xref: /titanic_50/usr/src/uts/common/os/task.c (revision bfed486ad8de8b8ebc6345a8e10accae08bf2f45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/atomic.h>
29 #include <sys/cmn_err.h>
30 #include <sys/exacct.h>
31 #include <sys/id_space.h>
32 #include <sys/kmem.h>
33 #include <sys/modhash.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/project.h>
37 #include <sys/rctl.h>
38 #include <sys/systm.h>
39 #include <sys/task.h>
40 #include <sys/time.h>
41 #include <sys/types.h>
42 #include <sys/zone.h>
43 #include <sys/cpuvar.h>
44 #include <sys/fss.h>
45 #include <sys/class.h>
46 #include <sys/project.h>
47 
48 /*
49  * Tasks
50  *
51  *   A task is a collection of processes, associated with a common project ID
52  *   and related by a common initial parent.  The task primarily represents a
53  *   natural process sequence with known resource usage, although it can also be
54  *   viewed as a convenient grouping of processes for signal delivery, processor
55  *   binding, and administrative operations.
56  *
57  * Membership and observership
58  *   We can conceive of situations where processes outside of the task may wish
59  *   to examine the resource usage of the task.  Similarly, a number of the
60  *   administrative operations on a task can be performed by processes who are
61  *   not members of the task.  Accordingly, we must design a locking strategy
62  *   where observers of the task, who wish to examine or operate on the task,
63  *   and members of task, who can perform the mentioned operations, as well as
64  *   leave the task, see a consistent and correct representation of the task at
65  *   all times.
66  *
67  * Locking
68  *   Because the task membership is a new relation between processes, its
69  *   locking becomes an additional responsibility of the pidlock/p_lock locking
70  *   sequence; however, tasks closely resemble sessions and the session locking
71  *   model is mostly appropriate for the interaction of tasks, processes, and
72  *   procfs.
73  *
74  *   kmutex_t task_hash_lock
75  *     task_hash_lock is a global lock protecting the contents of the task
76  *     ID-to-task pointer hash.  Holders of task_hash_lock must not attempt to
77  *     acquire pidlock or p_lock.
78  *   uint_t tk_hold_count
79  *     tk_hold_count, the number of members and observers of the current task,
80  *     must be manipulated atomically.
81  *   proc_t *tk_memb_list
82  *   proc_t *p_tasknext
83  *   proc_t *p_taskprev
84  *     The task's membership list is protected by pidlock, and is therefore
85  *     always acquired before any of its members' p_lock mutexes.  The p_task
86  *     member of the proc structure is protected by pidlock or p_lock for
87  *     reading, and by both pidlock and p_lock for modification, as is done for
88  *     p_sessp.  The key point is that only the process can modify its p_task,
89  *     and not any entity on the system.  (/proc will use prlock() to prevent
90  *     the process from leaving, as opposed to pidlock.)
91  *   kmutex_t tk_usage_lock
92  *     tk_usage_lock is a per-task lock protecting the contents of the task
93  *     usage structure and tk_nlwps counter for the task.max-lwps resource
94  *     control.
95  */
96 
97 int task_hash_size = 256;
98 static kmutex_t task_hash_lock;
99 static mod_hash_t *task_hash;
100 
101 static id_space_t *taskid_space;	/* global taskid space */
102 static kmem_cache_t *task_cache;	/* kmem cache for task structures */
103 
104 rctl_hndl_t rc_task_lwps;
105 rctl_hndl_t rc_task_cpu_time;
106 
107 /*
108  * static rctl_qty_t task_usage_lwps(void *taskp)
109  *
110  * Overview
111  *   task_usage_lwps() is the usage operation for the resource control
112  *   associated with the number of LWPs in a task.
113  *
114  * Return values
115  *   The number of LWPs in the given task is returned.
116  *
117  * Caller's context
118  *   The p->p_lock must be held across the call.
119  */
120 /*ARGSUSED*/
121 static rctl_qty_t
122 task_lwps_usage(rctl_t *r, proc_t *p)
123 {
124 	task_t *t;
125 	rctl_qty_t nlwps;
126 
127 	ASSERT(MUTEX_HELD(&p->p_lock));
128 
129 	t = p->p_task;
130 	mutex_enter(&p->p_zone->zone_nlwps_lock);
131 	nlwps = t->tk_nlwps;
132 	mutex_exit(&p->p_zone->zone_nlwps_lock);
133 
134 	return (nlwps);
135 }
136 
137 /*
138  * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
139  *   int flags)
140  *
141  * Overview
142  *   task_test_lwps() is the test-if-valid-increment for the resource control
143  *   for the number of processes in a task.
144  *
145  * Return values
146  *   0 if the threshold limit was not passed, 1 if the limit was passed.
147  *
148  * Caller's context
149  *   p->p_lock must be held across the call.
150  */
151 /*ARGSUSED*/
152 static int
153 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
154     rctl_qty_t incr,
155     uint_t flags)
156 {
157 	rctl_qty_t nlwps;
158 
159 	ASSERT(MUTEX_HELD(&p->p_lock));
160 	ASSERT(e->rcep_t == RCENTITY_TASK);
161 	if (e->rcep_p.task == NULL)
162 		return (0);
163 
164 	ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
165 	nlwps = e->rcep_p.task->tk_nlwps;
166 
167 	if (nlwps + incr > rcntl->rcv_value)
168 		return (1);
169 
170 	return (0);
171 }
172 /*ARGSUSED*/
173 static int
174 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
175 
176 	ASSERT(MUTEX_HELD(&p->p_lock));
177 	ASSERT(e->rcep_t == RCENTITY_TASK);
178 	if (e->rcep_p.task == NULL)
179 		return (0);
180 
181 	e->rcep_p.task->tk_nlwps_ctl = nv;
182 	return (0);
183 }
184 
185 /*
186  * static rctl_qty_t task_usage_cpu_secs(void *taskp)
187  *
188  * Overview
189  *   task_usage_cpu_secs() is the usage operation for the resource control
190  *   associated with the total accrued CPU seconds for a task.
191  *
192  * Return values
193  *   The number of CPU seconds consumed by the task is returned.
194  *
195  * Caller's context
196  *   The given task must be held across the call.
197  */
198 /*ARGSUSED*/
199 static rctl_qty_t
200 task_cpu_time_usage(rctl_t *r, proc_t *p)
201 {
202 	task_t *t = p->p_task;
203 
204 	ASSERT(MUTEX_HELD(&p->p_lock));
205 	return (t->tk_cpu_time);
206 }
207 
208 /*
209  * int task_cpu_time_incr(task_t *t, rctl_qty_t incr)
210  *
211  * Overview
212  *   task_cpu_time_incr() increments the amount of CPU time used
213  *   by this task.
214  *
215  * Return values
216  *   1   if a second or more time is accumulated
217  *   0   otherwise
218  *
219  * Caller's context
220  *   This is called by the clock tick accounting function to charge
221  *   CPU time to a task.
222  */
223 rctl_qty_t
224 task_cpu_time_incr(task_t *t, rctl_qty_t incr)
225 {
226 	rctl_qty_t ret = 0;
227 
228 	mutex_enter(&t->tk_cpu_time_lock);
229 	t->tk_cpu_ticks += incr;
230 	if (t->tk_cpu_ticks >= hz) {
231 		t->tk_cpu_time += t->tk_cpu_ticks / hz;
232 		t->tk_cpu_ticks = t->tk_cpu_ticks % hz;
233 		ret = t->tk_cpu_time;
234 	}
235 	mutex_exit(&t->tk_cpu_time_lock);
236 
237 	return (ret);
238 }
239 
240 /*
241  * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
242  *   int flags)
243  *
244  * Overview
245  *   task_test_cpu_secs() is the test-if-valid-increment for the resource
246  *   control for the total accrued CPU seconds for a task.
247  *
248  * Return values
249  *   0 if the threshold limit was not passed, 1 if the limit was passed.
250  *
251  * Caller's context
252  *   The given task must be held across the call.
253  */
254 /*ARGSUSED*/
255 static int
256 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
257     struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
258 {
259 	ASSERT(MUTEX_HELD(&p->p_lock));
260 	ASSERT(e->rcep_t == RCENTITY_TASK);
261 	if (e->rcep_p.task == NULL)
262 		return (0);
263 
264 	if (incr >= rcntl->rcv_value)
265 		return (1);
266 
267 	return (0);
268 }
269 
270 static task_t *
271 task_find(taskid_t id, zoneid_t zoneid)
272 {
273 	task_t *tk;
274 
275 	ASSERT(MUTEX_HELD(&task_hash_lock));
276 
277 	if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
278 	    (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
279 	    (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
280 		return (NULL);
281 
282 	return (tk);
283 }
284 
285 /*
286  * task_hold_by_id(), task_hold_by_id_zone()
287  *
288  * Overview
289  *   task_hold_by_id() is used to take a reference on a task by its task id,
290  *   supporting the various system call interfaces for obtaining resource data,
291  *   delivering signals, and so forth.
292  *
293  * Return values
294  *   Returns a pointer to the task_t with taskid_t id.  The task is returned
295  *   with its hold count incremented by one.  Returns NULL if there
296  *   is no task with the requested id.
297  *
298  * Caller's context
299  *   Caller must not be holding task_hash_lock.  No restrictions on context.
300  */
301 task_t *
302 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
303 {
304 	task_t *tk;
305 
306 	mutex_enter(&task_hash_lock);
307 	if ((tk = task_find(id, zoneid)) != NULL)
308 		atomic_add_32(&tk->tk_hold_count, 1);
309 	mutex_exit(&task_hash_lock);
310 
311 	return (tk);
312 }
313 
314 task_t *
315 task_hold_by_id(taskid_t id)
316 {
317 	zoneid_t zoneid;
318 
319 	if (INGLOBALZONE(curproc))
320 		zoneid = ALL_ZONES;
321 	else
322 		zoneid = getzoneid();
323 	return (task_hold_by_id_zone(id, zoneid));
324 }
325 
326 /*
327  * void task_hold(task_t *)
328  *
329  * Overview
330  *   task_hold() is used to take an additional reference to the given task.
331  *
332  * Return values
333  *   None.
334  *
335  * Caller's context
336  *   No restriction on context.
337  */
338 void
339 task_hold(task_t *tk)
340 {
341 	atomic_add_32(&tk->tk_hold_count, 1);
342 }
343 
344 /*
345  * void task_rele(task_t *)
346  *
347  * Overview
348  *   task_rele() relinquishes a reference on the given task, which was acquired
349  *   via task_hold() or task_hold_by_id().  If this is the last member or
350  *   observer of the task, dispatch it for commitment via the accounting
351  *   subsystem.
352  *
353  * Return values
354  *   None.
355  *
356  * Caller's context
357  *   Caller must not be holding the task_hash_lock.
358  *   Caller's context must be acceptable for KM_SLEEP allocations.
359  */
360 void
361 task_rele(task_t *tk)
362 {
363 	mutex_enter(&task_hash_lock);
364 	if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
365 		mutex_exit(&task_hash_lock);
366 		return;
367 	}
368 
369 	mutex_enter(&tk->tk_zone->zone_nlwps_lock);
370 	tk->tk_proj->kpj_ntasks--;
371 	mutex_exit(&tk->tk_zone->zone_nlwps_lock);
372 
373 	if (mod_hash_destroy(task_hash,
374 	    (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
375 		panic("unable to delete task %d", tk->tk_tkid);
376 	mutex_exit(&task_hash_lock);
377 
378 	/*
379 	 * At this point, there are no members or observers of the task, so we
380 	 * can safely send it on for commitment to the accounting subsystem.
381 	 * The task will be destroyed in task_end() subsequent to commitment.
382 	 */
383 	(void) taskq_dispatch(exacct_queue, exacct_commit_task, tk, KM_SLEEP);
384 }
385 
386 /*
387  * task_t *task_create(projid_t, zone *)
388  *
389  * Overview
390  *   A process constructing a new task calls task_create() to construct and
391  *   preinitialize the task for the appropriate destination project.  Only one
392  *   task, the primordial task0, is not created with task_create().
393  *
394  * Return values
395  *   None.
396  *
397  * Caller's context
398  *   Caller's context should be safe for KM_SLEEP allocations.
399  *   The caller should appropriately bump the kpj_ntasks counter on the
400  *   project that contains this task.
401  */
402 task_t *
403 task_create(projid_t projid, zone_t *zone)
404 {
405 	task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
406 	task_t *ancestor_tk;
407 	taskid_t tkid;
408 	task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
409 	mod_hash_hndl_t hndl;
410 	rctl_set_t *set = rctl_set_create();
411 	rctl_alloc_gp_t *gp;
412 	rctl_entity_p_t e;
413 
414 	bzero(tk, sizeof (task_t));
415 
416 	tk->tk_tkid = tkid = id_alloc(taskid_space);
417 	tk->tk_nlwps = 0;
418 	tk->tk_nlwps_ctl = INT_MAX;
419 	tk->tk_usage = tu;
420 	tk->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
421 	tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT);
422 	tk->tk_flags = TASK_NORMAL;
423 
424 	/*
425 	 * Copy ancestor task's resource controls.
426 	 */
427 	zone_task_hold(zone);
428 	mutex_enter(&curproc->p_lock);
429 	ancestor_tk = curproc->p_task;
430 	task_hold(ancestor_tk);
431 	tk->tk_zone = zone;
432 	mutex_exit(&curproc->p_lock);
433 
434 	for (;;) {
435 		gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
436 
437 		mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
438 		if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
439 			break;
440 
441 		mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
442 
443 		rctl_prealloc_destroy(gp);
444 	}
445 
446 	/*
447 	 * At this point, curproc does not have the appropriate linkage
448 	 * through the task to the project. So, rctl_set_dup should only
449 	 * copy the rctls, and leave the callbacks for later.
450 	 */
451 	e.rcep_p.task = tk;
452 	e.rcep_t = RCENTITY_TASK;
453 	tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
454 	    set, gp, RCD_DUP);
455 	mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
456 
457 	rctl_prealloc_destroy(gp);
458 
459 	/*
460 	 * Record the ancestor task's ID for use by extended accounting.
461 	 */
462 	tu->tu_anctaskid = ancestor_tk->tk_tkid;
463 	task_rele(ancestor_tk);
464 
465 	/*
466 	 * Put new task structure in the hash table.
467 	 */
468 	(void) mod_hash_reserve(task_hash, &hndl);
469 	mutex_enter(&task_hash_lock);
470 	ASSERT(task_find(tkid, getzoneid()) == NULL);
471 	if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
472 	    (mod_hash_val_t *)tk, hndl) != 0) {
473 		mod_hash_cancel(task_hash, &hndl);
474 		panic("unable to insert task %d(%p)", tkid, (void *)tk);
475 	}
476 	mutex_exit(&task_hash_lock);
477 
478 	return (tk);
479 }
480 
481 /*
482  * void task_attach(task_t *, proc_t *)
483  *
484  * Overview
485  *   task_attach() is used to attach a process to a task; this operation is only
486  *   performed as a result of a fork() or settaskid() system call.  The proc_t's
487  *   p_tasknext and p_taskprev fields will be set such that the proc_t is a
488  *   member of the doubly-linked list of proc_t's that make up the task.
489  *
490  * Return values
491  *   None.
492  *
493  * Caller's context
494  *   pidlock and p->p_lock must be held on entry.
495  */
496 void
497 task_attach(task_t *tk, proc_t *p)
498 {
499 	proc_t *first, *prev;
500 	rctl_entity_p_t e;
501 	ASSERT(tk != NULL);
502 	ASSERT(p != NULL);
503 	ASSERT(MUTEX_HELD(&pidlock));
504 	ASSERT(MUTEX_HELD(&p->p_lock));
505 
506 	if (tk->tk_memb_list == NULL) {
507 		p->p_tasknext = p;
508 		p->p_taskprev = p;
509 	} else {
510 		first = tk->tk_memb_list;
511 		prev = first->p_taskprev;
512 		first->p_taskprev = p;
513 		p->p_tasknext = first;
514 		p->p_taskprev = prev;
515 		prev->p_tasknext = p;
516 	}
517 	tk->tk_memb_list = p;
518 	task_hold(tk);
519 	p->p_task = tk;
520 
521 	/*
522 	 * Now that the linkage from process to task and project is
523 	 * complete, do the required callbacks for the task and project
524 	 * rctl sets.
525 	 */
526 	e.rcep_p.proj = tk->tk_proj;
527 	e.rcep_t = RCENTITY_PROJECT;
528 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_proj->kpj_rctls, NULL,
529 	    RCD_CALLBACK);
530 
531 	e.rcep_p.task = tk;
532 	e.rcep_t = RCENTITY_TASK;
533 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
534 	    RCD_CALLBACK);
535 
536 }
537 
538 /*
539  * task_begin()
540  *
541  * Overview
542  *   A process constructing a new task calls task_begin() to initialize the
543  *   task, by attaching itself as a member.
544  *
545  * Return values
546  *   None.
547  *
548  * Caller's context
549  *   pidlock and p_lock must be held across the call to task_begin().
550  */
551 void
552 task_begin(task_t *tk, proc_t *p)
553 {
554 	timestruc_t ts;
555 	task_usage_t *tu;
556 
557 	ASSERT(MUTEX_HELD(&pidlock));
558 	ASSERT(MUTEX_HELD(&p->p_lock));
559 
560 	mutex_enter(&tk->tk_usage_lock);
561 	tu = tk->tk_usage;
562 	gethrestime(&ts);
563 	tu->tu_startsec = (uint64_t)ts.tv_sec;
564 	tu->tu_startnsec = (uint64_t)ts.tv_nsec;
565 	mutex_exit(&tk->tk_usage_lock);
566 
567 	/*
568 	 * Join process to the task as a member.
569 	 */
570 	task_attach(tk, p);
571 }
572 
573 /*
574  * void task_detach(proc_t *)
575  *
576  * Overview
577  *   task_detach() removes the specified process from its task.  task_detach
578  *   sets the process's task membership to NULL, in anticipation of a final exit
579  *   or of joining a new task.  Because task_rele() requires a context safe for
580  *   KM_SLEEP allocations, a task_detach() is followed by a subsequent
581  *   task_rele() once appropriate context is available.
582  *
583  *   Because task_detach() involves relinquishing the process's membership in
584  *   the project, any observational rctls the process may have had on the task
585  *   or project are destroyed.
586  *
587  * Return values
588  *   None.
589  *
590  * Caller's context
591  *   pidlock and p_lock held across task_detach().
592  */
593 void
594 task_detach(proc_t *p)
595 {
596 	task_t *tk = p->p_task;
597 
598 	ASSERT(MUTEX_HELD(&pidlock));
599 	ASSERT(MUTEX_HELD(&p->p_lock));
600 	ASSERT(p->p_task != NULL);
601 	ASSERT(tk->tk_memb_list != NULL);
602 
603 	if (tk->tk_memb_list == p)
604 		tk->tk_memb_list = p->p_tasknext;
605 	if (tk->tk_memb_list == p)
606 		tk->tk_memb_list = NULL;
607 	p->p_taskprev->p_tasknext = p->p_tasknext;
608 	p->p_tasknext->p_taskprev = p->p_taskprev;
609 
610 	rctl_set_tearoff(p->p_task->tk_rctls, p);
611 	rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
612 
613 	p->p_task = NULL;
614 	p->p_tasknext = p->p_taskprev = NULL;
615 }
616 
617 /*
618  * task_change(task_t *, proc_t *)
619  *
620  * Overview
621  *   task_change() removes the specified process from its current task.  The
622  *   process is then attached to the specified task.  This routine is called
623  *   from settaskid() when process is being moved to a new task.
624  *
625  * Return values
626  *   None.
627  *
628  * Caller's context
629  *   pidlock and p_lock held across task_change()
630  */
631 void
632 task_change(task_t *newtk, proc_t *p)
633 {
634 	task_t *oldtk = p->p_task;
635 
636 	ASSERT(MUTEX_HELD(&pidlock));
637 	ASSERT(MUTEX_HELD(&p->p_lock));
638 	ASSERT(oldtk != NULL);
639 	ASSERT(oldtk->tk_memb_list != NULL);
640 
641 	mutex_enter(&p->p_zone->zone_nlwps_lock);
642 	oldtk->tk_nlwps -= p->p_lwpcnt;
643 	mutex_exit(&p->p_zone->zone_nlwps_lock);
644 
645 	mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
646 	newtk->tk_nlwps += p->p_lwpcnt;
647 	mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
648 
649 	task_detach(p);
650 	task_begin(newtk, p);
651 	exacct_move_mstate(p, oldtk, newtk);
652 }
653 
654 /*
655  * task_end()
656  *
657  * Overview
658  *   task_end() contains the actions executed once the final member of
659  *   a task has released the task, and all actions connected with the task, such
660  *   as committing an accounting record to a file, are completed.  It is called
661  *   by the known last consumer of the task information.  Additionally,
662  *   task_end() must never refer to any process in the system.
663  *
664  * Return values
665  *   None.
666  *
667  * Caller's context
668  *   No restrictions on context, beyond that given above.
669  */
670 void
671 task_end(task_t *tk)
672 {
673 	ASSERT(tk->tk_hold_count == 0);
674 
675 	project_rele(tk->tk_proj);
676 	kmem_free(tk->tk_usage, sizeof (task_usage_t));
677 	kmem_free(tk->tk_inherited, sizeof (task_usage_t));
678 	if (tk->tk_prevusage != NULL)
679 		kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
680 	if (tk->tk_zoneusage != NULL)
681 		kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
682 	rctl_set_free(tk->tk_rctls);
683 	id_free(taskid_space, tk->tk_tkid);
684 	zone_task_rele(tk->tk_zone);
685 	kmem_cache_free(task_cache, tk);
686 }
687 
688 static void
689 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
690     void *zonebuf)
691 {
692 	kproject_t *oldkpj;
693 	kthread_t *t;
694 
695 	ASSERT(MUTEX_HELD(&pidlock));
696 	ASSERT(MUTEX_HELD(&p->p_lock));
697 
698 	if ((t = p->p_tlist) != NULL) {
699 		do {
700 			(void) project_hold(kpj);
701 
702 			thread_lock(t);
703 			oldkpj = ttoproj(t);
704 
705 			/*
706 			 * Kick this thread so that he doesn't sit
707 			 * on a wrong wait queue.
708 			 */
709 			if (ISWAITING(t))
710 				setrun_locked(t);
711 
712 			/*
713 			 * The thread wants to go on the project wait queue, but
714 			 * the waitq is changing.
715 			 */
716 			if (t->t_schedflag & TS_PROJWAITQ)
717 				t->t_schedflag &= ~ TS_PROJWAITQ;
718 
719 			t->t_proj = kpj;
720 			t->t_pre_sys = 1;		/* For cred update */
721 			thread_unlock(t);
722 			fss_changeproj(t, kpj, zone, projbuf, zonebuf);
723 
724 			project_rele(oldkpj);
725 		} while ((t = t->t_forw) != p->p_tlist);
726 	}
727 }
728 
729 /*
730  * task_join()
731  *
732  * Overview
733  *   task_join() contains the actions that must be executed when the first
734  *   member (curproc) of a newly created task joins it.  It may never fail.
735  *
736  *   The caller must make sure holdlwps() is called so that all other lwps are
737  *   stopped prior to calling this function.
738  *
739  *   NB: It returns with curproc->p_lock held.
740  *
741  * Return values
742  *   Pointer to the old task.
743  *
744  * Caller's context
745  *   cpu_lock must be held entering the function.  It will acquire pidlock,
746  *   p_crlock and p_lock during execution.
747  */
748 task_t *
749 task_join(task_t *tk, uint_t flags)
750 {
751 	proc_t *p = ttoproc(curthread);
752 	task_t *prev_tk;
753 	void *projbuf, *zonebuf;
754 	zone_t *zone = tk->tk_zone;
755 	projid_t projid = tk->tk_proj->kpj_id;
756 	cred_t *oldcr;
757 
758 	/*
759 	 * We can't know for sure if holdlwps() was called, but we can check to
760 	 * ensure we're single-threaded.
761 	 */
762 	ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
763 
764 	/*
765 	 * Changing the credential is always hard because we cannot
766 	 * allocate memory when holding locks but we don't know whether
767 	 * we need to change it.  We first get a reference to the current
768 	 * cred if we need to change it.  Then we create a credential
769 	 * with an updated project id.  Finally we install it, first
770 	 * releasing the reference we had on the p_cred at the time we
771 	 * acquired the lock the first time and later we release the
772 	 * reference to p_cred at the time we acquired the lock the
773 	 * second time.
774 	 */
775 	mutex_enter(&p->p_crlock);
776 	if (crgetprojid(p->p_cred) == projid)
777 		oldcr = NULL;
778 	else
779 		crhold(oldcr = p->p_cred);
780 	mutex_exit(&p->p_crlock);
781 
782 	if (oldcr != NULL) {
783 		cred_t *newcr = crdup(oldcr);
784 		crsetprojid(newcr, projid);
785 		crfree(oldcr);
786 
787 		mutex_enter(&p->p_crlock);
788 		oldcr = p->p_cred;
789 		p->p_cred = newcr;
790 		mutex_exit(&p->p_crlock);
791 		crfree(oldcr);
792 	}
793 
794 	/*
795 	 * Make sure that the number of processor sets is constant
796 	 * across this operation.
797 	 */
798 	ASSERT(MUTEX_HELD(&cpu_lock));
799 
800 	projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
801 	zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
802 
803 	mutex_enter(&pidlock);
804 	mutex_enter(&p->p_lock);
805 
806 	prev_tk = p->p_task;
807 	task_change(tk, p);
808 
809 	/*
810 	 * Now move threads one by one to their new project.
811 	 */
812 	changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
813 	if (flags & TASK_FINAL)
814 		p->p_task->tk_flags |= TASK_FINAL;
815 
816 	mutex_exit(&pidlock);
817 
818 	fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
819 	fss_freebuf(projbuf, FSS_ALLOC_PROJ);
820 	return (prev_tk);
821 }
822 
823 /*
824  * rctl ops vectors
825  */
826 static rctl_ops_t task_lwps_ops = {
827 	rcop_no_action,
828 	task_lwps_usage,
829 	task_lwps_set,
830 	task_lwps_test
831 };
832 
833 static rctl_ops_t task_cpu_time_ops = {
834 	rcop_no_action,
835 	task_cpu_time_usage,
836 	rcop_no_set,
837 	task_cpu_time_test
838 };
839 
840 /*ARGSUSED*/
841 /*
842  * void task_init(void)
843  *
844  * Overview
845  *   task_init() initializes task-related hashes, caches, and the task id
846  *   space.  Additionally, task_init() establishes p0 as a member of task0.
847  *   Called by main().
848  *
849  * Return values
850  *   None.
851  *
852  * Caller's context
853  *   task_init() must be called prior to MP startup.
854  */
855 void
856 task_init(void)
857 {
858 	proc_t *p = &p0;
859 	mod_hash_hndl_t hndl;
860 	rctl_set_t *set;
861 	rctl_alloc_gp_t *gp;
862 	rctl_entity_p_t e;
863 	/*
864 	 * Initialize task_cache and taskid_space.
865 	 */
866 	task_cache = kmem_cache_create("task_cache", sizeof (task_t),
867 	    0, NULL, NULL, NULL, NULL, NULL, 0);
868 	taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
869 
870 	/*
871 	 * Initialize task hash table.
872 	 */
873 	task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
874 	    mod_hash_null_valdtor);
875 
876 	/*
877 	 * Initialize task-based rctls.
878 	 */
879 	rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
880 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
881 	    &task_lwps_ops);
882 	rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
883 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
884 	    RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
885 	    RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
886 	    UINT64_MAX, &task_cpu_time_ops);
887 
888 	/*
889 	 * Create task0 and place p0 in it as a member.
890 	 */
891 	task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
892 	bzero(task0p, sizeof (task_t));
893 
894 	task0p->tk_tkid = id_alloc(taskid_space);
895 	task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
896 	task0p->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
897 	task0p->tk_proj = project_hold_by_id(0, &zone0,
898 	    PROJECT_HOLD_INSERT);
899 	task0p->tk_flags = TASK_NORMAL;
900 	task0p->tk_nlwps = p->p_lwpcnt;
901 	task0p->tk_zone = global_zone;
902 
903 	set = rctl_set_create();
904 	gp = rctl_set_init_prealloc(RCENTITY_TASK);
905 	mutex_enter(&curproc->p_lock);
906 	e.rcep_p.task = task0p;
907 	e.rcep_t = RCENTITY_TASK;
908 	task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
909 	mutex_exit(&curproc->p_lock);
910 	rctl_prealloc_destroy(gp);
911 
912 	(void) mod_hash_reserve(task_hash, &hndl);
913 	mutex_enter(&task_hash_lock);
914 	ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
915 	if (mod_hash_insert_reserve(task_hash,
916 	    (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
917 	    (mod_hash_val_t *)task0p, hndl) != 0) {
918 		mod_hash_cancel(task_hash, &hndl);
919 		panic("unable to insert task %d(%p)", task0p->tk_tkid,
920 		    (void *)task0p);
921 	}
922 	mutex_exit(&task_hash_lock);
923 
924 	task0p->tk_memb_list = p;
925 
926 	/*
927 	 * Initialize task pointers for p0, including doubly linked list of task
928 	 * members.
929 	 */
930 	p->p_task = task0p;
931 	p->p_taskprev = p->p_tasknext = p;
932 	task_hold(task0p);
933 }
934