xref: /titanic_50/usr/src/uts/common/io/rge/rge_chip.c (revision 98892a3058bed9457ab6a22659dcccecfaf05d2a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 16;
48 
49 /*
50  * Operating register get/set access routines
51  */
52 #if	RGE_DEBUGGING
53 
54 static void rge_pci_check(rge_t *rgep);
55 #pragma	no_inline(rge_pci_check)
56 
57 static void
58 rge_pci_check(rge_t *rgep)
59 {
60 	uint16_t pcistatus;
61 
62 	pcistatus = pci_config_get16(rgep->cfg_handle, PCI_CONF_STAT);
63 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
64 		RGE_DEBUG(("rge_pci_check($%p): PCI status 0x%x",
65 			(void *)rgep, pcistatus));
66 }
67 
68 #endif	/* RGE_DEBUGGING */
69 
70 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
71 #pragma	inline(rge_reg_get32)
72 
73 static uint32_t
74 rge_reg_get32(rge_t *rgep, uintptr_t regno)
75 {
76 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
77 		(void *)rgep, regno));
78 
79 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
80 }
81 
82 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
83 #pragma	inline(rge_reg_put32)
84 
85 static void
86 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
87 {
88 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
89 		(void *)rgep, regno, data));
90 
91 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
92 	RGE_PCICHK(rgep);
93 }
94 
95 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
96 #pragma	inline(rge_reg_set32)
97 
98 static void
99 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
100 {
101 	uint32_t regval;
102 
103 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
104 		(void *)rgep, regno, bits));
105 
106 	regval = rge_reg_get32(rgep, regno);
107 	regval |= bits;
108 	rge_reg_put32(rgep, regno, regval);
109 }
110 
111 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
112 #pragma	inline(rge_reg_clr32)
113 
114 static void
115 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
116 {
117 	uint32_t regval;
118 
119 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
120 		(void *)rgep, regno, bits));
121 
122 	regval = rge_reg_get32(rgep, regno);
123 	regval &= ~bits;
124 	rge_reg_put32(rgep, regno, regval);
125 }
126 
127 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
128 #pragma	inline(rge_reg_get16)
129 
130 static uint16_t
131 rge_reg_get16(rge_t *rgep, uintptr_t regno)
132 {
133 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
134 		(void *)rgep, regno));
135 
136 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
137 }
138 
139 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
140 #pragma	inline(rge_reg_put16)
141 
142 static void
143 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
144 {
145 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
146 		(void *)rgep, regno, data));
147 
148 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
149 	RGE_PCICHK(rgep);
150 }
151 
152 static void rge_reg_set16(rge_t *rgep, uintptr_t regno, uint16_t bits);
153 #pragma	inline(rge_reg_set16)
154 
155 static void
156 rge_reg_set16(rge_t *rgep, uintptr_t regno, uint16_t bits)
157 {
158 	uint16_t regval;
159 
160 	RGE_TRACE(("rge_reg_set16($%p, 0x%lx, 0x%x)",
161 		(void *)rgep, regno, bits));
162 
163 	regval = rge_reg_get16(rgep, regno);
164 	regval |= bits;
165 	rge_reg_put16(rgep, regno, regval);
166 }
167 
168 static void rge_reg_clr16(rge_t *rgep, uintptr_t regno, uint16_t bits);
169 #pragma	inline(rge_reg_clr16)
170 
171 static void
172 rge_reg_clr16(rge_t *rgep, uintptr_t regno, uint16_t bits)
173 {
174 	uint16_t regval;
175 
176 	RGE_TRACE(("rge_reg_clr16($%p, 0x%lx, 0x%x)",
177 		(void *)rgep, regno, bits));
178 
179 	regval = rge_reg_get16(rgep, regno);
180 	regval &= ~bits;
181 	rge_reg_put16(rgep, regno, regval);
182 }
183 
184 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
185 #pragma	inline(rge_reg_get8)
186 
187 static uint8_t
188 rge_reg_get8(rge_t *rgep, uintptr_t regno)
189 {
190 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
191 		(void *)rgep, regno));
192 
193 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
194 }
195 
196 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
197 #pragma	inline(rge_reg_put8)
198 
199 static void
200 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
201 {
202 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
203 		(void *)rgep, regno, data));
204 
205 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
206 	RGE_PCICHK(rgep);
207 }
208 
209 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
210 #pragma	inline(rge_reg_set8)
211 
212 static void
213 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
214 {
215 	uint8_t regval;
216 
217 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
218 		(void *)rgep, regno, bits));
219 
220 	regval = rge_reg_get8(rgep, regno);
221 	regval |= bits;
222 	rge_reg_put8(rgep, regno, regval);
223 }
224 
225 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
226 #pragma	inline(rge_reg_clr8)
227 
228 static void
229 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
230 {
231 	uint8_t regval;
232 
233 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
234 		(void *)rgep, regno, bits));
235 
236 	regval = rge_reg_get8(rgep, regno);
237 	regval &= ~bits;
238 	rge_reg_put8(rgep, regno, regval);
239 }
240 
241 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
242 #pragma	no_inline(rge_mii_get16)
243 
244 uint16_t
245 rge_mii_get16(rge_t *rgep, uintptr_t mii)
246 {
247 	uint32_t regval;
248 	uint32_t val32;
249 	uint32_t i;
250 
251 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
252 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
253 
254 	/*
255 	 * Waiting for PHY reading OK
256 	 */
257 	for (i = 0; i < PHY_RESET_LOOP; i++) {
258 		drv_usecwait(100);
259 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
260 		if (val32 & PHY_ACCESS_WR_FLAG)
261 			return ((uint16_t)(val32 & 0xffff));
262 	}
263 
264 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
265 	return ((uint16_t)~0u);
266 }
267 
268 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
269 #pragma	no_inline(rge_mii_put16)
270 
271 void
272 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
273 {
274 	uint32_t regval;
275 	uint32_t val32;
276 	uint32_t i;
277 
278 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
279 	regval |= data & PHY_DATA_MASK;
280 	regval |= PHY_ACCESS_WR_FLAG;
281 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
282 
283 	/*
284 	 * Waiting for PHY writing OK
285 	 */
286 	for (i = 0; i < PHY_RESET_LOOP; i++) {
287 		drv_usecwait(100);
288 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
289 		if (!(val32 & PHY_ACCESS_WR_FLAG))
290 			return;
291 	}
292 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
293 	    mii, data));
294 }
295 
296 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
297 #pragma	no_inline(rge_ephy_put16)
298 
299 void
300 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
301 {
302 	uint32_t regval;
303 	uint32_t val32;
304 	uint32_t i;
305 
306 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
307 	regval |= data & EPHY_DATA_MASK;
308 	regval |= EPHY_ACCESS_WR_FLAG;
309 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
310 
311 	/*
312 	 * Waiting for PHY writing OK
313 	 */
314 	for (i = 0; i < PHY_RESET_LOOP; i++) {
315 		drv_usecwait(100);
316 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
317 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
318 			return;
319 	}
320 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
321 	    emii, data));
322 }
323 
324 /*
325  * Atomically shift a 32-bit word left, returning
326  * the value it had *before* the shift was applied
327  */
328 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
329 #pragma	inline(rge_mii_put16)
330 
331 static uint32_t
332 rge_atomic_shl32(uint32_t *sp, uint_t count)
333 {
334 	uint32_t oldval;
335 	uint32_t newval;
336 
337 	/* ATOMICALLY */
338 	do {
339 		oldval = *sp;
340 		newval = oldval << count;
341 	} while (cas32(sp, oldval, newval) != oldval);
342 
343 	return (oldval);
344 }
345 
346 /*
347  * PHY operation routines
348  */
349 #if	RGE_DEBUGGING
350 
351 static void
352 rge_phydump(rge_t *rgep)
353 {
354 	uint16_t regs[32];
355 	int i;
356 
357 	ASSERT(mutex_owned(rgep->genlock));
358 
359 	for (i = 0; i < 32; ++i) {
360 		regs[i] = rge_mii_get16(rgep, i);
361 	}
362 
363 	for (i = 0; i < 32; i += 8)
364 		RGE_DEBUG(("rge_phydump: "
365 				"0x%04x %04x %04x %04x %04x %04x %04x %04x",
366 			regs[i+0], regs[i+1], regs[i+2], regs[i+3],
367 			regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
368 }
369 
370 #endif	/* RGE_DEBUGGING */
371 
372 /*
373  * Basic low-level function to probe for a PHY
374  *
375  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
376  */
377 static boolean_t
378 rge_phy_probe(rge_t *rgep)
379 {
380 	uint16_t phy_status;
381 
382 	ASSERT(mutex_owned(rgep->genlock));
383 
384 	/*
385 	 * Read the MII_STATUS register twice, in
386 	 * order to clear any sticky bits (but they should
387 	 * have been cleared by the RESET, I think).
388 	 */
389 	phy_status = rge_mii_get16(rgep, MII_STATUS);
390 	phy_status = rge_mii_get16(rgep, MII_STATUS);
391 	RGE_DEBUG(("rge_phy_probe: status 0x%x", phy_status));
392 
393 	/*
394 	 * Now check the value read; it should have at least one bit set
395 	 * (for the device capabilities) and at least one clear (one of
396 	 * the error bits). So if we see all 0s or all 1s, there's a
397 	 * problem.  In particular, rge_mii_get16() returns all 1s if
398 	 * communications fails ...
399 	 */
400 	switch (phy_status) {
401 	case 0x0000:
402 	case 0xffff:
403 		return (B_FALSE);
404 
405 	default :
406 		return (B_TRUE);
407 	}
408 }
409 
410 static void
411 rge_phy_check(rge_t *rgep)
412 {
413 	uint16_t gig_ctl;
414 
415 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
416 		/*
417 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
418 		 * every 15 seconds whin link down & advertise is 1000.
419 		 */
420 		if (rgep->chipid.phy_ver == PHY_VER_S) {
421 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
422 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
423 				rgep->link_down_count++;
424 				if (rgep->link_down_count > 15) {
425 					(void) rge_phy_reset(rgep);
426 					rgep->stats.phy_reset++;
427 					rgep->link_down_count = 0;
428 				}
429 			}
430 		}
431 	} else {
432 		rgep->link_down_count = 0;
433 	}
434 }
435 
436 /*
437  * Basic low-level function to reset the PHY.
438  * Doesn't incorporate any special-case workarounds.
439  *
440  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
441  */
442 boolean_t
443 rge_phy_reset(rge_t *rgep)
444 {
445 	uint16_t control;
446 	uint_t count;
447 
448 	/*
449 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
450 	 */
451 	control = rge_mii_get16(rgep, MII_CONTROL);
452 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
453 	for (count = 0; ++count < 1000; ) {
454 		drv_usecwait(100);
455 		control = rge_mii_get16(rgep, MII_CONTROL);
456 		if (BIC(control, MII_CONTROL_RESET))
457 			return (B_TRUE);
458 	}
459 
460 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
461 	return (B_FALSE);
462 }
463 
464 /*
465  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
466  * and advertisements with the required settings as specified by the various
467  * param_* variables that can be poked via the NDD interface.
468  *
469  * We always reset the PHY and reprogram *all* the relevant registers,
470  * not just those changed.  This should cause the link to go down, and then
471  * back up again once the link is stable and autonegotiation (if enabled)
472  * is complete.  We should get a link state change interrupt somewhere along
473  * the way ...
474  *
475  * NOTE: <genlock> must already be held by the caller
476  */
477 void
478 rge_phy_update(rge_t *rgep)
479 {
480 	boolean_t adv_autoneg;
481 	boolean_t adv_pause;
482 	boolean_t adv_asym_pause;
483 	boolean_t adv_1000fdx;
484 	boolean_t adv_1000hdx;
485 	boolean_t adv_100fdx;
486 	boolean_t adv_100hdx;
487 	boolean_t adv_10fdx;
488 	boolean_t adv_10hdx;
489 
490 	uint16_t control;
491 	uint16_t gigctrl;
492 	uint16_t anar;
493 
494 	ASSERT(mutex_owned(rgep->genlock));
495 
496 	RGE_DEBUG(("rge_phy_update: autoneg %d "
497 			"pause %d asym_pause %d "
498 			"1000fdx %d 1000hdx %d "
499 			"100fdx %d 100hdx %d "
500 			"10fdx %d 10hdx %d ",
501 		rgep->param_adv_autoneg,
502 		rgep->param_adv_pause, rgep->param_adv_asym_pause,
503 		rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
504 		rgep->param_adv_100fdx, rgep->param_adv_100hdx,
505 		rgep->param_adv_10fdx, rgep->param_adv_10hdx));
506 
507 	control = gigctrl = anar = 0;
508 
509 	/*
510 	 * PHY settings are normally based on the param_* variables,
511 	 * but if any loopback mode is in effect, that takes precedence.
512 	 *
513 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
514 	 * and External loopback at a variety of speeds (with a special
515 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
516 	 * is turned ON, and the speed/mastership is forced.
517 	 */
518 	switch (rgep->param_loop_mode) {
519 	case RGE_LOOP_NONE:
520 	default:
521 		adv_autoneg = rgep->param_adv_autoneg;
522 		adv_pause = rgep->param_adv_pause;
523 		adv_asym_pause = rgep->param_adv_asym_pause;
524 		adv_1000fdx = rgep->param_adv_1000fdx;
525 		adv_1000hdx = rgep->param_adv_1000hdx;
526 		adv_100fdx = rgep->param_adv_100fdx;
527 		adv_100hdx = rgep->param_adv_100hdx;
528 		adv_10fdx = rgep->param_adv_10fdx;
529 		adv_10hdx = rgep->param_adv_10hdx;
530 		break;
531 
532 	case RGE_LOOP_INTERNAL_PHY:
533 	case RGE_LOOP_INTERNAL_MAC:
534 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
535 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
536 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
537 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
538 
539 		switch (rgep->param_loop_mode) {
540 		case RGE_LOOP_INTERNAL_PHY:
541 			rgep->param_link_speed = 1000;
542 			adv_1000fdx = B_TRUE;
543 			control = MII_CONTROL_LOOPBACK;
544 			break;
545 
546 		case RGE_LOOP_INTERNAL_MAC:
547 			rgep->param_link_speed = 1000;
548 			adv_1000fdx = B_TRUE;
549 			break;
550 		}
551 	}
552 
553 	RGE_DEBUG(("rge_phy_update: autoneg %d "
554 			"pause %d asym_pause %d "
555 			"1000fdx %d 1000hdx %d "
556 			"100fdx %d 100hdx %d "
557 			"10fdx %d 10hdx %d ",
558 		adv_autoneg,
559 		adv_pause, adv_asym_pause,
560 		adv_1000fdx, adv_1000hdx,
561 		adv_100fdx, adv_100hdx,
562 		adv_10fdx, adv_10hdx));
563 
564 	/*
565 	 * We should have at least one technology capability set;
566 	 * if not, we select a default of 1000Mb/s full-duplex
567 	 */
568 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
569 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
570 		adv_1000fdx = B_TRUE;
571 
572 	/*
573 	 * Now transform the adv_* variables into the proper settings
574 	 * of the PHY registers ...
575 	 *
576 	 * If autonegotiation is (now) enabled, we want to trigger
577 	 * a new autonegotiation cycle once the PHY has been
578 	 * programmed with the capabilities to be advertised.
579 	 *
580 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
581 	 */
582 	if (adv_autoneg)
583 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
584 
585 	if (adv_1000fdx)
586 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
587 	else if (adv_1000hdx)
588 		control |= MII_CONTROL_1000MB;
589 	else if (adv_100fdx)
590 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
591 	else if (adv_100hdx)
592 		control |= MII_CONTROL_100MB;
593 	else if (adv_10fdx)
594 		control |= MII_CONTROL_FDUPLEX;
595 	else if (adv_10hdx)
596 		control |= 0;
597 	else
598 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
599 
600 	if (adv_1000fdx) {
601 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
602 		/*
603 		 * Chipset limitation: need set other capabilities to true
604 		 */
605 		if (rgep->chipid.is_pcie)
606 			adv_1000hdx = B_TRUE;
607 		adv_100fdx = B_TRUE;
608 		adv_100hdx  = B_TRUE;
609 		adv_10fdx = B_TRUE;
610 		adv_10hdx = B_TRUE;
611 	}
612 
613 	if (adv_1000hdx)
614 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
615 
616 	if (adv_100fdx)
617 		anar |= MII_ABILITY_100BASE_TX_FD;
618 	if (adv_100hdx)
619 		anar |= MII_ABILITY_100BASE_TX;
620 	if (adv_10fdx)
621 		anar |= MII_ABILITY_10BASE_T_FD;
622 	if (adv_10hdx)
623 		anar |= MII_ABILITY_10BASE_T;
624 
625 	if (adv_pause)
626 		anar |= MII_ABILITY_PAUSE;
627 	if (adv_asym_pause)
628 		anar |= MII_ABILITY_ASYM_PAUSE;
629 
630 	/*
631 	 * Munge in any other fixed bits we require ...
632 	 */
633 	anar |= MII_AN_SELECTOR_8023;
634 
635 	/*
636 	 * Restart the PHY and write the new values.  Note the
637 	 * time, so that we can say whether subsequent link state
638 	 * changes can be attributed to our reprogramming the PHY
639 	 */
640 	rge_phy_init(rgep);
641 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
642 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
643 	rge_mii_put16(rgep, MII_CONTROL, control);
644 
645 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
646 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
647 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
648 }
649 
650 void rge_phy_init(rge_t *rgep);
651 #pragma	no_inline(rge_phy_init)
652 
653 void
654 rge_phy_init(rge_t *rgep)
655 {
656 	rgep->phy_mii_addr = 1;
657 
658 	/*
659 	 * Below phy config steps are copied from the Programming Guide
660 	 * (there's no detail comments for these steps.)
661 	 */
662 	switch (rgep->chipid.mac_ver) {
663 	case MAC_VER_8169S_D:
664 	case MAC_VER_8169S_E :
665 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
666 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
667 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
668 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
669 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
670 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
671 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
672 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
673 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
674 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
675 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
676 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
677 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
678 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
679 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
680 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
681 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
682 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
683 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
684 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
685 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
686 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
687 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
688 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
689 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
690 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
691 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
692 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
693 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
694 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
695 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
696 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
697 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
698 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
699 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
700 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
701 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
702 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
703 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
704 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
705 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
706 		break;
707 
708 	case MAC_VER_8169SB:
709 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
710 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
711 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
712 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
713 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
714 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
715 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
716 		break;
717 
718 	case MAC_VER_8168:
719 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
720 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
721 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
722 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
723 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
724 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
725 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
726 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
727 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
728 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
729 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
730 		break;
731 
732 	case MAC_VER_8168B_B:
733 	case MAC_VER_8168B_C:
734 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
735 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
736 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
737 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
738 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
739 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
740 		break;
741 	}
742 }
743 
744 void rge_chip_ident(rge_t *rgep);
745 #pragma	no_inline(rge_chip_ident)
746 
747 void
748 rge_chip_ident(rge_t *rgep)
749 {
750 	chip_id_t *chip = &rgep->chipid;
751 	uint32_t val32;
752 	uint16_t val16;
753 
754 	/*
755 	 * Read and record MAC version
756 	 */
757 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
758 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
759 	chip->mac_ver = val32;
760 	switch (chip->mac_ver) {
761 	case MAC_VER_8168:
762 	case MAC_VER_8168B_B:
763 	case MAC_VER_8168B_C:
764 		chip->is_pcie = B_TRUE;
765 		break;
766 
767 	default:
768 		chip->is_pcie = B_FALSE;
769 		break;
770 	}
771 
772 	/*
773 	 * Read and record PHY version
774 	 */
775 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
776 	val16 &= PHY_VER_MASK;
777 	chip->phy_ver = val16;
778 
779 	/* set pci latency timer */
780 	if (chip->mac_ver == MAC_VER_8169 ||
781 	    chip->mac_ver == MAC_VER_8169S_D)
782 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
783 
784 	/*
785 	 * PCIE chipset require the Rx buffer start address must be
786 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
787 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
788 	 */
789 	if (chip->is_pcie) {
790 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
791 		if (rgep->default_mtu > ETHERMTU) {
792 			rge_notice(rgep, "Jumbo packets not supported "
793 			    "for this PCIE chipset");
794 			rgep->default_mtu = ETHERMTU;
795 		}
796 	}
797 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
798 		rgep->head_room = 0;
799 	else
800 		rgep->head_room = RGE_HEADROOM;
801 
802 	/*
803 	 * Initialize other variables.
804 	 */
805 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
806 		rgep->default_mtu = ETHERMTU;
807 	if (rgep->default_mtu > ETHERMTU) {
808 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
809 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
810 		rgep->ethmax_size = RGE_JUMBO_SIZE;
811 	} else {
812 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
813 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
814 		rgep->ethmax_size = ETHERMAX;
815 	}
816 	chip->rxconfig = RX_CONFIG_DEFAULT;
817 	chip->txconfig = TX_CONFIG_DEFAULT;
818 
819 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
820 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
821 }
822 
823 /*
824  * Perform first-stage chip (re-)initialisation, using only config-space
825  * accesses:
826  *
827  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
828  *   returning the data in the structure pointed to by <idp>.
829  * + Enable Memory Space accesses.
830  * + Enable Bus Mastering according.
831  */
832 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
833 #pragma	no_inline(rge_chip_cfg_init)
834 
835 void
836 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
837 {
838 	ddi_acc_handle_t handle;
839 	uint16_t commd;
840 
841 	handle = rgep->cfg_handle;
842 
843 	/*
844 	 * Save PCI cache line size and subsystem vendor ID
845 	 */
846 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
847 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
848 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
849 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
850 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
851 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
852 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
853 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
854 
855 	/*
856 	 * Turn on Master Enable (DMA) and IO Enable bits.
857 	 * Enable PCI Memory Space accesses
858 	 */
859 	commd = cidp->command;
860 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
861 	pci_config_put16(handle, PCI_CONF_COMM, commd);
862 
863 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
864 		cidp->vendor, cidp->device, cidp->revision));
865 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
866 		cidp->subven, cidp->subdev));
867 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
868 		cidp->clsize, cidp->latency, cidp->command));
869 }
870 
871 int rge_chip_reset(rge_t *rgep);
872 #pragma	no_inline(rge_chip_reset)
873 
874 int
875 rge_chip_reset(rge_t *rgep)
876 {
877 	int i;
878 	uint8_t val8;
879 
880 	/*
881 	 * Chip should be in STOP state
882 	 */
883 	rge_reg_clr8(rgep, RT_COMMAND_REG,
884 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
885 
886 	/*
887 	 * Disable interrupt
888 	 */
889 	rgep->int_mask = INT_MASK_NONE;
890 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
891 
892 	/*
893 	 * Clear pended interrupt
894 	 */
895 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
896 
897 	/*
898 	 * Reset chip
899 	 */
900 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
901 
902 	/*
903 	 * Wait for reset success
904 	 */
905 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
906 		drv_usecwait(10);
907 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
908 		if (!(val8 & RT_COMMAND_RESET)) {
909 			rgep->rge_chip_state = RGE_CHIP_RESET;
910 			return (0);
911 		}
912 	}
913 	RGE_REPORT((rgep, "rge_chip_reset fail."));
914 	return (-1);
915 }
916 
917 void rge_chip_init(rge_t *rgep);
918 #pragma	no_inline(rge_chip_init)
919 
920 void
921 rge_chip_init(rge_t *rgep)
922 {
923 	uint32_t val32;
924 	uint32_t val16;
925 	uint32_t *hashp;
926 	chip_id_t *chip = &rgep->chipid;
927 
928 	if (chip->is_pcie) {
929 		/*
930 		 * Increase the threshold voltage of RX sensitivity
931 		 */
932 		if (chip->mac_ver != MAC_VER_8168)
933 			rge_ephy_put16(rgep, 0x01, 0x1bd3);
934 
935 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
936 		val16 = 0x12<<8 | val16;
937 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
938 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
939 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
940 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
941 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
942 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
943 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
944 		val32 |= 0x7000;
945 		val32 &= 0xffff5fff;
946 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
947 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
948 	}
949 
950 	/*
951 	 * Config MII register
952 	 */
953 	rgep->param_link_up = LINK_STATE_DOWN;
954 	rge_phy_update(rgep);
955 
956 	/*
957 	 * Enable Rx checksum offload.
958 	 *  Then for vlan support, we must enable receive vlan de-tagging.
959 	 *  Otherwise, there'll be checksum error.
960 	 */
961 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
962 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
963 	if (chip->mac_ver == MAC_VER_8169S_D) {
964 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
965 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
966 	}
967 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
968 
969 	/*
970 	 * Start transmit/receive before set tx/rx configuration register
971 	 */
972 	if (!chip->is_pcie)
973 		rge_reg_set8(rgep, RT_COMMAND_REG,
974 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
975 
976 	/*
977 	 * Set dump tally counter register
978 	 */
979 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
980 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
981 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
982 	val32 &= DUMP_COUNTER_REG_RESV;
983 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
984 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
985 
986 	/*
987 	 * Change to config register write enable mode
988 	 */
989 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
990 
991 	/*
992 	 * Set Tx/Rx maximum packet size
993 	 */
994 	if (rgep->default_mtu > ETHERMTU) {
995 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
996 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
997 	} else {
998 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
999 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
1000 	}
1001 
1002 	/*
1003 	 * Set receive configuration register
1004 	 */
1005 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
1006 	val32 &= RX_CONFIG_REG_RESV;
1007 	if (rgep->promisc)
1008 		val32 |= RX_ACCEPT_ALL_PKT;
1009 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
1010 
1011 	/*
1012 	 * Set transmit configuration register
1013 	 */
1014 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
1015 	val32 &= TX_CONFIG_REG_RESV;
1016 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
1017 
1018 	/*
1019 	 * Set Tx/Rx descriptor register
1020 	 */
1021 	val32 = rgep->tx_desc.cookie.dmac_laddress;
1022 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
1023 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
1024 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
1025 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
1026 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
1027 	val32 = rgep->rx_desc.cookie.dmac_laddress;
1028 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
1029 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
1030 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
1031 
1032 	/*
1033 	 * Suggested setting from Realtek
1034 	 */
1035 	rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1036 
1037 	/*
1038 	 * Return to normal network/host communication mode
1039 	 */
1040 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1041 	drv_usecwait(20);
1042 
1043 	/*
1044 	 * Set multicast register
1045 	 */
1046 	hashp = (uint32_t *)rgep->mcast_hash;
1047 	rge_reg_put32(rgep, MULTICAST_0_REG, hashp[0]);
1048 	rge_reg_put32(rgep, MULTICAST_4_REG, hashp[1]);
1049 
1050 	/*
1051 	 * Msic register setting:
1052 	 *   -- Missed packet counter: clear it
1053 	 *   -- TimerInt Register
1054 	 *   -- Timer count register
1055 	 */
1056 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1057 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1058 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1059 }
1060 
1061 /*
1062  * rge_chip_start() -- start the chip transmitting and/or receiving,
1063  * including enabling interrupts
1064  */
1065 void rge_chip_start(rge_t *rgep);
1066 #pragma	no_inline(rge_chip_start)
1067 
1068 void
1069 rge_chip_start(rge_t *rgep)
1070 {
1071 	/*
1072 	 * Clear statistics
1073 	 */
1074 	bzero(&rgep->stats, sizeof (rge_stats_t));
1075 	DMA_ZERO(rgep->dma_area_stats);
1076 
1077 	/*
1078 	 * Start transmit/receive
1079 	 */
1080 	rge_reg_set8(rgep, RT_COMMAND_REG,
1081 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1082 
1083 	/*
1084 	 * Enable interrupt
1085 	 */
1086 	rgep->int_mask = RGE_INT_MASK;
1087 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1088 
1089 	/*
1090 	 * All done!
1091 	 */
1092 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1093 }
1094 
1095 /*
1096  * rge_chip_stop() -- stop board receiving
1097  */
1098 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1099 #pragma	no_inline(rge_chip_stop)
1100 
1101 void
1102 rge_chip_stop(rge_t *rgep, boolean_t fault)
1103 {
1104 	/*
1105 	 * Disable interrupt
1106 	 */
1107 	rgep->int_mask = INT_MASK_NONE;
1108 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1109 
1110 	/*
1111 	 * Clear pended interrupt
1112 	 */
1113 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1114 
1115 	/*
1116 	 * Stop the board and disable transmit/receive
1117 	 */
1118 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1119 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1120 
1121 	if (fault)
1122 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1123 	else
1124 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1125 }
1126 
1127 /*
1128  * rge_get_mac_addr() -- get the MAC address on NIC
1129  */
1130 static void rge_get_mac_addr(rge_t *rgep);
1131 #pragma	inline(rge_get_mac_addr)
1132 
1133 static void
1134 rge_get_mac_addr(rge_t *rgep)
1135 {
1136 	uint8_t *macaddr = rgep->netaddr;
1137 	uint32_t val32;
1138 
1139 	/*
1140 	 * Read first 4-byte of mac address
1141 	 */
1142 	val32 = rge_reg_get32(rgep, ID_0_REG);
1143 	macaddr[0] = val32 & 0xff;
1144 	val32 = val32 >> 8;
1145 	macaddr[1] = val32 & 0xff;
1146 	val32 = val32 >> 8;
1147 	macaddr[2] = val32 & 0xff;
1148 	val32 = val32 >> 8;
1149 	macaddr[3] = val32 & 0xff;
1150 
1151 	/*
1152 	 * Read last 2-byte of mac address
1153 	 */
1154 	val32 = rge_reg_get32(rgep, ID_4_REG);
1155 	macaddr[4] = val32 & 0xff;
1156 	val32 = val32 >> 8;
1157 	macaddr[5] = val32 & 0xff;
1158 }
1159 
1160 static void rge_set_mac_addr(rge_t *rgep);
1161 #pragma	inline(rge_set_mac_addr)
1162 
1163 static void
1164 rge_set_mac_addr(rge_t *rgep)
1165 {
1166 	uint8_t *p = rgep->netaddr;
1167 	uint32_t val32;
1168 
1169 	/*
1170 	 * Change to config register write enable mode
1171 	 */
1172 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1173 
1174 	/*
1175 	 * Get first 4 bytes of mac address
1176 	 */
1177 	val32 = p[3];
1178 	val32 = val32 << 8;
1179 	val32 |= p[2];
1180 	val32 = val32 << 8;
1181 	val32 |= p[1];
1182 	val32 = val32 << 8;
1183 	val32 |= p[0];
1184 
1185 	/*
1186 	 * Set first 4 bytes of mac address
1187 	 */
1188 	rge_reg_put32(rgep, ID_0_REG, val32);
1189 
1190 	/*
1191 	 * Get last 2 bytes of mac address
1192 	 */
1193 	val32 = p[5];
1194 	val32 = val32 << 8;
1195 	val32 |= p[4];
1196 
1197 	/*
1198 	 * Set last 2 bytes of mac address
1199 	 */
1200 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1201 	rge_reg_put32(rgep, ID_4_REG, val32);
1202 
1203 	/*
1204 	 * Return to normal network/host communication mode
1205 	 */
1206 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1207 }
1208 
1209 static void rge_set_multi_addr(rge_t *rgep);
1210 #pragma	inline(rge_set_multi_addr)
1211 
1212 static void
1213 rge_set_multi_addr(rge_t *rgep)
1214 {
1215 	uint32_t *hashp;
1216 
1217 	hashp = (uint32_t *)rgep->mcast_hash;
1218 	rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1219 	rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1220 	rge_reg_set8(rgep, RT_COMMAND_REG,
1221 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1222 }
1223 
1224 static void rge_set_promisc(rge_t *rgep);
1225 #pragma	inline(rge_set_promisc)
1226 
1227 static void
1228 rge_set_promisc(rge_t *rgep)
1229 {
1230 	if (rgep->promisc)
1231 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1232 	else
1233 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1234 
1235 	rge_reg_set8(rgep, RT_COMMAND_REG,
1236 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1237 }
1238 
1239 /*
1240  * rge_chip_sync() -- program the chip with the unicast MAC address,
1241  * the multicast hash table, the required level of promiscuity, and
1242  * the current loopback mode ...
1243  */
1244 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1245 #pragma	no_inline(rge_chip_sync)
1246 
1247 void
1248 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1249 {
1250 	switch (todo) {
1251 	case RGE_GET_MAC:
1252 		rge_get_mac_addr(rgep);
1253 		break;
1254 	case RGE_SET_MAC:
1255 		/* Reprogram the unicast MAC address(es) ... */
1256 		rge_set_mac_addr(rgep);
1257 		break;
1258 	case RGE_SET_MUL:
1259 		/* Reprogram the hashed multicast address table ... */
1260 		rge_set_multi_addr(rgep);
1261 		break;
1262 	case RGE_SET_PROMISC:
1263 		/* Set or clear the PROMISCUOUS mode bit */
1264 		rge_set_promisc(rgep);
1265 		break;
1266 	default:
1267 		break;
1268 	}
1269 }
1270 
1271 void rge_chip_blank(void *arg, time_t ticks, uint_t count);
1272 #pragma	no_inline(rge_chip_blank)
1273 
1274 void
1275 rge_chip_blank(void *arg, time_t ticks, uint_t count)
1276 {
1277 	_NOTE(ARGUNUSED(arg, ticks, count));
1278 }
1279 
1280 void rge_tx_trigger(rge_t *rgep);
1281 #pragma	no_inline(rge_tx_trigger)
1282 
1283 void
1284 rge_tx_trigger(rge_t *rgep)
1285 {
1286 	rge_reg_set8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1287 }
1288 
1289 void rge_hw_stats_dump(rge_t *rgep);
1290 #pragma	no_inline(rge_tx_trigger)
1291 
1292 void
1293 rge_hw_stats_dump(rge_t *rgep)
1294 {
1295 	int i = 0;
1296 
1297 	while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) {
1298 		drv_usecwait(100);
1299 		if (++i > STATS_DUMP_LOOP) {
1300 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1301 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1302 			return;
1303 		}
1304 	}
1305 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1306 
1307 	/*
1308 	 * Start H/W statistics dump for RTL8169 chip
1309 	 */
1310 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1311 }
1312 
1313 /*
1314  * ========== Hardware interrupt handler ==========
1315  */
1316 
1317 #undef	RGE_DBG
1318 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1319 
1320 static void rge_wake_factotum(rge_t *rgep);
1321 #pragma	inline(rge_wake_factotum)
1322 
1323 static void
1324 rge_wake_factotum(rge_t *rgep)
1325 {
1326 	if (rgep->factotum_flag == 0) {
1327 		rgep->factotum_flag = 1;
1328 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1329 	}
1330 }
1331 
1332 /*
1333  *	rge_intr() -- handle chip interrupts
1334  */
1335 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1336 #pragma	no_inline(rge_intr)
1337 
1338 uint_t
1339 rge_intr(caddr_t arg1, caddr_t arg2)
1340 {
1341 	rge_t *rgep = (rge_t *)arg1;
1342 	uint16_t int_status;
1343 
1344 	_NOTE(ARGUNUSED(arg2))
1345 
1346 	mutex_enter(rgep->genlock);
1347 	/*
1348 	 * Was this interrupt caused by our device...
1349 	 */
1350 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1351 	if (!(int_status & rgep->int_mask)) {
1352 		mutex_exit(rgep->genlock);
1353 		return (DDI_INTR_UNCLAIMED);
1354 				/* indicate it wasn't our interrupt */
1355 	}
1356 	rgep->stats.intr++;
1357 
1358 	/*
1359 	 * Clear interrupt
1360 	 *	For PCIE chipset, we need disable interrupt first.
1361 	 */
1362 	if (rgep->chipid.is_pcie)
1363 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1364 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1365 
1366 	/*
1367 	 * Cable link change interrupt
1368 	 */
1369 	if (int_status & LINK_CHANGE_INT) {
1370 		rge_chip_cyclic(rgep);
1371 	}
1372 
1373 	mutex_exit(rgep->genlock);
1374 
1375 	/*
1376 	 * Receive interrupt
1377 	 */
1378 	if (int_status & RGE_RX_INT)
1379 		rge_receive(rgep);
1380 
1381 	/*
1382 	 * Re-enable interrupt for PCIE chipset
1383 	 */
1384 	if (rgep->chipid.is_pcie)
1385 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1386 
1387 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1388 }
1389 
1390 /*
1391  * ========== Factotum, implemented as a softint handler ==========
1392  */
1393 
1394 #undef	RGE_DBG
1395 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1396 
1397 static boolean_t rge_factotum_link_check(rge_t *rgep);
1398 #pragma	no_inline(rge_factotum_link_check)
1399 
1400 static boolean_t
1401 rge_factotum_link_check(rge_t *rgep)
1402 {
1403 	uint8_t media_status;
1404 	int32_t link;
1405 
1406 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1407 	link = (media_status & PHY_STATUS_LINK_UP) ?
1408 	    LINK_STATE_UP : LINK_STATE_DOWN;
1409 	if (rgep->param_link_up != link) {
1410 		/*
1411 		 * Link change.
1412 		 */
1413 		rgep->param_link_up = link;
1414 
1415 		if (link == LINK_STATE_UP) {
1416 			if (media_status & PHY_STATUS_1000MF) {
1417 				rgep->param_link_speed = RGE_SPEED_1000M;
1418 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1419 			} else {
1420 				rgep->param_link_speed =
1421 				    (media_status & PHY_STATUS_100M) ?
1422 				    RGE_SPEED_100M : RGE_SPEED_10M;
1423 				rgep->param_link_duplex =
1424 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1425 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1426 			}
1427 		}
1428 		return (B_TRUE);
1429 	}
1430 	return (B_FALSE);
1431 }
1432 
1433 /*
1434  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1435  */
1436 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1437 #pragma	no_inline(rge_factotum_stall_check)
1438 
1439 static boolean_t
1440 rge_factotum_stall_check(rge_t *rgep)
1441 {
1442 	uint32_t dogval;
1443 
1444 	ASSERT(mutex_owned(rgep->genlock));
1445 
1446 	/*
1447 	 * Specific check for Tx stall ...
1448 	 *
1449 	 * The 'watchdog' counter is incremented whenever a packet
1450 	 * is queued, reset to 1 when some (but not all) buffers
1451 	 * are reclaimed, reset to 0 (disabled) when all buffers
1452 	 * are reclaimed, and shifted left here.  If it exceeds the
1453 	 * threshold value, the chip is assumed to have stalled and
1454 	 * is put into the ERROR state.  The factotum will then reset
1455 	 * it on the next pass.
1456 	 *
1457 	 * All of which should ensure that we don't get into a state
1458 	 * where packets are left pending indefinitely!
1459 	 */
1460 	if (rgep->resched_needed)
1461 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1462 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1463 	if (dogval < rge_watchdog_count)
1464 		return (B_FALSE);
1465 
1466 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1467 	return (B_TRUE);
1468 
1469 }
1470 
1471 /*
1472  * The factotum is woken up when there's something to do that we'd rather
1473  * not do from inside a hardware interrupt handler or high-level cyclic.
1474  * Its two main tasks are:
1475  *	reset & restart the chip after an error
1476  *	check the link status whenever necessary
1477  */
1478 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1479 #pragma	no_inline(rge_chip_factotum)
1480 
1481 uint_t
1482 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1483 {
1484 	rge_t *rgep;
1485 	uint_t result;
1486 	boolean_t error;
1487 	boolean_t linkchg;
1488 
1489 	rgep = (rge_t *)arg1;
1490 	_NOTE(ARGUNUSED(arg2))
1491 
1492 	if (rgep->factotum_flag == 0)
1493 		return (DDI_INTR_UNCLAIMED);
1494 
1495 	rgep->factotum_flag = 0;
1496 	result = DDI_INTR_CLAIMED;
1497 	error = B_FALSE;
1498 	linkchg = B_FALSE;
1499 
1500 	mutex_enter(rgep->genlock);
1501 	switch (rgep->rge_chip_state) {
1502 	default:
1503 		break;
1504 
1505 	case RGE_CHIP_RUNNING:
1506 		linkchg = rge_factotum_link_check(rgep);
1507 		error = rge_factotum_stall_check(rgep);
1508 		break;
1509 
1510 	case RGE_CHIP_ERROR:
1511 		error = B_TRUE;
1512 		break;
1513 
1514 	case RGE_CHIP_FAULT:
1515 		/*
1516 		 * Fault detected, time to reset ...
1517 		 */
1518 		if (rge_autorecover) {
1519 			RGE_REPORT((rgep, "automatic recovery activated"));
1520 			rge_restart(rgep);
1521 		}
1522 		break;
1523 	}
1524 
1525 	/*
1526 	 * If an error is detected, stop the chip now, marking it as
1527 	 * faulty, so that it will be reset next time through ...
1528 	 */
1529 	if (error)
1530 		rge_chip_stop(rgep, B_TRUE);
1531 	mutex_exit(rgep->genlock);
1532 
1533 	/*
1534 	 * If the link state changed, tell the world about it.
1535 	 * Note: can't do this while still holding the mutex.
1536 	 */
1537 	if (linkchg)
1538 		mac_link_update(rgep->mh, rgep->param_link_up);
1539 
1540 	return (result);
1541 }
1542 
1543 /*
1544  * High-level cyclic handler
1545  *
1546  * This routine schedules a (low-level) softint callback to the
1547  * factotum, and prods the chip to update the status block (which
1548  * will cause a hardware interrupt when complete).
1549  */
1550 void rge_chip_cyclic(void *arg);
1551 #pragma	no_inline(rge_chip_cyclic)
1552 
1553 void
1554 rge_chip_cyclic(void *arg)
1555 {
1556 	rge_t *rgep;
1557 
1558 	rgep = arg;
1559 
1560 	switch (rgep->rge_chip_state) {
1561 	default:
1562 		return;
1563 
1564 	case RGE_CHIP_RUNNING:
1565 		rge_phy_check(rgep);
1566 		break;
1567 
1568 	case RGE_CHIP_FAULT:
1569 	case RGE_CHIP_ERROR:
1570 		break;
1571 	}
1572 
1573 	rge_wake_factotum(rgep);
1574 }
1575 
1576 
1577 /*
1578  * ========== Ioctl subfunctions ==========
1579  */
1580 
1581 #undef	RGE_DBG
1582 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1583 
1584 #if	RGE_DEBUGGING || RGE_DO_PPIO
1585 
1586 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1587 #pragma	no_inline(rge_chip_peek_cfg)
1588 
1589 static void
1590 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1591 {
1592 	uint64_t regval;
1593 	uint64_t regno;
1594 
1595 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1596 		(void *)rgep, (void *)ppd));
1597 
1598 	regno = ppd->pp_acc_offset;
1599 
1600 	switch (ppd->pp_acc_size) {
1601 	case 1:
1602 		regval = pci_config_get8(rgep->cfg_handle, regno);
1603 		break;
1604 
1605 	case 2:
1606 		regval = pci_config_get16(rgep->cfg_handle, regno);
1607 		break;
1608 
1609 	case 4:
1610 		regval = pci_config_get32(rgep->cfg_handle, regno);
1611 		break;
1612 
1613 	case 8:
1614 		regval = pci_config_get64(rgep->cfg_handle, regno);
1615 		break;
1616 	}
1617 
1618 	ppd->pp_acc_data = regval;
1619 }
1620 
1621 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1622 #pragma	no_inline(rge_chip_poke_cfg)
1623 
1624 static void
1625 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1626 {
1627 	uint64_t regval;
1628 	uint64_t regno;
1629 
1630 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1631 		(void *)rgep, (void *)ppd));
1632 
1633 	regno = ppd->pp_acc_offset;
1634 	regval = ppd->pp_acc_data;
1635 
1636 	switch (ppd->pp_acc_size) {
1637 	case 1:
1638 		pci_config_put8(rgep->cfg_handle, regno, regval);
1639 		break;
1640 
1641 	case 2:
1642 		pci_config_put16(rgep->cfg_handle, regno, regval);
1643 		break;
1644 
1645 	case 4:
1646 		pci_config_put32(rgep->cfg_handle, regno, regval);
1647 		break;
1648 
1649 	case 8:
1650 		pci_config_put64(rgep->cfg_handle, regno, regval);
1651 		break;
1652 	}
1653 }
1654 
1655 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1656 #pragma	no_inline(rge_chip_peek_reg)
1657 
1658 static void
1659 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1660 {
1661 	uint64_t regval;
1662 	void *regaddr;
1663 
1664 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1665 		(void *)rgep, (void *)ppd));
1666 
1667 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1668 
1669 	switch (ppd->pp_acc_size) {
1670 	case 1:
1671 		regval = ddi_get8(rgep->io_handle, regaddr);
1672 		break;
1673 
1674 	case 2:
1675 		regval = ddi_get16(rgep->io_handle, regaddr);
1676 		break;
1677 
1678 	case 4:
1679 		regval = ddi_get32(rgep->io_handle, regaddr);
1680 		break;
1681 
1682 	case 8:
1683 		regval = ddi_get64(rgep->io_handle, regaddr);
1684 		break;
1685 	}
1686 
1687 	ppd->pp_acc_data = regval;
1688 }
1689 
1690 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1691 #pragma	no_inline(rge_chip_peek_reg)
1692 
1693 static void
1694 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1695 {
1696 	uint64_t regval;
1697 	void *regaddr;
1698 
1699 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1700 		(void *)rgep, (void *)ppd));
1701 
1702 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1703 	regval = ppd->pp_acc_data;
1704 
1705 	switch (ppd->pp_acc_size) {
1706 	case 1:
1707 		ddi_put8(rgep->io_handle, regaddr, regval);
1708 		break;
1709 
1710 	case 2:
1711 		ddi_put16(rgep->io_handle, regaddr, regval);
1712 		break;
1713 
1714 	case 4:
1715 		ddi_put32(rgep->io_handle, regaddr, regval);
1716 		break;
1717 
1718 	case 8:
1719 		ddi_put64(rgep->io_handle, regaddr, regval);
1720 		break;
1721 	}
1722 	RGE_PCICHK(rgep);
1723 }
1724 
1725 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1726 #pragma	no_inline(rge_chip_peek_mii)
1727 
1728 static void
1729 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1730 {
1731 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1732 		(void *)rgep, (void *)ppd));
1733 
1734 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1735 }
1736 
1737 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1738 #pragma	no_inline(rge_chip_poke_mii)
1739 
1740 static void
1741 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1742 {
1743 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1744 		(void *)rgep, (void *)ppd));
1745 
1746 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1747 }
1748 
1749 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1750 #pragma	no_inline(rge_chip_peek_mem)
1751 
1752 static void
1753 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1754 {
1755 	uint64_t regval;
1756 	void *vaddr;
1757 
1758 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1759 		(void *)rgep, (void *)ppd));
1760 
1761 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1762 
1763 	switch (ppd->pp_acc_size) {
1764 	case 1:
1765 		regval = *(uint8_t *)vaddr;
1766 		break;
1767 
1768 	case 2:
1769 		regval = *(uint16_t *)vaddr;
1770 		break;
1771 
1772 	case 4:
1773 		regval = *(uint32_t *)vaddr;
1774 		break;
1775 
1776 	case 8:
1777 		regval = *(uint64_t *)vaddr;
1778 		break;
1779 	}
1780 
1781 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1782 		(void *)rgep, (void *)ppd, regval, vaddr));
1783 
1784 	ppd->pp_acc_data = regval;
1785 }
1786 
1787 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1788 #pragma	no_inline(rge_chip_poke_mem)
1789 
1790 static void
1791 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1792 {
1793 	uint64_t regval;
1794 	void *vaddr;
1795 
1796 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1797 		(void *)rgep, (void *)ppd));
1798 
1799 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1800 	regval = ppd->pp_acc_data;
1801 
1802 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1803 		(void *)rgep, (void *)ppd, regval, vaddr));
1804 
1805 	switch (ppd->pp_acc_size) {
1806 	case 1:
1807 		*(uint8_t *)vaddr = (uint8_t)regval;
1808 		break;
1809 
1810 	case 2:
1811 		*(uint16_t *)vaddr = (uint16_t)regval;
1812 		break;
1813 
1814 	case 4:
1815 		*(uint32_t *)vaddr = (uint32_t)regval;
1816 		break;
1817 
1818 	case 8:
1819 		*(uint64_t *)vaddr = (uint64_t)regval;
1820 		break;
1821 	}
1822 }
1823 
1824 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1825 					struct iocblk *iocp);
1826 #pragma	no_inline(rge_pp_ioctl)
1827 
1828 static enum ioc_reply
1829 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1830 {
1831 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1832 	rge_peekpoke_t *ppd;
1833 	dma_area_t *areap;
1834 	uint64_t sizemask;
1835 	uint64_t mem_va;
1836 	uint64_t maxoff;
1837 	boolean_t peek;
1838 
1839 	switch (cmd) {
1840 	default:
1841 		/* NOTREACHED */
1842 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1843 		return (IOC_INVAL);
1844 
1845 	case RGE_PEEK:
1846 		peek = B_TRUE;
1847 		break;
1848 
1849 	case RGE_POKE:
1850 		peek = B_FALSE;
1851 		break;
1852 	}
1853 
1854 	/*
1855 	 * Validate format of ioctl
1856 	 */
1857 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1858 		return (IOC_INVAL);
1859 	if (mp->b_cont == NULL)
1860 		return (IOC_INVAL);
1861 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1862 
1863 	/*
1864 	 * Validate request parameters
1865 	 */
1866 	switch (ppd->pp_acc_space) {
1867 	default:
1868 		return (IOC_INVAL);
1869 
1870 	case RGE_PP_SPACE_CFG:
1871 		/*
1872 		 * Config space
1873 		 */
1874 		sizemask = 8|4|2|1;
1875 		mem_va = 0;
1876 		maxoff = PCI_CONF_HDR_SIZE;
1877 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1878 		break;
1879 
1880 	case RGE_PP_SPACE_REG:
1881 		/*
1882 		 * Memory-mapped I/O space
1883 		 */
1884 		sizemask = 8|4|2|1;
1885 		mem_va = 0;
1886 		maxoff = RGE_REGISTER_MAX;
1887 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1888 		break;
1889 
1890 	case RGE_PP_SPACE_MII:
1891 		/*
1892 		 * PHY's MII registers
1893 		 * NB: all PHY registers are two bytes, but the
1894 		 * addresses increment in ones (word addressing).
1895 		 * So we scale the address here, then undo the
1896 		 * transformation inside the peek/poke functions.
1897 		 */
1898 		ppd->pp_acc_offset *= 2;
1899 		sizemask = 2;
1900 		mem_va = 0;
1901 		maxoff = (MII_MAXREG+1)*2;
1902 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1903 		break;
1904 
1905 	case RGE_PP_SPACE_RGE:
1906 		/*
1907 		 * RGE data structure!
1908 		 */
1909 		sizemask = 8|4|2|1;
1910 		mem_va = (uintptr_t)rgep;
1911 		maxoff = sizeof (*rgep);
1912 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1913 		break;
1914 
1915 	case RGE_PP_SPACE_STATISTICS:
1916 	case RGE_PP_SPACE_TXDESC:
1917 	case RGE_PP_SPACE_TXBUFF:
1918 	case RGE_PP_SPACE_RXDESC:
1919 	case RGE_PP_SPACE_RXBUFF:
1920 		/*
1921 		 * Various DMA_AREAs
1922 		 */
1923 		switch (ppd->pp_acc_space) {
1924 		case RGE_PP_SPACE_TXDESC:
1925 			areap = &rgep->dma_area_txdesc;
1926 			break;
1927 		case RGE_PP_SPACE_RXDESC:
1928 			areap = &rgep->dma_area_rxdesc;
1929 			break;
1930 		case RGE_PP_SPACE_STATISTICS:
1931 			areap = &rgep->dma_area_stats;
1932 			break;
1933 		}
1934 
1935 		sizemask = 8|4|2|1;
1936 		mem_va = (uintptr_t)areap->mem_va;
1937 		maxoff = areap->alength;
1938 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1939 		break;
1940 	}
1941 
1942 	switch (ppd->pp_acc_size) {
1943 	default:
1944 		return (IOC_INVAL);
1945 
1946 	case 8:
1947 	case 4:
1948 	case 2:
1949 	case 1:
1950 		if ((ppd->pp_acc_size & sizemask) == 0)
1951 			return (IOC_INVAL);
1952 		break;
1953 	}
1954 
1955 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1956 		return (IOC_INVAL);
1957 
1958 	if (ppd->pp_acc_offset >= maxoff)
1959 		return (IOC_INVAL);
1960 
1961 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
1962 		return (IOC_INVAL);
1963 
1964 	/*
1965 	 * All OK - go do it!
1966 	 */
1967 	ppd->pp_acc_offset += mem_va;
1968 	(*ppfn)(rgep, ppd);
1969 	return (peek ? IOC_REPLY : IOC_ACK);
1970 }
1971 
1972 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1973 					struct iocblk *iocp);
1974 #pragma	no_inline(rge_diag_ioctl)
1975 
1976 static enum ioc_reply
1977 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1978 {
1979 	ASSERT(mutex_owned(rgep->genlock));
1980 
1981 	switch (cmd) {
1982 	default:
1983 		/* NOTREACHED */
1984 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
1985 		return (IOC_INVAL);
1986 
1987 	case RGE_DIAG:
1988 		/*
1989 		 * Currently a no-op
1990 		 */
1991 		return (IOC_ACK);
1992 
1993 	case RGE_PEEK:
1994 	case RGE_POKE:
1995 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
1996 
1997 	case RGE_PHY_RESET:
1998 		return (IOC_RESTART_ACK);
1999 
2000 	case RGE_SOFT_RESET:
2001 	case RGE_HARD_RESET:
2002 		/*
2003 		 * Reset and reinitialise the 570x hardware
2004 		 */
2005 		rge_restart(rgep);
2006 		return (IOC_ACK);
2007 	}
2008 
2009 	/* NOTREACHED */
2010 }
2011 
2012 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2013 
2014 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2015 				    struct iocblk *iocp);
2016 #pragma	no_inline(rge_mii_ioctl)
2017 
2018 static enum ioc_reply
2019 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2020 {
2021 	struct rge_mii_rw *miirwp;
2022 
2023 	/*
2024 	 * Validate format of ioctl
2025 	 */
2026 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2027 		return (IOC_INVAL);
2028 	if (mp->b_cont == NULL)
2029 		return (IOC_INVAL);
2030 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2031 
2032 	/*
2033 	 * Validate request parameters ...
2034 	 */
2035 	if (miirwp->mii_reg > MII_MAXREG)
2036 		return (IOC_INVAL);
2037 
2038 	switch (cmd) {
2039 	default:
2040 		/* NOTREACHED */
2041 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2042 		return (IOC_INVAL);
2043 
2044 	case RGE_MII_READ:
2045 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2046 		return (IOC_REPLY);
2047 
2048 	case RGE_MII_WRITE:
2049 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2050 		return (IOC_ACK);
2051 	}
2052 
2053 	/* NOTREACHED */
2054 }
2055 
2056 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2057 				struct iocblk *iocp);
2058 #pragma	no_inline(rge_chip_ioctl)
2059 
2060 enum ioc_reply
2061 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2062 {
2063 	int cmd;
2064 
2065 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2066 		(void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2067 
2068 	ASSERT(mutex_owned(rgep->genlock));
2069 
2070 	cmd = iocp->ioc_cmd;
2071 	switch (cmd) {
2072 	default:
2073 		/* NOTREACHED */
2074 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2075 		return (IOC_INVAL);
2076 
2077 	case RGE_DIAG:
2078 	case RGE_PEEK:
2079 	case RGE_POKE:
2080 	case RGE_PHY_RESET:
2081 	case RGE_SOFT_RESET:
2082 	case RGE_HARD_RESET:
2083 #if	RGE_DEBUGGING || RGE_DO_PPIO
2084 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2085 #else
2086 		return (IOC_INVAL);
2087 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2088 
2089 	case RGE_MII_READ:
2090 	case RGE_MII_WRITE:
2091 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2092 
2093 	}
2094 
2095 	/* NOTREACHED */
2096 }
2097