xref: /titanic_50/usr/src/uts/common/io/e1000g/e1000g_stat.c (revision 3d729aecc03ea6ebb9bd5d56b8dccd24f57daa41)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Copyright 2012 David Höppner. All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * **********************************************************************
29  *									*
30  * Module Name:  e1000g_stat.c						*
31  *									*
32  * Abstract: Functions for processing statistics			*
33  *									*
34  * **********************************************************************
35  */
36 #include "e1000g_sw.h"
37 #include "e1000g_debug.h"
38 
39 static int e1000g_update_stats(kstat_t *ksp, int rw);
40 static uint32_t e1000g_read_phy_stat(struct e1000_hw *hw, int reg);
41 
42 /*
43  * e1000_tbi_adjust_stats
44  *
45  * Adjusts statistic counters when a frame is accepted
46  * under the TBI workaround. This function has been
47  * adapted for Solaris from shared code.
48  */
49 void
50 e1000_tbi_adjust_stats(struct e1000g *Adapter,
51     uint32_t frame_len, uint8_t *mac_addr)
52 {
53 	uint32_t carry_bit;
54 	p_e1000g_stat_t e1000g_ksp;
55 
56 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
57 
58 	/* First adjust the frame length */
59 	frame_len--;
60 
61 	/*
62 	 * We need to adjust the statistics counters, since the hardware
63 	 * counters overcount this packet as a CRC error and undercount
64 	 * the packet as a good packet
65 	 */
66 	/* This packet should not be counted as a CRC error */
67 	Adapter->fcs_errors--;
68 	/* This packet does count as a Good Packet Received */
69 	e1000g_ksp->Gprc.value.ul++;
70 
71 	/*
72 	 * Adjust the Good Octets received counters
73 	 */
74 	carry_bit = 0x80000000 & e1000g_ksp->Gorl.value.ul;
75 	e1000g_ksp->Gorl.value.ul += frame_len;
76 	/*
77 	 * If the high bit of Gorcl (the low 32 bits of the Good Octets
78 	 * Received Count) was one before the addition,
79 	 * AND it is zero after, then we lost the carry out,
80 	 * need to add one to Gorch (Good Octets Received Count High).
81 	 * This could be simplified if all environments supported
82 	 * 64-bit integers.
83 	 */
84 	if (carry_bit && ((e1000g_ksp->Gorl.value.ul & 0x80000000) == 0)) {
85 		e1000g_ksp->Gorh.value.ul++;
86 	}
87 	/*
88 	 * Is this a broadcast or multicast?  Check broadcast first,
89 	 * since the test for a multicast frame will test positive on
90 	 * a broadcast frame.
91 	 */
92 	if ((mac_addr[0] == (uint8_t)0xff) &&
93 	    (mac_addr[1] == (uint8_t)0xff)) {
94 		/*
95 		 * Broadcast packet
96 		 */
97 		Adapter->brdcstrcv++;
98 	} else if (*mac_addr & 0x01) {
99 		/*
100 		 * Multicast packet
101 		 */
102 		Adapter->multircv++;
103 	}
104 
105 	if (frame_len == Adapter->max_frame_size) {
106 		/*
107 		 * In this case, the hardware has overcounted the number of
108 		 * oversize frames.
109 		 */
110 		if (Adapter->toolong_errors > 0)
111 			Adapter->toolong_errors--;
112 	}
113 
114 #ifdef E1000G_DEBUG
115 	/*
116 	 * Adjust the bin counters when the extra byte put the frame in the
117 	 * wrong bin. Remember that the frame_len was adjusted above.
118 	 */
119 	if (frame_len == 64) {
120 		e1000g_ksp->Prc64.value.ul++;
121 		e1000g_ksp->Prc127.value.ul--;
122 	} else if (frame_len == 127) {
123 		e1000g_ksp->Prc127.value.ul++;
124 		e1000g_ksp->Prc255.value.ul--;
125 	} else if (frame_len == 255) {
126 		e1000g_ksp->Prc255.value.ul++;
127 		e1000g_ksp->Prc511.value.ul--;
128 	} else if (frame_len == 511) {
129 		e1000g_ksp->Prc511.value.ul++;
130 		e1000g_ksp->Prc1023.value.ul--;
131 	} else if (frame_len == 1023) {
132 		e1000g_ksp->Prc1023.value.ul++;
133 		e1000g_ksp->Prc1522.value.ul--;
134 	} else if (frame_len == 1522) {
135 		e1000g_ksp->Prc1522.value.ul++;
136 	}
137 #endif
138 }
139 
140 
141 /*
142  * e1000g_update_stats - update driver private kstat counters
143  *
144  * This routine will dump and reset the e1000's internal
145  * statistics counters. The current stats dump values will
146  * be sent to the kernel status area.
147  */
148 static int
149 e1000g_update_stats(kstat_t *ksp, int rw)
150 {
151 	struct e1000g *Adapter;
152 	struct e1000_hw *hw;
153 	p_e1000g_stat_t e1000g_ksp;
154 	e1000g_tx_ring_t *tx_ring;
155 	e1000g_rx_ring_t *rx_ring;
156 #ifdef E1000G_DEBUG
157 	e1000g_rx_data_t *rx_data;
158 #endif
159 	uint64_t val;
160 	uint32_t low_val, high_val;
161 
162 	if (rw == KSTAT_WRITE)
163 		return (EACCES);
164 
165 	Adapter = (struct e1000g *)ksp->ks_private;
166 	ASSERT(Adapter != NULL);
167 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
168 	ASSERT(e1000g_ksp != NULL);
169 	hw = &Adapter->shared;
170 
171 	tx_ring = Adapter->tx_ring;
172 	rx_ring = Adapter->rx_ring;
173 #ifdef E1000G_DEBUG
174 	rx_data = rx_ring->rx_data;
175 #endif
176 
177 	rw_enter(&Adapter->chip_lock, RW_WRITER);
178 
179 	e1000g_ksp->reset_count.value.ul = Adapter->reset_count;
180 
181 	e1000g_ksp->rx_error.value.ul = rx_ring->stat_error;
182 	e1000g_ksp->rx_allocb_fail.value.ul = rx_ring->stat_allocb_fail;
183 	e1000g_ksp->rx_size_error.value.ul = rx_ring->stat_size_error;
184 
185 	e1000g_ksp->tx_no_swpkt.value.ul = tx_ring->stat_no_swpkt;
186 	e1000g_ksp->tx_no_desc.value.ul = tx_ring->stat_no_desc;
187 	e1000g_ksp->tx_send_fail.value.ul = tx_ring->stat_send_fail;
188 	e1000g_ksp->tx_reschedule.value.ul = tx_ring->stat_reschedule;
189 	e1000g_ksp->tx_over_size.value.ul = tx_ring->stat_over_size;
190 
191 #ifdef E1000G_DEBUG
192 	e1000g_ksp->rx_none.value.ul = rx_ring->stat_none;
193 	e1000g_ksp->rx_multi_desc.value.ul = rx_ring->stat_multi_desc;
194 	e1000g_ksp->rx_no_freepkt.value.ul = rx_ring->stat_no_freepkt;
195 	if (rx_data != NULL)
196 		e1000g_ksp->rx_avail_freepkt.value.ul = rx_data->avail_freepkt;
197 
198 	e1000g_ksp->tx_under_size.value.ul = tx_ring->stat_under_size;
199 	e1000g_ksp->tx_exceed_frags.value.ul = tx_ring->stat_exceed_frags;
200 	e1000g_ksp->tx_empty_frags.value.ul = tx_ring->stat_empty_frags;
201 	e1000g_ksp->tx_recycle.value.ul = tx_ring->stat_recycle;
202 	e1000g_ksp->tx_recycle_intr.value.ul = tx_ring->stat_recycle_intr;
203 	e1000g_ksp->tx_recycle_retry.value.ul = tx_ring->stat_recycle_retry;
204 	e1000g_ksp->tx_recycle_none.value.ul = tx_ring->stat_recycle_none;
205 	e1000g_ksp->tx_copy.value.ul = tx_ring->stat_copy;
206 	e1000g_ksp->tx_bind.value.ul = tx_ring->stat_bind;
207 	e1000g_ksp->tx_multi_copy.value.ul = tx_ring->stat_multi_copy;
208 	e1000g_ksp->tx_multi_cookie.value.ul = tx_ring->stat_multi_cookie;
209 	e1000g_ksp->tx_lack_desc.value.ul = tx_ring->stat_lack_desc;
210 #endif
211 
212 	/*
213 	 * Standard Stats
214 	 */
215 	e1000g_ksp->Mpc.value.ul += E1000_READ_REG(hw, E1000_MPC);
216 	e1000g_ksp->Rlec.value.ul += E1000_READ_REG(hw, E1000_RLEC);
217 	e1000g_ksp->Xonrxc.value.ul += E1000_READ_REG(hw, E1000_XONRXC);
218 	e1000g_ksp->Xontxc.value.ul += E1000_READ_REG(hw, E1000_XONTXC);
219 	e1000g_ksp->Xoffrxc.value.ul += E1000_READ_REG(hw, E1000_XOFFRXC);
220 	e1000g_ksp->Xofftxc.value.ul += E1000_READ_REG(hw, E1000_XOFFTXC);
221 	e1000g_ksp->Fcruc.value.ul += E1000_READ_REG(hw, E1000_FCRUC);
222 
223 	if ((hw->mac.type != e1000_ich8lan) &&
224 	    (hw->mac.type != e1000_ich9lan) &&
225 	    (hw->mac.type != e1000_ich10lan) &&
226 	    (hw->mac.type != e1000_pchlan)) {
227 		e1000g_ksp->Symerrs.value.ul +=
228 		    E1000_READ_REG(hw, E1000_SYMERRS);
229 #ifdef E1000G_DEBUG
230 		e1000g_ksp->Prc64.value.ul +=
231 		    E1000_READ_REG(hw, E1000_PRC64);
232 		e1000g_ksp->Prc127.value.ul +=
233 		    E1000_READ_REG(hw, E1000_PRC127);
234 		e1000g_ksp->Prc255.value.ul +=
235 		    E1000_READ_REG(hw, E1000_PRC255);
236 		e1000g_ksp->Prc511.value.ul +=
237 		    E1000_READ_REG(hw, E1000_PRC511);
238 		e1000g_ksp->Prc1023.value.ul +=
239 		    E1000_READ_REG(hw, E1000_PRC1023);
240 		e1000g_ksp->Prc1522.value.ul +=
241 		    E1000_READ_REG(hw, E1000_PRC1522);
242 
243 		e1000g_ksp->Ptc64.value.ul +=
244 		    E1000_READ_REG(hw, E1000_PTC64);
245 		e1000g_ksp->Ptc127.value.ul +=
246 		    E1000_READ_REG(hw, E1000_PTC127);
247 		e1000g_ksp->Ptc255.value.ul +=
248 		    E1000_READ_REG(hw, E1000_PTC255);
249 		e1000g_ksp->Ptc511.value.ul +=
250 		    E1000_READ_REG(hw, E1000_PTC511);
251 		e1000g_ksp->Ptc1023.value.ul +=
252 		    E1000_READ_REG(hw, E1000_PTC1023);
253 		e1000g_ksp->Ptc1522.value.ul +=
254 		    E1000_READ_REG(hw, E1000_PTC1522);
255 #endif
256 	}
257 
258 	e1000g_ksp->Gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
259 	e1000g_ksp->Gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
260 	e1000g_ksp->Rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
261 	e1000g_ksp->Tncrs.value.ul += e1000g_read_phy_stat(hw, E1000_TNCRS);
262 	e1000g_ksp->Tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
263 	e1000g_ksp->Tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
264 
265 	/*
266 	 * Adaptive Calculations
267 	 */
268 	hw->mac.tx_packet_delta = E1000_READ_REG(hw, E1000_TPT);
269 	Adapter->opackets += hw->mac.tx_packet_delta;
270 
271 	/*
272 	 * The 64-bit register will reset whenever the upper
273 	 * 32 bits are read. So we need to read the lower
274 	 * 32 bits first, then read the upper 32 bits.
275 	 */
276 	low_val = E1000_READ_REG(hw, E1000_GORCL);
277 	high_val = E1000_READ_REG(hw, E1000_GORCH);
278 	val = (uint64_t)e1000g_ksp->Gorh.value.ul << 32 |
279 	    (uint64_t)e1000g_ksp->Gorl.value.ul;
280 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
281 	e1000g_ksp->Gorl.value.ul = (uint32_t)val;
282 	e1000g_ksp->Gorh.value.ul = (uint32_t)(val >> 32);
283 
284 	low_val = E1000_READ_REG(hw, E1000_GOTCL);
285 	high_val = E1000_READ_REG(hw, E1000_GOTCH);
286 	val = (uint64_t)e1000g_ksp->Goth.value.ul << 32 |
287 	    (uint64_t)e1000g_ksp->Gotl.value.ul;
288 	val += (uint64_t)high_val << 32 | (uint64_t)low_val;
289 	e1000g_ksp->Gotl.value.ul = (uint32_t)val;
290 	e1000g_ksp->Goth.value.ul = (uint32_t)(val >> 32);
291 
292 	low_val = E1000_READ_REG(hw, E1000_TORL);
293 	high_val = E1000_READ_REG(hw, E1000_TORH);
294 	Adapter->rbytes +=
295 	    (uint64_t)high_val << 32 | (uint64_t)low_val;
296 
297 	low_val = E1000_READ_REG(hw, E1000_TOTL);
298 	high_val = E1000_READ_REG(hw, E1000_TOTH);
299 	Adapter->obytes +=
300 	    (uint64_t)high_val << 32 | (uint64_t)low_val;
301 
302 	rw_exit(&Adapter->chip_lock);
303 
304 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
305 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
306 		return (EIO);
307 	}
308 
309 	return (0);
310 }
311 
312 int
313 e1000g_m_stat(void *arg, uint_t stat, uint64_t *val)
314 {
315 	struct e1000g *Adapter = (struct e1000g *)arg;
316 	struct e1000_hw *hw = &Adapter->shared;
317 	p_e1000g_stat_t e1000g_ksp;
318 	uint32_t low_val, high_val;
319 
320 	e1000g_ksp = (p_e1000g_stat_t)Adapter->e1000g_ksp->ks_data;
321 
322 	rw_enter(&Adapter->chip_lock, RW_READER);
323 
324 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
325 		rw_exit(&Adapter->chip_lock);
326 		return (ECANCELED);
327 	}
328 
329 	switch (stat) {
330 	case MAC_STAT_IFSPEED:
331 		*val = Adapter->link_speed * 1000000ull;
332 		break;
333 
334 	case MAC_STAT_MULTIRCV:
335 		Adapter->multircv +=
336 		    E1000_READ_REG(hw, E1000_MPRC);
337 		*val = Adapter->multircv;
338 		break;
339 
340 	case MAC_STAT_BRDCSTRCV:
341 		Adapter->brdcstrcv +=
342 		    E1000_READ_REG(hw, E1000_BPRC);
343 		*val = Adapter->brdcstrcv;
344 		break;
345 
346 	case MAC_STAT_MULTIXMT:
347 		Adapter->multixmt +=
348 		    E1000_READ_REG(hw, E1000_MPTC);
349 		*val = Adapter->multixmt;
350 		break;
351 
352 	case MAC_STAT_BRDCSTXMT:
353 		Adapter->brdcstxmt +=
354 		    E1000_READ_REG(hw, E1000_BPTC);
355 		*val = Adapter->brdcstxmt;
356 		break;
357 
358 	case MAC_STAT_NORCVBUF:
359 		Adapter->norcvbuf +=
360 		    E1000_READ_REG(hw, E1000_RNBC);
361 		*val = Adapter->norcvbuf;
362 		break;
363 
364 	case MAC_STAT_IERRORS:
365 		Adapter->macrcv_errors +=
366 		    E1000_READ_REG(hw, E1000_RXERRC);
367 		Adapter->align_errors +=
368 		    E1000_READ_REG(hw, E1000_ALGNERRC);
369 		e1000g_ksp->Rlec.value.ul +=
370 		    E1000_READ_REG(hw, E1000_RLEC);
371 		Adapter->fcs_errors +=
372 		    E1000_READ_REG(hw, E1000_CRCERRS);
373 		Adapter->carrier_errors +=
374 		    E1000_READ_REG(hw, E1000_CEXTERR);
375 		*val = Adapter->macrcv_errors +
376 		    Adapter->align_errors +
377 		    e1000g_ksp->Rlec.value.ul +
378 		    Adapter->fcs_errors +
379 		    Adapter->carrier_errors;
380 		break;
381 
382 	case MAC_STAT_NOXMTBUF:
383 		*val = Adapter->tx_ring->stat_no_desc;
384 		break;
385 
386 	case MAC_STAT_OERRORS:
387 		Adapter->oerrors +=
388 		    e1000g_read_phy_stat(hw, E1000_ECOL);
389 		*val = Adapter->oerrors;
390 		break;
391 
392 	case MAC_STAT_COLLISIONS:
393 		Adapter->collisions +=
394 		    e1000g_read_phy_stat(hw, E1000_COLC);
395 		*val = Adapter->collisions;
396 		break;
397 
398 	case MAC_STAT_RBYTES:
399 		/*
400 		 * The 64-bit register will reset whenever the upper
401 		 * 32 bits are read. So we need to read the lower
402 		 * 32 bits first, then read the upper 32 bits.
403 		 */
404 		low_val = E1000_READ_REG(hw, E1000_TORL);
405 		high_val = E1000_READ_REG(hw, E1000_TORH);
406 		Adapter->rbytes +=
407 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
408 		*val = Adapter->rbytes;
409 		break;
410 
411 	case MAC_STAT_IPACKETS:
412 		Adapter->ipackets +=
413 		    E1000_READ_REG(hw, E1000_TPR);
414 		*val = Adapter->ipackets;
415 		break;
416 
417 	case MAC_STAT_OBYTES:
418 		/*
419 		 * The 64-bit register will reset whenever the upper
420 		 * 32 bits are read. So we need to read the lower
421 		 * 32 bits first, then read the upper 32 bits.
422 		 */
423 		low_val = E1000_READ_REG(hw, E1000_TOTL);
424 		high_val = E1000_READ_REG(hw, E1000_TOTH);
425 		Adapter->obytes +=
426 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
427 		*val = Adapter->obytes;
428 		break;
429 
430 	case MAC_STAT_OPACKETS:
431 		Adapter->opackets +=
432 		    E1000_READ_REG(hw, E1000_TPT);
433 		*val = Adapter->opackets;
434 		break;
435 
436 	case ETHER_STAT_ALIGN_ERRORS:
437 		Adapter->align_errors +=
438 		    E1000_READ_REG(hw, E1000_ALGNERRC);
439 		*val = Adapter->align_errors;
440 		break;
441 
442 	case ETHER_STAT_FCS_ERRORS:
443 		Adapter->fcs_errors +=
444 		    E1000_READ_REG(hw, E1000_CRCERRS);
445 		*val = Adapter->fcs_errors;
446 		break;
447 
448 	case ETHER_STAT_SQE_ERRORS:
449 		Adapter->sqe_errors +=
450 		    E1000_READ_REG(hw, E1000_SEC);
451 		*val = Adapter->sqe_errors;
452 		break;
453 
454 	case ETHER_STAT_CARRIER_ERRORS:
455 		Adapter->carrier_errors +=
456 		    E1000_READ_REG(hw, E1000_CEXTERR);
457 		*val = Adapter->carrier_errors;
458 		break;
459 
460 	case ETHER_STAT_EX_COLLISIONS:
461 		Adapter->ex_collisions +=
462 		    e1000g_read_phy_stat(hw, E1000_ECOL);
463 		*val = Adapter->ex_collisions;
464 		break;
465 
466 	case ETHER_STAT_TX_LATE_COLLISIONS:
467 		Adapter->tx_late_collisions +=
468 		    e1000g_read_phy_stat(hw, E1000_LATECOL);
469 		*val = Adapter->tx_late_collisions;
470 		break;
471 
472 	case ETHER_STAT_DEFER_XMTS:
473 		Adapter->defer_xmts +=
474 		    e1000g_read_phy_stat(hw, E1000_DC);
475 		*val = Adapter->defer_xmts;
476 		break;
477 
478 	case ETHER_STAT_FIRST_COLLISIONS:
479 		Adapter->first_collisions +=
480 		    e1000g_read_phy_stat(hw, E1000_SCC);
481 		*val = Adapter->first_collisions;
482 		break;
483 
484 	case ETHER_STAT_MULTI_COLLISIONS:
485 		Adapter->multi_collisions +=
486 		    e1000g_read_phy_stat(hw, E1000_MCC);
487 		*val = Adapter->multi_collisions;
488 		break;
489 
490 	case ETHER_STAT_MACRCV_ERRORS:
491 		Adapter->macrcv_errors +=
492 		    E1000_READ_REG(hw, E1000_RXERRC);
493 		*val = Adapter->macrcv_errors;
494 		break;
495 
496 	case ETHER_STAT_MACXMT_ERRORS:
497 		Adapter->macxmt_errors +=
498 		    e1000g_read_phy_stat(hw, E1000_ECOL);
499 		*val = Adapter->macxmt_errors;
500 		break;
501 
502 	case ETHER_STAT_TOOLONG_ERRORS:
503 		Adapter->toolong_errors +=
504 		    E1000_READ_REG(hw, E1000_ROC);
505 		*val = Adapter->toolong_errors;
506 		break;
507 
508 	case ETHER_STAT_TOOSHORT_ERRORS:
509 		Adapter->tooshort_errors +=
510 		    E1000_READ_REG(hw, E1000_RUC);
511 		*val = Adapter->tooshort_errors;
512 		break;
513 
514 	case ETHER_STAT_JABBER_ERRORS:
515 		Adapter->jabber_errors +=
516 		    E1000_READ_REG(hw, E1000_RJC);
517 		*val = Adapter->jabber_errors;
518 		break;
519 
520 	case ETHER_STAT_XCVR_ADDR:
521 		/* The Internal PHY's MDI address for each MAC is 1 */
522 		*val = 1;
523 		break;
524 
525 	case ETHER_STAT_XCVR_ID:
526 		*val = hw->phy.id | hw->phy.revision;
527 		break;
528 
529 	case ETHER_STAT_XCVR_INUSE:
530 		switch (Adapter->link_speed) {
531 		case SPEED_1000:
532 			*val =
533 			    (hw->phy.media_type == e1000_media_type_copper) ?
534 			    XCVR_1000T : XCVR_1000X;
535 			break;
536 		case SPEED_100:
537 			*val =
538 			    (hw->phy.media_type == e1000_media_type_copper) ?
539 			    (Adapter->phy_status & MII_SR_100T4_CAPS) ?
540 			    XCVR_100T4 : XCVR_100T2 : XCVR_100X;
541 			break;
542 		case SPEED_10:
543 			*val = XCVR_10;
544 			break;
545 		default:
546 			*val = XCVR_NONE;
547 			break;
548 		}
549 		break;
550 
551 	case ETHER_STAT_CAP_1000FDX:
552 		*val = Adapter->param_1000fdx_cap;
553 		break;
554 
555 	case ETHER_STAT_CAP_1000HDX:
556 		*val = Adapter->param_1000hdx_cap;
557 		break;
558 
559 	case ETHER_STAT_CAP_100FDX:
560 		*val = Adapter->param_100fdx_cap;
561 		break;
562 
563 	case ETHER_STAT_CAP_100HDX:
564 		*val = Adapter->param_100hdx_cap;
565 		break;
566 
567 	case ETHER_STAT_CAP_10FDX:
568 		*val = Adapter->param_10fdx_cap;
569 		break;
570 
571 	case ETHER_STAT_CAP_10HDX:
572 		*val = Adapter->param_10hdx_cap;
573 		break;
574 
575 	case ETHER_STAT_CAP_ASMPAUSE:
576 		*val = Adapter->param_asym_pause_cap;
577 		break;
578 
579 	case ETHER_STAT_CAP_PAUSE:
580 		*val = Adapter->param_pause_cap;
581 		break;
582 
583 	case ETHER_STAT_CAP_AUTONEG:
584 		*val = Adapter->param_autoneg_cap;
585 		break;
586 
587 	case ETHER_STAT_ADV_CAP_1000FDX:
588 		*val = Adapter->param_adv_1000fdx;
589 		break;
590 
591 	case ETHER_STAT_ADV_CAP_1000HDX:
592 		*val = Adapter->param_adv_1000hdx;
593 		break;
594 
595 	case ETHER_STAT_ADV_CAP_100FDX:
596 		*val = Adapter->param_adv_100fdx;
597 		break;
598 
599 	case ETHER_STAT_ADV_CAP_100HDX:
600 		*val = Adapter->param_adv_100hdx;
601 		break;
602 
603 	case ETHER_STAT_ADV_CAP_10FDX:
604 		*val = Adapter->param_adv_10fdx;
605 		break;
606 
607 	case ETHER_STAT_ADV_CAP_10HDX:
608 		*val = Adapter->param_adv_10hdx;
609 		break;
610 
611 	case ETHER_STAT_ADV_CAP_ASMPAUSE:
612 		*val = Adapter->param_adv_asym_pause;
613 		break;
614 
615 	case ETHER_STAT_ADV_CAP_PAUSE:
616 		*val = Adapter->param_adv_pause;
617 		break;
618 
619 	case ETHER_STAT_ADV_CAP_AUTONEG:
620 		*val = hw->mac.autoneg;
621 		break;
622 
623 	case ETHER_STAT_LP_CAP_1000FDX:
624 		*val = Adapter->param_lp_1000fdx;
625 		break;
626 
627 	case ETHER_STAT_LP_CAP_1000HDX:
628 		*val = Adapter->param_lp_1000hdx;
629 		break;
630 
631 	case ETHER_STAT_LP_CAP_100FDX:
632 		*val = Adapter->param_lp_100fdx;
633 		break;
634 
635 	case ETHER_STAT_LP_CAP_100HDX:
636 		*val = Adapter->param_lp_100hdx;
637 		break;
638 
639 	case ETHER_STAT_LP_CAP_10FDX:
640 		*val = Adapter->param_lp_10fdx;
641 		break;
642 
643 	case ETHER_STAT_LP_CAP_10HDX:
644 		*val = Adapter->param_lp_10hdx;
645 		break;
646 
647 	case ETHER_STAT_LP_CAP_ASMPAUSE:
648 		*val = Adapter->param_lp_asym_pause;
649 		break;
650 
651 	case ETHER_STAT_LP_CAP_PAUSE:
652 		*val = Adapter->param_lp_pause;
653 		break;
654 
655 	case ETHER_STAT_LP_CAP_AUTONEG:
656 		*val = Adapter->param_lp_autoneg;
657 		break;
658 
659 	case ETHER_STAT_LINK_ASMPAUSE:
660 		*val = Adapter->param_asym_pause_cap;
661 		break;
662 
663 	case ETHER_STAT_LINK_PAUSE:
664 		*val = Adapter->param_pause_cap;
665 		break;
666 
667 	case ETHER_STAT_LINK_AUTONEG:
668 		*val = hw->mac.autoneg;
669 		break;
670 
671 	case ETHER_STAT_LINK_DUPLEX:
672 		*val = (Adapter->link_duplex == FULL_DUPLEX) ?
673 		    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
674 		break;
675 
676 	case ETHER_STAT_CAP_100T4:
677 		*val = Adapter->param_100t4_cap;
678 		break;
679 
680 	case ETHER_STAT_ADV_CAP_100T4:
681 		*val = Adapter->param_adv_100t4;
682 		break;
683 
684 	case ETHER_STAT_LP_CAP_100T4:
685 		*val = Adapter->param_lp_100t4;
686 		break;
687 
688 	default:
689 		rw_exit(&Adapter->chip_lock);
690 		return (ENOTSUP);
691 	}
692 
693 	rw_exit(&Adapter->chip_lock);
694 
695 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
696 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
697 		return (EIO);
698 	}
699 
700 	return (0);
701 }
702 
703 /*
704  * e1000g_init_stats - initialize kstat data structures
705  *
706  * This routine will create and initialize the driver private
707  * statistics counters.
708  */
709 int
710 e1000g_init_stats(struct e1000g *Adapter)
711 {
712 	kstat_t *ksp;
713 	p_e1000g_stat_t e1000g_ksp;
714 
715 	/*
716 	 * Create and init kstat
717 	 */
718 	ksp = kstat_create(WSNAME, ddi_get_instance(Adapter->dip),
719 	    "statistics", "net", KSTAT_TYPE_NAMED,
720 	    sizeof (e1000g_stat_t) / sizeof (kstat_named_t), 0);
721 
722 	if (ksp == NULL) {
723 		e1000g_log(Adapter, CE_WARN,
724 		    "Could not create kernel statistics\n");
725 		return (DDI_FAILURE);
726 	}
727 
728 	Adapter->e1000g_ksp = ksp;	/* Fill in the Adapters ksp */
729 
730 	e1000g_ksp = (p_e1000g_stat_t)ksp->ks_data;
731 
732 	/*
733 	 * Initialize all the statistics
734 	 */
735 	kstat_named_init(&e1000g_ksp->reset_count, "Reset Count",
736 	    KSTAT_DATA_ULONG);
737 
738 	kstat_named_init(&e1000g_ksp->rx_error, "Rx Error",
739 	    KSTAT_DATA_ULONG);
740 	kstat_named_init(&e1000g_ksp->rx_allocb_fail, "Rx Allocb Failure",
741 	    KSTAT_DATA_ULONG);
742 	kstat_named_init(&e1000g_ksp->rx_size_error, "Rx Size Error",
743 	    KSTAT_DATA_ULONG);
744 
745 	kstat_named_init(&e1000g_ksp->tx_no_desc, "Tx No Desc",
746 	    KSTAT_DATA_ULONG);
747 	kstat_named_init(&e1000g_ksp->tx_no_swpkt, "Tx No Buffer",
748 	    KSTAT_DATA_ULONG);
749 	kstat_named_init(&e1000g_ksp->tx_send_fail, "Tx Send Failure",
750 	    KSTAT_DATA_ULONG);
751 	kstat_named_init(&e1000g_ksp->tx_over_size, "Tx Pkt Over Size",
752 	    KSTAT_DATA_ULONG);
753 	kstat_named_init(&e1000g_ksp->tx_reschedule, "Tx Reschedule",
754 	    KSTAT_DATA_ULONG);
755 
756 	kstat_named_init(&e1000g_ksp->Mpc, "Recv_Missed_Packets",
757 	    KSTAT_DATA_ULONG);
758 	kstat_named_init(&e1000g_ksp->Symerrs, "Recv_Symbol_Errors",
759 	    KSTAT_DATA_ULONG);
760 	kstat_named_init(&e1000g_ksp->Rlec, "Recv_Length_Errors",
761 	    KSTAT_DATA_ULONG);
762 	kstat_named_init(&e1000g_ksp->Xonrxc, "XONs_Recvd",
763 	    KSTAT_DATA_ULONG);
764 	kstat_named_init(&e1000g_ksp->Xontxc, "XONs_Xmitd",
765 	    KSTAT_DATA_ULONG);
766 	kstat_named_init(&e1000g_ksp->Xoffrxc, "XOFFs_Recvd",
767 	    KSTAT_DATA_ULONG);
768 	kstat_named_init(&e1000g_ksp->Xofftxc, "XOFFs_Xmitd",
769 	    KSTAT_DATA_ULONG);
770 	kstat_named_init(&e1000g_ksp->Fcruc, "Recv_Unsupport_FC_Pkts",
771 	    KSTAT_DATA_ULONG);
772 #ifdef E1000G_DEBUG
773 	kstat_named_init(&e1000g_ksp->Prc64, "Pkts_Recvd_(  64b)",
774 	    KSTAT_DATA_ULONG);
775 	kstat_named_init(&e1000g_ksp->Prc127, "Pkts_Recvd_(  65- 127b)",
776 	    KSTAT_DATA_ULONG);
777 	kstat_named_init(&e1000g_ksp->Prc255, "Pkts_Recvd_( 127- 255b)",
778 	    KSTAT_DATA_ULONG);
779 	kstat_named_init(&e1000g_ksp->Prc511, "Pkts_Recvd_( 256- 511b)",
780 	    KSTAT_DATA_ULONG);
781 	kstat_named_init(&e1000g_ksp->Prc1023, "Pkts_Recvd_( 511-1023b)",
782 	    KSTAT_DATA_ULONG);
783 	kstat_named_init(&e1000g_ksp->Prc1522, "Pkts_Recvd_(1024-1522b)",
784 	    KSTAT_DATA_ULONG);
785 #endif
786 	kstat_named_init(&e1000g_ksp->Gprc, "Good_Pkts_Recvd",
787 	    KSTAT_DATA_ULONG);
788 	kstat_named_init(&e1000g_ksp->Gptc, "Good_Pkts_Xmitd",
789 	    KSTAT_DATA_ULONG);
790 	kstat_named_init(&e1000g_ksp->Gorl, "Good_Octets_Recvd_Lo",
791 	    KSTAT_DATA_ULONG);
792 	kstat_named_init(&e1000g_ksp->Gorh, "Good_Octets_Recvd_Hi",
793 	    KSTAT_DATA_ULONG);
794 	kstat_named_init(&e1000g_ksp->Gotl, "Good_Octets_Xmitd_Lo",
795 	    KSTAT_DATA_ULONG);
796 	kstat_named_init(&e1000g_ksp->Goth, "Good_Octets_Xmitd_Hi",
797 	    KSTAT_DATA_ULONG);
798 	kstat_named_init(&e1000g_ksp->Rfc, "Recv_Frag",
799 	    KSTAT_DATA_ULONG);
800 #ifdef E1000G_DEBUG
801 	kstat_named_init(&e1000g_ksp->Ptc64, "Pkts_Xmitd_(  64b)",
802 	    KSTAT_DATA_ULONG);
803 	kstat_named_init(&e1000g_ksp->Ptc127, "Pkts_Xmitd_(  65- 127b)",
804 	    KSTAT_DATA_ULONG);
805 	kstat_named_init(&e1000g_ksp->Ptc255, "Pkts_Xmitd_( 128- 255b)",
806 	    KSTAT_DATA_ULONG);
807 	kstat_named_init(&e1000g_ksp->Ptc511, "Pkts_Xmitd_( 255- 511b)",
808 	    KSTAT_DATA_ULONG);
809 	kstat_named_init(&e1000g_ksp->Ptc1023, "Pkts_Xmitd_( 512-1023b)",
810 	    KSTAT_DATA_ULONG);
811 	kstat_named_init(&e1000g_ksp->Ptc1522, "Pkts_Xmitd_(1024-1522b)",
812 	    KSTAT_DATA_ULONG);
813 #endif
814 	kstat_named_init(&e1000g_ksp->Tncrs, "Xmit_with_No_CRS",
815 	    KSTAT_DATA_ULONG);
816 	kstat_named_init(&e1000g_ksp->Tsctc, "Xmit_TCP_Seg_Contexts",
817 	    KSTAT_DATA_ULONG);
818 	kstat_named_init(&e1000g_ksp->Tsctfc, "Xmit_TCP_Seg_Contexts_Fail",
819 	    KSTAT_DATA_ULONG);
820 
821 #ifdef E1000G_DEBUG
822 	kstat_named_init(&e1000g_ksp->rx_none, "Rx No Data",
823 	    KSTAT_DATA_ULONG);
824 	kstat_named_init(&e1000g_ksp->rx_multi_desc, "Rx Span Multi Desc",
825 	    KSTAT_DATA_ULONG);
826 	kstat_named_init(&e1000g_ksp->rx_no_freepkt, "Rx Freelist Empty",
827 	    KSTAT_DATA_ULONG);
828 	kstat_named_init(&e1000g_ksp->rx_avail_freepkt, "Rx Freelist Avail",
829 	    KSTAT_DATA_ULONG);
830 
831 	kstat_named_init(&e1000g_ksp->tx_under_size, "Tx Pkt Under Size",
832 	    KSTAT_DATA_ULONG);
833 	kstat_named_init(&e1000g_ksp->tx_exceed_frags, "Tx Exceed Max Frags",
834 	    KSTAT_DATA_ULONG);
835 	kstat_named_init(&e1000g_ksp->tx_empty_frags, "Tx Empty Frags",
836 	    KSTAT_DATA_ULONG);
837 	kstat_named_init(&e1000g_ksp->tx_recycle, "Tx Recycle",
838 	    KSTAT_DATA_ULONG);
839 	kstat_named_init(&e1000g_ksp->tx_recycle_intr, "Tx Recycle Intr",
840 	    KSTAT_DATA_ULONG);
841 	kstat_named_init(&e1000g_ksp->tx_recycle_retry, "Tx Recycle Retry",
842 	    KSTAT_DATA_ULONG);
843 	kstat_named_init(&e1000g_ksp->tx_recycle_none, "Tx Recycled None",
844 	    KSTAT_DATA_ULONG);
845 	kstat_named_init(&e1000g_ksp->tx_copy, "Tx Send Copy",
846 	    KSTAT_DATA_ULONG);
847 	kstat_named_init(&e1000g_ksp->tx_bind, "Tx Send Bind",
848 	    KSTAT_DATA_ULONG);
849 	kstat_named_init(&e1000g_ksp->tx_multi_copy, "Tx Copy Multi Frags",
850 	    KSTAT_DATA_ULONG);
851 	kstat_named_init(&e1000g_ksp->tx_multi_cookie, "Tx Bind Multi Cookies",
852 	    KSTAT_DATA_ULONG);
853 	kstat_named_init(&e1000g_ksp->tx_lack_desc, "Tx Desc Insufficient",
854 	    KSTAT_DATA_ULONG);
855 #endif
856 
857 	/*
858 	 * Function to provide kernel stat update on demand
859 	 */
860 	ksp->ks_update = e1000g_update_stats;
861 
862 	/*
863 	 * Pointer into provider's raw statistics
864 	 */
865 	ksp->ks_private = (void *)Adapter;
866 
867 	/*
868 	 * Add kstat to systems kstat chain
869 	 */
870 	kstat_install(ksp);
871 
872 	return (DDI_SUCCESS);
873 }
874 
875 /*
876  * e1000g_read_phy_stat - read certain PHY statistics
877  *
878  * Certain statistics are read from MAC registers on some silicon types
879  * but are read from the PHY on other silicon types.  This routine
880  * handles that difference as needed.
881  */
882 static uint32_t
883 e1000g_read_phy_stat(struct e1000_hw *hw, int reg)
884 {
885 	uint16_t phy_low, phy_high;
886 	uint32_t val;
887 
888 	/* get statistic from PHY in these cases */
889 	if ((hw->phy.type == e1000_phy_82578) ||
890 	    (hw->phy.type == e1000_phy_82577)) {
891 
892 		switch (reg) {
893 		case E1000_SCC:
894 			(void) e1000_read_phy_reg(hw, HV_SCC_UPPER, &phy_high);
895 			(void) e1000_read_phy_reg(hw, HV_SCC_LOWER, &phy_low);
896 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
897 			break;
898 
899 		case E1000_MCC:
900 			(void) e1000_read_phy_reg(hw, HV_MCC_UPPER, &phy_high);
901 			(void) e1000_read_phy_reg(hw, HV_MCC_LOWER, &phy_low);
902 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
903 			break;
904 
905 		case E1000_ECOL:
906 			(void) e1000_read_phy_reg(hw, HV_ECOL_UPPER, &phy_high);
907 			(void) e1000_read_phy_reg(hw, HV_ECOL_LOWER, &phy_low);
908 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
909 			break;
910 
911 		case E1000_COLC:
912 			(void) e1000_read_phy_reg(hw, HV_COLC_UPPER, &phy_high);
913 			(void) e1000_read_phy_reg(hw, HV_COLC_LOWER, &phy_low);
914 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
915 			break;
916 
917 		case E1000_LATECOL:
918 			(void) e1000_read_phy_reg(hw, HV_LATECOL_UPPER,
919 			    &phy_high);
920 			(void) e1000_read_phy_reg(hw, HV_LATECOL_LOWER,
921 			    &phy_low);
922 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
923 			break;
924 
925 		case E1000_DC:
926 			(void) e1000_read_phy_reg(hw, HV_DC_UPPER, &phy_high);
927 			(void) e1000_read_phy_reg(hw, HV_DC_LOWER, &phy_low);
928 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
929 			break;
930 
931 		case E1000_TNCRS:
932 			(void) e1000_read_phy_reg(hw, HV_TNCRS_UPPER,
933 			    &phy_high);
934 			(void) e1000_read_phy_reg(hw, HV_TNCRS_LOWER,
935 			    &phy_low);
936 			val = ((uint32_t)phy_high << 16) | (uint32_t)phy_low;
937 			break;
938 
939 		default:
940 			break;
941 		}
942 
943 	/* get statistic from MAC otherwise */
944 	} else {
945 		val = E1000_READ_REG(hw, reg);
946 	}
947 
948 	return (val);
949 }
950 
951 /*
952  * Retrieve a value for one of the statistics for a particular rx ring
953  */
954 int
955 e1000g_rx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val)
956 {
957 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
958 	struct e1000g *Adapter = rx_ring->adapter;
959 	struct e1000_hw *hw = &Adapter->shared;
960 	uint32_t low_val, high_val;
961 
962 	rw_enter(&Adapter->chip_lock, RW_READER);
963 
964 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
965 		rw_exit(&Adapter->chip_lock);
966 		return (ECANCELED);
967 	}
968 
969 	switch (stat) {
970 	case MAC_STAT_RBYTES:
971 		/*
972 		 * The 64-bit register will reset whenever the upper
973 		 * 32 bits are read. So we need to read the lower
974 		 * 32 bits first, then read the upper 32 bits.
975 		 */
976 		low_val = E1000_READ_REG(hw, E1000_TORL);
977 		high_val = E1000_READ_REG(hw, E1000_TORH);
978 		Adapter->rbytes +=
979 		    (uint64_t)high_val << 32 | (uint64_t)low_val;
980 		*val = Adapter->rbytes;
981 		break;
982 
983 	case MAC_STAT_IPACKETS:
984 		Adapter->ipackets +=
985 		    E1000_READ_REG(hw, E1000_TPR);
986 		*val = Adapter->ipackets;
987 		break;
988 
989 	default:
990 		*val = 0;
991 		rw_exit(&Adapter->chip_lock);
992 		return (ENOTSUP);
993 	}
994 
995 	rw_exit(&Adapter->chip_lock);
996 
997 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
998 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_UNAFFECTED);
999 
1000 	return (0);
1001 }
1002