since we don't know what addresses 1940 * these were shared at. 1941 */ 1942 if (hat->hat_flags & HAT_SHARED) { 1943 hat = kas.a_hat; 1944 va = DEMAP_ALL_ADDR; 1945 } 1946 1947 /* 1948 * if not running with multiple CPUs, don't use cross calls 1949 */ 1950 if (panicstr || !flushes_require_xcalls) { 1951 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1952 return; 1953 } 1954 1955 1956 /* 1957 * All CPUs must see kernel hat changes. 1958 */ 1959 if (hat == kas.a_hat) { 1960 kpreempt_disable(); 1961 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, 1962 X_CALL_HIPRI, khat_cpuset, hati_demap_func); 1963 kpreempt_enable(); 1964 return; 1965 } 1966 1967 /* 1968 * Otherwise we notify CPUs currently running in this HAT 1969 */ 1970 mutex_enter(&hat->hat_switch_mutex); 1971 kpreempt_disable(); 1972 CPUSET_ONLY(justme, CPU->cpu_id); 1973 if (CPUSET_ISEQUAL(hat->hat_cpus, justme)) 1974 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1975 else 1976 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, 1977 X_CALL_HIPRI, hat->hat_cpus, hati_demap_func); 1978 kpreempt_enable(); 1979 mutex_exit(&hat->hat_switch_mutex); 1980 } 1981 1982 /* 1983 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 1984 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 1985 * handle releasing of the htables. 1986 */ 1987 void 1988 hat_pte_unmap( 1989 htable_t *ht, 1990 uint_t entry, 1991 uint_t flags, 1992 x86pte_t old_pte, 1993 void *pte_ptr) 1994 { 1995 hat_t *hat = ht->ht_hat; 1996 hment_t *hm = NULL; 1997 page_t *pp = NULL; 1998 level_t l = ht->ht_level; 1999 pfn_t pfn; 2000 2001 /* 2002 * We always track the locking counts, even if nothing is unmapped 2003 */ 2004 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2005 ASSERT(ht->ht_lock_cnt > 0); 2006 HTABLE_LOCK_DEC(ht); 2007 } 2008 2009 /* 2010 * Figure out which page's mapping list lock to acquire using the PFN 2011 * passed in "old" PTE. We then attempt to invalidate the PTE. 2012 * If another thread, probably a hat_pageunload, has asynchronously 2013 * unmapped/remapped this address we'll loop here. 2014 */ 2015 ASSERT(ht->ht_busy > 0); 2016 while (PTE_ISVALID(old_pte)) { 2017 pfn = PTE2PFN(old_pte, l); 2018 if (PTE_GET(old_pte, PT_NOCONSIST)) { 2019 pp = NULL; 2020 } else { 2021 pp = page_numtopp_nolock(pfn); 2022 if (pp == NULL) { 2023 panic("no page_t, not NOCONSIST: old_pte=" 2024 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2025 old_pte, (uintptr_t)ht, entry, 2026 (uintptr_t)pte_ptr); 2027 } 2028 x86_hm_enter(pp); 2029 } 2030 2031 /* 2032 * If freeing the address space, check that the PTE 2033 * hasn't changed, as the mappings are no longer in use by 2034 * any thread, invalidation is unnecessary. 2035 * If not freeing, do a full invalidate. 2036 */ 2037 if (hat->hat_flags & HAT_FREEING) 2038 old_pte = x86pte_get(ht, entry); 2039 else 2040 old_pte = 2041 x86pte_invalidate_pfn(ht, entry, pfn, pte_ptr); 2042 2043 /* 2044 * If the page hadn't changed we've unmapped it and can proceed 2045 */ 2046 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2047 break; 2048 2049 /* 2050 * Otherwise, we'll have to retry with the current old_pte. 2051 * Drop the hment lock, since the pfn may have changed. 2052 */ 2053 if (pp != NULL) { 2054 x86_hm_exit(pp); 2055 pp = NULL; 2056 } else { 2057 ASSERT(PTE_GET(old_pte, PT_NOCONSIST)); 2058 } 2059 } 2060 2061 /* 2062 * If the old mapping wasn't valid, there's nothing more to do 2063 */ 2064 if (!PTE_ISVALID(old_pte)) { 2065 if (pp != NULL) 2066 x86_hm_exit(pp); 2067 return; 2068 } 2069 2070 /* 2071 * Take care of syncing any MOD/REF bits and removing the hment. 2072 */ 2073 if (pp != NULL) { 2074 if (!(flags & HAT_UNLOAD_NOSYNC)) 2075 hati_sync_pte_to_page(pp, old_pte, l); 2076 hm = hment_remove(pp, ht, entry); 2077 x86_hm_exit(pp); 2078 if (hm != NULL) 2079 hment_free(hm); 2080 } 2081 2082 /* 2083 * Handle book keeping in the htable and hat 2084 */ 2085 ASSERT(ht->ht_valid_cnt > 0); 2086 HTABLE_DEC(ht->ht_valid_cnt); 2087 PGCNT_DEC(hat, l); 2088 } 2089 2090 /* 2091 * very cheap unload implementation to special case some kernel addresses 2092 */ 2093 static void 2094 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2095 { 2096 uintptr_t va = (uintptr_t)addr; 2097 uintptr_t eva = va + len; 2098 pgcnt_t pg_off; 2099 htable_t *ht; 2100 uint_t entry; 2101 void *pte_ptr; 2102 x86pte_t old_pte; 2103 2104 for (; va < eva; va += MMU_PAGESIZE) { 2105 /* 2106 * Get the PTE 2107 */ 2108 pg_off = mmu_btop(va - mmu.kmap_addr); 2109 if (mmu.pae_hat) { 2110 pte_ptr = mmu.kmap_ptes + pg_off; 2111 ATOMIC_LOAD64((x86pte_t *)pte_ptr, old_pte); 2112 } else { 2113 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 2114 old_pte = *(x86pte32_t *)pte_ptr; 2115 } 2116 2117 /* 2118 * get the htable / entry 2119 */ 2120 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2121 >> LEVEL_SHIFT(1)]; 2122 entry = htable_va2entry(va, ht); 2123 2124 /* 2125 * use mostly common code to unmap it. 2126 */ 2127 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2128 } 2129 } 2130 2131 2132 /* 2133 * unload a range of virtual address space (no callback) 2134 */ 2135 void 2136 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2137 { 2138 uintptr_t va = (uintptr_t)addr; 2139 ASSERT(hat == kas.a_hat || va + len <= kernelbase); 2140 2141 /* 2142 * special case for performance. 2143 */ 2144 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2145 ASSERT(hat == kas.a_hat); 2146 hat_kmap_unload(addr, len, flags); 2147 return; 2148 } 2149 hat_unload_callback(hat, addr, len, flags, NULL); 2150 } 2151 2152 /* 2153 * Do the callbacks for ranges being unloaded. 2154 */ 2155 typedef struct range_info { 2156 uintptr_t rng_va; 2157 ulong_t rng_cnt; 2158 level_t rng_level; 2159 } range_info_t; 2160 2161 static void 2162 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2163 { 2164 /* 2165 * do callbacks to upper level VM system 2166 */ 2167 while (cb != NULL && cnt > 0) { 2168 --cnt; 2169 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2170 cb->hcb_end_addr = cb->hcb_start_addr; 2171 cb->hcb_end_addr += 2172 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2173 cb->hcb_function(cb); 2174 } 2175 } 2176 2177 /* 2178 * Unload a given range of addresses (has optional callback) 2179 * 2180 * Flags: 2181 * define HAT_UNLOAD 0x00 2182 * define HAT_UNLOAD_NOSYNC 0x02 2183 * define HAT_UNLOAD_UNLOCK 0x04 2184 * define HAT_UNLOAD_OTHER 0x08 - not used 2185 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2186 */ 2187 #define MAX_UNLOAD_CNT (8) 2188 void 2189 hat_unload_callback( 2190 hat_t *hat, 2191 caddr_t addr, 2192 size_t len, 2193 uint_t flags, 2194 hat_callback_t *cb) 2195 { 2196 uintptr_t vaddr = (uintptr_t)addr; 2197 uintptr_t eaddr = vaddr + len; 2198 htable_t *ht = NULL; 2199 uint_t entry; 2200 uintptr_t contig_va = (uintptr_t)-1L; 2201 range_info_t r[MAX_UNLOAD_CNT]; 2202 uint_t r_cnt = 0; 2203 x86pte_t old_pte; 2204 2205 HATIN(hat_unload_callback, hat, addr, len); 2206 ASSERT(hat == kas.a_hat || eaddr <= kernelbase); 2207 ASSERT(IS_PAGEALIGNED(vaddr)); 2208 ASSERT(IS_PAGEALIGNED(eaddr)); 2209 2210 while (vaddr < eaddr) { 2211 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2212 if (ht == NULL) 2213 break; 2214 2215 ASSERT(!IN_VA_HOLE(vaddr)); 2216 2217 if (vaddr < (uintptr_t)addr) 2218 panic("hat_unload_callback(): unmap inside large page"); 2219 2220 /* 2221 * We'll do the call backs for contiguous ranges 2222 */ 2223 if (vaddr != contig_va || 2224 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2225 if (r_cnt == MAX_UNLOAD_CNT) { 2226 handle_ranges(cb, r_cnt, r); 2227 r_cnt = 0; 2228 } 2229 r[r_cnt].rng_va = vaddr; 2230 r[r_cnt].rng_cnt = 0; 2231 r[r_cnt].rng_level = ht->ht_level; 2232 ++r_cnt; 2233 } 2234 2235 /* 2236 * Unload one mapping from the page tables. 2237 */ 2238 entry = htable_va2entry(vaddr, ht); 2239 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2240 2241 ASSERT(ht->ht_level <= mmu.max_page_level); 2242 vaddr += LEVEL_SIZE(ht->ht_level); 2243 contig_va = vaddr; 2244 ++r[r_cnt - 1].rng_cnt; 2245 } 2246 if (ht) 2247 htable_release(ht); 2248 2249 /* 2250 * handle last range for callbacks 2251 */ 2252 if (r_cnt > 0) 2253 handle_ranges(cb, r_cnt, r); 2254 2255 HATOUT(hat_unload_callback, hat, addr); 2256 } 2257 2258 /* 2259 * synchronize mapping with software data structures 2260 * 2261 * This interface is currently only used by the working set monitor 2262 * driver. 2263 */ 2264 /*ARGSUSED*/ 2265 void 2266 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2267 { 2268 uintptr_t vaddr = (uintptr_t)addr; 2269 uintptr_t eaddr = vaddr + len; 2270 htable_t *ht = NULL; 2271 uint_t entry; 2272 x86pte_t pte; 2273 x86pte_t save_pte; 2274 x86pte_t new; 2275 page_t *pp; 2276 2277 ASSERT(!IN_VA_HOLE(vaddr)); 2278 ASSERT(IS_PAGEALIGNED(vaddr)); 2279 ASSERT(IS_PAGEALIGNED(eaddr)); 2280 ASSERT(hat == kas.a_hat || eaddr <= kernelbase); 2281 2282 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2283 try_again: 2284 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2285 if (ht == NULL) 2286 break; 2287 entry = htable_va2entry(vaddr, ht); 2288 2289 if (PTE_GET(pte, PT_NOSYNC) || 2290 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2291 continue; 2292 2293 /* 2294 * We need to acquire the mapping list lock to protect 2295 * against hat_pageunload(), hat_unload(), etc. 2296 */ 2297 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2298 if (pp == NULL) 2299 break; 2300 x86_hm_enter(pp); 2301 save_pte = pte; 2302 pte = x86pte_get(ht, entry); 2303 if (pte != save_pte) { 2304 x86_hm_exit(pp); 2305 goto try_again; 2306 } 2307 if (PTE_GET(pte, PT_NOSYNC) || 2308 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2309 x86_hm_exit(pp); 2310 continue; 2311 } 2312 2313 /* 2314 * Need to clear ref or mod bits. We may compete with 2315 * hardware updating the R/M bits and have to try again. 2316 */ 2317 if (flags == HAT_SYNC_ZERORM) { 2318 new = pte; 2319 PTE_CLR(new, PT_REF | PT_MOD); 2320 pte = hati_update_pte(ht, entry, pte, new); 2321 if (pte != 0) { 2322 x86_hm_exit(pp); 2323 goto try_again; 2324 } 2325 } else { 2326 /* 2327 * sync the PTE to the page_t 2328 */ 2329 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2330 } 2331 x86_hm_exit(pp); 2332 } 2333 if (ht) 2334 htable_release(ht); 2335 } 2336 2337 /* 2338 * void hat_map(hat, addr, len, flags) 2339 */ 2340 /*ARGSUSED*/ 2341 void 2342 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2343 { 2344 /* does nothing */ 2345 } 2346 2347 /* 2348 * uint_t hat_getattr(hat, addr, *attr) 2349 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2350 * mapping and *attr is valid, nonzero if there was no mapping and 2351 * *attr is not valid. 2352 */ 2353 uint_t 2354 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2355 { 2356 uintptr_t vaddr = ALIGN2PAGE(addr); 2357 htable_t *ht = NULL; 2358 x86pte_t pte; 2359 2360 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2361 2362 if (IN_VA_HOLE(vaddr)) 2363 return ((uint_t)-1); 2364 2365 ht = htable_getpte(hat, vaddr, NULL, &pte, MAX_PAGE_LEVEL); 2366 if (ht == NULL) 2367 return ((uint_t)-1); 2368 2369 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2370 htable_release(ht); 2371 return ((uint_t)-1); 2372 } 2373 2374 *attr = PROT_READ; 2375 if (PTE_GET(pte, PT_WRITABLE)) 2376 *attr |= PROT_WRITE; 2377 if (PTE_GET(pte, PT_USER)) 2378 *attr |= PROT_USER; 2379 if (!PTE_GET(pte, mmu.pt_nx)) 2380 *attr |= PROT_EXEC; 2381 if (PTE_GET(pte, PT_NOSYNC)) 2382 *attr |= HAT_NOSYNC; 2383 htable_release(ht); 2384 return (0); 2385 } 2386 2387 /* 2388 * hat_updateattr() applies the given attribute change to an existing mapping 2389 */ 2390 #define HAT_LOAD_ATTR 1 2391 #define HAT_SET_ATTR 2 2392 #define HAT_CLR_ATTR 3 2393 2394 static void 2395 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2396 { 2397 uintptr_t vaddr = (uintptr_t)addr; 2398 uintptr_t eaddr = (uintptr_t)addr + len; 2399 htable_t *ht = NULL; 2400 uint_t entry; 2401 x86pte_t oldpte, newpte; 2402 page_t *pp; 2403 2404 ASSERT(IS_PAGEALIGNED(vaddr)); 2405 ASSERT(IS_PAGEALIGNED(eaddr)); 2406 ASSERT(hat == kas.a_hat || 2407 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2408 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2409 try_again: 2410 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2411 if (ht == NULL) 2412 break; 2413 if (PTE_GET(oldpte, PT_NOCONSIST)) 2414 continue; 2415 2416 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2417 if (pp == NULL) 2418 continue; 2419 x86_hm_enter(pp); 2420 2421 newpte = oldpte; 2422 /* 2423 * We found a page table entry in the desired range, 2424 * figure out the new attributes. 2425 */ 2426 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2427 if ((attr & PROT_WRITE) && 2428 !PTE_GET(oldpte, PT_WRITABLE)) 2429 newpte |= PT_WRITABLE; 2430 2431 if ((attr & HAT_NOSYNC) && !PTE_GET(oldpte, PT_NOSYNC)) 2432 newpte |= PT_NOSYNC; 2433 2434 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2435 newpte &= ~mmu.pt_nx; 2436 } 2437 2438 if (what == HAT_LOAD_ATTR) { 2439 if (!(attr & PROT_WRITE) && 2440 PTE_GET(oldpte, PT_WRITABLE)) 2441 newpte &= ~PT_WRITABLE; 2442 2443 if (!(attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC)) 2444 newpte &= ~PT_NOSYNC; 2445 2446 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2447 newpte |= mmu.pt_nx; 2448 } 2449 2450 if (what == HAT_CLR_ATTR) { 2451 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2452 newpte &= ~PT_WRITABLE; 2453 2454 if ((attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC)) 2455 newpte &= ~PT_NOSYNC; 2456 2457 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2458 newpte |= mmu.pt_nx; 2459 } 2460 2461 /* 2462 * what about PROT_READ or others? this code only handles: 2463 * EXEC, WRITE, NOSYNC 2464 */ 2465 2466 /* 2467 * If new PTE really changed, update the table. 2468 */ 2469 if (newpte != oldpte) { 2470 entry = htable_va2entry(vaddr, ht); 2471 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2472 if (oldpte != 0) { 2473 x86_hm_exit(pp); 2474 goto try_again; 2475 } 2476 } 2477 x86_hm_exit(pp); 2478 } 2479 if (ht) 2480 htable_release(ht); 2481 } 2482 2483 /* 2484 * Various wrappers for hat_updateattr() 2485 */ 2486 void 2487 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2488 { 2489 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2490 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2491 } 2492 2493 void 2494 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2495 { 2496 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2497 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2498 } 2499 2500 void 2501 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2502 { 2503 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2504 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2505 } 2506 2507 void 2508 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2509 { 2510 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2511 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2512 } 2513 2514 /*ARGSUSED*/ 2515 void 2516 hat_chgattr_pagedir(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2517 { 2518 panic("hat_chgattr_pgdir() not supported - used by 80387 emulation"); 2519 } 2520 2521 /* 2522 * size_t hat_getpagesize(hat, addr) 2523 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2524 * no mapping. This is an advisory call. 2525 */ 2526 ssize_t 2527 hat_getpagesize(hat_t *hat, caddr_t addr) 2528 { 2529 uintptr_t vaddr = ALIGN2PAGE(addr); 2530 htable_t *ht; 2531 size_t pagesize; 2532 2533 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2534 if (IN_VA_HOLE(vaddr)) 2535 return (-1); 2536 ht = htable_getpage(hat, vaddr, NULL); 2537 if (ht == NULL) 2538 return (-1); 2539 pagesize = LEVEL_SIZE(ht->ht_level); 2540 htable_release(ht); 2541 return (pagesize); 2542 } 2543 2544 2545 2546 /* 2547 * pfn_t hat_getpfnum(hat, addr) 2548 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2549 */ 2550 pfn_t 2551 hat_getpfnum(hat_t *hat, caddr_t addr) 2552 { 2553 uintptr_t vaddr = ALIGN2PAGE(addr); 2554 htable_t *ht; 2555 uint_t entry; 2556 pfn_t pfn = PFN_INVALID; 2557 2558 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2559 if (khat_running == 0) 2560 panic("hat_getpfnum(): called too early\n"); 2561 2562 if (IN_VA_HOLE(vaddr)) 2563 return (PFN_INVALID); 2564 2565 /* 2566 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2567 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2568 * this up. 2569 */ 2570 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2571 x86pte_t pte; 2572 pgcnt_t pg_off; 2573 2574 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2575 if (mmu.pae_hat) { 2576 ATOMIC_LOAD64(mmu.kmap_ptes + pg_off, pte); 2577 } else { 2578 pte = ((x86pte32_t *)mmu.kmap_ptes)[pg_off]; 2579 } 2580 if (!PTE_ISVALID(pte)) 2581 return (PFN_INVALID); 2582 /*LINTED [use of constant 0 causes a silly lint warning] */ 2583 return (PTE2PFN(pte, 0)); 2584 } 2585 2586 ht = htable_getpage(hat, vaddr, &entry); 2587 if (ht == NULL) 2588 return (PFN_INVALID); 2589 ASSERT(vaddr >= ht->ht_vaddr); 2590 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2591 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2592 if (ht->ht_level > 0) 2593 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2594 htable_release(ht); 2595 return (pfn); 2596 } 2597 2598 /* 2599 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2600 * Use hat_getpfnum(kas.a_hat, ...) instead. 2601 * 2602 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2603 * but can't right now due to the fact that some software has grown to use 2604 * this interface incorrectly. So for now when the interface is misused, 2605 * return a warning to the user that in the future it won't work in the 2606 * way they're abusing it, and carry on. 2607 * 2608 * Note that hat_getkpfnum() is never supported on amd64. 2609 */ 2610 #if !defined(__amd64) 2611 pfn_t 2612 hat_getkpfnum(caddr_t addr) 2613 { 2614 pfn_t pfn; 2615 int badcaller = 0; 2616 2617 2618 if (khat_running == 0) 2619 panic("hat_getkpfnum(): called too early\n"); 2620 if ((uintptr_t)addr < kernelbase) 2621 return (PFN_INVALID); 2622 2623 2624 if (segkpm && IS_KPM_ADDR(addr)) { 2625 badcaller = 1; 2626 pfn = hat_kpm_va2pfn(addr); 2627 } else { 2628 pfn = hat_getpfnum(kas.a_hat, addr); 2629 badcaller = pf_is_memory(pfn); 2630 } 2631 2632 if (badcaller) 2633 hat_getkpfnum_badcall(caller()); 2634 return (pfn); 2635 } 2636 #endif /* __amd64 */ 2637 2638 /* 2639 * int hat_probe(hat, addr) 2640 * return 0 if no valid mapping is present. Faster version 2641 * of hat_getattr in certain architectures. 2642 */ 2643 int 2644 hat_probe(hat_t *hat, caddr_t addr) 2645 { 2646 uintptr_t vaddr = ALIGN2PAGE(addr); 2647 uint_t entry; 2648 htable_t *ht; 2649 pgcnt_t pg_off; 2650 2651 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2652 ASSERT(hat == kas.a_hat || 2653 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2654 if (IN_VA_HOLE(vaddr)) 2655 return (0); 2656 2657 /* 2658 * Most common use of hat_probe is from segmap. We special case it 2659 * for performance. 2660 */ 2661 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2662 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2663 if (mmu.pae_hat) 2664 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2665 else 2666 return (PTE_ISVALID( 2667 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2668 } 2669 2670 ht = htable_getpage(hat, vaddr, &entry); 2671 if (ht == NULL) 2672 return (0); 2673 htable_release(ht); 2674 return (1); 2675 } 2676 2677 /* 2678 * Simple implementation of ISM. hat_share() is just like hat_memload_array(), 2679 * except that we use the ism_hat's existing mappings to determine the pages 2680 * and protections to use for this hat. In case we find a properly aligned 2681 * and sized pagetable of 4K mappings, we will attempt to share the pagetable 2682 * itself. 2683 */ 2684 /*ARGSUSED*/ 2685 int 2686 hat_share( 2687 hat_t *hat, 2688 caddr_t addr, 2689 hat_t *ism_hat, 2690 caddr_t src_addr, 2691 size_t len, /* almost useless value, see below.. */ 2692 uint_t ismszc) 2693 { 2694 uintptr_t vaddr_start = (uintptr_t)addr; 2695 uintptr_t vaddr; 2696 uintptr_t pt_vaddr; 2697 uintptr_t eaddr = vaddr_start + len; 2698 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2699 uintptr_t ism_addr = ism_addr_start; 2700 uintptr_t e_ism_addr = ism_addr + len; 2701 htable_t *ism_ht = NULL; 2702 htable_t *ht; 2703 x86pte_t pte; 2704 page_t *pp; 2705 pfn_t pfn; 2706 level_t l; 2707 pgcnt_t pgcnt; 2708 uint_t prot; 2709 uint_t valid_cnt; 2710 2711 /* 2712 * We might be asked to share an empty DISM hat by as_dup() 2713 */ 2714 ASSERT(hat != kas.a_hat); 2715 ASSERT(eaddr <= kernelbase); 2716 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2717 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2718 return (0); 2719 } 2720 2721 /* 2722 * The SPT segment driver often passes us a size larger than there are 2723 * valid mappings. That's because it rounds the segment size up to a 2724 * large pagesize, even if the actual memory mapped by ism_hat is less. 2725 */ 2726 HATIN(hat_share, hat, addr, len); 2727 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2728 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2729 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2730 while (ism_addr < e_ism_addr) { 2731 /* 2732 * use htable_walk to get the next valid ISM mapping 2733 */ 2734 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2735 if (ism_ht == NULL) 2736 break; 2737 2738 /* 2739 * Find the largest page size we can use, based on the 2740 * ISM mapping size, our address alignment and the remaining 2741 * map length. 2742 */ 2743 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2744 for (l = ism_ht->ht_level; l > 0; --l) { 2745 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2746 (vaddr & LEVEL_OFFSET(l)) == 0) 2747 break; 2748 } 2749 2750 /* 2751 * attempt to share the pagetable 2752 * 2753 * - only 4K pagetables are shared (ie. level == 0) 2754 * - the hat_share() length must cover the whole pagetable 2755 * - the shared address must align at level 1 2756 * - a shared PTE for this address already exists OR 2757 * - no page table for this address exists yet 2758 */ 2759 pt_vaddr = 2760 vaddr_start + (ism_ht->ht_vaddr - ism_addr_start); 2761 if (ism_ht->ht_level == 0 && 2762 ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr && 2763 (pt_vaddr & LEVEL_OFFSET(1)) == 0) { 2764 2765 ht = htable_lookup(hat, pt_vaddr, 0); 2766 if (ht == NULL) 2767 ht = htable_create(hat, pt_vaddr, 0, ism_ht); 2768 2769 if (ht->ht_level > 0 || 2770 !(ht->ht_flags & HTABLE_SHARED_PFN)) { 2771 2772 htable_release(ht); 2773 2774 } else { 2775 2776 /* 2777 * share the page table 2778 */ 2779 ASSERT(ht->ht_level == 0); 2780 ASSERT(ht->ht_shares == ism_ht); 2781 valid_cnt = ism_ht->ht_valid_cnt; 2782 atomic_add_long(&hat->hat_pages_mapped[0], 2783 valid_cnt - ht->ht_valid_cnt); 2784 ht->ht_valid_cnt = valid_cnt; 2785 htable_release(ht); 2786 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1); 2787 htable_release(ism_ht); 2788 ism_ht = NULL; 2789 continue; 2790 } 2791 } 2792 2793 /* 2794 * Unable to share the page table. Instead we will 2795 * create new mappings from the values in the ISM mappings. 2796 * 2797 * The ISM mapping might be larger than the share area, 2798 * be careful to trunctate it if needed. 2799 */ 2800 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2801 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2802 } else { 2803 pgcnt = mmu_btop(eaddr - vaddr); 2804 l = 0; 2805 } 2806 2807 pfn = PTE2PFN(pte, ism_ht->ht_level); 2808 ASSERT(pfn != PFN_INVALID); 2809 while (pgcnt > 0) { 2810 /* 2811 * Make a new pte for the PFN for this level. 2812 * Copy protections for the pte from the ISM pte. 2813 */ 2814 pp = page_numtopp_nolock(pfn); 2815 ASSERT(pp != NULL); 2816 2817 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 2818 if (PTE_GET(pte, PT_WRITABLE)) 2819 prot |= PROT_WRITE; 2820 if (!PTE_GET(pte, PT_NX)) 2821 prot |= PROT_EXEC; 2822 2823 /* 2824 * XX64 -- can shm ever be written to swap? 2825 * if not we could use HAT_NOSYNC here. 2826 */ 2827 hati_load_common(hat, vaddr, pp, prot, 2828 HAT_LOAD, l, pfn); 2829 2830 vaddr += LEVEL_SIZE(l); 2831 ism_addr += LEVEL_SIZE(l); 2832 pfn += mmu_btop(LEVEL_SIZE(l)); 2833 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 2834 } 2835 } 2836 if (ism_ht != NULL) 2837 htable_release(ism_ht); 2838 2839 HATOUT(hat_share, hat, addr); 2840 return (0); 2841 } 2842 2843 2844 /* 2845 * hat_unshare() is similar to hat_unload_callback(), but 2846 * we have to look for empty shared pagetables. Note that 2847 * hat_unshare() is always invoked against an entire segment. 2848 */ 2849 /*ARGSUSED*/ 2850 void 2851 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 2852 { 2853 uintptr_t vaddr = (uintptr_t)addr; 2854 uintptr_t eaddr = vaddr + len; 2855 htable_t *ht = NULL; 2856 uint_t need_demaps = 0; 2857 2858 ASSERT(hat != kas.a_hat); 2859 ASSERT(eaddr <= kernelbase); 2860 HATIN(hat_unshare, hat, addr, len); 2861 ASSERT(IS_PAGEALIGNED(vaddr)); 2862 ASSERT(IS_PAGEALIGNED(eaddr)); 2863 2864 /* 2865 * First go through and remove any shared pagetables. 2866 * 2867 * Note that it's ok to delay the demap until the entire range is 2868 * finished, because if hat_pageunload() were to unload a shared 2869 * pagetable page, its hat_demap() will do a global user TLB invalidate. 2870 */ 2871 while (vaddr < eaddr) { 2872 ASSERT(!IN_VA_HOLE(vaddr)); 2873 /* 2874 * find the pagetable that would map the current address 2875 */ 2876 ht = htable_lookup(hat, vaddr, 0); 2877 if (ht != NULL) { 2878 if (ht->ht_flags & HTABLE_SHARED_PFN) { 2879 /* 2880 * clear mapped pages count, set valid_cnt to 0 2881 * and let htable_release() finish the job 2882 */ 2883 atomic_add_long(&hat->hat_pages_mapped[0], 2884 -ht->ht_valid_cnt); 2885 ht->ht_valid_cnt = 0; 2886 need_demaps = 1; 2887 } 2888 htable_release(ht); 2889 } 2890 vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1); 2891 } 2892 2893 /* 2894 * flush the TLBs - since we're probably dealing with MANY mappings 2895 * we do just one CR3 reload. 2896 */ 2897 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 2898 hat_demap(hat, DEMAP_ALL_ADDR); 2899 2900 /* 2901 * Now go back and clean up any unaligned mappings that 2902 * couldn't share pagetables. 2903 */ 2904 hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP); 2905 2906 HATOUT(hat_unshare, hat, addr); 2907 } 2908 2909 2910 /* 2911 * hat_reserve() does nothing 2912 */ 2913 /*ARGSUSED*/ 2914 void 2915 hat_reserve(struct as *as, caddr_t addr, size_t len) 2916 { 2917 } 2918 2919 2920 /* 2921 * Called when all mappings to a page should have write permission removed. 2922 * Mostly stolem from hat_pagesync() 2923 */ 2924 static void 2925 hati_page_clrwrt(struct page *pp) 2926 { 2927 hment_t *hm = NULL; 2928 htable_t *ht; 2929 uint_t entry; 2930 x86pte_t old; 2931 x86pte_t new; 2932 uint_t pszc = 0; 2933 2934 next_size: 2935 /* 2936 * walk thru the mapping list clearing write permission 2937 */ 2938 x86_hm_enter(pp); 2939 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 2940 if (ht->ht_level < pszc) 2941 continue; 2942 old = x86pte_get(ht, entry); 2943 2944 for (;;) { 2945 /* 2946 * Is this mapping of interest? 2947 */ 2948 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 2949 PTE_GET(old, PT_WRITABLE) == 0) 2950 break; 2951 2952 /* 2953 * Clear ref/mod writable bits. This requires cross 2954 * calls to ensure any executing TLBs see cleared bits. 2955 */ 2956 new = old; 2957 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 2958 old = hati_update_pte(ht, entry, old, new); 2959 if (old != 0) 2960 continue; 2961 2962 break; 2963 } 2964 } 2965 x86_hm_exit(pp); 2966 while (pszc < pp->p_szc) { 2967 page_t *tpp; 2968 pszc++; 2969 tpp = PP_GROUPLEADER(pp, pszc); 2970 if (pp != tpp) { 2971 pp = tpp; 2972 goto next_size; 2973 } 2974 } 2975 } 2976 2977 /* 2978 * void hat_page_setattr(pp, flag) 2979 * void hat_page_clrattr(pp, flag) 2980 * used to set/clr ref/mod bits. 2981 */ 2982 void 2983 hat_page_setattr(struct page *pp, uint_t flag) 2984 { 2985 vnode_t *vp = pp->p_vnode; 2986 kmutex_t *vphm = NULL; 2987 page_t **listp; 2988 2989 if (PP_GETRM(pp, flag) == flag) 2990 return; 2991 2992 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 2993 vphm = page_vnode_mutex(vp); 2994 mutex_enter(vphm); 2995 } 2996 2997 PP_SETRM(pp, flag); 2998 2999 if (vphm != NULL) { 3000 3001 /* 3002 * Some File Systems examine v_pages for NULL w/o 3003 * grabbing the vphm mutex. Must not let it become NULL when 3004 * pp is the only page on the list. 3005 */ 3006 if (pp->p_vpnext != pp) { 3007 page_vpsub(&vp->v_pages, pp); 3008 if (vp->v_pages != NULL) 3009 listp = &vp->v_pages->p_vpprev->p_vpnext; 3010 else 3011 listp = &vp->v_pages; 3012 page_vpadd(listp, pp); 3013 } 3014 mutex_exit(vphm); 3015 } 3016 } 3017 3018 void 3019 hat_page_clrattr(struct page *pp, uint_t flag) 3020 { 3021 vnode_t *vp = pp->p_vnode; 3022 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3023 3024 /* 3025 * Caller is expected to hold page's io lock for VMODSORT to work 3026 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3027 * bit is cleared. 3028 * We don't have assert to avoid tripping some existing third party 3029 * code. The dirty page is moved back to top of the v_page list 3030 * after IO is done in pvn_write_done(). 3031 */ 3032 PP_CLRRM(pp, flag); 3033 3034 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3035 3036 /* 3037 * VMODSORT works by removing write permissions and getting 3038 * a fault when a page is made dirty. At this point 3039 * we need to remove write permission from all mappings 3040 * to this page. 3041 */ 3042 hati_page_clrwrt(pp); 3043 } 3044 } 3045 3046 /* 3047 * If flag is specified, returns 0 if attribute is disabled 3048 * and non zero if enabled. If flag specifes multiple attributs 3049 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3050 * call. 3051 */ 3052 uint_t 3053 hat_page_getattr(struct page *pp, uint_t flag) 3054 { 3055 return (PP_GETRM(pp, flag)); 3056 } 3057 3058 3059 /* 3060 * common code used by hat_pageunload() and hment_steal() 3061 */ 3062 hment_t * 3063 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3064 { 3065 x86pte_t old_pte; 3066 pfn_t pfn = pp->p_pagenum; 3067 hment_t *hm; 3068 3069 /* 3070 * We need to acquire a hold on the htable in order to 3071 * do the invalidate. We know the htable must exist, since 3072 * unmap's don't release the htable until after removing any 3073 * hment. Having x86_hm_enter() keeps that from proceeding. 3074 */ 3075 htable_acquire(ht); 3076 3077 /* 3078 * Invalidate the PTE and remove the hment. 3079 */ 3080 old_pte = x86pte_invalidate_pfn(ht, entry, pfn, NULL); 3081 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3082 panic("x86pte_invalidate_pfn() failure found PTE = " FMT_PTE 3083 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3084 old_pte, pfn, (uintptr_t)ht, entry); 3085 } 3086 3087 /* 3088 * Clean up all the htable information for this mapping 3089 */ 3090 ASSERT(ht->ht_valid_cnt > 0); 3091 HTABLE_DEC(ht->ht_valid_cnt); 3092 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3093 3094 /* 3095 * sync ref/mod bits to the page_t 3096 */ 3097 if (PTE_GET(old_pte, PT_NOSYNC) == 0) 3098 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3099 3100 /* 3101 * Remove the mapping list entry for this page. 3102 */ 3103 hm = hment_remove(pp, ht, entry); 3104 3105 /* 3106 * drop the mapping list lock so that we might free the 3107 * hment and htable. 3108 */ 3109 x86_hm_exit(pp); 3110 htable_release(ht); 3111 return (hm); 3112 } 3113 3114 extern int vpm_enable; 3115 /* 3116 * Unload all translations to a page. If the page is a subpage of a large 3117 * page, the large page mappings are also removed. 3118 * 3119 * The forceflags are unused. 3120 */ 3121 3122 /*ARGSUSED*/ 3123 static int 3124 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3125 { 3126 page_t *cur_pp = pp; 3127 hment_t *hm; 3128 hment_t *prev; 3129 htable_t *ht; 3130 uint_t entry; 3131 level_t level; 3132 3133 #if defined(__amd64) 3134 /* 3135 * clear the vpm ref. 3136 */ 3137 if (vpm_enable) { 3138 pp->p_vpmref = 0; 3139 } 3140 #endif 3141 /* 3142 * The loop with next_size handles pages with multiple pagesize mappings 3143 */ 3144 next_size: 3145 for (;;) { 3146 3147 /* 3148 * Get a mapping list entry 3149 */ 3150 x86_hm_enter(cur_pp); 3151 for (prev = NULL; ; prev = hm) { 3152 hm = hment_walk(cur_pp, &ht, &entry, prev); 3153 if (hm == NULL) { 3154 x86_hm_exit(cur_pp); 3155 3156 /* 3157 * If not part of a larger page, we're done. 3158 */ 3159 if (cur_pp->p_szc <= pg_szcd) 3160 return (0); 3161 3162 /* 3163 * Else check the next larger page size. 3164 * hat_page_demote() may decrease p_szc 3165 * but that's ok we'll just take an extra 3166 * trip discover there're no larger mappings 3167 * and return. 3168 */ 3169 ++pg_szcd; 3170 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3171 goto next_size; 3172 } 3173 3174 /* 3175 * If this mapping size matches, remove it. 3176 */ 3177 level = ht->ht_level; 3178 if (level == pg_szcd) 3179 break; 3180 } 3181 3182 /* 3183 * Remove the mapping list entry for this page. 3184 * Note this does the x86_hm_exit() for us. 3185 */ 3186 hm = hati_page_unmap(cur_pp, ht, entry); 3187 if (hm != NULL) 3188 hment_free(hm); 3189 } 3190 } 3191 3192 int 3193 hat_pageunload(struct page *pp, uint_t forceflag) 3194 { 3195 ASSERT(PAGE_EXCL(pp)); 3196 return (hati_pageunload(pp, 0, forceflag)); 3197 } 3198 3199 /* 3200 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3201 * page level that included pp. 3202 * 3203 * pp must be locked EXCL. Even though no other constituent pages are locked 3204 * it's legal to unload large mappings to pp because all constituent pages of 3205 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3206 * lock on one of constituent pages none of the large mappings to pp are 3207 * locked. 3208 * 3209 * Change (always decrease) p_szc field starting from the last constituent 3210 * page and ending with root constituent page so that root's pszc always shows 3211 * the area where hat_page_demote() may be active. 3212 * 3213 * This mechanism is only used for file system pages where it's not always 3214 * possible to get EXCL locks on all constituent pages to demote the size code 3215 * (as is done for anonymous or kernel large pages). 3216 */ 3217 void 3218 hat_page_demote(page_t *pp) 3219 { 3220 uint_t pszc; 3221 uint_t rszc; 3222 uint_t szc; 3223 page_t *rootpp; 3224 page_t *firstpp; 3225 page_t *lastpp; 3226 pgcnt_t pgcnt; 3227 3228 ASSERT(PAGE_EXCL(pp)); 3229 ASSERT(!PP_ISFREE(pp)); 3230 ASSERT(page_szc_lock_assert(pp)); 3231 3232 if (pp->p_szc == 0) 3233 return; 3234 3235 rootpp = PP_GROUPLEADER(pp, 1); 3236 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3237 3238 /* 3239 * all large mappings to pp are gone 3240 * and no new can be setup since pp is locked exclusively. 3241 * 3242 * Lock the root to make sure there's only one hat_page_demote() 3243 * outstanding within the area of this root's pszc. 3244 * 3245 * Second potential hat_page_demote() is already eliminated by upper 3246 * VM layer via page_szc_lock() but we don't rely on it and use our 3247 * own locking (so that upper layer locking can be changed without 3248 * assumptions that hat depends on upper layer VM to prevent multiple 3249 * hat_page_demote() to be issued simultaneously to the same large 3250 * page). 3251 */ 3252 again: 3253 pszc = pp->p_szc; 3254 if (pszc == 0) 3255 return; 3256 rootpp = PP_GROUPLEADER(pp, pszc); 3257 x86_hm_enter(rootpp); 3258 /* 3259 * If root's p_szc is different from pszc we raced with another 3260 * hat_page_demote(). Drop the lock and try to find the root again. 3261 * If root's p_szc is greater than pszc previous hat_page_demote() is 3262 * not done yet. Take and release mlist lock of root's root to wait 3263 * for previous hat_page_demote() to complete. 3264 */ 3265 if ((rszc = rootpp->p_szc) != pszc) { 3266 x86_hm_exit(rootpp); 3267 if (rszc > pszc) { 3268 /* p_szc of a locked non free page can't increase */ 3269 ASSERT(pp != rootpp); 3270 3271 rootpp = PP_GROUPLEADER(rootpp, rszc); 3272 x86_hm_enter(rootpp); 3273 x86_hm_exit(rootpp); 3274 } 3275 goto again; 3276 } 3277 ASSERT(pp->p_szc == pszc); 3278 3279 /* 3280 * Decrement by 1 p_szc of every constituent page of a region that 3281 * covered pp. For example if original szc is 3 it gets changed to 2 3282 * everywhere except in region 2 that covered pp. Region 2 that 3283 * covered pp gets demoted to 1 everywhere except in region 1 that 3284 * covered pp. The region 1 that covered pp is demoted to region 3285 * 0. It's done this way because from region 3 we removed level 3 3286 * mappings, from region 2 that covered pp we removed level 2 mappings 3287 * and from region 1 that covered pp we removed level 1 mappings. All 3288 * changes are done from from high pfn's to low pfn's so that roots 3289 * are changed last allowing one to know the largest region where 3290 * hat_page_demote() is stil active by only looking at the root page. 3291 * 3292 * This algorithm is implemented in 2 while loops. First loop changes 3293 * p_szc of pages to the right of pp's level 1 region and second 3294 * loop changes p_szc of pages of level 1 region that covers pp 3295 * and all pages to the left of level 1 region that covers pp. 3296 * In the first loop p_szc keeps dropping with every iteration 3297 * and in the second loop it keeps increasing with every iteration. 3298 * 3299 * First loop description: Demote pages to the right of pp outside of 3300 * level 1 region that covers pp. In every iteration of the while 3301 * loop below find the last page of szc region and the first page of 3302 * (szc - 1) region that is immediately to the right of (szc - 1) 3303 * region that covers pp. From last such page to first such page 3304 * change every page's szc to szc - 1. Decrement szc and continue 3305 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3306 * of szc region skip to the next iteration. 3307 */ 3308 szc = pszc; 3309 while (szc > 1) { 3310 lastpp = PP_GROUPLEADER(pp, szc); 3311 pgcnt = page_get_pagecnt(szc); 3312 lastpp += pgcnt - 1; 3313 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3314 pgcnt = page_get_pagecnt(szc - 1); 3315 if (lastpp - firstpp < pgcnt) { 3316 szc--; 3317 continue; 3318 } 3319 firstpp += pgcnt; 3320 while (lastpp != firstpp) { 3321 ASSERT(lastpp->p_szc == pszc); 3322 lastpp->p_szc = szc - 1; 3323 lastpp--; 3324 } 3325 firstpp->p_szc = szc - 1; 3326 szc--; 3327 } 3328 3329 /* 3330 * Second loop description: 3331 * First iteration changes p_szc to 0 of every 3332 * page of level 1 region that covers pp. 3333 * Subsequent iterations find last page of szc region 3334 * immediately to the left of szc region that covered pp 3335 * and first page of (szc + 1) region that covers pp. 3336 * From last to first page change p_szc of every page to szc. 3337 * Increment szc and continue looping until szc is pszc. 3338 * If pp belongs to the fist szc region of (szc + 1) region 3339 * skip to the next iteration. 3340 * 3341 */ 3342 szc = 0; 3343 while (szc < pszc) { 3344 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3345 if (szc == 0) { 3346 pgcnt = page_get_pagecnt(1); 3347 lastpp = firstpp + (pgcnt - 1); 3348 } else { 3349 lastpp = PP_GROUPLEADER(pp, szc); 3350 if (firstpp == lastpp) { 3351 szc++; 3352 continue; 3353 } 3354 lastpp--; 3355 pgcnt = page_get_pagecnt(szc); 3356 } 3357 while (lastpp != firstpp) { 3358 ASSERT(lastpp->p_szc == pszc); 3359 lastpp->p_szc = szc; 3360 lastpp--; 3361 } 3362 firstpp->p_szc = szc; 3363 if (firstpp == rootpp) 3364 break; 3365 szc++; 3366 } 3367 x86_hm_exit(rootpp); 3368 } 3369 3370 /* 3371 * get hw stats from hardware into page struct and reset hw stats 3372 * returns attributes of page 3373 * Flags for hat_pagesync, hat_getstat, hat_sync 3374 * 3375 * define HAT_SYNC_ZERORM 0x01 3376 * 3377 * Additional flags for hat_pagesync 3378 * 3379 * define HAT_SYNC_STOPON_REF 0x02 3380 * define HAT_SYNC_STOPON_MOD 0x04 3381 * define HAT_SYNC_STOPON_RM 0x06 3382 * define HAT_SYNC_STOPON_SHARED 0x08 3383 */ 3384 uint_t 3385 hat_pagesync(struct page *pp, uint_t flags) 3386 { 3387 hment_t *hm = NULL; 3388 htable_t *ht; 3389 uint_t entry; 3390 x86pte_t old, save_old; 3391 x86pte_t new; 3392 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3393 extern ulong_t po_share; 3394 page_t *save_pp = pp; 3395 uint_t pszc = 0; 3396 3397 ASSERT(PAGE_LOCKED(pp) || panicstr); 3398 3399 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3400 return (pp->p_nrm & nrmbits); 3401 3402 if ((flags & HAT_SYNC_ZERORM) == 0) { 3403 3404 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3405 return (pp->p_nrm & nrmbits); 3406 3407 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3408 return (pp->p_nrm & nrmbits); 3409 3410 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3411 hat_page_getshare(pp) > po_share) { 3412 if (PP_ISRO(pp)) 3413 PP_SETREF(pp); 3414 return (pp->p_nrm & nrmbits); 3415 } 3416 } 3417 3418 next_size: 3419 /* 3420 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3421 */ 3422 x86_hm_enter(pp); 3423 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3424 if (ht->ht_level < pszc) 3425 continue; 3426 old = x86pte_get(ht, entry); 3427 try_again: 3428 3429 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3430 3431 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3432 continue; 3433 3434 save_old = old; 3435 if ((flags & HAT_SYNC_ZERORM) != 0) { 3436 3437 /* 3438 * Need to clear ref or mod bits. Need to demap 3439 * to make sure any executing TLBs see cleared bits. 3440 */ 3441 new = old; 3442 PTE_CLR(new, PT_REF | PT_MOD); 3443 old = hati_update_pte(ht, entry, old, new); 3444 if (old != 0) 3445 goto try_again; 3446 3447 old = save_old; 3448 } 3449 3450 /* 3451 * Sync the PTE 3452 */ 3453 if (!(flags & HAT_SYNC_ZERORM) && PTE_GET(old, PT_NOSYNC) == 0) 3454 hati_sync_pte_to_page(pp, old, ht->ht_level); 3455 3456 /* 3457 * can stop short if we found a ref'd or mod'd page 3458 */ 3459 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3460 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3461 x86_hm_exit(pp); 3462 return (save_pp->p_nrm & nrmbits); 3463 } 3464 } 3465 x86_hm_exit(pp); 3466 while (pszc < pp->p_szc) { 3467 page_t *tpp; 3468 pszc++; 3469 tpp = PP_GROUPLEADER(pp, pszc); 3470 if (pp != tpp) { 3471 pp = tpp; 3472 goto next_size; 3473 } 3474 } 3475 return (save_pp->p_nrm & nrmbits); 3476 } 3477 3478 /* 3479 * returns approx number of mappings to this pp. A return of 0 implies 3480 * there are no mappings to the page. 3481 */ 3482 ulong_t 3483 hat_page_getshare(page_t *pp) 3484 { 3485 uint_t cnt; 3486 cnt = hment_mapcnt(pp); 3487 #if defined(__amd64) 3488 if (vpm_enable && pp->p_vpmref) { 3489 cnt += 1; 3490 } 3491 #endif 3492 return (cnt); 3493 } 3494 3495 /* 3496 * hat_softlock isn't supported anymore 3497 */ 3498 /*ARGSUSED*/ 3499 faultcode_t 3500 hat_softlock( 3501 hat_t *hat, 3502 caddr_t addr, 3503 size_t *len, 3504 struct page **page_array, 3505 uint_t flags) 3506 { 3507 return (FC_NOSUPPORT); 3508 } 3509 3510 3511 3512 /* 3513 * Routine to expose supported HAT features to platform independent code. 3514 */ 3515 /*ARGSUSED*/ 3516 int 3517 hat_supported(enum hat_features feature, void *arg) 3518 { 3519 switch (feature) { 3520 3521 case HAT_SHARED_PT: /* this is really ISM */ 3522 return (1); 3523 3524 case HAT_DYNAMIC_ISM_UNMAP: 3525 return (0); 3526 3527 case HAT_VMODSORT: 3528 return (1); 3529 3530 default: 3531 panic("hat_supported() - unknown feature"); 3532 } 3533 return (0); 3534 } 3535 3536 /* 3537 * Called when a thread is exiting and has been switched to the kernel AS 3538 */ 3539 void 3540 hat_thread_exit(kthread_t *thd) 3541 { 3542 ASSERT(thd->t_procp->p_as == &kas); 3543 hat_switch(thd->t_procp->p_as->a_hat); 3544 } 3545 3546 /* 3547 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3548 */ 3549 /*ARGSUSED*/ 3550 void 3551 hat_setup(hat_t *hat, int flags) 3552 { 3553 kpreempt_disable(); 3554 3555 hat_switch(hat); 3556 3557 kpreempt_enable(); 3558 } 3559 3560 /* 3561 * Prepare for a CPU private mapping for the given address. 3562 * 3563 * The address can only be used from a single CPU and can be remapped 3564 * using hat_mempte_remap(). Return the address of the PTE. 3565 * 3566 * We do the htable_create() if necessary and increment the valid count so 3567 * the htable can't disappear. We also hat_devload() the page table into 3568 * kernel so that the PTE is quickly accessed. 3569 */ 3570 void * 3571 hat_mempte_kern_setup(caddr_t addr, void *pt) 3572 { 3573 uintptr_t va = (uintptr_t)addr; 3574 htable_t *ht; 3575 uint_t entry; 3576 x86pte_t oldpte; 3577 caddr_t p = (caddr_t)pt; 3578 3579 ASSERT(IS_PAGEALIGNED(va)); 3580 ASSERT(!IN_VA_HOLE(va)); 3581 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3582 if (ht == NULL) { 3583 /* 3584 * Note that we don't need a hat_reserves_exit() check 3585 * for this htable_create(), since that'll be done by the 3586 * hat_devload() just below. 3587 */ 3588 ht = htable_create(kas.a_hat, va, 0, NULL); 3589 entry = htable_va2entry(va, ht); 3590 ASSERT(ht->ht_level == 0); 3591 oldpte = x86pte_get(ht, entry); 3592 } 3593 if (PTE_ISVALID(oldpte)) 3594 panic("hat_mempte_setup(): address already mapped" 3595 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3596 3597 /* 3598 * increment ht_valid_cnt so that the pagetable can't disappear 3599 */ 3600 HTABLE_INC(ht->ht_valid_cnt); 3601 3602 /* 3603 * now we need to map the page holding the pagetable for va into 3604 * the kernel's address space. 3605 */ 3606 hat_devload(kas.a_hat, p, MMU_PAGESIZE, ht->ht_pfn, 3607 PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, 3608 HAT_LOAD | HAT_LOAD_NOCONSIST); 3609 3610 /* 3611 * return the PTE address to the caller. 3612 */ 3613 htable_release(ht); 3614 p += entry << mmu.pte_size_shift; 3615 return ((void *)p); 3616 } 3617 3618 /* 3619 * Prepare for a CPU private mapping for the given address. 3620 */ 3621 void * 3622 hat_mempte_setup(caddr_t addr) 3623 { 3624 x86pte_t *p; 3625 3626 p = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 3627 return (hat_mempte_kern_setup(addr, p)); 3628 } 3629 3630 /* 3631 * Release a CPU private mapping for the given address. 3632 * We decrement the htable valid count so it might be destroyed. 3633 */ 3634 void 3635 hat_mempte_release(caddr_t addr, void *pteptr) 3636 { 3637 htable_t *ht; 3638 uintptr_t va = ALIGN2PAGE(pteptr); 3639 3640 /* 3641 * first invalidate any left over mapping and decrement the 3642 * htable's mapping count 3643 */ 3644 if (mmu.pae_hat) 3645 *(x86pte_t *)pteptr = 0; 3646 else 3647 *(x86pte32_t *)pteptr = 0; 3648 mmu_tlbflush_entry(addr); 3649 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3650 if (ht == NULL) 3651 panic("hat_mempte_release(): invalid address"); 3652 ASSERT(ht->ht_level == 0); 3653 HTABLE_DEC(ht->ht_valid_cnt); 3654 htable_release(ht); 3655 3656 /* 3657 * now blow away the kernel mapping to the page table page 3658 * XX64 -- see comment in hat_mempte_setup() 3659 */ 3660 hat_unload_callback(kas.a_hat, (caddr_t)va, MMU_PAGESIZE, 3661 HAT_UNLOAD, NULL); 3662 } 3663 3664 /* 3665 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3666 * on this CPU, so this ought to have been called with preemption disabled. 3667 */ 3668 void 3669 hat_mempte_remap( 3670 pfn_t pfn, 3671 caddr_t addr, 3672 void *pteptr, 3673 uint_t attr, 3674 uint_t flags) 3675 { 3676 uintptr_t va = (uintptr_t)addr; 3677 x86pte_t pte; 3678 3679 /* 3680 * Remap the given PTE to the new page's PFN. Invalidate only 3681 * on this CPU. 3682 */ 3683 #ifdef DEBUG 3684 htable_t *ht; 3685 uint_t entry; 3686 3687 ASSERT(IS_PAGEALIGNED(va)); 3688 ASSERT(!IN_VA_HOLE(va)); 3689 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3690 ASSERT(ht != NULL); 3691 ASSERT(ht->ht_level == 0); 3692 ASSERT(ht->ht_valid_cnt > 0); 3693 htable_release(ht); 3694 #endif 3695 pte = hati_mkpte(pfn, attr, 0, flags); 3696 if (mmu.pae_hat) 3697 *(x86pte_t *)pteptr = pte; 3698 else 3699 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3700 mmu_tlbflush_entry(addr); 3701 } 3702 3703 3704 3705 /* 3706 * Hat locking functions 3707 * XXX - these two functions are currently being used by hatstats 3708 * they can be removed by using a per-as mutex for hatstats. 3709 */ 3710 void 3711 hat_enter(hat_t *hat) 3712 { 3713 mutex_enter(&hat->hat_mutex); 3714 } 3715 3716 void 3717 hat_exit(hat_t *hat) 3718 { 3719 mutex_exit(&hat->hat_mutex); 3720 } 3721 3722 3723 /* 3724 * Used by hat_kern_setup() to create initial kernel HAT mappings from 3725 * the boot loader's mappings. 3726 * 3727 * - size is either PAGESIZE or some multiple of a level one pagesize 3728 * - there may not be page_t's for every pfn. (ie. the nucleus pages) 3729 * - pfn's are continguous for the given va range (va to va + size * cnt) 3730 */ 3731 void 3732 hati_kern_setup_load( 3733 uintptr_t va, /* starting va of range to map */ 3734 size_t size, /* either PAGESIZE or multiple of large page size */ 3735 pfn_t pfn, /* starting PFN */ 3736 pgcnt_t cnt, /* number of mappings, (cnt * size) == total size */ 3737 uint_t prot) /* protections (PROT_READ, PROT_WRITE, PROT_EXEC) */ 3738 { 3739 level_t level = (size == MMU_PAGESIZE ? 0 : 1); 3740 size_t bytes = size * cnt; 3741 size_t pgsize = LEVEL_SIZE(level); 3742 page_t *pp; 3743 uint_t flags = HAT_LOAD; 3744 3745 /* 3746 * We're only going to throw away mappings below kernelbase or in 3747 * boot's special double-mapping region, so set noconsist to avoid 3748 * using hments 3749 */ 3750 if (BOOT_VA(va)) 3751 flags |= HAT_LOAD_NOCONSIST; 3752 3753 prot |= HAT_STORECACHING_OK; 3754 while (bytes != 0) { 3755 ASSERT(bytes >= pgsize); 3756 3757 pp = NULL; 3758 if (pf_is_memory(pfn) && !BOOT_VA(va) && level == 0) 3759 pp = page_numtopp_nolock(pfn); 3760 3761 hati_load_common(kas.a_hat, va, pp, prot, flags, level, pfn); 3762 3763 va += pgsize; 3764 pfn += mmu_btop(pgsize); 3765 bytes -= pgsize; 3766 } 3767 } 3768 3769 /* 3770 * HAT part of cpu intialization. 3771 */ 3772 void 3773 hat_cpu_online(struct cpu *cpup) 3774 { 3775 if (cpup != CPU) { 3776 x86pte_cpu_init(cpup, NULL); 3777 hat_vlp_setup(cpup); 3778 } 3779 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3780 } 3781 3782 /* 3783 * Function called after all CPUs are brought online. 3784 * Used to remove low address boot mappings. 3785 */ 3786 void 3787 clear_boot_mappings(uintptr_t low, uintptr_t high) 3788 { 3789 uintptr_t vaddr = low; 3790 htable_t *ht = NULL; 3791 level_t level; 3792 uint_t entry; 3793 x86pte_t pte; 3794 3795 /* 3796 * On 1st CPU we can unload the prom mappings, basically we blow away 3797 * all virtual mappings under kernelbase. 3798 */ 3799 while (vaddr < high) { 3800 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 3801 if (ht == NULL) 3802 break; 3803 3804 level = ht->ht_level; 3805 entry = htable_va2entry(vaddr, ht); 3806 ASSERT(level <= mmu.max_page_level); 3807 ASSERT(PTE_ISPAGE(pte, level)); 3808 3809 /* 3810 * Unload the mapping from the page tables. 3811 */ 3812 (void) x86pte_set(ht, entry, 0, NULL); 3813 ASSERT(ht->ht_valid_cnt > 0); 3814 HTABLE_DEC(ht->ht_valid_cnt); 3815 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3816 3817 vaddr += LEVEL_SIZE(ht->ht_level); 3818 } 3819 if (ht) 3820 htable_release(ht); 3821 3822 /* 3823 * cross call for a complete invalidate. 3824 */ 3825 hat_demap(kas.a_hat, DEMAP_ALL_ADDR); 3826 } 3827 3828 /* 3829 * Initialize a special area in the kernel that always holds some PTEs for 3830 * faster performance. This always holds segmap's PTEs. 3831 * In the 32 bit kernel this maps the kernel heap too. 3832 */ 3833 void 3834 hat_kmap_init(uintptr_t base, size_t len) 3835 { 3836 uintptr_t map_addr; /* base rounded down to large page size */ 3837 uintptr_t map_eaddr; /* base + len rounded up */ 3838 size_t map_len; 3839 caddr_t ptes; /* mapping area in kernel as for ptes */ 3840 size_t window_size; /* size of mapping area for ptes */ 3841 ulong_t htable_cnt; /* # of page tables to cover map_len */ 3842 ulong_t i; 3843 htable_t *ht; 3844 3845 /* 3846 * we have to map in an area that matches an entire page table 3847 */ 3848 map_addr = base & LEVEL_MASK(1); 3849 map_eaddr = (base + len + LEVEL_SIZE(1) - 1) & LEVEL_MASK(1); 3850 map_len = map_eaddr - map_addr; 3851 window_size = mmu_btop(map_len) * mmu.pte_size; 3852 htable_cnt = mmu_btop(map_len) / mmu.ptes_per_table; 3853 3854 /* 3855 * allocate vmem for the kmap_ptes 3856 */ 3857 ptes = vmem_xalloc(heap_arena, window_size, MMU_PAGESIZE, 0, 3858 0, NULL, NULL, VM_SLEEP); 3859 mmu.kmap_htables = 3860 kmem_alloc(htable_cnt * sizeof (htable_t *), KM_SLEEP); 3861 3862 /* 3863 * Map the page tables that cover kmap into the allocated range. 3864 * Note we don't ever htable_release() the kmap page tables - they 3865 * can't ever be stolen, freed, etc. 3866 */ 3867 for (i = 0; i < htable_cnt; ++i) { 3868 ht = htable_create(kas.a_hat, map_addr + i * LEVEL_SIZE(1), 3869 0, NULL); 3870 mmu.kmap_htables[i] = ht; 3871 3872 hat_devload(kas.a_hat, ptes + i * MMU_PAGESIZE, MMU_PAGESIZE, 3873 ht->ht_pfn, 3874 PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, 3875 HAT_LOAD | HAT_LOAD_NOCONSIST); 3876 3877 } 3878 3879 /* 3880 * set information in mmu to activate handling of kmap 3881 */ 3882 mmu.kmap_addr = base; 3883 mmu.kmap_eaddr = base + len; 3884 mmu.kmap_ptes = 3885 (x86pte_t *)(ptes + mmu.pte_size * mmu_btop(base - map_addr)); 3886 } 3887 3888 /* 3889 * Atomically update a new translation for a single page. If the 3890 * currently installed PTE doesn't match the value we expect to find, 3891 * it's not updated and we return the PTE we found. 3892 * 3893 * If activating nosync or NOWRITE and the page was modified we need to sync 3894 * with the page_t. Also sync with page_t if clearing ref/mod bits. 3895 */ 3896 static x86pte_t 3897 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 3898 { 3899 page_t *pp; 3900 uint_t rm = 0; 3901 x86pte_t replaced; 3902 3903 if (!PTE_GET(expected, PT_NOSYNC | PT_NOCONSIST) && 3904 PTE_GET(expected, PT_MOD | PT_REF) && 3905 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 3906 !PTE_GET(new, PT_MOD | PT_REF))) { 3907 3908 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 3909 ASSERT(pp != NULL); 3910 if (PTE_GET(expected, PT_MOD)) 3911 rm |= P_MOD; 3912 if (PTE_GET(expected, PT_REF)) 3913 rm |= P_REF; 3914 PTE_CLR(new, PT_MOD | PT_REF); 3915 } 3916 3917 replaced = x86pte_update(ht, entry, expected, new); 3918 if (replaced != expected) 3919 return (replaced); 3920 3921 if (rm) { 3922 /* 3923 * sync to all constituent pages of a large page 3924 */ 3925 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 3926 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 3927 while (pgcnt-- > 0) { 3928 /* 3929 * hat_page_demote() can't decrease 3930 * pszc below this mapping size 3931 * since large mapping existed after we 3932 * took mlist lock. 3933 */ 3934 ASSERT(pp->p_szc >= ht->ht_level); 3935 hat_page_setattr(pp, rm); 3936 ++pp; 3937 } 3938 } 3939 3940 return (0); 3941 } 3942 3943 /* 3944 * Kernel Physical Mapping (kpm) facility 3945 * 3946 * Most of the routines needed to support segkpm are almost no-ops on the 3947 * x86 platform. We map in the entire segment when it is created and leave 3948 * it mapped in, so there is no additional work required to set up and tear 3949 * down individual mappings. All of these routines were created to support 3950 * SPARC platforms that have to avoid aliasing in their virtually indexed 3951 * caches. 3952 * 3953 * Most of the routines have sanity checks in them (e.g. verifying that the 3954 * passed-in page is locked). We don't actually care about most of these 3955 * checks on x86, but we leave them in place to identify problems in the 3956 * upper levels. 3957 */ 3958 3959 /* 3960 * Map in a locked page and return the vaddr. 3961 */ 3962 /*ARGSUSED*/ 3963 caddr_t 3964 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 3965 { 3966 caddr_t vaddr; 3967 3968 #ifdef DEBUG 3969 if (kpm_enable == 0) { 3970 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 3971 return ((caddr_t)NULL); 3972 } 3973 3974 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3975 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 3976 return ((caddr_t)NULL); 3977 } 3978 #endif 3979 3980 vaddr = hat_kpm_page2va(pp, 1); 3981 3982 return (vaddr); 3983 } 3984 3985 /* 3986 * Mapout a locked page. 3987 */ 3988 /*ARGSUSED*/ 3989 void 3990 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 3991 { 3992 #ifdef DEBUG 3993 if (kpm_enable == 0) { 3994 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 3995 return; 3996 } 3997 3998 if (IS_KPM_ADDR(vaddr) == 0) { 3999 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4000 return; 4001 } 4002 4003 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4004 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4005 return; 4006 } 4007 #endif 4008 } 4009 4010 /* 4011 * Return the kpm virtual address for a specific pfn 4012 */ 4013 caddr_t 4014 hat_kpm_pfn2va(pfn_t pfn) 4015 { 4016 uintptr_t vaddr; 4017 4018 ASSERT(kpm_enable); 4019 4020 vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4021 4022 return ((caddr_t)vaddr); 4023 } 4024 4025 /* 4026 * Return the kpm virtual address for the page at pp. 4027 */ 4028 /*ARGSUSED*/ 4029 caddr_t 4030 hat_kpm_page2va(struct page *pp, int checkswap) 4031 { 4032 return (hat_kpm_pfn2va(pp->p_pagenum)); 4033 } 4034 4035 /* 4036 * Return the page frame number for the kpm virtual address vaddr. 4037 */ 4038 pfn_t 4039 hat_kpm_va2pfn(caddr_t vaddr) 4040 { 4041 pfn_t pfn; 4042 4043 ASSERT(IS_KPM_ADDR(vaddr)); 4044 4045 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4046 4047 return (pfn); 4048 } 4049 4050 4051 /* 4052 * Return the page for the kpm virtual address vaddr. 4053 */ 4054 page_t * 4055 hat_kpm_vaddr2page(caddr_t vaddr) 4056 { 4057 pfn_t pfn; 4058 4059 ASSERT(IS_KPM_ADDR(vaddr)); 4060 4061 pfn = hat_kpm_va2pfn(vaddr); 4062 4063 return (page_numtopp_nolock(pfn)); 4064 } 4065 4066 /* 4067 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4068 * KPM page. This should never happen on x86 4069 */ 4070 int 4071 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4072 { 4073 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 4074 4075 return (0); 4076 } 4077 4078 /*ARGSUSED*/ 4079 void 4080 hat_kpm_mseghash_clear(int nentries) 4081 {} 4082 4083 /*ARGSUSED*/ 4084 void 4085 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4086 {} 4087