xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 0b5ce10aee80822ecc7df77df92a5e24078ba196)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
31  */
32 
33 /*
34  * To understand how the pcplusmp module interacts with the interrupt subsystem
35  * read the theory statement in uts/i86pc/os/intr.c.
36  */
37 
38 /*
39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42  * PSMI 1.5 extensions are supported in Solaris Nevada.
43  * PSMI 1.6 extensions are supported in Solaris Nevada.
44  * PSMI 1.7 extensions are supported in Solaris Nevada.
45  */
46 #define	PSMI_1_7
47 
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/apic.h>
57 #include <sys/pit.h>
58 #include <sys/ddi.h>
59 #include <sys/sunddi.h>
60 #include <sys/ddi_impldefs.h>
61 #include <sys/pci.h>
62 #include <sys/promif.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>
87 
88 /*
89  *	Local Function Prototypes
90  */
91 static void apic_init_intr(void);
92 
93 /*
94  *	standard MP entries
95  */
96 static int	apic_probe(void);
97 static int	apic_getclkirq(int ipl);
98 static void	apic_init(void);
99 static void	apic_picinit(void);
100 static int	apic_post_cpu_start(void);
101 static int	apic_intr_enter(int ipl, int *vect);
102 static void	apic_setspl(int ipl);
103 static void	x2apic_setspl(int ipl);
104 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
106 static int	apic_disable_intr(processorid_t cpun);
107 static void	apic_enable_intr(processorid_t cpun);
108 static int		apic_get_ipivect(int ipl, int type);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 /*
112  * The following vector assignments influence the value of ipltopri and
113  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
114  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
115  * we care to do so in future. Note some IPLs which are rarely used
116  * will share the vector ranges and heavily used IPLs (5 and 6) have
117  * a wide range.
118  *
119  * This array is used to initialize apic_ipls[] (in apic_init()).
120  *
121  *	IPL		Vector range.		as passed to intr_enter
122  *	0		none.
123  *	1,2,3		0x20-0x2f		0x0-0xf
124  *	4		0x30-0x3f		0x10-0x1f
125  *	5		0x40-0x5f		0x20-0x3f
126  *	6		0x60-0x7f		0x40-0x5f
127  *	7,8,9		0x80-0x8f		0x60-0x6f
128  *	10		0x90-0x9f		0x70-0x7f
129  *	11		0xa0-0xaf		0x80-0x8f
130  *	...		...
131  *	15		0xe0-0xef		0xc0-0xcf
132  *	15		0xf0-0xff		0xd0-0xdf
133  */
134 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
135 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
136 };
137 	/*
138 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
139 	 * NOTE that this is vector as passed into intr_enter which is
140 	 * programmed vector - 0x20 (APIC_BASE_VECT)
141 	 */
142 
143 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
144 	/* The taskpri to be programmed into apic to mask given ipl */
145 
146 /*
147  * Correlation of the hardware vector to the IPL in use, initialized
148  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
149  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
150  * connected to errata-stricken IOAPICs
151  */
152 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
153 
154 /*
155  * Patchable global variables.
156  */
157 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
158 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
159 
160 /*
161  *	Local static data
162  */
163 static struct	psm_ops apic_ops = {
164 	apic_probe,
165 
166 	apic_init,
167 	apic_picinit,
168 	apic_intr_enter,
169 	apic_intr_exit,
170 	apic_setspl,
171 	apic_addspl,
172 	apic_delspl,
173 	apic_disable_intr,
174 	apic_enable_intr,
175 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
176 	(void (*)(int))NULL,		/* psm_set_softintr */
177 
178 	apic_set_idlecpu,
179 	apic_unset_idlecpu,
180 
181 	apic_clkinit,
182 	apic_getclkirq,
183 	(void (*)(void))NULL,		/* psm_hrtimeinit */
184 	apic_gethrtime,
185 
186 	apic_get_next_processorid,
187 	apic_cpu_start,
188 	apic_post_cpu_start,
189 	apic_shutdown,
190 	apic_get_ipivect,
191 	apic_send_ipi,
192 
193 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
194 	(void (*)(int, char *))NULL,	/* psm_notify_error */
195 	(void (*)(int))NULL,		/* psm_notify_func */
196 	apic_timer_reprogram,
197 	apic_timer_enable,
198 	apic_timer_disable,
199 	apic_post_cyclic_setup,
200 	apic_preshutdown,
201 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
202 	apic_state,			/* save, restore apic state for S3 */
203 	apic_cpu_ops,			/* CPU control interface. */
204 };
205 
206 struct psm_ops *psmops = &apic_ops;
207 
208 static struct	psm_info apic_psm_info = {
209 	PSM_INFO_VER01_7,			/* version */
210 	PSM_OWN_EXCLUSIVE,			/* ownership */
211 	(struct psm_ops *)&apic_ops,		/* operation */
212 	APIC_PCPLUSMP_NAME,			/* machine name */
213 	"pcplusmp v1.4 compatible",
214 };
215 
216 static void *apic_hdlp;
217 
218 /*
219  * apic_let_idle_redistribute can have the following values:
220  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
221  * apic_redistribute_lock prevents multiple idle cpus from redistributing
222  */
223 int	apic_num_idle_redistributions = 0;
224 static	int apic_let_idle_redistribute = 0;
225 
226 /* to gather intr data and redistribute */
227 static void apic_redistribute_compute(void);
228 
229 /*
230  *	This is the loadable module wrapper
231  */
232 
233 int
234 _init(void)
235 {
236 	if (apic_coarse_hrtime)
237 		apic_ops.psm_gethrtime = &apic_gettime;
238 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
239 }
240 
241 int
242 _fini(void)
243 {
244 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
245 }
246 
247 int
248 _info(struct modinfo *modinfop)
249 {
250 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
251 }
252 
253 static int
254 apic_probe(void)
255 {
256 	/* check if apix is initialized */
257 	if (apix_enable && apix_loaded())
258 		return (PSM_FAILURE);
259 	else
260 		apix_enable = 0; /* continue using pcplusmp PSM */
261 
262 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
263 }
264 
265 static uchar_t
266 apic_xlate_vector_by_irq(uchar_t irq)
267 {
268 	if (apic_irq_table[irq] == NULL)
269 		return (0);
270 
271 	return (apic_irq_table[irq]->airq_vector);
272 }
273 
274 void
275 apic_init(void)
276 {
277 	int i;
278 	int	j = 1;
279 
280 	psm_get_ioapicid = apic_get_ioapicid;
281 	psm_get_localapicid = apic_get_localapicid;
282 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
283 
284 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
285 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
286 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
287 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
288 			/* get to highest vector at the same ipl */
289 			continue;
290 		for (; j <= apic_vectortoipl[i]; j++) {
291 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
292 			    APIC_BASE_VECT;
293 		}
294 	}
295 	for (; j < MAXIPL + 1; j++)
296 		/* fill up any empty ipltopri slots */
297 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
298 	apic_init_common();
299 
300 #if !defined(__amd64)
301 	if (cpuid_have_cr8access(CPU))
302 		apic_have_32bit_cr8 = 1;
303 #endif
304 }
305 
306 static void
307 apic_init_intr(void)
308 {
309 	processorid_t	cpun = psm_get_cpu_id();
310 	uint_t nlvt;
311 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
312 
313 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
314 
315 	if (apic_mode == LOCAL_APIC) {
316 		/*
317 		 * We are running APIC in MMIO mode.
318 		 */
319 		if (apic_flat_model) {
320 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
321 			    APIC_FLAT_MODEL);
322 		} else {
323 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
324 			    APIC_CLUSTER_MODEL);
325 		}
326 
327 		apic_reg_ops->apic_write(APIC_DEST_REG,
328 		    AV_HIGH_ORDER >> cpun);
329 	}
330 
331 	if (apic_directed_EOI_supported()) {
332 		/*
333 		 * Setting the 12th bit in the Spurious Interrupt Vector
334 		 * Register suppresses broadcast EOIs generated by the local
335 		 * APIC. The suppression of broadcast EOIs happens only when
336 		 * interrupts are level-triggered.
337 		 */
338 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
339 	}
340 
341 	/* need to enable APIC before unmasking NMI */
342 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
343 
344 	/*
345 	 * Presence of an invalid vector with delivery mode AV_FIXED can
346 	 * cause an error interrupt, even if the entry is masked...so
347 	 * write a valid vector to LVT entries along with the mask bit
348 	 */
349 
350 	/* All APICs have timer and LINT0/1 */
351 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
352 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
353 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
354 
355 	/*
356 	 * On integrated APICs, the number of LVT entries is
357 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
358 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
359 	 */
360 
361 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
362 		nlvt = 3;
363 	} else {
364 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
365 		    0xFF) + 1;
366 	}
367 
368 	if (nlvt >= 5) {
369 		/* Enable performance counter overflow interrupt */
370 
371 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
372 			apic_enable_cpcovf_intr = 0;
373 		if (apic_enable_cpcovf_intr) {
374 			if (apic_cpcovf_vect == 0) {
375 				int ipl = APIC_PCINT_IPL;
376 				int irq = apic_get_ipivect(ipl, -1);
377 
378 				ASSERT(irq != -1);
379 				apic_cpcovf_vect =
380 				    apic_irq_table[irq]->airq_vector;
381 				ASSERT(apic_cpcovf_vect);
382 				(void) add_avintr(NULL, ipl,
383 				    (avfunc)kcpc_hw_overflow_intr,
384 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
385 				kcpc_hw_overflow_intr_installed = 1;
386 				kcpc_hw_enable_cpc_intr =
387 				    apic_cpcovf_mask_clear;
388 			}
389 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
390 			    apic_cpcovf_vect);
391 		}
392 	}
393 
394 	if (nlvt >= 6) {
395 		/* Only mask TM intr if the BIOS apparently doesn't use it */
396 
397 		uint32_t lvtval;
398 
399 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
400 		if (((lvtval & AV_MASK) == AV_MASK) ||
401 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
402 			apic_reg_ops->apic_write(APIC_THERM_VECT,
403 			    AV_MASK|APIC_RESV_IRQ);
404 		}
405 	}
406 
407 	/* Enable error interrupt */
408 
409 	if (nlvt >= 4 && apic_enable_error_intr) {
410 		if (apic_errvect == 0) {
411 			int ipl = 0xf;	/* get highest priority intr */
412 			int irq = apic_get_ipivect(ipl, -1);
413 
414 			ASSERT(irq != -1);
415 			apic_errvect = apic_irq_table[irq]->airq_vector;
416 			ASSERT(apic_errvect);
417 			/*
418 			 * Not PSMI compliant, but we are going to merge
419 			 * with ON anyway
420 			 */
421 			(void) add_avintr((void *)NULL, ipl,
422 			    (avfunc)apic_error_intr, "apic error intr",
423 			    irq, NULL, NULL, NULL, NULL);
424 		}
425 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
426 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
427 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
428 	}
429 
430 	/* Enable CMCI interrupt */
431 	if (cmi_enable_cmci) {
432 
433 		mutex_enter(&cmci_cpu_setup_lock);
434 		if (cmci_cpu_setup_registered == 0) {
435 			mutex_enter(&cpu_lock);
436 			register_cpu_setup_func(cmci_cpu_setup, NULL);
437 			mutex_exit(&cpu_lock);
438 			cmci_cpu_setup_registered = 1;
439 		}
440 		mutex_exit(&cmci_cpu_setup_lock);
441 
442 		if (apic_cmci_vect == 0) {
443 			int ipl = 0x2;
444 			int irq = apic_get_ipivect(ipl, -1);
445 
446 			ASSERT(irq != -1);
447 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
448 			ASSERT(apic_cmci_vect);
449 
450 			(void) add_avintr(NULL, ipl,
451 			    (avfunc)cmi_cmci_trap,
452 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
453 		}
454 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
455 	}
456 }
457 
458 static void
459 apic_picinit(void)
460 {
461 	int i, j;
462 	uint_t isr;
463 
464 	/*
465 	 * Initialize and enable interrupt remapping before apic
466 	 * hardware initialization
467 	 */
468 	apic_intrmap_init(apic_mode);
469 
470 	/*
471 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
472 	 * bit on without clearing it with EOI.  Since softint
473 	 * uses vector 0x20 to interrupt itself, so softint will
474 	 * not work on this machine.  In order to fix this problem
475 	 * a check is made to verify all the isr bits are clear.
476 	 * If not, EOIs are issued to clear the bits.
477 	 */
478 	for (i = 7; i >= 1; i--) {
479 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
480 		if (isr != 0)
481 			for (j = 0; ((j < 32) && (isr != 0)); j++)
482 				if (isr & (1 << j)) {
483 					apic_reg_ops->apic_write(
484 					    APIC_EOI_REG, 0);
485 					isr &= ~(1 << j);
486 					apic_error |= APIC_ERR_BOOT_EOI;
487 				}
488 	}
489 
490 	/* set a flag so we know we have run apic_picinit() */
491 	apic_picinit_called = 1;
492 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
493 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
494 	LOCK_INIT_CLEAR(&apic_error_lock);
495 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
496 
497 	picsetup();	 /* initialise the 8259 */
498 
499 	/* add nmi handler - least priority nmi handler */
500 	LOCK_INIT_CLEAR(&apic_nmi_lock);
501 
502 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
503 	    "pcplusmp NMI handler", (caddr_t)NULL))
504 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
505 
506 	/*
507 	 * Check for directed-EOI capability in the local APIC.
508 	 */
509 	if (apic_directed_EOI_supported() == 1) {
510 		apic_set_directed_EOI_handler();
511 	}
512 
513 	apic_init_intr();
514 
515 	/* enable apic mode if imcr present */
516 	if (apic_imcrp) {
517 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
518 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
519 	}
520 
521 	ioapic_init_intr(IOAPIC_MASK);
522 }
523 
524 #ifdef	DEBUG
525 void
526 apic_break(void)
527 {
528 }
529 #endif /* DEBUG */
530 
531 /*
532  * platform_intr_enter
533  *
534  *	Called at the beginning of the interrupt service routine to
535  *	mask all level equal to and below the interrupt priority
536  *	of the interrupting vector.  An EOI should be given to
537  *	the interrupt controller to enable other HW interrupts.
538  *
539  *	Return -1 for spurious interrupts
540  *
541  */
542 /*ARGSUSED*/
543 static int
544 apic_intr_enter(int ipl, int *vectorp)
545 {
546 	uchar_t vector;
547 	int nipl;
548 	int irq;
549 	ulong_t iflag;
550 	apic_cpus_info_t *cpu_infop;
551 
552 	/*
553 	 * The real vector delivered is (*vectorp + 0x20), but our caller
554 	 * subtracts 0x20 from the vector before passing it to us.
555 	 * (That's why APIC_BASE_VECT is 0x20.)
556 	 */
557 	vector = (uchar_t)*vectorp;
558 
559 	/* if interrupted by the clock, increment apic_nsec_since_boot */
560 	if (vector == apic_clkvect) {
561 		if (!apic_oneshot) {
562 			/* NOTE: this is not MT aware */
563 			apic_hrtime_stamp++;
564 			apic_nsec_since_boot += apic_nsec_per_intr;
565 			apic_hrtime_stamp++;
566 			last_count_read = apic_hertz_count;
567 			apic_redistribute_compute();
568 		}
569 
570 		/* We will avoid all the book keeping overhead for clock */
571 		nipl = apic_ipls[vector];
572 
573 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
574 
575 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
576 		apic_reg_ops->apic_send_eoi(0);
577 
578 		return (nipl);
579 	}
580 
581 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
582 
583 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
584 		cpu_infop->aci_spur_cnt++;
585 		return (APIC_INT_SPURIOUS);
586 	}
587 
588 	/* Check if the vector we got is really what we need */
589 	if (apic_revector_pending) {
590 		/*
591 		 * Disable interrupts for the duration of
592 		 * the vector translation to prevent a self-race for
593 		 * the apic_revector_lock.  This cannot be done
594 		 * in apic_xlate_vector because it is recursive and
595 		 * we want the vector translation to be atomic with
596 		 * respect to other (higher-priority) interrupts.
597 		 */
598 		iflag = intr_clear();
599 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
600 		    APIC_BASE_VECT;
601 		intr_restore(iflag);
602 	}
603 
604 	nipl = apic_ipls[vector];
605 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
606 
607 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
608 
609 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
610 	cpu_infop->aci_curipl = (uchar_t)nipl;
611 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
612 
613 	/*
614 	 * apic_level_intr could have been assimilated into the irq struct.
615 	 * but, having it as a character array is more efficient in terms of
616 	 * cache usage. So, we leave it as is.
617 	 */
618 	if (!apic_level_intr[irq]) {
619 		apic_reg_ops->apic_send_eoi(0);
620 	}
621 
622 #ifdef	DEBUG
623 	APIC_DEBUG_BUF_PUT(vector);
624 	APIC_DEBUG_BUF_PUT(irq);
625 	APIC_DEBUG_BUF_PUT(nipl);
626 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
627 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
628 		drv_usecwait(apic_stretch_interrupts);
629 
630 	if (apic_break_on_cpu == psm_get_cpu_id())
631 		apic_break();
632 #endif /* DEBUG */
633 	return (nipl);
634 }
635 
636 /*
637  * This macro is a common code used by MMIO local apic and X2APIC
638  * local apic.
639  */
640 #define	APIC_INTR_EXIT() \
641 { \
642 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
643 	if (apic_level_intr[irq]) \
644 		apic_reg_ops->apic_send_eoi(irq); \
645 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
646 	/* ISR above current pri could not be in progress */ \
647 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
648 }
649 
650 /*
651  * Any changes made to this function must also change X2APIC
652  * version of intr_exit.
653  */
654 void
655 apic_intr_exit(int prev_ipl, int irq)
656 {
657 	apic_cpus_info_t *cpu_infop;
658 
659 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
660 
661 	APIC_INTR_EXIT();
662 }
663 
664 /*
665  * Same as apic_intr_exit() except it uses MSR rather than MMIO
666  * to access local apic registers.
667  */
668 void
669 x2apic_intr_exit(int prev_ipl, int irq)
670 {
671 	apic_cpus_info_t *cpu_infop;
672 
673 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
674 	APIC_INTR_EXIT();
675 }
676 
677 intr_exit_fn_t
678 psm_intr_exit_fn(void)
679 {
680 	if (apic_mode == LOCAL_X2APIC)
681 		return (x2apic_intr_exit);
682 
683 	return (apic_intr_exit);
684 }
685 
686 /*
687  * Mask all interrupts below or equal to the given IPL.
688  * Any changes made to this function must also change X2APIC
689  * version of setspl.
690  */
691 static void
692 apic_setspl(int ipl)
693 {
694 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
695 
696 	/* interrupts at ipl above this cannot be in progress */
697 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
698 	/*
699 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
700 	 * have enough time to come in before the priority is raised again
701 	 * during the idle() loop.
702 	 */
703 	if (apic_setspl_delay)
704 		(void) apic_reg_ops->apic_get_pri();
705 }
706 
707 /*
708  * X2APIC version of setspl.
709  * Mask all interrupts below or equal to the given IPL
710  */
711 static void
712 x2apic_setspl(int ipl)
713 {
714 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
715 
716 	/* interrupts at ipl above this cannot be in progress */
717 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
718 }
719 
720 /*ARGSUSED*/
721 static int
722 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
723 {
724 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
725 }
726 
727 static int
728 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
729 {
730 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
731 }
732 
733 static int
734 apic_post_cpu_start(void)
735 {
736 	int cpun;
737 	static int cpus_started = 1;
738 
739 	/* We know this CPU + BSP  started successfully. */
740 	cpus_started++;
741 
742 	/*
743 	 * On BSP we would have enabled X2APIC, if supported by processor,
744 	 * in acpi_probe(), but on AP we do it here.
745 	 *
746 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
747 	 * local APIC mode of the current CPU is MMIO (xAPIC).
748 	 */
749 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
750 	    apic_local_mode() == LOCAL_APIC) {
751 		apic_enable_x2apic();
752 	}
753 
754 	/*
755 	 * Switch back to x2apic IPI sending method for performance when target
756 	 * CPU has entered x2apic mode.
757 	 */
758 	if (apic_mode == LOCAL_X2APIC) {
759 		apic_switch_ipi_callback(B_FALSE);
760 	}
761 
762 	splx(ipltospl(LOCK_LEVEL));
763 	apic_init_intr();
764 
765 	/*
766 	 * since some systems don't enable the internal cache on the non-boot
767 	 * cpus, so we have to enable them here
768 	 */
769 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
770 
771 #ifdef	DEBUG
772 	APIC_AV_PENDING_SET();
773 #else
774 	if (apic_mode == LOCAL_APIC)
775 		APIC_AV_PENDING_SET();
776 #endif	/* DEBUG */
777 
778 	/*
779 	 * We may be booting, or resuming from suspend; aci_status will
780 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
781 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
782 	 */
783 	cpun = psm_get_cpu_id();
784 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
785 
786 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
787 	return (PSM_SUCCESS);
788 }
789 
790 /*
791  * type == -1 indicates it is an internal request. Do not change
792  * resv_vector for these requests
793  */
794 static int
795 apic_get_ipivect(int ipl, int type)
796 {
797 	uchar_t vector;
798 	int irq;
799 
800 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
801 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
802 			apic_irq_table[irq]->airq_mps_intr_index =
803 			    RESERVE_INDEX;
804 			apic_irq_table[irq]->airq_vector = vector;
805 			if (type != -1) {
806 				apic_resv_vector[ipl] = vector;
807 			}
808 			return (irq);
809 		}
810 	}
811 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
812 	return (-1);	/* shouldn't happen */
813 }
814 
815 static int
816 apic_getclkirq(int ipl)
817 {
818 	int	irq;
819 
820 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
821 		return (-1);
822 	/*
823 	 * Note the vector in apic_clkvect for per clock handling.
824 	 */
825 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
826 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
827 	    apic_clkvect));
828 	return (irq);
829 }
830 
831 /*
832  * Try and disable all interrupts. We just assign interrupts to other
833  * processors based on policy. If any were bound by user request, we
834  * let them continue and return failure. We do not bother to check
835  * for cache affinity while rebinding.
836  */
837 
838 static int
839 apic_disable_intr(processorid_t cpun)
840 {
841 	int bind_cpu = 0, i, hardbound = 0;
842 	apic_irq_t *irq_ptr;
843 	ulong_t iflag;
844 
845 	iflag = intr_clear();
846 	lock_set(&apic_ioapic_lock);
847 
848 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
849 		if (apic_reprogram_info[i].done == B_FALSE) {
850 			if (apic_reprogram_info[i].bindcpu == cpun) {
851 				/*
852 				 * CPU is busy -- it's the target of
853 				 * a pending reprogramming attempt
854 				 */
855 				lock_clear(&apic_ioapic_lock);
856 				intr_restore(iflag);
857 				return (PSM_FAILURE);
858 			}
859 		}
860 	}
861 
862 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
863 
864 	apic_cpus[cpun].aci_curipl = 0;
865 
866 	i = apic_min_device_irq;
867 	for (; i <= apic_max_device_irq; i++) {
868 		/*
869 		 * If there are bound interrupts on this cpu, then
870 		 * rebind them to other processors.
871 		 */
872 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
873 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
874 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
875 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
876 
877 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
878 				hardbound = 1;
879 				continue;
880 			}
881 
882 			if (irq_ptr->airq_temp_cpu == cpun) {
883 				do {
884 					bind_cpu =
885 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
886 				} while (apic_rebind_all(irq_ptr, bind_cpu));
887 			}
888 		}
889 	}
890 
891 	lock_clear(&apic_ioapic_lock);
892 	intr_restore(iflag);
893 
894 	if (hardbound) {
895 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
896 		    "due to user bound interrupts", cpun);
897 		return (PSM_FAILURE);
898 	}
899 	else
900 		return (PSM_SUCCESS);
901 }
902 
903 /*
904  * Bind interrupts to the CPU's local APIC.
905  * Interrupts should not be bound to a CPU's local APIC until the CPU
906  * is ready to receive interrupts.
907  */
908 static void
909 apic_enable_intr(processorid_t cpun)
910 {
911 	int	i;
912 	apic_irq_t *irq_ptr;
913 	ulong_t iflag;
914 
915 	iflag = intr_clear();
916 	lock_set(&apic_ioapic_lock);
917 
918 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
919 
920 	i = apic_min_device_irq;
921 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
922 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
923 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
924 				(void) apic_rebind_all(irq_ptr,
925 				    irq_ptr->airq_cpu);
926 			}
927 		}
928 	}
929 
930 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
931 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
932 
933 	lock_clear(&apic_ioapic_lock);
934 	intr_restore(iflag);
935 }
936 
937 /*
938  * If this module needs a periodic handler for the interrupt distribution, it
939  * can be added here. The argument to the periodic handler is not currently
940  * used, but is reserved for future.
941  */
942 static void
943 apic_post_cyclic_setup(void *arg)
944 {
945 _NOTE(ARGUNUSED(arg))
946 
947 	cyc_handler_t cyh;
948 	cyc_time_t cyt;
949 
950 	/* cpu_lock is held */
951 	/* set up a periodic handler for intr redistribution */
952 
953 	/*
954 	 * In peridoc mode intr redistribution processing is done in
955 	 * apic_intr_enter during clk intr processing
956 	 */
957 	if (!apic_oneshot)
958 		return;
959 
960 	/*
961 	 * Register a periodical handler for the redistribution processing.
962 	 * Though we would generally prefer to use the DDI interface for
963 	 * periodic handler invocation, ddi_periodic_add(9F), we are
964 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
965 	 * attempt to take for us.  Thus, we add our own cyclic directly:
966 	 */
967 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
968 	cyh.cyh_arg = NULL;
969 	cyh.cyh_level = CY_LOW_LEVEL;
970 
971 	cyt.cyt_when = 0;
972 	cyt.cyt_interval = apic_redistribute_sample_interval;
973 
974 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
975 }
976 
977 static void
978 apic_redistribute_compute(void)
979 {
980 	int	i, j, max_busy;
981 
982 	if (apic_enable_dynamic_migration) {
983 		if (++apic_nticks == apic_sample_factor_redistribution) {
984 			/*
985 			 * Time to call apic_intr_redistribute().
986 			 * reset apic_nticks. This will cause max_busy
987 			 * to be calculated below and if it is more than
988 			 * apic_int_busy, we will do the whole thing
989 			 */
990 			apic_nticks = 0;
991 		}
992 		max_busy = 0;
993 		for (i = 0; i < apic_nproc; i++) {
994 			if (!apic_cpu_in_range(i))
995 				continue;
996 
997 			/*
998 			 * Check if curipl is non zero & if ISR is in
999 			 * progress
1000 			 */
1001 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
1002 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1003 
1004 				int	irq;
1005 				apic_cpus[i].aci_busy++;
1006 				irq = apic_cpus[i].aci_current[j];
1007 				apic_irq_table[irq]->airq_busy++;
1008 			}
1009 
1010 			if (!apic_nticks &&
1011 			    (apic_cpus[i].aci_busy > max_busy))
1012 				max_busy = apic_cpus[i].aci_busy;
1013 		}
1014 		if (!apic_nticks) {
1015 			if (max_busy > apic_int_busy_mark) {
1016 			/*
1017 			 * We could make the following check be
1018 			 * skipped > 1 in which case, we get a
1019 			 * redistribution at half the busy mark (due to
1020 			 * double interval). Need to be able to collect
1021 			 * more empirical data to decide if that is a
1022 			 * good strategy. Punt for now.
1023 			 */
1024 				if (apic_skipped_redistribute) {
1025 					apic_cleanup_busy();
1026 					apic_skipped_redistribute = 0;
1027 				} else {
1028 					apic_intr_redistribute();
1029 				}
1030 			} else
1031 				apic_skipped_redistribute++;
1032 		}
1033 	}
1034 }
1035 
1036 
1037 /*
1038  * The following functions are in the platform specific file so that they
1039  * can be different functions depending on whether we are running on
1040  * bare metal or a hypervisor.
1041  */
1042 
1043 /*
1044  * Check to make sure there are enough irq slots
1045  */
1046 int
1047 apic_check_free_irqs(int count)
1048 {
1049 	int i, avail;
1050 
1051 	avail = 0;
1052 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1053 		if ((apic_irq_table[i] == NULL) ||
1054 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
1055 			if (++avail >= count)
1056 				return (PSM_SUCCESS);
1057 		}
1058 	}
1059 	return (PSM_FAILURE);
1060 }
1061 
1062 /*
1063  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1064  */
1065 int
1066 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1067     int behavior)
1068 {
1069 	int	rcount, i;
1070 	uchar_t	start, irqno;
1071 	uint32_t cpu;
1072 	major_t	major;
1073 	apic_irq_t	*irqptr;
1074 
1075 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1076 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1077 	    (void *)dip, inum, pri, count, behavior));
1078 
1079 	if (count > 1) {
1080 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1081 		    apic_multi_msi_enable == 0)
1082 			return (0);
1083 		if (apic_multi_msi_enable == 0)
1084 			count = 1;
1085 	}
1086 
1087 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1088 		rcount = count;
1089 	else if (rcount == 0 || (rcount < count &&
1090 	    behavior == DDI_INTR_ALLOC_STRICT))
1091 		return (0);
1092 
1093 	/* if not ISP2, then round it down */
1094 	if (!ISP2(rcount))
1095 		rcount = 1 << (highbit(rcount) - 1);
1096 
1097 	mutex_enter(&airq_mutex);
1098 
1099 	for (start = 0; rcount > 0; rcount >>= 1) {
1100 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1101 		    behavior == DDI_INTR_ALLOC_STRICT)
1102 			break;
1103 	}
1104 
1105 	if (start == 0) {
1106 		/* no vector available */
1107 		mutex_exit(&airq_mutex);
1108 		return (0);
1109 	}
1110 
1111 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1112 		/* not enough free irq slots available */
1113 		mutex_exit(&airq_mutex);
1114 		return (0);
1115 	}
1116 
1117 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1118 	for (i = 0; i < rcount; i++) {
1119 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1120 		    (uchar_t)-1) {
1121 			/*
1122 			 * shouldn't happen because of the
1123 			 * apic_check_free_irqs() check earlier
1124 			 */
1125 			mutex_exit(&airq_mutex);
1126 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1127 			    "apic_allocate_irq failed\n"));
1128 			return (i);
1129 		}
1130 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1131 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1132 		irqptr = apic_irq_table[irqno];
1133 #ifdef	DEBUG
1134 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1135 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1136 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1137 #endif
1138 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1139 
1140 		irqptr->airq_vector = (uchar_t)(start + i);
1141 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1142 		irqptr->airq_intin_no = (uchar_t)rcount;
1143 		irqptr->airq_ipl = pri;
1144 		irqptr->airq_vector = start + i;
1145 		irqptr->airq_origirq = (uchar_t)(inum + i);
1146 		irqptr->airq_share_id = 0;
1147 		irqptr->airq_mps_intr_index = MSI_INDEX;
1148 		irqptr->airq_dip = dip;
1149 		irqptr->airq_major = major;
1150 		if (i == 0) /* they all bound to the same cpu */
1151 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1152 			    0xff, 0xff);
1153 		else
1154 			irqptr->airq_cpu = cpu;
1155 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1156 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1157 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1158 		    irqptr->airq_origirq, pri));
1159 	}
1160 	mutex_exit(&airq_mutex);
1161 	return (rcount);
1162 }
1163 
1164 /*
1165  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1166  */
1167 int
1168 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1169     int behavior)
1170 {
1171 	int	rcount, i;
1172 	major_t	major;
1173 
1174 	mutex_enter(&airq_mutex);
1175 
1176 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1177 		rcount = count;
1178 	else if (rcount == 0 || (rcount < count &&
1179 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1180 		rcount = 0;
1181 		goto out;
1182 	}
1183 
1184 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1185 		/* not enough free irq slots available */
1186 		rcount = 0;
1187 		goto out;
1188 	}
1189 
1190 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1191 	for (i = 0; i < rcount; i++) {
1192 		uchar_t	vector, irqno;
1193 		apic_irq_t	*irqptr;
1194 
1195 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1196 		    (uchar_t)-1) {
1197 			/*
1198 			 * shouldn't happen because of the
1199 			 * apic_check_free_irqs() check earlier
1200 			 */
1201 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1202 			    "apic_allocate_irq failed\n"));
1203 			rcount = i;
1204 			goto out;
1205 		}
1206 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1207 			/*
1208 			 * shouldn't happen because of the
1209 			 * apic_navail_vector() call earlier
1210 			 */
1211 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1212 			    "apic_allocate_vector failed\n"));
1213 			rcount = i;
1214 			goto out;
1215 		}
1216 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1217 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1218 		irqptr = apic_irq_table[irqno];
1219 		irqptr->airq_vector = (uchar_t)vector;
1220 		irqptr->airq_ipl = pri;
1221 		irqptr->airq_origirq = (uchar_t)(inum + i);
1222 		irqptr->airq_share_id = 0;
1223 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1224 		irqptr->airq_dip = dip;
1225 		irqptr->airq_major = major;
1226 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1227 	}
1228 out:
1229 	mutex_exit(&airq_mutex);
1230 	return (rcount);
1231 }
1232 
1233 /*
1234  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1235  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1236  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1237  * requests and allocated only when pri is set.
1238  */
1239 uchar_t
1240 apic_allocate_vector(int ipl, int irq, int pri)
1241 {
1242 	int	lowest, highest, i;
1243 
1244 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1245 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1246 
1247 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1248 		lowest -= APIC_VECTOR_PER_IPL;
1249 
1250 #ifdef	DEBUG
1251 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1252 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1253 #endif /* DEBUG */
1254 	if (pri == 0)
1255 		highest -= APIC_HI_PRI_VECTS;
1256 
1257 	for (i = lowest; i <= highest; i++) {
1258 		if (APIC_CHECK_RESERVE_VECTORS(i))
1259 			continue;
1260 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1261 			apic_vector_to_irq[i] = (uchar_t)irq;
1262 			return (i);
1263 		}
1264 	}
1265 
1266 	return (0);
1267 }
1268 
1269 /* Mark vector as not being used by any irq */
1270 void
1271 apic_free_vector(uchar_t vector)
1272 {
1273 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1274 }
1275 
1276 /*
1277  * Call rebind to do the actual programming.
1278  * Must be called with interrupts disabled and apic_ioapic_lock held
1279  * 'p' is polymorphic -- if this function is called to process a deferred
1280  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1281  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1282  * p is of the type 'apic_irq_t *'.
1283  *
1284  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1285  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1286  * taken offline after a cpu is selected, but before apic_rebind is called to
1287  * bind interrupts to it.
1288  */
1289 int
1290 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1291 {
1292 	apic_irq_t *irqptr;
1293 	struct ioapic_reprogram_data *drep = NULL;
1294 	int rv;
1295 
1296 	if (deferred) {
1297 		drep = (struct ioapic_reprogram_data *)p;
1298 		ASSERT(drep != NULL);
1299 		irqptr = drep->irqp;
1300 	} else
1301 		irqptr = (apic_irq_t *)p;
1302 
1303 	ASSERT(irqptr != NULL);
1304 
1305 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1306 	if (rv) {
1307 		/*
1308 		 * CPU is not up or interrupts are disabled. Fall back to
1309 		 * the first available CPU
1310 		 */
1311 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1312 		    drep);
1313 	}
1314 
1315 	return (rv);
1316 }
1317 
1318 
1319 uchar_t
1320 apic_modify_vector(uchar_t vector, int irq)
1321 {
1322 	apic_vector_to_irq[vector] = (uchar_t)irq;
1323 	return (vector);
1324 }
1325 
1326 char *
1327 apic_get_apic_type(void)
1328 {
1329 	return (apic_psm_info.p_mach_idstring);
1330 }
1331 
1332 void
1333 x2apic_update_psm(void)
1334 {
1335 	struct psm_ops *pops = &apic_ops;
1336 
1337 	ASSERT(pops != NULL);
1338 
1339 	pops->psm_intr_exit = x2apic_intr_exit;
1340 	pops->psm_setspl = x2apic_setspl;
1341 
1342 	pops->psm_send_ipi =  x2apic_send_ipi;
1343 	send_dirintf = pops->psm_send_ipi;
1344 
1345 	apic_mode = LOCAL_X2APIC;
1346 	apic_change_ops();
1347 }
1348