1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2009, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Portions Copyright 2009 Advanced Micro Devices, Inc. 31 */ 32 33 /* 34 * Various routines to handle identification 35 * and classification of x86 processors. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/archsystm.h> 40 #include <sys/x86_archext.h> 41 #include <sys/kmem.h> 42 #include <sys/systm.h> 43 #include <sys/cmn_err.h> 44 #include <sys/sunddi.h> 45 #include <sys/sunndi.h> 46 #include <sys/cpuvar.h> 47 #include <sys/processor.h> 48 #include <sys/sysmacros.h> 49 #include <sys/pg.h> 50 #include <sys/fp.h> 51 #include <sys/controlregs.h> 52 #include <sys/auxv_386.h> 53 #include <sys/bitmap.h> 54 #include <sys/memnode.h> 55 #include <sys/pci_cfgspace.h> 56 57 #ifdef __xpv 58 #include <sys/hypervisor.h> 59 #else 60 #include <sys/ontrap.h> 61 #endif 62 63 /* 64 * Pass 0 of cpuid feature analysis happens in locore. It contains special code 65 * to recognize Cyrix processors that are not cpuid-compliant, and to deal with 66 * them accordingly. For most modern processors, feature detection occurs here 67 * in pass 1. 68 * 69 * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup() 70 * for the boot CPU and does the basic analysis that the early kernel needs. 71 * x86_feature is set based on the return value of cpuid_pass1() of the boot 72 * CPU. 73 * 74 * Pass 1 includes: 75 * 76 * o Determining vendor/model/family/stepping and setting x86_type and 77 * x86_vendor accordingly. 78 * o Processing the feature flags returned by the cpuid instruction while 79 * applying any workarounds or tricks for the specific processor. 80 * o Mapping the feature flags into Solaris feature bits (X86_*). 81 * o Processing extended feature flags if supported by the processor, 82 * again while applying specific processor knowledge. 83 * o Determining the CMT characteristics of the system. 84 * 85 * Pass 1 is done on non-boot CPUs during their initialization and the results 86 * are used only as a meager attempt at ensuring that all processors within the 87 * system support the same features. 88 * 89 * Pass 2 of cpuid feature analysis happens just at the beginning 90 * of startup(). It just copies in and corrects the remainder 91 * of the cpuid data we depend on: standard cpuid functions that we didn't 92 * need for pass1 feature analysis, and extended cpuid functions beyond the 93 * simple feature processing done in pass1. 94 * 95 * Pass 3 of cpuid analysis is invoked after basic kernel services; in 96 * particular kernel memory allocation has been made available. It creates a 97 * readable brand string based on the data collected in the first two passes. 98 * 99 * Pass 4 of cpuid analysis is invoked after post_startup() when all 100 * the support infrastructure for various hardware features has been 101 * initialized. It determines which processor features will be reported 102 * to userland via the aux vector. 103 * 104 * All passes are executed on all CPUs, but only the boot CPU determines what 105 * features the kernel will use. 106 * 107 * Much of the worst junk in this file is for the support of processors 108 * that didn't really implement the cpuid instruction properly. 109 * 110 * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon, 111 * the pass numbers. Accordingly, changes to the pass code may require changes 112 * to the accessor code. 113 */ 114 115 uint_t x86_feature = 0; 116 uint_t x86_vendor = X86_VENDOR_IntelClone; 117 uint_t x86_type = X86_TYPE_OTHER; 118 uint_t x86_clflush_size = 0; 119 120 uint_t pentiumpro_bug4046376; 121 uint_t pentiumpro_bug4064495; 122 123 uint_t enable486; 124 /* 125 * This is set to platform type Solaris is running on. 126 */ 127 static int platform_type = -1; 128 129 #if !defined(__xpv) 130 /* 131 * Variable to patch if hypervisor platform detection needs to be 132 * disabled (e.g. platform_type will always be HW_NATIVE if this is 0). 133 */ 134 int enable_platform_detection = 1; 135 #endif 136 137 /* 138 * monitor/mwait info. 139 * 140 * size_actual and buf_actual are the real address and size allocated to get 141 * proper mwait_buf alignement. buf_actual and size_actual should be passed 142 * to kmem_free(). Currently kmem_alloc() and mwait happen to both use 143 * processor cache-line alignment, but this is not guarantied in the furture. 144 */ 145 struct mwait_info { 146 size_t mon_min; /* min size to avoid missed wakeups */ 147 size_t mon_max; /* size to avoid false wakeups */ 148 size_t size_actual; /* size actually allocated */ 149 void *buf_actual; /* memory actually allocated */ 150 uint32_t support; /* processor support of monitor/mwait */ 151 }; 152 153 /* 154 * These constants determine how many of the elements of the 155 * cpuid we cache in the cpuid_info data structure; the 156 * remaining elements are accessible via the cpuid instruction. 157 */ 158 159 #define NMAX_CPI_STD 6 /* eax = 0 .. 5 */ 160 #define NMAX_CPI_EXTD 0x1c /* eax = 0x80000000 .. 0x8000001b */ 161 162 /* 163 * Some terminology needs to be explained: 164 * - Socket: Something that can be plugged into a motherboard. 165 * - Package: Same as socket 166 * - Chip: Same as socket. Note that AMD's documentation uses term "chip" 167 * differently: there, chip is the same as processor node (below) 168 * - Processor node: Some AMD processors have more than one 169 * "subprocessor" embedded in a package. These subprocessors (nodes) 170 * are fully-functional processors themselves with cores, caches, 171 * memory controllers, PCI configuration spaces. They are connected 172 * inside the package with Hypertransport links. On single-node 173 * processors, processor node is equivalent to chip/socket/package. 174 */ 175 176 struct cpuid_info { 177 uint_t cpi_pass; /* last pass completed */ 178 /* 179 * standard function information 180 */ 181 uint_t cpi_maxeax; /* fn 0: %eax */ 182 char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ 183 uint_t cpi_vendor; /* enum of cpi_vendorstr */ 184 185 uint_t cpi_family; /* fn 1: extended family */ 186 uint_t cpi_model; /* fn 1: extended model */ 187 uint_t cpi_step; /* fn 1: stepping */ 188 chipid_t cpi_chipid; /* fn 1: %ebx: Intel: chip # */ 189 /* AMD: package/socket # */ 190 uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ 191 int cpi_clogid; /* fn 1: %ebx: thread # */ 192 uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */ 193 uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ 194 uint_t cpi_ncache; /* fn 2: number of elements */ 195 uint_t cpi_ncpu_shr_last_cache; /* fn 4: %eax: ncpus sharing cache */ 196 id_t cpi_last_lvl_cacheid; /* fn 4: %eax: derived cache id */ 197 uint_t cpi_std_4_size; /* fn 4: number of fn 4 elements */ 198 struct cpuid_regs **cpi_std_4; /* fn 4: %ecx == 0 .. fn4_size */ 199 struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */ 200 /* 201 * extended function information 202 */ 203 uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ 204 char cpi_brandstr[49]; /* fn 0x8000000[234] */ 205 uint8_t cpi_pabits; /* fn 0x80000006: %eax */ 206 uint8_t cpi_vabits; /* fn 0x80000006: %eax */ 207 struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x800000XX */ 208 209 id_t cpi_coreid; /* same coreid => strands share core */ 210 int cpi_pkgcoreid; /* core number within single package */ 211 uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */ 212 /* Intel: fn 4: %eax[31-26] */ 213 /* 214 * supported feature information 215 */ 216 uint32_t cpi_support[5]; 217 #define STD_EDX_FEATURES 0 218 #define AMD_EDX_FEATURES 1 219 #define TM_EDX_FEATURES 2 220 #define STD_ECX_FEATURES 3 221 #define AMD_ECX_FEATURES 4 222 /* 223 * Synthesized information, where known. 224 */ 225 uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */ 226 const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */ 227 uint32_t cpi_socket; /* Chip package/socket type */ 228 229 struct mwait_info cpi_mwait; /* fn 5: monitor/mwait info */ 230 uint32_t cpi_apicid; 231 uint_t cpi_procnodeid; /* AMD: nodeID on HT, Intel: chipid */ 232 uint_t cpi_procnodes_per_pkg; /* AMD: # of nodes in the package */ 233 /* Intel: 1 */ 234 }; 235 236 237 static struct cpuid_info cpuid_info0; 238 239 /* 240 * These bit fields are defined by the Intel Application Note AP-485 241 * "Intel Processor Identification and the CPUID Instruction" 242 */ 243 #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) 244 #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) 245 #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) 246 #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) 247 #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) 248 #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) 249 250 #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) 251 #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) 252 #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) 253 #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) 254 255 #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) 256 #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) 257 #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) 258 #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) 259 260 #define CPI_MAXEAX_MAX 0x100 /* sanity control */ 261 #define CPI_XMAXEAX_MAX 0x80000100 262 #define CPI_FN4_ECX_MAX 0x20 /* sanity: max fn 4 levels */ 263 #define CPI_FNB_ECX_MAX 0x20 /* sanity: max fn B levels */ 264 265 /* 266 * Function 4 (Deterministic Cache Parameters) macros 267 * Defined by Intel Application Note AP-485 268 */ 269 #define CPI_NUM_CORES(regs) BITX((regs)->cp_eax, 31, 26) 270 #define CPI_NTHR_SHR_CACHE(regs) BITX((regs)->cp_eax, 25, 14) 271 #define CPI_FULL_ASSOC_CACHE(regs) BITX((regs)->cp_eax, 9, 9) 272 #define CPI_SELF_INIT_CACHE(regs) BITX((regs)->cp_eax, 8, 8) 273 #define CPI_CACHE_LVL(regs) BITX((regs)->cp_eax, 7, 5) 274 #define CPI_CACHE_TYPE(regs) BITX((regs)->cp_eax, 4, 0) 275 #define CPI_CPU_LEVEL_TYPE(regs) BITX((regs)->cp_ecx, 15, 8) 276 277 #define CPI_CACHE_WAYS(regs) BITX((regs)->cp_ebx, 31, 22) 278 #define CPI_CACHE_PARTS(regs) BITX((regs)->cp_ebx, 21, 12) 279 #define CPI_CACHE_COH_LN_SZ(regs) BITX((regs)->cp_ebx, 11, 0) 280 281 #define CPI_CACHE_SETS(regs) BITX((regs)->cp_ecx, 31, 0) 282 283 #define CPI_PREFCH_STRIDE(regs) BITX((regs)->cp_edx, 9, 0) 284 285 286 /* 287 * A couple of shorthand macros to identify "later" P6-family chips 288 * like the Pentium M and Core. First, the "older" P6-based stuff 289 * (loosely defined as "pre-Pentium-4"): 290 * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon 291 */ 292 293 #define IS_LEGACY_P6(cpi) ( \ 294 cpi->cpi_family == 6 && \ 295 (cpi->cpi_model == 1 || \ 296 cpi->cpi_model == 3 || \ 297 cpi->cpi_model == 5 || \ 298 cpi->cpi_model == 6 || \ 299 cpi->cpi_model == 7 || \ 300 cpi->cpi_model == 8 || \ 301 cpi->cpi_model == 0xA || \ 302 cpi->cpi_model == 0xB) \ 303 ) 304 305 /* A "new F6" is everything with family 6 that's not the above */ 306 #define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi)) 307 308 /* Extended family/model support */ 309 #define IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \ 310 cpi->cpi_family >= 0xf) 311 312 /* 313 * Info for monitor/mwait idle loop. 314 * 315 * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's 316 * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November 317 * 2006. 318 * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual 319 * Documentation Updates" #33633, Rev 2.05, December 2006. 320 */ 321 #define MWAIT_SUPPORT (0x00000001) /* mwait supported */ 322 #define MWAIT_EXTENSIONS (0x00000002) /* extenstion supported */ 323 #define MWAIT_ECX_INT_ENABLE (0x00000004) /* ecx 1 extension supported */ 324 #define MWAIT_SUPPORTED(cpi) ((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON) 325 #define MWAIT_INT_ENABLE(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x2) 326 #define MWAIT_EXTENSION(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x1) 327 #define MWAIT_SIZE_MIN(cpi) BITX((cpi)->cpi_std[5].cp_eax, 15, 0) 328 #define MWAIT_SIZE_MAX(cpi) BITX((cpi)->cpi_std[5].cp_ebx, 15, 0) 329 /* 330 * Number of sub-cstates for a given c-state. 331 */ 332 #define MWAIT_NUM_SUBC_STATES(cpi, c_state) \ 333 BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state) 334 335 /* 336 * Functions we consune from cpuid_subr.c; don't publish these in a header 337 * file to try and keep people using the expected cpuid_* interfaces. 338 */ 339 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t); 340 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t); 341 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t); 342 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t); 343 extern uint_t _cpuid_vendorstr_to_vendorcode(char *); 344 345 /* 346 * Apply up various platform-dependent restrictions where the 347 * underlying platform restrictions mean the CPU can be marked 348 * as less capable than its cpuid instruction would imply. 349 */ 350 #if defined(__xpv) 351 static void 352 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp) 353 { 354 switch (eax) { 355 case 1: { 356 uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ? 357 0 : CPUID_INTC_EDX_MCA; 358 cp->cp_edx &= 359 ~(mcamask | 360 CPUID_INTC_EDX_PSE | 361 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 362 CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR | 363 CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT | 364 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 365 CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT); 366 break; 367 } 368 369 case 0x80000001: 370 cp->cp_edx &= 371 ~(CPUID_AMD_EDX_PSE | 372 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 373 CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE | 374 CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 | 375 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 376 CPUID_AMD_EDX_TSCP); 377 cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY; 378 break; 379 default: 380 break; 381 } 382 383 switch (vendor) { 384 case X86_VENDOR_Intel: 385 switch (eax) { 386 case 4: 387 /* 388 * Zero out the (ncores-per-chip - 1) field 389 */ 390 cp->cp_eax &= 0x03fffffff; 391 break; 392 default: 393 break; 394 } 395 break; 396 case X86_VENDOR_AMD: 397 switch (eax) { 398 399 case 0x80000001: 400 cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D; 401 break; 402 403 case 0x80000008: 404 /* 405 * Zero out the (ncores-per-chip - 1) field 406 */ 407 cp->cp_ecx &= 0xffffff00; 408 break; 409 default: 410 break; 411 } 412 break; 413 default: 414 break; 415 } 416 } 417 #else 418 #define platform_cpuid_mangle(vendor, eax, cp) /* nothing */ 419 #endif 420 421 /* 422 * Some undocumented ways of patching the results of the cpuid 423 * instruction to permit running Solaris 10 on future cpus that 424 * we don't currently support. Could be set to non-zero values 425 * via settings in eeprom. 426 */ 427 428 uint32_t cpuid_feature_ecx_include; 429 uint32_t cpuid_feature_ecx_exclude; 430 uint32_t cpuid_feature_edx_include; 431 uint32_t cpuid_feature_edx_exclude; 432 433 void 434 cpuid_alloc_space(cpu_t *cpu) 435 { 436 /* 437 * By convention, cpu0 is the boot cpu, which is set up 438 * before memory allocation is available. All other cpus get 439 * their cpuid_info struct allocated here. 440 */ 441 ASSERT(cpu->cpu_id != 0); 442 cpu->cpu_m.mcpu_cpi = 443 kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP); 444 } 445 446 void 447 cpuid_free_space(cpu_t *cpu) 448 { 449 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 450 int i; 451 452 ASSERT(cpu->cpu_id != 0); 453 454 /* 455 * Free up any function 4 related dynamic storage 456 */ 457 for (i = 1; i < cpi->cpi_std_4_size; i++) 458 kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs)); 459 if (cpi->cpi_std_4_size > 0) 460 kmem_free(cpi->cpi_std_4, 461 cpi->cpi_std_4_size * sizeof (struct cpuid_regs *)); 462 463 kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi)); 464 } 465 466 #if !defined(__xpv) 467 468 static void 469 determine_platform() 470 { 471 struct cpuid_regs cp; 472 char *xen_str; 473 uint32_t xen_signature[4]; 474 475 platform_type = HW_NATIVE; 476 477 if (!enable_platform_detection) 478 return; 479 480 /* 481 * In a fully virtualized domain, Xen's pseudo-cpuid function 482 * 0x40000000 returns a string representing the Xen signature in 483 * %ebx, %ecx, and %edx. %eax contains the maximum supported cpuid 484 * function. 485 */ 486 cp.cp_eax = 0x40000000; 487 (void) __cpuid_insn(&cp); 488 xen_signature[0] = cp.cp_ebx; 489 xen_signature[1] = cp.cp_ecx; 490 xen_signature[2] = cp.cp_edx; 491 xen_signature[3] = 0; 492 xen_str = (char *)xen_signature; 493 if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002) { 494 platform_type = HW_XEN_HVM; 495 } else if (vmware_platform()) { /* running under vmware hypervisor? */ 496 platform_type = HW_VMWARE; 497 } 498 } 499 500 int 501 get_hwenv(void) 502 { 503 if (platform_type == -1) 504 determine_platform(); 505 506 return (platform_type); 507 } 508 509 int 510 is_controldom(void) 511 { 512 return (0); 513 } 514 515 #else 516 517 int 518 get_hwenv(void) 519 { 520 return (HW_XEN_PV); 521 } 522 523 int 524 is_controldom(void) 525 { 526 return (DOMAIN_IS_INITDOMAIN(xen_info)); 527 } 528 529 #endif /* __xpv */ 530 531 static void 532 cpuid_intel_getids(cpu_t *cpu, uint_t feature) 533 { 534 uint_t i; 535 uint_t chipid_shift = 0; 536 uint_t coreid_shift = 0; 537 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 538 539 for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1) 540 chipid_shift++; 541 542 cpi->cpi_chipid = cpi->cpi_apicid >> chipid_shift; 543 cpi->cpi_clogid = cpi->cpi_apicid & ((1 << chipid_shift) - 1); 544 545 if (feature & X86_CMP) { 546 /* 547 * Multi-core (and possibly multi-threaded) 548 * processors. 549 */ 550 uint_t ncpu_per_core; 551 if (cpi->cpi_ncore_per_chip == 1) 552 ncpu_per_core = cpi->cpi_ncpu_per_chip; 553 else if (cpi->cpi_ncore_per_chip > 1) 554 ncpu_per_core = cpi->cpi_ncpu_per_chip / 555 cpi->cpi_ncore_per_chip; 556 /* 557 * 8bit APIC IDs on dual core Pentiums 558 * look like this: 559 * 560 * +-----------------------+------+------+ 561 * | Physical Package ID | MC | HT | 562 * +-----------------------+------+------+ 563 * <------- chipid --------> 564 * <------- coreid ---------------> 565 * <--- clogid --> 566 * <------> 567 * pkgcoreid 568 * 569 * Where the number of bits necessary to 570 * represent MC and HT fields together equals 571 * to the minimum number of bits necessary to 572 * store the value of cpi->cpi_ncpu_per_chip. 573 * Of those bits, the MC part uses the number 574 * of bits necessary to store the value of 575 * cpi->cpi_ncore_per_chip. 576 */ 577 for (i = 1; i < ncpu_per_core; i <<= 1) 578 coreid_shift++; 579 cpi->cpi_coreid = cpi->cpi_apicid >> coreid_shift; 580 cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift; 581 } else if (feature & X86_HTT) { 582 /* 583 * Single-core multi-threaded processors. 584 */ 585 cpi->cpi_coreid = cpi->cpi_chipid; 586 cpi->cpi_pkgcoreid = 0; 587 } 588 cpi->cpi_procnodeid = cpi->cpi_chipid; 589 } 590 591 static void 592 cpuid_amd_getids(cpu_t *cpu) 593 { 594 int first_half, mnc, coreidsz; 595 uint32_t nb_caps_reg; 596 uint_t node2_1; 597 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 598 599 /* 600 * AMD CMP chips currently have a single thread per core. 601 * 602 * Since no two cpus share a core we must assign a distinct coreid 603 * per cpu, and we do this by using the cpu_id. This scheme does not, 604 * however, guarantee that sibling cores of a chip will have sequential 605 * coreids starting at a multiple of the number of cores per chip - 606 * that is usually the case, but if the ACPI MADT table is presented 607 * in a different order then we need to perform a few more gymnastics 608 * for the pkgcoreid. 609 * 610 * All processors in the system have the same number of enabled 611 * cores. Cores within a processor are always numbered sequentially 612 * from 0 regardless of how many or which are disabled, and there 613 * is no way for operating system to discover the real core id when some 614 * are disabled. 615 */ 616 617 cpi->cpi_coreid = cpu->cpu_id; 618 619 if (cpi->cpi_xmaxeax >= 0x80000008) { 620 621 coreidsz = BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12); 622 623 /* 624 * In AMD parlance chip is really a node while Solaris 625 * sees chip as equivalent to socket/package. 626 */ 627 cpi->cpi_ncore_per_chip = 628 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 629 if (coreidsz == 0) 630 /* Use legacy method */ 631 mnc = cpi->cpi_ncore_per_chip; 632 else 633 mnc = (1 << coreidsz); 634 } else { 635 /* Assume single-core part */ 636 cpi->cpi_ncore_per_chip = mnc = 1; 637 } 638 639 cpi->cpi_clogid = cpi->cpi_pkgcoreid = cpi->cpi_apicid & (mnc - 1); 640 cpi->cpi_ncpu_per_chip = cpi->cpi_ncore_per_chip; 641 642 /* Get nodeID */ 643 if (cpi->cpi_family == 0xf) { 644 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 3, mnc-1); 645 cpi->cpi_chipid = cpi->cpi_procnodeid; 646 } else if (cpi->cpi_family == 0x10) { 647 /* 648 * See if we are a multi-node processor. 649 * All processors in the system have the same number of nodes 650 */ 651 nb_caps_reg = pci_getl_func(0, 24, 3, 0xe8); 652 if ((cpi->cpi_model < 8) || BITX(nb_caps_reg, 29, 29) == 0) { 653 /* Single-node */ 654 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 5, 3); 655 cpi->cpi_chipid = cpi->cpi_procnodeid; 656 } else { 657 658 /* 659 * Multi-node revision D (2 nodes per package 660 * are supported) 661 */ 662 cpi->cpi_procnodes_per_pkg = 2; 663 664 first_half = (cpi->cpi_pkgcoreid <= 665 (cpi->cpi_ncore_per_chip/2 - 1)); 666 667 if (cpi->cpi_apicid == cpi->cpi_pkgcoreid) { 668 /* We are BSP */ 669 cpi->cpi_procnodeid = (first_half ? 0 : 1); 670 cpi->cpi_chipid = cpi->cpi_procnodeid >> 1; 671 } else { 672 673 /* We are AP */ 674 /* NodeId[2:1] bits to use for reading F3xe8 */ 675 node2_1 = BITX(cpi->cpi_apicid, 5, 4) << 1; 676 677 nb_caps_reg = 678 pci_getl_func(0, 24 + node2_1, 3, 0xe8); 679 680 /* 681 * Check IntNodeNum bit (31:30, but bit 31 is 682 * always 0 on dual-node processors) 683 */ 684 if (BITX(nb_caps_reg, 30, 30) == 0) 685 cpi->cpi_procnodeid = node2_1 + 686 !first_half; 687 else 688 cpi->cpi_procnodeid = node2_1 + 689 first_half; 690 691 cpi->cpi_chipid = cpi->cpi_procnodeid >> 1; 692 } 693 } 694 } else if (cpi->cpi_family >= 0x11) { 695 cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7; 696 cpi->cpi_chipid = cpi->cpi_procnodeid; 697 } else { 698 cpi->cpi_procnodeid = 0; 699 cpi->cpi_chipid = cpi->cpi_procnodeid; 700 } 701 } 702 703 uint_t 704 cpuid_pass1(cpu_t *cpu) 705 { 706 uint32_t mask_ecx, mask_edx; 707 uint_t feature = X86_CPUID; 708 struct cpuid_info *cpi; 709 struct cpuid_regs *cp; 710 int xcpuid; 711 #if !defined(__xpv) 712 extern int idle_cpu_prefer_mwait; 713 #endif 714 715 716 #if !defined(__xpv) 717 determine_platform(); 718 #endif 719 /* 720 * Space statically allocated for cpu0, ensure pointer is set 721 */ 722 if (cpu->cpu_id == 0) 723 cpu->cpu_m.mcpu_cpi = &cpuid_info0; 724 cpi = cpu->cpu_m.mcpu_cpi; 725 ASSERT(cpi != NULL); 726 cp = &cpi->cpi_std[0]; 727 cp->cp_eax = 0; 728 cpi->cpi_maxeax = __cpuid_insn(cp); 729 { 730 uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; 731 *iptr++ = cp->cp_ebx; 732 *iptr++ = cp->cp_edx; 733 *iptr++ = cp->cp_ecx; 734 *(char *)&cpi->cpi_vendorstr[12] = '\0'; 735 } 736 737 cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr); 738 x86_vendor = cpi->cpi_vendor; /* for compatibility */ 739 740 /* 741 * Limit the range in case of weird hardware 742 */ 743 if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) 744 cpi->cpi_maxeax = CPI_MAXEAX_MAX; 745 if (cpi->cpi_maxeax < 1) 746 goto pass1_done; 747 748 cp = &cpi->cpi_std[1]; 749 cp->cp_eax = 1; 750 (void) __cpuid_insn(cp); 751 752 /* 753 * Extract identifying constants for easy access. 754 */ 755 cpi->cpi_model = CPI_MODEL(cpi); 756 cpi->cpi_family = CPI_FAMILY(cpi); 757 758 if (cpi->cpi_family == 0xf) 759 cpi->cpi_family += CPI_FAMILY_XTD(cpi); 760 761 /* 762 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf. 763 * Intel, and presumably everyone else, uses model == 0xf, as 764 * one would expect (max value means possible overflow). Sigh. 765 */ 766 767 switch (cpi->cpi_vendor) { 768 case X86_VENDOR_Intel: 769 if (IS_EXTENDED_MODEL_INTEL(cpi)) 770 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 771 break; 772 case X86_VENDOR_AMD: 773 if (CPI_FAMILY(cpi) == 0xf) 774 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 775 break; 776 default: 777 if (cpi->cpi_model == 0xf) 778 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 779 break; 780 } 781 782 cpi->cpi_step = CPI_STEP(cpi); 783 cpi->cpi_brandid = CPI_BRANDID(cpi); 784 785 /* 786 * *default* assumptions: 787 * - believe %edx feature word 788 * - ignore %ecx feature word 789 * - 32-bit virtual and physical addressing 790 */ 791 mask_edx = 0xffffffff; 792 mask_ecx = 0; 793 794 cpi->cpi_pabits = cpi->cpi_vabits = 32; 795 796 switch (cpi->cpi_vendor) { 797 case X86_VENDOR_Intel: 798 if (cpi->cpi_family == 5) 799 x86_type = X86_TYPE_P5; 800 else if (IS_LEGACY_P6(cpi)) { 801 x86_type = X86_TYPE_P6; 802 pentiumpro_bug4046376 = 1; 803 pentiumpro_bug4064495 = 1; 804 /* 805 * Clear the SEP bit when it was set erroneously 806 */ 807 if (cpi->cpi_model < 3 && cpi->cpi_step < 3) 808 cp->cp_edx &= ~CPUID_INTC_EDX_SEP; 809 } else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) { 810 x86_type = X86_TYPE_P4; 811 /* 812 * We don't currently depend on any of the %ecx 813 * features until Prescott, so we'll only check 814 * this from P4 onwards. We might want to revisit 815 * that idea later. 816 */ 817 mask_ecx = 0xffffffff; 818 } else if (cpi->cpi_family > 0xf) 819 mask_ecx = 0xffffffff; 820 /* 821 * We don't support MONITOR/MWAIT if leaf 5 is not available 822 * to obtain the monitor linesize. 823 */ 824 if (cpi->cpi_maxeax < 5) 825 mask_ecx &= ~CPUID_INTC_ECX_MON; 826 break; 827 case X86_VENDOR_IntelClone: 828 default: 829 break; 830 case X86_VENDOR_AMD: 831 #if defined(OPTERON_ERRATUM_108) 832 if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { 833 cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; 834 cpi->cpi_model = 0xc; 835 } else 836 #endif 837 if (cpi->cpi_family == 5) { 838 /* 839 * AMD K5 and K6 840 * 841 * These CPUs have an incomplete implementation 842 * of MCA/MCE which we mask away. 843 */ 844 mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA); 845 846 /* 847 * Model 0 uses the wrong (APIC) bit 848 * to indicate PGE. Fix it here. 849 */ 850 if (cpi->cpi_model == 0) { 851 if (cp->cp_edx & 0x200) { 852 cp->cp_edx &= ~0x200; 853 cp->cp_edx |= CPUID_INTC_EDX_PGE; 854 } 855 } 856 857 /* 858 * Early models had problems w/ MMX; disable. 859 */ 860 if (cpi->cpi_model < 6) 861 mask_edx &= ~CPUID_INTC_EDX_MMX; 862 } 863 864 /* 865 * For newer families, SSE3 and CX16, at least, are valid; 866 * enable all 867 */ 868 if (cpi->cpi_family >= 0xf) 869 mask_ecx = 0xffffffff; 870 /* 871 * We don't support MONITOR/MWAIT if leaf 5 is not available 872 * to obtain the monitor linesize. 873 */ 874 if (cpi->cpi_maxeax < 5) 875 mask_ecx &= ~CPUID_INTC_ECX_MON; 876 877 #if !defined(__xpv) 878 /* 879 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD 880 * processors. AMD does not intend MWAIT to be used in the cpu 881 * idle loop on current and future processors. 10h and future 882 * AMD processors use more power in MWAIT than HLT. 883 * Pre-family-10h Opterons do not have the MWAIT instruction. 884 */ 885 idle_cpu_prefer_mwait = 0; 886 #endif 887 888 break; 889 case X86_VENDOR_TM: 890 /* 891 * workaround the NT workaround in CMS 4.1 892 */ 893 if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && 894 (cpi->cpi_step == 2 || cpi->cpi_step == 3)) 895 cp->cp_edx |= CPUID_INTC_EDX_CX8; 896 break; 897 case X86_VENDOR_Centaur: 898 /* 899 * workaround the NT workarounds again 900 */ 901 if (cpi->cpi_family == 6) 902 cp->cp_edx |= CPUID_INTC_EDX_CX8; 903 break; 904 case X86_VENDOR_Cyrix: 905 /* 906 * We rely heavily on the probing in locore 907 * to actually figure out what parts, if any, 908 * of the Cyrix cpuid instruction to believe. 909 */ 910 switch (x86_type) { 911 case X86_TYPE_CYRIX_486: 912 mask_edx = 0; 913 break; 914 case X86_TYPE_CYRIX_6x86: 915 mask_edx = 0; 916 break; 917 case X86_TYPE_CYRIX_6x86L: 918 mask_edx = 919 CPUID_INTC_EDX_DE | 920 CPUID_INTC_EDX_CX8; 921 break; 922 case X86_TYPE_CYRIX_6x86MX: 923 mask_edx = 924 CPUID_INTC_EDX_DE | 925 CPUID_INTC_EDX_MSR | 926 CPUID_INTC_EDX_CX8 | 927 CPUID_INTC_EDX_PGE | 928 CPUID_INTC_EDX_CMOV | 929 CPUID_INTC_EDX_MMX; 930 break; 931 case X86_TYPE_CYRIX_GXm: 932 mask_edx = 933 CPUID_INTC_EDX_MSR | 934 CPUID_INTC_EDX_CX8 | 935 CPUID_INTC_EDX_CMOV | 936 CPUID_INTC_EDX_MMX; 937 break; 938 case X86_TYPE_CYRIX_MediaGX: 939 break; 940 case X86_TYPE_CYRIX_MII: 941 case X86_TYPE_VIA_CYRIX_III: 942 mask_edx = 943 CPUID_INTC_EDX_DE | 944 CPUID_INTC_EDX_TSC | 945 CPUID_INTC_EDX_MSR | 946 CPUID_INTC_EDX_CX8 | 947 CPUID_INTC_EDX_PGE | 948 CPUID_INTC_EDX_CMOV | 949 CPUID_INTC_EDX_MMX; 950 break; 951 default: 952 break; 953 } 954 break; 955 } 956 957 #if defined(__xpv) 958 /* 959 * Do not support MONITOR/MWAIT under a hypervisor 960 */ 961 mask_ecx &= ~CPUID_INTC_ECX_MON; 962 #endif /* __xpv */ 963 964 /* 965 * Now we've figured out the masks that determine 966 * which bits we choose to believe, apply the masks 967 * to the feature words, then map the kernel's view 968 * of these feature words into its feature word. 969 */ 970 cp->cp_edx &= mask_edx; 971 cp->cp_ecx &= mask_ecx; 972 973 /* 974 * apply any platform restrictions (we don't call this 975 * immediately after __cpuid_insn here, because we need the 976 * workarounds applied above first) 977 */ 978 platform_cpuid_mangle(cpi->cpi_vendor, 1, cp); 979 980 /* 981 * fold in overrides from the "eeprom" mechanism 982 */ 983 cp->cp_edx |= cpuid_feature_edx_include; 984 cp->cp_edx &= ~cpuid_feature_edx_exclude; 985 986 cp->cp_ecx |= cpuid_feature_ecx_include; 987 cp->cp_ecx &= ~cpuid_feature_ecx_exclude; 988 989 if (cp->cp_edx & CPUID_INTC_EDX_PSE) 990 feature |= X86_LARGEPAGE; 991 if (cp->cp_edx & CPUID_INTC_EDX_TSC) 992 feature |= X86_TSC; 993 if (cp->cp_edx & CPUID_INTC_EDX_MSR) 994 feature |= X86_MSR; 995 if (cp->cp_edx & CPUID_INTC_EDX_MTRR) 996 feature |= X86_MTRR; 997 if (cp->cp_edx & CPUID_INTC_EDX_PGE) 998 feature |= X86_PGE; 999 if (cp->cp_edx & CPUID_INTC_EDX_CMOV) 1000 feature |= X86_CMOV; 1001 if (cp->cp_edx & CPUID_INTC_EDX_MMX) 1002 feature |= X86_MMX; 1003 if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && 1004 (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) 1005 feature |= X86_MCA; 1006 if (cp->cp_edx & CPUID_INTC_EDX_PAE) 1007 feature |= X86_PAE; 1008 if (cp->cp_edx & CPUID_INTC_EDX_CX8) 1009 feature |= X86_CX8; 1010 if (cp->cp_ecx & CPUID_INTC_ECX_CX16) 1011 feature |= X86_CX16; 1012 if (cp->cp_edx & CPUID_INTC_EDX_PAT) 1013 feature |= X86_PAT; 1014 if (cp->cp_edx & CPUID_INTC_EDX_SEP) 1015 feature |= X86_SEP; 1016 if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { 1017 /* 1018 * In our implementation, fxsave/fxrstor 1019 * are prerequisites before we'll even 1020 * try and do SSE things. 1021 */ 1022 if (cp->cp_edx & CPUID_INTC_EDX_SSE) 1023 feature |= X86_SSE; 1024 if (cp->cp_edx & CPUID_INTC_EDX_SSE2) 1025 feature |= X86_SSE2; 1026 if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) 1027 feature |= X86_SSE3; 1028 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 1029 if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3) 1030 feature |= X86_SSSE3; 1031 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1) 1032 feature |= X86_SSE4_1; 1033 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2) 1034 feature |= X86_SSE4_2; 1035 if (cp->cp_ecx & CPUID_INTC_ECX_AES) 1036 feature |= X86_AES; 1037 } 1038 } 1039 if (cp->cp_edx & CPUID_INTC_EDX_DE) 1040 feature |= X86_DE; 1041 #if !defined(__xpv) 1042 if (cp->cp_ecx & CPUID_INTC_ECX_MON) { 1043 1044 /* 1045 * We require the CLFLUSH instruction for erratum workaround 1046 * to use MONITOR/MWAIT. 1047 */ 1048 if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) { 1049 cpi->cpi_mwait.support |= MWAIT_SUPPORT; 1050 feature |= X86_MWAIT; 1051 } else { 1052 extern int idle_cpu_assert_cflush_monitor; 1053 1054 /* 1055 * All processors we are aware of which have 1056 * MONITOR/MWAIT also have CLFLUSH. 1057 */ 1058 if (idle_cpu_assert_cflush_monitor) { 1059 ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) && 1060 (cp->cp_edx & CPUID_INTC_EDX_CLFSH)); 1061 } 1062 } 1063 } 1064 #endif /* __xpv */ 1065 1066 /* 1067 * Only need it first time, rest of the cpus would follow suite. 1068 * we only capture this for the bootcpu. 1069 */ 1070 if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) { 1071 feature |= X86_CLFSH; 1072 x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8); 1073 } 1074 1075 if (feature & X86_PAE) 1076 cpi->cpi_pabits = 36; 1077 1078 /* 1079 * Hyperthreading configuration is slightly tricky on Intel 1080 * and pure clones, and even trickier on AMD. 1081 * 1082 * (AMD chose to set the HTT bit on their CMP processors, 1083 * even though they're not actually hyperthreaded. Thus it 1084 * takes a bit more work to figure out what's really going 1085 * on ... see the handling of the CMP_LGCY bit below) 1086 */ 1087 if (cp->cp_edx & CPUID_INTC_EDX_HTT) { 1088 cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); 1089 if (cpi->cpi_ncpu_per_chip > 1) 1090 feature |= X86_HTT; 1091 } else { 1092 cpi->cpi_ncpu_per_chip = 1; 1093 } 1094 1095 /* 1096 * Work on the "extended" feature information, doing 1097 * some basic initialization for cpuid_pass2() 1098 */ 1099 xcpuid = 0; 1100 switch (cpi->cpi_vendor) { 1101 case X86_VENDOR_Intel: 1102 if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf) 1103 xcpuid++; 1104 break; 1105 case X86_VENDOR_AMD: 1106 if (cpi->cpi_family > 5 || 1107 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 1108 xcpuid++; 1109 break; 1110 case X86_VENDOR_Cyrix: 1111 /* 1112 * Only these Cyrix CPUs are -known- to support 1113 * extended cpuid operations. 1114 */ 1115 if (x86_type == X86_TYPE_VIA_CYRIX_III || 1116 x86_type == X86_TYPE_CYRIX_GXm) 1117 xcpuid++; 1118 break; 1119 case X86_VENDOR_Centaur: 1120 case X86_VENDOR_TM: 1121 default: 1122 xcpuid++; 1123 break; 1124 } 1125 1126 if (xcpuid) { 1127 cp = &cpi->cpi_extd[0]; 1128 cp->cp_eax = 0x80000000; 1129 cpi->cpi_xmaxeax = __cpuid_insn(cp); 1130 } 1131 1132 if (cpi->cpi_xmaxeax & 0x80000000) { 1133 1134 if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) 1135 cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; 1136 1137 switch (cpi->cpi_vendor) { 1138 case X86_VENDOR_Intel: 1139 case X86_VENDOR_AMD: 1140 if (cpi->cpi_xmaxeax < 0x80000001) 1141 break; 1142 cp = &cpi->cpi_extd[1]; 1143 cp->cp_eax = 0x80000001; 1144 (void) __cpuid_insn(cp); 1145 1146 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1147 cpi->cpi_family == 5 && 1148 cpi->cpi_model == 6 && 1149 cpi->cpi_step == 6) { 1150 /* 1151 * K6 model 6 uses bit 10 to indicate SYSC 1152 * Later models use bit 11. Fix it here. 1153 */ 1154 if (cp->cp_edx & 0x400) { 1155 cp->cp_edx &= ~0x400; 1156 cp->cp_edx |= CPUID_AMD_EDX_SYSC; 1157 } 1158 } 1159 1160 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp); 1161 1162 /* 1163 * Compute the additions to the kernel's feature word. 1164 */ 1165 if (cp->cp_edx & CPUID_AMD_EDX_NX) 1166 feature |= X86_NX; 1167 1168 /* 1169 * Regardless whether or not we boot 64-bit, 1170 * we should have a way to identify whether 1171 * the CPU is capable of running 64-bit. 1172 */ 1173 if (cp->cp_edx & CPUID_AMD_EDX_LM) 1174 feature |= X86_64; 1175 1176 #if defined(__amd64) 1177 /* 1 GB large page - enable only for 64 bit kernel */ 1178 if (cp->cp_edx & CPUID_AMD_EDX_1GPG) 1179 feature |= X86_1GPG; 1180 #endif 1181 1182 if ((cpi->cpi_vendor == X86_VENDOR_AMD) && 1183 (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) && 1184 (cp->cp_ecx & CPUID_AMD_ECX_SSE4A)) 1185 feature |= X86_SSE4A; 1186 1187 /* 1188 * If both the HTT and CMP_LGCY bits are set, 1189 * then we're not actually HyperThreaded. Read 1190 * "AMD CPUID Specification" for more details. 1191 */ 1192 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1193 (feature & X86_HTT) && 1194 (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) { 1195 feature &= ~X86_HTT; 1196 feature |= X86_CMP; 1197 } 1198 #if defined(__amd64) 1199 /* 1200 * It's really tricky to support syscall/sysret in 1201 * the i386 kernel; we rely on sysenter/sysexit 1202 * instead. In the amd64 kernel, things are -way- 1203 * better. 1204 */ 1205 if (cp->cp_edx & CPUID_AMD_EDX_SYSC) 1206 feature |= X86_ASYSC; 1207 1208 /* 1209 * While we're thinking about system calls, note 1210 * that AMD processors don't support sysenter 1211 * in long mode at all, so don't try to program them. 1212 */ 1213 if (x86_vendor == X86_VENDOR_AMD) 1214 feature &= ~X86_SEP; 1215 #endif 1216 if (cp->cp_edx & CPUID_AMD_EDX_TSCP) 1217 feature |= X86_TSCP; 1218 break; 1219 default: 1220 break; 1221 } 1222 1223 /* 1224 * Get CPUID data about processor cores and hyperthreads. 1225 */ 1226 switch (cpi->cpi_vendor) { 1227 case X86_VENDOR_Intel: 1228 if (cpi->cpi_maxeax >= 4) { 1229 cp = &cpi->cpi_std[4]; 1230 cp->cp_eax = 4; 1231 cp->cp_ecx = 0; 1232 (void) __cpuid_insn(cp); 1233 platform_cpuid_mangle(cpi->cpi_vendor, 4, cp); 1234 } 1235 /*FALLTHROUGH*/ 1236 case X86_VENDOR_AMD: 1237 if (cpi->cpi_xmaxeax < 0x80000008) 1238 break; 1239 cp = &cpi->cpi_extd[8]; 1240 cp->cp_eax = 0x80000008; 1241 (void) __cpuid_insn(cp); 1242 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp); 1243 1244 /* 1245 * Virtual and physical address limits from 1246 * cpuid override previously guessed values. 1247 */ 1248 cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); 1249 cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); 1250 break; 1251 default: 1252 break; 1253 } 1254 1255 /* 1256 * Derive the number of cores per chip 1257 */ 1258 switch (cpi->cpi_vendor) { 1259 case X86_VENDOR_Intel: 1260 if (cpi->cpi_maxeax < 4) { 1261 cpi->cpi_ncore_per_chip = 1; 1262 break; 1263 } else { 1264 cpi->cpi_ncore_per_chip = 1265 BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1; 1266 } 1267 break; 1268 case X86_VENDOR_AMD: 1269 if (cpi->cpi_xmaxeax < 0x80000008) { 1270 cpi->cpi_ncore_per_chip = 1; 1271 break; 1272 } else { 1273 /* 1274 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is 1275 * 1 less than the number of physical cores on 1276 * the chip. In family 0x10 this value can 1277 * be affected by "downcoring" - it reflects 1278 * 1 less than the number of cores actually 1279 * enabled on this node. 1280 */ 1281 cpi->cpi_ncore_per_chip = 1282 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 1283 } 1284 break; 1285 default: 1286 cpi->cpi_ncore_per_chip = 1; 1287 break; 1288 } 1289 1290 /* 1291 * Get CPUID data about TSC Invariance in Deep C-State. 1292 */ 1293 switch (cpi->cpi_vendor) { 1294 case X86_VENDOR_Intel: 1295 if (cpi->cpi_maxeax >= 7) { 1296 cp = &cpi->cpi_extd[7]; 1297 cp->cp_eax = 0x80000007; 1298 cp->cp_ecx = 0; 1299 (void) __cpuid_insn(cp); 1300 } 1301 break; 1302 default: 1303 break; 1304 } 1305 } else { 1306 cpi->cpi_ncore_per_chip = 1; 1307 } 1308 1309 /* 1310 * If more than one core, then this processor is CMP. 1311 */ 1312 if (cpi->cpi_ncore_per_chip > 1) 1313 feature |= X86_CMP; 1314 1315 /* 1316 * If the number of cores is the same as the number 1317 * of CPUs, then we cannot have HyperThreading. 1318 */ 1319 if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) 1320 feature &= ~X86_HTT; 1321 1322 cpi->cpi_apicid = CPI_APIC_ID(cpi); 1323 cpi->cpi_procnodes_per_pkg = 1; 1324 1325 if ((feature & (X86_HTT | X86_CMP)) == 0) { 1326 /* 1327 * Single-core single-threaded processors. 1328 */ 1329 cpi->cpi_chipid = -1; 1330 cpi->cpi_clogid = 0; 1331 cpi->cpi_coreid = cpu->cpu_id; 1332 cpi->cpi_pkgcoreid = 0; 1333 if (cpi->cpi_vendor == X86_VENDOR_AMD) 1334 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 3, 0); 1335 else 1336 cpi->cpi_procnodeid = cpi->cpi_chipid; 1337 } else if (cpi->cpi_ncpu_per_chip > 1) { 1338 if (cpi->cpi_vendor == X86_VENDOR_Intel) 1339 cpuid_intel_getids(cpu, feature); 1340 else if (cpi->cpi_vendor == X86_VENDOR_AMD) 1341 cpuid_amd_getids(cpu); 1342 else { 1343 /* 1344 * All other processors are currently 1345 * assumed to have single cores. 1346 */ 1347 cpi->cpi_coreid = cpi->cpi_chipid; 1348 cpi->cpi_pkgcoreid = 0; 1349 cpi->cpi_procnodeid = cpi->cpi_chipid; 1350 } 1351 } 1352 1353 /* 1354 * Synthesize chip "revision" and socket type 1355 */ 1356 cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family, 1357 cpi->cpi_model, cpi->cpi_step); 1358 cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor, 1359 cpi->cpi_family, cpi->cpi_model, cpi->cpi_step); 1360 cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family, 1361 cpi->cpi_model, cpi->cpi_step); 1362 1363 pass1_done: 1364 cpi->cpi_pass = 1; 1365 return (feature); 1366 } 1367 1368 /* 1369 * Make copies of the cpuid table entries we depend on, in 1370 * part for ease of parsing now, in part so that we have only 1371 * one place to correct any of it, in part for ease of 1372 * later export to userland, and in part so we can look at 1373 * this stuff in a crash dump. 1374 */ 1375 1376 /*ARGSUSED*/ 1377 void 1378 cpuid_pass2(cpu_t *cpu) 1379 { 1380 uint_t n, nmax; 1381 int i; 1382 struct cpuid_regs *cp; 1383 uint8_t *dp; 1384 uint32_t *iptr; 1385 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1386 1387 ASSERT(cpi->cpi_pass == 1); 1388 1389 if (cpi->cpi_maxeax < 1) 1390 goto pass2_done; 1391 1392 if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) 1393 nmax = NMAX_CPI_STD; 1394 /* 1395 * (We already handled n == 0 and n == 1 in pass 1) 1396 */ 1397 for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { 1398 cp->cp_eax = n; 1399 1400 /* 1401 * CPUID function 4 expects %ecx to be initialized 1402 * with an index which indicates which cache to return 1403 * information about. The OS is expected to call function 4 1404 * with %ecx set to 0, 1, 2, ... until it returns with 1405 * EAX[4:0] set to 0, which indicates there are no more 1406 * caches. 1407 * 1408 * Here, populate cpi_std[4] with the information returned by 1409 * function 4 when %ecx == 0, and do the rest in cpuid_pass3() 1410 * when dynamic memory allocation becomes available. 1411 * 1412 * Note: we need to explicitly initialize %ecx here, since 1413 * function 4 may have been previously invoked. 1414 */ 1415 if (n == 4) 1416 cp->cp_ecx = 0; 1417 1418 (void) __cpuid_insn(cp); 1419 platform_cpuid_mangle(cpi->cpi_vendor, n, cp); 1420 switch (n) { 1421 case 2: 1422 /* 1423 * "the lower 8 bits of the %eax register 1424 * contain a value that identifies the number 1425 * of times the cpuid [instruction] has to be 1426 * executed to obtain a complete image of the 1427 * processor's caching systems." 1428 * 1429 * How *do* they make this stuff up? 1430 */ 1431 cpi->cpi_ncache = sizeof (*cp) * 1432 BITX(cp->cp_eax, 7, 0); 1433 if (cpi->cpi_ncache == 0) 1434 break; 1435 cpi->cpi_ncache--; /* skip count byte */ 1436 1437 /* 1438 * Well, for now, rather than attempt to implement 1439 * this slightly dubious algorithm, we just look 1440 * at the first 15 .. 1441 */ 1442 if (cpi->cpi_ncache > (sizeof (*cp) - 1)) 1443 cpi->cpi_ncache = sizeof (*cp) - 1; 1444 1445 dp = cpi->cpi_cacheinfo; 1446 if (BITX(cp->cp_eax, 31, 31) == 0) { 1447 uint8_t *p = (void *)&cp->cp_eax; 1448 for (i = 1; i < 4; i++) 1449 if (p[i] != 0) 1450 *dp++ = p[i]; 1451 } 1452 if (BITX(cp->cp_ebx, 31, 31) == 0) { 1453 uint8_t *p = (void *)&cp->cp_ebx; 1454 for (i = 0; i < 4; i++) 1455 if (p[i] != 0) 1456 *dp++ = p[i]; 1457 } 1458 if (BITX(cp->cp_ecx, 31, 31) == 0) { 1459 uint8_t *p = (void *)&cp->cp_ecx; 1460 for (i = 0; i < 4; i++) 1461 if (p[i] != 0) 1462 *dp++ = p[i]; 1463 } 1464 if (BITX(cp->cp_edx, 31, 31) == 0) { 1465 uint8_t *p = (void *)&cp->cp_edx; 1466 for (i = 0; i < 4; i++) 1467 if (p[i] != 0) 1468 *dp++ = p[i]; 1469 } 1470 break; 1471 1472 case 3: /* Processor serial number, if PSN supported */ 1473 break; 1474 1475 case 4: /* Deterministic cache parameters */ 1476 break; 1477 1478 case 5: /* Monitor/Mwait parameters */ 1479 { 1480 size_t mwait_size; 1481 1482 /* 1483 * check cpi_mwait.support which was set in cpuid_pass1 1484 */ 1485 if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT)) 1486 break; 1487 1488 /* 1489 * Protect ourself from insane mwait line size. 1490 * Workaround for incomplete hardware emulator(s). 1491 */ 1492 mwait_size = (size_t)MWAIT_SIZE_MAX(cpi); 1493 if (mwait_size < sizeof (uint32_t) || 1494 !ISP2(mwait_size)) { 1495 #if DEBUG 1496 cmn_err(CE_NOTE, "Cannot handle cpu %d mwait " 1497 "size %ld", cpu->cpu_id, (long)mwait_size); 1498 #endif 1499 break; 1500 } 1501 1502 cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi); 1503 cpi->cpi_mwait.mon_max = mwait_size; 1504 if (MWAIT_EXTENSION(cpi)) { 1505 cpi->cpi_mwait.support |= MWAIT_EXTENSIONS; 1506 if (MWAIT_INT_ENABLE(cpi)) 1507 cpi->cpi_mwait.support |= 1508 MWAIT_ECX_INT_ENABLE; 1509 } 1510 break; 1511 } 1512 default: 1513 break; 1514 } 1515 } 1516 1517 if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) { 1518 struct cpuid_regs regs; 1519 1520 cp = ®s; 1521 cp->cp_eax = 0xB; 1522 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 1523 1524 (void) __cpuid_insn(cp); 1525 1526 /* 1527 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which 1528 * indicates that the extended topology enumeration leaf is 1529 * available. 1530 */ 1531 if (cp->cp_ebx) { 1532 uint32_t x2apic_id; 1533 uint_t coreid_shift = 0; 1534 uint_t ncpu_per_core = 1; 1535 uint_t chipid_shift = 0; 1536 uint_t ncpu_per_chip = 1; 1537 uint_t i; 1538 uint_t level; 1539 1540 for (i = 0; i < CPI_FNB_ECX_MAX; i++) { 1541 cp->cp_eax = 0xB; 1542 cp->cp_ecx = i; 1543 1544 (void) __cpuid_insn(cp); 1545 level = CPI_CPU_LEVEL_TYPE(cp); 1546 1547 if (level == 1) { 1548 x2apic_id = cp->cp_edx; 1549 coreid_shift = BITX(cp->cp_eax, 4, 0); 1550 ncpu_per_core = BITX(cp->cp_ebx, 15, 0); 1551 } else if (level == 2) { 1552 x2apic_id = cp->cp_edx; 1553 chipid_shift = BITX(cp->cp_eax, 4, 0); 1554 ncpu_per_chip = BITX(cp->cp_ebx, 15, 0); 1555 } 1556 } 1557 1558 cpi->cpi_apicid = x2apic_id; 1559 cpi->cpi_ncpu_per_chip = ncpu_per_chip; 1560 cpi->cpi_ncore_per_chip = ncpu_per_chip / 1561 ncpu_per_core; 1562 cpi->cpi_chipid = x2apic_id >> chipid_shift; 1563 cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1); 1564 cpi->cpi_coreid = x2apic_id >> coreid_shift; 1565 cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift; 1566 } 1567 1568 /* Make cp NULL so that we don't stumble on others */ 1569 cp = NULL; 1570 } 1571 1572 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) 1573 goto pass2_done; 1574 1575 if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD) 1576 nmax = NMAX_CPI_EXTD; 1577 /* 1578 * Copy the extended properties, fixing them as we go. 1579 * (We already handled n == 0 and n == 1 in pass 1) 1580 */ 1581 iptr = (void *)cpi->cpi_brandstr; 1582 for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { 1583 cp->cp_eax = 0x80000000 + n; 1584 (void) __cpuid_insn(cp); 1585 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp); 1586 switch (n) { 1587 case 2: 1588 case 3: 1589 case 4: 1590 /* 1591 * Extract the brand string 1592 */ 1593 *iptr++ = cp->cp_eax; 1594 *iptr++ = cp->cp_ebx; 1595 *iptr++ = cp->cp_ecx; 1596 *iptr++ = cp->cp_edx; 1597 break; 1598 case 5: 1599 switch (cpi->cpi_vendor) { 1600 case X86_VENDOR_AMD: 1601 /* 1602 * The Athlon and Duron were the first 1603 * parts to report the sizes of the 1604 * TLB for large pages. Before then, 1605 * we don't trust the data. 1606 */ 1607 if (cpi->cpi_family < 6 || 1608 (cpi->cpi_family == 6 && 1609 cpi->cpi_model < 1)) 1610 cp->cp_eax = 0; 1611 break; 1612 default: 1613 break; 1614 } 1615 break; 1616 case 6: 1617 switch (cpi->cpi_vendor) { 1618 case X86_VENDOR_AMD: 1619 /* 1620 * The Athlon and Duron were the first 1621 * AMD parts with L2 TLB's. 1622 * Before then, don't trust the data. 1623 */ 1624 if (cpi->cpi_family < 6 || 1625 cpi->cpi_family == 6 && 1626 cpi->cpi_model < 1) 1627 cp->cp_eax = cp->cp_ebx = 0; 1628 /* 1629 * AMD Duron rev A0 reports L2 1630 * cache size incorrectly as 1K 1631 * when it is really 64K 1632 */ 1633 if (cpi->cpi_family == 6 && 1634 cpi->cpi_model == 3 && 1635 cpi->cpi_step == 0) { 1636 cp->cp_ecx &= 0xffff; 1637 cp->cp_ecx |= 0x400000; 1638 } 1639 break; 1640 case X86_VENDOR_Cyrix: /* VIA C3 */ 1641 /* 1642 * VIA C3 processors are a bit messed 1643 * up w.r.t. encoding cache sizes in %ecx 1644 */ 1645 if (cpi->cpi_family != 6) 1646 break; 1647 /* 1648 * model 7 and 8 were incorrectly encoded 1649 * 1650 * xxx is model 8 really broken? 1651 */ 1652 if (cpi->cpi_model == 7 || 1653 cpi->cpi_model == 8) 1654 cp->cp_ecx = 1655 BITX(cp->cp_ecx, 31, 24) << 16 | 1656 BITX(cp->cp_ecx, 23, 16) << 12 | 1657 BITX(cp->cp_ecx, 15, 8) << 8 | 1658 BITX(cp->cp_ecx, 7, 0); 1659 /* 1660 * model 9 stepping 1 has wrong associativity 1661 */ 1662 if (cpi->cpi_model == 9 && cpi->cpi_step == 1) 1663 cp->cp_ecx |= 8 << 12; 1664 break; 1665 case X86_VENDOR_Intel: 1666 /* 1667 * Extended L2 Cache features function. 1668 * First appeared on Prescott. 1669 */ 1670 default: 1671 break; 1672 } 1673 break; 1674 default: 1675 break; 1676 } 1677 } 1678 1679 pass2_done: 1680 cpi->cpi_pass = 2; 1681 } 1682 1683 static const char * 1684 intel_cpubrand(const struct cpuid_info *cpi) 1685 { 1686 int i; 1687 1688 if ((x86_feature & X86_CPUID) == 0 || 1689 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1690 return ("i486"); 1691 1692 switch (cpi->cpi_family) { 1693 case 5: 1694 return ("Intel Pentium(r)"); 1695 case 6: 1696 switch (cpi->cpi_model) { 1697 uint_t celeron, xeon; 1698 const struct cpuid_regs *cp; 1699 case 0: 1700 case 1: 1701 case 2: 1702 return ("Intel Pentium(r) Pro"); 1703 case 3: 1704 case 4: 1705 return ("Intel Pentium(r) II"); 1706 case 6: 1707 return ("Intel Celeron(r)"); 1708 case 5: 1709 case 7: 1710 celeron = xeon = 0; 1711 cp = &cpi->cpi_std[2]; /* cache info */ 1712 1713 for (i = 1; i < 4; i++) { 1714 uint_t tmp; 1715 1716 tmp = (cp->cp_eax >> (8 * i)) & 0xff; 1717 if (tmp == 0x40) 1718 celeron++; 1719 if (tmp >= 0x44 && tmp <= 0x45) 1720 xeon++; 1721 } 1722 1723 for (i = 0; i < 2; i++) { 1724 uint_t tmp; 1725 1726 tmp = (cp->cp_ebx >> (8 * i)) & 0xff; 1727 if (tmp == 0x40) 1728 celeron++; 1729 else if (tmp >= 0x44 && tmp <= 0x45) 1730 xeon++; 1731 } 1732 1733 for (i = 0; i < 4; i++) { 1734 uint_t tmp; 1735 1736 tmp = (cp->cp_ecx >> (8 * i)) & 0xff; 1737 if (tmp == 0x40) 1738 celeron++; 1739 else if (tmp >= 0x44 && tmp <= 0x45) 1740 xeon++; 1741 } 1742 1743 for (i = 0; i < 4; i++) { 1744 uint_t tmp; 1745 1746 tmp = (cp->cp_edx >> (8 * i)) & 0xff; 1747 if (tmp == 0x40) 1748 celeron++; 1749 else if (tmp >= 0x44 && tmp <= 0x45) 1750 xeon++; 1751 } 1752 1753 if (celeron) 1754 return ("Intel Celeron(r)"); 1755 if (xeon) 1756 return (cpi->cpi_model == 5 ? 1757 "Intel Pentium(r) II Xeon(tm)" : 1758 "Intel Pentium(r) III Xeon(tm)"); 1759 return (cpi->cpi_model == 5 ? 1760 "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : 1761 "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); 1762 default: 1763 break; 1764 } 1765 default: 1766 break; 1767 } 1768 1769 /* BrandID is present if the field is nonzero */ 1770 if (cpi->cpi_brandid != 0) { 1771 static const struct { 1772 uint_t bt_bid; 1773 const char *bt_str; 1774 } brand_tbl[] = { 1775 { 0x1, "Intel(r) Celeron(r)" }, 1776 { 0x2, "Intel(r) Pentium(r) III" }, 1777 { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, 1778 { 0x4, "Intel(r) Pentium(r) III" }, 1779 { 0x6, "Mobile Intel(r) Pentium(r) III" }, 1780 { 0x7, "Mobile Intel(r) Celeron(r)" }, 1781 { 0x8, "Intel(r) Pentium(r) 4" }, 1782 { 0x9, "Intel(r) Pentium(r) 4" }, 1783 { 0xa, "Intel(r) Celeron(r)" }, 1784 { 0xb, "Intel(r) Xeon(tm)" }, 1785 { 0xc, "Intel(r) Xeon(tm) MP" }, 1786 { 0xe, "Mobile Intel(r) Pentium(r) 4" }, 1787 { 0xf, "Mobile Intel(r) Celeron(r)" }, 1788 { 0x11, "Mobile Genuine Intel(r)" }, 1789 { 0x12, "Intel(r) Celeron(r) M" }, 1790 { 0x13, "Mobile Intel(r) Celeron(r)" }, 1791 { 0x14, "Intel(r) Celeron(r)" }, 1792 { 0x15, "Mobile Genuine Intel(r)" }, 1793 { 0x16, "Intel(r) Pentium(r) M" }, 1794 { 0x17, "Mobile Intel(r) Celeron(r)" } 1795 }; 1796 uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); 1797 uint_t sgn; 1798 1799 sgn = (cpi->cpi_family << 8) | 1800 (cpi->cpi_model << 4) | cpi->cpi_step; 1801 1802 for (i = 0; i < btblmax; i++) 1803 if (brand_tbl[i].bt_bid == cpi->cpi_brandid) 1804 break; 1805 if (i < btblmax) { 1806 if (sgn == 0x6b1 && cpi->cpi_brandid == 3) 1807 return ("Intel(r) Celeron(r)"); 1808 if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) 1809 return ("Intel(r) Xeon(tm) MP"); 1810 if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) 1811 return ("Intel(r) Xeon(tm)"); 1812 return (brand_tbl[i].bt_str); 1813 } 1814 } 1815 1816 return (NULL); 1817 } 1818 1819 static const char * 1820 amd_cpubrand(const struct cpuid_info *cpi) 1821 { 1822 if ((x86_feature & X86_CPUID) == 0 || 1823 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1824 return ("i486 compatible"); 1825 1826 switch (cpi->cpi_family) { 1827 case 5: 1828 switch (cpi->cpi_model) { 1829 case 0: 1830 case 1: 1831 case 2: 1832 case 3: 1833 case 4: 1834 case 5: 1835 return ("AMD-K5(r)"); 1836 case 6: 1837 case 7: 1838 return ("AMD-K6(r)"); 1839 case 8: 1840 return ("AMD-K6(r)-2"); 1841 case 9: 1842 return ("AMD-K6(r)-III"); 1843 default: 1844 return ("AMD (family 5)"); 1845 } 1846 case 6: 1847 switch (cpi->cpi_model) { 1848 case 1: 1849 return ("AMD-K7(tm)"); 1850 case 0: 1851 case 2: 1852 case 4: 1853 return ("AMD Athlon(tm)"); 1854 case 3: 1855 case 7: 1856 return ("AMD Duron(tm)"); 1857 case 6: 1858 case 8: 1859 case 10: 1860 /* 1861 * Use the L2 cache size to distinguish 1862 */ 1863 return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? 1864 "AMD Athlon(tm)" : "AMD Duron(tm)"); 1865 default: 1866 return ("AMD (family 6)"); 1867 } 1868 default: 1869 break; 1870 } 1871 1872 if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && 1873 cpi->cpi_brandid != 0) { 1874 switch (BITX(cpi->cpi_brandid, 7, 5)) { 1875 case 3: 1876 return ("AMD Opteron(tm) UP 1xx"); 1877 case 4: 1878 return ("AMD Opteron(tm) DP 2xx"); 1879 case 5: 1880 return ("AMD Opteron(tm) MP 8xx"); 1881 default: 1882 return ("AMD Opteron(tm)"); 1883 } 1884 } 1885 1886 return (NULL); 1887 } 1888 1889 static const char * 1890 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) 1891 { 1892 if ((x86_feature & X86_CPUID) == 0 || 1893 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || 1894 type == X86_TYPE_CYRIX_486) 1895 return ("i486 compatible"); 1896 1897 switch (type) { 1898 case X86_TYPE_CYRIX_6x86: 1899 return ("Cyrix 6x86"); 1900 case X86_TYPE_CYRIX_6x86L: 1901 return ("Cyrix 6x86L"); 1902 case X86_TYPE_CYRIX_6x86MX: 1903 return ("Cyrix 6x86MX"); 1904 case X86_TYPE_CYRIX_GXm: 1905 return ("Cyrix GXm"); 1906 case X86_TYPE_CYRIX_MediaGX: 1907 return ("Cyrix MediaGX"); 1908 case X86_TYPE_CYRIX_MII: 1909 return ("Cyrix M2"); 1910 case X86_TYPE_VIA_CYRIX_III: 1911 return ("VIA Cyrix M3"); 1912 default: 1913 /* 1914 * Have another wild guess .. 1915 */ 1916 if (cpi->cpi_family == 4 && cpi->cpi_model == 9) 1917 return ("Cyrix 5x86"); 1918 else if (cpi->cpi_family == 5) { 1919 switch (cpi->cpi_model) { 1920 case 2: 1921 return ("Cyrix 6x86"); /* Cyrix M1 */ 1922 case 4: 1923 return ("Cyrix MediaGX"); 1924 default: 1925 break; 1926 } 1927 } else if (cpi->cpi_family == 6) { 1928 switch (cpi->cpi_model) { 1929 case 0: 1930 return ("Cyrix 6x86MX"); /* Cyrix M2? */ 1931 case 5: 1932 case 6: 1933 case 7: 1934 case 8: 1935 case 9: 1936 return ("VIA C3"); 1937 default: 1938 break; 1939 } 1940 } 1941 break; 1942 } 1943 return (NULL); 1944 } 1945 1946 /* 1947 * This only gets called in the case that the CPU extended 1948 * feature brand string (0x80000002, 0x80000003, 0x80000004) 1949 * aren't available, or contain null bytes for some reason. 1950 */ 1951 static void 1952 fabricate_brandstr(struct cpuid_info *cpi) 1953 { 1954 const char *brand = NULL; 1955 1956 switch (cpi->cpi_vendor) { 1957 case X86_VENDOR_Intel: 1958 brand = intel_cpubrand(cpi); 1959 break; 1960 case X86_VENDOR_AMD: 1961 brand = amd_cpubrand(cpi); 1962 break; 1963 case X86_VENDOR_Cyrix: 1964 brand = cyrix_cpubrand(cpi, x86_type); 1965 break; 1966 case X86_VENDOR_NexGen: 1967 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1968 brand = "NexGen Nx586"; 1969 break; 1970 case X86_VENDOR_Centaur: 1971 if (cpi->cpi_family == 5) 1972 switch (cpi->cpi_model) { 1973 case 4: 1974 brand = "Centaur C6"; 1975 break; 1976 case 8: 1977 brand = "Centaur C2"; 1978 break; 1979 case 9: 1980 brand = "Centaur C3"; 1981 break; 1982 default: 1983 break; 1984 } 1985 break; 1986 case X86_VENDOR_Rise: 1987 if (cpi->cpi_family == 5 && 1988 (cpi->cpi_model == 0 || cpi->cpi_model == 2)) 1989 brand = "Rise mP6"; 1990 break; 1991 case X86_VENDOR_SiS: 1992 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 1993 brand = "SiS 55x"; 1994 break; 1995 case X86_VENDOR_TM: 1996 if (cpi->cpi_family == 5 && cpi->cpi_model == 4) 1997 brand = "Transmeta Crusoe TM3x00 or TM5x00"; 1998 break; 1999 case X86_VENDOR_NSC: 2000 case X86_VENDOR_UMC: 2001 default: 2002 break; 2003 } 2004 if (brand) { 2005 (void) strcpy((char *)cpi->cpi_brandstr, brand); 2006 return; 2007 } 2008 2009 /* 2010 * If all else fails ... 2011 */ 2012 (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), 2013 "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, 2014 cpi->cpi_model, cpi->cpi_step); 2015 } 2016 2017 /* 2018 * This routine is called just after kernel memory allocation 2019 * becomes available on cpu0, and as part of mp_startup() on 2020 * the other cpus. 2021 * 2022 * Fixup the brand string, and collect any information from cpuid 2023 * that requires dynamicically allocated storage to represent. 2024 */ 2025 /*ARGSUSED*/ 2026 void 2027 cpuid_pass3(cpu_t *cpu) 2028 { 2029 int i, max, shft, level, size; 2030 struct cpuid_regs regs; 2031 struct cpuid_regs *cp; 2032 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2033 2034 ASSERT(cpi->cpi_pass == 2); 2035 2036 /* 2037 * Function 4: Deterministic cache parameters 2038 * 2039 * Take this opportunity to detect the number of threads 2040 * sharing the last level cache, and construct a corresponding 2041 * cache id. The respective cpuid_info members are initialized 2042 * to the default case of "no last level cache sharing". 2043 */ 2044 cpi->cpi_ncpu_shr_last_cache = 1; 2045 cpi->cpi_last_lvl_cacheid = cpu->cpu_id; 2046 2047 if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) { 2048 2049 /* 2050 * Find the # of elements (size) returned by fn 4, and along 2051 * the way detect last level cache sharing details. 2052 */ 2053 bzero(®s, sizeof (regs)); 2054 cp = ®s; 2055 for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) { 2056 cp->cp_eax = 4; 2057 cp->cp_ecx = i; 2058 2059 (void) __cpuid_insn(cp); 2060 2061 if (CPI_CACHE_TYPE(cp) == 0) 2062 break; 2063 level = CPI_CACHE_LVL(cp); 2064 if (level > max) { 2065 max = level; 2066 cpi->cpi_ncpu_shr_last_cache = 2067 CPI_NTHR_SHR_CACHE(cp) + 1; 2068 } 2069 } 2070 cpi->cpi_std_4_size = size = i; 2071 2072 /* 2073 * Allocate the cpi_std_4 array. The first element 2074 * references the regs for fn 4, %ecx == 0, which 2075 * cpuid_pass2() stashed in cpi->cpi_std[4]. 2076 */ 2077 if (size > 0) { 2078 cpi->cpi_std_4 = 2079 kmem_alloc(size * sizeof (cp), KM_SLEEP); 2080 cpi->cpi_std_4[0] = &cpi->cpi_std[4]; 2081 2082 /* 2083 * Allocate storage to hold the additional regs 2084 * for function 4, %ecx == 1 .. cpi_std_4_size. 2085 * 2086 * The regs for fn 4, %ecx == 0 has already 2087 * been allocated as indicated above. 2088 */ 2089 for (i = 1; i < size; i++) { 2090 cp = cpi->cpi_std_4[i] = 2091 kmem_zalloc(sizeof (regs), KM_SLEEP); 2092 cp->cp_eax = 4; 2093 cp->cp_ecx = i; 2094 2095 (void) __cpuid_insn(cp); 2096 } 2097 } 2098 /* 2099 * Determine the number of bits needed to represent 2100 * the number of CPUs sharing the last level cache. 2101 * 2102 * Shift off that number of bits from the APIC id to 2103 * derive the cache id. 2104 */ 2105 shft = 0; 2106 for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1) 2107 shft++; 2108 cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft; 2109 } 2110 2111 /* 2112 * Now fixup the brand string 2113 */ 2114 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) { 2115 fabricate_brandstr(cpi); 2116 } else { 2117 2118 /* 2119 * If we successfully extracted a brand string from the cpuid 2120 * instruction, clean it up by removing leading spaces and 2121 * similar junk. 2122 */ 2123 if (cpi->cpi_brandstr[0]) { 2124 size_t maxlen = sizeof (cpi->cpi_brandstr); 2125 char *src, *dst; 2126 2127 dst = src = (char *)cpi->cpi_brandstr; 2128 src[maxlen - 1] = '\0'; 2129 /* 2130 * strip leading spaces 2131 */ 2132 while (*src == ' ') 2133 src++; 2134 /* 2135 * Remove any 'Genuine' or "Authentic" prefixes 2136 */ 2137 if (strncmp(src, "Genuine ", 8) == 0) 2138 src += 8; 2139 if (strncmp(src, "Authentic ", 10) == 0) 2140 src += 10; 2141 2142 /* 2143 * Now do an in-place copy. 2144 * Map (R) to (r) and (TM) to (tm). 2145 * The era of teletypes is long gone, and there's 2146 * -really- no need to shout. 2147 */ 2148 while (*src != '\0') { 2149 if (src[0] == '(') { 2150 if (strncmp(src + 1, "R)", 2) == 0) { 2151 (void) strncpy(dst, "(r)", 3); 2152 src += 3; 2153 dst += 3; 2154 continue; 2155 } 2156 if (strncmp(src + 1, "TM)", 3) == 0) { 2157 (void) strncpy(dst, "(tm)", 4); 2158 src += 4; 2159 dst += 4; 2160 continue; 2161 } 2162 } 2163 *dst++ = *src++; 2164 } 2165 *dst = '\0'; 2166 2167 /* 2168 * Finally, remove any trailing spaces 2169 */ 2170 while (--dst > cpi->cpi_brandstr) 2171 if (*dst == ' ') 2172 *dst = '\0'; 2173 else 2174 break; 2175 } else 2176 fabricate_brandstr(cpi); 2177 } 2178 cpi->cpi_pass = 3; 2179 } 2180 2181 /* 2182 * This routine is called out of bind_hwcap() much later in the life 2183 * of the kernel (post_startup()). The job of this routine is to resolve 2184 * the hardware feature support and kernel support for those features into 2185 * what we're actually going to tell applications via the aux vector. 2186 */ 2187 uint_t 2188 cpuid_pass4(cpu_t *cpu) 2189 { 2190 struct cpuid_info *cpi; 2191 uint_t hwcap_flags = 0; 2192 2193 if (cpu == NULL) 2194 cpu = CPU; 2195 cpi = cpu->cpu_m.mcpu_cpi; 2196 2197 ASSERT(cpi->cpi_pass == 3); 2198 2199 if (cpi->cpi_maxeax >= 1) { 2200 uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; 2201 uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; 2202 2203 *edx = CPI_FEATURES_EDX(cpi); 2204 *ecx = CPI_FEATURES_ECX(cpi); 2205 2206 /* 2207 * [these require explicit kernel support] 2208 */ 2209 if ((x86_feature & X86_SEP) == 0) 2210 *edx &= ~CPUID_INTC_EDX_SEP; 2211 2212 if ((x86_feature & X86_SSE) == 0) 2213 *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); 2214 if ((x86_feature & X86_SSE2) == 0) 2215 *edx &= ~CPUID_INTC_EDX_SSE2; 2216 2217 if ((x86_feature & X86_HTT) == 0) 2218 *edx &= ~CPUID_INTC_EDX_HTT; 2219 2220 if ((x86_feature & X86_SSE3) == 0) 2221 *ecx &= ~CPUID_INTC_ECX_SSE3; 2222 2223 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 2224 if ((x86_feature & X86_SSSE3) == 0) 2225 *ecx &= ~CPUID_INTC_ECX_SSSE3; 2226 if ((x86_feature & X86_SSE4_1) == 0) 2227 *ecx &= ~CPUID_INTC_ECX_SSE4_1; 2228 if ((x86_feature & X86_SSE4_2) == 0) 2229 *ecx &= ~CPUID_INTC_ECX_SSE4_2; 2230 if ((x86_feature & X86_AES) == 0) 2231 *ecx &= ~CPUID_INTC_ECX_AES; 2232 } 2233 2234 /* 2235 * [no explicit support required beyond x87 fp context] 2236 */ 2237 if (!fpu_exists) 2238 *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); 2239 2240 /* 2241 * Now map the supported feature vector to things that we 2242 * think userland will care about. 2243 */ 2244 if (*edx & CPUID_INTC_EDX_SEP) 2245 hwcap_flags |= AV_386_SEP; 2246 if (*edx & CPUID_INTC_EDX_SSE) 2247 hwcap_flags |= AV_386_FXSR | AV_386_SSE; 2248 if (*edx & CPUID_INTC_EDX_SSE2) 2249 hwcap_flags |= AV_386_SSE2; 2250 if (*ecx & CPUID_INTC_ECX_SSE3) 2251 hwcap_flags |= AV_386_SSE3; 2252 if (cpi->cpi_vendor == X86_VENDOR_Intel) { 2253 if (*ecx & CPUID_INTC_ECX_SSSE3) 2254 hwcap_flags |= AV_386_SSSE3; 2255 if (*ecx & CPUID_INTC_ECX_SSE4_1) 2256 hwcap_flags |= AV_386_SSE4_1; 2257 if (*ecx & CPUID_INTC_ECX_SSE4_2) 2258 hwcap_flags |= AV_386_SSE4_2; 2259 if (*ecx & CPUID_INTC_ECX_MOVBE) 2260 hwcap_flags |= AV_386_MOVBE; 2261 if (*ecx & CPUID_INTC_ECX_AES) 2262 hwcap_flags |= AV_386_AES; 2263 if (*ecx & CPUID_INTC_ECX_PCLMULQDQ) 2264 hwcap_flags |= AV_386_PCLMULQDQ; 2265 } 2266 if (*ecx & CPUID_INTC_ECX_POPCNT) 2267 hwcap_flags |= AV_386_POPCNT; 2268 if (*edx & CPUID_INTC_EDX_FPU) 2269 hwcap_flags |= AV_386_FPU; 2270 if (*edx & CPUID_INTC_EDX_MMX) 2271 hwcap_flags |= AV_386_MMX; 2272 2273 if (*edx & CPUID_INTC_EDX_TSC) 2274 hwcap_flags |= AV_386_TSC; 2275 if (*edx & CPUID_INTC_EDX_CX8) 2276 hwcap_flags |= AV_386_CX8; 2277 if (*edx & CPUID_INTC_EDX_CMOV) 2278 hwcap_flags |= AV_386_CMOV; 2279 if (*ecx & CPUID_INTC_ECX_MON) 2280 hwcap_flags |= AV_386_MON; 2281 if (*ecx & CPUID_INTC_ECX_CX16) 2282 hwcap_flags |= AV_386_CX16; 2283 } 2284 2285 if (x86_feature & X86_HTT) 2286 hwcap_flags |= AV_386_PAUSE; 2287 2288 if (cpi->cpi_xmaxeax < 0x80000001) 2289 goto pass4_done; 2290 2291 switch (cpi->cpi_vendor) { 2292 struct cpuid_regs cp; 2293 uint32_t *edx, *ecx; 2294 2295 case X86_VENDOR_Intel: 2296 /* 2297 * Seems like Intel duplicated what we necessary 2298 * here to make the initial crop of 64-bit OS's work. 2299 * Hopefully, those are the only "extended" bits 2300 * they'll add. 2301 */ 2302 /*FALLTHROUGH*/ 2303 2304 case X86_VENDOR_AMD: 2305 edx = &cpi->cpi_support[AMD_EDX_FEATURES]; 2306 ecx = &cpi->cpi_support[AMD_ECX_FEATURES]; 2307 2308 *edx = CPI_FEATURES_XTD_EDX(cpi); 2309 *ecx = CPI_FEATURES_XTD_ECX(cpi); 2310 2311 /* 2312 * [these features require explicit kernel support] 2313 */ 2314 switch (cpi->cpi_vendor) { 2315 case X86_VENDOR_Intel: 2316 if ((x86_feature & X86_TSCP) == 0) 2317 *edx &= ~CPUID_AMD_EDX_TSCP; 2318 break; 2319 2320 case X86_VENDOR_AMD: 2321 if ((x86_feature & X86_TSCP) == 0) 2322 *edx &= ~CPUID_AMD_EDX_TSCP; 2323 if ((x86_feature & X86_SSE4A) == 0) 2324 *ecx &= ~CPUID_AMD_ECX_SSE4A; 2325 break; 2326 2327 default: 2328 break; 2329 } 2330 2331 /* 2332 * [no explicit support required beyond 2333 * x87 fp context and exception handlers] 2334 */ 2335 if (!fpu_exists) 2336 *edx &= ~(CPUID_AMD_EDX_MMXamd | 2337 CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); 2338 2339 if ((x86_feature & X86_NX) == 0) 2340 *edx &= ~CPUID_AMD_EDX_NX; 2341 #if !defined(__amd64) 2342 *edx &= ~CPUID_AMD_EDX_LM; 2343 #endif 2344 /* 2345 * Now map the supported feature vector to 2346 * things that we think userland will care about. 2347 */ 2348 #if defined(__amd64) 2349 if (*edx & CPUID_AMD_EDX_SYSC) 2350 hwcap_flags |= AV_386_AMD_SYSC; 2351 #endif 2352 if (*edx & CPUID_AMD_EDX_MMXamd) 2353 hwcap_flags |= AV_386_AMD_MMX; 2354 if (*edx & CPUID_AMD_EDX_3DNow) 2355 hwcap_flags |= AV_386_AMD_3DNow; 2356 if (*edx & CPUID_AMD_EDX_3DNowx) 2357 hwcap_flags |= AV_386_AMD_3DNowx; 2358 2359 switch (cpi->cpi_vendor) { 2360 case X86_VENDOR_AMD: 2361 if (*edx & CPUID_AMD_EDX_TSCP) 2362 hwcap_flags |= AV_386_TSCP; 2363 if (*ecx & CPUID_AMD_ECX_AHF64) 2364 hwcap_flags |= AV_386_AHF; 2365 if (*ecx & CPUID_AMD_ECX_SSE4A) 2366 hwcap_flags |= AV_386_AMD_SSE4A; 2367 if (*ecx & CPUID_AMD_ECX_LZCNT) 2368 hwcap_flags |= AV_386_AMD_LZCNT; 2369 break; 2370 2371 case X86_VENDOR_Intel: 2372 if (*edx & CPUID_AMD_EDX_TSCP) 2373 hwcap_flags |= AV_386_TSCP; 2374 /* 2375 * Aarrgh. 2376 * Intel uses a different bit in the same word. 2377 */ 2378 if (*ecx & CPUID_INTC_ECX_AHF64) 2379 hwcap_flags |= AV_386_AHF; 2380 break; 2381 2382 default: 2383 break; 2384 } 2385 break; 2386 2387 case X86_VENDOR_TM: 2388 cp.cp_eax = 0x80860001; 2389 (void) __cpuid_insn(&cp); 2390 cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx; 2391 break; 2392 2393 default: 2394 break; 2395 } 2396 2397 pass4_done: 2398 cpi->cpi_pass = 4; 2399 return (hwcap_flags); 2400 } 2401 2402 2403 /* 2404 * Simulate the cpuid instruction using the data we previously 2405 * captured about this CPU. We try our best to return the truth 2406 * about the hardware, independently of kernel support. 2407 */ 2408 uint32_t 2409 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp) 2410 { 2411 struct cpuid_info *cpi; 2412 struct cpuid_regs *xcp; 2413 2414 if (cpu == NULL) 2415 cpu = CPU; 2416 cpi = cpu->cpu_m.mcpu_cpi; 2417 2418 ASSERT(cpuid_checkpass(cpu, 3)); 2419 2420 /* 2421 * CPUID data is cached in two separate places: cpi_std for standard 2422 * CPUID functions, and cpi_extd for extended CPUID functions. 2423 */ 2424 if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD) 2425 xcp = &cpi->cpi_std[cp->cp_eax]; 2426 else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax && 2427 cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD) 2428 xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000]; 2429 else 2430 /* 2431 * The caller is asking for data from an input parameter which 2432 * the kernel has not cached. In this case we go fetch from 2433 * the hardware and return the data directly to the user. 2434 */ 2435 return (__cpuid_insn(cp)); 2436 2437 cp->cp_eax = xcp->cp_eax; 2438 cp->cp_ebx = xcp->cp_ebx; 2439 cp->cp_ecx = xcp->cp_ecx; 2440 cp->cp_edx = xcp->cp_edx; 2441 return (cp->cp_eax); 2442 } 2443 2444 int 2445 cpuid_checkpass(cpu_t *cpu, int pass) 2446 { 2447 return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && 2448 cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); 2449 } 2450 2451 int 2452 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) 2453 { 2454 ASSERT(cpuid_checkpass(cpu, 3)); 2455 2456 return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); 2457 } 2458 2459 int 2460 cpuid_is_cmt(cpu_t *cpu) 2461 { 2462 if (cpu == NULL) 2463 cpu = CPU; 2464 2465 ASSERT(cpuid_checkpass(cpu, 1)); 2466 2467 return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); 2468 } 2469 2470 /* 2471 * AMD and Intel both implement the 64-bit variant of the syscall 2472 * instruction (syscallq), so if there's -any- support for syscall, 2473 * cpuid currently says "yes, we support this". 2474 * 2475 * However, Intel decided to -not- implement the 32-bit variant of the 2476 * syscall instruction, so we provide a predicate to allow our caller 2477 * to test that subtlety here. 2478 * 2479 * XXPV Currently, 32-bit syscall instructions don't work via the hypervisor, 2480 * even in the case where the hardware would in fact support it. 2481 */ 2482 /*ARGSUSED*/ 2483 int 2484 cpuid_syscall32_insn(cpu_t *cpu) 2485 { 2486 ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); 2487 2488 #if !defined(__xpv) 2489 if (cpu == NULL) 2490 cpu = CPU; 2491 2492 /*CSTYLED*/ 2493 { 2494 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2495 2496 if (cpi->cpi_vendor == X86_VENDOR_AMD && 2497 cpi->cpi_xmaxeax >= 0x80000001 && 2498 (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC)) 2499 return (1); 2500 } 2501 #endif 2502 return (0); 2503 } 2504 2505 int 2506 cpuid_getidstr(cpu_t *cpu, char *s, size_t n) 2507 { 2508 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2509 2510 static const char fmt[] = 2511 "x86 (%s %X family %d model %d step %d clock %d MHz)"; 2512 static const char fmt_ht[] = 2513 "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)"; 2514 2515 ASSERT(cpuid_checkpass(cpu, 1)); 2516 2517 if (cpuid_is_cmt(cpu)) 2518 return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, 2519 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2520 cpi->cpi_family, cpi->cpi_model, 2521 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2522 return (snprintf(s, n, fmt, 2523 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2524 cpi->cpi_family, cpi->cpi_model, 2525 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2526 } 2527 2528 const char * 2529 cpuid_getvendorstr(cpu_t *cpu) 2530 { 2531 ASSERT(cpuid_checkpass(cpu, 1)); 2532 return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); 2533 } 2534 2535 uint_t 2536 cpuid_getvendor(cpu_t *cpu) 2537 { 2538 ASSERT(cpuid_checkpass(cpu, 1)); 2539 return (cpu->cpu_m.mcpu_cpi->cpi_vendor); 2540 } 2541 2542 uint_t 2543 cpuid_getfamily(cpu_t *cpu) 2544 { 2545 ASSERT(cpuid_checkpass(cpu, 1)); 2546 return (cpu->cpu_m.mcpu_cpi->cpi_family); 2547 } 2548 2549 uint_t 2550 cpuid_getmodel(cpu_t *cpu) 2551 { 2552 ASSERT(cpuid_checkpass(cpu, 1)); 2553 return (cpu->cpu_m.mcpu_cpi->cpi_model); 2554 } 2555 2556 uint_t 2557 cpuid_get_ncpu_per_chip(cpu_t *cpu) 2558 { 2559 ASSERT(cpuid_checkpass(cpu, 1)); 2560 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); 2561 } 2562 2563 uint_t 2564 cpuid_get_ncore_per_chip(cpu_t *cpu) 2565 { 2566 ASSERT(cpuid_checkpass(cpu, 1)); 2567 return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip); 2568 } 2569 2570 uint_t 2571 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu) 2572 { 2573 ASSERT(cpuid_checkpass(cpu, 2)); 2574 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache); 2575 } 2576 2577 id_t 2578 cpuid_get_last_lvl_cacheid(cpu_t *cpu) 2579 { 2580 ASSERT(cpuid_checkpass(cpu, 2)); 2581 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 2582 } 2583 2584 uint_t 2585 cpuid_getstep(cpu_t *cpu) 2586 { 2587 ASSERT(cpuid_checkpass(cpu, 1)); 2588 return (cpu->cpu_m.mcpu_cpi->cpi_step); 2589 } 2590 2591 uint_t 2592 cpuid_getsig(struct cpu *cpu) 2593 { 2594 ASSERT(cpuid_checkpass(cpu, 1)); 2595 return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax); 2596 } 2597 2598 uint32_t 2599 cpuid_getchiprev(struct cpu *cpu) 2600 { 2601 ASSERT(cpuid_checkpass(cpu, 1)); 2602 return (cpu->cpu_m.mcpu_cpi->cpi_chiprev); 2603 } 2604 2605 const char * 2606 cpuid_getchiprevstr(struct cpu *cpu) 2607 { 2608 ASSERT(cpuid_checkpass(cpu, 1)); 2609 return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr); 2610 } 2611 2612 uint32_t 2613 cpuid_getsockettype(struct cpu *cpu) 2614 { 2615 ASSERT(cpuid_checkpass(cpu, 1)); 2616 return (cpu->cpu_m.mcpu_cpi->cpi_socket); 2617 } 2618 2619 const char * 2620 cpuid_getsocketstr(cpu_t *cpu) 2621 { 2622 static const char *socketstr = NULL; 2623 struct cpuid_info *cpi; 2624 2625 ASSERT(cpuid_checkpass(cpu, 1)); 2626 cpi = cpu->cpu_m.mcpu_cpi; 2627 2628 /* Assume that socket types are the same across the system */ 2629 if (socketstr == NULL) 2630 socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family, 2631 cpi->cpi_model, cpi->cpi_step); 2632 2633 2634 return (socketstr); 2635 } 2636 2637 int 2638 cpuid_get_chipid(cpu_t *cpu) 2639 { 2640 ASSERT(cpuid_checkpass(cpu, 1)); 2641 2642 if (cpuid_is_cmt(cpu)) 2643 return (cpu->cpu_m.mcpu_cpi->cpi_chipid); 2644 return (cpu->cpu_id); 2645 } 2646 2647 id_t 2648 cpuid_get_coreid(cpu_t *cpu) 2649 { 2650 ASSERT(cpuid_checkpass(cpu, 1)); 2651 return (cpu->cpu_m.mcpu_cpi->cpi_coreid); 2652 } 2653 2654 int 2655 cpuid_get_pkgcoreid(cpu_t *cpu) 2656 { 2657 ASSERT(cpuid_checkpass(cpu, 1)); 2658 return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid); 2659 } 2660 2661 int 2662 cpuid_get_clogid(cpu_t *cpu) 2663 { 2664 ASSERT(cpuid_checkpass(cpu, 1)); 2665 return (cpu->cpu_m.mcpu_cpi->cpi_clogid); 2666 } 2667 2668 uint_t 2669 cpuid_get_procnodeid(cpu_t *cpu) 2670 { 2671 ASSERT(cpuid_checkpass(cpu, 1)); 2672 return (cpu->cpu_m.mcpu_cpi->cpi_procnodeid); 2673 } 2674 2675 uint_t 2676 cpuid_get_procnodes_per_pkg(cpu_t *cpu) 2677 { 2678 ASSERT(cpuid_checkpass(cpu, 1)); 2679 return (cpu->cpu_m.mcpu_cpi->cpi_procnodes_per_pkg); 2680 } 2681 2682 /*ARGSUSED*/ 2683 int 2684 cpuid_have_cr8access(cpu_t *cpu) 2685 { 2686 #if defined(__amd64) 2687 return (1); 2688 #else 2689 struct cpuid_info *cpi; 2690 2691 ASSERT(cpu != NULL); 2692 cpi = cpu->cpu_m.mcpu_cpi; 2693 if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 && 2694 (CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0) 2695 return (1); 2696 return (0); 2697 #endif 2698 } 2699 2700 uint32_t 2701 cpuid_get_apicid(cpu_t *cpu) 2702 { 2703 ASSERT(cpuid_checkpass(cpu, 1)); 2704 if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) { 2705 return (UINT32_MAX); 2706 } else { 2707 return (cpu->cpu_m.mcpu_cpi->cpi_apicid); 2708 } 2709 } 2710 2711 void 2712 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) 2713 { 2714 struct cpuid_info *cpi; 2715 2716 if (cpu == NULL) 2717 cpu = CPU; 2718 cpi = cpu->cpu_m.mcpu_cpi; 2719 2720 ASSERT(cpuid_checkpass(cpu, 1)); 2721 2722 if (pabits) 2723 *pabits = cpi->cpi_pabits; 2724 if (vabits) 2725 *vabits = cpi->cpi_vabits; 2726 } 2727 2728 /* 2729 * Returns the number of data TLB entries for a corresponding 2730 * pagesize. If it can't be computed, or isn't known, the 2731 * routine returns zero. If you ask about an architecturally 2732 * impossible pagesize, the routine will panic (so that the 2733 * hat implementor knows that things are inconsistent.) 2734 */ 2735 uint_t 2736 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) 2737 { 2738 struct cpuid_info *cpi; 2739 uint_t dtlb_nent = 0; 2740 2741 if (cpu == NULL) 2742 cpu = CPU; 2743 cpi = cpu->cpu_m.mcpu_cpi; 2744 2745 ASSERT(cpuid_checkpass(cpu, 1)); 2746 2747 /* 2748 * Check the L2 TLB info 2749 */ 2750 if (cpi->cpi_xmaxeax >= 0x80000006) { 2751 struct cpuid_regs *cp = &cpi->cpi_extd[6]; 2752 2753 switch (pagesize) { 2754 2755 case 4 * 1024: 2756 /* 2757 * All zero in the top 16 bits of the register 2758 * indicates a unified TLB. Size is in low 16 bits. 2759 */ 2760 if ((cp->cp_ebx & 0xffff0000) == 0) 2761 dtlb_nent = cp->cp_ebx & 0x0000ffff; 2762 else 2763 dtlb_nent = BITX(cp->cp_ebx, 27, 16); 2764 break; 2765 2766 case 2 * 1024 * 1024: 2767 if ((cp->cp_eax & 0xffff0000) == 0) 2768 dtlb_nent = cp->cp_eax & 0x0000ffff; 2769 else 2770 dtlb_nent = BITX(cp->cp_eax, 27, 16); 2771 break; 2772 2773 default: 2774 panic("unknown L2 pagesize"); 2775 /*NOTREACHED*/ 2776 } 2777 } 2778 2779 if (dtlb_nent != 0) 2780 return (dtlb_nent); 2781 2782 /* 2783 * No L2 TLB support for this size, try L1. 2784 */ 2785 if (cpi->cpi_xmaxeax >= 0x80000005) { 2786 struct cpuid_regs *cp = &cpi->cpi_extd[5]; 2787 2788 switch (pagesize) { 2789 case 4 * 1024: 2790 dtlb_nent = BITX(cp->cp_ebx, 23, 16); 2791 break; 2792 case 2 * 1024 * 1024: 2793 dtlb_nent = BITX(cp->cp_eax, 23, 16); 2794 break; 2795 default: 2796 panic("unknown L1 d-TLB pagesize"); 2797 /*NOTREACHED*/ 2798 } 2799 } 2800 2801 return (dtlb_nent); 2802 } 2803 2804 /* 2805 * Return 0 if the erratum is not present or not applicable, positive 2806 * if it is, and negative if the status of the erratum is unknown. 2807 * 2808 * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) 2809 * Processors" #25759, Rev 3.57, August 2005 2810 */ 2811 int 2812 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) 2813 { 2814 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2815 uint_t eax; 2816 2817 /* 2818 * Bail out if this CPU isn't an AMD CPU, or if it's 2819 * a legacy (32-bit) AMD CPU. 2820 */ 2821 if (cpi->cpi_vendor != X86_VENDOR_AMD || 2822 cpi->cpi_family == 4 || cpi->cpi_family == 5 || 2823 cpi->cpi_family == 6) 2824 2825 return (0); 2826 2827 eax = cpi->cpi_std[1].cp_eax; 2828 2829 #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) 2830 #define SH_B3(eax) (eax == 0xf51) 2831 #define B(eax) (SH_B0(eax) || SH_B3(eax)) 2832 2833 #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) 2834 2835 #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) 2836 #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) 2837 #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) 2838 #define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax)) 2839 2840 #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) 2841 #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) 2842 #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) 2843 #define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax)) 2844 2845 #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) 2846 #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ 2847 #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) 2848 #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) 2849 #define BH_E4(eax) (eax == 0x20fb1) 2850 #define SH_E5(eax) (eax == 0x20f42) 2851 #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) 2852 #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) 2853 #define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \ 2854 SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \ 2855 DH_E6(eax) || JH_E6(eax)) 2856 2857 #define DR_AX(eax) (eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02) 2858 #define DR_B0(eax) (eax == 0x100f20) 2859 #define DR_B1(eax) (eax == 0x100f21) 2860 #define DR_BA(eax) (eax == 0x100f2a) 2861 #define DR_B2(eax) (eax == 0x100f22) 2862 #define DR_B3(eax) (eax == 0x100f23) 2863 #define RB_C0(eax) (eax == 0x100f40) 2864 2865 switch (erratum) { 2866 case 1: 2867 return (cpi->cpi_family < 0x10); 2868 case 51: /* what does the asterisk mean? */ 2869 return (B(eax) || SH_C0(eax) || CG(eax)); 2870 case 52: 2871 return (B(eax)); 2872 case 57: 2873 return (cpi->cpi_family <= 0x11); 2874 case 58: 2875 return (B(eax)); 2876 case 60: 2877 return (cpi->cpi_family <= 0x11); 2878 case 61: 2879 case 62: 2880 case 63: 2881 case 64: 2882 case 65: 2883 case 66: 2884 case 68: 2885 case 69: 2886 case 70: 2887 case 71: 2888 return (B(eax)); 2889 case 72: 2890 return (SH_B0(eax)); 2891 case 74: 2892 return (B(eax)); 2893 case 75: 2894 return (cpi->cpi_family < 0x10); 2895 case 76: 2896 return (B(eax)); 2897 case 77: 2898 return (cpi->cpi_family <= 0x11); 2899 case 78: 2900 return (B(eax) || SH_C0(eax)); 2901 case 79: 2902 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2903 case 80: 2904 case 81: 2905 case 82: 2906 return (B(eax)); 2907 case 83: 2908 return (B(eax) || SH_C0(eax) || CG(eax)); 2909 case 85: 2910 return (cpi->cpi_family < 0x10); 2911 case 86: 2912 return (SH_C0(eax) || CG(eax)); 2913 case 88: 2914 #if !defined(__amd64) 2915 return (0); 2916 #else 2917 return (B(eax) || SH_C0(eax)); 2918 #endif 2919 case 89: 2920 return (cpi->cpi_family < 0x10); 2921 case 90: 2922 return (B(eax) || SH_C0(eax) || CG(eax)); 2923 case 91: 2924 case 92: 2925 return (B(eax) || SH_C0(eax)); 2926 case 93: 2927 return (SH_C0(eax)); 2928 case 94: 2929 return (B(eax) || SH_C0(eax) || CG(eax)); 2930 case 95: 2931 #if !defined(__amd64) 2932 return (0); 2933 #else 2934 return (B(eax) || SH_C0(eax)); 2935 #endif 2936 case 96: 2937 return (B(eax) || SH_C0(eax) || CG(eax)); 2938 case 97: 2939 case 98: 2940 return (SH_C0(eax) || CG(eax)); 2941 case 99: 2942 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2943 case 100: 2944 return (B(eax) || SH_C0(eax)); 2945 case 101: 2946 case 103: 2947 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2948 case 104: 2949 return (SH_C0(eax) || CG(eax) || D0(eax)); 2950 case 105: 2951 case 106: 2952 case 107: 2953 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2954 case 108: 2955 return (DH_CG(eax)); 2956 case 109: 2957 return (SH_C0(eax) || CG(eax) || D0(eax)); 2958 case 110: 2959 return (D0(eax) || EX(eax)); 2960 case 111: 2961 return (CG(eax)); 2962 case 112: 2963 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2964 case 113: 2965 return (eax == 0x20fc0); 2966 case 114: 2967 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2968 case 115: 2969 return (SH_E0(eax) || JH_E1(eax)); 2970 case 116: 2971 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 2972 case 117: 2973 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 2974 case 118: 2975 return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || 2976 JH_E6(eax)); 2977 case 121: 2978 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 2979 case 122: 2980 return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11); 2981 case 123: 2982 return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); 2983 case 131: 2984 return (cpi->cpi_family < 0x10); 2985 case 6336786: 2986 /* 2987 * Test for AdvPowerMgmtInfo.TscPStateInvariant 2988 * if this is a K8 family or newer processor 2989 */ 2990 if (CPI_FAMILY(cpi) == 0xf) { 2991 struct cpuid_regs regs; 2992 regs.cp_eax = 0x80000007; 2993 (void) __cpuid_insn(®s); 2994 return (!(regs.cp_edx & 0x100)); 2995 } 2996 return (0); 2997 case 6323525: 2998 return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) | 2999 (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40); 3000 3001 case 6671130: 3002 /* 3003 * check for processors (pre-Shanghai) that do not provide 3004 * optimal management of 1gb ptes in its tlb. 3005 */ 3006 return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4); 3007 3008 case 298: 3009 return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) || 3010 DR_B2(eax) || RB_C0(eax)); 3011 3012 default: 3013 return (-1); 3014 3015 } 3016 } 3017 3018 /* 3019 * Determine if specified erratum is present via OSVW (OS Visible Workaround). 3020 * Return 1 if erratum is present, 0 if not present and -1 if indeterminate. 3021 */ 3022 int 3023 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum) 3024 { 3025 struct cpuid_info *cpi; 3026 uint_t osvwid; 3027 static int osvwfeature = -1; 3028 uint64_t osvwlength; 3029 3030 3031 cpi = cpu->cpu_m.mcpu_cpi; 3032 3033 /* confirm OSVW supported */ 3034 if (osvwfeature == -1) { 3035 osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW; 3036 } else { 3037 /* assert that osvw feature setting is consistent on all cpus */ 3038 ASSERT(osvwfeature == 3039 (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW)); 3040 } 3041 if (!osvwfeature) 3042 return (-1); 3043 3044 osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK; 3045 3046 switch (erratum) { 3047 case 298: /* osvwid is 0 */ 3048 osvwid = 0; 3049 if (osvwlength <= (uint64_t)osvwid) { 3050 /* osvwid 0 is unknown */ 3051 return (-1); 3052 } 3053 3054 /* 3055 * Check the OSVW STATUS MSR to determine the state 3056 * of the erratum where: 3057 * 0 - fixed by HW 3058 * 1 - BIOS has applied the workaround when BIOS 3059 * workaround is available. (Or for other errata, 3060 * OS workaround is required.) 3061 * For a value of 1, caller will confirm that the 3062 * erratum 298 workaround has indeed been applied by BIOS. 3063 * 3064 * A 1 may be set in cpus that have a HW fix 3065 * in a mixed cpu system. Regarding erratum 298: 3066 * In a multiprocessor platform, the workaround above 3067 * should be applied to all processors regardless of 3068 * silicon revision when an affected processor is 3069 * present. 3070 */ 3071 3072 return (rdmsr(MSR_AMD_OSVW_STATUS + 3073 (osvwid / OSVW_ID_CNT_PER_MSR)) & 3074 (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR))); 3075 3076 default: 3077 return (-1); 3078 } 3079 } 3080 3081 static const char assoc_str[] = "associativity"; 3082 static const char line_str[] = "line-size"; 3083 static const char size_str[] = "size"; 3084 3085 static void 3086 add_cache_prop(dev_info_t *devi, const char *label, const char *type, 3087 uint32_t val) 3088 { 3089 char buf[128]; 3090 3091 /* 3092 * ndi_prop_update_int() is used because it is desirable for 3093 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. 3094 */ 3095 if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) 3096 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); 3097 } 3098 3099 /* 3100 * Intel-style cache/tlb description 3101 * 3102 * Standard cpuid level 2 gives a randomly ordered 3103 * selection of tags that index into a table that describes 3104 * cache and tlb properties. 3105 */ 3106 3107 static const char l1_icache_str[] = "l1-icache"; 3108 static const char l1_dcache_str[] = "l1-dcache"; 3109 static const char l2_cache_str[] = "l2-cache"; 3110 static const char l3_cache_str[] = "l3-cache"; 3111 static const char itlb4k_str[] = "itlb-4K"; 3112 static const char dtlb4k_str[] = "dtlb-4K"; 3113 static const char itlb2M_str[] = "itlb-2M"; 3114 static const char itlb4M_str[] = "itlb-4M"; 3115 static const char dtlb4M_str[] = "dtlb-4M"; 3116 static const char dtlb24_str[] = "dtlb0-2M-4M"; 3117 static const char itlb424_str[] = "itlb-4K-2M-4M"; 3118 static const char itlb24_str[] = "itlb-2M-4M"; 3119 static const char dtlb44_str[] = "dtlb-4K-4M"; 3120 static const char sl1_dcache_str[] = "sectored-l1-dcache"; 3121 static const char sl2_cache_str[] = "sectored-l2-cache"; 3122 static const char itrace_str[] = "itrace-cache"; 3123 static const char sl3_cache_str[] = "sectored-l3-cache"; 3124 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k"; 3125 3126 static const struct cachetab { 3127 uint8_t ct_code; 3128 uint8_t ct_assoc; 3129 uint16_t ct_line_size; 3130 size_t ct_size; 3131 const char *ct_label; 3132 } intel_ctab[] = { 3133 /* 3134 * maintain descending order! 3135 * 3136 * Codes ignored - Reason 3137 * ---------------------- 3138 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache 3139 * f0H/f1H - Currently we do not interpret prefetch size by design 3140 */ 3141 { 0xe4, 16, 64, 8*1024*1024, l3_cache_str}, 3142 { 0xe3, 16, 64, 4*1024*1024, l3_cache_str}, 3143 { 0xe2, 16, 64, 2*1024*1024, l3_cache_str}, 3144 { 0xde, 12, 64, 6*1024*1024, l3_cache_str}, 3145 { 0xdd, 12, 64, 3*1024*1024, l3_cache_str}, 3146 { 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str}, 3147 { 0xd8, 8, 64, 4*1024*1024, l3_cache_str}, 3148 { 0xd7, 8, 64, 2*1024*1024, l3_cache_str}, 3149 { 0xd6, 8, 64, 1*1024*1024, l3_cache_str}, 3150 { 0xd2, 4, 64, 2*1024*1024, l3_cache_str}, 3151 { 0xd1, 4, 64, 1*1024*1024, l3_cache_str}, 3152 { 0xd0, 4, 64, 512*1024, l3_cache_str}, 3153 { 0xca, 4, 0, 512, sh_l2_tlb4k_str}, 3154 { 0xc0, 4, 0, 8, dtlb44_str }, 3155 { 0xba, 4, 0, 64, dtlb4k_str }, 3156 { 0xb4, 4, 0, 256, dtlb4k_str }, 3157 { 0xb3, 4, 0, 128, dtlb4k_str }, 3158 { 0xb2, 4, 0, 64, itlb4k_str }, 3159 { 0xb0, 4, 0, 128, itlb4k_str }, 3160 { 0x87, 8, 64, 1024*1024, l2_cache_str}, 3161 { 0x86, 4, 64, 512*1024, l2_cache_str}, 3162 { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, 3163 { 0x84, 8, 32, 1024*1024, l2_cache_str}, 3164 { 0x83, 8, 32, 512*1024, l2_cache_str}, 3165 { 0x82, 8, 32, 256*1024, l2_cache_str}, 3166 { 0x80, 8, 64, 512*1024, l2_cache_str}, 3167 { 0x7f, 2, 64, 512*1024, l2_cache_str}, 3168 { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, 3169 { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, 3170 { 0x7b, 8, 64, 512*1024, sl2_cache_str}, 3171 { 0x7a, 8, 64, 256*1024, sl2_cache_str}, 3172 { 0x79, 8, 64, 128*1024, sl2_cache_str}, 3173 { 0x78, 8, 64, 1024*1024, l2_cache_str}, 3174 { 0x73, 8, 0, 64*1024, itrace_str}, 3175 { 0x72, 8, 0, 32*1024, itrace_str}, 3176 { 0x71, 8, 0, 16*1024, itrace_str}, 3177 { 0x70, 8, 0, 12*1024, itrace_str}, 3178 { 0x68, 4, 64, 32*1024, sl1_dcache_str}, 3179 { 0x67, 4, 64, 16*1024, sl1_dcache_str}, 3180 { 0x66, 4, 64, 8*1024, sl1_dcache_str}, 3181 { 0x60, 8, 64, 16*1024, sl1_dcache_str}, 3182 { 0x5d, 0, 0, 256, dtlb44_str}, 3183 { 0x5c, 0, 0, 128, dtlb44_str}, 3184 { 0x5b, 0, 0, 64, dtlb44_str}, 3185 { 0x5a, 4, 0, 32, dtlb24_str}, 3186 { 0x59, 0, 0, 16, dtlb4k_str}, 3187 { 0x57, 4, 0, 16, dtlb4k_str}, 3188 { 0x56, 4, 0, 16, dtlb4M_str}, 3189 { 0x55, 0, 0, 7, itlb24_str}, 3190 { 0x52, 0, 0, 256, itlb424_str}, 3191 { 0x51, 0, 0, 128, itlb424_str}, 3192 { 0x50, 0, 0, 64, itlb424_str}, 3193 { 0x4f, 0, 0, 32, itlb4k_str}, 3194 { 0x4e, 24, 64, 6*1024*1024, l2_cache_str}, 3195 { 0x4d, 16, 64, 16*1024*1024, l3_cache_str}, 3196 { 0x4c, 12, 64, 12*1024*1024, l3_cache_str}, 3197 { 0x4b, 16, 64, 8*1024*1024, l3_cache_str}, 3198 { 0x4a, 12, 64, 6*1024*1024, l3_cache_str}, 3199 { 0x49, 16, 64, 4*1024*1024, l3_cache_str}, 3200 { 0x48, 12, 64, 3*1024*1024, l2_cache_str}, 3201 { 0x47, 8, 64, 8*1024*1024, l3_cache_str}, 3202 { 0x46, 4, 64, 4*1024*1024, l3_cache_str}, 3203 { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, 3204 { 0x44, 4, 32, 1024*1024, l2_cache_str}, 3205 { 0x43, 4, 32, 512*1024, l2_cache_str}, 3206 { 0x42, 4, 32, 256*1024, l2_cache_str}, 3207 { 0x41, 4, 32, 128*1024, l2_cache_str}, 3208 { 0x3e, 4, 64, 512*1024, sl2_cache_str}, 3209 { 0x3d, 6, 64, 384*1024, sl2_cache_str}, 3210 { 0x3c, 4, 64, 256*1024, sl2_cache_str}, 3211 { 0x3b, 2, 64, 128*1024, sl2_cache_str}, 3212 { 0x3a, 6, 64, 192*1024, sl2_cache_str}, 3213 { 0x39, 4, 64, 128*1024, sl2_cache_str}, 3214 { 0x30, 8, 64, 32*1024, l1_icache_str}, 3215 { 0x2c, 8, 64, 32*1024, l1_dcache_str}, 3216 { 0x29, 8, 64, 4096*1024, sl3_cache_str}, 3217 { 0x25, 8, 64, 2048*1024, sl3_cache_str}, 3218 { 0x23, 8, 64, 1024*1024, sl3_cache_str}, 3219 { 0x22, 4, 64, 512*1024, sl3_cache_str}, 3220 { 0x0e, 6, 64, 24*1024, l1_dcache_str}, 3221 { 0x0d, 4, 32, 16*1024, l1_dcache_str}, 3222 { 0x0c, 4, 32, 16*1024, l1_dcache_str}, 3223 { 0x0b, 4, 0, 4, itlb4M_str}, 3224 { 0x0a, 2, 32, 8*1024, l1_dcache_str}, 3225 { 0x08, 4, 32, 16*1024, l1_icache_str}, 3226 { 0x06, 4, 32, 8*1024, l1_icache_str}, 3227 { 0x05, 4, 0, 32, dtlb4M_str}, 3228 { 0x04, 4, 0, 8, dtlb4M_str}, 3229 { 0x03, 4, 0, 64, dtlb4k_str}, 3230 { 0x02, 4, 0, 2, itlb4M_str}, 3231 { 0x01, 4, 0, 32, itlb4k_str}, 3232 { 0 } 3233 }; 3234 3235 static const struct cachetab cyrix_ctab[] = { 3236 { 0x70, 4, 0, 32, "tlb-4K" }, 3237 { 0x80, 4, 16, 16*1024, "l1-cache" }, 3238 { 0 } 3239 }; 3240 3241 /* 3242 * Search a cache table for a matching entry 3243 */ 3244 static const struct cachetab * 3245 find_cacheent(const struct cachetab *ct, uint_t code) 3246 { 3247 if (code != 0) { 3248 for (; ct->ct_code != 0; ct++) 3249 if (ct->ct_code <= code) 3250 break; 3251 if (ct->ct_code == code) 3252 return (ct); 3253 } 3254 return (NULL); 3255 } 3256 3257 /* 3258 * Populate cachetab entry with L2 or L3 cache-information using 3259 * cpuid function 4. This function is called from intel_walk_cacheinfo() 3260 * when descriptor 0x49 is encountered. It returns 0 if no such cache 3261 * information is found. 3262 */ 3263 static int 3264 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi) 3265 { 3266 uint32_t level, i; 3267 int ret = 0; 3268 3269 for (i = 0; i < cpi->cpi_std_4_size; i++) { 3270 level = CPI_CACHE_LVL(cpi->cpi_std_4[i]); 3271 3272 if (level == 2 || level == 3) { 3273 ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1; 3274 ct->ct_line_size = 3275 CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1; 3276 ct->ct_size = ct->ct_assoc * 3277 (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) * 3278 ct->ct_line_size * 3279 (cpi->cpi_std_4[i]->cp_ecx + 1); 3280 3281 if (level == 2) { 3282 ct->ct_label = l2_cache_str; 3283 } else if (level == 3) { 3284 ct->ct_label = l3_cache_str; 3285 } 3286 ret = 1; 3287 } 3288 } 3289 3290 return (ret); 3291 } 3292 3293 /* 3294 * Walk the cacheinfo descriptor, applying 'func' to every valid element 3295 * The walk is terminated if the walker returns non-zero. 3296 */ 3297 static void 3298 intel_walk_cacheinfo(struct cpuid_info *cpi, 3299 void *arg, int (*func)(void *, const struct cachetab *)) 3300 { 3301 const struct cachetab *ct; 3302 struct cachetab des_49_ct, des_b1_ct; 3303 uint8_t *dp; 3304 int i; 3305 3306 if ((dp = cpi->cpi_cacheinfo) == NULL) 3307 return; 3308 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 3309 /* 3310 * For overloaded descriptor 0x49 we use cpuid function 4 3311 * if supported by the current processor, to create 3312 * cache information. 3313 * For overloaded descriptor 0xb1 we use X86_PAE flag 3314 * to disambiguate the cache information. 3315 */ 3316 if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 && 3317 intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) { 3318 ct = &des_49_ct; 3319 } else if (*dp == 0xb1) { 3320 des_b1_ct.ct_code = 0xb1; 3321 des_b1_ct.ct_assoc = 4; 3322 des_b1_ct.ct_line_size = 0; 3323 if (x86_feature & X86_PAE) { 3324 des_b1_ct.ct_size = 8; 3325 des_b1_ct.ct_label = itlb2M_str; 3326 } else { 3327 des_b1_ct.ct_size = 4; 3328 des_b1_ct.ct_label = itlb4M_str; 3329 } 3330 ct = &des_b1_ct; 3331 } else { 3332 if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) { 3333 continue; 3334 } 3335 } 3336 3337 if (func(arg, ct) != 0) { 3338 break; 3339 } 3340 } 3341 } 3342 3343 /* 3344 * (Like the Intel one, except for Cyrix CPUs) 3345 */ 3346 static void 3347 cyrix_walk_cacheinfo(struct cpuid_info *cpi, 3348 void *arg, int (*func)(void *, const struct cachetab *)) 3349 { 3350 const struct cachetab *ct; 3351 uint8_t *dp; 3352 int i; 3353 3354 if ((dp = cpi->cpi_cacheinfo) == NULL) 3355 return; 3356 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 3357 /* 3358 * Search Cyrix-specific descriptor table first .. 3359 */ 3360 if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { 3361 if (func(arg, ct) != 0) 3362 break; 3363 continue; 3364 } 3365 /* 3366 * .. else fall back to the Intel one 3367 */ 3368 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 3369 if (func(arg, ct) != 0) 3370 break; 3371 continue; 3372 } 3373 } 3374 } 3375 3376 /* 3377 * A cacheinfo walker that adds associativity, line-size, and size properties 3378 * to the devinfo node it is passed as an argument. 3379 */ 3380 static int 3381 add_cacheent_props(void *arg, const struct cachetab *ct) 3382 { 3383 dev_info_t *devi = arg; 3384 3385 add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); 3386 if (ct->ct_line_size != 0) 3387 add_cache_prop(devi, ct->ct_label, line_str, 3388 ct->ct_line_size); 3389 add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); 3390 return (0); 3391 } 3392 3393 3394 static const char fully_assoc[] = "fully-associative?"; 3395 3396 /* 3397 * AMD style cache/tlb description 3398 * 3399 * Extended functions 5 and 6 directly describe properties of 3400 * tlbs and various cache levels. 3401 */ 3402 static void 3403 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) 3404 { 3405 switch (assoc) { 3406 case 0: /* reserved; ignore */ 3407 break; 3408 default: 3409 add_cache_prop(devi, label, assoc_str, assoc); 3410 break; 3411 case 0xff: 3412 add_cache_prop(devi, label, fully_assoc, 1); 3413 break; 3414 } 3415 } 3416 3417 static void 3418 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 3419 { 3420 if (size == 0) 3421 return; 3422 add_cache_prop(devi, label, size_str, size); 3423 add_amd_assoc(devi, label, assoc); 3424 } 3425 3426 static void 3427 add_amd_cache(dev_info_t *devi, const char *label, 3428 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 3429 { 3430 if (size == 0 || line_size == 0) 3431 return; 3432 add_amd_assoc(devi, label, assoc); 3433 /* 3434 * Most AMD parts have a sectored cache. Multiple cache lines are 3435 * associated with each tag. A sector consists of all cache lines 3436 * associated with a tag. For example, the AMD K6-III has a sector 3437 * size of 2 cache lines per tag. 3438 */ 3439 if (lines_per_tag != 0) 3440 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 3441 add_cache_prop(devi, label, line_str, line_size); 3442 add_cache_prop(devi, label, size_str, size * 1024); 3443 } 3444 3445 static void 3446 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) 3447 { 3448 switch (assoc) { 3449 case 0: /* off */ 3450 break; 3451 case 1: 3452 case 2: 3453 case 4: 3454 add_cache_prop(devi, label, assoc_str, assoc); 3455 break; 3456 case 6: 3457 add_cache_prop(devi, label, assoc_str, 8); 3458 break; 3459 case 8: 3460 add_cache_prop(devi, label, assoc_str, 16); 3461 break; 3462 case 0xf: 3463 add_cache_prop(devi, label, fully_assoc, 1); 3464 break; 3465 default: /* reserved; ignore */ 3466 break; 3467 } 3468 } 3469 3470 static void 3471 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 3472 { 3473 if (size == 0 || assoc == 0) 3474 return; 3475 add_amd_l2_assoc(devi, label, assoc); 3476 add_cache_prop(devi, label, size_str, size); 3477 } 3478 3479 static void 3480 add_amd_l2_cache(dev_info_t *devi, const char *label, 3481 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 3482 { 3483 if (size == 0 || assoc == 0 || line_size == 0) 3484 return; 3485 add_amd_l2_assoc(devi, label, assoc); 3486 if (lines_per_tag != 0) 3487 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 3488 add_cache_prop(devi, label, line_str, line_size); 3489 add_cache_prop(devi, label, size_str, size * 1024); 3490 } 3491 3492 static void 3493 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) 3494 { 3495 struct cpuid_regs *cp; 3496 3497 if (cpi->cpi_xmaxeax < 0x80000005) 3498 return; 3499 cp = &cpi->cpi_extd[5]; 3500 3501 /* 3502 * 4M/2M L1 TLB configuration 3503 * 3504 * We report the size for 2M pages because AMD uses two 3505 * TLB entries for one 4M page. 3506 */ 3507 add_amd_tlb(devi, "dtlb-2M", 3508 BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); 3509 add_amd_tlb(devi, "itlb-2M", 3510 BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); 3511 3512 /* 3513 * 4K L1 TLB configuration 3514 */ 3515 3516 switch (cpi->cpi_vendor) { 3517 uint_t nentries; 3518 case X86_VENDOR_TM: 3519 if (cpi->cpi_family >= 5) { 3520 /* 3521 * Crusoe processors have 256 TLB entries, but 3522 * cpuid data format constrains them to only 3523 * reporting 255 of them. 3524 */ 3525 if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) 3526 nentries = 256; 3527 /* 3528 * Crusoe processors also have a unified TLB 3529 */ 3530 add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), 3531 nentries); 3532 break; 3533 } 3534 /*FALLTHROUGH*/ 3535 default: 3536 add_amd_tlb(devi, itlb4k_str, 3537 BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); 3538 add_amd_tlb(devi, dtlb4k_str, 3539 BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); 3540 break; 3541 } 3542 3543 /* 3544 * data L1 cache configuration 3545 */ 3546 3547 add_amd_cache(devi, l1_dcache_str, 3548 BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), 3549 BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); 3550 3551 /* 3552 * code L1 cache configuration 3553 */ 3554 3555 add_amd_cache(devi, l1_icache_str, 3556 BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), 3557 BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); 3558 3559 if (cpi->cpi_xmaxeax < 0x80000006) 3560 return; 3561 cp = &cpi->cpi_extd[6]; 3562 3563 /* Check for a unified L2 TLB for large pages */ 3564 3565 if (BITX(cp->cp_eax, 31, 16) == 0) 3566 add_amd_l2_tlb(devi, "l2-tlb-2M", 3567 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3568 else { 3569 add_amd_l2_tlb(devi, "l2-dtlb-2M", 3570 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 3571 add_amd_l2_tlb(devi, "l2-itlb-2M", 3572 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3573 } 3574 3575 /* Check for a unified L2 TLB for 4K pages */ 3576 3577 if (BITX(cp->cp_ebx, 31, 16) == 0) { 3578 add_amd_l2_tlb(devi, "l2-tlb-4K", 3579 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3580 } else { 3581 add_amd_l2_tlb(devi, "l2-dtlb-4K", 3582 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 3583 add_amd_l2_tlb(devi, "l2-itlb-4K", 3584 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3585 } 3586 3587 add_amd_l2_cache(devi, l2_cache_str, 3588 BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), 3589 BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); 3590 } 3591 3592 /* 3593 * There are two basic ways that the x86 world describes it cache 3594 * and tlb architecture - Intel's way and AMD's way. 3595 * 3596 * Return which flavor of cache architecture we should use 3597 */ 3598 static int 3599 x86_which_cacheinfo(struct cpuid_info *cpi) 3600 { 3601 switch (cpi->cpi_vendor) { 3602 case X86_VENDOR_Intel: 3603 if (cpi->cpi_maxeax >= 2) 3604 return (X86_VENDOR_Intel); 3605 break; 3606 case X86_VENDOR_AMD: 3607 /* 3608 * The K5 model 1 was the first part from AMD that reported 3609 * cache sizes via extended cpuid functions. 3610 */ 3611 if (cpi->cpi_family > 5 || 3612 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 3613 return (X86_VENDOR_AMD); 3614 break; 3615 case X86_VENDOR_TM: 3616 if (cpi->cpi_family >= 5) 3617 return (X86_VENDOR_AMD); 3618 /*FALLTHROUGH*/ 3619 default: 3620 /* 3621 * If they have extended CPU data for 0x80000005 3622 * then we assume they have AMD-format cache 3623 * information. 3624 * 3625 * If not, and the vendor happens to be Cyrix, 3626 * then try our-Cyrix specific handler. 3627 * 3628 * If we're not Cyrix, then assume we're using Intel's 3629 * table-driven format instead. 3630 */ 3631 if (cpi->cpi_xmaxeax >= 0x80000005) 3632 return (X86_VENDOR_AMD); 3633 else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) 3634 return (X86_VENDOR_Cyrix); 3635 else if (cpi->cpi_maxeax >= 2) 3636 return (X86_VENDOR_Intel); 3637 break; 3638 } 3639 return (-1); 3640 } 3641 3642 void 3643 cpuid_set_cpu_properties(void *dip, processorid_t cpu_id, 3644 struct cpuid_info *cpi) 3645 { 3646 dev_info_t *cpu_devi; 3647 int create; 3648 3649 cpu_devi = (dev_info_t *)dip; 3650 3651 /* device_type */ 3652 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3653 "device_type", "cpu"); 3654 3655 /* reg */ 3656 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3657 "reg", cpu_id); 3658 3659 /* cpu-mhz, and clock-frequency */ 3660 if (cpu_freq > 0) { 3661 long long mul; 3662 3663 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3664 "cpu-mhz", cpu_freq); 3665 if ((mul = cpu_freq * 1000000LL) <= INT_MAX) 3666 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3667 "clock-frequency", (int)mul); 3668 } 3669 3670 if ((x86_feature & X86_CPUID) == 0) { 3671 return; 3672 } 3673 3674 /* vendor-id */ 3675 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3676 "vendor-id", cpi->cpi_vendorstr); 3677 3678 if (cpi->cpi_maxeax == 0) { 3679 return; 3680 } 3681 3682 /* 3683 * family, model, and step 3684 */ 3685 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3686 "family", CPI_FAMILY(cpi)); 3687 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3688 "cpu-model", CPI_MODEL(cpi)); 3689 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3690 "stepping-id", CPI_STEP(cpi)); 3691 3692 /* type */ 3693 switch (cpi->cpi_vendor) { 3694 case X86_VENDOR_Intel: 3695 create = 1; 3696 break; 3697 default: 3698 create = 0; 3699 break; 3700 } 3701 if (create) 3702 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3703 "type", CPI_TYPE(cpi)); 3704 3705 /* ext-family */ 3706 switch (cpi->cpi_vendor) { 3707 case X86_VENDOR_Intel: 3708 case X86_VENDOR_AMD: 3709 create = cpi->cpi_family >= 0xf; 3710 break; 3711 default: 3712 create = 0; 3713 break; 3714 } 3715 if (create) 3716 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3717 "ext-family", CPI_FAMILY_XTD(cpi)); 3718 3719 /* ext-model */ 3720 switch (cpi->cpi_vendor) { 3721 case X86_VENDOR_Intel: 3722 create = IS_EXTENDED_MODEL_INTEL(cpi); 3723 break; 3724 case X86_VENDOR_AMD: 3725 create = CPI_FAMILY(cpi) == 0xf; 3726 break; 3727 default: 3728 create = 0; 3729 break; 3730 } 3731 if (create) 3732 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3733 "ext-model", CPI_MODEL_XTD(cpi)); 3734 3735 /* generation */ 3736 switch (cpi->cpi_vendor) { 3737 case X86_VENDOR_AMD: 3738 /* 3739 * AMD K5 model 1 was the first part to support this 3740 */ 3741 create = cpi->cpi_xmaxeax >= 0x80000001; 3742 break; 3743 default: 3744 create = 0; 3745 break; 3746 } 3747 if (create) 3748 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3749 "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); 3750 3751 /* brand-id */ 3752 switch (cpi->cpi_vendor) { 3753 case X86_VENDOR_Intel: 3754 /* 3755 * brand id first appeared on Pentium III Xeon model 8, 3756 * and Celeron model 8 processors and Opteron 3757 */ 3758 create = cpi->cpi_family > 6 || 3759 (cpi->cpi_family == 6 && cpi->cpi_model >= 8); 3760 break; 3761 case X86_VENDOR_AMD: 3762 create = cpi->cpi_family >= 0xf; 3763 break; 3764 default: 3765 create = 0; 3766 break; 3767 } 3768 if (create && cpi->cpi_brandid != 0) { 3769 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3770 "brand-id", cpi->cpi_brandid); 3771 } 3772 3773 /* chunks, and apic-id */ 3774 switch (cpi->cpi_vendor) { 3775 /* 3776 * first available on Pentium IV and Opteron (K8) 3777 */ 3778 case X86_VENDOR_Intel: 3779 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 3780 break; 3781 case X86_VENDOR_AMD: 3782 create = cpi->cpi_family >= 0xf; 3783 break; 3784 default: 3785 create = 0; 3786 break; 3787 } 3788 if (create) { 3789 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3790 "chunks", CPI_CHUNKS(cpi)); 3791 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3792 "apic-id", cpi->cpi_apicid); 3793 if (cpi->cpi_chipid >= 0) { 3794 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3795 "chip#", cpi->cpi_chipid); 3796 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3797 "clog#", cpi->cpi_clogid); 3798 } 3799 } 3800 3801 /* cpuid-features */ 3802 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3803 "cpuid-features", CPI_FEATURES_EDX(cpi)); 3804 3805 3806 /* cpuid-features-ecx */ 3807 switch (cpi->cpi_vendor) { 3808 case X86_VENDOR_Intel: 3809 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 3810 break; 3811 default: 3812 create = 0; 3813 break; 3814 } 3815 if (create) 3816 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3817 "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); 3818 3819 /* ext-cpuid-features */ 3820 switch (cpi->cpi_vendor) { 3821 case X86_VENDOR_Intel: 3822 case X86_VENDOR_AMD: 3823 case X86_VENDOR_Cyrix: 3824 case X86_VENDOR_TM: 3825 case X86_VENDOR_Centaur: 3826 create = cpi->cpi_xmaxeax >= 0x80000001; 3827 break; 3828 default: 3829 create = 0; 3830 break; 3831 } 3832 if (create) { 3833 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3834 "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); 3835 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3836 "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi)); 3837 } 3838 3839 /* 3840 * Brand String first appeared in Intel Pentium IV, AMD K5 3841 * model 1, and Cyrix GXm. On earlier models we try and 3842 * simulate something similar .. so this string should always 3843 * same -something- about the processor, however lame. 3844 */ 3845 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3846 "brand-string", cpi->cpi_brandstr); 3847 3848 /* 3849 * Finally, cache and tlb information 3850 */ 3851 switch (x86_which_cacheinfo(cpi)) { 3852 case X86_VENDOR_Intel: 3853 intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3854 break; 3855 case X86_VENDOR_Cyrix: 3856 cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 3857 break; 3858 case X86_VENDOR_AMD: 3859 amd_cache_info(cpi, cpu_devi); 3860 break; 3861 default: 3862 break; 3863 } 3864 } 3865 3866 struct l2info { 3867 int *l2i_csz; 3868 int *l2i_lsz; 3869 int *l2i_assoc; 3870 int l2i_ret; 3871 }; 3872 3873 /* 3874 * A cacheinfo walker that fetches the size, line-size and associativity 3875 * of the L2 cache 3876 */ 3877 static int 3878 intel_l2cinfo(void *arg, const struct cachetab *ct) 3879 { 3880 struct l2info *l2i = arg; 3881 int *ip; 3882 3883 if (ct->ct_label != l2_cache_str && 3884 ct->ct_label != sl2_cache_str) 3885 return (0); /* not an L2 -- keep walking */ 3886 3887 if ((ip = l2i->l2i_csz) != NULL) 3888 *ip = ct->ct_size; 3889 if ((ip = l2i->l2i_lsz) != NULL) 3890 *ip = ct->ct_line_size; 3891 if ((ip = l2i->l2i_assoc) != NULL) 3892 *ip = ct->ct_assoc; 3893 l2i->l2i_ret = ct->ct_size; 3894 return (1); /* was an L2 -- terminate walk */ 3895 } 3896 3897 /* 3898 * AMD L2/L3 Cache and TLB Associativity Field Definition: 3899 * 3900 * Unlike the associativity for the L1 cache and tlb where the 8 bit 3901 * value is the associativity, the associativity for the L2 cache and 3902 * tlb is encoded in the following table. The 4 bit L2 value serves as 3903 * an index into the amd_afd[] array to determine the associativity. 3904 * -1 is undefined. 0 is fully associative. 3905 */ 3906 3907 static int amd_afd[] = 3908 {-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0}; 3909 3910 static void 3911 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) 3912 { 3913 struct cpuid_regs *cp; 3914 uint_t size, assoc; 3915 int i; 3916 int *ip; 3917 3918 if (cpi->cpi_xmaxeax < 0x80000006) 3919 return; 3920 cp = &cpi->cpi_extd[6]; 3921 3922 if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 && 3923 (size = BITX(cp->cp_ecx, 31, 16)) != 0) { 3924 uint_t cachesz = size * 1024; 3925 assoc = amd_afd[i]; 3926 3927 ASSERT(assoc != -1); 3928 3929 if ((ip = l2i->l2i_csz) != NULL) 3930 *ip = cachesz; 3931 if ((ip = l2i->l2i_lsz) != NULL) 3932 *ip = BITX(cp->cp_ecx, 7, 0); 3933 if ((ip = l2i->l2i_assoc) != NULL) 3934 *ip = assoc; 3935 l2i->l2i_ret = cachesz; 3936 } 3937 } 3938 3939 int 3940 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) 3941 { 3942 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 3943 struct l2info __l2info, *l2i = &__l2info; 3944 3945 l2i->l2i_csz = csz; 3946 l2i->l2i_lsz = lsz; 3947 l2i->l2i_assoc = assoc; 3948 l2i->l2i_ret = -1; 3949 3950 switch (x86_which_cacheinfo(cpi)) { 3951 case X86_VENDOR_Intel: 3952 intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3953 break; 3954 case X86_VENDOR_Cyrix: 3955 cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 3956 break; 3957 case X86_VENDOR_AMD: 3958 amd_l2cacheinfo(cpi, l2i); 3959 break; 3960 default: 3961 break; 3962 } 3963 return (l2i->l2i_ret); 3964 } 3965 3966 #if !defined(__xpv) 3967 3968 uint32_t * 3969 cpuid_mwait_alloc(cpu_t *cpu) 3970 { 3971 uint32_t *ret; 3972 size_t mwait_size; 3973 3974 ASSERT(cpuid_checkpass(cpu, 2)); 3975 3976 mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max; 3977 if (mwait_size == 0) 3978 return (NULL); 3979 3980 /* 3981 * kmem_alloc() returns cache line size aligned data for mwait_size 3982 * allocations. mwait_size is currently cache line sized. Neither 3983 * of these implementation details are guarantied to be true in the 3984 * future. 3985 * 3986 * First try allocating mwait_size as kmem_alloc() currently returns 3987 * correctly aligned memory. If kmem_alloc() does not return 3988 * mwait_size aligned memory, then use mwait_size ROUNDUP. 3989 * 3990 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we 3991 * decide to free this memory. 3992 */ 3993 ret = kmem_zalloc(mwait_size, KM_SLEEP); 3994 if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) { 3995 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 3996 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size; 3997 *ret = MWAIT_RUNNING; 3998 return (ret); 3999 } else { 4000 kmem_free(ret, mwait_size); 4001 ret = kmem_zalloc(mwait_size * 2, KM_SLEEP); 4002 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 4003 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2; 4004 ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size); 4005 *ret = MWAIT_RUNNING; 4006 return (ret); 4007 } 4008 } 4009 4010 void 4011 cpuid_mwait_free(cpu_t *cpu) 4012 { 4013 ASSERT(cpuid_checkpass(cpu, 2)); 4014 4015 if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL && 4016 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) { 4017 kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual, 4018 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual); 4019 } 4020 4021 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL; 4022 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0; 4023 } 4024 4025 void 4026 patch_tsc_read(int flag) 4027 { 4028 size_t cnt; 4029 4030 switch (flag) { 4031 case X86_NO_TSC: 4032 cnt = &_no_rdtsc_end - &_no_rdtsc_start; 4033 (void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt); 4034 break; 4035 case X86_HAVE_TSCP: 4036 cnt = &_tscp_end - &_tscp_start; 4037 (void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt); 4038 break; 4039 case X86_TSC_MFENCE: 4040 cnt = &_tsc_mfence_end - &_tsc_mfence_start; 4041 (void) memcpy((void *)tsc_read, 4042 (void *)&_tsc_mfence_start, cnt); 4043 break; 4044 case X86_TSC_LFENCE: 4045 cnt = &_tsc_lfence_end - &_tsc_lfence_start; 4046 (void) memcpy((void *)tsc_read, 4047 (void *)&_tsc_lfence_start, cnt); 4048 break; 4049 default: 4050 break; 4051 } 4052 } 4053 4054 int 4055 cpuid_deep_cstates_supported(void) 4056 { 4057 struct cpuid_info *cpi; 4058 struct cpuid_regs regs; 4059 4060 ASSERT(cpuid_checkpass(CPU, 1)); 4061 4062 cpi = CPU->cpu_m.mcpu_cpi; 4063 4064 if (!(x86_feature & X86_CPUID)) 4065 return (0); 4066 4067 switch (cpi->cpi_vendor) { 4068 case X86_VENDOR_Intel: 4069 if (cpi->cpi_xmaxeax < 0x80000007) 4070 return (0); 4071 4072 /* 4073 * TSC run at a constant rate in all ACPI C-states? 4074 */ 4075 regs.cp_eax = 0x80000007; 4076 (void) __cpuid_insn(®s); 4077 return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE); 4078 4079 default: 4080 return (0); 4081 } 4082 } 4083 4084 #endif /* !__xpv */ 4085 4086 void 4087 post_startup_cpu_fixups(void) 4088 { 4089 #ifndef __xpv 4090 /* 4091 * Some AMD processors support C1E state. Entering this state will 4092 * cause the local APIC timer to stop, which we can't deal with at 4093 * this time. 4094 */ 4095 if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) { 4096 on_trap_data_t otd; 4097 uint64_t reg; 4098 4099 if (!on_trap(&otd, OT_DATA_ACCESS)) { 4100 reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT); 4101 /* Disable C1E state if it is enabled by BIOS */ 4102 if ((reg >> AMD_ACTONCMPHALT_SHIFT) & 4103 AMD_ACTONCMPHALT_MASK) { 4104 reg &= ~(AMD_ACTONCMPHALT_MASK << 4105 AMD_ACTONCMPHALT_SHIFT); 4106 wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg); 4107 } 4108 } 4109 no_trap(); 4110 } 4111 #endif /* !__xpv */ 4112 } 4113 4114 /* 4115 * Starting with the Westmere processor the local 4116 * APIC timer will continue running in all C-states, 4117 * including the deepest C-states. 4118 */ 4119 int 4120 cpuid_arat_supported(void) 4121 { 4122 struct cpuid_info *cpi; 4123 struct cpuid_regs regs; 4124 4125 ASSERT(cpuid_checkpass(CPU, 1)); 4126 ASSERT(x86_feature & X86_CPUID); 4127 4128 cpi = CPU->cpu_m.mcpu_cpi; 4129 4130 switch (cpi->cpi_vendor) { 4131 case X86_VENDOR_Intel: 4132 /* 4133 * Always-running Local APIC Timer is 4134 * indicated by CPUID.6.EAX[2]. 4135 */ 4136 if (cpi->cpi_maxeax >= 6) { 4137 regs.cp_eax = 6; 4138 (void) cpuid_insn(NULL, ®s); 4139 return (regs.cp_eax & CPUID_CSTATE_ARAT); 4140 } else { 4141 return (0); 4142 } 4143 default: 4144 return (0); 4145 } 4146 } 4147 4148 #if defined(__amd64) && !defined(__xpv) 4149 /* 4150 * Patch in versions of bcopy for high performance Intel Nhm processors 4151 * and later... 4152 */ 4153 void 4154 patch_memops(uint_t vendor) 4155 { 4156 size_t cnt, i; 4157 caddr_t to, from; 4158 4159 if ((vendor == X86_VENDOR_Intel) && ((x86_feature & X86_SSE4_2) != 0)) { 4160 cnt = &bcopy_patch_end - &bcopy_patch_start; 4161 to = &bcopy_ck_size; 4162 from = &bcopy_patch_start; 4163 for (i = 0; i < cnt; i++) { 4164 *to++ = *from++; 4165 } 4166 } 4167 } 4168 #endif /* __amd64 && !__xpv */ 4169