1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/thread.h> 31 #include <sys/cpuvar.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/proc.h> 35 #include <sys/disp.h> 36 #include <sys/class.h> 37 #include <sys/cmn_err.h> 38 #include <sys/debug.h> 39 #include <sys/asm_linkage.h> 40 #include <sys/x_call.h> 41 #include <sys/systm.h> 42 #include <sys/var.h> 43 #include <sys/vtrace.h> 44 #include <vm/hat.h> 45 #include <vm/as.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kp.h> 48 #include <sys/segments.h> 49 #include <sys/kmem.h> 50 #include <sys/stack.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/x86_archext.h> 53 #include <sys/machsystm.h> 54 #include <sys/traptrace.h> 55 #include <sys/clock.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/pg.h> 58 #include <sys/cmt.h> 59 #include <sys/dtrace.h> 60 #include <sys/archsystm.h> 61 #include <sys/fp.h> 62 #include <sys/reboot.h> 63 #include <sys/kdi_machimpl.h> 64 #include <vm/hat_i86.h> 65 #include <sys/memnode.h> 66 #include <sys/pci_cfgspace.h> 67 #include <sys/mach_mmu.h> 68 #include <sys/sysmacros.h> 69 #include <sys/cpu_module.h> 70 71 struct cpu cpus[1]; /* CPU data */ 72 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ 73 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 74 75 /* 76 * Useful for disabling MP bring-up on a MP capable system. 77 */ 78 int use_mp = 1; 79 80 /* 81 * to be set by a PSM to indicate what cpus 82 * are sitting around on the system. 83 */ 84 cpuset_t mp_cpus; 85 86 /* 87 * This variable is used by the hat layer to decide whether or not 88 * critical sections are needed to prevent race conditions. For sun4m, 89 * this variable is set once enough MP initialization has been done in 90 * order to allow cross calls. 91 */ 92 int flushes_require_xcalls; 93 cpuset_t cpu_ready_set = 1; 94 95 static void mp_startup(void); 96 97 static void cpu_sep_enable(void); 98 static void cpu_sep_disable(void); 99 static void cpu_asysc_enable(void); 100 static void cpu_asysc_disable(void); 101 102 extern int tsc_gethrtime_enable; 103 104 /* 105 * Init CPU info - get CPU type info for processor_info system call. 106 */ 107 void 108 init_cpu_info(struct cpu *cp) 109 { 110 processor_info_t *pi = &cp->cpu_type_info; 111 char buf[CPU_IDSTRLEN]; 112 113 /* 114 * Get clock-frequency property for the CPU. 115 */ 116 pi->pi_clock = cpu_freq; 117 118 /* 119 * Current frequency in Hz. 120 */ 121 cp->cpu_curr_clock = cpu_freq_hz; 122 123 /* 124 * Supported frequencies. 125 */ 126 cpu_set_supp_freqs(cp, NULL); 127 128 (void) strcpy(pi->pi_processor_type, "i386"); 129 if (fpu_exists) 130 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 131 132 (void) cpuid_getidstr(cp, buf, sizeof (buf)); 133 134 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 135 (void) strcpy(cp->cpu_idstr, buf); 136 137 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 138 139 (void) cpuid_getbrandstr(cp, buf, sizeof (buf)); 140 cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 141 (void) strcpy(cp->cpu_brandstr, buf); 142 143 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 144 } 145 146 /* 147 * Configure syscall support on this CPU. 148 */ 149 /*ARGSUSED*/ 150 static void 151 init_cpu_syscall(struct cpu *cp) 152 { 153 kpreempt_disable(); 154 155 #if defined(__amd64) 156 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) { 157 158 #if !defined(__lint) 159 /* 160 * The syscall instruction imposes a certain ordering on 161 * segment selectors, so we double-check that ordering 162 * here. 163 */ 164 ASSERT(KDS_SEL == KCS_SEL + 8); 165 ASSERT(UDS_SEL == U32CS_SEL + 8); 166 ASSERT(UCS_SEL == U32CS_SEL + 16); 167 #endif 168 /* 169 * Turn syscall/sysret extensions on. 170 */ 171 cpu_asysc_enable(); 172 173 /* 174 * Program the magic registers .. 175 */ 176 wrmsr(MSR_AMD_STAR, 177 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 178 wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); 179 wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); 180 181 /* 182 * This list of flags is masked off the incoming 183 * %rfl when we enter the kernel. 184 */ 185 wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); 186 } 187 #endif 188 189 /* 190 * On 32-bit kernels, we use sysenter/sysexit because it's too 191 * hard to use syscall/sysret, and it is more portable anyway. 192 * 193 * On 64-bit kernels on Nocona machines, the 32-bit syscall 194 * variant isn't available to 32-bit applications, but sysenter is. 195 */ 196 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) { 197 198 #if !defined(__lint) 199 /* 200 * The sysenter instruction imposes a certain ordering on 201 * segment selectors, so we double-check that ordering 202 * here. See "sysenter" in Intel document 245471-012, "IA-32 203 * Intel Architecture Software Developer's Manual Volume 2: 204 * Instruction Set Reference" 205 */ 206 ASSERT(KDS_SEL == KCS_SEL + 8); 207 208 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); 209 ASSERT32(UDS_SEL == UCS_SEL + 8); 210 211 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); 212 ASSERT64(UDS_SEL == U32CS_SEL + 8); 213 #endif 214 215 cpu_sep_enable(); 216 217 /* 218 * resume() sets this value to the base of the threads stack 219 * via a context handler. 220 */ 221 wrmsr(MSR_INTC_SEP_ESP, 0); 222 wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); 223 } 224 225 kpreempt_enable(); 226 } 227 228 /* 229 * Multiprocessor initialization. 230 * 231 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 232 * startup and idle threads for the specified CPU. 233 */ 234 struct cpu * 235 mp_startup_init(int cpun) 236 { 237 struct cpu *cp; 238 kthread_id_t tp; 239 caddr_t sp; 240 proc_t *procp; 241 extern int idle_cpu_prefer_mwait; 242 extern void idle(); 243 244 #ifdef TRAPTRACE 245 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 246 #endif 247 248 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 249 250 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 251 if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) 252 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU); 253 254 procp = curthread->t_procp; 255 256 mutex_enter(&cpu_lock); 257 /* 258 * Initialize the dispatcher first. 259 */ 260 disp_cpu_init(cp); 261 mutex_exit(&cpu_lock); 262 263 cpu_vm_data_init(cp); 264 265 /* 266 * Allocate and initialize the startup thread for this CPU. 267 * Interrupt and process switch stacks get allocated later 268 * when the CPU starts running. 269 */ 270 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 271 TS_STOPPED, maxclsyspri); 272 273 /* 274 * Set state to TS_ONPROC since this thread will start running 275 * as soon as the CPU comes online. 276 * 277 * All the other fields of the thread structure are setup by 278 * thread_create(). 279 */ 280 THREAD_ONPROC(tp, cp); 281 tp->t_preempt = 1; 282 tp->t_bound_cpu = cp; 283 tp->t_affinitycnt = 1; 284 tp->t_cpu = cp; 285 tp->t_disp_queue = cp->cpu_disp; 286 287 /* 288 * Setup thread to start in mp_startup. 289 */ 290 sp = tp->t_stk; 291 tp->t_pc = (uintptr_t)mp_startup; 292 tp->t_sp = (uintptr_t)(sp - MINFRAME); 293 #if defined(__amd64) 294 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 295 #endif 296 297 cp->cpu_id = cpun; 298 cp->cpu_self = cp; 299 cp->cpu_thread = tp; 300 cp->cpu_lwp = NULL; 301 cp->cpu_dispthread = tp; 302 cp->cpu_dispatch_pri = DISP_PRIO(tp); 303 304 /* 305 * cpu_base_spl must be set explicitly here to prevent any blocking 306 * operations in mp_startup from causing the spl of the cpu to drop 307 * to 0 (allowing device interrupts before we're ready) in resume(). 308 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 309 * As an extra bit of security on DEBUG kernels, this is enforced with 310 * an assertion in mp_startup() -- before cpu_base_spl is set to its 311 * proper value. 312 */ 313 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 314 315 /* 316 * Now, initialize per-CPU idle thread for this CPU. 317 */ 318 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 319 320 cp->cpu_idle_thread = tp; 321 322 tp->t_preempt = 1; 323 tp->t_bound_cpu = cp; 324 tp->t_affinitycnt = 1; 325 tp->t_cpu = cp; 326 tp->t_disp_queue = cp->cpu_disp; 327 328 /* 329 * Bootstrap the CPU's PG data 330 */ 331 pg_cpu_bootstrap(cp); 332 333 /* 334 * Perform CPC initialization on the new CPU. 335 */ 336 kcpc_hw_init(cp); 337 338 /* 339 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 340 * for each CPU. 341 */ 342 setup_vaddr_for_ppcopy(cp); 343 344 /* 345 * Allocate page for new GDT and initialize from current GDT. 346 */ 347 #if !defined(__lint) 348 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 349 #endif 350 cp->cpu_m.mcpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 351 bcopy(CPU->cpu_m.mcpu_gdt, cp->cpu_m.mcpu_gdt, 352 (sizeof (*cp->cpu_m.mcpu_gdt) * NGDT)); 353 354 #if defined(__i386) 355 /* 356 * setup kernel %gs. 357 */ 358 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 359 SEL_KPL, 0, 1); 360 #endif 361 362 /* 363 * If we have more than one node, each cpu gets a copy of IDT 364 * local to its node. If this is a Pentium box, we use cpu 0's 365 * IDT. cpu 0's IDT has been made read-only to workaround the 366 * cmpxchgl register bug 367 */ 368 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { 369 struct machcpu *mcpu = &cp->cpu_m; 370 371 mcpu->mcpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP); 372 bcopy(idt0, mcpu->mcpu_idt, sizeof (idt0)); 373 } else { 374 cp->cpu_m.mcpu_idt = CPU->cpu_m.mcpu_idt; 375 } 376 377 /* 378 * Get interrupt priority data from cpu 0. 379 */ 380 cp->cpu_pri_data = CPU->cpu_pri_data; 381 382 /* 383 * alloc space for cpuid info 384 */ 385 cpuid_alloc_space(cp); 386 387 /* 388 * alloc space for ucode_info 389 */ 390 ucode_alloc_space(cp); 391 392 hat_cpu_online(cp); 393 394 #ifdef TRAPTRACE 395 /* 396 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 397 */ 398 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 399 ttc->ttc_next = ttc->ttc_first; 400 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 401 #endif 402 /* 403 * Record that we have another CPU. 404 */ 405 mutex_enter(&cpu_lock); 406 /* 407 * Initialize the interrupt threads for this CPU 408 */ 409 cpu_intr_alloc(cp, NINTR_THREADS); 410 /* 411 * Add CPU to list of available CPUs. It'll be on the active list 412 * after mp_startup(). 413 */ 414 cpu_add_unit(cp); 415 mutex_exit(&cpu_lock); 416 417 return (cp); 418 } 419 420 /* 421 * Undo what was done in mp_startup_init 422 */ 423 static void 424 mp_startup_fini(struct cpu *cp, int error) 425 { 426 mutex_enter(&cpu_lock); 427 428 /* 429 * Remove the CPU from the list of available CPUs. 430 */ 431 cpu_del_unit(cp->cpu_id); 432 433 if (error == ETIMEDOUT) { 434 /* 435 * The cpu was started, but never *seemed* to run any 436 * code in the kernel; it's probably off spinning in its 437 * own private world, though with potential references to 438 * our kmem-allocated IDTs and GDTs (for example). 439 * 440 * Worse still, it may actually wake up some time later, 441 * so rather than guess what it might or might not do, we 442 * leave the fundamental data structures intact. 443 */ 444 cp->cpu_flags = 0; 445 mutex_exit(&cpu_lock); 446 return; 447 } 448 449 /* 450 * At this point, the only threads bound to this CPU should 451 * special per-cpu threads: it's idle thread, it's pause threads, 452 * and it's interrupt threads. Clean these up. 453 */ 454 cpu_destroy_bound_threads(cp); 455 cp->cpu_idle_thread = NULL; 456 457 /* 458 * Free the interrupt stack. 459 */ 460 segkp_release(segkp, 461 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 462 463 mutex_exit(&cpu_lock); 464 465 #ifdef TRAPTRACE 466 /* 467 * Discard the trap trace buffer 468 */ 469 { 470 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 471 472 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 473 ttc->ttc_first = NULL; 474 } 475 #endif 476 477 hat_cpu_offline(cp); 478 479 cpuid_free_space(cp); 480 481 ucode_free_space(cp); 482 483 if (cp->cpu_m.mcpu_idt != CPU->cpu_m.mcpu_idt) 484 kmem_free(cp->cpu_m.mcpu_idt, sizeof (idt0)); 485 cp->cpu_m.mcpu_idt = NULL; 486 487 kmem_free(cp->cpu_m.mcpu_gdt, PAGESIZE); 488 cp->cpu_m.mcpu_gdt = NULL; 489 490 teardown_vaddr_for_ppcopy(cp); 491 492 kcpc_hw_fini(cp); 493 494 cp->cpu_dispthread = NULL; 495 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 496 497 cpu_vm_data_destroy(cp); 498 499 mutex_enter(&cpu_lock); 500 disp_cpu_fini(cp); 501 mutex_exit(&cpu_lock); 502 503 if (cp->cpu_m.mcpu_mwait != NULL) 504 cpuid_mwait_free(cp); 505 kmem_free(cp, sizeof (*cp)); 506 } 507 508 /* 509 * Apply workarounds for known errata, and warn about those that are absent. 510 * 511 * System vendors occasionally create configurations which contain different 512 * revisions of the CPUs that are almost but not exactly the same. At the 513 * time of writing, this meant that their clock rates were the same, their 514 * feature sets were the same, but the required workaround were -not- 515 * necessarily the same. So, this routine is invoked on -every- CPU soon 516 * after starting to make sure that the resulting system contains the most 517 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 518 * system. 519 * 520 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 521 * mp_startup() for all slave CPUs. Slaves process workaround_errata prior 522 * to acknowledging their readiness to the master, so this routine will 523 * never be executed by multiple CPUs in parallel, thus making updates to 524 * global data safe. 525 * 526 * These workarounds are based on Rev 3.57 of the Revision Guide for 527 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 528 */ 529 530 #if defined(OPTERON_ERRATUM_88) 531 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 532 #endif 533 534 #if defined(OPTERON_ERRATUM_91) 535 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 536 #endif 537 538 #if defined(OPTERON_ERRATUM_93) 539 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 540 #endif 541 542 #if defined(OPTERON_ERRATUM_95) 543 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 544 #endif 545 546 #if defined(OPTERON_ERRATUM_100) 547 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 548 #endif 549 550 #if defined(OPTERON_ERRATUM_108) 551 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 552 #endif 553 554 #if defined(OPTERON_ERRATUM_109) 555 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 556 #endif 557 558 #if defined(OPTERON_ERRATUM_121) 559 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 560 #endif 561 562 #if defined(OPTERON_ERRATUM_122) 563 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 564 #endif 565 566 #if defined(OPTERON_ERRATUM_123) 567 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 568 #endif 569 570 #if defined(OPTERON_ERRATUM_131) 571 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 572 #endif 573 574 #if defined(OPTERON_WORKAROUND_6336786) 575 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 576 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 577 #endif 578 579 #if defined(OPTERON_WORKAROUND_6323525) 580 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 581 #endif 582 583 static void 584 workaround_warning(cpu_t *cp, uint_t erratum) 585 { 586 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 587 cp->cpu_id, erratum); 588 } 589 590 static void 591 workaround_applied(uint_t erratum) 592 { 593 if (erratum > 1000000) 594 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 595 erratum); 596 else 597 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 598 erratum); 599 } 600 601 static void 602 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 603 { 604 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 605 cp->cpu_id, rw, msr, error); 606 } 607 608 uint_t 609 workaround_errata(struct cpu *cpu) 610 { 611 uint_t missing = 0; 612 613 ASSERT(cpu == CPU); 614 615 /*LINTED*/ 616 if (cpuid_opteron_erratum(cpu, 88) > 0) { 617 /* 618 * SWAPGS May Fail To Read Correct GS Base 619 */ 620 #if defined(OPTERON_ERRATUM_88) 621 /* 622 * The workaround is an mfence in the relevant assembler code 623 */ 624 opteron_erratum_88++; 625 #else 626 workaround_warning(cpu, 88); 627 missing++; 628 #endif 629 } 630 631 if (cpuid_opteron_erratum(cpu, 91) > 0) { 632 /* 633 * Software Prefetches May Report A Page Fault 634 */ 635 #if defined(OPTERON_ERRATUM_91) 636 /* 637 * fix is in trap.c 638 */ 639 opteron_erratum_91++; 640 #else 641 workaround_warning(cpu, 91); 642 missing++; 643 #endif 644 } 645 646 if (cpuid_opteron_erratum(cpu, 93) > 0) { 647 /* 648 * RSM Auto-Halt Restart Returns to Incorrect RIP 649 */ 650 #if defined(OPTERON_ERRATUM_93) 651 /* 652 * fix is in trap.c 653 */ 654 opteron_erratum_93++; 655 #else 656 workaround_warning(cpu, 93); 657 missing++; 658 #endif 659 } 660 661 /*LINTED*/ 662 if (cpuid_opteron_erratum(cpu, 95) > 0) { 663 /* 664 * RET Instruction May Return to Incorrect EIP 665 */ 666 #if defined(OPTERON_ERRATUM_95) 667 #if defined(_LP64) 668 /* 669 * Workaround this by ensuring that 32-bit user code and 670 * 64-bit kernel code never occupy the same address 671 * range mod 4G. 672 */ 673 if (_userlimit32 > 0xc0000000ul) 674 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 675 676 /*LINTED*/ 677 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 678 opteron_erratum_95++; 679 #endif /* _LP64 */ 680 #else 681 workaround_warning(cpu, 95); 682 missing++; 683 #endif 684 } 685 686 if (cpuid_opteron_erratum(cpu, 100) > 0) { 687 /* 688 * Compatibility Mode Branches Transfer to Illegal Address 689 */ 690 #if defined(OPTERON_ERRATUM_100) 691 /* 692 * fix is in trap.c 693 */ 694 opteron_erratum_100++; 695 #else 696 workaround_warning(cpu, 100); 697 missing++; 698 #endif 699 } 700 701 /*LINTED*/ 702 if (cpuid_opteron_erratum(cpu, 108) > 0) { 703 /* 704 * CPUID Instruction May Return Incorrect Model Number In 705 * Some Processors 706 */ 707 #if defined(OPTERON_ERRATUM_108) 708 /* 709 * (Our cpuid-handling code corrects the model number on 710 * those processors) 711 */ 712 #else 713 workaround_warning(cpu, 108); 714 missing++; 715 #endif 716 } 717 718 /*LINTED*/ 719 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 720 /* 721 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour 722 */ 723 #if defined(OPTERON_ERRATUM_109) 724 /* 725 * The "workaround" is to print a warning to upgrade the BIOS 726 */ 727 uint64_t value; 728 const uint_t msr = MSR_AMD_PATCHLEVEL; 729 int err; 730 731 if ((err = checked_rdmsr(msr, &value)) != 0) { 732 msr_warning(cpu, "rd", msr, err); 733 workaround_warning(cpu, 109); 734 missing++; 735 } 736 if (value == 0) 737 opteron_erratum_109++; 738 #else 739 workaround_warning(cpu, 109); 740 missing++; 741 #endif 742 /*CONSTANTCONDITION*/ 743 } while (0); 744 745 /*LINTED*/ 746 if (cpuid_opteron_erratum(cpu, 121) > 0) { 747 /* 748 * Sequential Execution Across Non_Canonical Boundary Caused 749 * Processor Hang 750 */ 751 #if defined(OPTERON_ERRATUM_121) 752 #if defined(_LP64) 753 /* 754 * Erratum 121 is only present in long (64 bit) mode. 755 * Workaround is to include the page immediately before the 756 * va hole to eliminate the possibility of system hangs due to 757 * sequential execution across the va hole boundary. 758 */ 759 if (opteron_erratum_121) 760 opteron_erratum_121++; 761 else { 762 if (hole_start) { 763 hole_start -= PAGESIZE; 764 } else { 765 /* 766 * hole_start not yet initialized by 767 * mmu_init. Initialize hole_start 768 * with value to be subtracted. 769 */ 770 hole_start = PAGESIZE; 771 } 772 opteron_erratum_121++; 773 } 774 #endif /* _LP64 */ 775 #else 776 workaround_warning(cpu, 121); 777 missing++; 778 #endif 779 } 780 781 /*LINTED*/ 782 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 783 /* 784 * TLB Flush Filter May Cause Coherency Problem in 785 * Multiprocessor Systems 786 */ 787 #if defined(OPTERON_ERRATUM_122) 788 uint64_t value; 789 const uint_t msr = MSR_AMD_HWCR; 790 int error; 791 792 /* 793 * Erratum 122 is only present in MP configurations (multi-core 794 * or multi-processor). 795 */ 796 if (!opteron_erratum_122 && lgrp_plat_node_cnt == 1 && 797 cpuid_get_ncpu_per_chip(cpu) == 1) 798 break; 799 800 /* disable TLB Flush Filter */ 801 802 if ((error = checked_rdmsr(msr, &value)) != 0) { 803 msr_warning(cpu, "rd", msr, error); 804 workaround_warning(cpu, 122); 805 missing++; 806 } else { 807 value |= (uint64_t)AMD_HWCR_FFDIS; 808 if ((error = checked_wrmsr(msr, value)) != 0) { 809 msr_warning(cpu, "wr", msr, error); 810 workaround_warning(cpu, 122); 811 missing++; 812 } 813 } 814 opteron_erratum_122++; 815 #else 816 workaround_warning(cpu, 122); 817 missing++; 818 #endif 819 /*CONSTANTCONDITION*/ 820 } while (0); 821 822 /*LINTED*/ 823 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 824 /* 825 * Bypassed Reads May Cause Data Corruption of System Hang in 826 * Dual Core Processors 827 */ 828 #if defined(OPTERON_ERRATUM_123) 829 uint64_t value; 830 const uint_t msr = MSR_AMD_PATCHLEVEL; 831 int err; 832 833 /* 834 * Erratum 123 applies only to multi-core cpus. 835 */ 836 if (cpuid_get_ncpu_per_chip(cpu) < 2) 837 break; 838 839 /* 840 * The "workaround" is to print a warning to upgrade the BIOS 841 */ 842 if ((err = checked_rdmsr(msr, &value)) != 0) { 843 msr_warning(cpu, "rd", msr, err); 844 workaround_warning(cpu, 123); 845 missing++; 846 } 847 if (value == 0) 848 opteron_erratum_123++; 849 #else 850 workaround_warning(cpu, 123); 851 missing++; 852 853 #endif 854 /*CONSTANTCONDITION*/ 855 } while (0); 856 857 /*LINTED*/ 858 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 859 /* 860 * Multiprocessor Systems with Four or More Cores May Deadlock 861 * Waiting for a Probe Response 862 */ 863 #if defined(OPTERON_ERRATUM_131) 864 uint64_t nbcfg; 865 const uint_t msr = MSR_AMD_NB_CFG; 866 const uint64_t wabits = 867 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 868 int error; 869 870 /* 871 * Erratum 131 applies to any system with four or more cores. 872 */ 873 if (opteron_erratum_131) 874 break; 875 876 if (lgrp_plat_node_cnt * cpuid_get_ncpu_per_chip(cpu) < 4) 877 break; 878 879 /* 880 * Print a warning if neither of the workarounds for 881 * erratum 131 is present. 882 */ 883 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 884 msr_warning(cpu, "rd", msr, error); 885 workaround_warning(cpu, 131); 886 missing++; 887 } else if ((nbcfg & wabits) == 0) { 888 opteron_erratum_131++; 889 } else { 890 /* cannot have both workarounds set */ 891 ASSERT((nbcfg & wabits) != wabits); 892 } 893 #else 894 workaround_warning(cpu, 131); 895 missing++; 896 #endif 897 /*CONSTANTCONDITION*/ 898 } while (0); 899 900 /* 901 * This isn't really an erratum, but for convenience the 902 * detection/workaround code lives here and in cpuid_opteron_erratum. 903 */ 904 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 905 #if defined(OPTERON_WORKAROUND_6336786) 906 /* 907 * Disable C1-Clock ramping on multi-core/multi-processor 908 * K8 platforms to guard against TSC drift. 909 */ 910 if (opteron_workaround_6336786) { 911 opteron_workaround_6336786++; 912 } else if ((lgrp_plat_node_cnt * 913 cpuid_get_ncpu_per_chip(cpu) > 1) || 914 opteron_workaround_6336786_UP) { 915 int node; 916 uint8_t data; 917 918 for (node = 0; node < lgrp_plat_node_cnt; node++) { 919 /* 920 * Clear PMM7[1:0] (function 3, offset 0x87) 921 * Northbridge device is the node id + 24. 922 */ 923 data = pci_getb_func(0, node + 24, 3, 0x87); 924 data &= 0xFC; 925 pci_putb_func(0, node + 24, 3, 0x87, data); 926 } 927 opteron_workaround_6336786++; 928 } 929 #else 930 workaround_warning(cpu, 6336786); 931 missing++; 932 #endif 933 } 934 935 /*LINTED*/ 936 /* 937 * Mutex primitives don't work as expected. 938 */ 939 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 940 #if defined(OPTERON_WORKAROUND_6323525) 941 /* 942 * This problem only occurs with 2 or more cores. If bit in 943 * MSR_BU_CFG set, then not applicable. The workaround 944 * is to patch the semaphone routines with the lfence 945 * instruction to provide necessary load memory barrier with 946 * possible subsequent read-modify-write ops. 947 * 948 * It is too early in boot to call the patch routine so 949 * set erratum variable to be done in startup_end(). 950 */ 951 if (opteron_workaround_6323525) { 952 opteron_workaround_6323525++; 953 } else if ((x86_feature & X86_SSE2) && ((lgrp_plat_node_cnt * 954 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 955 if ((xrdmsr(MSR_BU_CFG) & 0x02) == 0) 956 opteron_workaround_6323525++; 957 } 958 #else 959 workaround_warning(cpu, 6323525); 960 missing++; 961 #endif 962 } 963 964 return (missing); 965 } 966 967 void 968 workaround_errata_end() 969 { 970 #if defined(OPTERON_ERRATUM_88) 971 if (opteron_erratum_88) 972 workaround_applied(88); 973 #endif 974 #if defined(OPTERON_ERRATUM_91) 975 if (opteron_erratum_91) 976 workaround_applied(91); 977 #endif 978 #if defined(OPTERON_ERRATUM_93) 979 if (opteron_erratum_93) 980 workaround_applied(93); 981 #endif 982 #if defined(OPTERON_ERRATUM_95) 983 if (opteron_erratum_95) 984 workaround_applied(95); 985 #endif 986 #if defined(OPTERON_ERRATUM_100) 987 if (opteron_erratum_100) 988 workaround_applied(100); 989 #endif 990 #if defined(OPTERON_ERRATUM_108) 991 if (opteron_erratum_108) 992 workaround_applied(108); 993 #endif 994 #if defined(OPTERON_ERRATUM_109) 995 if (opteron_erratum_109) { 996 cmn_err(CE_WARN, 997 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 998 " processor\nerratum 109 was not detected; updating your" 999 " system's BIOS to a version\ncontaining this" 1000 " microcode patch is HIGHLY recommended or erroneous" 1001 " system\noperation may occur.\n"); 1002 } 1003 #endif 1004 #if defined(OPTERON_ERRATUM_121) 1005 if (opteron_erratum_121) 1006 workaround_applied(121); 1007 #endif 1008 #if defined(OPTERON_ERRATUM_122) 1009 if (opteron_erratum_122) 1010 workaround_applied(122); 1011 #endif 1012 #if defined(OPTERON_ERRATUM_123) 1013 if (opteron_erratum_123) { 1014 cmn_err(CE_WARN, 1015 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1016 " processor\nerratum 123 was not detected; updating your" 1017 " system's BIOS to a version\ncontaining this" 1018 " microcode patch is HIGHLY recommended or erroneous" 1019 " system\noperation may occur.\n"); 1020 } 1021 #endif 1022 #if defined(OPTERON_ERRATUM_131) 1023 if (opteron_erratum_131) { 1024 cmn_err(CE_WARN, 1025 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1026 " processor\nerratum 131 was not detected; updating your" 1027 " system's BIOS to a version\ncontaining this" 1028 " microcode patch is HIGHLY recommended or erroneous" 1029 " system\noperation may occur.\n"); 1030 } 1031 #endif 1032 #if defined(OPTERON_WORKAROUND_6336786) 1033 if (opteron_workaround_6336786) 1034 workaround_applied(6336786); 1035 #endif 1036 #if defined(OPTERON_WORKAROUND_6323525) 1037 if (opteron_workaround_6323525) 1038 workaround_applied(6323525); 1039 #endif 1040 } 1041 1042 static cpuset_t procset; 1043 1044 /* 1045 * Start a single cpu, assuming that the kernel context is available 1046 * to successfully start another cpu. 1047 * 1048 * (For example, real mode code is mapped into the right place 1049 * in memory and is ready to be run.) 1050 */ 1051 int 1052 start_cpu(processorid_t who) 1053 { 1054 void *ctx; 1055 cpu_t *cp; 1056 int delays; 1057 int error = 0; 1058 1059 ASSERT(who != 0); 1060 1061 /* 1062 * Check if there's at least a Mbyte of kmem available 1063 * before attempting to start the cpu. 1064 */ 1065 if (kmem_avail() < 1024 * 1024) { 1066 /* 1067 * Kick off a reap in case that helps us with 1068 * later attempts .. 1069 */ 1070 kmem_reap(); 1071 return (ENOMEM); 1072 } 1073 1074 cp = mp_startup_init(who); 1075 if ((ctx = mach_cpucontext_alloc(cp)) == NULL || 1076 (error = mach_cpu_start(cp, ctx)) != 0) { 1077 1078 /* 1079 * Something went wrong before we even started it 1080 */ 1081 if (ctx) 1082 cmn_err(CE_WARN, 1083 "cpu%d: failed to start error %d", 1084 cp->cpu_id, error); 1085 else 1086 cmn_err(CE_WARN, 1087 "cpu%d: failed to allocate context", cp->cpu_id); 1088 1089 if (ctx) 1090 mach_cpucontext_free(cp, ctx, error); 1091 else 1092 error = EAGAIN; /* hmm. */ 1093 mp_startup_fini(cp, error); 1094 return (error); 1095 } 1096 1097 for (delays = 0; !CPU_IN_SET(procset, who); delays++) { 1098 if (delays == 500) { 1099 /* 1100 * After five seconds, things are probably looking 1101 * a bit bleak - explain the hang. 1102 */ 1103 cmn_err(CE_NOTE, "cpu%d: started, " 1104 "but not running in the kernel yet", who); 1105 } else if (delays > 2000) { 1106 /* 1107 * We waited at least 20 seconds, bail .. 1108 */ 1109 error = ETIMEDOUT; 1110 cmn_err(CE_WARN, "cpu%d: timed out", who); 1111 mach_cpucontext_free(cp, ctx, error); 1112 mp_startup_fini(cp, error); 1113 return (error); 1114 } 1115 1116 /* 1117 * wait at least 10ms, then check again.. 1118 */ 1119 delay(USEC_TO_TICK_ROUNDUP(10000)); 1120 } 1121 1122 mach_cpucontext_free(cp, ctx, 0); 1123 1124 if (tsc_gethrtime_enable) 1125 tsc_sync_master(who); 1126 1127 if (dtrace_cpu_init != NULL) { 1128 /* 1129 * DTrace CPU initialization expects cpu_lock to be held. 1130 */ 1131 mutex_enter(&cpu_lock); 1132 (*dtrace_cpu_init)(who); 1133 mutex_exit(&cpu_lock); 1134 } 1135 1136 while (!CPU_IN_SET(cpu_ready_set, who)) 1137 delay(1); 1138 1139 return (0); 1140 } 1141 1142 1143 /*ARGSUSED*/ 1144 void 1145 start_other_cpus(int cprboot) 1146 { 1147 uint_t who; 1148 uint_t skipped = 0; 1149 uint_t bootcpuid = 0; 1150 1151 /* 1152 * Initialize our own cpu_info. 1153 */ 1154 init_cpu_info(CPU); 1155 1156 /* 1157 * Initialize our syscall handlers 1158 */ 1159 init_cpu_syscall(CPU); 1160 1161 /* 1162 * Take the boot cpu out of the mp_cpus set because we know 1163 * it's already running. Add it to the cpu_ready_set for 1164 * precisely the same reason. 1165 */ 1166 CPUSET_DEL(mp_cpus, bootcpuid); 1167 CPUSET_ADD(cpu_ready_set, bootcpuid); 1168 1169 /* 1170 * if only 1 cpu or not using MP, skip the rest of this 1171 */ 1172 if (CPUSET_ISNULL(mp_cpus) || use_mp == 0) { 1173 if (use_mp == 0) 1174 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1175 goto done; 1176 } 1177 1178 /* 1179 * perform such initialization as is needed 1180 * to be able to take CPUs on- and off-line. 1181 */ 1182 cpu_pause_init(); 1183 1184 xc_init(); /* initialize processor crosscalls */ 1185 1186 if (mach_cpucontext_init() != 0) 1187 goto done; 1188 1189 flushes_require_xcalls = 1; 1190 1191 /* 1192 * We lock our affinity to the master CPU to ensure that all slave CPUs 1193 * do their TSC syncs with the same CPU. 1194 */ 1195 affinity_set(CPU_CURRENT); 1196 1197 for (who = 0; who < NCPU; who++) { 1198 1199 if (!CPU_IN_SET(mp_cpus, who)) 1200 continue; 1201 ASSERT(who != bootcpuid); 1202 if (ncpus >= max_ncpus) { 1203 skipped = who; 1204 continue; 1205 } 1206 if (start_cpu(who) != 0) 1207 CPUSET_DEL(mp_cpus, who); 1208 } 1209 1210 /* Free the space allocated to hold the microcode file */ 1211 ucode_free(); 1212 1213 affinity_clear(); 1214 1215 if (skipped) { 1216 cmn_err(CE_NOTE, 1217 "System detected %d cpus, but " 1218 "only %d cpu(s) were enabled during boot.", 1219 skipped + 1, ncpus); 1220 cmn_err(CE_NOTE, 1221 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1222 "See eeprom(1M)."); 1223 } 1224 1225 done: 1226 workaround_errata_end(); 1227 mach_cpucontext_fini(); 1228 1229 cmi_post_mpstartup(); 1230 } 1231 1232 /* 1233 * Dummy functions - no i86pc platforms support dynamic cpu allocation. 1234 */ 1235 /*ARGSUSED*/ 1236 int 1237 mp_cpu_configure(int cpuid) 1238 { 1239 return (ENOTSUP); /* not supported */ 1240 } 1241 1242 /*ARGSUSED*/ 1243 int 1244 mp_cpu_unconfigure(int cpuid) 1245 { 1246 return (ENOTSUP); /* not supported */ 1247 } 1248 1249 /* 1250 * Startup function for 'other' CPUs (besides boot cpu). 1251 * Called from real_mode_start. 1252 * 1253 * WARNING: until CPU_READY is set, mp_startup and routines called by 1254 * mp_startup should not call routines (e.g. kmem_free) that could call 1255 * hat_unload which requires CPU_READY to be set. 1256 */ 1257 void 1258 mp_startup(void) 1259 { 1260 struct cpu *cp = CPU; 1261 uint_t new_x86_feature; 1262 1263 /* 1264 * We need to get TSC on this proc synced (i.e., any delta 1265 * from cpu0 accounted for) as soon as we can, because many 1266 * many things use gethrtime/pc_gethrestime, including 1267 * interrupts, cmn_err, etc. 1268 */ 1269 1270 /* Let cpu0 continue into tsc_sync_master() */ 1271 CPUSET_ATOMIC_ADD(procset, cp->cpu_id); 1272 1273 if (tsc_gethrtime_enable) 1274 tsc_sync_slave(); 1275 1276 /* 1277 * Once this was done from assembly, but it's safer here; if 1278 * it blocks, we need to be able to swtch() to and from, and 1279 * since we get here by calling t_pc, we need to do that call 1280 * before swtch() overwrites it. 1281 */ 1282 1283 (void) (*ap_mlsetup)(); 1284 1285 new_x86_feature = cpuid_pass1(cp); 1286 1287 /* 1288 * We need to Sync MTRR with cpu0's MTRR. We have to do 1289 * this with interrupts disabled. 1290 */ 1291 if (x86_feature & X86_MTRR) 1292 mtrr_sync(); 1293 1294 /* 1295 * Set up TSC_AUX to contain the cpuid for this processor 1296 * for the rdtscp instruction. 1297 */ 1298 if (x86_feature & X86_TSCP) 1299 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1300 1301 /* 1302 * Initialize this CPU's syscall handlers 1303 */ 1304 init_cpu_syscall(cp); 1305 1306 /* 1307 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1308 * highest level at which a routine is permitted to block on 1309 * an adaptive mutex (allows for cpu poke interrupt in case 1310 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1311 * device interrupts that may end up in the hat layer issuing cross 1312 * calls before CPU_READY is set. 1313 */ 1314 splx(ipltospl(LOCK_LEVEL)); 1315 sti(); 1316 1317 /* 1318 * Do a sanity check to make sure this new CPU is a sane thing 1319 * to add to the collection of processors running this system. 1320 * 1321 * XXX Clearly this needs to get more sophisticated, if x86 1322 * systems start to get built out of heterogenous CPUs; as is 1323 * likely to happen once the number of processors in a configuration 1324 * gets large enough. 1325 */ 1326 if ((x86_feature & new_x86_feature) != x86_feature) { 1327 cmn_err(CE_CONT, "?cpu%d: %b\n", 1328 cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); 1329 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1330 } 1331 1332 /* 1333 * We do not support cpus with mixed monitor/mwait support if the 1334 * boot cpu supports monitor/mwait. 1335 */ 1336 if ((x86_feature & ~new_x86_feature) & X86_MWAIT) 1337 panic("unsupported mixed cpu monitor/mwait support detected"); 1338 1339 /* 1340 * We could be more sophisticated here, and just mark the CPU 1341 * as "faulted" but at this point we'll opt for the easier 1342 * answer of dieing horribly. Provided the boot cpu is ok, 1343 * the system can be recovered by booting with use_mp set to zero. 1344 */ 1345 if (workaround_errata(cp) != 0) 1346 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1347 1348 cpuid_pass2(cp); 1349 cpuid_pass3(cp); 1350 (void) cpuid_pass4(cp); 1351 1352 init_cpu_info(cp); 1353 1354 mutex_enter(&cpu_lock); 1355 /* 1356 * Processor group initialization for this CPU is dependent on the 1357 * cpuid probing, which must be done in the context of the current 1358 * CPU. 1359 */ 1360 pghw_physid_create(cp); 1361 pg_cpu_init(cp); 1362 pg_cmt_cpu_startup(cp); 1363 1364 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS; 1365 cpu_add_active(cp); 1366 1367 if (dtrace_cpu_init != NULL) { 1368 (*dtrace_cpu_init)(cp->cpu_id); 1369 } 1370 1371 /* 1372 * Fill out cpu_ucode_info. Update microcode if necessary. 1373 */ 1374 ucode_check(cp); 1375 1376 mutex_exit(&cpu_lock); 1377 1378 /* 1379 * Enable preemption here so that contention for any locks acquired 1380 * later in mp_startup may be preempted if the thread owning those 1381 * locks is continously executing on other CPUs (for example, this 1382 * CPU must be preemptible to allow other CPUs to pause it during their 1383 * startup phases). It's safe to enable preemption here because the 1384 * CPU state is pretty-much fully constructed. 1385 */ 1386 curthread->t_preempt = 0; 1387 1388 add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi); 1389 1390 /* The base spl should still be at LOCK LEVEL here */ 1391 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1392 set_base_spl(); /* Restore the spl to its proper value */ 1393 1394 (void) spl0(); /* enable interrupts */ 1395 1396 /* 1397 * Set up the CPU module for this CPU. This can't be done before 1398 * this CPU is made CPU_READY, because we may (in heterogeneous systems) 1399 * need to go load another CPU module. The act of attempting to load 1400 * a module may trigger a cross-call, which will ASSERT unless this 1401 * cpu is CPU_READY. 1402 */ 1403 cmi_init(); 1404 1405 if (x86_feature & X86_MCA) 1406 cmi_mca_init(); 1407 1408 if (boothowto & RB_DEBUG) 1409 kdi_cpu_init(); 1410 1411 /* 1412 * Setting the bit in cpu_ready_set must be the last operation in 1413 * processor initialization; the boot CPU will continue to boot once 1414 * it sees this bit set for all active CPUs. 1415 */ 1416 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1417 1418 /* 1419 * Because mp_startup() gets fired off after init() starts, we 1420 * can't use the '?' trick to do 'boot -v' printing - so we 1421 * always direct the 'cpu .. online' messages to the log. 1422 */ 1423 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 1424 cp->cpu_id); 1425 1426 /* 1427 * Now we are done with the startup thread, so free it up. 1428 */ 1429 thread_exit(); 1430 panic("mp_startup: cannot return"); 1431 /*NOTREACHED*/ 1432 } 1433 1434 1435 /* 1436 * Start CPU on user request. 1437 */ 1438 /* ARGSUSED */ 1439 int 1440 mp_cpu_start(struct cpu *cp) 1441 { 1442 ASSERT(MUTEX_HELD(&cpu_lock)); 1443 return (0); 1444 } 1445 1446 /* 1447 * Stop CPU on user request. 1448 */ 1449 /* ARGSUSED */ 1450 int 1451 mp_cpu_stop(struct cpu *cp) 1452 { 1453 extern int cbe_psm_timer_mode; 1454 ASSERT(MUTEX_HELD(&cpu_lock)); 1455 1456 /* 1457 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1458 * can't stop it. (This is true only for machines with no TSC.) 1459 */ 1460 1461 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1462 return (1); 1463 1464 return (0); 1465 } 1466 1467 /* 1468 * Take the specified CPU out of participation in interrupts. 1469 */ 1470 int 1471 cpu_disable_intr(struct cpu *cp) 1472 { 1473 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1474 return (EBUSY); 1475 1476 cp->cpu_flags &= ~CPU_ENABLE; 1477 return (0); 1478 } 1479 1480 /* 1481 * Allow the specified CPU to participate in interrupts. 1482 */ 1483 void 1484 cpu_enable_intr(struct cpu *cp) 1485 { 1486 ASSERT(MUTEX_HELD(&cpu_lock)); 1487 cp->cpu_flags |= CPU_ENABLE; 1488 psm_enable_intr(cp->cpu_id); 1489 } 1490 1491 1492 1493 void 1494 mp_cpu_faulted_enter(struct cpu *cp) 1495 { 1496 cmi_faulted_enter(cp); 1497 } 1498 1499 void 1500 mp_cpu_faulted_exit(struct cpu *cp) 1501 { 1502 cmi_faulted_exit(cp); 1503 } 1504 1505 /* 1506 * The following two routines are used as context operators on threads belonging 1507 * to processes with a private LDT (see sysi86). Due to the rarity of such 1508 * processes, these routines are currently written for best code readability and 1509 * organization rather than speed. We could avoid checking x86_feature at every 1510 * context switch by installing different context ops, depending on the 1511 * x86_feature flags, at LDT creation time -- one for each combination of fast 1512 * syscall feature flags. 1513 */ 1514 1515 /*ARGSUSED*/ 1516 void 1517 cpu_fast_syscall_disable(void *arg) 1518 { 1519 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) 1520 cpu_sep_disable(); 1521 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) 1522 cpu_asysc_disable(); 1523 } 1524 1525 /*ARGSUSED*/ 1526 void 1527 cpu_fast_syscall_enable(void *arg) 1528 { 1529 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) 1530 cpu_sep_enable(); 1531 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) 1532 cpu_asysc_enable(); 1533 } 1534 1535 static void 1536 cpu_sep_enable(void) 1537 { 1538 ASSERT(x86_feature & X86_SEP); 1539 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1540 1541 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 1542 } 1543 1544 static void 1545 cpu_sep_disable(void) 1546 { 1547 ASSERT(x86_feature & X86_SEP); 1548 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1549 1550 /* 1551 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 1552 * the sysenter or sysexit instruction to trigger a #gp fault. 1553 */ 1554 wrmsr(MSR_INTC_SEP_CS, 0); 1555 } 1556 1557 static void 1558 cpu_asysc_enable(void) 1559 { 1560 ASSERT(x86_feature & X86_ASYSC); 1561 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1562 1563 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 1564 (uint64_t)(uintptr_t)AMD_EFER_SCE); 1565 } 1566 1567 static void 1568 cpu_asysc_disable(void) 1569 { 1570 ASSERT(x86_feature & X86_ASYSC); 1571 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1572 1573 /* 1574 * Turn off the SCE (syscall enable) bit in the EFER register. Software 1575 * executing syscall or sysret with this bit off will incur a #ud trap. 1576 */ 1577 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 1578 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 1579 } 1580