xref: /titanic_50/usr/src/uts/common/vm/vm_page.c (revision 532877c46d04a2d0b254f9b5797720078adcea07)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - physical page management.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/vm.h>
53 #include <sys/vtrace.h>
54 #include <sys/swap.h>
55 #include <sys/cmn_err.h>
56 #include <sys/tuneable.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cpuvar.h>
59 #include <sys/callb.h>
60 #include <sys/debug.h>
61 #include <sys/tnf_probe.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
72 
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
84 
85 static int nopageage = 0;
86 
87 static pgcnt_t max_page_get;	/* max page_get request size in pages */
88 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
89 
90 /*
91  * freemem_lock protects all freemem variables:
92  * availrmem. Also this lock protects the globals which track the
93  * availrmem changes for accurate kernel footprint calculation.
94  * See below for an explanation of these
95  * globals.
96  */
97 kmutex_t freemem_lock;
98 pgcnt_t availrmem;
99 pgcnt_t availrmem_initial;
100 
101 /*
102  * These globals track availrmem changes to get a more accurate
103  * estimate of tke kernel size. Historically pp_kernel is used for
104  * kernel size and is based on availrmem. But availrmem is adjusted for
105  * locked pages in the system not just for kernel locked pages.
106  * These new counters will track the pages locked through segvn and
107  * by explicit user locking.
108  *
109  * segvn_pages_locked : This keeps track on a global basis how many pages
110  * are currently locked because of I/O.
111  *
112  * pages_locked : How many pages are locked becuase of user specified
113  * locking through mlock or plock.
114  *
115  * pages_useclaim,pages_claimed : These two variables track the
116  * cliam adjustments because of the protection changes on a segvn segment.
117  *
118  * All these globals are protected by the same lock which protects availrmem.
119  */
120 pgcnt_t segvn_pages_locked;
121 pgcnt_t pages_locked;
122 pgcnt_t pages_useclaim;
123 pgcnt_t pages_claimed;
124 
125 
126 /*
127  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
128  */
129 static kmutex_t	new_freemem_lock;
130 static uint_t	freemem_wait;	/* someone waiting for freemem */
131 static kcondvar_t freemem_cv;
132 
133 /*
134  * The logical page free list is maintained as two lists, the 'free'
135  * and the 'cache' lists.
136  * The free list contains those pages that should be reused first.
137  *
138  * The implementation of the lists is machine dependent.
139  * page_get_freelist(), page_get_cachelist(),
140  * page_list_sub(), and page_list_add()
141  * form the interface to the machine dependent implementation.
142  *
143  * Pages with p_free set are on the cache list.
144  * Pages with p_free and p_age set are on the free list,
145  *
146  * A page may be locked while on either list.
147  */
148 
149 /*
150  * free list accounting stuff.
151  *
152  *
153  * Spread out the value for the number of pages on the
154  * page free and page cache lists.  If there is just one
155  * value, then it must be under just one lock.
156  * The lock contention and cache traffic are a real bother.
157  *
158  * When we acquire and then drop a single pcf lock
159  * we can start in the middle of the array of pcf structures.
160  * If we acquire more than one pcf lock at a time, we need to
161  * start at the front to avoid deadlocking.
162  *
163  * pcf_count holds the number of pages in each pool.
164  *
165  * pcf_block is set when page_create_get_something() has asked the
166  * PSM page freelist and page cachelist routines without specifying
167  * a color and nothing came back.  This is used to block anything
168  * else from moving pages from one list to the other while the
169  * lists are searched again.  If a page is freeed while pcf_block is
170  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
171  * of clearning pcf_block, doing the wakeups, etc.
172  */
173 
174 #if NCPU <= 4
175 #define	PAD	2
176 #define	PCF_FANOUT	4
177 static	uint_t	pcf_mask = PCF_FANOUT - 1;
178 #else
179 #define	PAD	10
180 #ifdef sun4v
181 #define	PCF_FANOUT	32
182 #else
183 #define	PCF_FANOUT	128
184 #endif
185 static	uint_t	pcf_mask = PCF_FANOUT - 1;
186 #endif
187 
188 struct pcf {
189 	kmutex_t	pcf_lock;	/* protects the structure */
190 	uint_t		pcf_count;	/* page count */
191 	uint_t		pcf_wait;	/* number of waiters */
192 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
193 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
194 	uint_t		pcf_fill[PAD];	/* to line up on the caches */
195 };
196 
197 static struct	pcf	pcf[PCF_FANOUT];
198 #define	PCF_INDEX()	((CPU->cpu_id) & (pcf_mask))
199 
200 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
201 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
202 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
203 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
204 
205 #ifdef VM_STATS
206 
207 /*
208  * No locks, but so what, they are only statistics.
209  */
210 
211 static struct page_tcnt {
212 	int	pc_free_cache;		/* free's into cache list */
213 	int	pc_free_dontneed;	/* free's with dontneed */
214 	int	pc_free_pageout;	/* free's from pageout */
215 	int	pc_free_free;		/* free's into free list */
216 	int	pc_free_pages;		/* free's into large page free list */
217 	int	pc_destroy_pages;	/* large page destroy's */
218 	int	pc_get_cache;		/* get's from cache list */
219 	int	pc_get_free;		/* get's from free list */
220 	int	pc_reclaim;		/* reclaim's */
221 	int	pc_abortfree;		/* abort's of free pages */
222 	int	pc_find_hit;		/* find's that find page */
223 	int	pc_find_miss;		/* find's that don't find page */
224 	int	pc_destroy_free;	/* # of free pages destroyed */
225 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
226 	int	pc_find_hashlen[PC_HASH_CNT+1];
227 	int	pc_addclaim_pages;
228 	int	pc_subclaim_pages;
229 	int	pc_free_replacement_page[2];
230 	int	pc_try_demote_pages[6];
231 	int	pc_demote_pages[2];
232 } pagecnt;
233 
234 uint_t	hashin_count;
235 uint_t	hashin_not_held;
236 uint_t	hashin_already;
237 
238 uint_t	hashout_count;
239 uint_t	hashout_not_held;
240 
241 uint_t	page_create_count;
242 uint_t	page_create_not_enough;
243 uint_t	page_create_not_enough_again;
244 uint_t	page_create_zero;
245 uint_t	page_create_hashout;
246 uint_t	page_create_page_lock_failed;
247 uint_t	page_create_trylock_failed;
248 uint_t	page_create_found_one;
249 uint_t	page_create_hashin_failed;
250 uint_t	page_create_dropped_phm;
251 
252 uint_t	page_create_new;
253 uint_t	page_create_exists;
254 uint_t	page_create_putbacks;
255 uint_t	page_create_overshoot;
256 
257 uint_t	page_reclaim_zero;
258 uint_t	page_reclaim_zero_locked;
259 
260 uint_t	page_rename_exists;
261 uint_t	page_rename_count;
262 
263 uint_t	page_lookup_cnt[20];
264 uint_t	page_lookup_nowait_cnt[10];
265 uint_t	page_find_cnt;
266 uint_t	page_exists_cnt;
267 uint_t	page_exists_forreal_cnt;
268 uint_t	page_lookup_dev_cnt;
269 uint_t	get_cachelist_cnt;
270 uint_t	page_create_cnt[10];
271 uint_t	alloc_pages[8];
272 uint_t	page_exphcontg[19];
273 uint_t  page_create_large_cnt[10];
274 
275 /*
276  * Collects statistics.
277  */
278 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
279 	uint_t	mylen = 0; \
280 			\
281 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
282 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
283 			break; \
284 	} \
285 	if ((pp) != NULL) \
286 		pagecnt.pc_find_hit++; \
287 	else \
288 		pagecnt.pc_find_miss++; \
289 	if (mylen > PC_HASH_CNT) \
290 		mylen = PC_HASH_CNT; \
291 	pagecnt.pc_find_hashlen[mylen]++; \
292 }
293 
294 #else	/* VM_STATS */
295 
296 /*
297  * Don't collect statistics
298  */
299 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
300 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
301 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
302 			break; \
303 	} \
304 }
305 
306 #endif	/* VM_STATS */
307 
308 
309 
310 #ifdef DEBUG
311 #define	MEMSEG_SEARCH_STATS
312 #endif
313 
314 #ifdef MEMSEG_SEARCH_STATS
315 struct memseg_stats {
316     uint_t nsearch;
317     uint_t nlastwon;
318     uint_t nhashwon;
319     uint_t nnotfound;
320 } memseg_stats;
321 
322 #define	MEMSEG_STAT_INCR(v) \
323 	atomic_add_32(&memseg_stats.v, 1)
324 #else
325 #define	MEMSEG_STAT_INCR(x)
326 #endif
327 
328 struct memseg *memsegs;		/* list of memory segments */
329 
330 
331 static void page_init_mem_config(void);
332 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
333 static void page_do_hashout(page_t *);
334 static void page_capture_init();
335 int page_capture_take_action(page_t *, uint_t, void *);
336 
337 static void page_demote_vp_pages(page_t *);
338 
339 /*
340  * vm subsystem related initialization
341  */
342 void
343 vm_init(void)
344 {
345 	boolean_t callb_vm_cpr(void *, int);
346 
347 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
348 	page_init_mem_config();
349 	page_retire_init();
350 	vm_usage_init();
351 	page_capture_init();
352 }
353 
354 /*
355  * This function is called at startup and when memory is added or deleted.
356  */
357 void
358 init_pages_pp_maximum()
359 {
360 	static pgcnt_t p_min;
361 	static pgcnt_t pages_pp_maximum_startup;
362 	static pgcnt_t avrmem_delta;
363 	static int init_done;
364 	static int user_set;	/* true if set in /etc/system */
365 
366 	if (init_done == 0) {
367 
368 		/* If the user specified a value, save it */
369 		if (pages_pp_maximum != 0) {
370 			user_set = 1;
371 			pages_pp_maximum_startup = pages_pp_maximum;
372 		}
373 
374 		/*
375 		 * Setting of pages_pp_maximum is based first time
376 		 * on the value of availrmem just after the start-up
377 		 * allocations. To preserve this relationship at run
378 		 * time, use a delta from availrmem_initial.
379 		 */
380 		ASSERT(availrmem_initial >= availrmem);
381 		avrmem_delta = availrmem_initial - availrmem;
382 
383 		/* The allowable floor of pages_pp_maximum */
384 		p_min = tune.t_minarmem + 100;
385 
386 		/* Make sure we don't come through here again. */
387 		init_done = 1;
388 	}
389 	/*
390 	 * Determine pages_pp_maximum, the number of currently available
391 	 * pages (availrmem) that can't be `locked'. If not set by
392 	 * the user, we set it to 4% of the currently available memory
393 	 * plus 4MB.
394 	 * But we also insist that it be greater than tune.t_minarmem;
395 	 * otherwise a process could lock down a lot of memory, get swapped
396 	 * out, and never have enough to get swapped back in.
397 	 */
398 	if (user_set)
399 		pages_pp_maximum = pages_pp_maximum_startup;
400 	else
401 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
402 		    + btop(4 * 1024 * 1024);
403 
404 	if (pages_pp_maximum <= p_min) {
405 		pages_pp_maximum = p_min;
406 	}
407 }
408 
409 void
410 set_max_page_get(pgcnt_t target_total_pages)
411 {
412 	max_page_get = target_total_pages / 2;
413 }
414 
415 static pgcnt_t pending_delete;
416 
417 /*ARGSUSED*/
418 static void
419 page_mem_config_post_add(
420 	void *arg,
421 	pgcnt_t delta_pages)
422 {
423 	set_max_page_get(total_pages - pending_delete);
424 	init_pages_pp_maximum();
425 }
426 
427 /*ARGSUSED*/
428 static int
429 page_mem_config_pre_del(
430 	void *arg,
431 	pgcnt_t delta_pages)
432 {
433 	pgcnt_t nv;
434 
435 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
436 	set_max_page_get(total_pages - nv);
437 	return (0);
438 }
439 
440 /*ARGSUSED*/
441 static void
442 page_mem_config_post_del(
443 	void *arg,
444 	pgcnt_t delta_pages,
445 	int cancelled)
446 {
447 	pgcnt_t nv;
448 
449 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
450 	set_max_page_get(total_pages - nv);
451 	if (!cancelled)
452 		init_pages_pp_maximum();
453 }
454 
455 static kphysm_setup_vector_t page_mem_config_vec = {
456 	KPHYSM_SETUP_VECTOR_VERSION,
457 	page_mem_config_post_add,
458 	page_mem_config_pre_del,
459 	page_mem_config_post_del,
460 };
461 
462 static void
463 page_init_mem_config(void)
464 {
465 	int ret;
466 
467 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
468 	ASSERT(ret == 0);
469 }
470 
471 /*
472  * Evenly spread out the PCF counters for large free pages
473  */
474 static void
475 page_free_large_ctr(pgcnt_t npages)
476 {
477 	static struct pcf	*p = pcf;
478 	pgcnt_t			lump;
479 
480 	freemem += npages;
481 
482 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
483 
484 	while (npages > 0) {
485 
486 		ASSERT(!p->pcf_block);
487 
488 		if (lump < npages) {
489 			p->pcf_count += (uint_t)lump;
490 			npages -= lump;
491 		} else {
492 			p->pcf_count += (uint_t)npages;
493 			npages = 0;
494 		}
495 
496 		ASSERT(!p->pcf_wait);
497 
498 		if (++p > &pcf[PCF_FANOUT - 1])
499 			p = pcf;
500 	}
501 
502 	ASSERT(npages == 0);
503 }
504 
505 /*
506  * Add a physical chunk of memory to the system freee lists during startup.
507  * Platform specific startup() allocates the memory for the page structs.
508  *
509  * num	- number of page structures
510  * base - page number (pfn) to be associated with the first page.
511  *
512  * Since we are doing this during startup (ie. single threaded), we will
513  * use shortcut routines to avoid any locking overhead while putting all
514  * these pages on the freelists.
515  *
516  * NOTE: Any changes performed to page_free(), must also be performed to
517  *	 add_physmem() since this is how we initialize all page_t's at
518  *	 boot time.
519  */
520 void
521 add_physmem(
522 	page_t	*pp,
523 	pgcnt_t	num,
524 	pfn_t	pnum)
525 {
526 	page_t	*root = NULL;
527 	uint_t	szc = page_num_pagesizes() - 1;
528 	pgcnt_t	large = page_get_pagecnt(szc);
529 	pgcnt_t	cnt = 0;
530 
531 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
532 	    "add_physmem:pp %p num %lu", pp, num);
533 
534 	/*
535 	 * Arbitrarily limit the max page_get request
536 	 * to 1/2 of the page structs we have.
537 	 */
538 	total_pages += num;
539 	set_max_page_get(total_pages);
540 
541 	PLCNT_MODIFY_MAX(pnum, (long)num);
542 
543 	/*
544 	 * The physical space for the pages array
545 	 * representing ram pages has already been
546 	 * allocated.  Here we initialize each lock
547 	 * in the page structure, and put each on
548 	 * the free list
549 	 */
550 	for (; num; pp++, pnum++, num--) {
551 
552 		/*
553 		 * this needs to fill in the page number
554 		 * and do any other arch specific initialization
555 		 */
556 		add_physmem_cb(pp, pnum);
557 
558 		pp->p_lckcnt = 0;
559 		pp->p_cowcnt = 0;
560 		pp->p_slckcnt = 0;
561 
562 		/*
563 		 * Initialize the page lock as unlocked, since nobody
564 		 * can see or access this page yet.
565 		 */
566 		pp->p_selock = 0;
567 
568 		/*
569 		 * Initialize IO lock
570 		 */
571 		page_iolock_init(pp);
572 
573 		/*
574 		 * initialize other fields in the page_t
575 		 */
576 		PP_SETFREE(pp);
577 		page_clr_all_props(pp);
578 		PP_SETAGED(pp);
579 		pp->p_offset = (u_offset_t)-1;
580 		pp->p_next = pp;
581 		pp->p_prev = pp;
582 
583 		/*
584 		 * Simple case: System doesn't support large pages.
585 		 */
586 		if (szc == 0) {
587 			pp->p_szc = 0;
588 			page_free_at_startup(pp);
589 			continue;
590 		}
591 
592 		/*
593 		 * Handle unaligned pages, we collect them up onto
594 		 * the root page until we have a full large page.
595 		 */
596 		if (!IS_P2ALIGNED(pnum, large)) {
597 
598 			/*
599 			 * If not in a large page,
600 			 * just free as small page.
601 			 */
602 			if (root == NULL) {
603 				pp->p_szc = 0;
604 				page_free_at_startup(pp);
605 				continue;
606 			}
607 
608 			/*
609 			 * Link a constituent page into the large page.
610 			 */
611 			pp->p_szc = szc;
612 			page_list_concat(&root, &pp);
613 
614 			/*
615 			 * When large page is fully formed, free it.
616 			 */
617 			if (++cnt == large) {
618 				page_free_large_ctr(cnt);
619 				page_list_add_pages(root, PG_LIST_ISINIT);
620 				root = NULL;
621 				cnt = 0;
622 			}
623 			continue;
624 		}
625 
626 		/*
627 		 * At this point we have a page number which
628 		 * is aligned. We assert that we aren't already
629 		 * in a different large page.
630 		 */
631 		ASSERT(IS_P2ALIGNED(pnum, large));
632 		ASSERT(root == NULL && cnt == 0);
633 
634 		/*
635 		 * If insufficient number of pages left to form
636 		 * a large page, just free the small page.
637 		 */
638 		if (num < large) {
639 			pp->p_szc = 0;
640 			page_free_at_startup(pp);
641 			continue;
642 		}
643 
644 		/*
645 		 * Otherwise start a new large page.
646 		 */
647 		pp->p_szc = szc;
648 		cnt++;
649 		root = pp;
650 	}
651 	ASSERT(root == NULL && cnt == 0);
652 }
653 
654 /*
655  * Find a page representing the specified [vp, offset].
656  * If we find the page but it is intransit coming in,
657  * it will have an "exclusive" lock and we wait for
658  * the i/o to complete.  A page found on the free list
659  * is always reclaimed and then locked.  On success, the page
660  * is locked, its data is valid and it isn't on the free
661  * list, while a NULL is returned if the page doesn't exist.
662  */
663 page_t *
664 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
665 {
666 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
667 }
668 
669 /*
670  * Find a page representing the specified [vp, offset].
671  * We either return the one we found or, if passed in,
672  * create one with identity of [vp, offset] of the
673  * pre-allocated page. If we find exsisting page but it is
674  * intransit coming in, it will have an "exclusive" lock
675  * and we wait for the i/o to complete.  A page found on
676  * the free list is always reclaimed and then locked.
677  * On success, the page is locked, its data is valid and
678  * it isn't on the free list, while a NULL is returned
679  * if the page doesn't exist and newpp is NULL;
680  */
681 page_t *
682 page_lookup_create(
683 	vnode_t *vp,
684 	u_offset_t off,
685 	se_t se,
686 	page_t *newpp,
687 	spgcnt_t *nrelocp,
688 	int flags)
689 {
690 	page_t		*pp;
691 	kmutex_t	*phm;
692 	ulong_t		index;
693 	uint_t		hash_locked;
694 	uint_t		es;
695 
696 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
697 	VM_STAT_ADD(page_lookup_cnt[0]);
698 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
699 
700 	/*
701 	 * Acquire the appropriate page hash lock since
702 	 * we have to search the hash list.  Pages that
703 	 * hash to this list can't change identity while
704 	 * this lock is held.
705 	 */
706 	hash_locked = 0;
707 	index = PAGE_HASH_FUNC(vp, off);
708 	phm = NULL;
709 top:
710 	PAGE_HASH_SEARCH(index, pp, vp, off);
711 	if (pp != NULL) {
712 		VM_STAT_ADD(page_lookup_cnt[1]);
713 		es = (newpp != NULL) ? 1 : 0;
714 		es |= flags;
715 		if (!hash_locked) {
716 			VM_STAT_ADD(page_lookup_cnt[2]);
717 			if (!page_try_reclaim_lock(pp, se, es)) {
718 				/*
719 				 * On a miss, acquire the phm.  Then
720 				 * next time, page_lock() will be called,
721 				 * causing a wait if the page is busy.
722 				 * just looping with page_trylock() would
723 				 * get pretty boring.
724 				 */
725 				VM_STAT_ADD(page_lookup_cnt[3]);
726 				phm = PAGE_HASH_MUTEX(index);
727 				mutex_enter(phm);
728 				hash_locked = 1;
729 				goto top;
730 			}
731 		} else {
732 			VM_STAT_ADD(page_lookup_cnt[4]);
733 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
734 				VM_STAT_ADD(page_lookup_cnt[5]);
735 				goto top;
736 			}
737 		}
738 
739 		/*
740 		 * Since `pp' is locked it can not change identity now.
741 		 * Reconfirm we locked the correct page.
742 		 *
743 		 * Both the p_vnode and p_offset *must* be cast volatile
744 		 * to force a reload of their values: The PAGE_HASH_SEARCH
745 		 * macro will have stuffed p_vnode and p_offset into
746 		 * registers before calling page_trylock(); another thread,
747 		 * actually holding the hash lock, could have changed the
748 		 * page's identity in memory, but our registers would not
749 		 * be changed, fooling the reconfirmation.  If the hash
750 		 * lock was held during the search, the casting would
751 		 * not be needed.
752 		 */
753 		VM_STAT_ADD(page_lookup_cnt[6]);
754 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
755 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
756 			VM_STAT_ADD(page_lookup_cnt[7]);
757 			if (hash_locked) {
758 				panic("page_lookup_create: lost page %p",
759 				    (void *)pp);
760 				/*NOTREACHED*/
761 			}
762 			page_unlock(pp);
763 			phm = PAGE_HASH_MUTEX(index);
764 			mutex_enter(phm);
765 			hash_locked = 1;
766 			goto top;
767 		}
768 
769 		/*
770 		 * If page_trylock() was called, then pp may still be on
771 		 * the cachelist (can't be on the free list, it would not
772 		 * have been found in the search).  If it is on the
773 		 * cachelist it must be pulled now. To pull the page from
774 		 * the cachelist, it must be exclusively locked.
775 		 *
776 		 * The other big difference between page_trylock() and
777 		 * page_lock(), is that page_lock() will pull the
778 		 * page from whatever free list (the cache list in this
779 		 * case) the page is on.  If page_trylock() was used
780 		 * above, then we have to do the reclaim ourselves.
781 		 */
782 		if ((!hash_locked) && (PP_ISFREE(pp))) {
783 			ASSERT(PP_ISAGED(pp) == 0);
784 			VM_STAT_ADD(page_lookup_cnt[8]);
785 
786 			/*
787 			 * page_relcaim will insure that we
788 			 * have this page exclusively
789 			 */
790 
791 			if (!page_reclaim(pp, NULL)) {
792 				/*
793 				 * Page_reclaim dropped whatever lock
794 				 * we held.
795 				 */
796 				VM_STAT_ADD(page_lookup_cnt[9]);
797 				phm = PAGE_HASH_MUTEX(index);
798 				mutex_enter(phm);
799 				hash_locked = 1;
800 				goto top;
801 			} else if (se == SE_SHARED && newpp == NULL) {
802 				VM_STAT_ADD(page_lookup_cnt[10]);
803 				page_downgrade(pp);
804 			}
805 		}
806 
807 		if (hash_locked) {
808 			mutex_exit(phm);
809 		}
810 
811 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
812 		    PAGE_EXCL(pp) && nrelocp != NULL) {
813 			ASSERT(nrelocp != NULL);
814 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
815 			    NULL);
816 			if (*nrelocp > 0) {
817 				VM_STAT_COND_ADD(*nrelocp == 1,
818 				    page_lookup_cnt[11]);
819 				VM_STAT_COND_ADD(*nrelocp > 1,
820 				    page_lookup_cnt[12]);
821 				pp = newpp;
822 				se = SE_EXCL;
823 			} else {
824 				if (se == SE_SHARED) {
825 					page_downgrade(pp);
826 				}
827 				VM_STAT_ADD(page_lookup_cnt[13]);
828 			}
829 		} else if (newpp != NULL && nrelocp != NULL) {
830 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
831 				page_downgrade(pp);
832 			}
833 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
834 			    page_lookup_cnt[14]);
835 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
836 			    page_lookup_cnt[15]);
837 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
838 			    page_lookup_cnt[16]);
839 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
840 			se = SE_EXCL;
841 		}
842 	} else if (!hash_locked) {
843 		VM_STAT_ADD(page_lookup_cnt[17]);
844 		phm = PAGE_HASH_MUTEX(index);
845 		mutex_enter(phm);
846 		hash_locked = 1;
847 		goto top;
848 	} else if (newpp != NULL) {
849 		/*
850 		 * If we have a preallocated page then
851 		 * insert it now and basically behave like
852 		 * page_create.
853 		 */
854 		VM_STAT_ADD(page_lookup_cnt[18]);
855 		/*
856 		 * Since we hold the page hash mutex and
857 		 * just searched for this page, page_hashin
858 		 * had better not fail.  If it does, that
859 		 * means some thread did not follow the
860 		 * page hash mutex rules.  Panic now and
861 		 * get it over with.  As usual, go down
862 		 * holding all the locks.
863 		 */
864 		ASSERT(MUTEX_HELD(phm));
865 		if (!page_hashin(newpp, vp, off, phm)) {
866 			ASSERT(MUTEX_HELD(phm));
867 			panic("page_lookup_create: hashin failed %p %p %llx %p",
868 			    (void *)newpp, (void *)vp, off, (void *)phm);
869 			/*NOTREACHED*/
870 		}
871 		ASSERT(MUTEX_HELD(phm));
872 		mutex_exit(phm);
873 		phm = NULL;
874 		page_set_props(newpp, P_REF);
875 		page_io_lock(newpp);
876 		pp = newpp;
877 		se = SE_EXCL;
878 	} else {
879 		VM_STAT_ADD(page_lookup_cnt[19]);
880 		mutex_exit(phm);
881 	}
882 
883 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
884 
885 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
886 
887 	return (pp);
888 }
889 
890 /*
891  * Search the hash list for the page representing the
892  * specified [vp, offset] and return it locked.  Skip
893  * free pages and pages that cannot be locked as requested.
894  * Used while attempting to kluster pages.
895  */
896 page_t *
897 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
898 {
899 	page_t		*pp;
900 	kmutex_t	*phm;
901 	ulong_t		index;
902 	uint_t		locked;
903 
904 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
905 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
906 
907 	index = PAGE_HASH_FUNC(vp, off);
908 	PAGE_HASH_SEARCH(index, pp, vp, off);
909 	locked = 0;
910 	if (pp == NULL) {
911 top:
912 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
913 		locked = 1;
914 		phm = PAGE_HASH_MUTEX(index);
915 		mutex_enter(phm);
916 		PAGE_HASH_SEARCH(index, pp, vp, off);
917 	}
918 
919 	if (pp == NULL || PP_ISFREE(pp)) {
920 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
921 		pp = NULL;
922 	} else {
923 		if (!page_trylock(pp, se)) {
924 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
925 			pp = NULL;
926 		} else {
927 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
928 			/*
929 			 * See the comment in page_lookup()
930 			 */
931 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
932 			    ((u_offset_t)(pp->p_offset) != off)) {
933 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
934 				if (locked) {
935 					panic("page_lookup_nowait %p",
936 					    (void *)pp);
937 					/*NOTREACHED*/
938 				}
939 				page_unlock(pp);
940 				goto top;
941 			}
942 			if (PP_ISFREE(pp)) {
943 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
944 				page_unlock(pp);
945 				pp = NULL;
946 			}
947 		}
948 	}
949 	if (locked) {
950 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
951 		mutex_exit(phm);
952 	}
953 
954 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
955 
956 	return (pp);
957 }
958 
959 /*
960  * Search the hash list for a page with the specified [vp, off]
961  * that is known to exist and is already locked.  This routine
962  * is typically used by segment SOFTUNLOCK routines.
963  */
964 page_t *
965 page_find(vnode_t *vp, u_offset_t off)
966 {
967 	page_t		*pp;
968 	kmutex_t	*phm;
969 	ulong_t		index;
970 
971 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
972 	VM_STAT_ADD(page_find_cnt);
973 
974 	index = PAGE_HASH_FUNC(vp, off);
975 	phm = PAGE_HASH_MUTEX(index);
976 
977 	mutex_enter(phm);
978 	PAGE_HASH_SEARCH(index, pp, vp, off);
979 	mutex_exit(phm);
980 
981 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
982 	return (pp);
983 }
984 
985 /*
986  * Determine whether a page with the specified [vp, off]
987  * currently exists in the system.  Obviously this should
988  * only be considered as a hint since nothing prevents the
989  * page from disappearing or appearing immediately after
990  * the return from this routine. Subsequently, we don't
991  * even bother to lock the list.
992  */
993 page_t *
994 page_exists(vnode_t *vp, u_offset_t off)
995 {
996 	page_t	*pp;
997 	ulong_t		index;
998 
999 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1000 	VM_STAT_ADD(page_exists_cnt);
1001 
1002 	index = PAGE_HASH_FUNC(vp, off);
1003 	PAGE_HASH_SEARCH(index, pp, vp, off);
1004 
1005 	return (pp);
1006 }
1007 
1008 /*
1009  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1010  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1011  * with these pages locked SHARED. If necessary reclaim pages from
1012  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1013  *
1014  * If we fail to lock pages still return 1 if pages exist and contiguous.
1015  * But in this case return value is just a hint. ppa array won't be filled.
1016  * Caller should initialize ppa[0] as NULL to distinguish return value.
1017  *
1018  * Returns 0 if pages don't exist or not physically contiguous.
1019  *
1020  * This routine doesn't work for anonymous(swapfs) pages.
1021  */
1022 int
1023 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1024 {
1025 	pgcnt_t pages;
1026 	pfn_t pfn;
1027 	page_t *rootpp;
1028 	pgcnt_t i;
1029 	pgcnt_t j;
1030 	u_offset_t save_off = off;
1031 	ulong_t index;
1032 	kmutex_t *phm;
1033 	page_t *pp;
1034 	uint_t pszc;
1035 	int loopcnt = 0;
1036 
1037 	ASSERT(szc != 0);
1038 	ASSERT(vp != NULL);
1039 	ASSERT(!IS_SWAPFSVP(vp));
1040 	ASSERT(!VN_ISKAS(vp));
1041 
1042 again:
1043 	if (++loopcnt > 3) {
1044 		VM_STAT_ADD(page_exphcontg[0]);
1045 		return (0);
1046 	}
1047 
1048 	index = PAGE_HASH_FUNC(vp, off);
1049 	phm = PAGE_HASH_MUTEX(index);
1050 
1051 	mutex_enter(phm);
1052 	PAGE_HASH_SEARCH(index, pp, vp, off);
1053 	mutex_exit(phm);
1054 
1055 	VM_STAT_ADD(page_exphcontg[1]);
1056 
1057 	if (pp == NULL) {
1058 		VM_STAT_ADD(page_exphcontg[2]);
1059 		return (0);
1060 	}
1061 
1062 	pages = page_get_pagecnt(szc);
1063 	rootpp = pp;
1064 	pfn = rootpp->p_pagenum;
1065 
1066 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1067 		VM_STAT_ADD(page_exphcontg[3]);
1068 		if (!page_trylock(pp, SE_SHARED)) {
1069 			VM_STAT_ADD(page_exphcontg[4]);
1070 			return (1);
1071 		}
1072 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1073 		    pp->p_offset != off) {
1074 			VM_STAT_ADD(page_exphcontg[5]);
1075 			page_unlock(pp);
1076 			off = save_off;
1077 			goto again;
1078 		}
1079 		/*
1080 		 * szc was non zero and vnode and offset matched after we
1081 		 * locked the page it means it can't become free on us.
1082 		 */
1083 		ASSERT(!PP_ISFREE(pp));
1084 		if (!IS_P2ALIGNED(pfn, pages)) {
1085 			page_unlock(pp);
1086 			return (0);
1087 		}
1088 		ppa[0] = pp;
1089 		pp++;
1090 		off += PAGESIZE;
1091 		pfn++;
1092 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1093 			if (!page_trylock(pp, SE_SHARED)) {
1094 				VM_STAT_ADD(page_exphcontg[6]);
1095 				pp--;
1096 				while (i-- > 0) {
1097 					page_unlock(pp);
1098 					pp--;
1099 				}
1100 				ppa[0] = NULL;
1101 				return (1);
1102 			}
1103 			if (pp->p_szc != pszc) {
1104 				VM_STAT_ADD(page_exphcontg[7]);
1105 				page_unlock(pp);
1106 				pp--;
1107 				while (i-- > 0) {
1108 					page_unlock(pp);
1109 					pp--;
1110 				}
1111 				ppa[0] = NULL;
1112 				off = save_off;
1113 				goto again;
1114 			}
1115 			/*
1116 			 * szc the same as for previous already locked pages
1117 			 * with right identity. Since this page had correct
1118 			 * szc after we locked it can't get freed or destroyed
1119 			 * and therefore must have the expected identity.
1120 			 */
1121 			ASSERT(!PP_ISFREE(pp));
1122 			if (pp->p_vnode != vp ||
1123 			    pp->p_offset != off) {
1124 				panic("page_exists_physcontig: "
1125 				    "large page identity doesn't match");
1126 			}
1127 			ppa[i] = pp;
1128 			ASSERT(pp->p_pagenum == pfn);
1129 		}
1130 		VM_STAT_ADD(page_exphcontg[8]);
1131 		ppa[pages] = NULL;
1132 		return (1);
1133 	} else if (pszc >= szc) {
1134 		VM_STAT_ADD(page_exphcontg[9]);
1135 		if (!IS_P2ALIGNED(pfn, pages)) {
1136 			return (0);
1137 		}
1138 		return (1);
1139 	}
1140 
1141 	if (!IS_P2ALIGNED(pfn, pages)) {
1142 		VM_STAT_ADD(page_exphcontg[10]);
1143 		return (0);
1144 	}
1145 
1146 	if (page_numtomemseg_nolock(pfn) !=
1147 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1148 		VM_STAT_ADD(page_exphcontg[11]);
1149 		return (0);
1150 	}
1151 
1152 	/*
1153 	 * We loop up 4 times across pages to promote page size.
1154 	 * We're extra cautious to promote page size atomically with respect
1155 	 * to everybody else.  But we can probably optimize into 1 loop if
1156 	 * this becomes an issue.
1157 	 */
1158 
1159 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1160 		ASSERT(pp->p_pagenum == pfn);
1161 		if (!page_trylock(pp, SE_EXCL)) {
1162 			VM_STAT_ADD(page_exphcontg[12]);
1163 			break;
1164 		}
1165 		if (pp->p_vnode != vp ||
1166 		    pp->p_offset != off) {
1167 			VM_STAT_ADD(page_exphcontg[13]);
1168 			page_unlock(pp);
1169 			break;
1170 		}
1171 		if (pp->p_szc >= szc) {
1172 			ASSERT(i == 0);
1173 			page_unlock(pp);
1174 			off = save_off;
1175 			goto again;
1176 		}
1177 	}
1178 
1179 	if (i != pages) {
1180 		VM_STAT_ADD(page_exphcontg[14]);
1181 		--pp;
1182 		while (i-- > 0) {
1183 			page_unlock(pp);
1184 			--pp;
1185 		}
1186 		return (0);
1187 	}
1188 
1189 	pp = rootpp;
1190 	for (i = 0; i < pages; i++, pp++) {
1191 		if (PP_ISFREE(pp)) {
1192 			VM_STAT_ADD(page_exphcontg[15]);
1193 			ASSERT(!PP_ISAGED(pp));
1194 			ASSERT(pp->p_szc == 0);
1195 			if (!page_reclaim(pp, NULL)) {
1196 				break;
1197 			}
1198 		} else {
1199 			ASSERT(pp->p_szc < szc);
1200 			VM_STAT_ADD(page_exphcontg[16]);
1201 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1202 		}
1203 	}
1204 	if (i < pages) {
1205 		VM_STAT_ADD(page_exphcontg[17]);
1206 		/*
1207 		 * page_reclaim failed because we were out of memory.
1208 		 * drop the rest of the locks and return because this page
1209 		 * must be already reallocated anyway.
1210 		 */
1211 		pp = rootpp;
1212 		for (j = 0; j < pages; j++, pp++) {
1213 			if (j != i) {
1214 				page_unlock(pp);
1215 			}
1216 		}
1217 		return (0);
1218 	}
1219 
1220 	off = save_off;
1221 	pp = rootpp;
1222 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1223 		ASSERT(PAGE_EXCL(pp));
1224 		ASSERT(!PP_ISFREE(pp));
1225 		ASSERT(!hat_page_is_mapped(pp));
1226 		ASSERT(pp->p_vnode == vp);
1227 		ASSERT(pp->p_offset == off);
1228 		pp->p_szc = szc;
1229 	}
1230 	pp = rootpp;
1231 	for (i = 0; i < pages; i++, pp++) {
1232 		if (ppa == NULL) {
1233 			page_unlock(pp);
1234 		} else {
1235 			ppa[i] = pp;
1236 			page_downgrade(ppa[i]);
1237 		}
1238 	}
1239 	if (ppa != NULL) {
1240 		ppa[pages] = NULL;
1241 	}
1242 	VM_STAT_ADD(page_exphcontg[18]);
1243 	ASSERT(vp->v_pages != NULL);
1244 	return (1);
1245 }
1246 
1247 /*
1248  * Determine whether a page with the specified [vp, off]
1249  * currently exists in the system and if so return its
1250  * size code. Obviously this should only be considered as
1251  * a hint since nothing prevents the page from disappearing
1252  * or appearing immediately after the return from this routine.
1253  */
1254 int
1255 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1256 {
1257 	page_t		*pp;
1258 	kmutex_t	*phm;
1259 	ulong_t		index;
1260 	int		rc = 0;
1261 
1262 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1263 	ASSERT(szc != NULL);
1264 	VM_STAT_ADD(page_exists_forreal_cnt);
1265 
1266 	index = PAGE_HASH_FUNC(vp, off);
1267 	phm = PAGE_HASH_MUTEX(index);
1268 
1269 	mutex_enter(phm);
1270 	PAGE_HASH_SEARCH(index, pp, vp, off);
1271 	if (pp != NULL) {
1272 		*szc = pp->p_szc;
1273 		rc = 1;
1274 	}
1275 	mutex_exit(phm);
1276 	return (rc);
1277 }
1278 
1279 /* wakeup threads waiting for pages in page_create_get_something() */
1280 void
1281 wakeup_pcgs(void)
1282 {
1283 	if (!CV_HAS_WAITERS(&pcgs_cv))
1284 		return;
1285 	cv_broadcast(&pcgs_cv);
1286 }
1287 
1288 /*
1289  * 'freemem' is used all over the kernel as an indication of how many
1290  * pages are free (either on the cache list or on the free page list)
1291  * in the system.  In very few places is a really accurate 'freemem'
1292  * needed.  To avoid contention of the lock protecting a the
1293  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1294  * sets freemem to the total of all NCPU buckets.  It is called from
1295  * clock() on each TICK.
1296  */
1297 void
1298 set_freemem()
1299 {
1300 	struct pcf	*p;
1301 	ulong_t		t;
1302 	uint_t		i;
1303 
1304 	t = 0;
1305 	p = pcf;
1306 	for (i = 0;  i < PCF_FANOUT; i++) {
1307 		t += p->pcf_count;
1308 		p++;
1309 	}
1310 	freemem = t;
1311 
1312 	/*
1313 	 * Don't worry about grabbing mutex.  It's not that
1314 	 * critical if we miss a tick or two.  This is
1315 	 * where we wakeup possible delayers in
1316 	 * page_create_get_something().
1317 	 */
1318 	wakeup_pcgs();
1319 }
1320 
1321 ulong_t
1322 get_freemem()
1323 {
1324 	struct pcf	*p;
1325 	ulong_t		t;
1326 	uint_t		i;
1327 
1328 	t = 0;
1329 	p = pcf;
1330 	for (i = 0; i < PCF_FANOUT; i++) {
1331 		t += p->pcf_count;
1332 		p++;
1333 	}
1334 	/*
1335 	 * We just calculated it, might as well set it.
1336 	 */
1337 	freemem = t;
1338 	return (t);
1339 }
1340 
1341 /*
1342  * Acquire all of the page cache & free (pcf) locks.
1343  */
1344 void
1345 pcf_acquire_all()
1346 {
1347 	struct pcf	*p;
1348 	uint_t		i;
1349 
1350 	p = pcf;
1351 	for (i = 0; i < PCF_FANOUT; i++) {
1352 		mutex_enter(&p->pcf_lock);
1353 		p++;
1354 	}
1355 }
1356 
1357 /*
1358  * Release all the pcf_locks.
1359  */
1360 void
1361 pcf_release_all()
1362 {
1363 	struct pcf	*p;
1364 	uint_t		i;
1365 
1366 	p = pcf;
1367 	for (i = 0; i < PCF_FANOUT; i++) {
1368 		mutex_exit(&p->pcf_lock);
1369 		p++;
1370 	}
1371 }
1372 
1373 /*
1374  * Inform the VM system that we need some pages freed up.
1375  * Calls must be symmetric, e.g.:
1376  *
1377  *	page_needfree(100);
1378  *	wait a bit;
1379  *	page_needfree(-100);
1380  */
1381 void
1382 page_needfree(spgcnt_t npages)
1383 {
1384 	mutex_enter(&new_freemem_lock);
1385 	needfree += npages;
1386 	mutex_exit(&new_freemem_lock);
1387 }
1388 
1389 /*
1390  * Throttle for page_create(): try to prevent freemem from dropping
1391  * below throttlefree.  We can't provide a 100% guarantee because
1392  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1393  * nibble away at the freelist.  However, we can block all PG_WAIT
1394  * allocations until memory becomes available.  The motivation is
1395  * that several things can fall apart when there's no free memory:
1396  *
1397  * (1) If pageout() needs memory to push a page, the system deadlocks.
1398  *
1399  * (2) By (broken) specification, timeout(9F) can neither fail nor
1400  *     block, so it has no choice but to panic the system if it
1401  *     cannot allocate a callout structure.
1402  *
1403  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1404  *     it panics if it cannot allocate a callback structure.
1405  *
1406  * (4) Untold numbers of third-party drivers have not yet been hardened
1407  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1408  *     success and panic the system with a data fault on failure.
1409  *     (The long-term solution to this particular problem is to ship
1410  *     hostile fault-injecting DEBUG kernels with the DDK.)
1411  *
1412  * It is theoretically impossible to guarantee success of non-blocking
1413  * allocations, but in practice, this throttle is very hard to break.
1414  */
1415 static int
1416 page_create_throttle(pgcnt_t npages, int flags)
1417 {
1418 	ulong_t	fm;
1419 	uint_t	i;
1420 	pgcnt_t tf;	/* effective value of throttlefree */
1421 
1422 	/*
1423 	 * Never deny pages when:
1424 	 * - it's a thread that cannot block [NOMEMWAIT()]
1425 	 * - the allocation cannot block and must not fail
1426 	 * - the allocation cannot block and is pageout dispensated
1427 	 */
1428 	if (NOMEMWAIT() ||
1429 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1430 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1431 		return (1);
1432 
1433 	/*
1434 	 * If the allocation can't block, we look favorably upon it
1435 	 * unless we're below pageout_reserve.  In that case we fail
1436 	 * the allocation because we want to make sure there are a few
1437 	 * pages available for pageout.
1438 	 */
1439 	if ((flags & PG_WAIT) == 0)
1440 		return (freemem >= npages + pageout_reserve);
1441 
1442 	/* Calculate the effective throttlefree value */
1443 	tf = throttlefree -
1444 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1445 
1446 	cv_signal(&proc_pageout->p_cv);
1447 
1448 	while (freemem < npages + tf) {
1449 		pcf_acquire_all();
1450 		mutex_enter(&new_freemem_lock);
1451 		fm = 0;
1452 		for (i = 0; i < PCF_FANOUT; i++) {
1453 			fm += pcf[i].pcf_count;
1454 			pcf[i].pcf_wait++;
1455 			mutex_exit(&pcf[i].pcf_lock);
1456 		}
1457 		freemem = fm;
1458 		needfree += npages;
1459 		freemem_wait++;
1460 		cv_wait(&freemem_cv, &new_freemem_lock);
1461 		freemem_wait--;
1462 		needfree -= npages;
1463 		mutex_exit(&new_freemem_lock);
1464 	}
1465 	return (1);
1466 }
1467 
1468 /*
1469  * page_create_wait() is called to either coalecse pages from the
1470  * different pcf buckets or to wait because there simply are not
1471  * enough pages to satisfy the caller's request.
1472  *
1473  * Sadly, this is called from platform/vm/vm_machdep.c
1474  */
1475 int
1476 page_create_wait(size_t npages, uint_t flags)
1477 {
1478 	pgcnt_t		total;
1479 	uint_t		i;
1480 	struct pcf	*p;
1481 
1482 	/*
1483 	 * Wait until there are enough free pages to satisfy our
1484 	 * entire request.
1485 	 * We set needfree += npages before prodding pageout, to make sure
1486 	 * it does real work when npages > lotsfree > freemem.
1487 	 */
1488 	VM_STAT_ADD(page_create_not_enough);
1489 
1490 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1491 checkagain:
1492 	if ((flags & PG_NORELOC) &&
1493 	    kcage_freemem < kcage_throttlefree + npages)
1494 		(void) kcage_create_throttle(npages, flags);
1495 
1496 	if (freemem < npages + throttlefree)
1497 		if (!page_create_throttle(npages, flags))
1498 			return (0);
1499 
1500 	/*
1501 	 * Since page_create_va() looked at every
1502 	 * bucket, assume we are going to have to wait.
1503 	 * Get all of the pcf locks.
1504 	 */
1505 	total = 0;
1506 	p = pcf;
1507 	for (i = 0; i < PCF_FANOUT; i++) {
1508 		mutex_enter(&p->pcf_lock);
1509 		total += p->pcf_count;
1510 		if (total >= npages) {
1511 			/*
1512 			 * Wow!  There are enough pages laying around
1513 			 * to satisfy the request.  Do the accounting,
1514 			 * drop the locks we acquired, and go back.
1515 			 *
1516 			 * freemem is not protected by any lock. So,
1517 			 * we cannot have any assertion containing
1518 			 * freemem.
1519 			 */
1520 			freemem -= npages;
1521 
1522 			while (p >= pcf) {
1523 				if (p->pcf_count <= npages) {
1524 					npages -= p->pcf_count;
1525 					p->pcf_count = 0;
1526 				} else {
1527 					p->pcf_count -= (uint_t)npages;
1528 					npages = 0;
1529 				}
1530 				mutex_exit(&p->pcf_lock);
1531 				p--;
1532 			}
1533 			ASSERT(npages == 0);
1534 			return (1);
1535 		}
1536 		p++;
1537 	}
1538 
1539 	/*
1540 	 * All of the pcf locks are held, there are not enough pages
1541 	 * to satisfy the request (npages < total).
1542 	 * Be sure to acquire the new_freemem_lock before dropping
1543 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1544 	 * The order is always pcf_lock then new_freemem_lock.
1545 	 *
1546 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1547 	 *
1548 	 * If the caller does not want to wait, return now.
1549 	 * Else turn the pageout daemon loose to find something
1550 	 * and wait till it does.
1551 	 *
1552 	 */
1553 	freemem = total;
1554 
1555 	if ((flags & PG_WAIT) == 0) {
1556 		pcf_release_all();
1557 
1558 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1559 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1560 		return (0);
1561 	}
1562 
1563 	ASSERT(proc_pageout != NULL);
1564 	cv_signal(&proc_pageout->p_cv);
1565 
1566 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1567 	    "page_create_sleep_start: freemem %ld needfree %ld",
1568 	    freemem, needfree);
1569 
1570 	/*
1571 	 * We are going to wait.
1572 	 * We currently hold all of the pcf_locks,
1573 	 * get the new_freemem_lock (it protects freemem_wait),
1574 	 * before dropping the pcf_locks.
1575 	 */
1576 	mutex_enter(&new_freemem_lock);
1577 
1578 	p = pcf;
1579 	for (i = 0; i < PCF_FANOUT; i++) {
1580 		p->pcf_wait++;
1581 		mutex_exit(&p->pcf_lock);
1582 		p++;
1583 	}
1584 
1585 	needfree += npages;
1586 	freemem_wait++;
1587 
1588 	cv_wait(&freemem_cv, &new_freemem_lock);
1589 
1590 	freemem_wait--;
1591 	needfree -= npages;
1592 
1593 	mutex_exit(&new_freemem_lock);
1594 
1595 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1596 	    "page_create_sleep_end: freemem %ld needfree %ld",
1597 	    freemem, needfree);
1598 
1599 	VM_STAT_ADD(page_create_not_enough_again);
1600 	goto checkagain;
1601 }
1602 
1603 /*
1604  * A routine to do the opposite of page_create_wait().
1605  */
1606 void
1607 page_create_putback(spgcnt_t npages)
1608 {
1609 	struct pcf	*p;
1610 	pgcnt_t		lump;
1611 	uint_t		*which;
1612 
1613 	/*
1614 	 * When a contiguous lump is broken up, we have to
1615 	 * deal with lots of pages (min 64) so lets spread
1616 	 * the wealth around.
1617 	 */
1618 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
1619 	freemem += npages;
1620 
1621 	for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) {
1622 		which = &p->pcf_count;
1623 
1624 		mutex_enter(&p->pcf_lock);
1625 
1626 		if (p->pcf_block) {
1627 			which = &p->pcf_reserve;
1628 		}
1629 
1630 		if (lump < npages) {
1631 			*which += (uint_t)lump;
1632 			npages -= lump;
1633 		} else {
1634 			*which += (uint_t)npages;
1635 			npages = 0;
1636 		}
1637 
1638 		if (p->pcf_wait) {
1639 			mutex_enter(&new_freemem_lock);
1640 			/*
1641 			 * Check to see if some other thread
1642 			 * is actually waiting.  Another bucket
1643 			 * may have woken it up by now.  If there
1644 			 * are no waiters, then set our pcf_wait
1645 			 * count to zero to avoid coming in here
1646 			 * next time.
1647 			 */
1648 			if (freemem_wait) {
1649 				if (npages > 1) {
1650 					cv_broadcast(&freemem_cv);
1651 				} else {
1652 					cv_signal(&freemem_cv);
1653 				}
1654 				p->pcf_wait--;
1655 			} else {
1656 				p->pcf_wait = 0;
1657 			}
1658 			mutex_exit(&new_freemem_lock);
1659 		}
1660 		mutex_exit(&p->pcf_lock);
1661 	}
1662 	ASSERT(npages == 0);
1663 }
1664 
1665 /*
1666  * A helper routine for page_create_get_something.
1667  * The indenting got to deep down there.
1668  * Unblock the pcf counters.  Any pages freed after
1669  * pcf_block got set are moved to pcf_count and
1670  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1671  */
1672 static void
1673 pcgs_unblock(void)
1674 {
1675 	int		i;
1676 	struct pcf	*p;
1677 
1678 	/* Update freemem while we're here. */
1679 	freemem = 0;
1680 	p = pcf;
1681 	for (i = 0; i < PCF_FANOUT; i++) {
1682 		mutex_enter(&p->pcf_lock);
1683 		ASSERT(p->pcf_count == 0);
1684 		p->pcf_count = p->pcf_reserve;
1685 		p->pcf_block = 0;
1686 		freemem += p->pcf_count;
1687 		if (p->pcf_wait) {
1688 			mutex_enter(&new_freemem_lock);
1689 			if (freemem_wait) {
1690 				if (p->pcf_reserve > 1) {
1691 					cv_broadcast(&freemem_cv);
1692 					p->pcf_wait = 0;
1693 				} else {
1694 					cv_signal(&freemem_cv);
1695 					p->pcf_wait--;
1696 				}
1697 			} else {
1698 				p->pcf_wait = 0;
1699 			}
1700 			mutex_exit(&new_freemem_lock);
1701 		}
1702 		p->pcf_reserve = 0;
1703 		mutex_exit(&p->pcf_lock);
1704 		p++;
1705 	}
1706 }
1707 
1708 /*
1709  * Called from page_create_va() when both the cache and free lists
1710  * have been checked once.
1711  *
1712  * Either returns a page or panics since the accounting was done
1713  * way before we got here.
1714  *
1715  * We don't come here often, so leave the accounting on permanently.
1716  */
1717 
1718 #define	MAX_PCGS	100
1719 
1720 #ifdef	DEBUG
1721 #define	PCGS_TRIES	100
1722 #else	/* DEBUG */
1723 #define	PCGS_TRIES	10
1724 #endif	/* DEBUG */
1725 
1726 #ifdef	VM_STATS
1727 uint_t	pcgs_counts[PCGS_TRIES];
1728 uint_t	pcgs_too_many;
1729 uint_t	pcgs_entered;
1730 uint_t	pcgs_entered_noreloc;
1731 uint_t	pcgs_locked;
1732 uint_t	pcgs_cagelocked;
1733 #endif	/* VM_STATS */
1734 
1735 static page_t *
1736 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1737     caddr_t vaddr, uint_t flags)
1738 {
1739 	uint_t		count;
1740 	page_t		*pp;
1741 	uint_t		locked, i;
1742 	struct	pcf	*p;
1743 	lgrp_t		*lgrp;
1744 	int		cagelocked = 0;
1745 
1746 	VM_STAT_ADD(pcgs_entered);
1747 
1748 	/*
1749 	 * Tap any reserve freelists: if we fail now, we'll die
1750 	 * since the page(s) we're looking for have already been
1751 	 * accounted for.
1752 	 */
1753 	flags |= PG_PANIC;
1754 
1755 	if ((flags & PG_NORELOC) != 0) {
1756 		VM_STAT_ADD(pcgs_entered_noreloc);
1757 		/*
1758 		 * Requests for free pages from critical threads
1759 		 * such as pageout still won't throttle here, but
1760 		 * we must try again, to give the cageout thread
1761 		 * another chance to catch up. Since we already
1762 		 * accounted for the pages, we had better get them
1763 		 * this time.
1764 		 *
1765 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1766 		 * to serialize access to the freelists. This implements a
1767 		 * turnstile-type synchornization to avoid starvation of
1768 		 * critical requests for PG_NORELOC memory by non-critical
1769 		 * threads: all non-critical threads must acquire a 'ticket'
1770 		 * before passing through, which entails making sure
1771 		 * kcage_freemem won't fall below minfree prior to grabbing
1772 		 * pages from the freelists.
1773 		 */
1774 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1775 			mutex_enter(&pcgs_cagelock);
1776 			cagelocked = 1;
1777 			VM_STAT_ADD(pcgs_cagelocked);
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Time to get serious.
1783 	 * We failed to get a `correctly colored' page from both the
1784 	 * free and cache lists.
1785 	 * We escalate in stage.
1786 	 *
1787 	 * First try both lists without worring about color.
1788 	 *
1789 	 * Then, grab all page accounting locks (ie. pcf[]) and
1790 	 * steal any pages that they have and set the pcf_block flag to
1791 	 * stop deletions from the lists.  This will help because
1792 	 * a page can get added to the free list while we are looking
1793 	 * at the cache list, then another page could be added to the cache
1794 	 * list allowing the page on the free list to be removed as we
1795 	 * move from looking at the cache list to the free list. This
1796 	 * could happen over and over. We would never find the page
1797 	 * we have accounted for.
1798 	 *
1799 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1800 	 * They are not tracked separately in the pcf bins, so it is
1801 	 * impossible to know when doing pcf accounting if the available
1802 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1803 	 * it is quite easy to end up here even if the global (relocatable)
1804 	 * page pool has plenty of free pages but the noreloc pool is empty.
1805 	 *
1806 	 * When the noreloc pool is empty (or low), additional noreloc pages
1807 	 * are created by converting pages from the global page pool. This
1808 	 * process will stall during pcf accounting if the pcf bins are
1809 	 * already locked. Such is the case when a noreloc allocation is
1810 	 * looping here in page_create_get_something waiting for more noreloc
1811 	 * pages to appear.
1812 	 *
1813 	 * Short of adding a new field to the pcf bins to accurately track
1814 	 * the number of free noreloc pages, we instead do not grab the
1815 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1816 	 * allocating a noreloc page. This allows noreloc allocations to
1817 	 * loop without blocking global page pool allocations.
1818 	 *
1819 	 * NOTE: the behaviour of page_create_get_something has not changed
1820 	 * for the case of global page pool allocations.
1821 	 */
1822 
1823 	flags &= ~PG_MATCH_COLOR;
1824 	locked = 0;
1825 #if defined(__i386) || defined(__amd64)
1826 	/*
1827 	 * page_create_get_something may be called because 4g memory may be
1828 	 * depleted. Set flags to allow for relocation of base page below
1829 	 * 4g if necessary.
1830 	 */
1831 	if (physmax4g)
1832 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1833 #endif
1834 
1835 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1836 
1837 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1838 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1839 		    flags, lgrp);
1840 		if (pp == NULL) {
1841 			pp = page_get_cachelist(vp, off, seg, vaddr,
1842 			    flags, lgrp);
1843 		}
1844 		if (pp == NULL) {
1845 			/*
1846 			 * Serialize.  Don't fight with other pcgs().
1847 			 */
1848 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1849 				mutex_enter(&pcgs_lock);
1850 				VM_STAT_ADD(pcgs_locked);
1851 				locked = 1;
1852 				p = pcf;
1853 				for (i = 0; i < PCF_FANOUT; i++) {
1854 					mutex_enter(&p->pcf_lock);
1855 					ASSERT(p->pcf_block == 0);
1856 					p->pcf_block = 1;
1857 					p->pcf_reserve = p->pcf_count;
1858 					p->pcf_count = 0;
1859 					mutex_exit(&p->pcf_lock);
1860 					p++;
1861 				}
1862 				freemem = 0;
1863 			}
1864 
1865 			if (count) {
1866 				/*
1867 				 * Since page_free() puts pages on
1868 				 * a list then accounts for it, we
1869 				 * just have to wait for page_free()
1870 				 * to unlock any page it was working
1871 				 * with. The page_lock()-page_reclaim()
1872 				 * path falls in the same boat.
1873 				 *
1874 				 * We don't need to check on the
1875 				 * PG_WAIT flag, we have already
1876 				 * accounted for the page we are
1877 				 * looking for in page_create_va().
1878 				 *
1879 				 * We just wait a moment to let any
1880 				 * locked pages on the lists free up,
1881 				 * then continue around and try again.
1882 				 *
1883 				 * Will be awakened by set_freemem().
1884 				 */
1885 				mutex_enter(&pcgs_wait_lock);
1886 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1887 				mutex_exit(&pcgs_wait_lock);
1888 			}
1889 		} else {
1890 #ifdef VM_STATS
1891 			if (count >= PCGS_TRIES) {
1892 				VM_STAT_ADD(pcgs_too_many);
1893 			} else {
1894 				VM_STAT_ADD(pcgs_counts[count]);
1895 			}
1896 #endif
1897 			if (locked) {
1898 				pcgs_unblock();
1899 				mutex_exit(&pcgs_lock);
1900 			}
1901 			if (cagelocked)
1902 				mutex_exit(&pcgs_cagelock);
1903 			return (pp);
1904 		}
1905 	}
1906 	/*
1907 	 * we go down holding the pcf locks.
1908 	 */
1909 	panic("no %spage found %d",
1910 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1911 	/*NOTREACHED*/
1912 }
1913 
1914 /*
1915  * Create enough pages for "bytes" worth of data starting at
1916  * "off" in "vp".
1917  *
1918  *	Where flag must be one of:
1919  *
1920  *		PG_EXCL:	Exclusive create (fail if any page already
1921  *				exists in the page cache) which does not
1922  *				wait for memory to become available.
1923  *
1924  *		PG_WAIT:	Non-exclusive create which can wait for
1925  *				memory to become available.
1926  *
1927  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1928  *				(Not Supported)
1929  *
1930  * A doubly linked list of pages is returned to the caller.  Each page
1931  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1932  * lock.
1933  *
1934  * Unable to change the parameters to page_create() in a minor release,
1935  * we renamed page_create() to page_create_va(), changed all known calls
1936  * from page_create() to page_create_va(), and created this wrapper.
1937  *
1938  * Upon a major release, we should break compatibility by deleting this
1939  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1940  *
1941  * NOTE: There is a copy of this interface as page_create_io() in
1942  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1943  *	 there.
1944  */
1945 page_t *
1946 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1947 {
1948 	caddr_t random_vaddr;
1949 	struct seg kseg;
1950 
1951 #ifdef DEBUG
1952 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1953 	    (void *)caller());
1954 #endif
1955 
1956 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1957 	    (uintptr_t)(off >> PAGESHIFT));
1958 	kseg.s_as = &kas;
1959 
1960 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1961 }
1962 
1963 #ifdef DEBUG
1964 uint32_t pg_alloc_pgs_mtbf = 0;
1965 #endif
1966 
1967 /*
1968  * Used for large page support. It will attempt to allocate
1969  * a large page(s) off the freelist.
1970  *
1971  * Returns non zero on failure.
1972  */
1973 int
1974 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1975     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz)
1976 {
1977 	pgcnt_t		npgs, curnpgs, totpgs;
1978 	size_t		pgsz;
1979 	page_t		*pplist = NULL, *pp;
1980 	int		err = 0;
1981 	lgrp_t		*lgrp;
1982 
1983 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1984 
1985 	VM_STAT_ADD(alloc_pages[0]);
1986 
1987 #ifdef DEBUG
1988 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
1989 		return (ENOMEM);
1990 	}
1991 #endif
1992 
1993 	pgsz = page_get_pagesize(szc);
1994 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
1995 
1996 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
1997 	/*
1998 	 * One must be NULL but not both.
1999 	 * And one must be non NULL but not both.
2000 	 */
2001 	ASSERT(basepp != NULL || ppa != NULL);
2002 	ASSERT(basepp == NULL || ppa == NULL);
2003 
2004 	(void) page_create_wait(npgs, PG_WAIT);
2005 
2006 	while (npgs && szc) {
2007 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2008 		pp = page_get_freelist(vp, 0, seg, addr, pgsz, 0, lgrp);
2009 		if (pp != NULL) {
2010 			VM_STAT_ADD(alloc_pages[1]);
2011 			page_list_concat(&pplist, &pp);
2012 			ASSERT(npgs >= curnpgs);
2013 			npgs -= curnpgs;
2014 		} else if (anypgsz) {
2015 			VM_STAT_ADD(alloc_pages[2]);
2016 			szc--;
2017 			pgsz = page_get_pagesize(szc);
2018 			curnpgs = pgsz >> PAGESHIFT;
2019 		} else {
2020 			VM_STAT_ADD(alloc_pages[3]);
2021 			ASSERT(npgs == totpgs);
2022 			page_create_putback(npgs);
2023 			return (ENOMEM);
2024 		}
2025 	}
2026 	if (szc == 0) {
2027 		VM_STAT_ADD(alloc_pages[4]);
2028 		ASSERT(npgs != 0);
2029 		page_create_putback(npgs);
2030 		err = ENOMEM;
2031 	} else if (basepp != NULL) {
2032 		ASSERT(npgs == 0);
2033 		ASSERT(ppa == NULL);
2034 		*basepp = pplist;
2035 	}
2036 
2037 	npgs = totpgs - npgs;
2038 	pp = pplist;
2039 
2040 	/*
2041 	 * Clear the free and age bits. Also if we were passed in a ppa then
2042 	 * fill it in with all the constituent pages from the large page. But
2043 	 * if we failed to allocate all the pages just free what we got.
2044 	 */
2045 	while (npgs != 0) {
2046 		ASSERT(PP_ISFREE(pp));
2047 		ASSERT(PP_ISAGED(pp));
2048 		if (ppa != NULL || err != 0) {
2049 			if (err == 0) {
2050 				VM_STAT_ADD(alloc_pages[5]);
2051 				PP_CLRFREE(pp);
2052 				PP_CLRAGED(pp);
2053 				page_sub(&pplist, pp);
2054 				*ppa++ = pp;
2055 				npgs--;
2056 			} else {
2057 				VM_STAT_ADD(alloc_pages[6]);
2058 				ASSERT(pp->p_szc != 0);
2059 				curnpgs = page_get_pagecnt(pp->p_szc);
2060 				page_list_break(&pp, &pplist, curnpgs);
2061 				page_list_add_pages(pp, 0);
2062 				page_create_putback(curnpgs);
2063 				ASSERT(npgs >= curnpgs);
2064 				npgs -= curnpgs;
2065 			}
2066 			pp = pplist;
2067 		} else {
2068 			VM_STAT_ADD(alloc_pages[7]);
2069 			PP_CLRFREE(pp);
2070 			PP_CLRAGED(pp);
2071 			pp = pp->p_next;
2072 			npgs--;
2073 		}
2074 	}
2075 	return (err);
2076 }
2077 
2078 /*
2079  * Get a single large page off of the freelists, and set it up for use.
2080  * Number of bytes requested must be a supported page size.
2081  *
2082  * Note that this call may fail even if there is sufficient
2083  * memory available or PG_WAIT is set, so the caller must
2084  * be willing to fallback on page_create_va(), block and retry,
2085  * or fail the requester.
2086  */
2087 page_t *
2088 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2089     struct seg *seg, caddr_t vaddr, void *arg)
2090 {
2091 	pgcnt_t		npages, pcftotal;
2092 	page_t		*pp;
2093 	page_t		*rootpp;
2094 	lgrp_t		*lgrp;
2095 	uint_t		enough;
2096 	uint_t		pcf_index;
2097 	uint_t		i;
2098 	struct pcf	*p;
2099 	struct pcf	*q;
2100 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2101 
2102 	ASSERT(vp != NULL);
2103 
2104 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2105 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2106 	/* but no others */
2107 
2108 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2109 
2110 	npages = btop(bytes);
2111 
2112 	if (!kcage_on || panicstr) {
2113 		/*
2114 		 * Cage is OFF, or we are single threaded in
2115 		 * panic, so make everything a RELOC request.
2116 		 */
2117 		flags &= ~PG_NORELOC;
2118 	}
2119 
2120 	/*
2121 	 * Make sure there's adequate physical memory available.
2122 	 * Note: PG_WAIT is ignored here.
2123 	 */
2124 	if (freemem <= throttlefree + npages) {
2125 		VM_STAT_ADD(page_create_large_cnt[1]);
2126 		return (NULL);
2127 	}
2128 
2129 	/*
2130 	 * If cage is on, dampen draw from cage when available
2131 	 * cage space is low.
2132 	 */
2133 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2134 	    kcage_freemem < kcage_throttlefree + npages) {
2135 
2136 		/*
2137 		 * The cage is on, the caller wants PG_NORELOC
2138 		 * pages and available cage memory is very low.
2139 		 * Call kcage_create_throttle() to attempt to
2140 		 * control demand on the cage.
2141 		 */
2142 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2143 			VM_STAT_ADD(page_create_large_cnt[2]);
2144 			return (NULL);
2145 		}
2146 	}
2147 
2148 	enough = 0;
2149 	pcf_index = PCF_INDEX();
2150 	p = &pcf[pcf_index];
2151 	q = &pcf[PCF_FANOUT];
2152 	for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2153 		if (p->pcf_count > npages) {
2154 			/*
2155 			 * a good one to try.
2156 			 */
2157 			mutex_enter(&p->pcf_lock);
2158 			if (p->pcf_count > npages) {
2159 				p->pcf_count -= (uint_t)npages;
2160 				/*
2161 				 * freemem is not protected by any lock.
2162 				 * Thus, we cannot have any assertion
2163 				 * containing freemem here.
2164 				 */
2165 				freemem -= npages;
2166 				enough = 1;
2167 				mutex_exit(&p->pcf_lock);
2168 				break;
2169 			}
2170 			mutex_exit(&p->pcf_lock);
2171 		}
2172 		pcftotal += p->pcf_count;
2173 		p++;
2174 		if (p >= q) {
2175 			p = pcf;
2176 		}
2177 	}
2178 
2179 	if (!enough) {
2180 		/* If there isn't enough memory available, give up. */
2181 		if (pcftotal < npages) {
2182 			VM_STAT_ADD(page_create_large_cnt[3]);
2183 			return (NULL);
2184 		}
2185 
2186 		/* try to collect pages from several pcf bins */
2187 		for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2188 			mutex_enter(&p->pcf_lock);
2189 			pcftotal += p->pcf_count;
2190 			if (pcftotal >= npages) {
2191 				/*
2192 				 * Wow!  There are enough pages laying around
2193 				 * to satisfy the request.  Do the accounting,
2194 				 * drop the locks we acquired, and go back.
2195 				 *
2196 				 * freemem is not protected by any lock. So,
2197 				 * we cannot have any assertion containing
2198 				 * freemem.
2199 				 */
2200 				pgcnt_t	tpages = npages;
2201 				freemem -= npages;
2202 				while (p >= pcf) {
2203 					if (p->pcf_count <= tpages) {
2204 						tpages -= p->pcf_count;
2205 						p->pcf_count = 0;
2206 					} else {
2207 						p->pcf_count -= (uint_t)tpages;
2208 						tpages = 0;
2209 					}
2210 					mutex_exit(&p->pcf_lock);
2211 					p--;
2212 				}
2213 				ASSERT(tpages == 0);
2214 				break;
2215 			}
2216 			p++;
2217 		}
2218 		if (i == PCF_FANOUT) {
2219 			/* failed to collect pages - release the locks */
2220 			while (--p >= pcf) {
2221 				mutex_exit(&p->pcf_lock);
2222 			}
2223 			VM_STAT_ADD(page_create_large_cnt[4]);
2224 			return (NULL);
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * This is where this function behaves fundamentally differently
2230 	 * than page_create_va(); since we're intending to map the page
2231 	 * with a single TTE, we have to get it as a physically contiguous
2232 	 * hardware pagesize chunk.  If we can't, we fail.
2233 	 */
2234 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2235 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2236 		lgrp = lgrp_table[*lgrpid];
2237 	else
2238 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2239 
2240 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2241 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2242 		page_create_putback(npages);
2243 		VM_STAT_ADD(page_create_large_cnt[5]);
2244 		return (NULL);
2245 	}
2246 
2247 	/*
2248 	 * if we got the page with the wrong mtype give it back this is a
2249 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2250 	 * inside "if" and the workaround becomes just a nop
2251 	 */
2252 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2253 		page_list_add_pages(rootpp, 0);
2254 		page_create_putback(npages);
2255 		VM_STAT_ADD(page_create_large_cnt[6]);
2256 		return (NULL);
2257 	}
2258 
2259 	/*
2260 	 * If satisfying this request has left us with too little
2261 	 * memory, start the wheels turning to get some back.  The
2262 	 * first clause of the test prevents waking up the pageout
2263 	 * daemon in situations where it would decide that there's
2264 	 * nothing to do.
2265 	 */
2266 	if (nscan < desscan && freemem < minfree) {
2267 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2268 		    "pageout_cv_signal:freemem %ld", freemem);
2269 		cv_signal(&proc_pageout->p_cv);
2270 	}
2271 
2272 	pp = rootpp;
2273 	while (npages--) {
2274 		ASSERT(PAGE_EXCL(pp));
2275 		ASSERT(pp->p_vnode == NULL);
2276 		ASSERT(!hat_page_is_mapped(pp));
2277 		PP_CLRFREE(pp);
2278 		PP_CLRAGED(pp);
2279 		if (!page_hashin(pp, vp, off, NULL))
2280 			panic("page_create_large: hashin failed: page %p",
2281 			    (void *)pp);
2282 		page_io_lock(pp);
2283 		off += PAGESIZE;
2284 		pp = pp->p_next;
2285 	}
2286 
2287 	VM_STAT_ADD(page_create_large_cnt[0]);
2288 	return (rootpp);
2289 }
2290 
2291 page_t *
2292 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2293     struct seg *seg, caddr_t vaddr)
2294 {
2295 	page_t		*plist = NULL;
2296 	pgcnt_t		npages;
2297 	pgcnt_t		found_on_free = 0;
2298 	pgcnt_t		pages_req;
2299 	page_t		*npp = NULL;
2300 	uint_t		enough;
2301 	uint_t		i;
2302 	uint_t		pcf_index;
2303 	struct pcf	*p;
2304 	struct pcf	*q;
2305 	lgrp_t		*lgrp;
2306 
2307 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2308 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2309 	    vp, off, bytes, flags);
2310 
2311 	ASSERT(bytes != 0 && vp != NULL);
2312 
2313 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2314 		panic("page_create: invalid flags");
2315 		/*NOTREACHED*/
2316 	}
2317 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2318 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2319 	    /* but no others */
2320 
2321 	pages_req = npages = btopr(bytes);
2322 	/*
2323 	 * Try to see whether request is too large to *ever* be
2324 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2325 	 * decide to limit maximum size requests to max_page_get.
2326 	 */
2327 	if (npages >= max_page_get) {
2328 		if ((flags & PG_WAIT) == 0) {
2329 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2330 			    "page_create_toobig:vp %p off %llx npages "
2331 			    "%lu max_page_get %lu",
2332 			    vp, off, npages, max_page_get);
2333 			return (NULL);
2334 		} else {
2335 			cmn_err(CE_WARN,
2336 			    "Request for too much kernel memory "
2337 			    "(%lu bytes), will hang forever", bytes);
2338 			for (;;)
2339 				delay(1000000000);
2340 		}
2341 	}
2342 
2343 	if (!kcage_on || panicstr) {
2344 		/*
2345 		 * Cage is OFF, or we are single threaded in
2346 		 * panic, so make everything a RELOC request.
2347 		 */
2348 		flags &= ~PG_NORELOC;
2349 	}
2350 
2351 	if (freemem <= throttlefree + npages)
2352 		if (!page_create_throttle(npages, flags))
2353 			return (NULL);
2354 
2355 	/*
2356 	 * If cage is on, dampen draw from cage when available
2357 	 * cage space is low.
2358 	 */
2359 	if ((flags & PG_NORELOC) &&
2360 	    kcage_freemem < kcage_throttlefree + npages) {
2361 
2362 		/*
2363 		 * The cage is on, the caller wants PG_NORELOC
2364 		 * pages and available cage memory is very low.
2365 		 * Call kcage_create_throttle() to attempt to
2366 		 * control demand on the cage.
2367 		 */
2368 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2369 			return (NULL);
2370 	}
2371 
2372 	VM_STAT_ADD(page_create_cnt[0]);
2373 
2374 	enough = 0;
2375 	pcf_index = PCF_INDEX();
2376 
2377 	p = &pcf[pcf_index];
2378 	q = &pcf[PCF_FANOUT];
2379 	for (i = 0; i < PCF_FANOUT; i++) {
2380 		if (p->pcf_count > npages) {
2381 			/*
2382 			 * a good one to try.
2383 			 */
2384 			mutex_enter(&p->pcf_lock);
2385 			if (p->pcf_count > npages) {
2386 				p->pcf_count -= (uint_t)npages;
2387 				/*
2388 				 * freemem is not protected by any lock.
2389 				 * Thus, we cannot have any assertion
2390 				 * containing freemem here.
2391 				 */
2392 				freemem -= npages;
2393 				enough = 1;
2394 				mutex_exit(&p->pcf_lock);
2395 				break;
2396 			}
2397 			mutex_exit(&p->pcf_lock);
2398 		}
2399 		p++;
2400 		if (p >= q) {
2401 			p = pcf;
2402 		}
2403 	}
2404 
2405 	if (!enough) {
2406 		/*
2407 		 * Have to look harder.  If npages is greater than
2408 		 * one, then we might have to coalecse the counters.
2409 		 *
2410 		 * Go wait.  We come back having accounted
2411 		 * for the memory.
2412 		 */
2413 		VM_STAT_ADD(page_create_cnt[1]);
2414 		if (!page_create_wait(npages, flags)) {
2415 			VM_STAT_ADD(page_create_cnt[2]);
2416 			return (NULL);
2417 		}
2418 	}
2419 
2420 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2421 	    "page_create_success:vp %p off %llx", vp, off);
2422 
2423 	/*
2424 	 * If satisfying this request has left us with too little
2425 	 * memory, start the wheels turning to get some back.  The
2426 	 * first clause of the test prevents waking up the pageout
2427 	 * daemon in situations where it would decide that there's
2428 	 * nothing to do.
2429 	 */
2430 	if (nscan < desscan && freemem < minfree) {
2431 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2432 		    "pageout_cv_signal:freemem %ld", freemem);
2433 		cv_signal(&proc_pageout->p_cv);
2434 	}
2435 
2436 	/*
2437 	 * Loop around collecting the requested number of pages.
2438 	 * Most of the time, we have to `create' a new page. With
2439 	 * this in mind, pull the page off the free list before
2440 	 * getting the hash lock.  This will minimize the hash
2441 	 * lock hold time, nesting, and the like.  If it turns
2442 	 * out we don't need the page, we put it back at the end.
2443 	 */
2444 	while (npages--) {
2445 		page_t		*pp;
2446 		kmutex_t	*phm = NULL;
2447 		ulong_t		index;
2448 
2449 		index = PAGE_HASH_FUNC(vp, off);
2450 top:
2451 		ASSERT(phm == NULL);
2452 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2453 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2454 
2455 		if (npp == NULL) {
2456 			/*
2457 			 * Try to get a page from the freelist (ie,
2458 			 * a page with no [vp, off] tag).  If that
2459 			 * fails, use the cachelist.
2460 			 *
2461 			 * During the first attempt at both the free
2462 			 * and cache lists we try for the correct color.
2463 			 */
2464 			/*
2465 			 * XXXX-how do we deal with virtual indexed
2466 			 * caches and and colors?
2467 			 */
2468 			VM_STAT_ADD(page_create_cnt[4]);
2469 			/*
2470 			 * Get lgroup to allocate next page of shared memory
2471 			 * from and use it to specify where to allocate
2472 			 * the physical memory
2473 			 */
2474 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2475 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2476 			    flags | PG_MATCH_COLOR, lgrp);
2477 			if (npp == NULL) {
2478 				npp = page_get_cachelist(vp, off, seg,
2479 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2480 				if (npp == NULL) {
2481 					npp = page_create_get_something(vp,
2482 					    off, seg, vaddr,
2483 					    flags & ~PG_MATCH_COLOR);
2484 				}
2485 
2486 				if (PP_ISAGED(npp) == 0) {
2487 					/*
2488 					 * Since this page came from the
2489 					 * cachelist, we must destroy the
2490 					 * old vnode association.
2491 					 */
2492 					page_hashout(npp, NULL);
2493 				}
2494 			}
2495 		}
2496 
2497 		/*
2498 		 * We own this page!
2499 		 */
2500 		ASSERT(PAGE_EXCL(npp));
2501 		ASSERT(npp->p_vnode == NULL);
2502 		ASSERT(!hat_page_is_mapped(npp));
2503 		PP_CLRFREE(npp);
2504 		PP_CLRAGED(npp);
2505 
2506 		/*
2507 		 * Here we have a page in our hot little mits and are
2508 		 * just waiting to stuff it on the appropriate lists.
2509 		 * Get the mutex and check to see if it really does
2510 		 * not exist.
2511 		 */
2512 		phm = PAGE_HASH_MUTEX(index);
2513 		mutex_enter(phm);
2514 		PAGE_HASH_SEARCH(index, pp, vp, off);
2515 		if (pp == NULL) {
2516 			VM_STAT_ADD(page_create_new);
2517 			pp = npp;
2518 			npp = NULL;
2519 			if (!page_hashin(pp, vp, off, phm)) {
2520 				/*
2521 				 * Since we hold the page hash mutex and
2522 				 * just searched for this page, page_hashin
2523 				 * had better not fail.  If it does, that
2524 				 * means somethread did not follow the
2525 				 * page hash mutex rules.  Panic now and
2526 				 * get it over with.  As usual, go down
2527 				 * holding all the locks.
2528 				 */
2529 				ASSERT(MUTEX_HELD(phm));
2530 				panic("page_create: "
2531 				    "hashin failed %p %p %llx %p",
2532 				    (void *)pp, (void *)vp, off, (void *)phm);
2533 				/*NOTREACHED*/
2534 			}
2535 			ASSERT(MUTEX_HELD(phm));
2536 			mutex_exit(phm);
2537 			phm = NULL;
2538 
2539 			/*
2540 			 * Hat layer locking need not be done to set
2541 			 * the following bits since the page is not hashed
2542 			 * and was on the free list (i.e., had no mappings).
2543 			 *
2544 			 * Set the reference bit to protect
2545 			 * against immediate pageout
2546 			 *
2547 			 * XXXmh modify freelist code to set reference
2548 			 * bit so we don't have to do it here.
2549 			 */
2550 			page_set_props(pp, P_REF);
2551 			found_on_free++;
2552 		} else {
2553 			VM_STAT_ADD(page_create_exists);
2554 			if (flags & PG_EXCL) {
2555 				/*
2556 				 * Found an existing page, and the caller
2557 				 * wanted all new pages.  Undo all of the work
2558 				 * we have done.
2559 				 */
2560 				mutex_exit(phm);
2561 				phm = NULL;
2562 				while (plist != NULL) {
2563 					pp = plist;
2564 					page_sub(&plist, pp);
2565 					page_io_unlock(pp);
2566 					/* large pages should not end up here */
2567 					ASSERT(pp->p_szc == 0);
2568 					/*LINTED: constant in conditional ctx*/
2569 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2570 				}
2571 				VM_STAT_ADD(page_create_found_one);
2572 				goto fail;
2573 			}
2574 			ASSERT(flags & PG_WAIT);
2575 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2576 				/*
2577 				 * Start all over again if we blocked trying
2578 				 * to lock the page.
2579 				 */
2580 				mutex_exit(phm);
2581 				VM_STAT_ADD(page_create_page_lock_failed);
2582 				phm = NULL;
2583 				goto top;
2584 			}
2585 			mutex_exit(phm);
2586 			phm = NULL;
2587 
2588 			if (PP_ISFREE(pp)) {
2589 				ASSERT(PP_ISAGED(pp) == 0);
2590 				VM_STAT_ADD(pagecnt.pc_get_cache);
2591 				page_list_sub(pp, PG_CACHE_LIST);
2592 				PP_CLRFREE(pp);
2593 				found_on_free++;
2594 			}
2595 		}
2596 
2597 		/*
2598 		 * Got a page!  It is locked.  Acquire the i/o
2599 		 * lock since we are going to use the p_next and
2600 		 * p_prev fields to link the requested pages together.
2601 		 */
2602 		page_io_lock(pp);
2603 		page_add(&plist, pp);
2604 		plist = plist->p_next;
2605 		off += PAGESIZE;
2606 		vaddr += PAGESIZE;
2607 	}
2608 
2609 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2610 fail:
2611 	if (npp != NULL) {
2612 		/*
2613 		 * Did not need this page after all.
2614 		 * Put it back on the free list.
2615 		 */
2616 		VM_STAT_ADD(page_create_putbacks);
2617 		PP_SETFREE(npp);
2618 		PP_SETAGED(npp);
2619 		npp->p_offset = (u_offset_t)-1;
2620 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2621 		page_unlock(npp);
2622 
2623 	}
2624 
2625 	ASSERT(pages_req >= found_on_free);
2626 
2627 	{
2628 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2629 
2630 		if (overshoot) {
2631 			VM_STAT_ADD(page_create_overshoot);
2632 			p = &pcf[pcf_index];
2633 			mutex_enter(&p->pcf_lock);
2634 			if (p->pcf_block) {
2635 				p->pcf_reserve += overshoot;
2636 			} else {
2637 				p->pcf_count += overshoot;
2638 				if (p->pcf_wait) {
2639 					mutex_enter(&new_freemem_lock);
2640 					if (freemem_wait) {
2641 						cv_signal(&freemem_cv);
2642 						p->pcf_wait--;
2643 					} else {
2644 						p->pcf_wait = 0;
2645 					}
2646 					mutex_exit(&new_freemem_lock);
2647 				}
2648 			}
2649 			mutex_exit(&p->pcf_lock);
2650 			/* freemem is approximate, so this test OK */
2651 			if (!p->pcf_block)
2652 				freemem += overshoot;
2653 		}
2654 	}
2655 
2656 	return (plist);
2657 }
2658 
2659 /*
2660  * One or more constituent pages of this large page has been marked
2661  * toxic. Simply demote the large page to PAGESIZE pages and let
2662  * page_free() handle it. This routine should only be called by
2663  * large page free routines (page_free_pages() and page_destroy_pages().
2664  * All pages are locked SE_EXCL and have already been marked free.
2665  */
2666 static void
2667 page_free_toxic_pages(page_t *rootpp)
2668 {
2669 	page_t	*tpp;
2670 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2671 	uint_t	szc = rootpp->p_szc;
2672 
2673 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2674 		ASSERT(tpp->p_szc == szc);
2675 		ASSERT((PAGE_EXCL(tpp) &&
2676 		    !page_iolock_assert(tpp)) || panicstr);
2677 		tpp->p_szc = 0;
2678 	}
2679 
2680 	while (rootpp != NULL) {
2681 		tpp = rootpp;
2682 		page_sub(&rootpp, tpp);
2683 		ASSERT(PP_ISFREE(tpp));
2684 		PP_CLRFREE(tpp);
2685 		page_free(tpp, 1);
2686 	}
2687 }
2688 
2689 /*
2690  * Put page on the "free" list.
2691  * The free list is really two lists maintained by
2692  * the PSM of whatever machine we happen to be on.
2693  */
2694 void
2695 page_free(page_t *pp, int dontneed)
2696 {
2697 	struct pcf	*p;
2698 	uint_t		pcf_index;
2699 
2700 	ASSERT((PAGE_EXCL(pp) &&
2701 	    !page_iolock_assert(pp)) || panicstr);
2702 
2703 	if (PP_ISFREE(pp)) {
2704 		panic("page_free: page %p is free", (void *)pp);
2705 	}
2706 
2707 	if (pp->p_szc != 0) {
2708 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2709 		    PP_ISKAS(pp)) {
2710 			panic("page_free: anon or kernel "
2711 			    "or no vnode large page %p", (void *)pp);
2712 		}
2713 		page_demote_vp_pages(pp);
2714 		ASSERT(pp->p_szc == 0);
2715 	}
2716 
2717 	/*
2718 	 * The page_struct_lock need not be acquired to examine these
2719 	 * fields since the page has an "exclusive" lock.
2720 	 */
2721 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2722 	    pp->p_slckcnt != 0) {
2723 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2724 		    "slckcnt = %d", pp, page_pptonum(pp), pp->p_lckcnt,
2725 		    pp->p_cowcnt, pp->p_slckcnt);
2726 		/*NOTREACHED*/
2727 	}
2728 
2729 	ASSERT(!hat_page_getshare(pp));
2730 
2731 	PP_SETFREE(pp);
2732 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2733 	    !hat_ismod(pp));
2734 	page_clr_all_props(pp);
2735 	ASSERT(!hat_page_getshare(pp));
2736 
2737 	/*
2738 	 * Now we add the page to the head of the free list.
2739 	 * But if this page is associated with a paged vnode
2740 	 * then we adjust the head forward so that the page is
2741 	 * effectively at the end of the list.
2742 	 */
2743 	if (pp->p_vnode == NULL) {
2744 		/*
2745 		 * Page has no identity, put it on the free list.
2746 		 */
2747 		PP_SETAGED(pp);
2748 		pp->p_offset = (u_offset_t)-1;
2749 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2750 		VM_STAT_ADD(pagecnt.pc_free_free);
2751 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2752 		    "page_free_free:pp %p", pp);
2753 	} else {
2754 		PP_CLRAGED(pp);
2755 
2756 		if (!dontneed || nopageage) {
2757 			/* move it to the tail of the list */
2758 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2759 
2760 			VM_STAT_ADD(pagecnt.pc_free_cache);
2761 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2762 			    "page_free_cache_tail:pp %p", pp);
2763 		} else {
2764 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2765 
2766 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2767 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2768 			    "page_free_cache_head:pp %p", pp);
2769 		}
2770 	}
2771 	page_unlock(pp);
2772 
2773 	/*
2774 	 * Now do the `freemem' accounting.
2775 	 */
2776 	pcf_index = PCF_INDEX();
2777 	p = &pcf[pcf_index];
2778 
2779 	mutex_enter(&p->pcf_lock);
2780 	if (p->pcf_block) {
2781 		p->pcf_reserve += 1;
2782 	} else {
2783 		p->pcf_count += 1;
2784 		if (p->pcf_wait) {
2785 			mutex_enter(&new_freemem_lock);
2786 			/*
2787 			 * Check to see if some other thread
2788 			 * is actually waiting.  Another bucket
2789 			 * may have woken it up by now.  If there
2790 			 * are no waiters, then set our pcf_wait
2791 			 * count to zero to avoid coming in here
2792 			 * next time.  Also, since only one page
2793 			 * was put on the free list, just wake
2794 			 * up one waiter.
2795 			 */
2796 			if (freemem_wait) {
2797 				cv_signal(&freemem_cv);
2798 				p->pcf_wait--;
2799 			} else {
2800 				p->pcf_wait = 0;
2801 			}
2802 			mutex_exit(&new_freemem_lock);
2803 		}
2804 	}
2805 	mutex_exit(&p->pcf_lock);
2806 
2807 	/* freemem is approximate, so this test OK */
2808 	if (!p->pcf_block)
2809 		freemem += 1;
2810 }
2811 
2812 /*
2813  * Put page on the "free" list during intial startup.
2814  * This happens during initial single threaded execution.
2815  */
2816 void
2817 page_free_at_startup(page_t *pp)
2818 {
2819 	struct pcf	*p;
2820 	uint_t		pcf_index;
2821 
2822 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2823 	VM_STAT_ADD(pagecnt.pc_free_free);
2824 
2825 	/*
2826 	 * Now do the `freemem' accounting.
2827 	 */
2828 	pcf_index = PCF_INDEX();
2829 	p = &pcf[pcf_index];
2830 
2831 	ASSERT(p->pcf_block == 0);
2832 	ASSERT(p->pcf_wait == 0);
2833 	p->pcf_count += 1;
2834 
2835 	/* freemem is approximate, so this is OK */
2836 	freemem += 1;
2837 }
2838 
2839 void
2840 page_free_pages(page_t *pp)
2841 {
2842 	page_t	*tpp, *rootpp = NULL;
2843 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2844 	pgcnt_t	i;
2845 	uint_t	szc = pp->p_szc;
2846 
2847 	VM_STAT_ADD(pagecnt.pc_free_pages);
2848 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2849 	    "page_free_free:pp %p", pp);
2850 
2851 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2852 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2853 		panic("page_free_pages: not root page %p", (void *)pp);
2854 		/*NOTREACHED*/
2855 	}
2856 
2857 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2858 		ASSERT((PAGE_EXCL(tpp) &&
2859 		    !page_iolock_assert(tpp)) || panicstr);
2860 		if (PP_ISFREE(tpp)) {
2861 			panic("page_free_pages: page %p is free", (void *)tpp);
2862 			/*NOTREACHED*/
2863 		}
2864 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2865 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2866 			panic("page_free_pages %p", (void *)tpp);
2867 			/*NOTREACHED*/
2868 		}
2869 
2870 		ASSERT(!hat_page_getshare(tpp));
2871 		ASSERT(tpp->p_vnode == NULL);
2872 		ASSERT(tpp->p_szc == szc);
2873 
2874 		PP_SETFREE(tpp);
2875 		page_clr_all_props(tpp);
2876 		PP_SETAGED(tpp);
2877 		tpp->p_offset = (u_offset_t)-1;
2878 		ASSERT(tpp->p_next == tpp);
2879 		ASSERT(tpp->p_prev == tpp);
2880 		page_list_concat(&rootpp, &tpp);
2881 	}
2882 	ASSERT(rootpp == pp);
2883 
2884 	page_list_add_pages(rootpp, 0);
2885 	page_create_putback(pgcnt);
2886 }
2887 
2888 int free_pages = 1;
2889 
2890 /*
2891  * This routine attempts to return pages to the cachelist via page_release().
2892  * It does not *have* to be successful in all cases, since the pageout scanner
2893  * will catch any pages it misses.  It does need to be fast and not introduce
2894  * too much overhead.
2895  *
2896  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2897  * don't lock and retry.  This is ok, since the page scanner will eventually
2898  * find any page we miss in free_vp_pages().
2899  */
2900 void
2901 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2902 {
2903 	page_t *pp;
2904 	u_offset_t eoff;
2905 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2906 
2907 	eoff = off + len;
2908 
2909 	if (free_pages == 0)
2910 		return;
2911 	if (swap_in_range(vp, off, len))
2912 		return;
2913 
2914 	for (; off < eoff; off += PAGESIZE) {
2915 
2916 		/*
2917 		 * find the page using a fast, but inexact search. It'll be OK
2918 		 * if a few pages slip through the cracks here.
2919 		 */
2920 		pp = page_exists(vp, off);
2921 
2922 		/*
2923 		 * If we didn't find the page (it may not exist), the page
2924 		 * is free, looks still in use (shared), or we can't lock it,
2925 		 * just give up.
2926 		 */
2927 		if (pp == NULL ||
2928 		    PP_ISFREE(pp) ||
2929 		    page_share_cnt(pp) > 0 ||
2930 		    !page_trylock(pp, SE_EXCL))
2931 			continue;
2932 
2933 		/*
2934 		 * Once we have locked pp, verify that it's still the
2935 		 * correct page and not already free
2936 		 */
2937 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2938 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2939 			page_unlock(pp);
2940 			continue;
2941 		}
2942 
2943 		/*
2944 		 * try to release the page...
2945 		 */
2946 		(void) page_release(pp, 1);
2947 	}
2948 }
2949 
2950 /*
2951  * Reclaim the given page from the free list.
2952  * If pp is part of a large pages, only the given constituent page is reclaimed
2953  * and the large page it belonged to will be demoted.  This can only happen
2954  * if the page is not on the cachelist.
2955  *
2956  * Returns 1 on success or 0 on failure.
2957  *
2958  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2959  * If `lock' is non-null, it will be dropped and re-acquired if
2960  * the routine must wait while freemem is 0.
2961  *
2962  * As it turns out, boot_getpages() does this.  It picks a page,
2963  * based on where OBP mapped in some address, gets its pfn, searches
2964  * the memsegs, locks the page, then pulls it off the free list!
2965  */
2966 int
2967 page_reclaim(page_t *pp, kmutex_t *lock)
2968 {
2969 	struct pcf	*p;
2970 	uint_t		pcf_index;
2971 	struct cpu	*cpup;
2972 	int		enough;
2973 	uint_t		i;
2974 
2975 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2976 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2977 
2978 	/*
2979 	 * If `freemem' is 0, we cannot reclaim this page from the
2980 	 * freelist, so release every lock we might hold: the page,
2981 	 * and the `lock' before blocking.
2982 	 *
2983 	 * The only way `freemem' can become 0 while there are pages
2984 	 * marked free (have their p->p_free bit set) is when the
2985 	 * system is low on memory and doing a page_create().  In
2986 	 * order to guarantee that once page_create() starts acquiring
2987 	 * pages it will be able to get all that it needs since `freemem'
2988 	 * was decreased by the requested amount.  So, we need to release
2989 	 * this page, and let page_create() have it.
2990 	 *
2991 	 * Since `freemem' being zero is not supposed to happen, just
2992 	 * use the usual hash stuff as a starting point.  If that bucket
2993 	 * is empty, then assume the worst, and start at the beginning
2994 	 * of the pcf array.  If we always start at the beginning
2995 	 * when acquiring more than one pcf lock, there won't be any
2996 	 * deadlock problems.
2997 	 */
2998 
2999 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
3000 
3001 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
3002 		pcf_acquire_all();
3003 		goto page_reclaim_nomem;
3004 	}
3005 
3006 	enough = 0;
3007 	pcf_index = PCF_INDEX();
3008 	p = &pcf[pcf_index];
3009 	mutex_enter(&p->pcf_lock);
3010 	if (p->pcf_count >= 1) {
3011 		enough = 1;
3012 		p->pcf_count--;
3013 	}
3014 	mutex_exit(&p->pcf_lock);
3015 
3016 	if (!enough) {
3017 		VM_STAT_ADD(page_reclaim_zero);
3018 		/*
3019 		 * Check again. Its possible that some other thread
3020 		 * could have been right behind us, and added one
3021 		 * to a list somewhere.  Acquire each of the pcf locks
3022 		 * until we find a page.
3023 		 */
3024 		p = pcf;
3025 		for (i = 0; i < PCF_FANOUT; i++) {
3026 			mutex_enter(&p->pcf_lock);
3027 			if (p->pcf_count >= 1) {
3028 				p->pcf_count -= 1;
3029 				enough = 1;
3030 				break;
3031 			}
3032 			p++;
3033 		}
3034 
3035 		if (!enough) {
3036 page_reclaim_nomem:
3037 			/*
3038 			 * We really can't have page `pp'.
3039 			 * Time for the no-memory dance with
3040 			 * page_free().  This is just like
3041 			 * page_create_wait().  Plus the added
3042 			 * attraction of releasing whatever mutex
3043 			 * we held when we were called with in `lock'.
3044 			 * Page_unlock() will wakeup any thread
3045 			 * waiting around for this page.
3046 			 */
3047 			if (lock) {
3048 				VM_STAT_ADD(page_reclaim_zero_locked);
3049 				mutex_exit(lock);
3050 			}
3051 			page_unlock(pp);
3052 
3053 			/*
3054 			 * get this before we drop all the pcf locks.
3055 			 */
3056 			mutex_enter(&new_freemem_lock);
3057 
3058 			p = pcf;
3059 			for (i = 0; i < PCF_FANOUT; i++) {
3060 				p->pcf_wait++;
3061 				mutex_exit(&p->pcf_lock);
3062 				p++;
3063 			}
3064 
3065 			freemem_wait++;
3066 			cv_wait(&freemem_cv, &new_freemem_lock);
3067 			freemem_wait--;
3068 
3069 			mutex_exit(&new_freemem_lock);
3070 
3071 			if (lock) {
3072 				mutex_enter(lock);
3073 			}
3074 			return (0);
3075 		}
3076 
3077 		/*
3078 		 * The pcf accounting has been done,
3079 		 * though none of the pcf_wait flags have been set,
3080 		 * drop the locks and continue on.
3081 		 */
3082 		while (p >= pcf) {
3083 			mutex_exit(&p->pcf_lock);
3084 			p--;
3085 		}
3086 	}
3087 
3088 	/*
3089 	 * freemem is not protected by any lock. Thus, we cannot
3090 	 * have any assertion containing freemem here.
3091 	 */
3092 	freemem -= 1;
3093 
3094 	VM_STAT_ADD(pagecnt.pc_reclaim);
3095 
3096 	/*
3097 	 * page_list_sub will handle the case where pp is a large page.
3098 	 * It's possible that the page was promoted while on the freelist
3099 	 */
3100 	if (PP_ISAGED(pp)) {
3101 		page_list_sub(pp, PG_FREE_LIST);
3102 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3103 		    "page_reclaim_free:pp %p", pp);
3104 	} else {
3105 		page_list_sub(pp, PG_CACHE_LIST);
3106 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3107 		    "page_reclaim_cache:pp %p", pp);
3108 	}
3109 
3110 	/*
3111 	 * clear the p_free & p_age bits since this page is no longer
3112 	 * on the free list.  Notice that there was a brief time where
3113 	 * a page is marked as free, but is not on the list.
3114 	 *
3115 	 * Set the reference bit to protect against immediate pageout.
3116 	 */
3117 	PP_CLRFREE(pp);
3118 	PP_CLRAGED(pp);
3119 	page_set_props(pp, P_REF);
3120 
3121 	CPU_STATS_ENTER_K();
3122 	cpup = CPU;	/* get cpup now that CPU cannot change */
3123 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3124 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3125 	CPU_STATS_EXIT_K();
3126 	ASSERT(pp->p_szc == 0);
3127 
3128 	return (1);
3129 }
3130 
3131 /*
3132  * Destroy identity of the page and put it back on
3133  * the page free list.  Assumes that the caller has
3134  * acquired the "exclusive" lock on the page.
3135  */
3136 void
3137 page_destroy(page_t *pp, int dontfree)
3138 {
3139 	ASSERT((PAGE_EXCL(pp) &&
3140 	    !page_iolock_assert(pp)) || panicstr);
3141 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3142 
3143 	if (pp->p_szc != 0) {
3144 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3145 		    PP_ISKAS(pp)) {
3146 			panic("page_destroy: anon or kernel or no vnode "
3147 			    "large page %p", (void *)pp);
3148 		}
3149 		page_demote_vp_pages(pp);
3150 		ASSERT(pp->p_szc == 0);
3151 	}
3152 
3153 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3154 
3155 	/*
3156 	 * Unload translations, if any, then hash out the
3157 	 * page to erase its identity.
3158 	 */
3159 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3160 	page_hashout(pp, NULL);
3161 
3162 	if (!dontfree) {
3163 		/*
3164 		 * Acquire the "freemem_lock" for availrmem.
3165 		 * The page_struct_lock need not be acquired for lckcnt
3166 		 * and cowcnt since the page has an "exclusive" lock.
3167 		 */
3168 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3169 			mutex_enter(&freemem_lock);
3170 			if (pp->p_lckcnt != 0) {
3171 				availrmem++;
3172 				pp->p_lckcnt = 0;
3173 			}
3174 			if (pp->p_cowcnt != 0) {
3175 				availrmem += pp->p_cowcnt;
3176 				pp->p_cowcnt = 0;
3177 			}
3178 			mutex_exit(&freemem_lock);
3179 		}
3180 		/*
3181 		 * Put the page on the "free" list.
3182 		 */
3183 		page_free(pp, 0);
3184 	}
3185 }
3186 
3187 void
3188 page_destroy_pages(page_t *pp)
3189 {
3190 
3191 	page_t	*tpp, *rootpp = NULL;
3192 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3193 	pgcnt_t	i, pglcks = 0;
3194 	uint_t	szc = pp->p_szc;
3195 
3196 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3197 
3198 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3199 
3200 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3201 
3202 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3203 		panic("page_destroy_pages: not root page %p", (void *)pp);
3204 		/*NOTREACHED*/
3205 	}
3206 
3207 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3208 		ASSERT((PAGE_EXCL(tpp) &&
3209 		    !page_iolock_assert(tpp)) || panicstr);
3210 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3211 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3212 		page_hashout(tpp, NULL);
3213 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3214 		if (tpp->p_lckcnt != 0) {
3215 			pglcks++;
3216 			tpp->p_lckcnt = 0;
3217 		} else if (tpp->p_cowcnt != 0) {
3218 			pglcks += tpp->p_cowcnt;
3219 			tpp->p_cowcnt = 0;
3220 		}
3221 		ASSERT(!hat_page_getshare(tpp));
3222 		ASSERT(tpp->p_vnode == NULL);
3223 		ASSERT(tpp->p_szc == szc);
3224 
3225 		PP_SETFREE(tpp);
3226 		page_clr_all_props(tpp);
3227 		PP_SETAGED(tpp);
3228 		ASSERT(tpp->p_next == tpp);
3229 		ASSERT(tpp->p_prev == tpp);
3230 		page_list_concat(&rootpp, &tpp);
3231 	}
3232 
3233 	ASSERT(rootpp == pp);
3234 	if (pglcks != 0) {
3235 		mutex_enter(&freemem_lock);
3236 		availrmem += pglcks;
3237 		mutex_exit(&freemem_lock);
3238 	}
3239 
3240 	page_list_add_pages(rootpp, 0);
3241 	page_create_putback(pgcnt);
3242 }
3243 
3244 /*
3245  * Similar to page_destroy(), but destroys pages which are
3246  * locked and known to be on the page free list.  Since
3247  * the page is known to be free and locked, no one can access
3248  * it.
3249  *
3250  * Also, the number of free pages does not change.
3251  */
3252 void
3253 page_destroy_free(page_t *pp)
3254 {
3255 	ASSERT(PAGE_EXCL(pp));
3256 	ASSERT(PP_ISFREE(pp));
3257 	ASSERT(pp->p_vnode);
3258 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3259 	ASSERT(!hat_page_is_mapped(pp));
3260 	ASSERT(PP_ISAGED(pp) == 0);
3261 	ASSERT(pp->p_szc == 0);
3262 
3263 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3264 	page_list_sub(pp, PG_CACHE_LIST);
3265 
3266 	page_hashout(pp, NULL);
3267 	ASSERT(pp->p_vnode == NULL);
3268 	ASSERT(pp->p_offset == (u_offset_t)-1);
3269 	ASSERT(pp->p_hash == NULL);
3270 
3271 	PP_SETAGED(pp);
3272 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3273 	page_unlock(pp);
3274 
3275 	mutex_enter(&new_freemem_lock);
3276 	if (freemem_wait) {
3277 		cv_signal(&freemem_cv);
3278 	}
3279 	mutex_exit(&new_freemem_lock);
3280 }
3281 
3282 /*
3283  * Rename the page "opp" to have an identity specified
3284  * by [vp, off].  If a page already exists with this name
3285  * it is locked and destroyed.  Note that the page's
3286  * translations are not unloaded during the rename.
3287  *
3288  * This routine is used by the anon layer to "steal" the
3289  * original page and is not unlike destroying a page and
3290  * creating a new page using the same page frame.
3291  *
3292  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3293  * caller 2 tries to rename B to A.
3294  */
3295 void
3296 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3297 {
3298 	page_t		*pp;
3299 	int		olckcnt = 0;
3300 	int		ocowcnt = 0;
3301 	kmutex_t	*phm;
3302 	ulong_t		index;
3303 
3304 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3305 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3306 	ASSERT(PP_ISFREE(opp) == 0);
3307 
3308 	VM_STAT_ADD(page_rename_count);
3309 
3310 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3311 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3312 
3313 	/*
3314 	 * CacheFS may call page_rename for a large NFS page
3315 	 * when both CacheFS and NFS mount points are used
3316 	 * by applications. Demote this large page before
3317 	 * renaming it, to ensure that there are no "partial"
3318 	 * large pages left lying around.
3319 	 */
3320 	if (opp->p_szc != 0) {
3321 		vnode_t *ovp = opp->p_vnode;
3322 		ASSERT(ovp != NULL);
3323 		ASSERT(!IS_SWAPFSVP(ovp));
3324 		ASSERT(!VN_ISKAS(ovp));
3325 		page_demote_vp_pages(opp);
3326 		ASSERT(opp->p_szc == 0);
3327 	}
3328 
3329 	page_hashout(opp, NULL);
3330 	PP_CLRAGED(opp);
3331 
3332 	/*
3333 	 * Acquire the appropriate page hash lock, since
3334 	 * we're going to rename the page.
3335 	 */
3336 	index = PAGE_HASH_FUNC(vp, off);
3337 	phm = PAGE_HASH_MUTEX(index);
3338 	mutex_enter(phm);
3339 top:
3340 	/*
3341 	 * Look for an existing page with this name and destroy it if found.
3342 	 * By holding the page hash lock all the way to the page_hashin()
3343 	 * call, we are assured that no page can be created with this
3344 	 * identity.  In the case when the phm lock is dropped to undo any
3345 	 * hat layer mappings, the existing page is held with an "exclusive"
3346 	 * lock, again preventing another page from being created with
3347 	 * this identity.
3348 	 */
3349 	PAGE_HASH_SEARCH(index, pp, vp, off);
3350 	if (pp != NULL) {
3351 		VM_STAT_ADD(page_rename_exists);
3352 
3353 		/*
3354 		 * As it turns out, this is one of only two places where
3355 		 * page_lock() needs to hold the passed in lock in the
3356 		 * successful case.  In all of the others, the lock could
3357 		 * be dropped as soon as the attempt is made to lock
3358 		 * the page.  It is tempting to add yet another arguement,
3359 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3360 		 */
3361 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3362 			/*
3363 			 * Went to sleep because the page could not
3364 			 * be locked.  We were woken up when the page
3365 			 * was unlocked, or when the page was destroyed.
3366 			 * In either case, `phm' was dropped while we
3367 			 * slept.  Hence we should not just roar through
3368 			 * this loop.
3369 			 */
3370 			goto top;
3371 		}
3372 
3373 		/*
3374 		 * If an existing page is a large page, then demote
3375 		 * it to ensure that no "partial" large pages are
3376 		 * "created" after page_rename. An existing page
3377 		 * can be a CacheFS page, and can't belong to swapfs.
3378 		 */
3379 		if (hat_page_is_mapped(pp)) {
3380 			/*
3381 			 * Unload translations.  Since we hold the
3382 			 * exclusive lock on this page, the page
3383 			 * can not be changed while we drop phm.
3384 			 * This is also not a lock protocol violation,
3385 			 * but rather the proper way to do things.
3386 			 */
3387 			mutex_exit(phm);
3388 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3389 			if (pp->p_szc != 0) {
3390 				ASSERT(!IS_SWAPFSVP(vp));
3391 				ASSERT(!VN_ISKAS(vp));
3392 				page_demote_vp_pages(pp);
3393 				ASSERT(pp->p_szc == 0);
3394 			}
3395 			mutex_enter(phm);
3396 		} else if (pp->p_szc != 0) {
3397 			ASSERT(!IS_SWAPFSVP(vp));
3398 			ASSERT(!VN_ISKAS(vp));
3399 			mutex_exit(phm);
3400 			page_demote_vp_pages(pp);
3401 			ASSERT(pp->p_szc == 0);
3402 			mutex_enter(phm);
3403 		}
3404 		page_hashout(pp, phm);
3405 	}
3406 	/*
3407 	 * Hash in the page with the new identity.
3408 	 */
3409 	if (!page_hashin(opp, vp, off, phm)) {
3410 		/*
3411 		 * We were holding phm while we searched for [vp, off]
3412 		 * and only dropped phm if we found and locked a page.
3413 		 * If we can't create this page now, then some thing
3414 		 * is really broken.
3415 		 */
3416 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3417 		/*NOTREACHED*/
3418 	}
3419 
3420 	ASSERT(MUTEX_HELD(phm));
3421 	mutex_exit(phm);
3422 
3423 	/*
3424 	 * Now that we have dropped phm, lets get around to finishing up
3425 	 * with pp.
3426 	 */
3427 	if (pp != NULL) {
3428 		ASSERT(!hat_page_is_mapped(pp));
3429 		/* for now large pages should not end up here */
3430 		ASSERT(pp->p_szc == 0);
3431 		/*
3432 		 * Save the locks for transfer to the new page and then
3433 		 * clear them so page_free doesn't think they're important.
3434 		 * The page_struct_lock need not be acquired for lckcnt and
3435 		 * cowcnt since the page has an "exclusive" lock.
3436 		 */
3437 		olckcnt = pp->p_lckcnt;
3438 		ocowcnt = pp->p_cowcnt;
3439 		pp->p_lckcnt = pp->p_cowcnt = 0;
3440 
3441 		/*
3442 		 * Put the page on the "free" list after we drop
3443 		 * the lock.  The less work under the lock the better.
3444 		 */
3445 		/*LINTED: constant in conditional context*/
3446 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3447 	}
3448 
3449 	/*
3450 	 * Transfer the lock count from the old page (if any).
3451 	 * The page_struct_lock need not be acquired for lckcnt and
3452 	 * cowcnt since the page has an "exclusive" lock.
3453 	 */
3454 	opp->p_lckcnt += olckcnt;
3455 	opp->p_cowcnt += ocowcnt;
3456 }
3457 
3458 /*
3459  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3460  *
3461  * Pages are normally inserted at the start of a vnode's v_pages list.
3462  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3463  * This can happen when a modified page is relocated for DR.
3464  *
3465  * Returns 1 on success and 0 on failure.
3466  */
3467 static int
3468 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3469 {
3470 	page_t		**listp;
3471 	page_t		*tp;
3472 	ulong_t		index;
3473 
3474 	ASSERT(PAGE_EXCL(pp));
3475 	ASSERT(vp != NULL);
3476 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3477 
3478 	/*
3479 	 * Be sure to set these up before the page is inserted on the hash
3480 	 * list.  As soon as the page is placed on the list some other
3481 	 * thread might get confused and wonder how this page could
3482 	 * possibly hash to this list.
3483 	 */
3484 	pp->p_vnode = vp;
3485 	pp->p_offset = offset;
3486 
3487 	/*
3488 	 * record if this page is on a swap vnode
3489 	 */
3490 	if ((vp->v_flag & VISSWAP) != 0)
3491 		PP_SETSWAP(pp);
3492 
3493 	index = PAGE_HASH_FUNC(vp, offset);
3494 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3495 	listp = &page_hash[index];
3496 
3497 	/*
3498 	 * If this page is already hashed in, fail this attempt to add it.
3499 	 */
3500 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3501 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3502 			pp->p_vnode = NULL;
3503 			pp->p_offset = (u_offset_t)(-1);
3504 			return (0);
3505 		}
3506 	}
3507 	pp->p_hash = *listp;
3508 	*listp = pp;
3509 
3510 	/*
3511 	 * Add the page to the vnode's list of pages
3512 	 */
3513 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3514 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3515 	else
3516 		listp = &vp->v_pages;
3517 
3518 	page_vpadd(listp, pp);
3519 
3520 	return (1);
3521 }
3522 
3523 /*
3524  * Add page `pp' to both the hash and vp chains for [vp, offset].
3525  *
3526  * Returns 1 on success and 0 on failure.
3527  * If hold is passed in, it is not dropped.
3528  */
3529 int
3530 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3531 {
3532 	kmutex_t	*phm = NULL;
3533 	kmutex_t	*vphm;
3534 	int		rc;
3535 
3536 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3537 
3538 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3539 	    "page_hashin:pp %p vp %p offset %llx",
3540 	    pp, vp, offset);
3541 
3542 	VM_STAT_ADD(hashin_count);
3543 
3544 	if (hold != NULL)
3545 		phm = hold;
3546 	else {
3547 		VM_STAT_ADD(hashin_not_held);
3548 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3549 		mutex_enter(phm);
3550 	}
3551 
3552 	vphm = page_vnode_mutex(vp);
3553 	mutex_enter(vphm);
3554 	rc = page_do_hashin(pp, vp, offset);
3555 	mutex_exit(vphm);
3556 	if (hold == NULL)
3557 		mutex_exit(phm);
3558 	if (rc == 0)
3559 		VM_STAT_ADD(hashin_already);
3560 	return (rc);
3561 }
3562 
3563 /*
3564  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3565  * All mutexes must be held
3566  */
3567 static void
3568 page_do_hashout(page_t *pp)
3569 {
3570 	page_t	**hpp;
3571 	page_t	*hp;
3572 	vnode_t	*vp = pp->p_vnode;
3573 
3574 	ASSERT(vp != NULL);
3575 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3576 
3577 	/*
3578 	 * First, take pp off of its hash chain.
3579 	 */
3580 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3581 
3582 	for (;;) {
3583 		hp = *hpp;
3584 		if (hp == pp)
3585 			break;
3586 		if (hp == NULL) {
3587 			panic("page_do_hashout");
3588 			/*NOTREACHED*/
3589 		}
3590 		hpp = &hp->p_hash;
3591 	}
3592 	*hpp = pp->p_hash;
3593 
3594 	/*
3595 	 * Now remove it from its associated vnode.
3596 	 */
3597 	if (vp->v_pages)
3598 		page_vpsub(&vp->v_pages, pp);
3599 
3600 	pp->p_hash = NULL;
3601 	page_clr_all_props(pp);
3602 	PP_CLRSWAP(pp);
3603 	pp->p_vnode = NULL;
3604 	pp->p_offset = (u_offset_t)-1;
3605 }
3606 
3607 /*
3608  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3609  *
3610  * When `phm' is non-NULL it contains the address of the mutex protecting the
3611  * hash list pp is on.  It is not dropped.
3612  */
3613 void
3614 page_hashout(page_t *pp, kmutex_t *phm)
3615 {
3616 	vnode_t		*vp;
3617 	ulong_t		index;
3618 	kmutex_t	*nphm;
3619 	kmutex_t	*vphm;
3620 	kmutex_t	*sep;
3621 
3622 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3623 	ASSERT(pp->p_vnode != NULL);
3624 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3625 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3626 
3627 	vp = pp->p_vnode;
3628 
3629 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3630 	    "page_hashout:pp %p vp %p", pp, vp);
3631 
3632 	/* Kernel probe */
3633 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3634 	    tnf_opaque, vnode, vp,
3635 	    tnf_offset, offset, pp->p_offset);
3636 
3637 	/*
3638 	 *
3639 	 */
3640 	VM_STAT_ADD(hashout_count);
3641 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3642 	if (phm == NULL) {
3643 		VM_STAT_ADD(hashout_not_held);
3644 		nphm = PAGE_HASH_MUTEX(index);
3645 		mutex_enter(nphm);
3646 	}
3647 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3648 
3649 
3650 	/*
3651 	 * grab page vnode mutex and remove it...
3652 	 */
3653 	vphm = page_vnode_mutex(vp);
3654 	mutex_enter(vphm);
3655 
3656 	page_do_hashout(pp);
3657 
3658 	mutex_exit(vphm);
3659 	if (phm == NULL)
3660 		mutex_exit(nphm);
3661 
3662 	/*
3663 	 * Wake up processes waiting for this page.  The page's
3664 	 * identity has been changed, and is probably not the
3665 	 * desired page any longer.
3666 	 */
3667 	sep = page_se_mutex(pp);
3668 	mutex_enter(sep);
3669 	pp->p_selock &= ~SE_EWANTED;
3670 	if (CV_HAS_WAITERS(&pp->p_cv))
3671 		cv_broadcast(&pp->p_cv);
3672 	mutex_exit(sep);
3673 }
3674 
3675 /*
3676  * Add the page to the front of a linked list of pages
3677  * using the p_next & p_prev pointers for the list.
3678  * The caller is responsible for protecting the list pointers.
3679  */
3680 void
3681 page_add(page_t **ppp, page_t *pp)
3682 {
3683 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3684 
3685 	page_add_common(ppp, pp);
3686 }
3687 
3688 
3689 
3690 /*
3691  *  Common code for page_add() and mach_page_add()
3692  */
3693 void
3694 page_add_common(page_t **ppp, page_t *pp)
3695 {
3696 	if (*ppp == NULL) {
3697 		pp->p_next = pp->p_prev = pp;
3698 	} else {
3699 		pp->p_next = *ppp;
3700 		pp->p_prev = (*ppp)->p_prev;
3701 		(*ppp)->p_prev = pp;
3702 		pp->p_prev->p_next = pp;
3703 	}
3704 	*ppp = pp;
3705 }
3706 
3707 
3708 /*
3709  * Remove this page from a linked list of pages
3710  * using the p_next & p_prev pointers for the list.
3711  *
3712  * The caller is responsible for protecting the list pointers.
3713  */
3714 void
3715 page_sub(page_t **ppp, page_t *pp)
3716 {
3717 	ASSERT((PP_ISFREE(pp)) ? 1 :
3718 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3719 
3720 	if (*ppp == NULL || pp == NULL) {
3721 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3722 		    (void *)pp, (void *)(*ppp));
3723 		/*NOTREACHED*/
3724 	}
3725 
3726 	page_sub_common(ppp, pp);
3727 }
3728 
3729 
3730 /*
3731  *  Common code for page_sub() and mach_page_sub()
3732  */
3733 void
3734 page_sub_common(page_t **ppp, page_t *pp)
3735 {
3736 	if (*ppp == pp)
3737 		*ppp = pp->p_next;		/* go to next page */
3738 
3739 	if (*ppp == pp)
3740 		*ppp = NULL;			/* page list is gone */
3741 	else {
3742 		pp->p_prev->p_next = pp->p_next;
3743 		pp->p_next->p_prev = pp->p_prev;
3744 	}
3745 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3746 }
3747 
3748 
3749 /*
3750  * Break page list cppp into two lists with npages in the first list.
3751  * The tail is returned in nppp.
3752  */
3753 void
3754 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3755 {
3756 	page_t *s1pp = *oppp;
3757 	page_t *s2pp;
3758 	page_t *e1pp, *e2pp;
3759 	long n = 0;
3760 
3761 	if (s1pp == NULL) {
3762 		*nppp = NULL;
3763 		return;
3764 	}
3765 	if (npages == 0) {
3766 		*nppp = s1pp;
3767 		*oppp = NULL;
3768 		return;
3769 	}
3770 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3771 		s2pp = s2pp->p_next;
3772 	}
3773 	/* Fix head and tail of new lists */
3774 	e1pp = s2pp->p_prev;
3775 	e2pp = s1pp->p_prev;
3776 	s1pp->p_prev = e1pp;
3777 	e1pp->p_next = s1pp;
3778 	s2pp->p_prev = e2pp;
3779 	e2pp->p_next = s2pp;
3780 
3781 	/* second list empty */
3782 	if (s2pp == s1pp) {
3783 		*oppp = s1pp;
3784 		*nppp = NULL;
3785 	} else {
3786 		*oppp = s1pp;
3787 		*nppp = s2pp;
3788 	}
3789 }
3790 
3791 /*
3792  * Concatenate page list nppp onto the end of list ppp.
3793  */
3794 void
3795 page_list_concat(page_t **ppp, page_t **nppp)
3796 {
3797 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3798 
3799 	if (*nppp == NULL) {
3800 		return;
3801 	}
3802 	if (*ppp == NULL) {
3803 		*ppp = *nppp;
3804 		return;
3805 	}
3806 	s1pp = *ppp;
3807 	e1pp =  s1pp->p_prev;
3808 	s2pp = *nppp;
3809 	e2pp = s2pp->p_prev;
3810 	s1pp->p_prev = e2pp;
3811 	e2pp->p_next = s1pp;
3812 	e1pp->p_next = s2pp;
3813 	s2pp->p_prev = e1pp;
3814 }
3815 
3816 /*
3817  * return the next page in the page list
3818  */
3819 page_t *
3820 page_list_next(page_t *pp)
3821 {
3822 	return (pp->p_next);
3823 }
3824 
3825 
3826 /*
3827  * Add the page to the front of the linked list of pages
3828  * using p_vpnext/p_vpprev pointers for the list.
3829  *
3830  * The caller is responsible for protecting the lists.
3831  */
3832 void
3833 page_vpadd(page_t **ppp, page_t *pp)
3834 {
3835 	if (*ppp == NULL) {
3836 		pp->p_vpnext = pp->p_vpprev = pp;
3837 	} else {
3838 		pp->p_vpnext = *ppp;
3839 		pp->p_vpprev = (*ppp)->p_vpprev;
3840 		(*ppp)->p_vpprev = pp;
3841 		pp->p_vpprev->p_vpnext = pp;
3842 	}
3843 	*ppp = pp;
3844 }
3845 
3846 /*
3847  * Remove this page from the linked list of pages
3848  * using p_vpnext/p_vpprev pointers for the list.
3849  *
3850  * The caller is responsible for protecting the lists.
3851  */
3852 void
3853 page_vpsub(page_t **ppp, page_t *pp)
3854 {
3855 	if (*ppp == NULL || pp == NULL) {
3856 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3857 		    (void *)pp, (void *)(*ppp));
3858 		/*NOTREACHED*/
3859 	}
3860 
3861 	if (*ppp == pp)
3862 		*ppp = pp->p_vpnext;		/* go to next page */
3863 
3864 	if (*ppp == pp)
3865 		*ppp = NULL;			/* page list is gone */
3866 	else {
3867 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3868 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3869 	}
3870 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3871 }
3872 
3873 /*
3874  * Lock a physical page into memory "long term".  Used to support "lock
3875  * in memory" functions.  Accepts the page to be locked, and a cow variable
3876  * to indicate whether a the lock will travel to the new page during
3877  * a potential copy-on-write.
3878  */
3879 int
3880 page_pp_lock(
3881 	page_t *pp,			/* page to be locked */
3882 	int cow,			/* cow lock */
3883 	int kernel)			/* must succeed -- ignore checking */
3884 {
3885 	int r = 0;			/* result -- assume failure */
3886 
3887 	ASSERT(PAGE_LOCKED(pp));
3888 
3889 	page_struct_lock(pp);
3890 	/*
3891 	 * Acquire the "freemem_lock" for availrmem.
3892 	 */
3893 	if (cow) {
3894 		mutex_enter(&freemem_lock);
3895 		if ((availrmem > pages_pp_maximum) &&
3896 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3897 			availrmem--;
3898 			pages_locked++;
3899 			mutex_exit(&freemem_lock);
3900 			r = 1;
3901 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3902 				cmn_err(CE_WARN,
3903 				    "COW lock limit reached on pfn 0x%lx",
3904 				    page_pptonum(pp));
3905 			}
3906 		} else
3907 			mutex_exit(&freemem_lock);
3908 	} else {
3909 		if (pp->p_lckcnt) {
3910 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3911 				r = 1;
3912 				if (++pp->p_lckcnt ==
3913 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3914 					cmn_err(CE_WARN, "Page lock limit "
3915 					    "reached on pfn 0x%lx",
3916 					    page_pptonum(pp));
3917 				}
3918 			}
3919 		} else {
3920 			if (kernel) {
3921 				/* availrmem accounting done by caller */
3922 				++pp->p_lckcnt;
3923 				r = 1;
3924 			} else {
3925 				mutex_enter(&freemem_lock);
3926 				if (availrmem > pages_pp_maximum) {
3927 					availrmem--;
3928 					pages_locked++;
3929 					++pp->p_lckcnt;
3930 					r = 1;
3931 				}
3932 				mutex_exit(&freemem_lock);
3933 			}
3934 		}
3935 	}
3936 	page_struct_unlock(pp);
3937 	return (r);
3938 }
3939 
3940 /*
3941  * Decommit a lock on a physical page frame.  Account for cow locks if
3942  * appropriate.
3943  */
3944 void
3945 page_pp_unlock(
3946 	page_t *pp,			/* page to be unlocked */
3947 	int cow,			/* expect cow lock */
3948 	int kernel)			/* this was a kernel lock */
3949 {
3950 	ASSERT(PAGE_LOCKED(pp));
3951 
3952 	page_struct_lock(pp);
3953 	/*
3954 	 * Acquire the "freemem_lock" for availrmem.
3955 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3956 	 * could be called to unlock even if nothing is locked. This could
3957 	 * happen if locked file pages were truncated (removing the lock)
3958 	 * and the file was grown again and new pages faulted in; the new
3959 	 * pages are unlocked but the segment still thinks they're locked.
3960 	 */
3961 	if (cow) {
3962 		if (pp->p_cowcnt) {
3963 			mutex_enter(&freemem_lock);
3964 			pp->p_cowcnt--;
3965 			availrmem++;
3966 			pages_locked--;
3967 			mutex_exit(&freemem_lock);
3968 		}
3969 	} else {
3970 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3971 			if (!kernel) {
3972 				mutex_enter(&freemem_lock);
3973 				availrmem++;
3974 				pages_locked--;
3975 				mutex_exit(&freemem_lock);
3976 			}
3977 		}
3978 	}
3979 	page_struct_unlock(pp);
3980 }
3981 
3982 /*
3983  * This routine reserves availrmem for npages;
3984  * 	flags: KM_NOSLEEP or KM_SLEEP
3985  * 	returns 1 on success or 0 on failure
3986  */
3987 int
3988 page_resv(pgcnt_t npages, uint_t flags)
3989 {
3990 	mutex_enter(&freemem_lock);
3991 	while (availrmem < tune.t_minarmem + npages) {
3992 		if (flags & KM_NOSLEEP) {
3993 			mutex_exit(&freemem_lock);
3994 			return (0);
3995 		}
3996 		mutex_exit(&freemem_lock);
3997 		page_needfree(npages);
3998 		kmem_reap();
3999 		delay(hz >> 2);
4000 		page_needfree(-(spgcnt_t)npages);
4001 		mutex_enter(&freemem_lock);
4002 	}
4003 	availrmem -= npages;
4004 	mutex_exit(&freemem_lock);
4005 	return (1);
4006 }
4007 
4008 /*
4009  * This routine unreserves availrmem for npages;
4010  */
4011 void
4012 page_unresv(pgcnt_t npages)
4013 {
4014 	mutex_enter(&freemem_lock);
4015 	availrmem += npages;
4016 	mutex_exit(&freemem_lock);
4017 }
4018 
4019 /*
4020  * See Statement at the beginning of segvn_lockop() regarding
4021  * the way we handle cowcnts and lckcnts.
4022  *
4023  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4024  * that breaks COW has PROT_WRITE.
4025  *
4026  * Note that, we may also break COW in case we are softlocking
4027  * on read access during physio;
4028  * in this softlock case, the vpage may not have PROT_WRITE.
4029  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4030  * if the vpage doesn't have PROT_WRITE.
4031  *
4032  * This routine is never called if we are stealing a page
4033  * in anon_private.
4034  *
4035  * The caller subtracted from availrmem for read only mapping.
4036  * if lckcnt is 1 increment availrmem.
4037  */
4038 void
4039 page_pp_useclaim(
4040 	page_t *opp,		/* original page frame losing lock */
4041 	page_t *npp,		/* new page frame gaining lock */
4042 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
4043 {
4044 	int payback = 0;
4045 
4046 	ASSERT(PAGE_LOCKED(opp));
4047 	ASSERT(PAGE_LOCKED(npp));
4048 
4049 	page_struct_lock(opp);
4050 
4051 	ASSERT(npp->p_cowcnt == 0);
4052 	ASSERT(npp->p_lckcnt == 0);
4053 
4054 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4055 	if ((write_perm && opp->p_cowcnt != 0) ||
4056 	    (!write_perm && opp->p_lckcnt != 0)) {
4057 
4058 		if (write_perm) {
4059 			npp->p_cowcnt++;
4060 			ASSERT(opp->p_cowcnt != 0);
4061 			opp->p_cowcnt--;
4062 		} else {
4063 
4064 			ASSERT(opp->p_lckcnt != 0);
4065 
4066 			/*
4067 			 * We didn't need availrmem decremented if p_lckcnt on
4068 			 * original page is 1. Here, we are unlocking
4069 			 * read-only copy belonging to original page and
4070 			 * are locking a copy belonging to new page.
4071 			 */
4072 			if (opp->p_lckcnt == 1)
4073 				payback = 1;
4074 
4075 			npp->p_lckcnt++;
4076 			opp->p_lckcnt--;
4077 		}
4078 	}
4079 	if (payback) {
4080 		mutex_enter(&freemem_lock);
4081 		availrmem++;
4082 		pages_useclaim--;
4083 		mutex_exit(&freemem_lock);
4084 	}
4085 	page_struct_unlock(opp);
4086 }
4087 
4088 /*
4089  * Simple claim adjust functions -- used to support changes in
4090  * claims due to changes in access permissions.  Used by segvn_setprot().
4091  */
4092 int
4093 page_addclaim(page_t *pp)
4094 {
4095 	int r = 0;			/* result */
4096 
4097 	ASSERT(PAGE_LOCKED(pp));
4098 
4099 	page_struct_lock(pp);
4100 	ASSERT(pp->p_lckcnt != 0);
4101 
4102 	if (pp->p_lckcnt == 1) {
4103 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4104 			--pp->p_lckcnt;
4105 			r = 1;
4106 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4107 				cmn_err(CE_WARN,
4108 				    "COW lock limit reached on pfn 0x%lx",
4109 				    page_pptonum(pp));
4110 			}
4111 		}
4112 	} else {
4113 		mutex_enter(&freemem_lock);
4114 		if ((availrmem > pages_pp_maximum) &&
4115 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4116 			--availrmem;
4117 			++pages_claimed;
4118 			mutex_exit(&freemem_lock);
4119 			--pp->p_lckcnt;
4120 			r = 1;
4121 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4122 				cmn_err(CE_WARN,
4123 				    "COW lock limit reached on pfn 0x%lx",
4124 				    page_pptonum(pp));
4125 			}
4126 		} else
4127 			mutex_exit(&freemem_lock);
4128 	}
4129 	page_struct_unlock(pp);
4130 	return (r);
4131 }
4132 
4133 int
4134 page_subclaim(page_t *pp)
4135 {
4136 	int r = 0;
4137 
4138 	ASSERT(PAGE_LOCKED(pp));
4139 
4140 	page_struct_lock(pp);
4141 	ASSERT(pp->p_cowcnt != 0);
4142 
4143 	if (pp->p_lckcnt) {
4144 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4145 			r = 1;
4146 			/*
4147 			 * for availrmem
4148 			 */
4149 			mutex_enter(&freemem_lock);
4150 			availrmem++;
4151 			pages_claimed--;
4152 			mutex_exit(&freemem_lock);
4153 
4154 			pp->p_cowcnt--;
4155 
4156 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4157 				cmn_err(CE_WARN,
4158 				    "Page lock limit reached on pfn 0x%lx",
4159 				    page_pptonum(pp));
4160 			}
4161 		}
4162 	} else {
4163 		r = 1;
4164 		pp->p_cowcnt--;
4165 		pp->p_lckcnt++;
4166 	}
4167 	page_struct_unlock(pp);
4168 	return (r);
4169 }
4170 
4171 int
4172 page_addclaim_pages(page_t  **ppa)
4173 {
4174 
4175 	pgcnt_t	lckpgs = 0, pg_idx;
4176 
4177 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4178 
4179 	mutex_enter(&page_llock);
4180 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4181 
4182 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4183 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4184 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4185 			mutex_exit(&page_llock);
4186 			return (0);
4187 		}
4188 		if (ppa[pg_idx]->p_lckcnt > 1)
4189 			lckpgs++;
4190 	}
4191 
4192 	if (lckpgs != 0) {
4193 		mutex_enter(&freemem_lock);
4194 		if (availrmem >= pages_pp_maximum + lckpgs) {
4195 			availrmem -= lckpgs;
4196 			pages_claimed += lckpgs;
4197 		} else {
4198 			mutex_exit(&freemem_lock);
4199 			mutex_exit(&page_llock);
4200 			return (0);
4201 		}
4202 		mutex_exit(&freemem_lock);
4203 	}
4204 
4205 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4206 		ppa[pg_idx]->p_lckcnt--;
4207 		ppa[pg_idx]->p_cowcnt++;
4208 	}
4209 	mutex_exit(&page_llock);
4210 	return (1);
4211 }
4212 
4213 int
4214 page_subclaim_pages(page_t  **ppa)
4215 {
4216 	pgcnt_t	ulckpgs = 0, pg_idx;
4217 
4218 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4219 
4220 	mutex_enter(&page_llock);
4221 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4222 
4223 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4224 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4225 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4226 			mutex_exit(&page_llock);
4227 			return (0);
4228 		}
4229 		if (ppa[pg_idx]->p_lckcnt != 0)
4230 			ulckpgs++;
4231 	}
4232 
4233 	if (ulckpgs != 0) {
4234 		mutex_enter(&freemem_lock);
4235 		availrmem += ulckpgs;
4236 		pages_claimed -= ulckpgs;
4237 		mutex_exit(&freemem_lock);
4238 	}
4239 
4240 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4241 		ppa[pg_idx]->p_cowcnt--;
4242 		ppa[pg_idx]->p_lckcnt++;
4243 
4244 	}
4245 	mutex_exit(&page_llock);
4246 	return (1);
4247 }
4248 
4249 page_t *
4250 page_numtopp(pfn_t pfnum, se_t se)
4251 {
4252 	page_t *pp;
4253 
4254 retry:
4255 	pp = page_numtopp_nolock(pfnum);
4256 	if (pp == NULL) {
4257 		return ((page_t *)NULL);
4258 	}
4259 
4260 	/*
4261 	 * Acquire the appropriate lock on the page.
4262 	 */
4263 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4264 		if (page_pptonum(pp) != pfnum)
4265 			goto retry;
4266 		continue;
4267 	}
4268 
4269 	if (page_pptonum(pp) != pfnum) {
4270 		page_unlock(pp);
4271 		goto retry;
4272 	}
4273 
4274 	return (pp);
4275 }
4276 
4277 page_t *
4278 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4279 {
4280 	page_t *pp;
4281 
4282 retry:
4283 	pp = page_numtopp_nolock(pfnum);
4284 	if (pp == NULL) {
4285 		return ((page_t *)NULL);
4286 	}
4287 
4288 	/*
4289 	 * Acquire the appropriate lock on the page.
4290 	 */
4291 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4292 		if (page_pptonum(pp) != pfnum)
4293 			goto retry;
4294 		continue;
4295 	}
4296 
4297 	if (page_pptonum(pp) != pfnum) {
4298 		page_unlock(pp);
4299 		goto retry;
4300 	}
4301 
4302 	return (pp);
4303 }
4304 
4305 /*
4306  * This routine is like page_numtopp, but will only return page structs
4307  * for pages which are ok for loading into hardware using the page struct.
4308  */
4309 page_t *
4310 page_numtopp_nowait(pfn_t pfnum, se_t se)
4311 {
4312 	page_t *pp;
4313 
4314 retry:
4315 	pp = page_numtopp_nolock(pfnum);
4316 	if (pp == NULL) {
4317 		return ((page_t *)NULL);
4318 	}
4319 
4320 	/*
4321 	 * Try to acquire the appropriate lock on the page.
4322 	 */
4323 	if (PP_ISFREE(pp))
4324 		pp = NULL;
4325 	else {
4326 		if (!page_trylock(pp, se))
4327 			pp = NULL;
4328 		else {
4329 			if (page_pptonum(pp) != pfnum) {
4330 				page_unlock(pp);
4331 				goto retry;
4332 			}
4333 			if (PP_ISFREE(pp)) {
4334 				page_unlock(pp);
4335 				pp = NULL;
4336 			}
4337 		}
4338 	}
4339 	return (pp);
4340 }
4341 
4342 /*
4343  * Returns a count of dirty pages that are in the process
4344  * of being written out.  If 'cleanit' is set, try to push the page.
4345  */
4346 pgcnt_t
4347 page_busy(int cleanit)
4348 {
4349 	page_t *page0 = page_first();
4350 	page_t *pp = page0;
4351 	pgcnt_t nppbusy = 0;
4352 	u_offset_t off;
4353 
4354 	do {
4355 		vnode_t *vp = pp->p_vnode;
4356 
4357 		/*
4358 		 * A page is a candidate for syncing if it is:
4359 		 *
4360 		 * (a)	On neither the freelist nor the cachelist
4361 		 * (b)	Hashed onto a vnode
4362 		 * (c)	Not a kernel page
4363 		 * (d)	Dirty
4364 		 * (e)	Not part of a swapfile
4365 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4366 		 *	v_vfsp pointer.
4367 		 * (g)	Backed by a filesystem which doesn't have a
4368 		 *	stubbed-out sync operation
4369 		 */
4370 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4371 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4372 		    vfs_can_sync(vp->v_vfsp)) {
4373 			nppbusy++;
4374 			vfs_syncprogress();
4375 
4376 			if (!cleanit)
4377 				continue;
4378 			if (!page_trylock(pp, SE_EXCL))
4379 				continue;
4380 
4381 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4382 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4383 			    !(hat_pagesync(pp,
4384 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4385 				page_unlock(pp);
4386 				continue;
4387 			}
4388 			off = pp->p_offset;
4389 			VN_HOLD(vp);
4390 			page_unlock(pp);
4391 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4392 			    B_ASYNC | B_FREE, kcred);
4393 			VN_RELE(vp);
4394 		}
4395 	} while ((pp = page_next(pp)) != page0);
4396 
4397 	return (nppbusy);
4398 }
4399 
4400 void page_invalidate_pages(void);
4401 
4402 /*
4403  * callback handler to vm sub-system
4404  *
4405  * callers make sure no recursive entries to this func.
4406  */
4407 /*ARGSUSED*/
4408 boolean_t
4409 callb_vm_cpr(void *arg, int code)
4410 {
4411 	if (code == CB_CODE_CPR_CHKPT)
4412 		page_invalidate_pages();
4413 	return (B_TRUE);
4414 }
4415 
4416 /*
4417  * Invalidate all pages of the system.
4418  * It shouldn't be called until all user page activities are all stopped.
4419  */
4420 void
4421 page_invalidate_pages()
4422 {
4423 	page_t *pp;
4424 	page_t *page0;
4425 	pgcnt_t nbusypages;
4426 	int retry = 0;
4427 	const int MAXRETRIES = 4;
4428 #if defined(__sparc)
4429 	extern struct vnode prom_ppages;
4430 #endif /* __sparc */
4431 
4432 top:
4433 	/*
4434 	 * Flush dirty pages and destroy the clean ones.
4435 	 */
4436 	nbusypages = 0;
4437 
4438 	pp = page0 = page_first();
4439 	do {
4440 		struct vnode	*vp;
4441 		u_offset_t	offset;
4442 		int		mod;
4443 
4444 		/*
4445 		 * skip the page if it has no vnode or the page associated
4446 		 * with the kernel vnode or prom allocated kernel mem.
4447 		 */
4448 #if defined(__sparc)
4449 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp) ||
4450 		    vp == &prom_ppages)
4451 #else /* x86 doesn't have prom or prom_ppage */
4452 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4453 #endif /* __sparc */
4454 			continue;
4455 
4456 		/*
4457 		 * skip the page which is already free invalidated.
4458 		 */
4459 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4460 			continue;
4461 
4462 		/*
4463 		 * skip pages that are already locked or can't be "exclusively"
4464 		 * locked or are already free.  After we lock the page, check
4465 		 * the free and age bits again to be sure it's not destroied
4466 		 * yet.
4467 		 * To achieve max. parallelization, we use page_trylock instead
4468 		 * of page_lock so that we don't get block on individual pages
4469 		 * while we have thousands of other pages to process.
4470 		 */
4471 		if (!page_trylock(pp, SE_EXCL)) {
4472 			nbusypages++;
4473 			continue;
4474 		} else if (PP_ISFREE(pp)) {
4475 			if (!PP_ISAGED(pp)) {
4476 				page_destroy_free(pp);
4477 			} else {
4478 				page_unlock(pp);
4479 			}
4480 			continue;
4481 		}
4482 		/*
4483 		 * Is this page involved in some I/O? shared?
4484 		 *
4485 		 * The page_struct_lock need not be acquired to
4486 		 * examine these fields since the page has an
4487 		 * "exclusive" lock.
4488 		 */
4489 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4490 			page_unlock(pp);
4491 			continue;
4492 		}
4493 
4494 		if (vp->v_type == VCHR) {
4495 			panic("vp->v_type == VCHR");
4496 			/*NOTREACHED*/
4497 		}
4498 
4499 		if (!page_try_demote_pages(pp)) {
4500 			page_unlock(pp);
4501 			continue;
4502 		}
4503 
4504 		/*
4505 		 * Check the modified bit. Leave the bits alone in hardware
4506 		 * (they will be modified if we do the putpage).
4507 		 */
4508 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4509 		    & P_MOD);
4510 		if (mod) {
4511 			offset = pp->p_offset;
4512 			/*
4513 			 * Hold the vnode before releasing the page lock
4514 			 * to prevent it from being freed and re-used by
4515 			 * some other thread.
4516 			 */
4517 			VN_HOLD(vp);
4518 			page_unlock(pp);
4519 			/*
4520 			 * No error return is checked here. Callers such as
4521 			 * cpr deals with the dirty pages at the dump time
4522 			 * if this putpage fails.
4523 			 */
4524 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4525 			    kcred);
4526 			VN_RELE(vp);
4527 		} else {
4528 			page_destroy(pp, 0);
4529 		}
4530 	} while ((pp = page_next(pp)) != page0);
4531 	if (nbusypages && retry++ < MAXRETRIES) {
4532 		delay(1);
4533 		goto top;
4534 	}
4535 }
4536 
4537 /*
4538  * Replace the page "old" with the page "new" on the page hash and vnode lists
4539  *
4540  * the replacemnt must be done in place, ie the equivalent sequence:
4541  *
4542  *	vp = old->p_vnode;
4543  *	off = old->p_offset;
4544  *	page_do_hashout(old)
4545  *	page_do_hashin(new, vp, off)
4546  *
4547  * doesn't work, since
4548  *  1) if old is the only page on the vnode, the v_pages list has a window
4549  *     where it looks empty. This will break file system assumptions.
4550  * and
4551  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4552  */
4553 static void
4554 page_do_relocate_hash(page_t *new, page_t *old)
4555 {
4556 	page_t	**hash_list;
4557 	vnode_t	*vp = old->p_vnode;
4558 	kmutex_t *sep;
4559 
4560 	ASSERT(PAGE_EXCL(old));
4561 	ASSERT(PAGE_EXCL(new));
4562 	ASSERT(vp != NULL);
4563 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4564 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4565 
4566 	/*
4567 	 * First find old page on the page hash list
4568 	 */
4569 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4570 
4571 	for (;;) {
4572 		if (*hash_list == old)
4573 			break;
4574 		if (*hash_list == NULL) {
4575 			panic("page_do_hashout");
4576 			/*NOTREACHED*/
4577 		}
4578 		hash_list = &(*hash_list)->p_hash;
4579 	}
4580 
4581 	/*
4582 	 * update new and replace old with new on the page hash list
4583 	 */
4584 	new->p_vnode = old->p_vnode;
4585 	new->p_offset = old->p_offset;
4586 	new->p_hash = old->p_hash;
4587 	*hash_list = new;
4588 
4589 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4590 		PP_SETSWAP(new);
4591 
4592 	/*
4593 	 * replace old with new on the vnode's page list
4594 	 */
4595 	if (old->p_vpnext == old) {
4596 		new->p_vpnext = new;
4597 		new->p_vpprev = new;
4598 	} else {
4599 		new->p_vpnext = old->p_vpnext;
4600 		new->p_vpprev = old->p_vpprev;
4601 		new->p_vpnext->p_vpprev = new;
4602 		new->p_vpprev->p_vpnext = new;
4603 	}
4604 	if (vp->v_pages == old)
4605 		vp->v_pages = new;
4606 
4607 	/*
4608 	 * clear out the old page
4609 	 */
4610 	old->p_hash = NULL;
4611 	old->p_vpnext = NULL;
4612 	old->p_vpprev = NULL;
4613 	old->p_vnode = NULL;
4614 	PP_CLRSWAP(old);
4615 	old->p_offset = (u_offset_t)-1;
4616 	page_clr_all_props(old);
4617 
4618 	/*
4619 	 * Wake up processes waiting for this page.  The page's
4620 	 * identity has been changed, and is probably not the
4621 	 * desired page any longer.
4622 	 */
4623 	sep = page_se_mutex(old);
4624 	mutex_enter(sep);
4625 	old->p_selock &= ~SE_EWANTED;
4626 	if (CV_HAS_WAITERS(&old->p_cv))
4627 		cv_broadcast(&old->p_cv);
4628 	mutex_exit(sep);
4629 }
4630 
4631 /*
4632  * This function moves the identity of page "pp_old" to page "pp_new".
4633  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4634  * and need not be hashed out from anywhere.
4635  */
4636 void
4637 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4638 {
4639 	vnode_t *vp = pp_old->p_vnode;
4640 	u_offset_t off = pp_old->p_offset;
4641 	kmutex_t *phm, *vphm;
4642 
4643 	/*
4644 	 * Rehash two pages
4645 	 */
4646 	ASSERT(PAGE_EXCL(pp_old));
4647 	ASSERT(PAGE_EXCL(pp_new));
4648 	ASSERT(vp != NULL);
4649 	ASSERT(pp_new->p_vnode == NULL);
4650 
4651 	/*
4652 	 * hashout then hashin while holding the mutexes
4653 	 */
4654 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4655 	mutex_enter(phm);
4656 	vphm = page_vnode_mutex(vp);
4657 	mutex_enter(vphm);
4658 
4659 	page_do_relocate_hash(pp_new, pp_old);
4660 
4661 	mutex_exit(vphm);
4662 	mutex_exit(phm);
4663 
4664 	/*
4665 	 * The page_struct_lock need not be acquired for lckcnt and
4666 	 * cowcnt since the page has an "exclusive" lock.
4667 	 */
4668 	ASSERT(pp_new->p_lckcnt == 0);
4669 	ASSERT(pp_new->p_cowcnt == 0);
4670 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4671 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4672 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4673 
4674 	/* The following comment preserved from page_flip(). */
4675 	/* XXX - Do we need to protect fsdata? */
4676 	pp_new->p_fsdata = pp_old->p_fsdata;
4677 }
4678 
4679 /*
4680  * Helper routine used to lock all remaining members of a
4681  * large page. The caller is responsible for passing in a locked
4682  * pp. If pp is a large page, then it succeeds in locking all the
4683  * remaining constituent pages or it returns with only the
4684  * original page locked.
4685  *
4686  * Returns 1 on success, 0 on failure.
4687  *
4688  * If success is returned this routine gurantees p_szc for all constituent
4689  * pages of a large page pp belongs to can't change. To achieve this we
4690  * recheck szc of pp after locking all constituent pages and retry if szc
4691  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4692  * lock on one of constituent pages it can't be running after all constituent
4693  * pages are locked.  hat_page_demote() with a lock on a constituent page
4694  * outside of this large page (i.e. pp belonged to a larger large page) is
4695  * already done with all constituent pages of pp since the root's p_szc is
4696  * changed last. Thefore no need to synchronize with hat_page_demote() that
4697  * locked a constituent page outside of pp's current large page.
4698  */
4699 #ifdef DEBUG
4700 uint32_t gpg_trylock_mtbf = 0;
4701 #endif
4702 
4703 int
4704 group_page_trylock(page_t *pp, se_t se)
4705 {
4706 	page_t  *tpp;
4707 	pgcnt_t	npgs, i, j;
4708 	uint_t pszc = pp->p_szc;
4709 
4710 #ifdef DEBUG
4711 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4712 		return (0);
4713 	}
4714 #endif
4715 
4716 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4717 		return (0);
4718 	}
4719 
4720 retry:
4721 	ASSERT(PAGE_LOCKED_SE(pp, se));
4722 	ASSERT(!PP_ISFREE(pp));
4723 	if (pszc == 0) {
4724 		return (1);
4725 	}
4726 	npgs = page_get_pagecnt(pszc);
4727 	tpp = pp + 1;
4728 	for (i = 1; i < npgs; i++, tpp++) {
4729 		if (!page_trylock(tpp, se)) {
4730 			tpp = pp + 1;
4731 			for (j = 1; j < i; j++, tpp++) {
4732 				page_unlock(tpp);
4733 			}
4734 			return (0);
4735 		}
4736 	}
4737 	if (pp->p_szc != pszc) {
4738 		ASSERT(pp->p_szc < pszc);
4739 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4740 		    !IS_SWAPFSVP(pp->p_vnode));
4741 		tpp = pp + 1;
4742 		for (i = 1; i < npgs; i++, tpp++) {
4743 			page_unlock(tpp);
4744 		}
4745 		pszc = pp->p_szc;
4746 		goto retry;
4747 	}
4748 	return (1);
4749 }
4750 
4751 void
4752 group_page_unlock(page_t *pp)
4753 {
4754 	page_t *tpp;
4755 	pgcnt_t	npgs, i;
4756 
4757 	ASSERT(PAGE_LOCKED(pp));
4758 	ASSERT(!PP_ISFREE(pp));
4759 	ASSERT(pp == PP_PAGEROOT(pp));
4760 	npgs = page_get_pagecnt(pp->p_szc);
4761 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4762 		page_unlock(tpp);
4763 	}
4764 }
4765 
4766 /*
4767  * returns
4768  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4769  * ERANGE	: this is not a base page
4770  * EBUSY	: failure to get locks on the page/pages
4771  * ENOMEM	: failure to obtain replacement pages
4772  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4773  * EIO		: An error occurred while trying to copy the page data
4774  *
4775  * Return with all constituent members of target and replacement
4776  * SE_EXCL locked. It is the callers responsibility to drop the
4777  * locks.
4778  */
4779 int
4780 do_page_relocate(
4781 	page_t **target,
4782 	page_t **replacement,
4783 	int grouplock,
4784 	spgcnt_t *nrelocp,
4785 	lgrp_t *lgrp)
4786 {
4787 	page_t *first_repl;
4788 	page_t *repl;
4789 	page_t *targ;
4790 	page_t *pl = NULL;
4791 	uint_t ppattr;
4792 	pfn_t   pfn, repl_pfn;
4793 	uint_t	szc;
4794 	spgcnt_t npgs, i;
4795 	int repl_contig = 0;
4796 	uint_t flags = 0;
4797 	spgcnt_t dofree = 0;
4798 
4799 	*nrelocp = 0;
4800 
4801 #if defined(__sparc)
4802 	/*
4803 	 * We need to wait till OBP has completed
4804 	 * its boot-time handoff of its resources to the kernel
4805 	 * before we allow page relocation
4806 	 */
4807 	if (page_relocate_ready == 0) {
4808 		return (EAGAIN);
4809 	}
4810 #endif
4811 
4812 	/*
4813 	 * If this is not a base page,
4814 	 * just return with 0x0 pages relocated.
4815 	 */
4816 	targ = *target;
4817 	ASSERT(PAGE_EXCL(targ));
4818 	ASSERT(!PP_ISFREE(targ));
4819 	szc = targ->p_szc;
4820 	ASSERT(szc < mmu_page_sizes);
4821 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4822 	pfn = targ->p_pagenum;
4823 	if (pfn != PFN_BASE(pfn, szc)) {
4824 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4825 		return (ERANGE);
4826 	}
4827 
4828 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4829 		repl_pfn = repl->p_pagenum;
4830 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4831 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4832 			return (ERANGE);
4833 		}
4834 		repl_contig = 1;
4835 	}
4836 
4837 	/*
4838 	 * We must lock all members of this large page or we cannot
4839 	 * relocate any part of it.
4840 	 */
4841 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4842 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4843 		return (EBUSY);
4844 	}
4845 
4846 	/*
4847 	 * reread szc it could have been decreased before
4848 	 * group_page_trylock() was done.
4849 	 */
4850 	szc = targ->p_szc;
4851 	ASSERT(szc < mmu_page_sizes);
4852 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4853 	ASSERT(pfn == PFN_BASE(pfn, szc));
4854 
4855 	npgs = page_get_pagecnt(targ->p_szc);
4856 
4857 	if (repl == NULL) {
4858 		dofree = npgs;		/* Size of target page in MMU pages */
4859 		if (!page_create_wait(dofree, 0)) {
4860 			if (grouplock != 0) {
4861 				group_page_unlock(targ);
4862 			}
4863 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4864 			return (ENOMEM);
4865 		}
4866 
4867 		/*
4868 		 * seg kmem pages require that the target and replacement
4869 		 * page be the same pagesize.
4870 		 */
4871 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4872 		repl = page_get_replacement_page(targ, lgrp, flags);
4873 		if (repl == NULL) {
4874 			if (grouplock != 0) {
4875 				group_page_unlock(targ);
4876 			}
4877 			page_create_putback(dofree);
4878 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4879 			return (ENOMEM);
4880 		}
4881 	}
4882 #ifdef DEBUG
4883 	else {
4884 		ASSERT(PAGE_LOCKED(repl));
4885 	}
4886 #endif /* DEBUG */
4887 
4888 #if defined(__sparc)
4889 	/*
4890 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4891 	 */
4892 	if (VN_ISKAS(targ->p_vnode)) {
4893 		*replacement = repl;
4894 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4895 			if (grouplock != 0) {
4896 				group_page_unlock(targ);
4897 			}
4898 			if (dofree) {
4899 				*replacement = NULL;
4900 				page_free_replacement_page(repl);
4901 				page_create_putback(dofree);
4902 			}
4903 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4904 			return (EAGAIN);
4905 		}
4906 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4907 		return (0);
4908 	}
4909 #else
4910 #if defined(lint)
4911 	dofree = dofree;
4912 #endif
4913 #endif
4914 
4915 	first_repl = repl;
4916 
4917 	for (i = 0; i < npgs; i++) {
4918 		ASSERT(PAGE_EXCL(targ));
4919 		ASSERT(targ->p_slckcnt == 0);
4920 		ASSERT(repl->p_slckcnt == 0);
4921 
4922 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4923 
4924 		ASSERT(hat_page_getshare(targ) == 0);
4925 		ASSERT(!PP_ISFREE(targ));
4926 		ASSERT(targ->p_pagenum == (pfn + i));
4927 		ASSERT(repl_contig == 0 ||
4928 		    repl->p_pagenum == (repl_pfn + i));
4929 
4930 		/*
4931 		 * Copy the page contents and attributes then
4932 		 * relocate the page in the page hash.
4933 		 */
4934 		if (ppcopy(targ, repl) == 0) {
4935 			targ = *target;
4936 			repl = first_repl;
4937 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4938 			if (grouplock != 0) {
4939 				group_page_unlock(targ);
4940 			}
4941 			if (dofree) {
4942 				*replacement = NULL;
4943 				page_free_replacement_page(repl);
4944 				page_create_putback(dofree);
4945 			}
4946 			return (EIO);
4947 		}
4948 
4949 		targ++;
4950 		if (repl_contig != 0) {
4951 			repl++;
4952 		} else {
4953 			repl = repl->p_next;
4954 		}
4955 	}
4956 
4957 	repl = first_repl;
4958 	targ = *target;
4959 
4960 	for (i = 0; i < npgs; i++) {
4961 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4962 		page_clr_all_props(repl);
4963 		page_set_props(repl, ppattr);
4964 		page_relocate_hash(repl, targ);
4965 
4966 		ASSERT(hat_page_getshare(targ) == 0);
4967 		ASSERT(hat_page_getshare(repl) == 0);
4968 		/*
4969 		 * Now clear the props on targ, after the
4970 		 * page_relocate_hash(), they no longer
4971 		 * have any meaning.
4972 		 */
4973 		page_clr_all_props(targ);
4974 		ASSERT(targ->p_next == targ);
4975 		ASSERT(targ->p_prev == targ);
4976 		page_list_concat(&pl, &targ);
4977 
4978 		targ++;
4979 		if (repl_contig != 0) {
4980 			repl++;
4981 		} else {
4982 			repl = repl->p_next;
4983 		}
4984 	}
4985 	/* assert that we have come full circle with repl */
4986 	ASSERT(repl_contig == 1 || first_repl == repl);
4987 
4988 	*target = pl;
4989 	if (*replacement == NULL) {
4990 		ASSERT(first_repl == repl);
4991 		*replacement = repl;
4992 	}
4993 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4994 	*nrelocp = npgs;
4995 	return (0);
4996 }
4997 /*
4998  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4999  */
5000 int
5001 page_relocate(
5002 	page_t **target,
5003 	page_t **replacement,
5004 	int grouplock,
5005 	int freetarget,
5006 	spgcnt_t *nrelocp,
5007 	lgrp_t *lgrp)
5008 {
5009 	spgcnt_t ret;
5010 
5011 	/* do_page_relocate returns 0 on success or errno value */
5012 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5013 
5014 	if (ret != 0 || freetarget == 0) {
5015 		return (ret);
5016 	}
5017 	if (*nrelocp == 1) {
5018 		ASSERT(*target != NULL);
5019 		page_free(*target, 1);
5020 	} else {
5021 		page_t *tpp = *target;
5022 		uint_t szc = tpp->p_szc;
5023 		pgcnt_t npgs = page_get_pagecnt(szc);
5024 		ASSERT(npgs > 1);
5025 		ASSERT(szc != 0);
5026 		do {
5027 			ASSERT(PAGE_EXCL(tpp));
5028 			ASSERT(!hat_page_is_mapped(tpp));
5029 			ASSERT(tpp->p_szc == szc);
5030 			PP_SETFREE(tpp);
5031 			PP_SETAGED(tpp);
5032 			npgs--;
5033 		} while ((tpp = tpp->p_next) != *target);
5034 		ASSERT(npgs == 0);
5035 		page_list_add_pages(*target, 0);
5036 		npgs = page_get_pagecnt(szc);
5037 		page_create_putback(npgs);
5038 	}
5039 	return (ret);
5040 }
5041 
5042 /*
5043  * it is up to the caller to deal with pcf accounting.
5044  */
5045 void
5046 page_free_replacement_page(page_t *pplist)
5047 {
5048 	page_t *pp;
5049 
5050 	while (pplist != NULL) {
5051 		/*
5052 		 * pp_targ is a linked list.
5053 		 */
5054 		pp = pplist;
5055 		if (pp->p_szc == 0) {
5056 			page_sub(&pplist, pp);
5057 			page_clr_all_props(pp);
5058 			PP_SETFREE(pp);
5059 			PP_SETAGED(pp);
5060 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5061 			page_unlock(pp);
5062 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5063 		} else {
5064 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5065 			page_t *tpp;
5066 			page_list_break(&pp, &pplist, curnpgs);
5067 			tpp = pp;
5068 			do {
5069 				ASSERT(PAGE_EXCL(tpp));
5070 				ASSERT(!hat_page_is_mapped(tpp));
5071 				page_clr_all_props(pp);
5072 				PP_SETFREE(tpp);
5073 				PP_SETAGED(tpp);
5074 			} while ((tpp = tpp->p_next) != pp);
5075 			page_list_add_pages(pp, 0);
5076 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5077 		}
5078 	}
5079 }
5080 
5081 /*
5082  * Relocate target to non-relocatable replacement page.
5083  */
5084 int
5085 page_relocate_cage(page_t **target, page_t **replacement)
5086 {
5087 	page_t *tpp, *rpp;
5088 	spgcnt_t pgcnt, npgs;
5089 	int result;
5090 
5091 	tpp = *target;
5092 
5093 	ASSERT(PAGE_EXCL(tpp));
5094 	ASSERT(tpp->p_szc == 0);
5095 
5096 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5097 
5098 	do {
5099 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5100 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5101 		if (rpp == NULL) {
5102 			page_create_putback(pgcnt);
5103 			kcage_cageout_wakeup();
5104 		}
5105 	} while (rpp == NULL);
5106 
5107 	ASSERT(PP_ISNORELOC(rpp));
5108 
5109 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5110 
5111 	if (result == 0) {
5112 		*replacement = rpp;
5113 		if (pgcnt != npgs)
5114 			panic("page_relocate_cage: partial relocation");
5115 	}
5116 
5117 	return (result);
5118 }
5119 
5120 /*
5121  * Release the page lock on a page, place on cachelist
5122  * tail if no longer mapped. Caller can let us know if
5123  * the page is known to be clean.
5124  */
5125 int
5126 page_release(page_t *pp, int checkmod)
5127 {
5128 	int status;
5129 
5130 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5131 	    (pp->p_vnode != NULL));
5132 
5133 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5134 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5135 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5136 	    !hat_page_is_mapped(pp)) {
5137 
5138 		/*
5139 		 * If page is modified, unlock it
5140 		 *
5141 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5142 		 * (1) We found that this page doesn't have any mappings
5143 		 *	_after_ holding SE_EXCL and
5144 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5145 		 */
5146 		if (checkmod && hat_ismod(pp)) {
5147 			page_unlock(pp);
5148 			status = PGREL_MOD;
5149 		} else {
5150 			/*LINTED: constant in conditional context*/
5151 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5152 			status = PGREL_CLEAN;
5153 		}
5154 	} else {
5155 		page_unlock(pp);
5156 		status = PGREL_NOTREL;
5157 	}
5158 	return (status);
5159 }
5160 
5161 /*
5162  * Given a constituent page, try to demote the large page on the freelist.
5163  *
5164  * Returns nonzero if the page could be demoted successfully. Returns with
5165  * the constituent page still locked.
5166  */
5167 int
5168 page_try_demote_free_pages(page_t *pp)
5169 {
5170 	page_t *rootpp = pp;
5171 	pfn_t	pfn = page_pptonum(pp);
5172 	spgcnt_t npgs;
5173 	uint_t	szc = pp->p_szc;
5174 
5175 	ASSERT(PP_ISFREE(pp));
5176 	ASSERT(PAGE_EXCL(pp));
5177 
5178 	/*
5179 	 * Adjust rootpp and lock it, if `pp' is not the base
5180 	 * constituent page.
5181 	 */
5182 	npgs = page_get_pagecnt(pp->p_szc);
5183 	if (npgs == 1) {
5184 		return (0);
5185 	}
5186 
5187 	if (!IS_P2ALIGNED(pfn, npgs)) {
5188 		pfn = P2ALIGN(pfn, npgs);
5189 		rootpp = page_numtopp_nolock(pfn);
5190 	}
5191 
5192 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5193 		return (0);
5194 	}
5195 
5196 	if (rootpp->p_szc != szc) {
5197 		if (pp != rootpp)
5198 			page_unlock(rootpp);
5199 		return (0);
5200 	}
5201 
5202 	page_demote_free_pages(rootpp);
5203 
5204 	if (pp != rootpp)
5205 		page_unlock(rootpp);
5206 
5207 	ASSERT(PP_ISFREE(pp));
5208 	ASSERT(PAGE_EXCL(pp));
5209 	return (1);
5210 }
5211 
5212 /*
5213  * Given a constituent page, try to demote the large page.
5214  *
5215  * Returns nonzero if the page could be demoted successfully. Returns with
5216  * the constituent page still locked.
5217  */
5218 int
5219 page_try_demote_pages(page_t *pp)
5220 {
5221 	page_t *tpp, *rootpp = pp;
5222 	pfn_t	pfn = page_pptonum(pp);
5223 	spgcnt_t i, npgs;
5224 	uint_t	szc = pp->p_szc;
5225 	vnode_t *vp = pp->p_vnode;
5226 
5227 	ASSERT(PAGE_EXCL(pp));
5228 
5229 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5230 
5231 	if (pp->p_szc == 0) {
5232 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5233 		return (1);
5234 	}
5235 
5236 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5237 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5238 		page_demote_vp_pages(pp);
5239 		ASSERT(pp->p_szc == 0);
5240 		return (1);
5241 	}
5242 
5243 	/*
5244 	 * Adjust rootpp if passed in is not the base
5245 	 * constituent page.
5246 	 */
5247 	npgs = page_get_pagecnt(pp->p_szc);
5248 	ASSERT(npgs > 1);
5249 	if (!IS_P2ALIGNED(pfn, npgs)) {
5250 		pfn = P2ALIGN(pfn, npgs);
5251 		rootpp = page_numtopp_nolock(pfn);
5252 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5253 		ASSERT(rootpp->p_vnode != NULL);
5254 		ASSERT(rootpp->p_szc == szc);
5255 	}
5256 
5257 	/*
5258 	 * We can't demote kernel pages since we can't hat_unload()
5259 	 * the mappings.
5260 	 */
5261 	if (VN_ISKAS(rootpp->p_vnode))
5262 		return (0);
5263 
5264 	/*
5265 	 * Attempt to lock all constituent pages except the page passed
5266 	 * in since it's already locked.
5267 	 */
5268 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5269 		ASSERT(!PP_ISFREE(tpp));
5270 		ASSERT(tpp->p_vnode != NULL);
5271 
5272 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5273 			break;
5274 		ASSERT(tpp->p_szc == rootpp->p_szc);
5275 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5276 	}
5277 
5278 	/*
5279 	 * If we failed to lock them all then unlock what we have
5280 	 * locked so far and bail.
5281 	 */
5282 	if (i < npgs) {
5283 		tpp = rootpp;
5284 		while (i-- > 0) {
5285 			if (tpp != pp)
5286 				page_unlock(tpp);
5287 			tpp++;
5288 		}
5289 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5290 		return (0);
5291 	}
5292 
5293 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5294 		ASSERT(PAGE_EXCL(tpp));
5295 		ASSERT(tpp->p_slckcnt == 0);
5296 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5297 		tpp->p_szc = 0;
5298 	}
5299 
5300 	/*
5301 	 * Unlock all pages except the page passed in.
5302 	 */
5303 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5304 		ASSERT(!hat_page_is_mapped(tpp));
5305 		if (tpp != pp)
5306 			page_unlock(tpp);
5307 	}
5308 
5309 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5310 	return (1);
5311 }
5312 
5313 /*
5314  * Called by page_free() and page_destroy() to demote the page size code
5315  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5316  * p_szc on free list, neither can we just clear p_szc of a single page_t
5317  * within a large page since it will break other code that relies on p_szc
5318  * being the same for all page_t's of a large page). Anonymous pages should
5319  * never end up here because anon_map_getpages() cannot deal with p_szc
5320  * changes after a single constituent page is locked.  While anonymous or
5321  * kernel large pages are demoted or freed the entire large page at a time
5322  * with all constituent pages locked EXCL for the file system pages we
5323  * have to be able to demote a large page (i.e. decrease all constituent pages
5324  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5325  * we can easily deal with anonymous page demotion the entire large page at a
5326  * time is that those operation originate at address space level and concern
5327  * the entire large page region with actual demotion only done when pages are
5328  * not shared with any other processes (therefore we can always get EXCL lock
5329  * on all anonymous constituent pages after clearing segment page
5330  * cache). However file system pages can be truncated or invalidated at a
5331  * PAGESIZE level from the file system side and end up in page_free() or
5332  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5333  * and therfore pageout should be able to demote a large page by EXCL locking
5334  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5335  * rely on being able to lock EXCL all constituent pages.
5336  *
5337  * To prevent szc changes on file system pages one has to lock all constituent
5338  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5339  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5340  * prevent szc changes is hat layer that uses its own page level mlist
5341  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5342  * taken. Therefore we need to change szc under hat level locks if we only
5343  * have an EXCL lock on a single constituent page and hat still references any
5344  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5345  * hat_pageunload() all constituent pages without having EXCL locks on all of
5346  * constituent pages). We use hat_page_demote() call to safely demote szc of
5347  * all constituent pages under hat locks when we only have an EXCL lock on one
5348  * of constituent pages.
5349  *
5350  * This routine calls page_szc_lock() before calling hat_page_demote() to
5351  * allow segvn in one special case not to lock all constituent pages SHARED
5352  * before calling hat_memload_array() that relies on p_szc not changeing even
5353  * before hat level mlist lock is taken.  In that case segvn uses
5354  * page_szc_lock() to prevent hat_page_demote() changeing p_szc values.
5355  *
5356  * Anonymous or kernel page demotion still has to lock all pages exclusively
5357  * and do hat_pageunload() on all constituent pages before demoting the page
5358  * therefore there's no need for anonymous or kernel page demotion to use
5359  * hat_page_demote() mechanism.
5360  *
5361  * hat_page_demote() removes all large mappings that map pp and then decreases
5362  * p_szc starting from the last constituent page of the large page. By working
5363  * from the tail of a large page in pfn decreasing order allows one looking at
5364  * the root page to know that hat_page_demote() is done for root's szc area.
5365  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5366  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5367  * that started on this page when it had szc > 1 is done for this szc 1 area.
5368  *
5369  * We are guranteed that all constituent pages of pp's large page belong to
5370  * the same vnode with the consecutive offsets increasing in the direction of
5371  * the pfn i.e. the identity of constituent pages can't change until their
5372  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5373  * large mappings to pp even though we don't lock any constituent page except
5374  * pp (i.e. we won't unload e.g. kernel locked page).
5375  */
5376 static void
5377 page_demote_vp_pages(page_t *pp)
5378 {
5379 	kmutex_t *mtx;
5380 
5381 	ASSERT(PAGE_EXCL(pp));
5382 	ASSERT(!PP_ISFREE(pp));
5383 	ASSERT(pp->p_vnode != NULL);
5384 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5385 	ASSERT(!PP_ISKAS(pp));
5386 
5387 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5388 
5389 	mtx = page_szc_lock(pp);
5390 	if (mtx != NULL) {
5391 		hat_page_demote(pp);
5392 		mutex_exit(mtx);
5393 	}
5394 	ASSERT(pp->p_szc == 0);
5395 }
5396 
5397 /*
5398  * Mark any existing pages for migration in the given range
5399  */
5400 void
5401 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5402     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5403     u_offset_t vnoff, int rflag)
5404 {
5405 	struct anon	*ap;
5406 	vnode_t		*curvp;
5407 	lgrp_t		*from;
5408 	pgcnt_t		i;
5409 	pgcnt_t		nlocked;
5410 	u_offset_t	off;
5411 	pfn_t		pfn;
5412 	size_t		pgsz;
5413 	size_t		segpgsz;
5414 	pgcnt_t		pages;
5415 	uint_t		pszc;
5416 	page_t		**ppa;
5417 	pgcnt_t		ppa_nentries;
5418 	page_t		*pp;
5419 	caddr_t		va;
5420 	ulong_t		an_idx;
5421 	anon_sync_obj_t	cookie;
5422 
5423 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5424 
5425 	/*
5426 	 * Don't do anything if don't need to do lgroup optimizations
5427 	 * on this system
5428 	 */
5429 	if (!lgrp_optimizations())
5430 		return;
5431 
5432 	/*
5433 	 * Align address and length to (potentially large) page boundary
5434 	 */
5435 	segpgsz = page_get_pagesize(seg->s_szc);
5436 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5437 	if (rflag)
5438 		len = P2ROUNDUP(len, segpgsz);
5439 
5440 	/*
5441 	 * Allocate page array to accomodate largest page size
5442 	 */
5443 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5444 	ppa_nentries = btop(pgsz);
5445 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5446 
5447 	/*
5448 	 * Do one (large) page at a time
5449 	 */
5450 	va = addr;
5451 	while (va < addr + len) {
5452 		/*
5453 		 * Lookup (root) page for vnode and offset corresponding to
5454 		 * this virtual address
5455 		 * Try anonmap first since there may be copy-on-write
5456 		 * pages, but initialize vnode pointer and offset using
5457 		 * vnode arguments just in case there isn't an amp.
5458 		 */
5459 		curvp = vp;
5460 		off = vnoff + va - seg->s_base;
5461 		if (amp) {
5462 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5463 			an_idx = anon_index + seg_page(seg, va);
5464 			anon_array_enter(amp, an_idx, &cookie);
5465 			ap = anon_get_ptr(amp->ahp, an_idx);
5466 			if (ap)
5467 				swap_xlate(ap, &curvp, &off);
5468 			anon_array_exit(&cookie);
5469 			ANON_LOCK_EXIT(&amp->a_rwlock);
5470 		}
5471 
5472 		pp = NULL;
5473 		if (curvp)
5474 			pp = page_lookup(curvp, off, SE_SHARED);
5475 
5476 		/*
5477 		 * If there isn't a page at this virtual address,
5478 		 * skip to next page
5479 		 */
5480 		if (pp == NULL) {
5481 			va += PAGESIZE;
5482 			continue;
5483 		}
5484 
5485 		/*
5486 		 * Figure out which lgroup this page is in for kstats
5487 		 */
5488 		pfn = page_pptonum(pp);
5489 		from = lgrp_pfn_to_lgrp(pfn);
5490 
5491 		/*
5492 		 * Get page size, and round up and skip to next page boundary
5493 		 * if unaligned address
5494 		 */
5495 		pszc = pp->p_szc;
5496 		pgsz = page_get_pagesize(pszc);
5497 		pages = btop(pgsz);
5498 		if (!IS_P2ALIGNED(va, pgsz) ||
5499 		    !IS_P2ALIGNED(pfn, pages) ||
5500 		    pgsz > segpgsz) {
5501 			pgsz = MIN(pgsz, segpgsz);
5502 			page_unlock(pp);
5503 			i = btop(P2END((uintptr_t)va, pgsz) -
5504 			    (uintptr_t)va);
5505 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5506 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5507 			continue;
5508 		}
5509 
5510 		/*
5511 		 * Upgrade to exclusive lock on page
5512 		 */
5513 		if (!page_tryupgrade(pp)) {
5514 			page_unlock(pp);
5515 			va += pgsz;
5516 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5517 			    btop(pgsz));
5518 			continue;
5519 		}
5520 
5521 		/*
5522 		 * Remember pages locked exclusively and how many
5523 		 */
5524 		ppa[0] = pp;
5525 		nlocked = 1;
5526 
5527 		/*
5528 		 * Lock constituent pages if this is large page
5529 		 */
5530 		if (pages > 1) {
5531 			/*
5532 			 * Lock all constituents except root page, since it
5533 			 * should be locked already.
5534 			 */
5535 			for (i = 1; i < pages; i++) {
5536 				pp++;
5537 				if (!page_trylock(pp, SE_EXCL)) {
5538 					break;
5539 				}
5540 				if (PP_ISFREE(pp) ||
5541 				    pp->p_szc != pszc) {
5542 					/*
5543 					 * hat_page_demote() raced in with us.
5544 					 */
5545 					ASSERT(!IS_SWAPFSVP(curvp));
5546 					page_unlock(pp);
5547 					break;
5548 				}
5549 				ppa[nlocked] = pp;
5550 				nlocked++;
5551 			}
5552 		}
5553 
5554 		/*
5555 		 * If all constituent pages couldn't be locked,
5556 		 * unlock pages locked so far and skip to next page.
5557 		 */
5558 		if (nlocked != pages) {
5559 			for (i = 0; i < nlocked; i++)
5560 				page_unlock(ppa[i]);
5561 			va += pgsz;
5562 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5563 			    btop(pgsz));
5564 			continue;
5565 		}
5566 
5567 		/*
5568 		 * hat_page_demote() can no longer happen
5569 		 * since last cons page had the right p_szc after
5570 		 * all cons pages were locked. all cons pages
5571 		 * should now have the same p_szc.
5572 		 */
5573 
5574 		/*
5575 		 * All constituent pages locked successfully, so mark
5576 		 * large page for migration and unload the mappings of
5577 		 * constituent pages, so a fault will occur on any part of the
5578 		 * large page
5579 		 */
5580 		PP_SETMIGRATE(ppa[0]);
5581 		for (i = 0; i < nlocked; i++) {
5582 			pp = ppa[i];
5583 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5584 			ASSERT(hat_page_getshare(pp) == 0);
5585 			page_unlock(pp);
5586 		}
5587 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5588 
5589 		va += pgsz;
5590 	}
5591 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5592 }
5593 
5594 /*
5595  * Migrate any pages that have been marked for migration in the given range
5596  */
5597 void
5598 page_migrate(
5599 	struct seg	*seg,
5600 	caddr_t		addr,
5601 	page_t		**ppa,
5602 	pgcnt_t		npages)
5603 {
5604 	lgrp_t		*from;
5605 	lgrp_t		*to;
5606 	page_t		*newpp;
5607 	page_t		*pp;
5608 	pfn_t		pfn;
5609 	size_t		pgsz;
5610 	spgcnt_t	page_cnt;
5611 	spgcnt_t	i;
5612 	uint_t		pszc;
5613 
5614 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5615 
5616 	while (npages > 0) {
5617 		pp = *ppa;
5618 		pszc = pp->p_szc;
5619 		pgsz = page_get_pagesize(pszc);
5620 		page_cnt = btop(pgsz);
5621 
5622 		/*
5623 		 * Check to see whether this page is marked for migration
5624 		 *
5625 		 * Assume that root page of large page is marked for
5626 		 * migration and none of the other constituent pages
5627 		 * are marked.  This really simplifies clearing the
5628 		 * migrate bit by not having to clear it from each
5629 		 * constituent page.
5630 		 *
5631 		 * note we don't want to relocate an entire large page if
5632 		 * someone is only using one subpage.
5633 		 */
5634 		if (npages < page_cnt)
5635 			break;
5636 
5637 		/*
5638 		 * Is it marked for migration?
5639 		 */
5640 		if (!PP_ISMIGRATE(pp))
5641 			goto next;
5642 
5643 		/*
5644 		 * Determine lgroups that page is being migrated between
5645 		 */
5646 		pfn = page_pptonum(pp);
5647 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5648 			break;
5649 		}
5650 		from = lgrp_pfn_to_lgrp(pfn);
5651 		to = lgrp_mem_choose(seg, addr, pgsz);
5652 
5653 		/*
5654 		 * Check to see whether we are trying to migrate page to lgroup
5655 		 * where it is allocated already
5656 		 */
5657 		if (to == from) {
5658 			PP_CLRMIGRATE(pp);
5659 			goto next;
5660 		}
5661 
5662 		/*
5663 		 * Need to get exclusive lock's to migrate
5664 		 */
5665 		for (i = 0; i < page_cnt; i++) {
5666 			ASSERT(PAGE_LOCKED(ppa[i]));
5667 			if (page_pptonum(ppa[i]) != pfn + i ||
5668 			    ppa[i]->p_szc != pszc) {
5669 				break;
5670 			}
5671 			if (!page_tryupgrade(ppa[i])) {
5672 				lgrp_stat_add(from->lgrp_id,
5673 				    LGRP_PM_FAIL_LOCK_PGS,
5674 				    page_cnt);
5675 				break;
5676 			}
5677 		}
5678 		if (i != page_cnt) {
5679 			while (--i != -1) {
5680 				page_downgrade(ppa[i]);
5681 			}
5682 			goto next;
5683 		}
5684 
5685 		(void) page_create_wait(page_cnt, PG_WAIT);
5686 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5687 		if (newpp == NULL) {
5688 			page_create_putback(page_cnt);
5689 			for (i = 0; i < page_cnt; i++) {
5690 				page_downgrade(ppa[i]);
5691 			}
5692 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5693 			    page_cnt);
5694 			goto next;
5695 		}
5696 		ASSERT(newpp->p_szc == pszc);
5697 		/*
5698 		 * Clear migrate bit and relocate page
5699 		 */
5700 		PP_CLRMIGRATE(pp);
5701 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5702 			panic("page_migrate: page_relocate failed");
5703 		}
5704 		ASSERT(page_cnt * PAGESIZE == pgsz);
5705 
5706 		/*
5707 		 * Keep stats for number of pages migrated from and to
5708 		 * each lgroup
5709 		 */
5710 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5711 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5712 		/*
5713 		 * update the page_t array we were passed in and
5714 		 * unlink constituent pages of a large page.
5715 		 */
5716 		for (i = 0; i < page_cnt; ++i, ++pp) {
5717 			ASSERT(PAGE_EXCL(newpp));
5718 			ASSERT(newpp->p_szc == pszc);
5719 			ppa[i] = newpp;
5720 			pp = newpp;
5721 			page_sub(&newpp, pp);
5722 			page_downgrade(pp);
5723 		}
5724 		ASSERT(newpp == NULL);
5725 next:
5726 		addr += pgsz;
5727 		ppa += page_cnt;
5728 		npages -= page_cnt;
5729 	}
5730 }
5731 
5732 ulong_t mem_waiters 	= 0;
5733 ulong_t	max_count 	= 20;
5734 #define	MAX_DELAY	0x1ff
5735 
5736 /*
5737  * Check if enough memory is available to proceed.
5738  * Depending on system configuration and how much memory is
5739  * reserved for swap we need to check against two variables.
5740  * e.g. on systems with little physical swap availrmem can be
5741  * more reliable indicator of how much memory is available.
5742  * On systems with large phys swap freemem can be better indicator.
5743  * If freemem drops below threshold level don't return an error
5744  * immediately but wake up pageout to free memory and block.
5745  * This is done number of times. If pageout is not able to free
5746  * memory within certain time return an error.
5747  * The same applies for availrmem but kmem_reap is used to
5748  * free memory.
5749  */
5750 int
5751 page_mem_avail(pgcnt_t npages)
5752 {
5753 	ulong_t count;
5754 
5755 #if defined(__i386)
5756 	if (freemem > desfree + npages &&
5757 	    availrmem > swapfs_reserve + npages &&
5758 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5759 	    npages)
5760 		return (1);
5761 #else
5762 	if (freemem > desfree + npages &&
5763 	    availrmem > swapfs_reserve + npages)
5764 		return (1);
5765 #endif
5766 
5767 	count = max_count;
5768 	atomic_add_long(&mem_waiters, 1);
5769 
5770 	while (freemem < desfree + npages && --count) {
5771 		cv_signal(&proc_pageout->p_cv);
5772 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5773 			atomic_add_long(&mem_waiters, -1);
5774 			return (0);
5775 		}
5776 	}
5777 	if (count == 0) {
5778 		atomic_add_long(&mem_waiters, -1);
5779 		return (0);
5780 	}
5781 
5782 	count = max_count;
5783 	while (availrmem < swapfs_reserve + npages && --count) {
5784 		kmem_reap();
5785 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5786 			atomic_add_long(&mem_waiters, -1);
5787 			return (0);
5788 		}
5789 	}
5790 	atomic_add_long(&mem_waiters, -1);
5791 	if (count == 0)
5792 		return (0);
5793 
5794 #if defined(__i386)
5795 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5796 	    tune.t_minarmem + npages)
5797 		return (0);
5798 #endif
5799 	return (1);
5800 }
5801 
5802 #define	MAX_CNT	60	/* max num of iterations */
5803 /*
5804  * Reclaim/reserve availrmem for npages.
5805  * If there is not enough memory start reaping seg, kmem caches.
5806  * Start pageout scanner (via page_needfree()).
5807  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5808  * Note: There is no guarantee that any availrmem will be freed as
5809  * this memory typically is locked (kernel heap) or reserved for swap.
5810  * Also due to memory fragmentation kmem allocator may not be able
5811  * to free any memory (single user allocated buffer will prevent
5812  * freeing slab or a page).
5813  */
5814 int
5815 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5816 {
5817 	int	i = 0;
5818 	int	ret = 0;
5819 	pgcnt_t	deficit;
5820 	pgcnt_t old_availrmem;
5821 
5822 	mutex_enter(&freemem_lock);
5823 	old_availrmem = availrmem - 1;
5824 	while ((availrmem < tune.t_minarmem + npages + epages) &&
5825 	    (old_availrmem < availrmem) && (i++ < MAX_CNT)) {
5826 		old_availrmem = availrmem;
5827 		deficit = tune.t_minarmem + npages + epages - availrmem;
5828 		mutex_exit(&freemem_lock);
5829 		page_needfree(deficit);
5830 		seg_preap();
5831 		kmem_reap();
5832 		delay(hz);
5833 		page_needfree(-(spgcnt_t)deficit);
5834 		mutex_enter(&freemem_lock);
5835 	}
5836 
5837 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5838 		availrmem -= npages;
5839 		ret = 1;
5840 	}
5841 
5842 	mutex_exit(&freemem_lock);
5843 
5844 	return (ret);
5845 }
5846 
5847 /*
5848  * Search the memory segments to locate the desired page.  Within a
5849  * segment, pages increase linearly with one page structure per
5850  * physical page frame (size PAGESIZE).  The search begins
5851  * with the segment that was accessed last, to take advantage of locality.
5852  * If the hint misses, we start from the beginning of the sorted memseg list
5853  */
5854 
5855 
5856 /*
5857  * Some data structures for pfn to pp lookup.
5858  */
5859 ulong_t mhash_per_slot;
5860 struct memseg *memseg_hash[N_MEM_SLOTS];
5861 
5862 page_t *
5863 page_numtopp_nolock(pfn_t pfnum)
5864 {
5865 	struct memseg *seg;
5866 	page_t *pp;
5867 	vm_cpu_data_t *vc = CPU->cpu_vm_data;
5868 
5869 	ASSERT(vc != NULL);
5870 
5871 	MEMSEG_STAT_INCR(nsearch);
5872 
5873 	/* Try last winner first */
5874 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5875 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5876 		MEMSEG_STAT_INCR(nlastwon);
5877 		pp = seg->pages + (pfnum - seg->pages_base);
5878 		if (pp->p_pagenum == pfnum)
5879 			return ((page_t *)pp);
5880 	}
5881 
5882 	/* Else Try hash */
5883 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5884 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5885 		MEMSEG_STAT_INCR(nhashwon);
5886 		vc->vc_pnum_memseg = seg;
5887 		pp = seg->pages + (pfnum - seg->pages_base);
5888 		if (pp->p_pagenum == pfnum)
5889 			return ((page_t *)pp);
5890 	}
5891 
5892 	/* Else Brute force */
5893 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5894 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5895 			vc->vc_pnum_memseg = seg;
5896 			pp = seg->pages + (pfnum - seg->pages_base);
5897 			return ((page_t *)pp);
5898 		}
5899 	}
5900 	vc->vc_pnum_memseg = NULL;
5901 	MEMSEG_STAT_INCR(nnotfound);
5902 	return ((page_t *)NULL);
5903 
5904 }
5905 
5906 struct memseg *
5907 page_numtomemseg_nolock(pfn_t pfnum)
5908 {
5909 	struct memseg *seg;
5910 	page_t *pp;
5911 
5912 	/* Try hash */
5913 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5914 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5915 		pp = seg->pages + (pfnum - seg->pages_base);
5916 		if (pp->p_pagenum == pfnum)
5917 			return (seg);
5918 	}
5919 
5920 	/* Else Brute force */
5921 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5922 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5923 			return (seg);
5924 		}
5925 	}
5926 	return ((struct memseg *)NULL);
5927 }
5928 
5929 /*
5930  * Given a page and a count return the page struct that is
5931  * n structs away from the current one in the global page
5932  * list.
5933  *
5934  * This function wraps to the first page upon
5935  * reaching the end of the memseg list.
5936  */
5937 page_t *
5938 page_nextn(page_t *pp, ulong_t n)
5939 {
5940 	struct memseg *seg;
5941 	page_t *ppn;
5942 	vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5943 
5944 	ASSERT(vc != NULL);
5945 
5946 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5947 	    (seg->pages_base == seg->pages_end) ||
5948 	    !(pp >= seg->pages && pp < seg->epages)) {
5949 
5950 		for (seg = memsegs; seg; seg = seg->next) {
5951 			if (pp >= seg->pages && pp < seg->epages)
5952 				break;
5953 		}
5954 
5955 		if (seg == NULL) {
5956 			/* Memory delete got in, return something valid. */
5957 			/* TODO: fix me. */
5958 			seg = memsegs;
5959 			pp = seg->pages;
5960 		}
5961 	}
5962 
5963 	/* check for wraparound - possible if n is large */
5964 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5965 		n -= seg->epages - pp;
5966 		seg = seg->next;
5967 		if (seg == NULL)
5968 			seg = memsegs;
5969 		pp = seg->pages;
5970 	}
5971 	vc->vc_pnext_memseg = seg;
5972 	return (ppn);
5973 }
5974 
5975 /*
5976  * Initialize for a loop using page_next_scan_large().
5977  */
5978 page_t *
5979 page_next_scan_init(void **cookie)
5980 {
5981 	ASSERT(cookie != NULL);
5982 	*cookie = (void *)memsegs;
5983 	return ((page_t *)memsegs->pages);
5984 }
5985 
5986 /*
5987  * Return the next page in a scan of page_t's, assuming we want
5988  * to skip over sub-pages within larger page sizes.
5989  *
5990  * The cookie is used to keep track of the current memseg.
5991  */
5992 page_t *
5993 page_next_scan_large(
5994 	page_t		*pp,
5995 	ulong_t		*n,
5996 	void		**cookie)
5997 {
5998 	struct memseg	*seg = (struct memseg *)*cookie;
5999 	page_t		*new_pp;
6000 	ulong_t		cnt;
6001 	pfn_t		pfn;
6002 
6003 
6004 	/*
6005 	 * get the count of page_t's to skip based on the page size
6006 	 */
6007 	ASSERT(pp != NULL);
6008 	if (pp->p_szc == 0) {
6009 		cnt = 1;
6010 	} else {
6011 		pfn = page_pptonum(pp);
6012 		cnt = page_get_pagecnt(pp->p_szc);
6013 		cnt -= pfn & (cnt - 1);
6014 	}
6015 	*n += cnt;
6016 	new_pp = pp + cnt;
6017 
6018 	/*
6019 	 * Catch if we went past the end of the current memory segment. If so,
6020 	 * just move to the next segment with pages.
6021 	 */
6022 	if (new_pp >= seg->epages) {
6023 		do {
6024 			seg = seg->next;
6025 			if (seg == NULL)
6026 				seg = memsegs;
6027 		} while (seg->pages == seg->epages);
6028 		new_pp = seg->pages;
6029 		*cookie = (void *)seg;
6030 	}
6031 
6032 	return (new_pp);
6033 }
6034 
6035 
6036 /*
6037  * Returns next page in list. Note: this function wraps
6038  * to the first page in the list upon reaching the end
6039  * of the list. Callers should be aware of this fact.
6040  */
6041 
6042 /* We should change this be a #define */
6043 
6044 page_t *
6045 page_next(page_t *pp)
6046 {
6047 	return (page_nextn(pp, 1));
6048 }
6049 
6050 page_t *
6051 page_first()
6052 {
6053 	return ((page_t *)memsegs->pages);
6054 }
6055 
6056 
6057 /*
6058  * This routine is called at boot with the initial memory configuration
6059  * and when memory is added or removed.
6060  */
6061 void
6062 build_pfn_hash()
6063 {
6064 	pfn_t cur;
6065 	pgcnt_t index;
6066 	struct memseg *pseg;
6067 	int	i;
6068 
6069 	/*
6070 	 * Clear memseg_hash array.
6071 	 * Since memory add/delete is designed to operate concurrently
6072 	 * with normal operation, the hash rebuild must be able to run
6073 	 * concurrently with page_numtopp_nolock(). To support this
6074 	 * functionality, assignments to memseg_hash array members must
6075 	 * be done atomically.
6076 	 *
6077 	 * NOTE: bzero() does not currently guarantee this for kernel
6078 	 * threads, and cannot be used here.
6079 	 */
6080 	for (i = 0; i < N_MEM_SLOTS; i++)
6081 		memseg_hash[i] = NULL;
6082 
6083 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6084 
6085 	/*
6086 	 * Physmax is the last valid pfn.
6087 	 */
6088 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6089 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6090 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6091 		cur = pseg->pages_base;
6092 		do {
6093 			if (index >= N_MEM_SLOTS)
6094 				index = MEMSEG_PFN_HASH(cur);
6095 
6096 			if (memseg_hash[index] == NULL ||
6097 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6098 				memseg_hash[index] = pseg;
6099 				hat_kpm_mseghash_update(index, pseg);
6100 			}
6101 			cur += mhash_per_slot;
6102 			index++;
6103 		} while (cur < pseg->pages_end);
6104 	}
6105 }
6106 
6107 /*
6108  * Return the pagenum for the pp
6109  */
6110 pfn_t
6111 page_pptonum(page_t *pp)
6112 {
6113 	return (pp->p_pagenum);
6114 }
6115 
6116 /*
6117  * interface to the referenced and modified etc bits
6118  * in the PSM part of the page struct
6119  * when no locking is desired.
6120  */
6121 void
6122 page_set_props(page_t *pp, uint_t flags)
6123 {
6124 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6125 	pp->p_nrm |= (uchar_t)flags;
6126 }
6127 
6128 void
6129 page_clr_all_props(page_t *pp)
6130 {
6131 	pp->p_nrm = 0;
6132 }
6133 
6134 /*
6135  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6136  */
6137 int
6138 page_clear_lck_cow(page_t *pp, int adjust)
6139 {
6140 	int	f_amount;
6141 
6142 	ASSERT(PAGE_EXCL(pp));
6143 
6144 	/*
6145 	 * The page_struct_lock need not be acquired here since
6146 	 * we require the caller hold the page exclusively locked.
6147 	 */
6148 	f_amount = 0;
6149 	if (pp->p_lckcnt) {
6150 		f_amount = 1;
6151 		pp->p_lckcnt = 0;
6152 	}
6153 	if (pp->p_cowcnt) {
6154 		f_amount += pp->p_cowcnt;
6155 		pp->p_cowcnt = 0;
6156 	}
6157 
6158 	if (adjust && f_amount) {
6159 		mutex_enter(&freemem_lock);
6160 		availrmem += f_amount;
6161 		mutex_exit(&freemem_lock);
6162 	}
6163 
6164 	return (f_amount);
6165 }
6166 
6167 /*
6168  * The following functions is called from free_vp_pages()
6169  * for an inexact estimate of a newly free'd page...
6170  */
6171 ulong_t
6172 page_share_cnt(page_t *pp)
6173 {
6174 	return (hat_page_getshare(pp));
6175 }
6176 
6177 int
6178 page_isshared(page_t *pp)
6179 {
6180 	return (hat_page_getshare(pp) > 1);
6181 }
6182 
6183 int
6184 page_isfree(page_t *pp)
6185 {
6186 	return (PP_ISFREE(pp));
6187 }
6188 
6189 int
6190 page_isref(page_t *pp)
6191 {
6192 	return (hat_page_getattr(pp, P_REF));
6193 }
6194 
6195 int
6196 page_ismod(page_t *pp)
6197 {
6198 	return (hat_page_getattr(pp, P_MOD));
6199 }
6200 
6201 /*
6202  * The following code all currently relates to the page capture logic:
6203  *
6204  * This logic is used for cases where there is a desire to claim a certain
6205  * physical page in the system for the caller.  As it may not be possible
6206  * to capture the page immediately, the p_toxic bits are used in the page
6207  * structure to indicate that someone wants to capture this page.  When the
6208  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6209  * the page will be made.  If it is successful, the original callers callback
6210  * will be called with the page to do with it what they please.
6211  *
6212  * There is also an async thread which wakes up to attempt to capture
6213  * pages occasionally which have the capture bit set.  All of the pages which
6214  * need to be captured asynchronously have been inserted into the
6215  * page_capture_hash and thus this thread walks that hash list.  Items in the
6216  * hash have an expiration time so this thread handles that as well by removing
6217  * the item from the hash if it has expired.
6218  *
6219  * Some important things to note are:
6220  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6221  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6222  *   to set and clear this bit, and while the lock is held is the only time
6223  *   you can add or remove an entry from the hash.
6224  * - the PR_CAPTURE bit can only be set and cleared while holding the
6225  *   page_capture_hash_head.pchh_mutex
6226  * - the t_flag field of the thread struct is used with the T_CAPTURING
6227  *   flag to prevent recursion while dealing with large pages.
6228  * - pages which need to be retired never expire on the page_capture_hash.
6229  */
6230 
6231 static void page_capture_thread(void);
6232 static kthread_t *pc_thread_id;
6233 kcondvar_t pc_cv;
6234 static kmutex_t pc_thread_mutex;
6235 static clock_t pc_thread_shortwait;
6236 static clock_t pc_thread_longwait;
6237 static int pc_thread_ism_retry;
6238 
6239 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6240 
6241 /* Note that this is a circular linked list */
6242 typedef struct page_capture_hash_bucket {
6243 	page_t *pp;
6244 	uint_t szc;
6245 	uint_t flags;
6246 	clock_t expires;	/* lbolt at which this request expires. */
6247 	void *datap;		/* Cached data passed in for callback */
6248 	struct page_capture_hash_bucket *next;
6249 	struct page_capture_hash_bucket *prev;
6250 } page_capture_hash_bucket_t;
6251 
6252 /*
6253  * Each hash bucket will have it's own mutex and two lists which are:
6254  * active (0):	represents requests which have not been processed by
6255  *		the page_capture async thread yet.
6256  * walked (1):	represents requests which have been processed by the
6257  *		page_capture async thread within it's given walk of this bucket.
6258  *
6259  * These are all needed so that we can synchronize all async page_capture
6260  * events.  When the async thread moves to a new bucket, it will append the
6261  * walked list to the active list and walk each item one at a time, moving it
6262  * from the active list to the walked list.  Thus if there is an async request
6263  * outstanding for a given page, it will always be in one of the two lists.
6264  * New requests will always be added to the active list.
6265  * If we were not able to capture a page before the request expired, we'd free
6266  * up the request structure which would indicate to page_capture that there is
6267  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6268  * possible.
6269  */
6270 typedef struct page_capture_hash_head {
6271 	kmutex_t pchh_mutex;
6272 	uint_t num_pages;
6273 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6274 } page_capture_hash_head_t;
6275 
6276 #ifdef DEBUG
6277 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6278 #else
6279 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6280 #endif
6281 
6282 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6283 
6284 /* for now use a very simple hash based upon the size of a page struct */
6285 #define	PAGE_CAPTURE_HASH(pp)	\
6286 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6287 
6288 extern pgcnt_t swapfs_minfree;
6289 
6290 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6291 
6292 /*
6293  * a callback function is required for page capture requests.
6294  */
6295 void
6296 page_capture_register_callback(uint_t index, clock_t duration,
6297     int (*cb_func)(page_t *, void *, uint_t))
6298 {
6299 	ASSERT(pc_cb[index].cb_active == 0);
6300 	ASSERT(cb_func != NULL);
6301 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6302 	pc_cb[index].duration = duration;
6303 	pc_cb[index].cb_func = cb_func;
6304 	pc_cb[index].cb_active = 1;
6305 	rw_exit(&pc_cb[index].cb_rwlock);
6306 }
6307 
6308 void
6309 page_capture_unregister_callback(uint_t index)
6310 {
6311 	int i, j;
6312 	struct page_capture_hash_bucket *bp1;
6313 	struct page_capture_hash_bucket *bp2;
6314 	struct page_capture_hash_bucket *head = NULL;
6315 	uint_t flags = (1 << index);
6316 
6317 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6318 	ASSERT(pc_cb[index].cb_active == 1);
6319 	pc_cb[index].duration = 0;	/* Paranoia */
6320 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6321 	pc_cb[index].cb_active = 0;
6322 	rw_exit(&pc_cb[index].cb_rwlock);
6323 
6324 	/*
6325 	 * Just move all the entries to a private list which we can walk
6326 	 * through without the need to hold any locks.
6327 	 * No more requests can get added to the hash lists for this consumer
6328 	 * as the cb_active field for the callback has been cleared.
6329 	 */
6330 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6331 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6332 		for (j = 0; j < 2; j++) {
6333 			bp1 = page_capture_hash[i].lists[j].next;
6334 			/* walk through all but first (sentinel) element */
6335 			while (bp1 != &page_capture_hash[i].lists[j]) {
6336 				bp2 = bp1;
6337 				if (bp2->flags & flags) {
6338 					bp1 = bp2->next;
6339 					bp1->prev = bp2->prev;
6340 					bp2->prev->next = bp1;
6341 					bp2->next = head;
6342 					head = bp2;
6343 					/*
6344 					 * Clear the PR_CAPTURE bit as we
6345 					 * hold appropriate locks here.
6346 					 */
6347 					page_clrtoxic(head->pp, PR_CAPTURE);
6348 					page_capture_hash[i].num_pages--;
6349 					continue;
6350 				}
6351 				bp1 = bp1->next;
6352 			}
6353 		}
6354 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6355 	}
6356 
6357 	while (head != NULL) {
6358 		bp1 = head;
6359 		head = head->next;
6360 		kmem_free(bp1, sizeof (*bp1));
6361 	}
6362 }
6363 
6364 
6365 /*
6366  * Find pp in the active list and move it to the walked list if it
6367  * exists.
6368  * Note that most often pp should be at the front of the active list
6369  * as it is currently used and thus there is no other sort of optimization
6370  * being done here as this is a linked list data structure.
6371  * Returns 1 on successful move or 0 if page could not be found.
6372  */
6373 static int
6374 page_capture_move_to_walked(page_t *pp)
6375 {
6376 	page_capture_hash_bucket_t *bp;
6377 	int index;
6378 
6379 	index = PAGE_CAPTURE_HASH(pp);
6380 
6381 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6382 	bp = page_capture_hash[index].lists[0].next;
6383 	while (bp != &page_capture_hash[index].lists[0]) {
6384 		if (bp->pp == pp) {
6385 			/* Remove from old list */
6386 			bp->next->prev = bp->prev;
6387 			bp->prev->next = bp->next;
6388 
6389 			/* Add to new list */
6390 			bp->next = page_capture_hash[index].lists[1].next;
6391 			bp->prev = &page_capture_hash[index].lists[1];
6392 			page_capture_hash[index].lists[1].next = bp;
6393 			bp->next->prev = bp;
6394 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6395 
6396 			return (1);
6397 		}
6398 		bp = bp->next;
6399 	}
6400 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6401 	return (0);
6402 }
6403 
6404 /*
6405  * Add a new entry to the page capture hash.  The only case where a new
6406  * entry is not added is when the page capture consumer is no longer registered.
6407  * In this case, we'll silently not add the page to the hash.  We know that
6408  * page retire will always be registered for the case where we are currently
6409  * unretiring a page and thus there are no conflicts.
6410  */
6411 static void
6412 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6413 {
6414 	page_capture_hash_bucket_t *bp1;
6415 	page_capture_hash_bucket_t *bp2;
6416 	int index;
6417 	int cb_index;
6418 	int i;
6419 #ifdef DEBUG
6420 	page_capture_hash_bucket_t *tp1;
6421 	int l;
6422 #endif
6423 
6424 	ASSERT(!(flags & CAPTURE_ASYNC));
6425 
6426 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6427 
6428 	bp1->pp = pp;
6429 	bp1->szc = szc;
6430 	bp1->flags = flags;
6431 	bp1->datap = datap;
6432 
6433 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6434 		if ((flags >> cb_index) & 1) {
6435 			break;
6436 		}
6437 	}
6438 
6439 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6440 
6441 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6442 	if (pc_cb[cb_index].cb_active) {
6443 		if (pc_cb[cb_index].duration == -1) {
6444 			bp1->expires = (clock_t)-1;
6445 		} else {
6446 			bp1->expires = lbolt + pc_cb[cb_index].duration;
6447 		}
6448 	} else {
6449 		/* There's no callback registered so don't add to the hash */
6450 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6451 		kmem_free(bp1, sizeof (*bp1));
6452 		return;
6453 	}
6454 
6455 	index = PAGE_CAPTURE_HASH(pp);
6456 
6457 	/*
6458 	 * Only allow capture flag to be modified under this mutex.
6459 	 * Prevents multiple entries for same page getting added.
6460 	 */
6461 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6462 
6463 	/*
6464 	 * if not already on the hash, set capture bit and add to the hash
6465 	 */
6466 	if (!(pp->p_toxic & PR_CAPTURE)) {
6467 #ifdef DEBUG
6468 		/* Check for duplicate entries */
6469 		for (l = 0; l < 2; l++) {
6470 			tp1 = page_capture_hash[index].lists[l].next;
6471 			while (tp1 != &page_capture_hash[index].lists[l]) {
6472 				if (tp1->pp == pp) {
6473 					panic("page pp 0x%p already on hash "
6474 					    "at 0x%p\n", pp, tp1);
6475 				}
6476 				tp1 = tp1->next;
6477 			}
6478 		}
6479 
6480 #endif
6481 		page_settoxic(pp, PR_CAPTURE);
6482 		bp1->next = page_capture_hash[index].lists[0].next;
6483 		bp1->prev = &page_capture_hash[index].lists[0];
6484 		bp1->next->prev = bp1;
6485 		page_capture_hash[index].lists[0].next = bp1;
6486 		page_capture_hash[index].num_pages++;
6487 		if (flags & CAPTURE_RETIRE) {
6488 			page_retire_incr_pend_count();
6489 		}
6490 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6491 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6492 		cv_signal(&pc_cv);
6493 		return;
6494 	}
6495 
6496 	/*
6497 	 * A page retire request will replace any other request.
6498 	 * A second physmem request which is for a different process than
6499 	 * the currently registered one will be dropped as there is
6500 	 * no way to hold the private data for both calls.
6501 	 * In the future, once there are more callers, this will have to
6502 	 * be worked out better as there needs to be private storage for
6503 	 * at least each type of caller (maybe have datap be an array of
6504 	 * *void's so that we can index based upon callers index).
6505 	 */
6506 
6507 	/* walk hash list to update expire time */
6508 	for (i = 0; i < 2; i++) {
6509 		bp2 = page_capture_hash[index].lists[i].next;
6510 		while (bp2 != &page_capture_hash[index].lists[i]) {
6511 			if (bp2->pp == pp) {
6512 				if (flags & CAPTURE_RETIRE) {
6513 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6514 						page_retire_incr_pend_count();
6515 						bp2->flags = flags;
6516 						bp2->expires = bp1->expires;
6517 						bp2->datap = datap;
6518 					}
6519 				} else {
6520 					ASSERT(flags & CAPTURE_PHYSMEM);
6521 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6522 					    (datap == bp2->datap)) {
6523 						bp2->expires = bp1->expires;
6524 					}
6525 				}
6526 				mutex_exit(&page_capture_hash[index].
6527 				    pchh_mutex);
6528 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6529 				kmem_free(bp1, sizeof (*bp1));
6530 				return;
6531 			}
6532 			bp2 = bp2->next;
6533 		}
6534 	}
6535 
6536 	/*
6537 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6538 	 * and thus it either has to be set or not set and can't change
6539 	 * while holding the mutex above.
6540 	 */
6541 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", pp);
6542 }
6543 
6544 /*
6545  * We have a page in our hands, lets try and make it ours by turning
6546  * it into a clean page like it had just come off the freelists.
6547  *
6548  * Returns 0 on success, with the page still EXCL locked.
6549  * On failure, the page will be unlocked, and returns EAGAIN
6550  */
6551 static int
6552 page_capture_clean_page(page_t *pp)
6553 {
6554 	page_t *newpp;
6555 	int skip_unlock = 0;
6556 	spgcnt_t count;
6557 	page_t *tpp;
6558 	int ret = 0;
6559 	int extra;
6560 
6561 	ASSERT(PAGE_EXCL(pp));
6562 	ASSERT(!PP_RETIRED(pp));
6563 	ASSERT(curthread->t_flag & T_CAPTURING);
6564 
6565 	if (PP_ISFREE(pp)) {
6566 		if (!page_reclaim(pp, NULL)) {
6567 			skip_unlock = 1;
6568 			ret = EAGAIN;
6569 			goto cleanup;
6570 		}
6571 		ASSERT(pp->p_szc == 0);
6572 		if (pp->p_vnode != NULL) {
6573 			/*
6574 			 * Since this page came from the
6575 			 * cachelist, we must destroy the
6576 			 * old vnode association.
6577 			 */
6578 			page_hashout(pp, NULL);
6579 		}
6580 		goto cleanup;
6581 	}
6582 
6583 	/*
6584 	 * If we know page_relocate will fail, skip it
6585 	 * It could still fail due to a UE on another page but we
6586 	 * can't do anything about that.
6587 	 */
6588 	if (pp->p_toxic & PR_UE) {
6589 		goto skip_relocate;
6590 	}
6591 
6592 	/*
6593 	 * It's possible that pages can not have a vnode as fsflush comes
6594 	 * through and cleans up these pages.  It's ugly but that's how it is.
6595 	 */
6596 	if (pp->p_vnode == NULL) {
6597 		goto skip_relocate;
6598 	}
6599 
6600 	/*
6601 	 * Page was not free, so lets try to relocate it.
6602 	 * page_relocate only works with root pages, so if this is not a root
6603 	 * page, we need to demote it to try and relocate it.
6604 	 * Unfortunately this is the best we can do right now.
6605 	 */
6606 	newpp = NULL;
6607 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6608 		if (page_try_demote_pages(pp) == 0) {
6609 			ret = EAGAIN;
6610 			goto cleanup;
6611 		}
6612 	}
6613 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6614 	if (ret == 0) {
6615 		page_t *npp;
6616 		/* unlock the new page(s) */
6617 		while (count-- > 0) {
6618 			ASSERT(newpp != NULL);
6619 			npp = newpp;
6620 			page_sub(&newpp, npp);
6621 			page_unlock(npp);
6622 		}
6623 		ASSERT(newpp == NULL);
6624 		/*
6625 		 * Check to see if the page we have is too large.
6626 		 * If so, demote it freeing up the extra pages.
6627 		 */
6628 		if (pp->p_szc > 0) {
6629 			/* For now demote extra pages to szc == 0 */
6630 			extra = page_get_pagecnt(pp->p_szc) - 1;
6631 			while (extra > 0) {
6632 				tpp = pp->p_next;
6633 				page_sub(&pp, tpp);
6634 				tpp->p_szc = 0;
6635 				page_free(tpp, 1);
6636 				extra--;
6637 			}
6638 			/* Make sure to set our page to szc 0 as well */
6639 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6640 			pp->p_szc = 0;
6641 		}
6642 		goto cleanup;
6643 	} else if (ret == EIO) {
6644 		ret = EAGAIN;
6645 		goto cleanup;
6646 	} else {
6647 		/*
6648 		 * Need to reset return type as we failed to relocate the page
6649 		 * but that does not mean that some of the next steps will not
6650 		 * work.
6651 		 */
6652 		ret = 0;
6653 	}
6654 
6655 skip_relocate:
6656 
6657 	if (pp->p_szc > 0) {
6658 		if (page_try_demote_pages(pp) == 0) {
6659 			ret = EAGAIN;
6660 			goto cleanup;
6661 		}
6662 	}
6663 
6664 	ASSERT(pp->p_szc == 0);
6665 
6666 	if (hat_ismod(pp)) {
6667 		ret = EAGAIN;
6668 		goto cleanup;
6669 	}
6670 	if (PP_ISKAS(pp)) {
6671 		ret = EAGAIN;
6672 		goto cleanup;
6673 	}
6674 	if (pp->p_lckcnt || pp->p_cowcnt) {
6675 		ret = EAGAIN;
6676 		goto cleanup;
6677 	}
6678 
6679 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6680 	ASSERT(!hat_page_is_mapped(pp));
6681 
6682 	if (hat_ismod(pp)) {
6683 		/*
6684 		 * This is a semi-odd case as the page is now modified but not
6685 		 * mapped as we just unloaded the mappings above.
6686 		 */
6687 		ret = EAGAIN;
6688 		goto cleanup;
6689 	}
6690 	if (pp->p_vnode != NULL) {
6691 		page_hashout(pp, NULL);
6692 	}
6693 
6694 	/*
6695 	 * At this point, the page should be in a clean state and
6696 	 * we can do whatever we want with it.
6697 	 */
6698 
6699 cleanup:
6700 	if (ret != 0) {
6701 		if (!skip_unlock) {
6702 			page_unlock(pp);
6703 		}
6704 	} else {
6705 		ASSERT(pp->p_szc == 0);
6706 		ASSERT(PAGE_EXCL(pp));
6707 
6708 		pp->p_next = pp;
6709 		pp->p_prev = pp;
6710 	}
6711 	return (ret);
6712 }
6713 
6714 /*
6715  * Various callers of page_trycapture() can have different restrictions upon
6716  * what memory they have access to.
6717  * Returns 0 on success, with the following error codes on failure:
6718  *      EPERM - The requested page is long term locked, and thus repeated
6719  *              requests to capture this page will likely fail.
6720  *      ENOMEM - There was not enough free memory in the system to safely
6721  *              map the requested page.
6722  *      ENOENT - The requested page was inside the kernel cage, and the
6723  *              PHYSMEM_CAGE flag was not set.
6724  */
6725 int
6726 page_capture_pre_checks(page_t *pp, uint_t flags)
6727 {
6728 #if defined(__sparc)
6729 	extern struct vnode prom_ppages;
6730 #endif /* __sparc */
6731 
6732 	ASSERT(pp != NULL);
6733 
6734 	/* only physmem currently has restrictions */
6735 	if (!(flags & CAPTURE_PHYSMEM)) {
6736 		return (0);
6737 	}
6738 
6739 #if defined(__sparc)
6740 	if (pp->p_vnode == &prom_ppages) {
6741 		return (EPERM);
6742 	}
6743 
6744 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE)) {
6745 		return (ENOENT);
6746 	}
6747 
6748 	if (PP_ISNORELOCKERNEL(pp)) {
6749 		return (EPERM);
6750 	}
6751 #else
6752 	if (PP_ISKAS(pp)) {
6753 		return (EPERM);
6754 	}
6755 #endif /* __sparc */
6756 
6757 	if (availrmem < swapfs_minfree) {
6758 		/*
6759 		 * We won't try to capture this page as we are
6760 		 * running low on memory.
6761 		 */
6762 		return (ENOMEM);
6763 	}
6764 	return (0);
6765 }
6766 
6767 /*
6768  * Once we have a page in our mits, go ahead and complete the capture
6769  * operation.
6770  * Returns 1 on failure where page is no longer needed
6771  * Returns 0 on success
6772  * Returns -1 if there was a transient failure.
6773  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6774  */
6775 int
6776 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6777 {
6778 	int cb_index;
6779 	int ret = 0;
6780 	page_capture_hash_bucket_t *bp1;
6781 	page_capture_hash_bucket_t *bp2;
6782 	int index;
6783 	int found = 0;
6784 	int i;
6785 
6786 	ASSERT(PAGE_EXCL(pp));
6787 	ASSERT(curthread->t_flag & T_CAPTURING);
6788 
6789 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6790 		if ((flags >> cb_index) & 1) {
6791 			break;
6792 		}
6793 	}
6794 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6795 
6796 	/*
6797 	 * Remove the entry from the page_capture hash, but don't free it yet
6798 	 * as we may need to put it back.
6799 	 * Since we own the page at this point in time, we should find it
6800 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6801 	 * that the page_capture_async() thread decided that this request
6802 	 * had expired, in which case we just continue on.
6803 	 */
6804 	if (flags & CAPTURE_ASYNC) {
6805 
6806 		index = PAGE_CAPTURE_HASH(pp);
6807 
6808 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6809 		for (i = 0; i < 2 && !found; i++) {
6810 			bp1 = page_capture_hash[index].lists[i].next;
6811 			while (bp1 != &page_capture_hash[index].lists[i]) {
6812 				if (bp1->pp == pp) {
6813 					bp1->next->prev = bp1->prev;
6814 					bp1->prev->next = bp1->next;
6815 					page_capture_hash[index].num_pages--;
6816 					page_clrtoxic(pp, PR_CAPTURE);
6817 					found = 1;
6818 					break;
6819 				}
6820 				bp1 = bp1->next;
6821 			}
6822 		}
6823 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6824 	}
6825 
6826 	/* Synchronize with the unregister func. */
6827 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6828 	if (!pc_cb[cb_index].cb_active) {
6829 		page_free(pp, 1);
6830 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6831 		if (found) {
6832 			kmem_free(bp1, sizeof (*bp1));
6833 		}
6834 		return (1);
6835 	}
6836 
6837 	/*
6838 	 * We need to remove the entry from the page capture hash and turn off
6839 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6840 	 * the entry here, and then based upon the return value, cleanup
6841 	 * appropriately or re-add it to the hash, making sure that someone else
6842 	 * hasn't already done so.
6843 	 * It should be rare for the callback to fail and thus it's ok for
6844 	 * the failure path to be a bit complicated as the success path is
6845 	 * cleaner and the locking rules are easier to follow.
6846 	 */
6847 
6848 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6849 
6850 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6851 
6852 	/*
6853 	 * If this was an ASYNC request, we need to cleanup the hash if the
6854 	 * callback was successful or if the request was no longer valid.
6855 	 * For non-ASYNC requests, we return failure to map and the caller
6856 	 * will take care of adding the request to the hash.
6857 	 * Note also that the callback itself is responsible for the page
6858 	 * at this point in time in terms of locking ...  The most common
6859 	 * case for the failure path should just be a page_free.
6860 	 */
6861 	if (ret >= 0) {
6862 		if (found) {
6863 			if (bp1->flags & CAPTURE_RETIRE) {
6864 				page_retire_decr_pend_count();
6865 			}
6866 			kmem_free(bp1, sizeof (*bp1));
6867 		}
6868 		return (ret);
6869 	}
6870 	if (!found) {
6871 		return (ret);
6872 	}
6873 
6874 	ASSERT(flags & CAPTURE_ASYNC);
6875 
6876 	/*
6877 	 * Check for expiration time first as we can just free it up if it's
6878 	 * expired.
6879 	 */
6880 	if (lbolt > bp1->expires && bp1->expires != -1) {
6881 		kmem_free(bp1, sizeof (*bp1));
6882 		return (ret);
6883 	}
6884 
6885 	/*
6886 	 * The callback failed and there used to be an entry in the hash for
6887 	 * this page, so we need to add it back to the hash.
6888 	 */
6889 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6890 	if (!(pp->p_toxic & PR_CAPTURE)) {
6891 		/* just add bp1 back to head of walked list */
6892 		page_settoxic(pp, PR_CAPTURE);
6893 		bp1->next = page_capture_hash[index].lists[1].next;
6894 		bp1->prev = &page_capture_hash[index].lists[1];
6895 		bp1->next->prev = bp1;
6896 		page_capture_hash[index].lists[1].next = bp1;
6897 		page_capture_hash[index].num_pages++;
6898 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6899 		return (ret);
6900 	}
6901 
6902 	/*
6903 	 * Otherwise there was a new capture request added to list
6904 	 * Need to make sure that our original data is represented if
6905 	 * appropriate.
6906 	 */
6907 	for (i = 0; i < 2; i++) {
6908 		bp2 = page_capture_hash[index].lists[i].next;
6909 		while (bp2 != &page_capture_hash[index].lists[i]) {
6910 			if (bp2->pp == pp) {
6911 				if (bp1->flags & CAPTURE_RETIRE) {
6912 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6913 						bp2->szc = bp1->szc;
6914 						bp2->flags = bp1->flags;
6915 						bp2->expires = bp1->expires;
6916 						bp2->datap = bp1->datap;
6917 					}
6918 				} else {
6919 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6920 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6921 						bp2->szc = bp1->szc;
6922 						bp2->flags = bp1->flags;
6923 						bp2->expires = bp1->expires;
6924 						bp2->datap = bp1->datap;
6925 					}
6926 				}
6927 				mutex_exit(&page_capture_hash[index].
6928 				    pchh_mutex);
6929 				kmem_free(bp1, sizeof (*bp1));
6930 				return (ret);
6931 			}
6932 			bp2 = bp2->next;
6933 		}
6934 	}
6935 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", pp);
6936 	/*NOTREACHED*/
6937 }
6938 
6939 /*
6940  * Try to capture the given page for the caller specified in the flags
6941  * parameter.  The page will either be captured and handed over to the
6942  * appropriate callback, or will be queued up in the page capture hash
6943  * to be captured asynchronously.
6944  * If the current request is due to an async capture, the page must be
6945  * exclusively locked before calling this function.
6946  * Currently szc must be 0 but in the future this should be expandable to
6947  * other page sizes.
6948  * Returns 0 on success, with the following error codes on failure:
6949  *      EPERM - The requested page is long term locked, and thus repeated
6950  *              requests to capture this page will likely fail.
6951  *      ENOMEM - There was not enough free memory in the system to safely
6952  *              map the requested page.
6953  *      ENOENT - The requested page was inside the kernel cage, and the
6954  *              CAPTURE_GET_CAGE flag was not set.
6955  *	EAGAIN - The requested page could not be capturead at this point in
6956  *		time but future requests will likely work.
6957  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6958  *		was not set.
6959  */
6960 int
6961 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6962 {
6963 	int ret;
6964 	int cb_index;
6965 
6966 	if (flags & CAPTURE_ASYNC) {
6967 		ASSERT(PAGE_EXCL(pp));
6968 		goto async;
6969 	}
6970 
6971 	/* Make sure there's enough availrmem ... */
6972 	ret = page_capture_pre_checks(pp, flags);
6973 	if (ret != 0) {
6974 		return (ret);
6975 	}
6976 
6977 	if (!page_trylock(pp, SE_EXCL)) {
6978 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6979 			if ((flags >> cb_index) & 1) {
6980 				break;
6981 			}
6982 		}
6983 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6984 		ret = EAGAIN;
6985 		/* Special case for retired pages */
6986 		if (PP_RETIRED(pp)) {
6987 			if (flags & CAPTURE_GET_RETIRED) {
6988 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6989 					/*
6990 					 * Need to set capture bit and add to
6991 					 * hash so that the page will be
6992 					 * retired when freed.
6993 					 */
6994 					page_capture_add_hash(pp, szc,
6995 					    CAPTURE_RETIRE, NULL);
6996 					ret = 0;
6997 					goto own_page;
6998 				}
6999 			} else {
7000 				return (EBUSY);
7001 			}
7002 		}
7003 		page_capture_add_hash(pp, szc, flags, datap);
7004 		return (ret);
7005 	}
7006 
7007 async:
7008 	ASSERT(PAGE_EXCL(pp));
7009 
7010 	/* Need to check for physmem async requests that availrmem is sane */
7011 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7012 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7013 	    (availrmem < swapfs_minfree)) {
7014 		page_unlock(pp);
7015 		return (ENOMEM);
7016 	}
7017 
7018 	ret = page_capture_clean_page(pp);
7019 
7020 	if (ret != 0) {
7021 		/* We failed to get the page, so lets add it to the hash */
7022 		if (!(flags & CAPTURE_ASYNC)) {
7023 			page_capture_add_hash(pp, szc, flags, datap);
7024 		}
7025 		return (ret);
7026 	}
7027 
7028 own_page:
7029 	ASSERT(PAGE_EXCL(pp));
7030 	ASSERT(pp->p_szc == 0);
7031 
7032 	/* Call the callback */
7033 	ret = page_capture_take_action(pp, flags, datap);
7034 
7035 	if (ret == 0) {
7036 		return (0);
7037 	}
7038 
7039 	/*
7040 	 * Note that in the failure cases from page_capture_take_action, the
7041 	 * EXCL lock will have already been dropped.
7042 	 */
7043 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7044 		page_capture_add_hash(pp, szc, flags, datap);
7045 	}
7046 	return (EAGAIN);
7047 }
7048 
7049 int
7050 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7051 {
7052 	int ret;
7053 
7054 	curthread->t_flag |= T_CAPTURING;
7055 	ret = page_itrycapture(pp, szc, flags, datap);
7056 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7057 	return (ret);
7058 }
7059 
7060 /*
7061  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7062  * gets called to try and capture the page.
7063  */
7064 void
7065 page_unlock_capture(page_t *pp)
7066 {
7067 	page_capture_hash_bucket_t *bp;
7068 	int index;
7069 	int i;
7070 	uint_t szc;
7071 	uint_t flags = 0;
7072 	void *datap;
7073 	kmutex_t *mp;
7074 	extern vnode_t retired_pages;
7075 
7076 	/*
7077 	 * We need to protect against a possible deadlock here where we own
7078 	 * the vnode page hash mutex and want to acquire it again as there
7079 	 * are locations in the code, where we unlock a page while holding
7080 	 * the mutex which can lead to the page being captured and eventually
7081 	 * end up here.  As we may be hashing out the old page and hashing into
7082 	 * the retire vnode, we need to make sure we don't own them.
7083 	 * Other callbacks who do hash operations also need to make sure that
7084 	 * before they hashin to a vnode that they do not currently own the
7085 	 * vphm mutex otherwise there will be a panic.
7086 	 */
7087 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7088 		page_unlock_nocapture(pp);
7089 		return;
7090 	}
7091 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7092 		page_unlock_nocapture(pp);
7093 		return;
7094 	}
7095 
7096 	index = PAGE_CAPTURE_HASH(pp);
7097 
7098 	mp = &page_capture_hash[index].pchh_mutex;
7099 	mutex_enter(mp);
7100 	for (i = 0; i < 2; i++) {
7101 		bp = page_capture_hash[index].lists[i].next;
7102 		while (bp != &page_capture_hash[index].lists[i]) {
7103 			if (bp->pp == pp) {
7104 				szc = bp->szc;
7105 				flags = bp->flags | CAPTURE_ASYNC;
7106 				datap = bp->datap;
7107 				mutex_exit(mp);
7108 				(void) page_trycapture(pp, szc, flags, datap);
7109 				return;
7110 			}
7111 			bp = bp->next;
7112 		}
7113 	}
7114 
7115 	/* Failed to find page in hash so clear flags and unlock it. */
7116 	page_clrtoxic(pp, PR_CAPTURE);
7117 	page_unlock(pp);
7118 
7119 	mutex_exit(mp);
7120 }
7121 
7122 void
7123 page_capture_init()
7124 {
7125 	int i;
7126 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7127 		page_capture_hash[i].lists[0].next =
7128 		    &page_capture_hash[i].lists[0];
7129 		page_capture_hash[i].lists[0].prev =
7130 		    &page_capture_hash[i].lists[0];
7131 		page_capture_hash[i].lists[1].next =
7132 		    &page_capture_hash[i].lists[1];
7133 		page_capture_hash[i].lists[1].prev =
7134 		    &page_capture_hash[i].lists[1];
7135 	}
7136 
7137 	pc_thread_shortwait = 23 * hz;
7138 	pc_thread_longwait = 1201 * hz;
7139 	pc_thread_ism_retry = 3;
7140 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7141 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7142 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7143 	    TS_RUN, minclsyspri);
7144 }
7145 
7146 /*
7147  * It is necessary to scrub any failing pages prior to reboot in order to
7148  * prevent a latent error trap from occurring on the next boot.
7149  */
7150 void
7151 page_retire_mdboot()
7152 {
7153 	page_t *pp;
7154 	int i, j;
7155 	page_capture_hash_bucket_t *bp;
7156 
7157 	/* walk lists looking for pages to scrub */
7158 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7159 		if (page_capture_hash[i].num_pages == 0)
7160 			continue;
7161 
7162 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7163 
7164 		for (j = 0; j < 2; j++) {
7165 			bp = page_capture_hash[i].lists[j].next;
7166 			while (bp != &page_capture_hash[i].lists[j]) {
7167 				pp = bp->pp;
7168 				if (!PP_ISKAS(pp) && PP_TOXIC(pp)) {
7169 					pp->p_selock = -1;  /* pacify ASSERTs */
7170 					PP_CLRFREE(pp);
7171 					pagescrub(pp, 0, PAGESIZE);
7172 					pp->p_selock = 0;
7173 				}
7174 				bp = bp->next;
7175 			}
7176 		}
7177 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7178 	}
7179 }
7180 
7181 /*
7182  * Walk the page_capture_hash trying to capture pages and also cleanup old
7183  * entries which have expired.
7184  */
7185 void
7186 page_capture_async()
7187 {
7188 	page_t *pp;
7189 	int i;
7190 	int ret;
7191 	page_capture_hash_bucket_t *bp1, *bp2;
7192 	uint_t szc;
7193 	uint_t flags;
7194 	void *datap;
7195 
7196 	/* If there are outstanding pages to be captured, get to work */
7197 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7198 		if (page_capture_hash[i].num_pages == 0)
7199 			continue;
7200 		/* Append list 1 to list 0 and then walk through list 0 */
7201 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7202 		bp1 = &page_capture_hash[i].lists[1];
7203 		bp2 = bp1->next;
7204 		if (bp1 != bp2) {
7205 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7206 			bp2->prev = &page_capture_hash[i].lists[0];
7207 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7208 			page_capture_hash[i].lists[0].next = bp2;
7209 			bp1->next = bp1;
7210 			bp1->prev = bp1;
7211 		}
7212 
7213 		/* list[1] will be empty now */
7214 
7215 		bp1 = page_capture_hash[i].lists[0].next;
7216 		while (bp1 != &page_capture_hash[i].lists[0]) {
7217 			/* Check expiration time */
7218 			if ((lbolt > bp1->expires && bp1->expires != -1) ||
7219 			    page_deleted(bp1->pp)) {
7220 				page_capture_hash[i].lists[0].next = bp1->next;
7221 				bp1->next->prev =
7222 				    &page_capture_hash[i].lists[0];
7223 				page_capture_hash[i].num_pages--;
7224 
7225 				/*
7226 				 * We can safely remove the PR_CAPTURE bit
7227 				 * without holding the EXCL lock on the page
7228 				 * as the PR_CAPTURE bit requres that the
7229 				 * page_capture_hash[].pchh_mutex be held
7230 				 * to modify it.
7231 				 */
7232 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7233 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7234 				kmem_free(bp1, sizeof (*bp1));
7235 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7236 				bp1 = page_capture_hash[i].lists[0].next;
7237 				continue;
7238 			}
7239 			pp = bp1->pp;
7240 			szc = bp1->szc;
7241 			flags = bp1->flags;
7242 			datap = bp1->datap;
7243 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7244 			if (page_trylock(pp, SE_EXCL)) {
7245 				ret = page_trycapture(pp, szc,
7246 				    flags | CAPTURE_ASYNC, datap);
7247 			} else {
7248 				ret = 1;	/* move to walked hash */
7249 			}
7250 
7251 			if (ret != 0) {
7252 				/* Move to walked hash */
7253 				(void) page_capture_move_to_walked(pp);
7254 			}
7255 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7256 			bp1 = page_capture_hash[i].lists[0].next;
7257 		}
7258 
7259 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7260 	}
7261 }
7262 
7263 /*
7264  * This function is called by the page_capture_thread, and is needed in
7265  * in order to initiate aio cleanup, so that pages used in aio
7266  * will be unlocked and subsequently retired by page_capture_thread.
7267  */
7268 static int
7269 do_aio_cleanup(void)
7270 {
7271 	proc_t *procp;
7272 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7273 	int cleaned = 0;
7274 
7275 	if (modload("sys", "kaio") == -1) {
7276 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7277 		return (0);
7278 	}
7279 	/*
7280 	 * We use the aio_cleanup_dr_delete_memory function to
7281 	 * initiate the actual clean up; this function will wake
7282 	 * up the per-process aio_cleanup_thread.
7283 	 */
7284 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7285 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7286 	if (aio_cleanup_dr_delete_memory == NULL) {
7287 		cmn_err(CE_WARN,
7288 	    "aio_cleanup_dr_delete_memory not found in kaio");
7289 		return (0);
7290 	}
7291 	mutex_enter(&pidlock);
7292 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7293 		mutex_enter(&procp->p_lock);
7294 		if (procp->p_aio != NULL) {
7295 			/* cleanup proc's outstanding kaio */
7296 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7297 		}
7298 		mutex_exit(&procp->p_lock);
7299 	}
7300 	mutex_exit(&pidlock);
7301 	return (cleaned);
7302 }
7303 
7304 /*
7305  * helper function for page_capture_thread
7306  */
7307 static void
7308 page_capture_handle_outstanding(void)
7309 {
7310 	extern size_t spt_used;
7311 	int ntry;
7312 
7313 	if (!page_retire_pend_count()) {
7314 		/*
7315 		 * Do we really want to be this aggressive
7316 		 * for things other than page_retire?
7317 		 * Maybe have a counter for each callback
7318 		 * type to guide how aggressive we should
7319 		 * be here.  Thus if there's at least one
7320 		 * page for page_retire we go ahead and reap
7321 		 * like this.
7322 		 */
7323 		kmem_reap();
7324 		seg_preap();
7325 		page_capture_async();
7326 	} else {
7327 		/*
7328 		 * There are pages pending retirement, so
7329 		 * we reap prior to attempting to capture.
7330 		 */
7331 		kmem_reap();
7332 		/*
7333 		 * When ISM is in use, we need to disable and
7334 		 * purge the seg_pcache, and initiate aio
7335 		 * cleanup in order to release page locks and
7336 		 * subsquently retire pages in need of
7337 		 * retirement.
7338 		 */
7339 		if (spt_used) {
7340 			/* disable and purge seg_pcache */
7341 			(void) seg_p_disable();
7342 			for (ntry = 0; ntry < pc_thread_ism_retry; ntry++) {
7343 				if (!page_retire_pend_count())
7344 					break;
7345 				if (do_aio_cleanup()) {
7346 					/*
7347 					 * allow the apps cleanup threads
7348 					 * to run
7349 					 */
7350 					delay(pc_thread_shortwait);
7351 				}
7352 				page_capture_async();
7353 			}
7354 			/* reenable seg_pcache */
7355 			seg_p_enable();
7356 		} else {
7357 			seg_preap();
7358 			page_capture_async();
7359 		}
7360 	}
7361 }
7362 
7363 /*
7364  * The page_capture_thread loops forever, looking to see if there are
7365  * pages still waiting to be captured.
7366  */
7367 static void
7368 page_capture_thread(void)
7369 {
7370 	callb_cpr_t c;
7371 	int outstanding;
7372 	int i;
7373 
7374 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7375 
7376 	mutex_enter(&pc_thread_mutex);
7377 	for (;;) {
7378 		outstanding = 0;
7379 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++)
7380 			outstanding += page_capture_hash[i].num_pages;
7381 		if (outstanding) {
7382 			page_capture_handle_outstanding();
7383 			CALLB_CPR_SAFE_BEGIN(&c);
7384 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7385 			    lbolt + pc_thread_shortwait);
7386 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7387 		} else {
7388 			CALLB_CPR_SAFE_BEGIN(&c);
7389 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7390 			    lbolt + pc_thread_longwait);
7391 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7392 		}
7393 	}
7394 	/*NOTREACHED*/
7395 }
7396