1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/param.h> 31 #include <sys/types.h> 32 #include <sys/sysmacros.h> 33 #include <sys/systm.h> 34 #include <sys/thread.h> 35 #include <sys/proc.h> 36 #include <sys/task.h> 37 #include <sys/project.h> 38 #include <sys/signal.h> 39 #include <sys/errno.h> 40 #include <sys/vmparam.h> 41 #include <sys/stack.h> 42 #include <sys/procfs.h> 43 #include <sys/prsystm.h> 44 #include <sys/cpuvar.h> 45 #include <sys/kmem.h> 46 #include <sys/vtrace.h> 47 #include <sys/door.h> 48 #include <vm/seg_kp.h> 49 #include <sys/debug.h> 50 #include <sys/tnf.h> 51 #include <sys/schedctl.h> 52 #include <sys/poll.h> 53 #include <sys/copyops.h> 54 #include <sys/lwp_upimutex_impl.h> 55 #include <sys/cpupart.h> 56 #include <sys/lgrp.h> 57 #include <sys/rctl.h> 58 #include <sys/contract_impl.h> 59 #include <sys/cpc_impl.h> 60 #include <sys/sdt.h> 61 #include <sys/cmn_err.h> 62 63 void *segkp_lwp; /* cookie for pool of segkp resources */ 64 65 /* 66 * Create a thread that appears to be stopped at sys_rtt. 67 */ 68 klwp_t * 69 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 70 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 71 { 72 klwp_t *lwp = NULL; 73 kthread_t *t; 74 kthread_t *tx; 75 cpupart_t *oldpart = NULL; 76 size_t stksize; 77 caddr_t lwpdata = NULL; 78 processorid_t binding; 79 int err = 0; 80 kproject_t *oldkpj, *newkpj; 81 void *bufp = NULL; 82 klwp_t *curlwp = ttolwp(curthread); 83 lwpent_t *lep; 84 lwpdir_t *old_dir = NULL; 85 uint_t old_dirsz = 0; 86 lwpdir_t **old_hash = NULL; 87 uint_t old_hashsz = 0; 88 int i; 89 int rctlfail = 0; 90 91 mutex_enter(&p->p_lock); 92 mutex_enter(&p->p_zone->zone_nlwps_lock); 93 /* 94 * don't enforce rctl limits on system processes 95 */ 96 if (cid != syscid) { 97 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 98 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 99 1, 0) & RCT_DENY) 100 rctlfail = 1; 101 if (p->p_task->tk_proj->kpj_nlwps >= 102 p->p_task->tk_proj->kpj_nlwps_ctl) 103 if (rctl_test(rc_project_nlwps, 104 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 105 & RCT_DENY) 106 rctlfail = 1; 107 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 108 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 109 1, 0) & RCT_DENY) 110 rctlfail = 1; 111 } 112 if (rctlfail) { 113 mutex_exit(&p->p_zone->zone_nlwps_lock); 114 mutex_exit(&p->p_lock); 115 return (NULL); 116 } 117 p->p_task->tk_nlwps++; 118 p->p_task->tk_proj->kpj_nlwps++; 119 p->p_zone->zone_nlwps++; 120 mutex_exit(&p->p_zone->zone_nlwps_lock); 121 mutex_exit(&p->p_lock); 122 123 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 124 stksize = lwp_default_stksize; 125 126 /* 127 * Try to reclaim a <lwp,stack> from 'deathrow' 128 */ 129 if (stksize == lwp_default_stksize) { 130 if (lwp_reapcnt > 0) { 131 mutex_enter(&reaplock); 132 if ((t = lwp_deathrow) != NULL) { 133 ASSERT(t->t_swap); 134 lwp_deathrow = t->t_forw; 135 lwp_reapcnt--; 136 lwpdata = t->t_swap; 137 lwp = t->t_lwp; 138 } 139 mutex_exit(&reaplock); 140 if (t) { 141 t->t_swap = NULL; 142 lwp_stk_fini(t->t_lwp); 143 t->t_lwp = NULL; 144 t->t_forw = NULL; 145 thread_free(t); 146 } 147 } 148 if (lwpdata == NULL && 149 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 150 mutex_enter(&p->p_lock); 151 mutex_enter(&p->p_zone->zone_nlwps_lock); 152 p->p_task->tk_nlwps--; 153 p->p_task->tk_proj->kpj_nlwps--; 154 p->p_zone->zone_nlwps--; 155 mutex_exit(&p->p_zone->zone_nlwps_lock); 156 mutex_exit(&p->p_lock); 157 return (NULL); 158 } 159 } else { 160 stksize = roundup(stksize, PAGESIZE); 161 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 162 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 163 mutex_enter(&p->p_lock); 164 mutex_enter(&p->p_zone->zone_nlwps_lock); 165 p->p_task->tk_nlwps--; 166 p->p_task->tk_proj->kpj_nlwps--; 167 p->p_zone->zone_nlwps--; 168 mutex_exit(&p->p_zone->zone_nlwps_lock); 169 mutex_exit(&p->p_lock); 170 return (NULL); 171 } 172 } 173 174 /* 175 * Create a thread, initializing the stack pointer 176 */ 177 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 178 179 t->t_swap = lwpdata; /* Start of page-able data */ 180 if (lwp == NULL) 181 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 182 bzero(lwp, sizeof (*lwp)); 183 t->t_lwp = lwp; 184 185 t->t_hold = *smask; 186 lwp->lwp_thread = t; 187 lwp->lwp_procp = p; 188 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 189 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 190 lwp->lwp_childstksz = curlwp->lwp_childstksz; 191 192 t->t_stk = lwp_stk_init(lwp, t->t_stk); 193 thread_load(t, proc, arg, len); 194 195 /* 196 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 197 */ 198 if (timerisset(&p->p_rprof_timer.it_value)) 199 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 200 201 if (cid != NOCLASS) 202 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 203 204 /* 205 * Allocate an lwp directory entry for the new lwp. 206 */ 207 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 208 209 mutex_enter(&p->p_lock); 210 grow: 211 /* 212 * Grow the lwp (thread) directory and lwpid hash table if necessary. 213 * A note on the growth algorithm: 214 * The new lwp directory size is computed as: 215 * new = 2 * old + 2 216 * Starting with an initial size of 2 (see exec_common()), 217 * this yields numbers that are a power of two minus 2: 218 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 219 * The size of the lwpid hash table must be a power of two 220 * and must be commensurate in size with the lwp directory 221 * so that hash bucket chains remain short. Therefore, 222 * the lwpid hash table size is computed as: 223 * hashsz = (dirsz + 2) / 2 224 * which leads to these hash table sizes corresponding to 225 * the above directory sizes: 226 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 227 */ 228 while (p->p_lwpfree == NULL) { 229 uint_t dirsz = p->p_lwpdir_sz; 230 uint_t new_dirsz; 231 uint_t new_hashsz; 232 lwpdir_t *new_dir; 233 lwpdir_t *ldp; 234 lwpdir_t **new_hash; 235 236 mutex_exit(&p->p_lock); 237 238 if (old_dir != NULL) { 239 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 240 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 241 old_dir = NULL; 242 old_dirsz = 0; 243 old_hash = NULL; 244 old_hashsz = 0; 245 } 246 new_dirsz = 2 * dirsz + 2; 247 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 248 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 249 ldp->ld_next = ldp + 1; 250 new_hashsz = (new_dirsz + 2) / 2; 251 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 252 KM_SLEEP); 253 254 mutex_enter(&p->p_lock); 255 if (p == curproc) 256 prbarrier(p); 257 258 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 259 /* 260 * Someone else beat us to it or some lwp exited. 261 * Set up to free our memory and take a lap. 262 */ 263 old_dir = new_dir; 264 old_dirsz = new_dirsz; 265 old_hash = new_hash; 266 old_hashsz = new_hashsz; 267 } else { 268 old_dir = p->p_lwpdir; 269 old_dirsz = p->p_lwpdir_sz; 270 old_hash = p->p_tidhash; 271 old_hashsz = p->p_tidhash_sz; 272 p->p_lwpdir = new_dir; 273 p->p_lwpfree = new_dir; 274 p->p_lwpdir_sz = new_dirsz; 275 p->p_tidhash = new_hash; 276 p->p_tidhash_sz = new_hashsz; 277 /* 278 * We simply hash in all of the old directory entries. 279 * This works because the old directory has no empty 280 * slots and the new hash table starts out empty. 281 * This reproduces the original directory ordering 282 * (required for /proc directory semantics). 283 */ 284 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 285 lwp_hash_in(p, ldp->ld_entry); 286 /* 287 * Defer freeing memory until we drop p->p_lock, 288 */ 289 } 290 } 291 292 /* 293 * Block the process against /proc while we manipulate p->p_tlist, 294 * unless lwp_create() was called by /proc for the PCAGENT operation. 295 * We want to do this early enough so that we don't drop p->p_lock 296 * until the thread is put on the p->p_tlist. 297 */ 298 if (p == curproc) { 299 prbarrier(p); 300 /* 301 * If the current lwp has been requested to stop, do so now. 302 * Otherwise we have a race condition between /proc attempting 303 * to stop the process and this thread creating a new lwp 304 * that was not seen when the /proc PCSTOP request was issued. 305 * We rely on stop() to call prbarrier(p) before returning. 306 */ 307 while ((curthread->t_proc_flag & TP_PRSTOP) && 308 !ttolwp(curthread)->lwp_nostop) 309 stop(PR_REQUESTED, 0); 310 311 /* 312 * If process is exiting, there could be a race between 313 * the agent lwp creation and the new lwp currently being 314 * created. So to prevent this race lwp creation is failed 315 * if the process is exiting. 316 */ 317 if (p->p_flag & (SEXITLWPS|SKILLED)) { 318 err = 1; 319 goto error; 320 } 321 322 /* 323 * Since we might have dropped p->p_lock, the 324 * lwp directory free list might have changed. 325 */ 326 if (p->p_lwpfree == NULL) 327 goto grow; 328 } 329 330 kpreempt_disable(); /* can't grab cpu_lock here */ 331 332 /* 333 * Inherit processor and processor set bindings from curthread, 334 * unless we're creating a new kernel process, in which case 335 * clear all bindings. 336 */ 337 if (cid == syscid) { 338 t->t_bind_cpu = binding = PBIND_NONE; 339 t->t_cpupart = oldpart = &cp_default; 340 t->t_bind_pset = PS_NONE; 341 } else { 342 binding = curthread->t_bind_cpu; 343 t->t_bind_cpu = binding; 344 oldpart = t->t_cpupart; 345 t->t_cpupart = curthread->t_cpupart; 346 t->t_bind_pset = curthread->t_bind_pset; 347 } 348 349 /* 350 * thread_create() initializes this thread's home lgroup to the root. 351 * Choose a more suitable lgroup, since this thread is associated 352 * with an lwp. 353 */ 354 ASSERT(oldpart != NULL); 355 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 356 t->t_bound_cpu = cpu[binding]; 357 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 358 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 359 } else { 360 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 361 } 362 363 kpreempt_enable(); 364 365 /* 366 * make sure lpl points to our own partition 367 */ 368 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 369 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 370 t->t_cpupart->cp_nlgrploads); 371 372 /* 373 * If we're creating a new process, then inherit the project from our 374 * parent. If we're only creating an additional lwp then use the 375 * project pointer of the target process. 376 */ 377 if (p->p_task == NULL) 378 newkpj = ttoproj(curthread); 379 else 380 newkpj = p->p_task->tk_proj; 381 382 /* 383 * It is safe to point the thread to the new project without holding it 384 * since we're holding the target process' p_lock here and therefore 385 * we're guaranteed that it will not move to another project. 386 */ 387 oldkpj = ttoproj(t); 388 if (newkpj != oldkpj) { 389 t->t_proj = newkpj; 390 (void) project_hold(newkpj); 391 project_rele(oldkpj); 392 } 393 394 if (cid != NOCLASS) { 395 /* 396 * If the lwp is being created in the current process 397 * and matches the current thread's scheduling class, 398 * we should propagate the current thread's scheduling 399 * parameters by calling CL_FORK. Otherwise just use 400 * the defaults by calling CL_ENTERCLASS. 401 */ 402 if (p != curproc || curthread->t_cid != cid) { 403 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 404 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 405 } else { 406 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 407 err = CL_FORK(curthread, t, bufp); 408 t->t_cid = cid; 409 } 410 if (err) 411 goto error; 412 else 413 bufp = NULL; 414 } 415 416 /* 417 * If we were given an lwpid then use it, else allocate one. 418 */ 419 if (lwpid != 0) 420 t->t_tid = lwpid; 421 else { 422 /* 423 * lwp/thread id 0 is never valid; reserved for special checks. 424 * lwp/thread id 1 is reserved for the main thread. 425 * Start again at 2 when INT_MAX has been reached 426 * (id_t is a signed 32-bit integer). 427 */ 428 id_t prev_id = p->p_lwpid; /* last allocated tid */ 429 430 do { /* avoid lwpid duplication */ 431 if (p->p_lwpid == INT_MAX) { 432 p->p_flag |= SLWPWRAP; 433 p->p_lwpid = 1; 434 } 435 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 436 /* 437 * All lwpids are allocated; fail the request. 438 */ 439 err = 1; 440 goto error; 441 } 442 /* 443 * We only need to worry about colliding with an id 444 * that's already in use if this process has 445 * cycled through all available lwp ids. 446 */ 447 if ((p->p_flag & SLWPWRAP) == 0) 448 break; 449 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 450 } 451 p->p_lwpcnt++; 452 t->t_waitfor = -1; 453 454 /* 455 * Turn microstate accounting on for thread if on for process. 456 */ 457 if (p->p_flag & SMSACCT) 458 t->t_proc_flag |= TP_MSACCT; 459 460 /* 461 * If the process has watchpoints, mark the new thread as such. 462 */ 463 if (pr_watch_active(p)) 464 watch_enable(t); 465 466 /* 467 * The lwp is being created in the stopped state. 468 * We set all the necessary flags to indicate that fact here. 469 * We omit the TS_CREATE flag from t_schedflag so that the lwp 470 * cannot be set running until the caller is finished with it, 471 * even if lwp_continue() is called on it after we drop p->p_lock. 472 * When the caller is finished with the newly-created lwp, 473 * the caller must call lwp_create_done() to allow the lwp 474 * to be set running. If the TP_HOLDLWP is left set, the 475 * lwp will suspend itself after reaching system call exit. 476 */ 477 init_mstate(t, LMS_STOPPED); 478 t->t_proc_flag |= TP_HOLDLWP; 479 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 480 t->t_whystop = PR_SUSPENDED; 481 t->t_whatstop = SUSPEND_NORMAL; 482 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 483 484 /* 485 * Set system call processing flags in case tracing or profiling 486 * is set. The first system call will evaluate these and turn 487 * them off if they aren't needed. 488 */ 489 t->t_pre_sys = 1; 490 t->t_post_sys = 1; 491 492 /* 493 * Insert the new thread into the list of all threads. 494 */ 495 if ((tx = p->p_tlist) == NULL) { 496 t->t_back = t; 497 t->t_forw = t; 498 p->p_tlist = t; 499 } else { 500 t->t_forw = tx; 501 t->t_back = tx->t_back; 502 tx->t_back->t_forw = t; 503 tx->t_back = t; 504 } 505 506 /* 507 * Insert the new lwp into an lwp directory slot position 508 * and into the lwpid hash table. 509 */ 510 lep->le_thread = t; 511 lep->le_lwpid = t->t_tid; 512 lep->le_start = t->t_start; 513 lwp_hash_in(p, lep); 514 515 if (state == TS_RUN) { 516 /* 517 * We set the new lwp running immediately. 518 */ 519 t->t_proc_flag &= ~TP_HOLDLWP; 520 lwp_create_done(t); 521 } 522 523 error: 524 if (err) { 525 /* 526 * We have failed to create an lwp, so decrement the number 527 * of lwps in the task and let the lgroup load averages know 528 * that this thread isn't going to show up. 529 */ 530 kpreempt_disable(); 531 lgrp_move_thread(t, NULL, 1); 532 kpreempt_enable(); 533 534 ASSERT(MUTEX_HELD(&p->p_lock)); 535 mutex_enter(&p->p_zone->zone_nlwps_lock); 536 p->p_task->tk_nlwps--; 537 p->p_task->tk_proj->kpj_nlwps--; 538 p->p_zone->zone_nlwps--; 539 mutex_exit(&p->p_zone->zone_nlwps_lock); 540 if (cid != NOCLASS && bufp != NULL) 541 CL_FREE(cid, bufp); 542 543 mutex_exit(&p->p_lock); 544 t->t_state = TS_FREE; 545 thread_rele(t); 546 547 /* 548 * We need to remove t from the list of all threads 549 * because thread_exit()/lwp_exit() isn't called on t. 550 */ 551 mutex_enter(&pidlock); 552 ASSERT(t != t->t_next); /* t0 never exits */ 553 t->t_next->t_prev = t->t_prev; 554 t->t_prev->t_next = t->t_next; 555 mutex_exit(&pidlock); 556 557 thread_free(t); 558 kmem_free(lep, sizeof (*lep)); 559 lwp = NULL; 560 } else { 561 mutex_exit(&p->p_lock); 562 } 563 564 if (old_dir != NULL) { 565 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 566 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 567 } 568 569 DTRACE_PROC1(lwp__create, kthread_t *, t); 570 return (lwp); 571 } 572 573 /* 574 * lwp_create_done() is called by the caller of lwp_create() to set the 575 * newly-created lwp running after the caller has finished manipulating it. 576 */ 577 void 578 lwp_create_done(kthread_t *t) 579 { 580 proc_t *p = ttoproc(t); 581 582 ASSERT(MUTEX_HELD(&p->p_lock)); 583 584 /* 585 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 586 * (The absence of the TS_CREATE flag prevents the lwp from running 587 * until we are finished with it, even if lwp_continue() is called on 588 * it by some other lwp in the process or elsewhere in the kernel.) 589 */ 590 thread_lock(t); 591 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 592 /* 593 * If TS_CSTART is set, lwp_continue(t) has been called and 594 * has already incremented p_lwprcnt; avoid doing this twice. 595 */ 596 if (!(t->t_schedflag & TS_CSTART)) 597 p->p_lwprcnt++; 598 t->t_schedflag |= (TS_CSTART | TS_CREATE); 599 setrun_locked(t); 600 thread_unlock(t); 601 } 602 603 /* 604 * Copy an LWP's active templates, and clear the latest contracts. 605 */ 606 void 607 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 608 { 609 int i; 610 611 for (i = 0; i < ct_ntypes; i++) { 612 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 613 dst->lwp_ct_latest[i] = NULL; 614 } 615 } 616 617 /* 618 * Clear an LWP's contract template state. 619 */ 620 void 621 lwp_ctmpl_clear(klwp_t *lwp) 622 { 623 ct_template_t *tmpl; 624 int i; 625 626 for (i = 0; i < ct_ntypes; i++) { 627 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 628 ctmpl_free(tmpl); 629 lwp->lwp_ct_active[i] = NULL; 630 } 631 632 if (lwp->lwp_ct_latest[i] != NULL) { 633 contract_rele(lwp->lwp_ct_latest[i]); 634 lwp->lwp_ct_latest[i] = NULL; 635 } 636 } 637 } 638 639 /* 640 * Individual lwp exit. 641 * If this is the last lwp, exit the whole process. 642 */ 643 void 644 lwp_exit(void) 645 { 646 kthread_t *t = curthread; 647 klwp_t *lwp = ttolwp(t); 648 proc_t *p = ttoproc(t); 649 650 ASSERT(MUTEX_HELD(&p->p_lock)); 651 652 mutex_exit(&p->p_lock); 653 654 #if defined(__sparc) 655 /* 656 * Ensure that the user stack is fully abandoned.. 657 */ 658 trash_user_windows(); 659 #endif 660 661 tsd_exit(); /* free thread specific data */ 662 663 kcpc_passivate(); /* Clean up performance counter state */ 664 665 pollcleanup(); 666 667 if (t->t_door) 668 door_slam(); 669 670 if (t->t_schedctl != NULL) 671 schedctl_lwp_cleanup(t); 672 673 if (t->t_upimutex != NULL) 674 upimutex_cleanup(); 675 676 mutex_enter(&p->p_lock); 677 lwp_cleanup(); 678 679 /* 680 * When this process is dumping core, its lwps are held here 681 * until the core dump is finished. Then exitlwps() is called 682 * again to release these lwps so that they can finish exiting. 683 */ 684 if (p->p_flag & SCOREDUMP) 685 stop(PR_SUSPENDED, SUSPEND_NORMAL); 686 687 /* 688 * Block the process against /proc now that we have really acquired 689 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 690 */ 691 prbarrier(p); 692 693 /* 694 * Call proc_exit() if this is the last non-daemon lwp in the process. 695 */ 696 if (!(t->t_proc_flag & TP_DAEMON) && 697 p->p_lwpcnt == p->p_lwpdaemon + 1) { 698 mutex_exit(&p->p_lock); 699 if (proc_exit(CLD_EXITED, 0) == 0) { 700 /* Restarting init. */ 701 return; 702 } 703 704 /* 705 * proc_exit() returns a non-zero value when some other 706 * lwp got there first. We just have to continue in 707 * lwp_exit(). 708 */ 709 mutex_enter(&p->p_lock); 710 ASSERT(curproc->p_flag & SEXITLWPS); 711 prbarrier(p); 712 } 713 714 DTRACE_PROC(lwp__exit); 715 716 /* 717 * If the lwp is a detached lwp or if the process is exiting, 718 * remove (lwp_hash_out()) the lwp from the lwp directory. 719 * Otherwise null out the lwp's le_thread pointer in the lwp 720 * directory so that other threads will see it as a zombie lwp. 721 */ 722 prlwpexit(t); /* notify /proc */ 723 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 724 lwp_hash_out(p, t->t_tid); 725 else { 726 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 727 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 728 p->p_zombcnt++; 729 cv_broadcast(&p->p_lwpexit); 730 } 731 if (t->t_proc_flag & TP_DAEMON) { 732 p->p_lwpdaemon--; 733 t->t_proc_flag &= ~TP_DAEMON; 734 } 735 t->t_proc_flag &= ~TP_TWAIT; 736 737 /* 738 * Maintain accurate lwp count for task.max-lwps resource control. 739 */ 740 mutex_enter(&p->p_zone->zone_nlwps_lock); 741 p->p_task->tk_nlwps--; 742 p->p_task->tk_proj->kpj_nlwps--; 743 p->p_zone->zone_nlwps--; 744 mutex_exit(&p->p_zone->zone_nlwps_lock); 745 746 CL_EXIT(t); /* tell the scheduler that t is exiting */ 747 ASSERT(p->p_lwpcnt != 0); 748 p->p_lwpcnt--; 749 750 /* 751 * If all remaining non-daemon lwps are waiting in lwp_wait(), 752 * wake them up so someone can return EDEADLK. 753 * (See the block comment preceeding lwp_wait().) 754 */ 755 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 756 cv_broadcast(&p->p_lwpexit); 757 758 t->t_proc_flag |= TP_LWPEXIT; 759 term_mstate(t); 760 #ifndef NPROBE 761 /* Kernel probe */ 762 if (t->t_tnf_tpdp) 763 tnf_thread_exit(); 764 #endif /* NPROBE */ 765 766 t->t_forw->t_back = t->t_back; 767 t->t_back->t_forw = t->t_forw; 768 if (t == p->p_tlist) 769 p->p_tlist = t->t_forw; 770 771 /* 772 * Clean up the signal state. 773 */ 774 if (t->t_sigqueue != NULL) 775 sigdelq(p, t, 0); 776 if (lwp->lwp_curinfo != NULL) { 777 siginfofree(lwp->lwp_curinfo); 778 lwp->lwp_curinfo = NULL; 779 } 780 781 thread_rele(t); 782 783 /* 784 * Terminated lwps are associated with process zero and are put onto 785 * death-row by resume(). Avoid preemption after resetting t->t_procp. 786 */ 787 t->t_preempt++; 788 t->t_procp = &p0; 789 790 /* 791 * Notify the HAT about the change of address space 792 */ 793 hat_thread_exit(t); 794 /* 795 * When this is the last running lwp in this process and some lwp is 796 * waiting for this condition to become true, or this thread was being 797 * suspended, then the waiting lwp is awakened. 798 * 799 * Also, if the process is exiting, we may have a thread waiting in 800 * exitlwps() that needs to be notified. 801 */ 802 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 803 (p->p_flag & SEXITLWPS)) 804 cv_broadcast(&p->p_holdlwps); 805 806 /* 807 * Need to drop p_lock so we can reacquire pidlock. 808 */ 809 mutex_exit(&p->p_lock); 810 mutex_enter(&pidlock); 811 812 ASSERT(t != t->t_next); /* t0 never exits */ 813 t->t_next->t_prev = t->t_prev; 814 t->t_prev->t_next = t->t_next; 815 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 816 mutex_exit(&pidlock); 817 818 lwp_pcb_exit(); 819 820 if (t->t_ctx != NULL) 821 exitctx(t); 822 823 t->t_state = TS_ZOMB; 824 swtch_from_zombie(); 825 /* never returns */ 826 } 827 828 829 /* 830 * Cleanup function for an exiting lwp. 831 * Called both from lwp_exit() and from proc_exit(). 832 * p->p_lock is repeatedly released and grabbed in this function. 833 */ 834 void 835 lwp_cleanup(void) 836 { 837 kthread_t *t = curthread; 838 proc_t *p = ttoproc(t); 839 840 ASSERT(MUTEX_HELD(&p->p_lock)); 841 842 /* untimeout any lwp-bound realtime timers */ 843 if (p->p_itimer != NULL) 844 timer_lwpexit(); 845 846 /* 847 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 848 * so it appears that the agent never existed, and clear p_agenttp. 849 */ 850 if (t == p->p_agenttp) { 851 ASSERT(t->t_tid == p->p_lwpid); 852 p->p_lwpid--; 853 p->p_agenttp = NULL; 854 } 855 856 /* 857 * Do lgroup bookkeeping to account for thread exiting. 858 */ 859 kpreempt_disable(); 860 lgrp_move_thread(t, NULL, 1); 861 kpreempt_enable(); 862 863 lwp_ctmpl_clear(ttolwp(t)); 864 } 865 866 int 867 lwp_suspend(kthread_t *t) 868 { 869 int tid; 870 proc_t *p = ttoproc(t); 871 872 ASSERT(MUTEX_HELD(&p->p_lock)); 873 874 /* 875 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 876 * If an lwp is stopping itself, there is no need to wait. 877 */ 878 top: 879 t->t_proc_flag |= TP_HOLDLWP; 880 if (t == curthread) { 881 t->t_sig_check = 1; 882 } else { 883 /* 884 * Make sure the lwp stops promptly. 885 */ 886 thread_lock(t); 887 t->t_sig_check = 1; 888 /* 889 * XXX Should use virtual stop like /proc does instead of 890 * XXX waking the thread to get it to stop. 891 */ 892 if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) 893 setrun_locked(t); 894 else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 895 poke_cpu(t->t_cpu->cpu_id); 896 tid = t->t_tid; /* remember thread ID */ 897 /* 898 * Wait for lwp to stop 899 */ 900 while (!SUSPENDED(t)) { 901 /* 902 * Drop the thread lock before waiting and reacquire it 903 * afterwards, so the thread can change its t_state 904 * field. 905 */ 906 thread_unlock(t); 907 908 /* 909 * Check if aborted by exitlwps(). 910 */ 911 if (p->p_flag & SEXITLWPS) 912 lwp_exit(); 913 914 /* 915 * Cooperate with jobcontrol signals and /proc stopping 916 * by calling cv_wait_sig() to wait for the target 917 * lwp to stop. Just using cv_wait() can lead to 918 * deadlock because, if some other lwp has stopped 919 * by either of these mechanisms, then p_lwprcnt will 920 * never become zero if we do a cv_wait(). 921 */ 922 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 923 return (EINTR); 924 925 /* 926 * Check to see if thread died while we were 927 * waiting for it to suspend. 928 */ 929 if (idtot(p, tid) == NULL) 930 return (ESRCH); 931 932 thread_lock(t); 933 /* 934 * If the TP_HOLDLWP flag went away, lwp_continue() 935 * or vfork() must have been called while we were 936 * waiting, so start over again. 937 */ 938 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 939 thread_unlock(t); 940 goto top; 941 } 942 } 943 thread_unlock(t); 944 } 945 return (0); 946 } 947 948 /* 949 * continue a lwp that's been stopped by lwp_suspend(). 950 */ 951 void 952 lwp_continue(kthread_t *t) 953 { 954 proc_t *p = ttoproc(t); 955 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 956 957 ASSERT(MUTEX_HELD(&p->p_lock)); 958 959 t->t_proc_flag &= ~TP_HOLDLWP; 960 thread_lock(t); 961 if (SUSPENDED(t) && 962 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 963 p->p_lwprcnt++; 964 t->t_schedflag |= TS_CSTART; 965 setrun_locked(t); 966 } 967 thread_unlock(t); 968 /* 969 * Wakeup anyone waiting for this thread to be suspended 970 */ 971 if (was_suspended) 972 cv_broadcast(&p->p_holdlwps); 973 } 974 975 /* 976 * ******************************** 977 * Miscellaneous lwp routines * 978 * ******************************** 979 */ 980 /* 981 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 982 * This will cause the process's lwps to stop at a hold point. A hold 983 * point is where a kernel thread has a flat stack. This is at the 984 * return from a system call and at the return from a user level trap. 985 * 986 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 987 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 988 * hold point. The lwps in the process are not being cloned, so they 989 * are held at the usual hold points and also within issig_forreal(). 990 * This has the side-effect that their system calls do not return 991 * showing EINTR. 992 * 993 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 994 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 995 * lwp is waiting for the target lwp to be stopped. 996 */ 997 void 998 holdlwp(void) 999 { 1000 proc_t *p = curproc; 1001 kthread_t *t = curthread; 1002 1003 mutex_enter(&p->p_lock); 1004 /* 1005 * Don't terminate immediately if the process is dumping core. 1006 * Once the process has dumped core, all lwps are terminated. 1007 */ 1008 if (!(p->p_flag & SCOREDUMP)) { 1009 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1010 lwp_exit(); 1011 } 1012 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1013 mutex_exit(&p->p_lock); 1014 return; 1015 } 1016 /* 1017 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1018 * when p->p_lwprcnt becomes zero. 1019 */ 1020 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1021 if (p->p_flag & SEXITLWPS) 1022 lwp_exit(); 1023 mutex_exit(&p->p_lock); 1024 } 1025 1026 /* 1027 * Have all lwps within the process hold at a point where they are 1028 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1029 */ 1030 int 1031 holdlwps(int holdflag) 1032 { 1033 proc_t *p = curproc; 1034 1035 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1036 mutex_enter(&p->p_lock); 1037 schedctl_finish_sigblock(curthread); 1038 again: 1039 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1040 /* 1041 * If another lwp is doing a forkall() or proc_exit(), bail out. 1042 */ 1043 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1044 mutex_exit(&p->p_lock); 1045 return (0); 1046 } 1047 /* 1048 * Another lwp is doing a fork1() or is undergoing 1049 * watchpoint activity. We hold here for it to complete. 1050 */ 1051 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1052 } 1053 p->p_flag |= holdflag; 1054 pokelwps(p); 1055 --p->p_lwprcnt; 1056 /* 1057 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1058 */ 1059 while (p->p_lwprcnt > 0) { 1060 /* 1061 * Check if aborted by exitlwps(). 1062 * Also check if SHOLDWATCH is set; it takes precedence. 1063 */ 1064 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1065 p->p_lwprcnt++; 1066 p->p_flag &= ~holdflag; 1067 cv_broadcast(&p->p_holdlwps); 1068 goto again; 1069 } 1070 /* 1071 * Cooperate with jobcontrol signals and /proc stopping. 1072 * If some other lwp has stopped by either of these 1073 * mechanisms, then p_lwprcnt will never become zero 1074 * and the process will appear deadlocked unless we 1075 * stop here in sympathy with the other lwp before 1076 * doing the cv_wait() below. 1077 * 1078 * If the other lwp stops after we do the cv_wait(), it 1079 * will wake us up to loop around and do the sympathy stop. 1080 * 1081 * Since stop() drops p->p_lock, we must start from 1082 * the top again on returning from stop(). 1083 */ 1084 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1085 int whystop = p->p_stopsig? PR_JOBCONTROL : 1086 PR_REQUESTED; 1087 p->p_lwprcnt++; 1088 p->p_flag &= ~holdflag; 1089 stop(whystop, p->p_stopsig); 1090 goto again; 1091 } 1092 cv_wait(&p->p_holdlwps, &p->p_lock); 1093 } 1094 p->p_lwprcnt++; 1095 p->p_flag &= ~holdflag; 1096 mutex_exit(&p->p_lock); 1097 return (1); 1098 } 1099 1100 /* 1101 * See comments for holdwatch(), below. 1102 */ 1103 static int 1104 holdcheck(int clearflags) 1105 { 1106 proc_t *p = curproc; 1107 1108 /* 1109 * If we are trying to exit, that takes precedence over anything else. 1110 */ 1111 if (p->p_flag & SEXITLWPS) { 1112 p->p_lwprcnt++; 1113 p->p_flag &= ~clearflags; 1114 lwp_exit(); 1115 } 1116 1117 /* 1118 * If another thread is calling fork1(), stop the current thread so the 1119 * other can complete. 1120 */ 1121 if (p->p_flag & SHOLDFORK1) { 1122 p->p_lwprcnt++; 1123 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1124 if (p->p_flag & SEXITLWPS) { 1125 p->p_flag &= ~clearflags; 1126 lwp_exit(); 1127 } 1128 return (-1); 1129 } 1130 1131 /* 1132 * If another thread is calling fork(), then indicate we are doing 1133 * watchpoint activity. This will cause holdlwps() above to stop the 1134 * forking thread, at which point we can continue with watchpoint 1135 * activity. 1136 */ 1137 if (p->p_flag & SHOLDFORK) { 1138 p->p_lwprcnt++; 1139 while (p->p_flag & SHOLDFORK) { 1140 p->p_flag |= SHOLDWATCH; 1141 cv_broadcast(&p->p_holdlwps); 1142 cv_wait(&p->p_holdlwps, &p->p_lock); 1143 p->p_flag &= ~SHOLDWATCH; 1144 } 1145 return (-1); 1146 } 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Stop all lwps within the process, holding themselves in the kernel while the 1153 * active lwp undergoes watchpoint activity. This is more complicated than 1154 * expected because stop() relies on calling holdwatch() in order to copyin data 1155 * from the user's address space. A double barrier is used to prevent an 1156 * infinite loop. 1157 * 1158 * o The first thread into holdwatch() is the 'master' thread and does 1159 * the following: 1160 * 1161 * - Sets SHOLDWATCH on the current process 1162 * - Sets TP_WATCHSTOP on the current thread 1163 * - Waits for all threads to be either stopped or have 1164 * TP_WATCHSTOP set. 1165 * - Sets the SWATCHOK flag on the process 1166 * - Unsets TP_WATCHSTOP 1167 * - Waits for the other threads to completely stop 1168 * - Unsets SWATCHOK 1169 * 1170 * o If SHOLDWATCH is already set when we enter this function, then another 1171 * thread is already trying to stop this thread. This 'slave' thread 1172 * does the following: 1173 * 1174 * - Sets TP_WATCHSTOP on the current thread 1175 * - Waits for SWATCHOK flag to be set 1176 * - Calls stop() 1177 * 1178 * o If SWATCHOK is set on the process, then this function immediately 1179 * returns, as we must have been called via stop(). 1180 * 1181 * In addition, there are other flags that take precedence over SHOLDWATCH: 1182 * 1183 * o If SEXITLWPS is set, exit immediately. 1184 * 1185 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1186 * 1187 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1188 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1189 * 1190 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1191 * stop the current thread. 1192 * 1193 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1194 * threads were stopped, or the list of watched pages has changed. 1195 */ 1196 int 1197 holdwatch(void) 1198 { 1199 proc_t *p = curproc; 1200 kthread_t *t = curthread; 1201 int ret = 0; 1202 1203 mutex_enter(&p->p_lock); 1204 1205 p->p_lwprcnt--; 1206 1207 /* 1208 * Check for bail-out conditions as outlined above. 1209 */ 1210 if (holdcheck(0) != 0) { 1211 mutex_exit(&p->p_lock); 1212 return (-1); 1213 } 1214 1215 if (!(p->p_flag & SHOLDWATCH)) { 1216 /* 1217 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1218 * the other threads. 1219 */ 1220 p->p_flag |= SHOLDWATCH; 1221 pokelwps(p); 1222 1223 /* 1224 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1225 */ 1226 while (pr_allstopped(p, 1) > 0) { 1227 if (holdcheck(SHOLDWATCH) != 0) { 1228 p->p_flag &= ~SHOLDWATCH; 1229 mutex_exit(&p->p_lock); 1230 return (-1); 1231 } 1232 1233 cv_wait(&p->p_holdlwps, &p->p_lock); 1234 } 1235 1236 /* 1237 * All threads are now stopped or in the process of stopping. 1238 * Set SWATCHOK and let them stop completely. 1239 */ 1240 p->p_flag |= SWATCHOK; 1241 t->t_proc_flag &= ~TP_WATCHSTOP; 1242 cv_broadcast(&p->p_holdlwps); 1243 1244 while (pr_allstopped(p, 0) > 0) { 1245 /* 1246 * At first glance, it may appear that we don't need a 1247 * call to holdcheck() here. But if the process gets a 1248 * SIGKILL signal, one of our stopped threads may have 1249 * been awakened and is waiting in exitlwps(), which 1250 * takes precedence over watchpoints. 1251 */ 1252 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1253 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1254 mutex_exit(&p->p_lock); 1255 return (-1); 1256 } 1257 1258 cv_wait(&p->p_holdlwps, &p->p_lock); 1259 } 1260 1261 /* 1262 * All threads are now completely stopped. 1263 */ 1264 p->p_flag &= ~SWATCHOK; 1265 p->p_flag &= ~SHOLDWATCH; 1266 p->p_lwprcnt++; 1267 1268 } else if (!(p->p_flag & SWATCHOK)) { 1269 1270 /* 1271 * SHOLDWATCH is set, so another thread is trying to do 1272 * watchpoint activity. Indicate this thread is stopping, and 1273 * wait for the OK from the master thread. 1274 */ 1275 t->t_proc_flag |= TP_WATCHSTOP; 1276 cv_broadcast(&p->p_holdlwps); 1277 1278 while (!(p->p_flag & SWATCHOK)) { 1279 if (holdcheck(0) != 0) { 1280 t->t_proc_flag &= ~TP_WATCHSTOP; 1281 mutex_exit(&p->p_lock); 1282 return (-1); 1283 } 1284 1285 cv_wait(&p->p_holdlwps, &p->p_lock); 1286 } 1287 1288 /* 1289 * Once the master thread has given the OK, this thread can 1290 * actually call stop(). 1291 */ 1292 t->t_proc_flag &= ~TP_WATCHSTOP; 1293 p->p_lwprcnt++; 1294 1295 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1296 1297 /* 1298 * It's not OK to do watchpoint activity, notify caller to 1299 * retry. 1300 */ 1301 ret = -1; 1302 1303 } else { 1304 1305 /* 1306 * The only way we can hit the case where SHOLDWATCH is set and 1307 * SWATCHOK is set is if we are triggering this from within a 1308 * stop() call. Assert that this is the case. 1309 */ 1310 1311 ASSERT(t->t_proc_flag & TP_STOPPING); 1312 p->p_lwprcnt++; 1313 } 1314 1315 mutex_exit(&p->p_lock); 1316 1317 return (ret); 1318 } 1319 1320 /* 1321 * force all interruptible lwps to trap into the kernel. 1322 */ 1323 void 1324 pokelwps(proc_t *p) 1325 { 1326 kthread_t *t; 1327 1328 ASSERT(MUTEX_HELD(&p->p_lock)); 1329 1330 t = p->p_tlist; 1331 do { 1332 if (t == curthread) 1333 continue; 1334 thread_lock(t); 1335 aston(t); /* make thread trap or do post_syscall */ 1336 if (t->t_state == TS_SLEEP) { 1337 if (t->t_flag & T_WAKEABLE) 1338 setrun_locked(t); 1339 } else if (t->t_state == TS_STOPPED) { 1340 /* 1341 * Ensure that proc_exit() is not blocked by lwps 1342 * that were stopped via jobcontrol or /proc. 1343 */ 1344 if (p->p_flag & SEXITLWPS) { 1345 p->p_stopsig = 0; 1346 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1347 setrun_locked(t); 1348 } 1349 /* 1350 * If we are holding lwps for a forkall(), 1351 * force lwps that have been suspended via 1352 * lwp_suspend() and are suspended inside 1353 * of a system call to proceed to their 1354 * holdlwp() points where they are clonable. 1355 */ 1356 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1357 if ((t->t_schedflag & TS_CSTART) == 0) { 1358 p->p_lwprcnt++; 1359 t->t_schedflag |= TS_CSTART; 1360 setrun_locked(t); 1361 } 1362 } 1363 } else if (t->t_state == TS_ONPROC) { 1364 if (t->t_cpu != CPU) 1365 poke_cpu(t->t_cpu->cpu_id); 1366 } 1367 thread_unlock(t); 1368 } while ((t = t->t_forw) != p->p_tlist); 1369 } 1370 1371 /* 1372 * undo the effects of holdlwps() or holdwatch(). 1373 */ 1374 void 1375 continuelwps(proc_t *p) 1376 { 1377 kthread_t *t; 1378 1379 /* 1380 * If this flag is set, then the original holdwatch() didn't actually 1381 * stop the process. See comments for holdwatch(). 1382 */ 1383 if (p->p_flag & SWATCHOK) { 1384 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1385 return; 1386 } 1387 1388 ASSERT(MUTEX_HELD(&p->p_lock)); 1389 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1390 1391 t = p->p_tlist; 1392 do { 1393 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1394 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1395 p->p_lwprcnt++; 1396 t->t_schedflag |= TS_CSTART; 1397 setrun_locked(t); 1398 } 1399 thread_unlock(t); 1400 } while ((t = t->t_forw) != p->p_tlist); 1401 } 1402 1403 /* 1404 * Force all other LWPs in the current process other than the caller to exit, 1405 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1406 * is typically used in these situations: 1407 * 1408 * (a) prior to an exec() system call 1409 * (b) prior to dumping a core file 1410 * (c) prior to a uadmin() shutdown 1411 * 1412 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1413 * Multiple threads in the process can call this function at one time by 1414 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1415 * to declare one particular thread the winner who gets to kill the others. 1416 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1417 * appropriate errno value is returned to caller for its system call to return. 1418 */ 1419 int 1420 exitlwps(int coredump) 1421 { 1422 proc_t *p = curproc; 1423 int heldcnt; 1424 1425 if (curthread->t_door) 1426 door_slam(); 1427 if (p->p_door_list) 1428 door_revoke_all(); 1429 if (curthread->t_schedctl != NULL) 1430 schedctl_lwp_cleanup(curthread); 1431 1432 /* 1433 * Ensure that before starting to wait for other lwps to exit, 1434 * cleanup all upimutexes held by curthread. Otherwise, some other 1435 * lwp could be waiting (uninterruptibly) for a upimutex held by 1436 * curthread, and the call to pokelwps() below would deadlock. 1437 * Even if a blocked upimutex_lock is made interruptible, 1438 * curthread's upimutexes need to be unlocked: do it here. 1439 */ 1440 if (curthread->t_upimutex != NULL) 1441 upimutex_cleanup(); 1442 1443 /* 1444 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1445 * We must also block any further /proc access from this point forward. 1446 */ 1447 mutex_enter(&p->p_lock); 1448 prbarrier(p); 1449 1450 if (p->p_flag & SEXITLWPS) { 1451 mutex_exit(&p->p_lock); 1452 aston(curthread); /* force a trip through post_syscall */ 1453 return (set_errno(EINTR)); 1454 } 1455 1456 p->p_flag |= SEXITLWPS; 1457 if (coredump) /* tell other lwps to stop, not exit */ 1458 p->p_flag |= SCOREDUMP; 1459 1460 /* 1461 * Give precedence to exitlwps() if a holdlwps() is 1462 * in progress. The lwp doing the holdlwps() operation 1463 * is aborted when it is awakened. 1464 */ 1465 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1466 cv_broadcast(&p->p_holdlwps); 1467 cv_wait(&p->p_holdlwps, &p->p_lock); 1468 prbarrier(p); 1469 } 1470 p->p_flag |= SHOLDFORK; 1471 pokelwps(p); 1472 1473 /* 1474 * Wait for process to become quiescent. 1475 */ 1476 --p->p_lwprcnt; 1477 while (p->p_lwprcnt > 0) { 1478 cv_wait(&p->p_holdlwps, &p->p_lock); 1479 prbarrier(p); 1480 } 1481 p->p_lwprcnt++; 1482 ASSERT(p->p_lwprcnt == 1); 1483 1484 /* 1485 * The SCOREDUMP flag puts the process into a quiescent 1486 * state. The process's lwps remain attached to this 1487 * process until exitlwps() is called again without the 1488 * 'coredump' flag set, then the lwps are terminated 1489 * and the process can exit. 1490 */ 1491 if (coredump) { 1492 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1493 goto out; 1494 } 1495 1496 /* 1497 * Determine if there are any lwps left dangling in 1498 * the stopped state. This happens when exitlwps() 1499 * aborts a holdlwps() operation. 1500 */ 1501 p->p_flag &= ~SHOLDFORK; 1502 if ((heldcnt = p->p_lwpcnt) > 1) { 1503 kthread_t *t; 1504 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1505 t->t_proc_flag &= ~TP_TWAIT; 1506 lwp_continue(t); 1507 } 1508 } 1509 1510 /* 1511 * Wait for all other lwps to exit. 1512 */ 1513 --p->p_lwprcnt; 1514 while (p->p_lwpcnt > 1) { 1515 cv_wait(&p->p_holdlwps, &p->p_lock); 1516 prbarrier(p); 1517 } 1518 ++p->p_lwprcnt; 1519 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1520 1521 p->p_flag &= ~SEXITLWPS; 1522 curthread->t_proc_flag &= ~TP_TWAIT; 1523 1524 out: 1525 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1526 lwpdir_t *ldp; 1527 lwpent_t *lep; 1528 int i; 1529 1530 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1531 lep = ldp->ld_entry; 1532 if (lep != NULL && lep->le_thread != curthread) { 1533 ASSERT(lep->le_thread == NULL); 1534 p->p_zombcnt--; 1535 lwp_hash_out(p, lep->le_lwpid); 1536 } 1537 } 1538 ASSERT(p->p_zombcnt == 0); 1539 } 1540 1541 /* 1542 * If some other LWP in the process wanted us to suspend ourself, 1543 * then we will not do it. The other LWP is now terminated and 1544 * no one will ever continue us again if we suspend ourself. 1545 */ 1546 curthread->t_proc_flag &= ~TP_HOLDLWP; 1547 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1548 mutex_exit(&p->p_lock); 1549 return (0); 1550 } 1551 1552 /* 1553 * duplicate a lwp. 1554 */ 1555 klwp_t * 1556 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1557 { 1558 klwp_t *clwp; 1559 void *tregs, *tfpu; 1560 kthread_t *t = lwptot(lwp); 1561 kthread_t *ct; 1562 proc_t *p = lwptoproc(lwp); 1563 int cid; 1564 void *bufp; 1565 int val; 1566 1567 ASSERT(p == curproc); 1568 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1569 1570 #if defined(__sparc) 1571 if (t == curthread) 1572 (void) flush_user_windows_to_stack(NULL); 1573 #endif 1574 1575 if (t == curthread) 1576 /* copy args out of registers first */ 1577 (void) save_syscall_args(); 1578 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1579 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1580 if (clwp == NULL) 1581 return (NULL); 1582 1583 /* 1584 * most of the parent's lwp can be copied to its duplicate, 1585 * except for the fields that are unique to each lwp, like 1586 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1587 */ 1588 ct = clwp->lwp_thread; 1589 tregs = clwp->lwp_regs; 1590 tfpu = clwp->lwp_fpu; 1591 1592 /* copy parent lwp to child lwp */ 1593 *clwp = *lwp; 1594 1595 /* fix up child's lwp */ 1596 1597 clwp->lwp_pcb.pcb_flags = 0; 1598 #if defined(__sparc) 1599 clwp->lwp_pcb.pcb_step = STEP_NONE; 1600 #endif 1601 clwp->lwp_cursig = 0; 1602 clwp->lwp_extsig = 0; 1603 clwp->lwp_curinfo = (struct sigqueue *)0; 1604 clwp->lwp_thread = ct; 1605 ct->t_sysnum = t->t_sysnum; 1606 clwp->lwp_regs = tregs; 1607 clwp->lwp_fpu = tfpu; 1608 clwp->lwp_ap = clwp->lwp_arg; 1609 clwp->lwp_procp = cp; 1610 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1611 init_mstate(ct, LMS_STOPPED); 1612 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1613 clwp->lwp_lastfault = 0; 1614 clwp->lwp_lastfaddr = 0; 1615 1616 /* copy parent's struct regs to child. */ 1617 lwp_forkregs(lwp, clwp); 1618 1619 /* 1620 * fork device context, if any. 1621 * 1622 * Someday we could do the work to support the possibility of 1623 * forkctx() or lwp_createctx() failing. Currently, this would 1624 * only be needed on x86 for the occasional process using a 1625 * private LDT. 1626 */ 1627 if (t->t_ctx) 1628 forkctx(t, ct); 1629 1630 /* fix door state in the child */ 1631 if (t->t_door) 1632 door_fork(t, ct); 1633 1634 /* copy current contract templates, clear latest contracts */ 1635 lwp_ctmpl_copy(clwp, lwp); 1636 1637 mutex_enter(&cp->p_lock); 1638 /* lwp_create() set the TP_HOLDLWP flag */ 1639 if (!(t->t_proc_flag & TP_HOLDLWP)) 1640 ct->t_proc_flag &= ~TP_HOLDLWP; 1641 if (cp->p_flag & SMSACCT) 1642 ct->t_proc_flag |= TP_MSACCT; 1643 mutex_exit(&cp->p_lock); 1644 1645 retry: 1646 cid = t->t_cid; 1647 1648 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1649 ASSERT(val == 0); 1650 1651 mutex_enter(&p->p_lock); 1652 if (cid != t->t_cid) { 1653 /* 1654 * Someone just changed this thread's scheduling class, 1655 * so try pre-allocating the buffer again. Hopefully we 1656 * don't hit this often. 1657 */ 1658 mutex_exit(&p->p_lock); 1659 CL_FREE(cid, bufp); 1660 goto retry; 1661 } 1662 1663 ct->t_unpark = t->t_unpark; 1664 ct->t_clfuncs = t->t_clfuncs; 1665 CL_FORK(t, ct, bufp); 1666 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1667 mutex_exit(&p->p_lock); 1668 1669 return (clwp); 1670 } 1671 1672 /* 1673 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1674 */ 1675 void 1676 lwp_hash_in(proc_t *p, lwpent_t *lep) 1677 { 1678 lwpdir_t **ldpp; 1679 lwpdir_t *ldp; 1680 kthread_t *t; 1681 1682 /* 1683 * Allocate a directory element from the free list. 1684 * Code elsewhere guarantees a free slot. 1685 */ 1686 ldp = p->p_lwpfree; 1687 p->p_lwpfree = ldp->ld_next; 1688 ASSERT(ldp->ld_entry == NULL); 1689 ldp->ld_entry = lep; 1690 1691 /* 1692 * Insert it into the lwpid hash table. 1693 */ 1694 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1695 ldp->ld_next = *ldpp; 1696 *ldpp = ldp; 1697 1698 /* 1699 * Set the active thread's directory slot entry. 1700 */ 1701 if ((t = lep->le_thread) != NULL) { 1702 ASSERT(lep->le_lwpid == t->t_tid); 1703 t->t_dslot = (int)(ldp - p->p_lwpdir); 1704 } 1705 } 1706 1707 /* 1708 * Remove an lwp from the lwpid hash table and free its directory entry. 1709 * This is done when a detached lwp exits in lwp_exit() or 1710 * when a non-detached lwp is waited for in lwp_wait() or 1711 * when a zombie lwp is detached in lwp_detach(). 1712 */ 1713 void 1714 lwp_hash_out(proc_t *p, id_t lwpid) 1715 { 1716 lwpdir_t **ldpp; 1717 lwpdir_t *ldp; 1718 lwpent_t *lep; 1719 1720 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1721 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1722 lep = ldp->ld_entry; 1723 if (lep->le_lwpid == lwpid) { 1724 prlwpfree(p, lep); /* /proc deals with le_trace */ 1725 *ldpp = ldp->ld_next; 1726 ldp->ld_entry = NULL; 1727 ldp->ld_next = p->p_lwpfree; 1728 p->p_lwpfree = ldp; 1729 kmem_free(lep, sizeof (*lep)); 1730 break; 1731 } 1732 } 1733 } 1734 1735 /* 1736 * Lookup an lwp in the lwpid hash table by lwpid. 1737 */ 1738 lwpdir_t * 1739 lwp_hash_lookup(proc_t *p, id_t lwpid) 1740 { 1741 lwpdir_t *ldp; 1742 1743 /* 1744 * The process may be exiting, after p_tidhash has been set to NULL in 1745 * proc_exit() but before prfee() has been called. Return failure in 1746 * this case. 1747 */ 1748 if (p->p_tidhash == NULL) 1749 return (NULL); 1750 1751 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1752 ldp != NULL; ldp = ldp->ld_next) { 1753 if (ldp->ld_entry->le_lwpid == lwpid) 1754 return (ldp); 1755 } 1756 1757 return (NULL); 1758 } 1759 1760 /* 1761 * Update the indicated LWP usage statistic for the current LWP. 1762 */ 1763 void 1764 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1765 { 1766 klwp_t *lwp = ttolwp(curthread); 1767 1768 if (lwp == NULL) 1769 return; 1770 1771 switch (lwp_stat_id) { 1772 case LWP_STAT_INBLK: 1773 lwp->lwp_ru.inblock += inc; 1774 break; 1775 case LWP_STAT_OUBLK: 1776 lwp->lwp_ru.oublock += inc; 1777 break; 1778 case LWP_STAT_MSGRCV: 1779 lwp->lwp_ru.msgrcv += inc; 1780 break; 1781 case LWP_STAT_MSGSND: 1782 lwp->lwp_ru.msgsnd += inc; 1783 break; 1784 default: 1785 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1786 } 1787 } 1788