xref: /titanic_50/usr/src/uts/common/vm/vm_as.c (revision 3d729aecc03ea6ebb9bd5d56b8dccd24f57daa41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2015, Joyent, Inc.  All rights reserved.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 /*
41  * VM - address spaces.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/sysmacros.h>
51 #include <sys/cpuvar.h>
52 #include <sys/sysinfo.h>
53 #include <sys/kmem.h>
54 #include <sys/vnode.h>
55 #include <sys/vmsystm.h>
56 #include <sys/cmn_err.h>
57 #include <sys/debug.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/vtrace.h>
60 
61 #include <vm/hat.h>
62 #include <vm/xhat.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_vn.h>
66 #include <vm/seg_dev.h>
67 #include <vm/seg_kmem.h>
68 #include <vm/seg_map.h>
69 #include <vm/seg_spt.h>
70 #include <vm/page.h>
71 
72 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */
73 
74 static struct kmem_cache *as_cache;
75 
76 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t);
77 static void as_clearwatchprot(struct as *, caddr_t, size_t);
78 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
79 
80 
81 /*
82  * Verifying the segment lists is very time-consuming; it may not be
83  * desirable always to define VERIFY_SEGLIST when DEBUG is set.
84  */
85 #ifdef DEBUG
86 #define	VERIFY_SEGLIST
87 int do_as_verify = 0;
88 #endif
89 
90 /*
91  * Allocate a new callback data structure entry and fill in the events of
92  * interest, the address range of interest, and the callback argument.
93  * Link the entry on the as->a_callbacks list. A callback entry for the
94  * entire address space may be specified with vaddr = 0 and size = -1.
95  *
96  * CALLERS RESPONSIBILITY: If not calling from within the process context for
97  * the specified as, the caller must guarantee persistence of the specified as
98  * for the duration of this function (eg. pages being locked within the as
99  * will guarantee persistence).
100  */
101 int
102 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events,
103 		caddr_t vaddr, size_t size, int sleepflag)
104 {
105 	struct as_callback 	*current_head, *cb;
106 	caddr_t 		saddr;
107 	size_t 			rsize;
108 
109 	/* callback function and an event are mandatory */
110 	if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0))
111 		return (EINVAL);
112 
113 	/* Adding a callback after as_free has been called is not allowed */
114 	if (as == &kas)
115 		return (ENOMEM);
116 
117 	/*
118 	 * vaddr = 0 and size = -1 is used to indicate that the callback range
119 	 * is the entire address space so no rounding is done in that case.
120 	 */
121 	if (size != -1) {
122 		saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
123 		rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) -
124 		    (size_t)saddr;
125 		/* check for wraparound */
126 		if (saddr + rsize < saddr)
127 			return (ENOMEM);
128 	} else {
129 		if (vaddr != 0)
130 			return (EINVAL);
131 		saddr = vaddr;
132 		rsize = size;
133 	}
134 
135 	/* Allocate and initialize a callback entry */
136 	cb = kmem_zalloc(sizeof (struct as_callback), sleepflag);
137 	if (cb == NULL)
138 		return (EAGAIN);
139 
140 	cb->ascb_func = cb_func;
141 	cb->ascb_arg = arg;
142 	cb->ascb_events = events;
143 	cb->ascb_saddr = saddr;
144 	cb->ascb_len = rsize;
145 
146 	/* Add the entry to the list */
147 	mutex_enter(&as->a_contents);
148 	current_head = as->a_callbacks;
149 	as->a_callbacks = cb;
150 	cb->ascb_next = current_head;
151 
152 	/*
153 	 * The call to this function may lose in a race with
154 	 * a pertinent event - eg. a thread does long term memory locking
155 	 * but before the callback is added another thread executes as_unmap.
156 	 * A broadcast here resolves that.
157 	 */
158 	if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) {
159 		AS_CLRUNMAPWAIT(as);
160 		cv_broadcast(&as->a_cv);
161 	}
162 
163 	mutex_exit(&as->a_contents);
164 	return (0);
165 }
166 
167 /*
168  * Search the callback list for an entry which pertains to arg.
169  *
170  * This is called from within the client upon completion of the callback.
171  * RETURN VALUES:
172  *	AS_CALLBACK_DELETED  (callback entry found and deleted)
173  *	AS_CALLBACK_NOTFOUND (no callback entry found - this is ok)
174  *	AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this
175  *			entry will be made in as_do_callbacks)
176  *
177  * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED
178  * set, it indicates that as_do_callbacks is processing this entry.  The
179  * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made
180  * to unblock as_do_callbacks, in case it is blocked.
181  *
182  * CALLERS RESPONSIBILITY: If not calling from within the process context for
183  * the specified as, the caller must guarantee persistence of the specified as
184  * for the duration of this function (eg. pages being locked within the as
185  * will guarantee persistence).
186  */
187 uint_t
188 as_delete_callback(struct as *as, void *arg)
189 {
190 	struct as_callback **prevcb = &as->a_callbacks;
191 	struct as_callback *cb;
192 	uint_t rc = AS_CALLBACK_NOTFOUND;
193 
194 	mutex_enter(&as->a_contents);
195 	for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) {
196 		if (cb->ascb_arg != arg)
197 			continue;
198 
199 		/*
200 		 * If the events indicate AS_CALLBACK_CALLED, just clear
201 		 * AS_ALL_EVENT in the events field and wakeup the thread
202 		 * that may be waiting in as_do_callbacks.  as_do_callbacks
203 		 * will take care of removing this entry from the list.  In
204 		 * that case, return AS_CALLBACK_DELETE_DEFERRED.  Otherwise
205 		 * (AS_CALLBACK_CALLED not set), just remove it from the
206 		 * list, return the memory and return AS_CALLBACK_DELETED.
207 		 */
208 		if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) {
209 			/* leave AS_CALLBACK_CALLED */
210 			cb->ascb_events &= ~AS_ALL_EVENT;
211 			rc = AS_CALLBACK_DELETE_DEFERRED;
212 			cv_broadcast(&as->a_cv);
213 		} else {
214 			*prevcb = cb->ascb_next;
215 			kmem_free(cb, sizeof (struct as_callback));
216 			rc = AS_CALLBACK_DELETED;
217 		}
218 		break;
219 	}
220 	mutex_exit(&as->a_contents);
221 	return (rc);
222 }
223 
224 /*
225  * Searches the as callback list for a matching entry.
226  * Returns a pointer to the first matching callback, or NULL if
227  * nothing is found.
228  * This function never sleeps so it is ok to call it with more
229  * locks held but the (required) a_contents mutex.
230  *
231  * See also comment on as_do_callbacks below.
232  */
233 static struct as_callback *
234 as_find_callback(struct as *as, uint_t events, caddr_t event_addr,
235 			size_t event_len)
236 {
237 	struct as_callback	*cb;
238 
239 	ASSERT(MUTEX_HELD(&as->a_contents));
240 	for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) {
241 		/*
242 		 * If the callback has not already been called, then
243 		 * check if events or address range pertains.  An event_len
244 		 * of zero means do an unconditional callback.
245 		 */
246 		if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) ||
247 		    ((event_len != 0) && (((cb->ascb_events & events) == 0) ||
248 		    (event_addr + event_len < cb->ascb_saddr) ||
249 		    (event_addr > (cb->ascb_saddr + cb->ascb_len))))) {
250 			continue;
251 		}
252 		break;
253 	}
254 	return (cb);
255 }
256 
257 /*
258  * Executes a given callback and removes it from the callback list for
259  * this address space.
260  * This function may sleep so the caller must drop all locks except
261  * a_contents before calling this func.
262  *
263  * See also comments on as_do_callbacks below.
264  */
265 static void
266 as_execute_callback(struct as *as, struct as_callback *cb,
267 				uint_t events)
268 {
269 	struct as_callback **prevcb;
270 	void	*cb_arg;
271 
272 	ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events));
273 	cb->ascb_events |= AS_CALLBACK_CALLED;
274 	mutex_exit(&as->a_contents);
275 	(*cb->ascb_func)(as, cb->ascb_arg, events);
276 	mutex_enter(&as->a_contents);
277 	/*
278 	 * the callback function is required to delete the callback
279 	 * when the callback function determines it is OK for
280 	 * this thread to continue. as_delete_callback will clear
281 	 * the AS_ALL_EVENT in the events field when it is deleted.
282 	 * If the callback function called as_delete_callback,
283 	 * events will already be cleared and there will be no blocking.
284 	 */
285 	while ((cb->ascb_events & events) != 0) {
286 		cv_wait(&as->a_cv, &as->a_contents);
287 	}
288 	/*
289 	 * This entry needs to be taken off the list. Normally, the
290 	 * callback func itself does that, but unfortunately the list
291 	 * may have changed while the callback was running because the
292 	 * a_contents mutex was dropped and someone else other than the
293 	 * callback func itself could have called as_delete_callback,
294 	 * so we have to search to find this entry again.  The entry
295 	 * must have AS_CALLBACK_CALLED, and have the same 'arg'.
296 	 */
297 	cb_arg = cb->ascb_arg;
298 	prevcb = &as->a_callbacks;
299 	for (cb = as->a_callbacks; cb != NULL;
300 	    prevcb = &cb->ascb_next, cb = *prevcb) {
301 		if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) ||
302 		    (cb_arg != cb->ascb_arg)) {
303 			continue;
304 		}
305 		*prevcb = cb->ascb_next;
306 		kmem_free(cb, sizeof (struct as_callback));
307 		break;
308 	}
309 }
310 
311 /*
312  * Check the callback list for a matching event and intersection of
313  * address range. If there is a match invoke the callback.  Skip an entry if:
314  *    - a callback is already in progress for this entry (AS_CALLBACK_CALLED)
315  *    - not event of interest
316  *    - not address range of interest
317  *
318  * An event_len of zero indicates a request for an unconditional callback
319  * (regardless of event), only the AS_CALLBACK_CALLED is checked.  The
320  * a_contents lock must be dropped before a callback, so only one callback
321  * can be done before returning. Return -1 (true) if a callback was
322  * executed and removed from the list, else return 0 (false).
323  *
324  * The logically separate parts, i.e. finding a matching callback and
325  * executing a given callback have been separated into two functions
326  * so that they can be called with different sets of locks held beyond
327  * the always-required a_contents. as_find_callback does not sleep so
328  * it is ok to call it if more locks than a_contents (i.e. the a_lock
329  * rwlock) are held. as_execute_callback on the other hand may sleep
330  * so all locks beyond a_contents must be dropped by the caller if one
331  * does not want to end comatose.
332  */
333 static int
334 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr,
335 			size_t event_len)
336 {
337 	struct as_callback *cb;
338 
339 	if ((cb = as_find_callback(as, events, event_addr, event_len))) {
340 		as_execute_callback(as, cb, events);
341 		return (-1);
342 	}
343 	return (0);
344 }
345 
346 /*
347  * Search for the segment containing addr. If a segment containing addr
348  * exists, that segment is returned.  If no such segment exists, and
349  * the list spans addresses greater than addr, then the first segment
350  * whose base is greater than addr is returned; otherwise, NULL is
351  * returned unless tail is true, in which case the last element of the
352  * list is returned.
353  *
354  * a_seglast is used to cache the last found segment for repeated
355  * searches to the same addr (which happens frequently).
356  */
357 struct seg *
358 as_findseg(struct as *as, caddr_t addr, int tail)
359 {
360 	struct seg *seg = as->a_seglast;
361 	avl_index_t where;
362 
363 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
364 
365 	if (seg != NULL &&
366 	    seg->s_base <= addr &&
367 	    addr < seg->s_base + seg->s_size)
368 		return (seg);
369 
370 	seg = avl_find(&as->a_segtree, &addr, &where);
371 	if (seg != NULL)
372 		return (as->a_seglast = seg);
373 
374 	seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
375 	if (seg == NULL && tail)
376 		seg = avl_last(&as->a_segtree);
377 	return (as->a_seglast = seg);
378 }
379 
380 #ifdef VERIFY_SEGLIST
381 /*
382  * verify that the linked list is coherent
383  */
384 static void
385 as_verify(struct as *as)
386 {
387 	struct seg *seg, *seglast, *p, *n;
388 	uint_t nsegs = 0;
389 
390 	if (do_as_verify == 0)
391 		return;
392 
393 	seglast = as->a_seglast;
394 
395 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
396 		ASSERT(seg->s_as == as);
397 		p = AS_SEGPREV(as, seg);
398 		n = AS_SEGNEXT(as, seg);
399 		ASSERT(p == NULL || p->s_as == as);
400 		ASSERT(p == NULL || p->s_base < seg->s_base);
401 		ASSERT(n == NULL || n->s_base > seg->s_base);
402 		ASSERT(n != NULL || seg == avl_last(&as->a_segtree));
403 		if (seg == seglast)
404 			seglast = NULL;
405 		nsegs++;
406 	}
407 	ASSERT(seglast == NULL);
408 	ASSERT(avl_numnodes(&as->a_segtree) == nsegs);
409 }
410 #endif /* VERIFY_SEGLIST */
411 
412 /*
413  * Add a new segment to the address space. The avl_find()
414  * may be expensive so we attempt to use last segment accessed
415  * in as_gap() as an insertion point.
416  */
417 int
418 as_addseg(struct as  *as, struct seg *newseg)
419 {
420 	struct seg *seg;
421 	caddr_t addr;
422 	caddr_t eaddr;
423 	avl_index_t where;
424 
425 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
426 
427 	as->a_updatedir = 1;	/* inform /proc */
428 	gethrestime(&as->a_updatetime);
429 
430 	if (as->a_lastgaphl != NULL) {
431 		struct seg *hseg = NULL;
432 		struct seg *lseg = NULL;
433 
434 		if (as->a_lastgaphl->s_base > newseg->s_base) {
435 			hseg = as->a_lastgaphl;
436 			lseg = AVL_PREV(&as->a_segtree, hseg);
437 		} else {
438 			lseg = as->a_lastgaphl;
439 			hseg = AVL_NEXT(&as->a_segtree, lseg);
440 		}
441 
442 		if (hseg && lseg && lseg->s_base < newseg->s_base &&
443 		    hseg->s_base > newseg->s_base) {
444 			avl_insert_here(&as->a_segtree, newseg, lseg,
445 			    AVL_AFTER);
446 			as->a_lastgaphl = NULL;
447 			as->a_seglast = newseg;
448 			return (0);
449 		}
450 		as->a_lastgaphl = NULL;
451 	}
452 
453 	addr = newseg->s_base;
454 	eaddr = addr + newseg->s_size;
455 again:
456 
457 	seg = avl_find(&as->a_segtree, &addr, &where);
458 
459 	if (seg == NULL)
460 		seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
461 
462 	if (seg == NULL)
463 		seg = avl_last(&as->a_segtree);
464 
465 	if (seg != NULL) {
466 		caddr_t base = seg->s_base;
467 
468 		/*
469 		 * If top of seg is below the requested address, then
470 		 * the insertion point is at the end of the linked list,
471 		 * and seg points to the tail of the list.  Otherwise,
472 		 * the insertion point is immediately before seg.
473 		 */
474 		if (base + seg->s_size > addr) {
475 			if (addr >= base || eaddr > base) {
476 #ifdef __sparc
477 				extern struct seg_ops segnf_ops;
478 
479 				/*
480 				 * no-fault segs must disappear if overlaid.
481 				 * XXX need new segment type so
482 				 * we don't have to check s_ops
483 				 */
484 				if (seg->s_ops == &segnf_ops) {
485 					seg_unmap(seg);
486 					goto again;
487 				}
488 #endif
489 				return (-1);	/* overlapping segment */
490 			}
491 		}
492 	}
493 	as->a_seglast = newseg;
494 	avl_insert(&as->a_segtree, newseg, where);
495 
496 #ifdef VERIFY_SEGLIST
497 	as_verify(as);
498 #endif
499 	return (0);
500 }
501 
502 struct seg *
503 as_removeseg(struct as *as, struct seg *seg)
504 {
505 	avl_tree_t *t;
506 
507 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
508 
509 	as->a_updatedir = 1;	/* inform /proc */
510 	gethrestime(&as->a_updatetime);
511 
512 	if (seg == NULL)
513 		return (NULL);
514 
515 	t = &as->a_segtree;
516 	if (as->a_seglast == seg)
517 		as->a_seglast = NULL;
518 	as->a_lastgaphl = NULL;
519 
520 	/*
521 	 * if this segment is at an address higher than
522 	 * a_lastgap, set a_lastgap to the next segment (NULL if last segment)
523 	 */
524 	if (as->a_lastgap &&
525 	    (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base))
526 		as->a_lastgap = AVL_NEXT(t, seg);
527 
528 	/*
529 	 * remove the segment from the seg tree
530 	 */
531 	avl_remove(t, seg);
532 
533 #ifdef VERIFY_SEGLIST
534 	as_verify(as);
535 #endif
536 	return (seg);
537 }
538 
539 /*
540  * Find a segment containing addr.
541  */
542 struct seg *
543 as_segat(struct as *as, caddr_t addr)
544 {
545 	struct seg *seg = as->a_seglast;
546 
547 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
548 
549 	if (seg != NULL && seg->s_base <= addr &&
550 	    addr < seg->s_base + seg->s_size)
551 		return (seg);
552 
553 	seg = avl_find(&as->a_segtree, &addr, NULL);
554 	return (seg);
555 }
556 
557 /*
558  * Serialize all searches for holes in an address space to
559  * prevent two or more threads from allocating the same virtual
560  * address range.  The address space must not be "read/write"
561  * locked by the caller since we may block.
562  */
563 void
564 as_rangelock(struct as *as)
565 {
566 	mutex_enter(&as->a_contents);
567 	while (AS_ISCLAIMGAP(as))
568 		cv_wait(&as->a_cv, &as->a_contents);
569 	AS_SETCLAIMGAP(as);
570 	mutex_exit(&as->a_contents);
571 }
572 
573 /*
574  * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads.
575  */
576 void
577 as_rangeunlock(struct as *as)
578 {
579 	mutex_enter(&as->a_contents);
580 	AS_CLRCLAIMGAP(as);
581 	cv_signal(&as->a_cv);
582 	mutex_exit(&as->a_contents);
583 }
584 
585 /*
586  * compar segments (or just an address) by segment address range
587  */
588 static int
589 as_segcompar(const void *x, const void *y)
590 {
591 	struct seg *a = (struct seg *)x;
592 	struct seg *b = (struct seg *)y;
593 
594 	if (a->s_base < b->s_base)
595 		return (-1);
596 	if (a->s_base >= b->s_base + b->s_size)
597 		return (1);
598 	return (0);
599 }
600 
601 
602 void
603 as_avlinit(struct as *as)
604 {
605 	avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg),
606 	    offsetof(struct seg, s_tree));
607 	avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page),
608 	    offsetof(struct watched_page, wp_link));
609 }
610 
611 /*ARGSUSED*/
612 static int
613 as_constructor(void *buf, void *cdrarg, int kmflags)
614 {
615 	struct as *as = buf;
616 
617 	mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL);
618 	cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL);
619 	rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL);
620 	as_avlinit(as);
621 	return (0);
622 }
623 
624 /*ARGSUSED1*/
625 static void
626 as_destructor(void *buf, void *cdrarg)
627 {
628 	struct as *as = buf;
629 
630 	avl_destroy(&as->a_segtree);
631 	mutex_destroy(&as->a_contents);
632 	cv_destroy(&as->a_cv);
633 	rw_destroy(&as->a_lock);
634 }
635 
636 void
637 as_init(void)
638 {
639 	as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0,
640 	    as_constructor, as_destructor, NULL, NULL, NULL, 0);
641 }
642 
643 /*
644  * Allocate and initialize an address space data structure.
645  * We call hat_alloc to allow any machine dependent
646  * information in the hat structure to be initialized.
647  */
648 struct as *
649 as_alloc(void)
650 {
651 	struct as *as;
652 
653 	as = kmem_cache_alloc(as_cache, KM_SLEEP);
654 
655 	as->a_flags		= 0;
656 	as->a_vbits		= 0;
657 	as->a_hrm		= NULL;
658 	as->a_seglast		= NULL;
659 	as->a_size		= 0;
660 	as->a_resvsize		= 0;
661 	as->a_updatedir		= 0;
662 	gethrestime(&as->a_updatetime);
663 	as->a_objectdir		= NULL;
664 	as->a_sizedir		= 0;
665 	as->a_userlimit		= (caddr_t)USERLIMIT;
666 	as->a_lastgap		= NULL;
667 	as->a_lastgaphl		= NULL;
668 	as->a_callbacks		= NULL;
669 
670 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
671 	as->a_hat = hat_alloc(as);	/* create hat for default system mmu */
672 	AS_LOCK_EXIT(as, &as->a_lock);
673 
674 	as->a_xhat = NULL;
675 
676 	return (as);
677 }
678 
679 /*
680  * Free an address space data structure.
681  * Need to free the hat first and then
682  * all the segments on this as and finally
683  * the space for the as struct itself.
684  */
685 void
686 as_free(struct as *as)
687 {
688 	struct hat *hat = as->a_hat;
689 	struct seg *seg, *next;
690 	int called = 0;
691 
692 top:
693 	/*
694 	 * Invoke ALL callbacks. as_do_callbacks will do one callback
695 	 * per call, and not return (-1) until the callback has completed.
696 	 * When as_do_callbacks returns zero, all callbacks have completed.
697 	 */
698 	mutex_enter(&as->a_contents);
699 	while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0))
700 		;
701 
702 	/* This will prevent new XHATs from attaching to as */
703 	if (!called)
704 		AS_SETBUSY(as);
705 	mutex_exit(&as->a_contents);
706 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
707 
708 	if (!called) {
709 		called = 1;
710 		hat_free_start(hat);
711 		if (as->a_xhat != NULL)
712 			xhat_free_start_all(as);
713 	}
714 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) {
715 		int err;
716 
717 		next = AS_SEGNEXT(as, seg);
718 retry:
719 		err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
720 		if (err == EAGAIN) {
721 			mutex_enter(&as->a_contents);
722 			if (as->a_callbacks) {
723 				AS_LOCK_EXIT(as, &as->a_lock);
724 			} else if (!AS_ISNOUNMAPWAIT(as)) {
725 				/*
726 				 * Memory is currently locked. Wait for a
727 				 * cv_signal that it has been unlocked, then
728 				 * try the operation again.
729 				 */
730 				if (AS_ISUNMAPWAIT(as) == 0)
731 					cv_broadcast(&as->a_cv);
732 				AS_SETUNMAPWAIT(as);
733 				AS_LOCK_EXIT(as, &as->a_lock);
734 				while (AS_ISUNMAPWAIT(as))
735 					cv_wait(&as->a_cv, &as->a_contents);
736 			} else {
737 				/*
738 				 * We may have raced with
739 				 * segvn_reclaim()/segspt_reclaim(). In this
740 				 * case clean nounmapwait flag and retry since
741 				 * softlockcnt in this segment may be already
742 				 * 0.  We don't drop as writer lock so our
743 				 * number of retries without sleeping should
744 				 * be very small. See segvn_reclaim() for
745 				 * more comments.
746 				 */
747 				AS_CLRNOUNMAPWAIT(as);
748 				mutex_exit(&as->a_contents);
749 				goto retry;
750 			}
751 			mutex_exit(&as->a_contents);
752 			goto top;
753 		} else {
754 			/*
755 			 * We do not expect any other error return at this
756 			 * time. This is similar to an ASSERT in seg_unmap()
757 			 */
758 			ASSERT(err == 0);
759 		}
760 	}
761 	hat_free_end(hat);
762 	if (as->a_xhat != NULL)
763 		xhat_free_end_all(as);
764 	AS_LOCK_EXIT(as, &as->a_lock);
765 
766 	/* /proc stuff */
767 	ASSERT(avl_numnodes(&as->a_wpage) == 0);
768 	if (as->a_objectdir) {
769 		kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *));
770 		as->a_objectdir = NULL;
771 		as->a_sizedir = 0;
772 	}
773 
774 	/*
775 	 * Free the struct as back to kmem.  Assert it has no segments.
776 	 */
777 	ASSERT(avl_numnodes(&as->a_segtree) == 0);
778 	kmem_cache_free(as_cache, as);
779 }
780 
781 int
782 as_dup(struct as *as, struct proc *forkedproc)
783 {
784 	struct as *newas;
785 	struct seg *seg, *newseg;
786 	size_t	purgesize = 0;
787 	int error;
788 
789 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
790 	as_clearwatch(as);
791 	newas = as_alloc();
792 	newas->a_userlimit = as->a_userlimit;
793 	newas->a_proc = forkedproc;
794 
795 	AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER);
796 
797 	/* This will prevent new XHATs from attaching */
798 	mutex_enter(&as->a_contents);
799 	AS_SETBUSY(as);
800 	mutex_exit(&as->a_contents);
801 	mutex_enter(&newas->a_contents);
802 	AS_SETBUSY(newas);
803 	mutex_exit(&newas->a_contents);
804 
805 	(void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD);
806 
807 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
808 
809 		if (seg->s_flags & S_PURGE) {
810 			purgesize += seg->s_size;
811 			continue;
812 		}
813 
814 		newseg = seg_alloc(newas, seg->s_base, seg->s_size);
815 		if (newseg == NULL) {
816 			AS_LOCK_EXIT(newas, &newas->a_lock);
817 			as_setwatch(as);
818 			mutex_enter(&as->a_contents);
819 			AS_CLRBUSY(as);
820 			mutex_exit(&as->a_contents);
821 			AS_LOCK_EXIT(as, &as->a_lock);
822 			as_free(newas);
823 			return (-1);
824 		}
825 		if ((error = SEGOP_DUP(seg, newseg)) != 0) {
826 			/*
827 			 * We call seg_free() on the new seg
828 			 * because the segment is not set up
829 			 * completely; i.e. it has no ops.
830 			 */
831 			as_setwatch(as);
832 			mutex_enter(&as->a_contents);
833 			AS_CLRBUSY(as);
834 			mutex_exit(&as->a_contents);
835 			AS_LOCK_EXIT(as, &as->a_lock);
836 			seg_free(newseg);
837 			AS_LOCK_EXIT(newas, &newas->a_lock);
838 			as_free(newas);
839 			return (error);
840 		}
841 		newas->a_size += seg->s_size;
842 	}
843 	newas->a_resvsize = as->a_resvsize - purgesize;
844 
845 	error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL);
846 	if (as->a_xhat != NULL)
847 		error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL);
848 
849 	mutex_enter(&newas->a_contents);
850 	AS_CLRBUSY(newas);
851 	mutex_exit(&newas->a_contents);
852 	AS_LOCK_EXIT(newas, &newas->a_lock);
853 
854 	as_setwatch(as);
855 	mutex_enter(&as->a_contents);
856 	AS_CLRBUSY(as);
857 	mutex_exit(&as->a_contents);
858 	AS_LOCK_EXIT(as, &as->a_lock);
859 	if (error != 0) {
860 		as_free(newas);
861 		return (error);
862 	}
863 	forkedproc->p_as = newas;
864 	return (0);
865 }
866 
867 /*
868  * Handle a ``fault'' at addr for size bytes.
869  */
870 faultcode_t
871 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size,
872 	enum fault_type type, enum seg_rw rw)
873 {
874 	struct seg *seg;
875 	caddr_t raddr;			/* rounded down addr */
876 	size_t rsize;			/* rounded up size */
877 	size_t ssize;
878 	faultcode_t res = 0;
879 	caddr_t addrsav;
880 	struct seg *segsav;
881 	int as_lock_held;
882 	klwp_t *lwp = ttolwp(curthread);
883 	int is_xhat = 0;
884 	int holding_wpage = 0;
885 	extern struct seg_ops   segdev_ops;
886 
887 
888 
889 	if (as->a_hat != hat) {
890 		/* This must be an XHAT then */
891 		is_xhat = 1;
892 
893 		if ((type != F_INVAL) || (as == &kas))
894 			return (FC_NOSUPPORT);
895 	}
896 
897 retry:
898 	if (!is_xhat) {
899 		/*
900 		 * Indicate that the lwp is not to be stopped while waiting
901 		 * for a pagefault.  This is to avoid deadlock while debugging
902 		 * a process via /proc over NFS (in particular).
903 		 */
904 		if (lwp != NULL)
905 			lwp->lwp_nostop++;
906 
907 		/*
908 		 * same length must be used when we softlock and softunlock.
909 		 * We don't support softunlocking lengths less than
910 		 * the original length when there is largepage support.
911 		 * See seg_dev.c for more comments.
912 		 */
913 		switch (type) {
914 
915 		case F_SOFTLOCK:
916 			CPU_STATS_ADD_K(vm, softlock, 1);
917 			break;
918 
919 		case F_SOFTUNLOCK:
920 			break;
921 
922 		case F_PROT:
923 			CPU_STATS_ADD_K(vm, prot_fault, 1);
924 			break;
925 
926 		case F_INVAL:
927 			CPU_STATS_ENTER_K();
928 			CPU_STATS_ADDQ(CPU, vm, as_fault, 1);
929 			if (as == &kas)
930 				CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1);
931 			CPU_STATS_EXIT_K();
932 			break;
933 		}
934 	}
935 
936 	/* Kernel probe */
937 	TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */,
938 	    tnf_opaque,	address,	addr,
939 	    tnf_fault_type,	fault_type,	type,
940 	    tnf_seg_access,	access,		rw);
941 
942 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
943 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
944 	    (size_t)raddr;
945 
946 	/*
947 	 * XXX -- Don't grab the as lock for segkmap. We should grab it for
948 	 * correctness, but then we could be stuck holding this lock for
949 	 * a LONG time if the fault needs to be resolved on a slow
950 	 * filesystem, and then no-one will be able to exec new commands,
951 	 * as exec'ing requires the write lock on the as.
952 	 */
953 	if (as == &kas && segkmap && segkmap->s_base <= raddr &&
954 	    raddr + size < segkmap->s_base + segkmap->s_size) {
955 		/*
956 		 * if (as==&kas), this can't be XHAT: we've already returned
957 		 * FC_NOSUPPORT.
958 		 */
959 		seg = segkmap;
960 		as_lock_held = 0;
961 	} else {
962 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
963 		if (is_xhat && avl_numnodes(&as->a_wpage) != 0) {
964 			/*
965 			 * Grab and hold the writers' lock on the as
966 			 * if the fault is to a watched page.
967 			 * This will keep CPUs from "peeking" at the
968 			 * address range while we're temporarily boosting
969 			 * the permissions for the XHAT device to
970 			 * resolve the fault in the segment layer.
971 			 *
972 			 * We could check whether faulted address
973 			 * is within a watched page and only then grab
974 			 * the writer lock, but this is simpler.
975 			 */
976 			AS_LOCK_EXIT(as, &as->a_lock);
977 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
978 		}
979 
980 		seg = as_segat(as, raddr);
981 		if (seg == NULL) {
982 			AS_LOCK_EXIT(as, &as->a_lock);
983 			if ((lwp != NULL) && (!is_xhat))
984 				lwp->lwp_nostop--;
985 			return (FC_NOMAP);
986 		}
987 
988 		as_lock_held = 1;
989 	}
990 
991 	addrsav = raddr;
992 	segsav = seg;
993 
994 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
995 		if (raddr >= seg->s_base + seg->s_size) {
996 			seg = AS_SEGNEXT(as, seg);
997 			if (seg == NULL || raddr != seg->s_base) {
998 				res = FC_NOMAP;
999 				break;
1000 			}
1001 		}
1002 		if (raddr + rsize > seg->s_base + seg->s_size)
1003 			ssize = seg->s_base + seg->s_size - raddr;
1004 		else
1005 			ssize = rsize;
1006 
1007 		if (!is_xhat || (seg->s_ops != &segdev_ops)) {
1008 
1009 			if (is_xhat && avl_numnodes(&as->a_wpage) != 0 &&
1010 			    pr_is_watchpage_as(raddr, rw, as)) {
1011 				/*
1012 				 * Handle watch pages.  If we're faulting on a
1013 				 * watched page from an X-hat, we have to
1014 				 * restore the original permissions while we
1015 				 * handle the fault.
1016 				 */
1017 				as_clearwatch(as);
1018 				holding_wpage = 1;
1019 			}
1020 
1021 			res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw);
1022 
1023 			/* Restore watchpoints */
1024 			if (holding_wpage) {
1025 				as_setwatch(as);
1026 				holding_wpage = 0;
1027 			}
1028 
1029 			if (res != 0)
1030 				break;
1031 		} else {
1032 			/* XHAT does not support seg_dev */
1033 			res = FC_NOSUPPORT;
1034 			break;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * If we were SOFTLOCKing and encountered a failure,
1040 	 * we must SOFTUNLOCK the range we already did. (Maybe we
1041 	 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing
1042 	 * right here...)
1043 	 */
1044 	if (res != 0 && type == F_SOFTLOCK) {
1045 		for (seg = segsav; addrsav < raddr; addrsav += ssize) {
1046 			if (addrsav >= seg->s_base + seg->s_size)
1047 				seg = AS_SEGNEXT(as, seg);
1048 			ASSERT(seg != NULL);
1049 			/*
1050 			 * Now call the fault routine again to perform the
1051 			 * unlock using S_OTHER instead of the rw variable
1052 			 * since we never got a chance to touch the pages.
1053 			 */
1054 			if (raddr > seg->s_base + seg->s_size)
1055 				ssize = seg->s_base + seg->s_size - addrsav;
1056 			else
1057 				ssize = raddr - addrsav;
1058 			(void) SEGOP_FAULT(hat, seg, addrsav, ssize,
1059 			    F_SOFTUNLOCK, S_OTHER);
1060 		}
1061 	}
1062 	if (as_lock_held)
1063 		AS_LOCK_EXIT(as, &as->a_lock);
1064 	if ((lwp != NULL) && (!is_xhat))
1065 		lwp->lwp_nostop--;
1066 
1067 	/*
1068 	 * If the lower levels returned EDEADLK for a fault,
1069 	 * It means that we should retry the fault.  Let's wait
1070 	 * a bit also to let the deadlock causing condition clear.
1071 	 * This is part of a gross hack to work around a design flaw
1072 	 * in the ufs/sds logging code and should go away when the
1073 	 * logging code is re-designed to fix the problem. See bug
1074 	 * 4125102 for details of the problem.
1075 	 */
1076 	if (FC_ERRNO(res) == EDEADLK) {
1077 		delay(deadlk_wait);
1078 		res = 0;
1079 		goto retry;
1080 	}
1081 	return (res);
1082 }
1083 
1084 
1085 
1086 /*
1087  * Asynchronous ``fault'' at addr for size bytes.
1088  */
1089 faultcode_t
1090 as_faulta(struct as *as, caddr_t addr, size_t size)
1091 {
1092 	struct seg *seg;
1093 	caddr_t raddr;			/* rounded down addr */
1094 	size_t rsize;			/* rounded up size */
1095 	faultcode_t res = 0;
1096 	klwp_t *lwp = ttolwp(curthread);
1097 
1098 retry:
1099 	/*
1100 	 * Indicate that the lwp is not to be stopped while waiting
1101 	 * for a pagefault.  This is to avoid deadlock while debugging
1102 	 * a process via /proc over NFS (in particular).
1103 	 */
1104 	if (lwp != NULL)
1105 		lwp->lwp_nostop++;
1106 
1107 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1108 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1109 	    (size_t)raddr;
1110 
1111 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1112 	seg = as_segat(as, raddr);
1113 	if (seg == NULL) {
1114 		AS_LOCK_EXIT(as, &as->a_lock);
1115 		if (lwp != NULL)
1116 			lwp->lwp_nostop--;
1117 		return (FC_NOMAP);
1118 	}
1119 
1120 	for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) {
1121 		if (raddr >= seg->s_base + seg->s_size) {
1122 			seg = AS_SEGNEXT(as, seg);
1123 			if (seg == NULL || raddr != seg->s_base) {
1124 				res = FC_NOMAP;
1125 				break;
1126 			}
1127 		}
1128 		res = SEGOP_FAULTA(seg, raddr);
1129 		if (res != 0)
1130 			break;
1131 	}
1132 	AS_LOCK_EXIT(as, &as->a_lock);
1133 	if (lwp != NULL)
1134 		lwp->lwp_nostop--;
1135 	/*
1136 	 * If the lower levels returned EDEADLK for a fault,
1137 	 * It means that we should retry the fault.  Let's wait
1138 	 * a bit also to let the deadlock causing condition clear.
1139 	 * This is part of a gross hack to work around a design flaw
1140 	 * in the ufs/sds logging code and should go away when the
1141 	 * logging code is re-designed to fix the problem. See bug
1142 	 * 4125102 for details of the problem.
1143 	 */
1144 	if (FC_ERRNO(res) == EDEADLK) {
1145 		delay(deadlk_wait);
1146 		res = 0;
1147 		goto retry;
1148 	}
1149 	return (res);
1150 }
1151 
1152 /*
1153  * Set the virtual mapping for the interval from [addr : addr + size)
1154  * in address space `as' to have the specified protection.
1155  * It is ok for the range to cross over several segments,
1156  * as long as they are contiguous.
1157  */
1158 int
1159 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1160 {
1161 	struct seg *seg;
1162 	struct as_callback *cb;
1163 	size_t ssize;
1164 	caddr_t raddr;			/* rounded down addr */
1165 	size_t rsize;			/* rounded up size */
1166 	int error = 0, writer = 0;
1167 	caddr_t saveraddr;
1168 	size_t saversize;
1169 
1170 setprot_top:
1171 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1172 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1173 	    (size_t)raddr;
1174 
1175 	if (raddr + rsize < raddr)		/* check for wraparound */
1176 		return (ENOMEM);
1177 
1178 	saveraddr = raddr;
1179 	saversize = rsize;
1180 
1181 	/*
1182 	 * Normally we only lock the as as a reader. But
1183 	 * if due to setprot the segment driver needs to split
1184 	 * a segment it will return IE_RETRY. Therefore we re-acquire
1185 	 * the as lock as a writer so the segment driver can change
1186 	 * the seg list. Also the segment driver will return IE_RETRY
1187 	 * after it has changed the segment list so we therefore keep
1188 	 * locking as a writer. Since these opeartions should be rare
1189 	 * want to only lock as a writer when necessary.
1190 	 */
1191 	if (writer || avl_numnodes(&as->a_wpage) != 0) {
1192 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1193 	} else {
1194 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1195 	}
1196 
1197 	as_clearwatchprot(as, raddr, rsize);
1198 	seg = as_segat(as, raddr);
1199 	if (seg == NULL) {
1200 		as_setwatch(as);
1201 		AS_LOCK_EXIT(as, &as->a_lock);
1202 		return (ENOMEM);
1203 	}
1204 
1205 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1206 		if (raddr >= seg->s_base + seg->s_size) {
1207 			seg = AS_SEGNEXT(as, seg);
1208 			if (seg == NULL || raddr != seg->s_base) {
1209 				error = ENOMEM;
1210 				break;
1211 			}
1212 		}
1213 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1214 			ssize = seg->s_base + seg->s_size - raddr;
1215 		else
1216 			ssize = rsize;
1217 retry:
1218 		error = SEGOP_SETPROT(seg, raddr, ssize, prot);
1219 
1220 		if (error == IE_NOMEM) {
1221 			error = EAGAIN;
1222 			break;
1223 		}
1224 
1225 		if (error == IE_RETRY) {
1226 			AS_LOCK_EXIT(as, &as->a_lock);
1227 			writer = 1;
1228 			goto setprot_top;
1229 		}
1230 
1231 		if (error == EAGAIN) {
1232 			/*
1233 			 * Make sure we have a_lock as writer.
1234 			 */
1235 			if (writer == 0) {
1236 				AS_LOCK_EXIT(as, &as->a_lock);
1237 				writer = 1;
1238 				goto setprot_top;
1239 			}
1240 
1241 			/*
1242 			 * Memory is currently locked.  It must be unlocked
1243 			 * before this operation can succeed through a retry.
1244 			 * The possible reasons for locked memory and
1245 			 * corresponding strategies for unlocking are:
1246 			 * (1) Normal I/O
1247 			 *	wait for a signal that the I/O operation
1248 			 *	has completed and the memory is unlocked.
1249 			 * (2) Asynchronous I/O
1250 			 *	The aio subsystem does not unlock pages when
1251 			 *	the I/O is completed. Those pages are unlocked
1252 			 *	when the application calls aiowait/aioerror.
1253 			 *	So, to prevent blocking forever, cv_broadcast()
1254 			 *	is done to wake up aio_cleanup_thread.
1255 			 *	Subsequently, segvn_reclaim will be called, and
1256 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1257 			 * (3) Long term page locking:
1258 			 *	Drivers intending to have pages locked for a
1259 			 *	period considerably longer than for normal I/O
1260 			 *	(essentially forever) may have registered for a
1261 			 *	callback so they may unlock these pages on
1262 			 *	request. This is needed to allow this operation
1263 			 *	to succeed. Each entry on the callback list is
1264 			 *	examined. If the event or address range pertains
1265 			 *	the callback is invoked (unless it already is in
1266 			 *	progress). The a_contents lock must be dropped
1267 			 *	before the callback, so only one callback can
1268 			 *	be done at a time. Go to the top and do more
1269 			 *	until zero is returned. If zero is returned,
1270 			 *	either there were no callbacks for this event
1271 			 *	or they were already in progress.
1272 			 */
1273 			mutex_enter(&as->a_contents);
1274 			if (as->a_callbacks &&
1275 			    (cb = as_find_callback(as, AS_SETPROT_EVENT,
1276 			    seg->s_base, seg->s_size))) {
1277 				AS_LOCK_EXIT(as, &as->a_lock);
1278 				as_execute_callback(as, cb, AS_SETPROT_EVENT);
1279 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1280 				if (AS_ISUNMAPWAIT(as) == 0)
1281 					cv_broadcast(&as->a_cv);
1282 				AS_SETUNMAPWAIT(as);
1283 				AS_LOCK_EXIT(as, &as->a_lock);
1284 				while (AS_ISUNMAPWAIT(as))
1285 					cv_wait(&as->a_cv, &as->a_contents);
1286 			} else {
1287 				/*
1288 				 * We may have raced with
1289 				 * segvn_reclaim()/segspt_reclaim(). In this
1290 				 * case clean nounmapwait flag and retry since
1291 				 * softlockcnt in this segment may be already
1292 				 * 0.  We don't drop as writer lock so our
1293 				 * number of retries without sleeping should
1294 				 * be very small. See segvn_reclaim() for
1295 				 * more comments.
1296 				 */
1297 				AS_CLRNOUNMAPWAIT(as);
1298 				mutex_exit(&as->a_contents);
1299 				goto retry;
1300 			}
1301 			mutex_exit(&as->a_contents);
1302 			goto setprot_top;
1303 		} else if (error != 0)
1304 			break;
1305 	}
1306 	if (error != 0) {
1307 		as_setwatch(as);
1308 	} else {
1309 		as_setwatchprot(as, saveraddr, saversize, prot);
1310 	}
1311 	AS_LOCK_EXIT(as, &as->a_lock);
1312 	return (error);
1313 }
1314 
1315 /*
1316  * Check to make sure that the interval [addr, addr + size)
1317  * in address space `as' has at least the specified protection.
1318  * It is ok for the range to cross over several segments, as long
1319  * as they are contiguous.
1320  */
1321 int
1322 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1323 {
1324 	struct seg *seg;
1325 	size_t ssize;
1326 	caddr_t raddr;			/* rounded down addr */
1327 	size_t rsize;			/* rounded up size */
1328 	int error = 0;
1329 
1330 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1331 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1332 	    (size_t)raddr;
1333 
1334 	if (raddr + rsize < raddr)		/* check for wraparound */
1335 		return (ENOMEM);
1336 
1337 	/*
1338 	 * This is ugly as sin...
1339 	 * Normally, we only acquire the address space readers lock.
1340 	 * However, if the address space has watchpoints present,
1341 	 * we must acquire the writer lock on the address space for
1342 	 * the benefit of as_clearwatchprot() and as_setwatchprot().
1343 	 */
1344 	if (avl_numnodes(&as->a_wpage) != 0)
1345 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1346 	else
1347 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1348 	as_clearwatchprot(as, raddr, rsize);
1349 	seg = as_segat(as, raddr);
1350 	if (seg == NULL) {
1351 		as_setwatch(as);
1352 		AS_LOCK_EXIT(as, &as->a_lock);
1353 		return (ENOMEM);
1354 	}
1355 
1356 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1357 		if (raddr >= seg->s_base + seg->s_size) {
1358 			seg = AS_SEGNEXT(as, seg);
1359 			if (seg == NULL || raddr != seg->s_base) {
1360 				error = ENOMEM;
1361 				break;
1362 			}
1363 		}
1364 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1365 			ssize = seg->s_base + seg->s_size - raddr;
1366 		else
1367 			ssize = rsize;
1368 
1369 		error = SEGOP_CHECKPROT(seg, raddr, ssize, prot);
1370 		if (error != 0)
1371 			break;
1372 	}
1373 	as_setwatch(as);
1374 	AS_LOCK_EXIT(as, &as->a_lock);
1375 	return (error);
1376 }
1377 
1378 int
1379 as_unmap(struct as *as, caddr_t addr, size_t size)
1380 {
1381 	struct seg *seg, *seg_next;
1382 	struct as_callback *cb;
1383 	caddr_t raddr, eaddr;
1384 	size_t ssize, rsize = 0;
1385 	int err;
1386 
1387 top:
1388 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1389 	eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) &
1390 	    (uintptr_t)PAGEMASK);
1391 
1392 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1393 
1394 	as->a_updatedir = 1;	/* inform /proc */
1395 	gethrestime(&as->a_updatetime);
1396 
1397 	/*
1398 	 * Use as_findseg to find the first segment in the range, then
1399 	 * step through the segments in order, following s_next.
1400 	 */
1401 	as_clearwatchprot(as, raddr, eaddr - raddr);
1402 
1403 	for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) {
1404 		if (eaddr <= seg->s_base)
1405 			break;		/* eaddr was in a gap; all done */
1406 
1407 		/* this is implied by the test above */
1408 		ASSERT(raddr < eaddr);
1409 
1410 		if (raddr < seg->s_base)
1411 			raddr = seg->s_base; 	/* raddr was in a gap */
1412 
1413 		if (eaddr > (seg->s_base + seg->s_size))
1414 			ssize = seg->s_base + seg->s_size - raddr;
1415 		else
1416 			ssize = eaddr - raddr;
1417 
1418 		/*
1419 		 * Save next segment pointer since seg can be
1420 		 * destroyed during the segment unmap operation.
1421 		 */
1422 		seg_next = AS_SEGNEXT(as, seg);
1423 
1424 		/*
1425 		 * We didn't count /dev/null mappings, so ignore them here.
1426 		 * We'll handle MAP_NORESERVE cases in segvn_unmap(). (Again,
1427 		 * we have to do this check here while we have seg.)
1428 		 */
1429 		rsize = 0;
1430 		if (!SEG_IS_DEVNULL_MAPPING(seg) &&
1431 		    !SEG_IS_PARTIAL_RESV(seg))
1432 			rsize = ssize;
1433 
1434 retry:
1435 		err = SEGOP_UNMAP(seg, raddr, ssize);
1436 		if (err == EAGAIN) {
1437 			/*
1438 			 * Memory is currently locked.  It must be unlocked
1439 			 * before this operation can succeed through a retry.
1440 			 * The possible reasons for locked memory and
1441 			 * corresponding strategies for unlocking are:
1442 			 * (1) Normal I/O
1443 			 *	wait for a signal that the I/O operation
1444 			 *	has completed and the memory is unlocked.
1445 			 * (2) Asynchronous I/O
1446 			 *	The aio subsystem does not unlock pages when
1447 			 *	the I/O is completed. Those pages are unlocked
1448 			 *	when the application calls aiowait/aioerror.
1449 			 *	So, to prevent blocking forever, cv_broadcast()
1450 			 *	is done to wake up aio_cleanup_thread.
1451 			 *	Subsequently, segvn_reclaim will be called, and
1452 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1453 			 * (3) Long term page locking:
1454 			 *	Drivers intending to have pages locked for a
1455 			 *	period considerably longer than for normal I/O
1456 			 *	(essentially forever) may have registered for a
1457 			 *	callback so they may unlock these pages on
1458 			 *	request. This is needed to allow this operation
1459 			 *	to succeed. Each entry on the callback list is
1460 			 *	examined. If the event or address range pertains
1461 			 *	the callback is invoked (unless it already is in
1462 			 *	progress). The a_contents lock must be dropped
1463 			 *	before the callback, so only one callback can
1464 			 *	be done at a time. Go to the top and do more
1465 			 *	until zero is returned. If zero is returned,
1466 			 *	either there were no callbacks for this event
1467 			 *	or they were already in progress.
1468 			 */
1469 			mutex_enter(&as->a_contents);
1470 			if (as->a_callbacks &&
1471 			    (cb = as_find_callback(as, AS_UNMAP_EVENT,
1472 			    seg->s_base, seg->s_size))) {
1473 				AS_LOCK_EXIT(as, &as->a_lock);
1474 				as_execute_callback(as, cb, AS_UNMAP_EVENT);
1475 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1476 				if (AS_ISUNMAPWAIT(as) == 0)
1477 					cv_broadcast(&as->a_cv);
1478 				AS_SETUNMAPWAIT(as);
1479 				AS_LOCK_EXIT(as, &as->a_lock);
1480 				while (AS_ISUNMAPWAIT(as))
1481 					cv_wait(&as->a_cv, &as->a_contents);
1482 			} else {
1483 				/*
1484 				 * We may have raced with
1485 				 * segvn_reclaim()/segspt_reclaim(). In this
1486 				 * case clean nounmapwait flag and retry since
1487 				 * softlockcnt in this segment may be already
1488 				 * 0.  We don't drop as writer lock so our
1489 				 * number of retries without sleeping should
1490 				 * be very small. See segvn_reclaim() for
1491 				 * more comments.
1492 				 */
1493 				AS_CLRNOUNMAPWAIT(as);
1494 				mutex_exit(&as->a_contents);
1495 				goto retry;
1496 			}
1497 			mutex_exit(&as->a_contents);
1498 			goto top;
1499 		} else if (err == IE_RETRY) {
1500 			AS_LOCK_EXIT(as, &as->a_lock);
1501 			goto top;
1502 		} else if (err) {
1503 			as_setwatch(as);
1504 			AS_LOCK_EXIT(as, &as->a_lock);
1505 			return (-1);
1506 		}
1507 
1508 		as->a_size -= ssize;
1509 		if (rsize)
1510 			as->a_resvsize -= rsize;
1511 		raddr += ssize;
1512 	}
1513 	AS_LOCK_EXIT(as, &as->a_lock);
1514 	return (0);
1515 }
1516 
1517 static int
1518 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec,
1519     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1520 {
1521 	uint_t szc;
1522 	uint_t nszc;
1523 	int error;
1524 	caddr_t a;
1525 	caddr_t eaddr;
1526 	size_t segsize;
1527 	struct seg *seg;
1528 	size_t pgsz;
1529 	int do_off = (vn_a->vp != NULL || vn_a->amp != NULL);
1530 	uint_t save_szcvec;
1531 
1532 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1533 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1534 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1535 	ASSERT(vn_a->vp == NULL || vn_a->amp == NULL);
1536 	if (!do_off) {
1537 		vn_a->offset = 0;
1538 	}
1539 
1540 	if (szcvec <= 1) {
1541 		seg = seg_alloc(as, addr, size);
1542 		if (seg == NULL) {
1543 			return (ENOMEM);
1544 		}
1545 		vn_a->szc = 0;
1546 		error = (*crfp)(seg, vn_a);
1547 		if (error != 0) {
1548 			seg_free(seg);
1549 		} else {
1550 			as->a_size += size;
1551 			as->a_resvsize += size;
1552 		}
1553 		return (error);
1554 	}
1555 
1556 	eaddr = addr + size;
1557 	save_szcvec = szcvec;
1558 	szcvec >>= 1;
1559 	szc = 0;
1560 	nszc = 0;
1561 	while (szcvec) {
1562 		if ((szcvec & 0x1) == 0) {
1563 			nszc++;
1564 			szcvec >>= 1;
1565 			continue;
1566 		}
1567 		nszc++;
1568 		pgsz = page_get_pagesize(nszc);
1569 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
1570 		if (a != addr) {
1571 			ASSERT(a < eaddr);
1572 			segsize = a - addr;
1573 			seg = seg_alloc(as, addr, segsize);
1574 			if (seg == NULL) {
1575 				return (ENOMEM);
1576 			}
1577 			vn_a->szc = szc;
1578 			error = (*crfp)(seg, vn_a);
1579 			if (error != 0) {
1580 				seg_free(seg);
1581 				return (error);
1582 			}
1583 			as->a_size += segsize;
1584 			as->a_resvsize += segsize;
1585 			*segcreated = 1;
1586 			if (do_off) {
1587 				vn_a->offset += segsize;
1588 			}
1589 			addr = a;
1590 		}
1591 		szc = nszc;
1592 		szcvec >>= 1;
1593 	}
1594 
1595 	ASSERT(addr < eaddr);
1596 	szcvec = save_szcvec | 1; /* add 8K pages */
1597 	while (szcvec) {
1598 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
1599 		ASSERT(a >= addr);
1600 		if (a != addr) {
1601 			segsize = a - addr;
1602 			seg = seg_alloc(as, addr, segsize);
1603 			if (seg == NULL) {
1604 				return (ENOMEM);
1605 			}
1606 			vn_a->szc = szc;
1607 			error = (*crfp)(seg, vn_a);
1608 			if (error != 0) {
1609 				seg_free(seg);
1610 				return (error);
1611 			}
1612 			as->a_size += segsize;
1613 			as->a_resvsize += segsize;
1614 			*segcreated = 1;
1615 			if (do_off) {
1616 				vn_a->offset += segsize;
1617 			}
1618 			addr = a;
1619 		}
1620 		szcvec &= ~(1 << szc);
1621 		if (szcvec) {
1622 			szc = highbit(szcvec) - 1;
1623 			pgsz = page_get_pagesize(szc);
1624 		}
1625 	}
1626 	ASSERT(addr == eaddr);
1627 
1628 	return (0);
1629 }
1630 
1631 static int
1632 as_map_vnsegs(struct as *as, caddr_t addr, size_t size,
1633     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1634 {
1635 	uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA);
1636 	int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
1637 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1638 	    type, 0);
1639 	int error;
1640 	struct seg *seg;
1641 	struct vattr va;
1642 	u_offset_t eoff;
1643 	size_t save_size = 0;
1644 	extern size_t textrepl_size_thresh;
1645 
1646 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1647 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1648 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1649 	ASSERT(vn_a->vp != NULL);
1650 	ASSERT(vn_a->amp == NULL);
1651 
1652 again:
1653 	if (szcvec <= 1) {
1654 		seg = seg_alloc(as, addr, size);
1655 		if (seg == NULL) {
1656 			return (ENOMEM);
1657 		}
1658 		vn_a->szc = 0;
1659 		error = (*crfp)(seg, vn_a);
1660 		if (error != 0) {
1661 			seg_free(seg);
1662 		} else {
1663 			as->a_size += size;
1664 			as->a_resvsize += size;
1665 		}
1666 		return (error);
1667 	}
1668 
1669 	va.va_mask = AT_SIZE;
1670 	if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred, NULL) != 0) {
1671 		szcvec = 0;
1672 		goto again;
1673 	}
1674 	eoff = vn_a->offset & PAGEMASK;
1675 	if (eoff >= va.va_size) {
1676 		szcvec = 0;
1677 		goto again;
1678 	}
1679 	eoff += size;
1680 	if (btopr(va.va_size) < btopr(eoff)) {
1681 		save_size = size;
1682 		size = va.va_size - (vn_a->offset & PAGEMASK);
1683 		size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t);
1684 		szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1685 		    type, 0);
1686 		if (szcvec <= 1) {
1687 			size = save_size;
1688 			goto again;
1689 		}
1690 	}
1691 
1692 	if (size > textrepl_size_thresh) {
1693 		vn_a->flags |= _MAP_TEXTREPL;
1694 	}
1695 	error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a,
1696 	    segcreated);
1697 	if (error != 0) {
1698 		return (error);
1699 	}
1700 	if (save_size) {
1701 		addr += size;
1702 		size = save_size - size;
1703 		szcvec = 0;
1704 		goto again;
1705 	}
1706 	return (0);
1707 }
1708 
1709 /*
1710  * as_map_ansegs: shared or private anonymous memory.  Note that the flags
1711  * passed to map_pgszvec cannot be MAP_INITDATA, for anon.
1712  */
1713 static int
1714 as_map_ansegs(struct as *as, caddr_t addr, size_t size,
1715     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1716 {
1717 	uint_t szcvec;
1718 	uchar_t type;
1719 
1720 	ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE);
1721 	if (vn_a->type == MAP_SHARED) {
1722 		type = MAPPGSZC_SHM;
1723 	} else if (vn_a->type == MAP_PRIVATE) {
1724 		if (vn_a->szc == AS_MAP_HEAP) {
1725 			type = MAPPGSZC_HEAP;
1726 		} else if (vn_a->szc == AS_MAP_STACK) {
1727 			type = MAPPGSZC_STACK;
1728 		} else {
1729 			type = MAPPGSZC_PRIVM;
1730 		}
1731 	}
1732 	szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ?
1733 	    (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE),
1734 	    (vn_a->flags & MAP_TEXT), type, 0);
1735 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1736 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1737 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1738 	ASSERT(vn_a->vp == NULL);
1739 
1740 	return (as_map_segvn_segs(as, addr, size, szcvec,
1741 	    crfp, vn_a, segcreated));
1742 }
1743 
1744 int
1745 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp)
1746 {
1747 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1748 	return (as_map_locked(as, addr, size, crfp, argsp));
1749 }
1750 
1751 int
1752 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(),
1753 		void *argsp)
1754 {
1755 	struct seg *seg = NULL;
1756 	caddr_t raddr;			/* rounded down addr */
1757 	size_t rsize;			/* rounded up size */
1758 	int error;
1759 	int unmap = 0;
1760 	struct proc *p = curproc;
1761 	struct segvn_crargs crargs;
1762 
1763 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1764 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1765 	    (size_t)raddr;
1766 
1767 	/*
1768 	 * check for wrap around
1769 	 */
1770 	if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) {
1771 		AS_LOCK_EXIT(as, &as->a_lock);
1772 		return (ENOMEM);
1773 	}
1774 
1775 	as->a_updatedir = 1;	/* inform /proc */
1776 	gethrestime(&as->a_updatetime);
1777 
1778 	if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) {
1779 		AS_LOCK_EXIT(as, &as->a_lock);
1780 
1781 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
1782 		    RCA_UNSAFE_ALL);
1783 
1784 		return (ENOMEM);
1785 	}
1786 
1787 	if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) {
1788 		crargs = *(struct segvn_crargs *)argsp;
1789 		error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap);
1790 		if (error != 0) {
1791 			AS_LOCK_EXIT(as, &as->a_lock);
1792 			if (unmap) {
1793 				(void) as_unmap(as, addr, size);
1794 			}
1795 			return (error);
1796 		}
1797 	} else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) {
1798 		crargs = *(struct segvn_crargs *)argsp;
1799 		error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap);
1800 		if (error != 0) {
1801 			AS_LOCK_EXIT(as, &as->a_lock);
1802 			if (unmap) {
1803 				(void) as_unmap(as, addr, size);
1804 			}
1805 			return (error);
1806 		}
1807 	} else {
1808 		seg = seg_alloc(as, addr, size);
1809 		if (seg == NULL) {
1810 			AS_LOCK_EXIT(as, &as->a_lock);
1811 			return (ENOMEM);
1812 		}
1813 
1814 		error = (*crfp)(seg, argsp);
1815 		if (error != 0) {
1816 			seg_free(seg);
1817 			AS_LOCK_EXIT(as, &as->a_lock);
1818 			return (error);
1819 		}
1820 		/*
1821 		 * Add size now so as_unmap will work if as_ctl fails.
1822 		 */
1823 		as->a_size += rsize;
1824 		as->a_resvsize += rsize;
1825 	}
1826 
1827 	as_setwatch(as);
1828 
1829 	/*
1830 	 * If the address space is locked,
1831 	 * establish memory locks for the new segment.
1832 	 */
1833 	mutex_enter(&as->a_contents);
1834 	if (AS_ISPGLCK(as)) {
1835 		mutex_exit(&as->a_contents);
1836 		AS_LOCK_EXIT(as, &as->a_lock);
1837 		error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0);
1838 		if (error != 0)
1839 			(void) as_unmap(as, addr, size);
1840 	} else {
1841 		mutex_exit(&as->a_contents);
1842 		AS_LOCK_EXIT(as, &as->a_lock);
1843 	}
1844 	return (error);
1845 }
1846 
1847 
1848 /*
1849  * Delete all segments in the address space marked with S_PURGE.
1850  * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c).
1851  * These segments are deleted as a first step before calls to as_gap(), so
1852  * that they don't affect mmap() or shmat().
1853  */
1854 void
1855 as_purge(struct as *as)
1856 {
1857 	struct seg *seg;
1858 	struct seg *next_seg;
1859 
1860 	/*
1861 	 * the setting of NEEDSPURGE is protect by as_rangelock(), so
1862 	 * no need to grab a_contents mutex for this check
1863 	 */
1864 	if ((as->a_flags & AS_NEEDSPURGE) == 0)
1865 		return;
1866 
1867 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1868 	next_seg = NULL;
1869 	seg = AS_SEGFIRST(as);
1870 	while (seg != NULL) {
1871 		next_seg = AS_SEGNEXT(as, seg);
1872 		if (seg->s_flags & S_PURGE)
1873 			SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
1874 		seg = next_seg;
1875 	}
1876 	AS_LOCK_EXIT(as, &as->a_lock);
1877 
1878 	mutex_enter(&as->a_contents);
1879 	as->a_flags &= ~AS_NEEDSPURGE;
1880 	mutex_exit(&as->a_contents);
1881 }
1882 
1883 /*
1884  * Find a hole within [*basep, *basep + *lenp), which contains a mappable
1885  * range of addresses at least "minlen" long, where the base of the range is
1886  * at "off" phase from an "align" boundary and there is space for a
1887  * "redzone"-sized redzone on eithe rside of the range.  Thus,
1888  * if align was 4M and off was 16k, the user wants a hole which will start
1889  * 16k into a 4M page.
1890  *
1891  * If flags specifies AH_HI, the hole will have the highest possible address
1892  * in the range.  We use the as->a_lastgap field to figure out where to
1893  * start looking for a gap.
1894  *
1895  * Otherwise, the gap will have the lowest possible address.
1896  *
1897  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1898  *
1899  * If an adequate hole is found, *basep and *lenp are set to reflect the part of
1900  * the hole that is within range, and 0 is returned. On failure, -1 is returned.
1901  *
1902  * NOTE: This routine is not correct when base+len overflows caddr_t.
1903  */
1904 int
1905 as_gap_aligned(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp,
1906     uint_t flags, caddr_t addr, size_t align, size_t redzone, size_t off)
1907 {
1908 	caddr_t lobound = *basep;
1909 	caddr_t hibound = lobound + *lenp;
1910 	struct seg *lseg, *hseg;
1911 	caddr_t lo, hi;
1912 	int forward;
1913 	caddr_t save_base;
1914 	size_t save_len;
1915 	size_t save_minlen;
1916 	size_t save_redzone;
1917 	int fast_path = 1;
1918 
1919 	save_base = *basep;
1920 	save_len = *lenp;
1921 	save_minlen = minlen;
1922 	save_redzone = redzone;
1923 
1924 	/*
1925 	 * For the first pass/fast_path, just add align and redzone into
1926 	 * minlen since if we get an allocation, we can guarantee that it
1927 	 * will fit the alignment and redzone requested.
1928 	 * This increases the chance that hibound will be adjusted to
1929 	 * a_lastgap->s_base which will likely allow us to find an
1930 	 * acceptable hole in the address space quicker.
1931 	 * If we can't find a hole with this fast_path, then we look for
1932 	 * smaller holes in which the alignment and offset may allow
1933 	 * the allocation to fit.
1934 	 */
1935 	minlen += align;
1936 	minlen += 2 * redzone;
1937 	redzone = 0;
1938 
1939 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1940 	if (AS_SEGFIRST(as) == NULL) {
1941 		if (valid_va_range_aligned(basep, lenp, minlen, flags & AH_DIR,
1942 		    align, redzone, off)) {
1943 			AS_LOCK_EXIT(as, &as->a_lock);
1944 			return (0);
1945 		} else {
1946 			AS_LOCK_EXIT(as, &as->a_lock);
1947 			*basep = save_base;
1948 			*lenp = save_len;
1949 			return (-1);
1950 		}
1951 	}
1952 
1953 retry:
1954 	/*
1955 	 * Set up to iterate over all the inter-segment holes in the given
1956 	 * direction.  lseg is NULL for the lowest-addressed hole and hseg is
1957 	 * NULL for the highest-addressed hole.  If moving backwards, we reset
1958 	 * sseg to denote the highest-addressed segment.
1959 	 */
1960 	forward = (flags & AH_DIR) == AH_LO;
1961 	if (forward) {
1962 		hseg = as_findseg(as, lobound, 1);
1963 		lseg = AS_SEGPREV(as, hseg);
1964 	} else {
1965 
1966 		/*
1967 		 * If allocating at least as much as the last allocation,
1968 		 * use a_lastgap's base as a better estimate of hibound.
1969 		 */
1970 		if (as->a_lastgap &&
1971 		    minlen >= as->a_lastgap->s_size &&
1972 		    hibound >= as->a_lastgap->s_base)
1973 			hibound = as->a_lastgap->s_base;
1974 
1975 		hseg = as_findseg(as, hibound, 1);
1976 		if (hseg->s_base + hseg->s_size < hibound) {
1977 			lseg = hseg;
1978 			hseg = NULL;
1979 		} else {
1980 			lseg = AS_SEGPREV(as, hseg);
1981 		}
1982 	}
1983 
1984 	for (;;) {
1985 		/*
1986 		 * Set lo and hi to the hole's boundaries.  (We should really
1987 		 * use MAXADDR in place of hibound in the expression below,
1988 		 * but can't express it easily; using hibound in its place is
1989 		 * harmless.)
1990 		 */
1991 		lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size;
1992 		hi = (hseg == NULL) ? hibound : hseg->s_base;
1993 		/*
1994 		 * If the iteration has moved past the interval from lobound
1995 		 * to hibound it's pointless to continue.
1996 		 */
1997 		if ((forward && lo > hibound) || (!forward && hi < lobound))
1998 			break;
1999 		else if (lo > hibound || hi < lobound)
2000 			goto cont;
2001 		/*
2002 		 * Candidate hole lies at least partially within the allowable
2003 		 * range.  Restrict it to fall completely within that range,
2004 		 * i.e., to [max(lo, lobound), min(hi, hibound)].
2005 		 */
2006 		if (lo < lobound)
2007 			lo = lobound;
2008 		if (hi > hibound)
2009 			hi = hibound;
2010 		/*
2011 		 * Verify that the candidate hole is big enough and meets
2012 		 * hardware constraints.  If the hole is too small, no need
2013 		 * to do the further checks since they will fail.
2014 		 */
2015 		*basep = lo;
2016 		*lenp = hi - lo;
2017 		if (*lenp >= minlen && valid_va_range_aligned(basep, lenp,
2018 		    minlen, forward ? AH_LO : AH_HI, align, redzone, off) &&
2019 		    ((flags & AH_CONTAIN) == 0 ||
2020 		    (*basep <= addr && *basep + *lenp > addr))) {
2021 			if (!forward)
2022 				as->a_lastgap = hseg;
2023 			if (hseg != NULL)
2024 				as->a_lastgaphl = hseg;
2025 			else
2026 				as->a_lastgaphl = lseg;
2027 			AS_LOCK_EXIT(as, &as->a_lock);
2028 			return (0);
2029 		}
2030 	cont:
2031 		/*
2032 		 * Move to the next hole.
2033 		 */
2034 		if (forward) {
2035 			lseg = hseg;
2036 			if (lseg == NULL)
2037 				break;
2038 			hseg = AS_SEGNEXT(as, hseg);
2039 		} else {
2040 			hseg = lseg;
2041 			if (hseg == NULL)
2042 				break;
2043 			lseg = AS_SEGPREV(as, lseg);
2044 		}
2045 	}
2046 	if (fast_path && (align != 0 || save_redzone != 0)) {
2047 		fast_path = 0;
2048 		minlen = save_minlen;
2049 		redzone = save_redzone;
2050 		goto retry;
2051 	}
2052 	*basep = save_base;
2053 	*lenp = save_len;
2054 	AS_LOCK_EXIT(as, &as->a_lock);
2055 	return (-1);
2056 }
2057 
2058 /*
2059  * Find a hole of at least size minlen within [*basep, *basep + *lenp).
2060  *
2061  * If flags specifies AH_HI, the hole will have the highest possible address
2062  * in the range.  We use the as->a_lastgap field to figure out where to
2063  * start looking for a gap.
2064  *
2065  * Otherwise, the gap will have the lowest possible address.
2066  *
2067  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
2068  *
2069  * If an adequate hole is found, base and len are set to reflect the part of
2070  * the hole that is within range, and 0 is returned, otherwise,
2071  * -1 is returned.
2072  *
2073  * NOTE: This routine is not correct when base+len overflows caddr_t.
2074  */
2075 int
2076 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags,
2077     caddr_t addr)
2078 {
2079 
2080 	return (as_gap_aligned(as, minlen, basep, lenp, flags, addr, 0, 0, 0));
2081 }
2082 
2083 /*
2084  * Return the next range within [base, base + len) that is backed
2085  * with "real memory".  Skip holes and non-seg_vn segments.
2086  * We're lazy and only return one segment at a time.
2087  */
2088 int
2089 as_memory(struct as *as, caddr_t *basep, size_t *lenp)
2090 {
2091 	extern struct seg_ops segspt_shmops;	/* needs a header file */
2092 	struct seg *seg;
2093 	caddr_t addr, eaddr;
2094 	caddr_t segend;
2095 
2096 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2097 
2098 	addr = *basep;
2099 	eaddr = addr + *lenp;
2100 
2101 	seg = as_findseg(as, addr, 0);
2102 	if (seg != NULL)
2103 		addr = MAX(seg->s_base, addr);
2104 
2105 	for (;;) {
2106 		if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) {
2107 			AS_LOCK_EXIT(as, &as->a_lock);
2108 			return (EINVAL);
2109 		}
2110 
2111 		if (seg->s_ops == &segvn_ops) {
2112 			segend = seg->s_base + seg->s_size;
2113 			break;
2114 		}
2115 
2116 		/*
2117 		 * We do ISM by looking into the private data
2118 		 * to determine the real size of the segment.
2119 		 */
2120 		if (seg->s_ops == &segspt_shmops) {
2121 			segend = seg->s_base + spt_realsize(seg);
2122 			if (addr < segend)
2123 				break;
2124 		}
2125 
2126 		seg = AS_SEGNEXT(as, seg);
2127 
2128 		if (seg != NULL)
2129 			addr = seg->s_base;
2130 	}
2131 
2132 	*basep = addr;
2133 
2134 	if (segend > eaddr)
2135 		*lenp = eaddr - addr;
2136 	else
2137 		*lenp = segend - addr;
2138 
2139 	AS_LOCK_EXIT(as, &as->a_lock);
2140 	return (0);
2141 }
2142 
2143 /*
2144  * Swap the pages associated with the address space as out to
2145  * secondary storage, returning the number of bytes actually
2146  * swapped.
2147  *
2148  * The value returned is intended to correlate well with the process's
2149  * memory requirements.  Its usefulness for this purpose depends on
2150  * how well the segment-level routines do at returning accurate
2151  * information.
2152  */
2153 size_t
2154 as_swapout(struct as *as)
2155 {
2156 	struct seg *seg;
2157 	size_t swpcnt = 0;
2158 
2159 	/*
2160 	 * Kernel-only processes have given up their address
2161 	 * spaces.  Of course, we shouldn't be attempting to
2162 	 * swap out such processes in the first place...
2163 	 */
2164 	if (as == NULL)
2165 		return (0);
2166 
2167 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2168 
2169 	/* Prevent XHATs from attaching */
2170 	mutex_enter(&as->a_contents);
2171 	AS_SETBUSY(as);
2172 	mutex_exit(&as->a_contents);
2173 
2174 
2175 	/*
2176 	 * Free all mapping resources associated with the address
2177 	 * space.  The segment-level swapout routines capitalize
2178 	 * on this unmapping by scavanging pages that have become
2179 	 * unmapped here.
2180 	 */
2181 	hat_swapout(as->a_hat);
2182 	if (as->a_xhat != NULL)
2183 		xhat_swapout_all(as);
2184 
2185 	mutex_enter(&as->a_contents);
2186 	AS_CLRBUSY(as);
2187 	mutex_exit(&as->a_contents);
2188 
2189 	/*
2190 	 * Call the swapout routines of all segments in the address
2191 	 * space to do the actual work, accumulating the amount of
2192 	 * space reclaimed.
2193 	 */
2194 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2195 		struct seg_ops *ov = seg->s_ops;
2196 
2197 		/*
2198 		 * We have to check to see if the seg has
2199 		 * an ops vector because the seg may have
2200 		 * been in the middle of being set up when
2201 		 * the process was picked for swapout.
2202 		 */
2203 		if ((ov != NULL) && (ov->swapout != NULL))
2204 			swpcnt += SEGOP_SWAPOUT(seg);
2205 	}
2206 	AS_LOCK_EXIT(as, &as->a_lock);
2207 	return (swpcnt);
2208 }
2209 
2210 /*
2211  * Determine whether data from the mappings in interval [addr, addr + size)
2212  * are in the primary memory (core) cache.
2213  */
2214 int
2215 as_incore(struct as *as, caddr_t addr,
2216     size_t size, char *vec, size_t *sizep)
2217 {
2218 	struct seg *seg;
2219 	size_t ssize;
2220 	caddr_t raddr;		/* rounded down addr */
2221 	size_t rsize;		/* rounded up size */
2222 	size_t isize;			/* iteration size */
2223 	int error = 0;		/* result, assume success */
2224 
2225 	*sizep = 0;
2226 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2227 	rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) -
2228 	    (size_t)raddr;
2229 
2230 	if (raddr + rsize < raddr)		/* check for wraparound */
2231 		return (ENOMEM);
2232 
2233 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2234 	seg = as_segat(as, raddr);
2235 	if (seg == NULL) {
2236 		AS_LOCK_EXIT(as, &as->a_lock);
2237 		return (-1);
2238 	}
2239 
2240 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2241 		if (raddr >= seg->s_base + seg->s_size) {
2242 			seg = AS_SEGNEXT(as, seg);
2243 			if (seg == NULL || raddr != seg->s_base) {
2244 				error = -1;
2245 				break;
2246 			}
2247 		}
2248 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2249 			ssize = seg->s_base + seg->s_size - raddr;
2250 		else
2251 			ssize = rsize;
2252 		*sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec);
2253 		if (isize != ssize) {
2254 			error = -1;
2255 			break;
2256 		}
2257 		vec += btopr(ssize);
2258 	}
2259 	AS_LOCK_EXIT(as, &as->a_lock);
2260 	return (error);
2261 }
2262 
2263 static void
2264 as_segunlock(struct seg *seg, caddr_t addr, int attr,
2265 	ulong_t *bitmap, size_t position, size_t npages)
2266 {
2267 	caddr_t	range_start;
2268 	size_t	pos1 = position;
2269 	size_t	pos2;
2270 	size_t	size;
2271 	size_t  end_pos = npages + position;
2272 
2273 	while (bt_range(bitmap, &pos1, &pos2, end_pos)) {
2274 		size = ptob((pos2 - pos1));
2275 		range_start = (caddr_t)((uintptr_t)addr +
2276 		    ptob(pos1 - position));
2277 
2278 		(void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK,
2279 		    (ulong_t *)NULL, (size_t)NULL);
2280 		pos1 = pos2;
2281 	}
2282 }
2283 
2284 static void
2285 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map,
2286 	caddr_t raddr, size_t rsize)
2287 {
2288 	struct seg *seg = as_segat(as, raddr);
2289 	size_t ssize;
2290 
2291 	while (rsize != 0) {
2292 		if (raddr >= seg->s_base + seg->s_size)
2293 			seg = AS_SEGNEXT(as, seg);
2294 
2295 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2296 			ssize = seg->s_base + seg->s_size - raddr;
2297 		else
2298 			ssize = rsize;
2299 
2300 		as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize));
2301 
2302 		rsize -= ssize;
2303 		raddr += ssize;
2304 	}
2305 }
2306 
2307 /*
2308  * Cache control operations over the interval [addr, addr + size) in
2309  * address space "as".
2310  */
2311 /*ARGSUSED*/
2312 int
2313 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr,
2314     uintptr_t arg, ulong_t *lock_map, size_t pos)
2315 {
2316 	struct seg *seg;	/* working segment */
2317 	caddr_t raddr;		/* rounded down addr */
2318 	caddr_t initraddr;	/* saved initial rounded down addr */
2319 	size_t rsize;		/* rounded up size */
2320 	size_t initrsize;	/* saved initial rounded up size */
2321 	size_t ssize;		/* size of seg */
2322 	int error = 0;			/* result */
2323 	size_t mlock_size;	/* size of bitmap */
2324 	ulong_t *mlock_map;	/* pointer to bitmap used */
2325 				/* to represent the locked */
2326 				/* pages. */
2327 retry:
2328 	if (error == IE_RETRY)
2329 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2330 	else
2331 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2332 
2333 	/*
2334 	 * If these are address space lock/unlock operations, loop over
2335 	 * all segments in the address space, as appropriate.
2336 	 */
2337 	if (func == MC_LOCKAS) {
2338 		size_t npages, idx;
2339 		size_t rlen = 0;	/* rounded as length */
2340 
2341 		idx = pos;
2342 
2343 		if (arg & MCL_FUTURE) {
2344 			mutex_enter(&as->a_contents);
2345 			AS_SETPGLCK(as);
2346 			mutex_exit(&as->a_contents);
2347 		}
2348 		if ((arg & MCL_CURRENT) == 0) {
2349 			AS_LOCK_EXIT(as, &as->a_lock);
2350 			return (0);
2351 		}
2352 
2353 		seg = AS_SEGFIRST(as);
2354 		if (seg == NULL) {
2355 			AS_LOCK_EXIT(as, &as->a_lock);
2356 			return (0);
2357 		}
2358 
2359 		do {
2360 			raddr = (caddr_t)((uintptr_t)seg->s_base &
2361 			    (uintptr_t)PAGEMASK);
2362 			rlen += (((uintptr_t)(seg->s_base + seg->s_size) +
2363 			    PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr;
2364 		} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2365 
2366 		mlock_size = BT_BITOUL(btopr(rlen));
2367 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2368 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2369 				AS_LOCK_EXIT(as, &as->a_lock);
2370 				return (EAGAIN);
2371 		}
2372 
2373 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2374 			error = SEGOP_LOCKOP(seg, seg->s_base,
2375 			    seg->s_size, attr, MC_LOCK, mlock_map, pos);
2376 			if (error != 0)
2377 				break;
2378 			pos += seg_pages(seg);
2379 		}
2380 
2381 		if (error) {
2382 			for (seg = AS_SEGFIRST(as); seg != NULL;
2383 			    seg = AS_SEGNEXT(as, seg)) {
2384 
2385 				raddr = (caddr_t)((uintptr_t)seg->s_base &
2386 				    (uintptr_t)PAGEMASK);
2387 				npages = seg_pages(seg);
2388 				as_segunlock(seg, raddr, attr, mlock_map,
2389 				    idx, npages);
2390 				idx += npages;
2391 			}
2392 		}
2393 
2394 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2395 		AS_LOCK_EXIT(as, &as->a_lock);
2396 		goto lockerr;
2397 	} else if (func == MC_UNLOCKAS) {
2398 		mutex_enter(&as->a_contents);
2399 		AS_CLRPGLCK(as);
2400 		mutex_exit(&as->a_contents);
2401 
2402 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2403 			error = SEGOP_LOCKOP(seg, seg->s_base,
2404 			    seg->s_size, attr, MC_UNLOCK, NULL, 0);
2405 			if (error != 0)
2406 				break;
2407 		}
2408 
2409 		AS_LOCK_EXIT(as, &as->a_lock);
2410 		goto lockerr;
2411 	}
2412 
2413 	/*
2414 	 * Normalize addresses and sizes.
2415 	 */
2416 	initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2417 	initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2418 	    (size_t)raddr;
2419 
2420 	if (raddr + rsize < raddr) {		/* check for wraparound */
2421 		AS_LOCK_EXIT(as, &as->a_lock);
2422 		return (ENOMEM);
2423 	}
2424 
2425 	/*
2426 	 * Get initial segment.
2427 	 */
2428 	if ((seg = as_segat(as, raddr)) == NULL) {
2429 		AS_LOCK_EXIT(as, &as->a_lock);
2430 		return (ENOMEM);
2431 	}
2432 
2433 	if (func == MC_LOCK) {
2434 		mlock_size = BT_BITOUL(btopr(rsize));
2435 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2436 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2437 				AS_LOCK_EXIT(as, &as->a_lock);
2438 				return (EAGAIN);
2439 		}
2440 	}
2441 
2442 	/*
2443 	 * Loop over all segments.  If a hole in the address range is
2444 	 * discovered, then fail.  For each segment, perform the appropriate
2445 	 * control operation.
2446 	 */
2447 	while (rsize != 0) {
2448 
2449 		/*
2450 		 * Make sure there's no hole, calculate the portion
2451 		 * of the next segment to be operated over.
2452 		 */
2453 		if (raddr >= seg->s_base + seg->s_size) {
2454 			seg = AS_SEGNEXT(as, seg);
2455 			if (seg == NULL || raddr != seg->s_base) {
2456 				if (func == MC_LOCK) {
2457 					as_unlockerr(as, attr, mlock_map,
2458 					    initraddr, initrsize - rsize);
2459 					kmem_free(mlock_map,
2460 					    mlock_size * sizeof (ulong_t));
2461 				}
2462 				AS_LOCK_EXIT(as, &as->a_lock);
2463 				return (ENOMEM);
2464 			}
2465 		}
2466 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2467 			ssize = seg->s_base + seg->s_size - raddr;
2468 		else
2469 			ssize = rsize;
2470 
2471 		/*
2472 		 * Dispatch on specific function.
2473 		 */
2474 		switch (func) {
2475 
2476 		/*
2477 		 * Synchronize cached data from mappings with backing
2478 		 * objects.
2479 		 */
2480 		case MC_SYNC:
2481 			if (error = SEGOP_SYNC(seg, raddr, ssize,
2482 			    attr, (uint_t)arg)) {
2483 				AS_LOCK_EXIT(as, &as->a_lock);
2484 				return (error);
2485 			}
2486 			break;
2487 
2488 		/*
2489 		 * Lock pages in memory.
2490 		 */
2491 		case MC_LOCK:
2492 			if (error = SEGOP_LOCKOP(seg, raddr, ssize,
2493 			    attr, func, mlock_map, pos)) {
2494 				as_unlockerr(as, attr, mlock_map, initraddr,
2495 				    initrsize - rsize + ssize);
2496 				kmem_free(mlock_map, mlock_size *
2497 				    sizeof (ulong_t));
2498 				AS_LOCK_EXIT(as, &as->a_lock);
2499 				goto lockerr;
2500 			}
2501 			break;
2502 
2503 		/*
2504 		 * Unlock mapped pages.
2505 		 */
2506 		case MC_UNLOCK:
2507 			(void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func,
2508 			    (ulong_t *)NULL, (size_t)NULL);
2509 			break;
2510 
2511 		/*
2512 		 * Store VM advise for mapped pages in segment layer.
2513 		 */
2514 		case MC_ADVISE:
2515 			error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg);
2516 
2517 			/*
2518 			 * Check for regular errors and special retry error
2519 			 */
2520 			if (error) {
2521 				if (error == IE_RETRY) {
2522 					/*
2523 					 * Need to acquire writers lock, so
2524 					 * have to drop readers lock and start
2525 					 * all over again
2526 					 */
2527 					AS_LOCK_EXIT(as, &as->a_lock);
2528 					goto retry;
2529 				} else if (error == IE_REATTACH) {
2530 					/*
2531 					 * Find segment for current address
2532 					 * because current segment just got
2533 					 * split or concatenated
2534 					 */
2535 					seg = as_segat(as, raddr);
2536 					if (seg == NULL) {
2537 						AS_LOCK_EXIT(as, &as->a_lock);
2538 						return (ENOMEM);
2539 					}
2540 				} else {
2541 					/*
2542 					 * Regular error
2543 					 */
2544 					AS_LOCK_EXIT(as, &as->a_lock);
2545 					return (error);
2546 				}
2547 			}
2548 			break;
2549 
2550 		case MC_INHERIT_ZERO:
2551 			if (seg->s_ops->inherit == NULL) {
2552 				error = ENOTSUP;
2553 			} else {
2554 				error = SEGOP_INHERIT(seg, raddr, ssize,
2555 				    SEGP_INH_ZERO);
2556 			}
2557 			if (error != 0) {
2558 				AS_LOCK_EXIT(as, &as->a_lock);
2559 				return (error);
2560 			}
2561 			break;
2562 
2563 		/*
2564 		 * Can't happen.
2565 		 */
2566 		default:
2567 			panic("as_ctl: bad operation %d", func);
2568 			/*NOTREACHED*/
2569 		}
2570 
2571 		rsize -= ssize;
2572 		raddr += ssize;
2573 	}
2574 
2575 	if (func == MC_LOCK)
2576 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2577 	AS_LOCK_EXIT(as, &as->a_lock);
2578 	return (0);
2579 lockerr:
2580 
2581 	/*
2582 	 * If the lower levels returned EDEADLK for a segment lockop,
2583 	 * it means that we should retry the operation.  Let's wait
2584 	 * a bit also to let the deadlock causing condition clear.
2585 	 * This is part of a gross hack to work around a design flaw
2586 	 * in the ufs/sds logging code and should go away when the
2587 	 * logging code is re-designed to fix the problem. See bug
2588 	 * 4125102 for details of the problem.
2589 	 */
2590 	if (error == EDEADLK) {
2591 		delay(deadlk_wait);
2592 		error = 0;
2593 		goto retry;
2594 	}
2595 	return (error);
2596 }
2597 
2598 int
2599 fc_decode(faultcode_t fault_err)
2600 {
2601 	int error = 0;
2602 
2603 	switch (FC_CODE(fault_err)) {
2604 	case FC_OBJERR:
2605 		error = FC_ERRNO(fault_err);
2606 		break;
2607 	case FC_PROT:
2608 		error = EACCES;
2609 		break;
2610 	default:
2611 		error = EFAULT;
2612 		break;
2613 	}
2614 	return (error);
2615 }
2616 
2617 /*
2618  * Pagelock pages from a range that spans more than 1 segment.  Obtain shadow
2619  * lists from each segment and copy them to one contiguous shadow list (plist)
2620  * as expected by the caller.  Save pointers to per segment shadow lists at
2621  * the tail of plist so that they can be used during as_pageunlock().
2622  */
2623 static int
2624 as_pagelock_segs(struct as *as, struct seg *seg, struct page ***ppp,
2625     caddr_t addr, size_t size, enum seg_rw rw)
2626 {
2627 	caddr_t sv_addr = addr;
2628 	size_t sv_size = size;
2629 	struct seg *sv_seg = seg;
2630 	ulong_t segcnt = 1;
2631 	ulong_t cnt;
2632 	size_t ssize;
2633 	pgcnt_t npages = btop(size);
2634 	page_t **plist;
2635 	page_t **pl;
2636 	int error;
2637 	caddr_t eaddr;
2638 	faultcode_t fault_err = 0;
2639 	pgcnt_t pl_off;
2640 	extern struct seg_ops segspt_shmops;
2641 
2642 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
2643 	ASSERT(seg != NULL);
2644 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2645 	ASSERT(addr + size > seg->s_base + seg->s_size);
2646 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2647 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2648 
2649 	/*
2650 	 * Count the number of segments covered by the range we are about to
2651 	 * lock. The segment count is used to size the shadow list we return
2652 	 * back to the caller.
2653 	 */
2654 	for (; size != 0; size -= ssize, addr += ssize) {
2655 		if (addr >= seg->s_base + seg->s_size) {
2656 
2657 			seg = AS_SEGNEXT(as, seg);
2658 			if (seg == NULL || addr != seg->s_base) {
2659 				AS_LOCK_EXIT(as, &as->a_lock);
2660 				return (EFAULT);
2661 			}
2662 			/*
2663 			 * Do a quick check if subsequent segments
2664 			 * will most likely support pagelock.
2665 			 */
2666 			if (seg->s_ops == &segvn_ops) {
2667 				vnode_t *vp;
2668 
2669 				if (SEGOP_GETVP(seg, addr, &vp) != 0 ||
2670 				    vp != NULL) {
2671 					AS_LOCK_EXIT(as, &as->a_lock);
2672 					goto slow;
2673 				}
2674 			} else if (seg->s_ops != &segspt_shmops) {
2675 				AS_LOCK_EXIT(as, &as->a_lock);
2676 				goto slow;
2677 			}
2678 			segcnt++;
2679 		}
2680 		if (addr + size > seg->s_base + seg->s_size) {
2681 			ssize = seg->s_base + seg->s_size - addr;
2682 		} else {
2683 			ssize = size;
2684 		}
2685 	}
2686 	ASSERT(segcnt > 1);
2687 
2688 	plist = kmem_zalloc((npages + segcnt) * sizeof (page_t *), KM_SLEEP);
2689 
2690 	addr = sv_addr;
2691 	size = sv_size;
2692 	seg = sv_seg;
2693 
2694 	for (cnt = 0, pl_off = 0; size != 0; size -= ssize, addr += ssize) {
2695 		if (addr >= seg->s_base + seg->s_size) {
2696 			seg = AS_SEGNEXT(as, seg);
2697 			ASSERT(seg != NULL && addr == seg->s_base);
2698 			cnt++;
2699 			ASSERT(cnt < segcnt);
2700 		}
2701 		if (addr + size > seg->s_base + seg->s_size) {
2702 			ssize = seg->s_base + seg->s_size - addr;
2703 		} else {
2704 			ssize = size;
2705 		}
2706 		pl = &plist[npages + cnt];
2707 		error = SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2708 		    L_PAGELOCK, rw);
2709 		if (error) {
2710 			break;
2711 		}
2712 		ASSERT(plist[npages + cnt] != NULL);
2713 		ASSERT(pl_off + btop(ssize) <= npages);
2714 		bcopy(plist[npages + cnt], &plist[pl_off],
2715 		    btop(ssize) * sizeof (page_t *));
2716 		pl_off += btop(ssize);
2717 	}
2718 
2719 	if (size == 0) {
2720 		AS_LOCK_EXIT(as, &as->a_lock);
2721 		ASSERT(cnt == segcnt - 1);
2722 		*ppp = plist;
2723 		return (0);
2724 	}
2725 
2726 	/*
2727 	 * one of pagelock calls failed. The error type is in error variable.
2728 	 * Unlock what we've locked so far and retry with F_SOFTLOCK if error
2729 	 * type is either EFAULT or ENOTSUP. Otherwise just return the error
2730 	 * back to the caller.
2731 	 */
2732 
2733 	eaddr = addr;
2734 	seg = sv_seg;
2735 
2736 	for (cnt = 0, addr = sv_addr; addr < eaddr; addr += ssize) {
2737 		if (addr >= seg->s_base + seg->s_size) {
2738 			seg = AS_SEGNEXT(as, seg);
2739 			ASSERT(seg != NULL && addr == seg->s_base);
2740 			cnt++;
2741 			ASSERT(cnt < segcnt);
2742 		}
2743 		if (eaddr > seg->s_base + seg->s_size) {
2744 			ssize = seg->s_base + seg->s_size - addr;
2745 		} else {
2746 			ssize = eaddr - addr;
2747 		}
2748 		pl = &plist[npages + cnt];
2749 		ASSERT(*pl != NULL);
2750 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2751 		    L_PAGEUNLOCK, rw);
2752 	}
2753 
2754 	AS_LOCK_EXIT(as, &as->a_lock);
2755 
2756 	kmem_free(plist, (npages + segcnt) * sizeof (page_t *));
2757 
2758 	if (error != ENOTSUP && error != EFAULT) {
2759 		return (error);
2760 	}
2761 
2762 slow:
2763 	/*
2764 	 * If we are here because pagelock failed due to the need to cow fault
2765 	 * in the pages we want to lock F_SOFTLOCK will do this job and in
2766 	 * next as_pagelock() call for this address range pagelock will
2767 	 * hopefully succeed.
2768 	 */
2769 	fault_err = as_fault(as->a_hat, as, sv_addr, sv_size, F_SOFTLOCK, rw);
2770 	if (fault_err != 0) {
2771 		return (fc_decode(fault_err));
2772 	}
2773 	*ppp = NULL;
2774 
2775 	return (0);
2776 }
2777 
2778 /*
2779  * lock pages in a given address space. Return shadow list. If
2780  * the list is NULL, the MMU mapping is also locked.
2781  */
2782 int
2783 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr,
2784     size_t size, enum seg_rw rw)
2785 {
2786 	size_t rsize;
2787 	caddr_t raddr;
2788 	faultcode_t fault_err;
2789 	struct seg *seg;
2790 	int err;
2791 
2792 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START,
2793 	    "as_pagelock_start: addr %p size %ld", addr, size);
2794 
2795 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2796 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2797 	    (size_t)raddr;
2798 
2799 	/*
2800 	 * if the request crosses two segments let
2801 	 * as_fault handle it.
2802 	 */
2803 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2804 
2805 	seg = as_segat(as, raddr);
2806 	if (seg == NULL) {
2807 		AS_LOCK_EXIT(as, &as->a_lock);
2808 		return (EFAULT);
2809 	}
2810 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2811 	if (raddr + rsize > seg->s_base + seg->s_size) {
2812 		return (as_pagelock_segs(as, seg, ppp, raddr, rsize, rw));
2813 	}
2814 	if (raddr + rsize <= raddr) {
2815 		AS_LOCK_EXIT(as, &as->a_lock);
2816 		return (EFAULT);
2817 	}
2818 
2819 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START,
2820 	    "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize);
2821 
2822 	/*
2823 	 * try to lock pages and pass back shadow list
2824 	 */
2825 	err = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw);
2826 
2827 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end");
2828 
2829 	AS_LOCK_EXIT(as, &as->a_lock);
2830 
2831 	if (err == 0 || (err != ENOTSUP && err != EFAULT)) {
2832 		return (err);
2833 	}
2834 
2835 	/*
2836 	 * Use F_SOFTLOCK to lock the pages because pagelock failed either due
2837 	 * to no pagelock support for this segment or pages need to be cow
2838 	 * faulted in. If fault is needed F_SOFTLOCK will do this job for
2839 	 * this as_pagelock() call and in the next as_pagelock() call for the
2840 	 * same address range pagelock call will hopefull succeed.
2841 	 */
2842 	fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw);
2843 	if (fault_err != 0) {
2844 		return (fc_decode(fault_err));
2845 	}
2846 	*ppp = NULL;
2847 
2848 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end");
2849 	return (0);
2850 }
2851 
2852 /*
2853  * unlock pages locked by as_pagelock_segs().  Retrieve per segment shadow
2854  * lists from the end of plist and call pageunlock interface for each segment.
2855  * Drop as lock and free plist.
2856  */
2857 static void
2858 as_pageunlock_segs(struct as *as, struct seg *seg, caddr_t addr, size_t size,
2859     struct page **plist, enum seg_rw rw)
2860 {
2861 	ulong_t cnt;
2862 	caddr_t eaddr = addr + size;
2863 	pgcnt_t npages = btop(size);
2864 	size_t ssize;
2865 	page_t **pl;
2866 
2867 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
2868 	ASSERT(seg != NULL);
2869 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2870 	ASSERT(addr + size > seg->s_base + seg->s_size);
2871 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2872 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2873 	ASSERT(plist != NULL);
2874 
2875 	for (cnt = 0; addr < eaddr; addr += ssize) {
2876 		if (addr >= seg->s_base + seg->s_size) {
2877 			seg = AS_SEGNEXT(as, seg);
2878 			ASSERT(seg != NULL && addr == seg->s_base);
2879 			cnt++;
2880 		}
2881 		if (eaddr > seg->s_base + seg->s_size) {
2882 			ssize = seg->s_base + seg->s_size - addr;
2883 		} else {
2884 			ssize = eaddr - addr;
2885 		}
2886 		pl = &plist[npages + cnt];
2887 		ASSERT(*pl != NULL);
2888 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2889 		    L_PAGEUNLOCK, rw);
2890 	}
2891 	ASSERT(cnt > 0);
2892 	AS_LOCK_EXIT(as, &as->a_lock);
2893 
2894 	cnt++;
2895 	kmem_free(plist, (npages + cnt) * sizeof (page_t *));
2896 }
2897 
2898 /*
2899  * unlock pages in a given address range
2900  */
2901 void
2902 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size,
2903     enum seg_rw rw)
2904 {
2905 	struct seg *seg;
2906 	size_t rsize;
2907 	caddr_t raddr;
2908 
2909 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START,
2910 	    "as_pageunlock_start: addr %p size %ld", addr, size);
2911 
2912 	/*
2913 	 * if the shadow list is NULL, as_pagelock was
2914 	 * falling back to as_fault
2915 	 */
2916 	if (pp == NULL) {
2917 		(void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw);
2918 		return;
2919 	}
2920 
2921 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2922 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2923 	    (size_t)raddr;
2924 
2925 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2926 	seg = as_segat(as, raddr);
2927 	ASSERT(seg != NULL);
2928 
2929 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START,
2930 	    "seg_unlock_start: raddr %p rsize %ld", raddr, rsize);
2931 
2932 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2933 	if (raddr + rsize <= seg->s_base + seg->s_size) {
2934 		SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw);
2935 	} else {
2936 		as_pageunlock_segs(as, seg, raddr, rsize, pp, rw);
2937 		return;
2938 	}
2939 	AS_LOCK_EXIT(as, &as->a_lock);
2940 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end");
2941 }
2942 
2943 int
2944 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2945     boolean_t wait)
2946 {
2947 	struct seg *seg;
2948 	size_t ssize;
2949 	caddr_t raddr;			/* rounded down addr */
2950 	size_t rsize;			/* rounded up size */
2951 	int error = 0;
2952 	size_t pgsz = page_get_pagesize(szc);
2953 
2954 setpgsz_top:
2955 	if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) {
2956 		return (EINVAL);
2957 	}
2958 
2959 	raddr = addr;
2960 	rsize = size;
2961 
2962 	if (raddr + rsize < raddr)		/* check for wraparound */
2963 		return (ENOMEM);
2964 
2965 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2966 	as_clearwatchprot(as, raddr, rsize);
2967 	seg = as_segat(as, raddr);
2968 	if (seg == NULL) {
2969 		as_setwatch(as);
2970 		AS_LOCK_EXIT(as, &as->a_lock);
2971 		return (ENOMEM);
2972 	}
2973 
2974 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2975 		if (raddr >= seg->s_base + seg->s_size) {
2976 			seg = AS_SEGNEXT(as, seg);
2977 			if (seg == NULL || raddr != seg->s_base) {
2978 				error = ENOMEM;
2979 				break;
2980 			}
2981 		}
2982 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2983 			ssize = seg->s_base + seg->s_size - raddr;
2984 		} else {
2985 			ssize = rsize;
2986 		}
2987 
2988 retry:
2989 		error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2990 
2991 		if (error == IE_NOMEM) {
2992 			error = EAGAIN;
2993 			break;
2994 		}
2995 
2996 		if (error == IE_RETRY) {
2997 			AS_LOCK_EXIT(as, &as->a_lock);
2998 			goto setpgsz_top;
2999 		}
3000 
3001 		if (error == ENOTSUP) {
3002 			error = EINVAL;
3003 			break;
3004 		}
3005 
3006 		if (wait && (error == EAGAIN)) {
3007 			/*
3008 			 * Memory is currently locked.  It must be unlocked
3009 			 * before this operation can succeed through a retry.
3010 			 * The possible reasons for locked memory and
3011 			 * corresponding strategies for unlocking are:
3012 			 * (1) Normal I/O
3013 			 *	wait for a signal that the I/O operation
3014 			 *	has completed and the memory is unlocked.
3015 			 * (2) Asynchronous I/O
3016 			 *	The aio subsystem does not unlock pages when
3017 			 *	the I/O is completed. Those pages are unlocked
3018 			 *	when the application calls aiowait/aioerror.
3019 			 *	So, to prevent blocking forever, cv_broadcast()
3020 			 *	is done to wake up aio_cleanup_thread.
3021 			 *	Subsequently, segvn_reclaim will be called, and
3022 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
3023 			 * (3) Long term page locking:
3024 			 *	This is not relevant for as_setpagesize()
3025 			 *	because we cannot change the page size for
3026 			 *	driver memory. The attempt to do so will
3027 			 *	fail with a different error than EAGAIN so
3028 			 *	there's no need to trigger as callbacks like
3029 			 *	as_unmap, as_setprot or as_free would do.
3030 			 */
3031 			mutex_enter(&as->a_contents);
3032 			if (!AS_ISNOUNMAPWAIT(as)) {
3033 				if (AS_ISUNMAPWAIT(as) == 0) {
3034 					cv_broadcast(&as->a_cv);
3035 				}
3036 				AS_SETUNMAPWAIT(as);
3037 				AS_LOCK_EXIT(as, &as->a_lock);
3038 				while (AS_ISUNMAPWAIT(as)) {
3039 					cv_wait(&as->a_cv, &as->a_contents);
3040 				}
3041 			} else {
3042 				/*
3043 				 * We may have raced with
3044 				 * segvn_reclaim()/segspt_reclaim(). In this
3045 				 * case clean nounmapwait flag and retry since
3046 				 * softlockcnt in this segment may be already
3047 				 * 0.  We don't drop as writer lock so our
3048 				 * number of retries without sleeping should
3049 				 * be very small. See segvn_reclaim() for
3050 				 * more comments.
3051 				 */
3052 				AS_CLRNOUNMAPWAIT(as);
3053 				mutex_exit(&as->a_contents);
3054 				goto retry;
3055 			}
3056 			mutex_exit(&as->a_contents);
3057 			goto setpgsz_top;
3058 		} else if (error != 0) {
3059 			break;
3060 		}
3061 	}
3062 	as_setwatch(as);
3063 	AS_LOCK_EXIT(as, &as->a_lock);
3064 	return (error);
3065 }
3066 
3067 /*
3068  * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments
3069  * in its chunk where s_szc is less than the szc we want to set.
3070  */
3071 static int
3072 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3073     int *retry)
3074 {
3075 	struct seg *seg;
3076 	size_t ssize;
3077 	int error;
3078 
3079 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3080 
3081 	seg = as_segat(as, raddr);
3082 	if (seg == NULL) {
3083 		panic("as_iset3_default_lpsize: no seg");
3084 	}
3085 
3086 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
3087 		if (raddr >= seg->s_base + seg->s_size) {
3088 			seg = AS_SEGNEXT(as, seg);
3089 			if (seg == NULL || raddr != seg->s_base) {
3090 				panic("as_iset3_default_lpsize: as changed");
3091 			}
3092 		}
3093 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3094 			ssize = seg->s_base + seg->s_size - raddr;
3095 		} else {
3096 			ssize = rsize;
3097 		}
3098 
3099 		if (szc > seg->s_szc) {
3100 			error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
3101 			/* Only retry on EINVAL segments that have no vnode. */
3102 			if (error == EINVAL) {
3103 				vnode_t *vp = NULL;
3104 				if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) &&
3105 				    (SEGOP_GETVP(seg, raddr, &vp) != 0 ||
3106 				    vp == NULL)) {
3107 					*retry = 1;
3108 				} else {
3109 					*retry = 0;
3110 				}
3111 			}
3112 			if (error) {
3113 				return (error);
3114 			}
3115 		}
3116 	}
3117 	return (0);
3118 }
3119 
3120 /*
3121  * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the
3122  * pagesize on each segment in its range, but if any fails with EINVAL,
3123  * then it reduces the pagesizes to the next size in the bitmap and
3124  * retries as_iset3_default_lpsize(). The reason why the code retries
3125  * smaller allowed sizes on EINVAL is because (a) the anon offset may not
3126  * match the bigger sizes, and (b) it's hard to get this offset (to begin
3127  * with) to pass to map_pgszcvec().
3128  */
3129 static int
3130 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc,
3131     uint_t szcvec)
3132 {
3133 	int error;
3134 	int retry;
3135 
3136 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3137 
3138 	for (;;) {
3139 		error = as_iset3_default_lpsize(as, addr, size, szc, &retry);
3140 		if (error == EINVAL && retry) {
3141 			szcvec &= ~(1 << szc);
3142 			if (szcvec <= 1) {
3143 				return (EINVAL);
3144 			}
3145 			szc = highbit(szcvec) - 1;
3146 		} else {
3147 			return (error);
3148 		}
3149 	}
3150 }
3151 
3152 /*
3153  * as_iset1_default_lpsize() breaks its chunk into areas where existing
3154  * segments have a smaller szc than we want to set. For each such area,
3155  * it calls as_iset2_default_lpsize()
3156  */
3157 static int
3158 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3159     uint_t szcvec)
3160 {
3161 	struct seg *seg;
3162 	size_t ssize;
3163 	caddr_t setaddr = raddr;
3164 	size_t setsize = 0;
3165 	int set;
3166 	int error;
3167 
3168 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3169 
3170 	seg = as_segat(as, raddr);
3171 	if (seg == NULL) {
3172 		panic("as_iset1_default_lpsize: no seg");
3173 	}
3174 	if (seg->s_szc < szc) {
3175 		set = 1;
3176 	} else {
3177 		set = 0;
3178 	}
3179 
3180 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3181 		if (raddr >= seg->s_base + seg->s_size) {
3182 			seg = AS_SEGNEXT(as, seg);
3183 			if (seg == NULL || raddr != seg->s_base) {
3184 				panic("as_iset1_default_lpsize: as changed");
3185 			}
3186 			if (seg->s_szc >= szc && set) {
3187 				ASSERT(setsize != 0);
3188 				error = as_iset2_default_lpsize(as,
3189 				    setaddr, setsize, szc, szcvec);
3190 				if (error) {
3191 					return (error);
3192 				}
3193 				set = 0;
3194 			} else if (seg->s_szc < szc && !set) {
3195 				setaddr = raddr;
3196 				setsize = 0;
3197 				set = 1;
3198 			}
3199 		}
3200 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3201 			ssize = seg->s_base + seg->s_size - raddr;
3202 		} else {
3203 			ssize = rsize;
3204 		}
3205 	}
3206 	error = 0;
3207 	if (set) {
3208 		ASSERT(setsize != 0);
3209 		error = as_iset2_default_lpsize(as, setaddr, setsize,
3210 		    szc, szcvec);
3211 	}
3212 	return (error);
3213 }
3214 
3215 /*
3216  * as_iset_default_lpsize() breaks its chunk according to the size code bitmap
3217  * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each
3218  * chunk to as_iset1_default_lpsize().
3219  */
3220 static int
3221 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags,
3222     int type)
3223 {
3224 	int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
3225 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr,
3226 	    flags, rtype, 1);
3227 	uint_t szc;
3228 	uint_t nszc;
3229 	int error;
3230 	caddr_t a;
3231 	caddr_t eaddr;
3232 	size_t segsize;
3233 	size_t pgsz;
3234 	uint_t save_szcvec;
3235 
3236 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3237 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
3238 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
3239 
3240 	szcvec &= ~1;
3241 	if (szcvec <= 1) {	/* skip if base page size */
3242 		return (0);
3243 	}
3244 
3245 	/* Get the pagesize of the first larger page size. */
3246 	szc = lowbit(szcvec) - 1;
3247 	pgsz = page_get_pagesize(szc);
3248 	eaddr = addr + size;
3249 	addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3250 	eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3251 
3252 	save_szcvec = szcvec;
3253 	szcvec >>= (szc + 1);
3254 	nszc = szc;
3255 	while (szcvec) {
3256 		if ((szcvec & 0x1) == 0) {
3257 			nszc++;
3258 			szcvec >>= 1;
3259 			continue;
3260 		}
3261 		nszc++;
3262 		pgsz = page_get_pagesize(nszc);
3263 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3264 		if (a != addr) {
3265 			ASSERT(szc > 0);
3266 			ASSERT(a < eaddr);
3267 			segsize = a - addr;
3268 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3269 			    save_szcvec);
3270 			if (error) {
3271 				return (error);
3272 			}
3273 			addr = a;
3274 		}
3275 		szc = nszc;
3276 		szcvec >>= 1;
3277 	}
3278 
3279 	ASSERT(addr < eaddr);
3280 	szcvec = save_szcvec;
3281 	while (szcvec) {
3282 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3283 		ASSERT(a >= addr);
3284 		if (a != addr) {
3285 			ASSERT(szc > 0);
3286 			segsize = a - addr;
3287 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3288 			    save_szcvec);
3289 			if (error) {
3290 				return (error);
3291 			}
3292 			addr = a;
3293 		}
3294 		szcvec &= ~(1 << szc);
3295 		if (szcvec) {
3296 			szc = highbit(szcvec) - 1;
3297 			pgsz = page_get_pagesize(szc);
3298 		}
3299 	}
3300 	ASSERT(addr == eaddr);
3301 
3302 	return (0);
3303 }
3304 
3305 /*
3306  * Set the default large page size for the range. Called via memcntl with
3307  * page size set to 0. as_set_default_lpsize breaks the range down into
3308  * chunks with the same type/flags, ignores-non segvn segments, and passes
3309  * each chunk to as_iset_default_lpsize().
3310  */
3311 int
3312 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size)
3313 {
3314 	struct seg *seg;
3315 	caddr_t raddr;
3316 	size_t rsize;
3317 	size_t ssize;
3318 	int rtype, rflags;
3319 	int stype, sflags;
3320 	int error;
3321 	caddr_t	setaddr;
3322 	size_t setsize;
3323 	int segvn;
3324 
3325 	if (size == 0)
3326 		return (0);
3327 
3328 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3329 again:
3330 	error = 0;
3331 
3332 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3333 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
3334 	    (size_t)raddr;
3335 
3336 	if (raddr + rsize < raddr) {		/* check for wraparound */
3337 		AS_LOCK_EXIT(as, &as->a_lock);
3338 		return (ENOMEM);
3339 	}
3340 	as_clearwatchprot(as, raddr, rsize);
3341 	seg = as_segat(as, raddr);
3342 	if (seg == NULL) {
3343 		as_setwatch(as);
3344 		AS_LOCK_EXIT(as, &as->a_lock);
3345 		return (ENOMEM);
3346 	}
3347 	if (seg->s_ops == &segvn_ops) {
3348 		rtype = SEGOP_GETTYPE(seg, addr);
3349 		rflags = rtype & (MAP_TEXT | MAP_INITDATA);
3350 		rtype = rtype & (MAP_SHARED | MAP_PRIVATE);
3351 		segvn = 1;
3352 	} else {
3353 		segvn = 0;
3354 	}
3355 	setaddr = raddr;
3356 	setsize = 0;
3357 
3358 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3359 		if (raddr >= (seg->s_base + seg->s_size)) {
3360 			seg = AS_SEGNEXT(as, seg);
3361 			if (seg == NULL || raddr != seg->s_base) {
3362 				error = ENOMEM;
3363 				break;
3364 			}
3365 			if (seg->s_ops == &segvn_ops) {
3366 				stype = SEGOP_GETTYPE(seg, raddr);
3367 				sflags = stype & (MAP_TEXT | MAP_INITDATA);
3368 				stype &= (MAP_SHARED | MAP_PRIVATE);
3369 				if (segvn && (rflags != sflags ||
3370 				    rtype != stype)) {
3371 					/*
3372 					 * The next segment is also segvn but
3373 					 * has different flags and/or type.
3374 					 */
3375 					ASSERT(setsize != 0);
3376 					error = as_iset_default_lpsize(as,
3377 					    setaddr, setsize, rflags, rtype);
3378 					if (error) {
3379 						break;
3380 					}
3381 					rflags = sflags;
3382 					rtype = stype;
3383 					setaddr = raddr;
3384 					setsize = 0;
3385 				} else if (!segvn) {
3386 					rflags = sflags;
3387 					rtype = stype;
3388 					setaddr = raddr;
3389 					setsize = 0;
3390 					segvn = 1;
3391 				}
3392 			} else if (segvn) {
3393 				/* The next segment is not segvn. */
3394 				ASSERT(setsize != 0);
3395 				error = as_iset_default_lpsize(as,
3396 				    setaddr, setsize, rflags, rtype);
3397 				if (error) {
3398 					break;
3399 				}
3400 				segvn = 0;
3401 			}
3402 		}
3403 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3404 			ssize = seg->s_base + seg->s_size - raddr;
3405 		} else {
3406 			ssize = rsize;
3407 		}
3408 	}
3409 	if (error == 0 && segvn) {
3410 		/* The last chunk when rsize == 0. */
3411 		ASSERT(setsize != 0);
3412 		error = as_iset_default_lpsize(as, setaddr, setsize,
3413 		    rflags, rtype);
3414 	}
3415 
3416 	if (error == IE_RETRY) {
3417 		goto again;
3418 	} else if (error == IE_NOMEM) {
3419 		error = EAGAIN;
3420 	} else if (error == ENOTSUP) {
3421 		error = EINVAL;
3422 	} else if (error == EAGAIN) {
3423 		mutex_enter(&as->a_contents);
3424 		if (!AS_ISNOUNMAPWAIT(as)) {
3425 			if (AS_ISUNMAPWAIT(as) == 0) {
3426 				cv_broadcast(&as->a_cv);
3427 			}
3428 			AS_SETUNMAPWAIT(as);
3429 			AS_LOCK_EXIT(as, &as->a_lock);
3430 			while (AS_ISUNMAPWAIT(as)) {
3431 				cv_wait(&as->a_cv, &as->a_contents);
3432 			}
3433 			mutex_exit(&as->a_contents);
3434 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3435 		} else {
3436 			/*
3437 			 * We may have raced with
3438 			 * segvn_reclaim()/segspt_reclaim(). In this case
3439 			 * clean nounmapwait flag and retry since softlockcnt
3440 			 * in this segment may be already 0.  We don't drop as
3441 			 * writer lock so our number of retries without
3442 			 * sleeping should be very small. See segvn_reclaim()
3443 			 * for more comments.
3444 			 */
3445 			AS_CLRNOUNMAPWAIT(as);
3446 			mutex_exit(&as->a_contents);
3447 		}
3448 		goto again;
3449 	}
3450 
3451 	as_setwatch(as);
3452 	AS_LOCK_EXIT(as, &as->a_lock);
3453 	return (error);
3454 }
3455 
3456 /*
3457  * Setup all of the uninitialized watched pages that we can.
3458  */
3459 void
3460 as_setwatch(struct as *as)
3461 {
3462 	struct watched_page *pwp;
3463 	struct seg *seg;
3464 	caddr_t vaddr;
3465 	uint_t prot;
3466 	int  err, retrycnt;
3467 
3468 	if (avl_numnodes(&as->a_wpage) == 0)
3469 		return;
3470 
3471 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3472 
3473 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3474 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3475 		retrycnt = 0;
3476 	retry:
3477 		vaddr = pwp->wp_vaddr;
3478 		if (pwp->wp_oprot != 0 ||	/* already set up */
3479 		    (seg = as_segat(as, vaddr)) == NULL ||
3480 		    SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0)
3481 			continue;
3482 
3483 		pwp->wp_oprot = prot;
3484 		if (pwp->wp_read)
3485 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3486 		if (pwp->wp_write)
3487 			prot &= ~PROT_WRITE;
3488 		if (pwp->wp_exec)
3489 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3490 		if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) {
3491 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3492 			if (err == IE_RETRY) {
3493 				pwp->wp_oprot = 0;
3494 				ASSERT(retrycnt == 0);
3495 				retrycnt++;
3496 				goto retry;
3497 			}
3498 		}
3499 		pwp->wp_prot = prot;
3500 	}
3501 }
3502 
3503 /*
3504  * Clear all of the watched pages in the address space.
3505  */
3506 void
3507 as_clearwatch(struct as *as)
3508 {
3509 	struct watched_page *pwp;
3510 	struct seg *seg;
3511 	caddr_t vaddr;
3512 	uint_t prot;
3513 	int err, retrycnt;
3514 
3515 	if (avl_numnodes(&as->a_wpage) == 0)
3516 		return;
3517 
3518 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3519 
3520 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3521 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3522 		retrycnt = 0;
3523 	retry:
3524 		vaddr = pwp->wp_vaddr;
3525 		if (pwp->wp_oprot == 0 ||	/* not set up */
3526 		    (seg = as_segat(as, vaddr)) == NULL)
3527 			continue;
3528 
3529 		if ((prot = pwp->wp_oprot) != pwp->wp_prot) {
3530 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3531 			if (err == IE_RETRY) {
3532 				ASSERT(retrycnt == 0);
3533 				retrycnt++;
3534 				goto retry;
3535 			}
3536 		}
3537 		pwp->wp_oprot = 0;
3538 		pwp->wp_prot = 0;
3539 	}
3540 }
3541 
3542 /*
3543  * Force a new setup for all the watched pages in the range.
3544  */
3545 static void
3546 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
3547 {
3548 	struct watched_page *pwp;
3549 	struct watched_page tpw;
3550 	caddr_t eaddr = addr + size;
3551 	caddr_t vaddr;
3552 	struct seg *seg;
3553 	int err, retrycnt;
3554 	uint_t	wprot;
3555 	avl_index_t where;
3556 
3557 	if (avl_numnodes(&as->a_wpage) == 0)
3558 		return;
3559 
3560 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3561 
3562 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3563 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3564 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3565 
3566 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3567 		retrycnt = 0;
3568 		vaddr = pwp->wp_vaddr;
3569 
3570 		wprot = prot;
3571 		if (pwp->wp_read)
3572 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3573 		if (pwp->wp_write)
3574 			wprot &= ~PROT_WRITE;
3575 		if (pwp->wp_exec)
3576 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3577 		if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) {
3578 		retry:
3579 			seg = as_segat(as, vaddr);
3580 			if (seg == NULL) {
3581 				panic("as_setwatchprot: no seg");
3582 				/*NOTREACHED*/
3583 			}
3584 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot);
3585 			if (err == IE_RETRY) {
3586 				ASSERT(retrycnt == 0);
3587 				retrycnt++;
3588 				goto retry;
3589 			}
3590 		}
3591 		pwp->wp_oprot = prot;
3592 		pwp->wp_prot = wprot;
3593 
3594 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3595 	}
3596 }
3597 
3598 /*
3599  * Clear all of the watched pages in the range.
3600  */
3601 static void
3602 as_clearwatchprot(struct as *as, caddr_t addr, size_t size)
3603 {
3604 	caddr_t eaddr = addr + size;
3605 	struct watched_page *pwp;
3606 	struct watched_page tpw;
3607 	uint_t prot;
3608 	struct seg *seg;
3609 	int err, retrycnt;
3610 	avl_index_t where;
3611 
3612 	if (avl_numnodes(&as->a_wpage) == 0)
3613 		return;
3614 
3615 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3616 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3617 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3618 
3619 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3620 
3621 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3622 
3623 		if ((prot = pwp->wp_oprot) != 0) {
3624 			retrycnt = 0;
3625 
3626 			if (prot != pwp->wp_prot) {
3627 			retry:
3628 				seg = as_segat(as, pwp->wp_vaddr);
3629 				if (seg == NULL)
3630 					continue;
3631 				err = SEGOP_SETPROT(seg, pwp->wp_vaddr,
3632 				    PAGESIZE, prot);
3633 				if (err == IE_RETRY) {
3634 					ASSERT(retrycnt == 0);
3635 					retrycnt++;
3636 					goto retry;
3637 
3638 				}
3639 			}
3640 			pwp->wp_oprot = 0;
3641 			pwp->wp_prot = 0;
3642 		}
3643 
3644 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3645 	}
3646 }
3647 
3648 void
3649 as_signal_proc(struct as *as, k_siginfo_t *siginfo)
3650 {
3651 	struct proc *p;
3652 
3653 	mutex_enter(&pidlock);
3654 	for (p = practive; p; p = p->p_next) {
3655 		if (p->p_as == as) {
3656 			mutex_enter(&p->p_lock);
3657 			if (p->p_as == as)
3658 				sigaddq(p, NULL, siginfo, KM_NOSLEEP);
3659 			mutex_exit(&p->p_lock);
3660 		}
3661 	}
3662 	mutex_exit(&pidlock);
3663 }
3664 
3665 /*
3666  * return memory object ID
3667  */
3668 int
3669 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp)
3670 {
3671 	struct seg	*seg;
3672 	int		sts;
3673 
3674 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
3675 	seg = as_segat(as, addr);
3676 	if (seg == NULL) {
3677 		AS_LOCK_EXIT(as, &as->a_lock);
3678 		return (EFAULT);
3679 	}
3680 	/*
3681 	 * catch old drivers which may not support getmemid
3682 	 */
3683 	if (seg->s_ops->getmemid == NULL) {
3684 		AS_LOCK_EXIT(as, &as->a_lock);
3685 		return (ENODEV);
3686 	}
3687 
3688 	sts = SEGOP_GETMEMID(seg, addr, memidp);
3689 
3690 	AS_LOCK_EXIT(as, &as->a_lock);
3691 	return (sts);
3692 }
3693