xref: /titanic_50/usr/src/uts/common/io/bge/bge_main2.c (revision 888e055994b8b0dc77b98c53dd97026237caec5d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 #include <sys/sdt.h>
29 #include <sys/mac_provider.h>
30 #include <sys/mac.h>
31 #include <sys/mac_flow.h>
32 
33 /*
34  * This is the string displayed by modinfo, etc.
35  */
36 static char bge_ident[] = "Broadcom Gb Ethernet";
37 /*
38  * Make sure you keep the version ID up to date!
39  */
40 static char bge_version[] = "Broadcom Gb Ethernet v1.12";
41 
42 /*
43  * Property names
44  */
45 static char debug_propname[] = "bge-debug-flags";
46 static char clsize_propname[] = "cache-line-size";
47 static char latency_propname[] = "latency-timer";
48 static char localmac_boolname[] = "local-mac-address?";
49 static char localmac_propname[] = "local-mac-address";
50 static char macaddr_propname[] = "mac-address";
51 static char subdev_propname[] = "subsystem-id";
52 static char subven_propname[] = "subsystem-vendor-id";
53 static char rxrings_propname[] = "bge-rx-rings";
54 static char txrings_propname[] = "bge-tx-rings";
55 static char fm_cap[] = "fm-capable";
56 static char default_mtu[] = "default_mtu";
57 
58 static int bge_add_intrs(bge_t *, int);
59 static void bge_rem_intrs(bge_t *);
60 static int bge_unicst_set(void *, const uint8_t *, int);
61 
62 /*
63  * Describes the chip's DMA engine
64  */
65 static ddi_dma_attr_t dma_attr = {
66 	DMA_ATTR_V0,			/* dma_attr version	*/
67 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
68 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
69 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
70 	0x0000000000000001ull,		/* dma_attr_align	*/
71 	0x00000FFF,			/* dma_attr_burstsizes	*/
72 	0x00000001,			/* dma_attr_minxfer	*/
73 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
74 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
75 	1,				/* dma_attr_sgllen 	*/
76 	0x00000001,			/* dma_attr_granular 	*/
77 	DDI_DMA_FLAGERR			/* dma_attr_flags */
78 };
79 
80 /*
81  * PIO access attributes for registers
82  */
83 static ddi_device_acc_attr_t bge_reg_accattr = {
84 	DDI_DEVICE_ATTR_V0,
85 	DDI_NEVERSWAP_ACC,
86 	DDI_STRICTORDER_ACC,
87 	DDI_FLAGERR_ACC
88 };
89 
90 /*
91  * DMA access attributes for descriptors: NOT to be byte swapped.
92  */
93 static ddi_device_acc_attr_t bge_desc_accattr = {
94 	DDI_DEVICE_ATTR_V0,
95 	DDI_NEVERSWAP_ACC,
96 	DDI_STRICTORDER_ACC,
97 	DDI_FLAGERR_ACC
98 };
99 
100 /*
101  * DMA access attributes for data: NOT to be byte swapped.
102  */
103 static ddi_device_acc_attr_t bge_data_accattr = {
104 	DDI_DEVICE_ATTR_V0,
105 	DDI_NEVERSWAP_ACC,
106 	DDI_STRICTORDER_ACC
107 };
108 
109 static int		bge_m_start(void *);
110 static void		bge_m_stop(void *);
111 static int		bge_m_promisc(void *, boolean_t);
112 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
113 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
114 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
115 static int		bge_unicst_set(void *, const uint8_t *,
116     int);
117 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
118     uint_t, const void *);
119 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
120     uint_t, uint_t, void *, uint_t *);
121 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
122     const void *);
123 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
124     uint_t, void *);
125 
126 #define	BGE_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
127 
128 static mac_callbacks_t bge_m_callbacks = {
129 	BGE_M_CALLBACK_FLAGS,
130 	bge_m_stat,
131 	bge_m_start,
132 	bge_m_stop,
133 	bge_m_promisc,
134 	bge_m_multicst,
135 	NULL,
136 	bge_m_tx,
137 	bge_m_ioctl,
138 	bge_m_getcapab,
139 	NULL,
140 	NULL,
141 	bge_m_setprop,
142 	bge_m_getprop
143 };
144 
145 mac_priv_prop_t bge_priv_prop[] = {
146 	{"_adv_asym_pause_cap", MAC_PROP_PERM_RW},
147 	{"_adv_pause_cap", MAC_PROP_PERM_RW}
148 };
149 
150 #define	BGE_MAX_PRIV_PROPS \
151 	(sizeof (bge_priv_prop) / sizeof (mac_priv_prop_t))
152 
153 uint8_t zero_addr[6] = {0, 0, 0, 0, 0, 0};
154 /*
155  * ========== Transmit and receive ring reinitialisation ==========
156  */
157 
158 /*
159  * These <reinit> routines each reset the specified ring to an initial
160  * state, assuming that the corresponding <init> routine has already
161  * been called exactly once.
162  */
163 
164 static void
165 bge_reinit_send_ring(send_ring_t *srp)
166 {
167 	bge_queue_t *txbuf_queue;
168 	bge_queue_item_t *txbuf_head;
169 	sw_txbuf_t *txbuf;
170 	sw_sbd_t *ssbdp;
171 	uint32_t slot;
172 
173 	/*
174 	 * Reinitialise control variables ...
175 	 */
176 	srp->tx_flow = 0;
177 	srp->tx_next = 0;
178 	srp->txfill_next = 0;
179 	srp->tx_free = srp->desc.nslots;
180 	ASSERT(mutex_owned(srp->tc_lock));
181 	srp->tc_next = 0;
182 	srp->txpkt_next = 0;
183 	srp->tx_block = 0;
184 	srp->tx_nobd = 0;
185 	srp->tx_nobuf = 0;
186 
187 	/*
188 	 * Initialize the tx buffer push queue
189 	 */
190 	mutex_enter(srp->freetxbuf_lock);
191 	mutex_enter(srp->txbuf_lock);
192 	txbuf_queue = &srp->freetxbuf_queue;
193 	txbuf_queue->head = NULL;
194 	txbuf_queue->count = 0;
195 	txbuf_queue->lock = srp->freetxbuf_lock;
196 	srp->txbuf_push_queue = txbuf_queue;
197 
198 	/*
199 	 * Initialize the tx buffer pop queue
200 	 */
201 	txbuf_queue = &srp->txbuf_queue;
202 	txbuf_queue->head = NULL;
203 	txbuf_queue->count = 0;
204 	txbuf_queue->lock = srp->txbuf_lock;
205 	srp->txbuf_pop_queue = txbuf_queue;
206 	txbuf_head = srp->txbuf_head;
207 	txbuf = srp->txbuf;
208 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
209 		txbuf_head->item = txbuf;
210 		txbuf_head->next = txbuf_queue->head;
211 		txbuf_queue->head = txbuf_head;
212 		txbuf_queue->count++;
213 		txbuf++;
214 		txbuf_head++;
215 	}
216 	mutex_exit(srp->txbuf_lock);
217 	mutex_exit(srp->freetxbuf_lock);
218 
219 	/*
220 	 * Zero and sync all the h/w Send Buffer Descriptors
221 	 */
222 	DMA_ZERO(srp->desc);
223 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
224 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
225 	ssbdp = srp->sw_sbds;
226 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
227 		ssbdp->pbuf = NULL;
228 }
229 
230 static void
231 bge_reinit_recv_ring(recv_ring_t *rrp)
232 {
233 	/*
234 	 * Reinitialise control variables ...
235 	 */
236 	rrp->rx_next = 0;
237 }
238 
239 static void
240 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
241 {
242 	bge_rbd_t *hw_rbd_p;
243 	sw_rbd_t *srbdp;
244 	uint32_t bufsize;
245 	uint32_t nslots;
246 	uint32_t slot;
247 
248 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
249 		RBD_FLAG_STD_RING,
250 		RBD_FLAG_JUMBO_RING,
251 		RBD_FLAG_MINI_RING
252 	};
253 
254 	/*
255 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
256 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
257 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
258 	 * should be zeroed, and so don't need to be set up specifically
259 	 * once the whole area has been cleared.
260 	 */
261 	DMA_ZERO(brp->desc);
262 
263 	hw_rbd_p = DMA_VPTR(brp->desc);
264 	nslots = brp->desc.nslots;
265 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
266 	bufsize = brp->buf[0].size;
267 	srbdp = brp->sw_rbds;
268 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
269 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
270 		hw_rbd_p->index = (uint16_t)slot;
271 		hw_rbd_p->len = (uint16_t)bufsize;
272 		hw_rbd_p->opaque = srbdp->pbuf.token;
273 		hw_rbd_p->flags |= ring_type_flag[ring];
274 	}
275 
276 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
277 
278 	/*
279 	 * Finally, reinitialise the ring control variables ...
280 	 */
281 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
282 }
283 
284 /*
285  * Reinitialize all rings
286  */
287 static void
288 bge_reinit_rings(bge_t *bgep)
289 {
290 	uint32_t ring;
291 
292 	ASSERT(mutex_owned(bgep->genlock));
293 
294 	/*
295 	 * Send Rings ...
296 	 */
297 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
298 		bge_reinit_send_ring(&bgep->send[ring]);
299 
300 	/*
301 	 * Receive Return Rings ...
302 	 */
303 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
304 		bge_reinit_recv_ring(&bgep->recv[ring]);
305 
306 	/*
307 	 * Receive Producer Rings ...
308 	 */
309 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
310 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
311 }
312 
313 /*
314  * ========== Internal state management entry points ==========
315  */
316 
317 #undef	BGE_DBG
318 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
319 
320 /*
321  * These routines provide all the functionality required by the
322  * corresponding GLD entry points, but don't update the GLD state
323  * so they can be called internally without disturbing our record
324  * of what GLD thinks we should be doing ...
325  */
326 
327 /*
328  *	bge_reset() -- reset h/w & rings to initial state
329  */
330 static int
331 #ifdef BGE_IPMI_ASF
332 bge_reset(bge_t *bgep, uint_t asf_mode)
333 #else
334 bge_reset(bge_t *bgep)
335 #endif
336 {
337 	uint32_t	ring;
338 	int retval;
339 
340 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
341 
342 	ASSERT(mutex_owned(bgep->genlock));
343 
344 	/*
345 	 * Grab all the other mutexes in the world (this should
346 	 * ensure no other threads are manipulating driver state)
347 	 */
348 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
349 		mutex_enter(bgep->recv[ring].rx_lock);
350 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
351 		mutex_enter(bgep->buff[ring].rf_lock);
352 	rw_enter(bgep->errlock, RW_WRITER);
353 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
354 		mutex_enter(bgep->send[ring].tx_lock);
355 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
356 		mutex_enter(bgep->send[ring].tc_lock);
357 
358 #ifdef BGE_IPMI_ASF
359 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
360 #else
361 	retval = bge_chip_reset(bgep, B_TRUE);
362 #endif
363 	bge_reinit_rings(bgep);
364 
365 	/*
366 	 * Free the world ...
367 	 */
368 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
369 		mutex_exit(bgep->send[ring].tc_lock);
370 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
371 		mutex_exit(bgep->send[ring].tx_lock);
372 	rw_exit(bgep->errlock);
373 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
374 		mutex_exit(bgep->buff[ring].rf_lock);
375 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
376 		mutex_exit(bgep->recv[ring].rx_lock);
377 
378 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
379 	return (retval);
380 }
381 
382 /*
383  *	bge_stop() -- stop processing, don't reset h/w or rings
384  */
385 static void
386 bge_stop(bge_t *bgep)
387 {
388 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
389 
390 	ASSERT(mutex_owned(bgep->genlock));
391 
392 #ifdef BGE_IPMI_ASF
393 	if (bgep->asf_enabled) {
394 		bgep->asf_pseudostop = B_TRUE;
395 	} else {
396 #endif
397 		bge_chip_stop(bgep, B_FALSE);
398 #ifdef BGE_IPMI_ASF
399 	}
400 #endif
401 
402 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
403 }
404 
405 /*
406  *	bge_start() -- start transmitting/receiving
407  */
408 static int
409 bge_start(bge_t *bgep, boolean_t reset_phys)
410 {
411 	int retval;
412 
413 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
414 
415 	ASSERT(mutex_owned(bgep->genlock));
416 
417 	/*
418 	 * Start chip processing, including enabling interrupts
419 	 */
420 	retval = bge_chip_start(bgep, reset_phys);
421 
422 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
423 	return (retval);
424 }
425 
426 /*
427  * bge_restart - restart transmitting/receiving after error or suspend
428  */
429 int
430 bge_restart(bge_t *bgep, boolean_t reset_phys)
431 {
432 	int retval = DDI_SUCCESS;
433 	ASSERT(mutex_owned(bgep->genlock));
434 
435 #ifdef BGE_IPMI_ASF
436 	if (bgep->asf_enabled) {
437 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
438 			retval = DDI_FAILURE;
439 	} else
440 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
441 			retval = DDI_FAILURE;
442 #else
443 	if (bge_reset(bgep) != DDI_SUCCESS)
444 		retval = DDI_FAILURE;
445 #endif
446 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
447 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
448 			retval = DDI_FAILURE;
449 		bgep->watchdog = 0;
450 		ddi_trigger_softintr(bgep->drain_id);
451 	}
452 
453 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
454 	return (retval);
455 }
456 
457 
458 /*
459  * ========== Nemo-required management entry points ==========
460  */
461 
462 #undef	BGE_DBG
463 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
464 
465 /*
466  *	bge_m_stop() -- stop transmitting/receiving
467  */
468 static void
469 bge_m_stop(void *arg)
470 {
471 	bge_t *bgep = arg;		/* private device info	*/
472 	send_ring_t *srp;
473 	uint32_t ring;
474 
475 	BGE_TRACE(("bge_m_stop($%p)", arg));
476 
477 	/*
478 	 * Just stop processing, then record new GLD state
479 	 */
480 	mutex_enter(bgep->genlock);
481 	if (!(bgep->progress & PROGRESS_INTR)) {
482 		/* can happen during autorecovery */
483 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
484 	} else
485 		bge_stop(bgep);
486 
487 	bgep->link_update_timer = 0;
488 	bgep->link_state = LINK_STATE_UNKNOWN;
489 	mac_link_update(bgep->mh, bgep->link_state);
490 
491 	/*
492 	 * Free the possible tx buffers allocated in tx process.
493 	 */
494 #ifdef BGE_IPMI_ASF
495 	if (!bgep->asf_pseudostop)
496 #endif
497 	{
498 		rw_enter(bgep->errlock, RW_WRITER);
499 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
500 			srp = &bgep->send[ring];
501 			mutex_enter(srp->tx_lock);
502 			if (srp->tx_array > 1)
503 				bge_free_txbuf_arrays(srp);
504 			mutex_exit(srp->tx_lock);
505 		}
506 		rw_exit(bgep->errlock);
507 	}
508 	bgep->bge_mac_state = BGE_MAC_STOPPED;
509 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
510 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
511 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
512 	mutex_exit(bgep->genlock);
513 }
514 
515 /*
516  *	bge_m_start() -- start transmitting/receiving
517  */
518 static int
519 bge_m_start(void *arg)
520 {
521 	bge_t *bgep = arg;		/* private device info	*/
522 
523 	BGE_TRACE(("bge_m_start($%p)", arg));
524 
525 	/*
526 	 * Start processing and record new GLD state
527 	 */
528 	mutex_enter(bgep->genlock);
529 	if (!(bgep->progress & PROGRESS_INTR)) {
530 		/* can happen during autorecovery */
531 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
532 		mutex_exit(bgep->genlock);
533 		return (EIO);
534 	}
535 #ifdef BGE_IPMI_ASF
536 	if (bgep->asf_enabled) {
537 		if ((bgep->asf_status == ASF_STAT_RUN) &&
538 		    (bgep->asf_pseudostop)) {
539 			bgep->bge_mac_state = BGE_MAC_STARTED;
540 			mutex_exit(bgep->genlock);
541 			return (0);
542 		}
543 	}
544 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
545 #else
546 	if (bge_reset(bgep) != DDI_SUCCESS) {
547 #endif
548 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
549 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
550 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
551 		mutex_exit(bgep->genlock);
552 		return (EIO);
553 	}
554 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
555 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
556 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
557 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
558 		mutex_exit(bgep->genlock);
559 		return (EIO);
560 	}
561 	bgep->watchdog = 0;
562 	bgep->bge_mac_state = BGE_MAC_STARTED;
563 	BGE_DEBUG(("bge_m_start($%p) done", arg));
564 
565 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
566 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
567 		mutex_exit(bgep->genlock);
568 		return (EIO);
569 	}
570 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
571 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
572 		mutex_exit(bgep->genlock);
573 		return (EIO);
574 	}
575 #ifdef BGE_IPMI_ASF
576 	if (bgep->asf_enabled) {
577 		if (bgep->asf_status != ASF_STAT_RUN) {
578 			/* start ASF heart beat */
579 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
580 			    (void *)bgep,
581 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
582 			bgep->asf_status = ASF_STAT_RUN;
583 		}
584 	}
585 #endif
586 	mutex_exit(bgep->genlock);
587 
588 	return (0);
589 }
590 
591 /*
592  *	bge_unicst_set() -- set the physical network address
593  */
594 static int
595 bge_unicst_set(void *arg, const uint8_t *macaddr, int slot)
596 {
597 	bge_t *bgep = arg;		/* private device info	*/
598 
599 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
600 	    ether_sprintf((void *)macaddr)));
601 	/*
602 	 * Remember the new current address in the driver state
603 	 * Sync the chip's idea of the address too ...
604 	 */
605 	mutex_enter(bgep->genlock);
606 	if (!(bgep->progress & PROGRESS_INTR)) {
607 		/* can happen during autorecovery */
608 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
609 		mutex_exit(bgep->genlock);
610 		return (EIO);
611 	}
612 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
613 #ifdef BGE_IPMI_ASF
614 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
615 #else
616 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
617 #endif
618 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
619 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
620 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
621 		mutex_exit(bgep->genlock);
622 		return (EIO);
623 	}
624 #ifdef BGE_IPMI_ASF
625 	if (bgep->asf_enabled) {
626 		/*
627 		 * The above bge_chip_sync() function wrote the ethernet MAC
628 		 * addresses registers which destroyed the IPMI/ASF sideband.
629 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
630 		 */
631 		if (bgep->asf_status == ASF_STAT_RUN) {
632 			/*
633 			 * We must stop ASF heart beat before bge_chip_stop(),
634 			 * otherwise some computers (ex. IBM HS20 blade server)
635 			 * may crash.
636 			 */
637 			bge_asf_update_status(bgep);
638 			bge_asf_stop_timer(bgep);
639 			bgep->asf_status = ASF_STAT_STOP;
640 
641 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
642 		}
643 		bge_chip_stop(bgep, B_FALSE);
644 
645 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
646 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
647 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
648 			ddi_fm_service_impact(bgep->devinfo,
649 			    DDI_SERVICE_DEGRADED);
650 			mutex_exit(bgep->genlock);
651 			return (EIO);
652 		}
653 
654 		/*
655 		 * Start our ASF heartbeat counter as soon as possible.
656 		 */
657 		if (bgep->asf_status != ASF_STAT_RUN) {
658 			/* start ASF heart beat */
659 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
660 			    (void *)bgep,
661 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
662 			bgep->asf_status = ASF_STAT_RUN;
663 		}
664 	}
665 #endif
666 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
667 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
668 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
669 		mutex_exit(bgep->genlock);
670 		return (EIO);
671 	}
672 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
673 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
674 		mutex_exit(bgep->genlock);
675 		return (EIO);
676 	}
677 	mutex_exit(bgep->genlock);
678 
679 	return (0);
680 }
681 
682 extern void bge_wake_factotum(bge_t *);
683 
684 static boolean_t
685 bge_param_locked(mac_prop_id_t pr_num)
686 {
687 	/*
688 	 * All adv_* parameters are locked (read-only) while
689 	 * the device is in any sort of loopback mode ...
690 	 */
691 	switch (pr_num) {
692 		case MAC_PROP_ADV_1000FDX_CAP:
693 		case MAC_PROP_EN_1000FDX_CAP:
694 		case MAC_PROP_ADV_1000HDX_CAP:
695 		case MAC_PROP_EN_1000HDX_CAP:
696 		case MAC_PROP_ADV_100FDX_CAP:
697 		case MAC_PROP_EN_100FDX_CAP:
698 		case MAC_PROP_ADV_100HDX_CAP:
699 		case MAC_PROP_EN_100HDX_CAP:
700 		case MAC_PROP_ADV_10FDX_CAP:
701 		case MAC_PROP_EN_10FDX_CAP:
702 		case MAC_PROP_ADV_10HDX_CAP:
703 		case MAC_PROP_EN_10HDX_CAP:
704 		case MAC_PROP_AUTONEG:
705 		case MAC_PROP_FLOWCTRL:
706 			return (B_TRUE);
707 	}
708 	return (B_FALSE);
709 }
710 /*
711  * callback functions for set/get of properties
712  */
713 static int
714 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
715     uint_t pr_valsize, const void *pr_val)
716 {
717 	bge_t *bgep = barg;
718 	int err = 0;
719 	uint32_t cur_mtu, new_mtu;
720 	uint_t	maxsdu;
721 	link_flowctrl_t fl;
722 
723 	mutex_enter(bgep->genlock);
724 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
725 	    bge_param_locked(pr_num)) {
726 		/*
727 		 * All adv_* parameters are locked (read-only)
728 		 * while the device is in any sort of loopback mode.
729 		 */
730 		mutex_exit(bgep->genlock);
731 		return (EBUSY);
732 	}
733 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
734 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
735 	    (pr_num == MAC_PROP_EN_100HDX_CAP) ||
736 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
737 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) {
738 		/*
739 		 * these properties are read/write on copper,
740 		 * read-only and 0 on serdes
741 		 */
742 		mutex_exit(bgep->genlock);
743 		return (ENOTSUP);
744 	}
745 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
746 	    ((pr_num == MAC_PROP_EN_1000FDX_CAP) ||
747 	    (pr_num == MAC_PROP_EN_1000HDX_CAP))) {
748 		mutex_exit(bgep->genlock);
749 		return (ENOTSUP);
750 	}
751 
752 	switch (pr_num) {
753 		case MAC_PROP_EN_1000FDX_CAP:
754 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
755 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
756 			goto reprogram;
757 		case MAC_PROP_EN_1000HDX_CAP:
758 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
759 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
760 			goto reprogram;
761 		case MAC_PROP_EN_100FDX_CAP:
762 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
763 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
764 			goto reprogram;
765 		case MAC_PROP_EN_100HDX_CAP:
766 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
767 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
768 			goto reprogram;
769 		case MAC_PROP_EN_10FDX_CAP:
770 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
771 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
772 			goto reprogram;
773 		case MAC_PROP_EN_10HDX_CAP:
774 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
775 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
776 reprogram:
777 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
778 				err = EINVAL;
779 			break;
780 		case MAC_PROP_ADV_1000FDX_CAP:
781 		case MAC_PROP_ADV_1000HDX_CAP:
782 		case MAC_PROP_ADV_100FDX_CAP:
783 		case MAC_PROP_ADV_100HDX_CAP:
784 		case MAC_PROP_ADV_10FDX_CAP:
785 		case MAC_PROP_ADV_10HDX_CAP:
786 		case MAC_PROP_STATUS:
787 		case MAC_PROP_SPEED:
788 		case MAC_PROP_DUPLEX:
789 			err = ENOTSUP; /* read-only prop. Can't set this */
790 			break;
791 		case MAC_PROP_AUTONEG:
792 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
793 			if (bge_reprogram(bgep) == IOC_INVAL)
794 				err = EINVAL;
795 			break;
796 		case MAC_PROP_MTU:
797 			cur_mtu = bgep->chipid.default_mtu;
798 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
799 
800 			if (new_mtu == cur_mtu) {
801 				err = 0;
802 				break;
803 			}
804 			if (new_mtu < BGE_DEFAULT_MTU ||
805 			    new_mtu > BGE_MAXIMUM_MTU) {
806 				err = EINVAL;
807 				break;
808 			}
809 			if ((new_mtu > BGE_DEFAULT_MTU) &&
810 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
811 				err = EINVAL;
812 				break;
813 			}
814 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
815 				err = EBUSY;
816 				break;
817 			}
818 			bgep->chipid.default_mtu = new_mtu;
819 			if (bge_chip_id_init(bgep)) {
820 				err = EINVAL;
821 				break;
822 			}
823 			maxsdu = bgep->chipid.ethmax_size -
824 			    sizeof (struct ether_header);
825 			err = mac_maxsdu_update(bgep->mh, maxsdu);
826 			if (err == 0) {
827 				bgep->bge_dma_error = B_TRUE;
828 				bgep->manual_reset = B_TRUE;
829 				bge_chip_stop(bgep, B_TRUE);
830 				bge_wake_factotum(bgep);
831 				err = 0;
832 			}
833 			break;
834 		case MAC_PROP_FLOWCTRL:
835 			bcopy(pr_val, &fl, sizeof (fl));
836 			switch (fl) {
837 			default:
838 				err = ENOTSUP;
839 				break;
840 			case LINK_FLOWCTRL_NONE:
841 				bgep->param_adv_pause = 0;
842 				bgep->param_adv_asym_pause = 0;
843 
844 				bgep->param_link_rx_pause = B_FALSE;
845 				bgep->param_link_tx_pause = B_FALSE;
846 				break;
847 			case LINK_FLOWCTRL_RX:
848 				bgep->param_adv_pause = 1;
849 				bgep->param_adv_asym_pause = 1;
850 
851 				bgep->param_link_rx_pause = B_TRUE;
852 				bgep->param_link_tx_pause = B_FALSE;
853 				break;
854 			case LINK_FLOWCTRL_TX:
855 				bgep->param_adv_pause = 0;
856 				bgep->param_adv_asym_pause = 1;
857 
858 				bgep->param_link_rx_pause = B_FALSE;
859 				bgep->param_link_tx_pause = B_TRUE;
860 				break;
861 			case LINK_FLOWCTRL_BI:
862 				bgep->param_adv_pause = 1;
863 				bgep->param_adv_asym_pause = 0;
864 
865 				bgep->param_link_rx_pause = B_TRUE;
866 				bgep->param_link_tx_pause = B_TRUE;
867 				break;
868 			}
869 
870 			if (err == 0) {
871 				if (bge_reprogram(bgep) == IOC_INVAL)
872 					err = EINVAL;
873 			}
874 
875 			break;
876 		case MAC_PROP_PRIVATE:
877 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
878 			    pr_val);
879 			break;
880 		default:
881 			err = ENOTSUP;
882 			break;
883 	}
884 	mutex_exit(bgep->genlock);
885 	return (err);
886 }
887 
888 /* ARGSUSED */
889 static int
890 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
891     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
892 {
893 	bge_t *bgep = barg;
894 	int err = 0;
895 	link_flowctrl_t fl;
896 	uint64_t speed;
897 	int flags = bgep->chipid.flags;
898 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
899 
900 	if (pr_valsize == 0)
901 		return (EINVAL);
902 	bzero(pr_val, pr_valsize);
903 
904 	*perm = MAC_PROP_PERM_RW;
905 
906 	mutex_enter(bgep->genlock);
907 	if ((bgep->param_loop_mode != BGE_LOOP_NONE &&
908 	    bge_param_locked(pr_num)) ||
909 	    ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
910 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
911 	    (pr_num == MAC_PROP_EN_100HDX_CAP) ||
912 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
913 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) ||
914 	    (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
915 	    ((pr_num == MAC_PROP_EN_1000FDX_CAP) ||
916 	    (pr_num == MAC_PROP_EN_1000HDX_CAP))))
917 		*perm = MAC_PROP_PERM_READ;
918 	mutex_exit(bgep->genlock);
919 
920 	switch (pr_num) {
921 		case MAC_PROP_DUPLEX:
922 			*perm = MAC_PROP_PERM_READ;
923 			if (pr_valsize < sizeof (link_duplex_t))
924 				return (EINVAL);
925 			bcopy(&bgep->param_link_duplex, pr_val,
926 			    sizeof (link_duplex_t));
927 			break;
928 		case MAC_PROP_SPEED:
929 			*perm = MAC_PROP_PERM_READ;
930 			if (pr_valsize < sizeof (speed))
931 				return (EINVAL);
932 			speed = bgep->param_link_speed * 1000000ull;
933 			bcopy(&speed, pr_val, sizeof (speed));
934 			break;
935 		case MAC_PROP_STATUS:
936 			*perm = MAC_PROP_PERM_READ;
937 			if (pr_valsize < sizeof (link_state_t))
938 				return (EINVAL);
939 			bcopy(&bgep->link_state, pr_val,
940 			    sizeof (link_state_t));
941 			break;
942 		case MAC_PROP_AUTONEG:
943 			if (is_default)
944 				*(uint8_t *)pr_val = 1;
945 			else
946 				*(uint8_t *)pr_val = bgep->param_adv_autoneg;
947 			break;
948 		case MAC_PROP_FLOWCTRL:
949 			if (pr_valsize < sizeof (fl))
950 				return (EINVAL);
951 			if (is_default) {
952 				fl = LINK_FLOWCTRL_BI;
953 				bcopy(&fl, pr_val, sizeof (fl));
954 				break;
955 			}
956 
957 			if (bgep->param_link_rx_pause &&
958 			    !bgep->param_link_tx_pause)
959 				fl = LINK_FLOWCTRL_RX;
960 
961 			if (!bgep->param_link_rx_pause &&
962 			    !bgep->param_link_tx_pause)
963 				fl = LINK_FLOWCTRL_NONE;
964 
965 			if (!bgep->param_link_rx_pause &&
966 			    bgep->param_link_tx_pause)
967 				fl = LINK_FLOWCTRL_TX;
968 
969 			if (bgep->param_link_rx_pause &&
970 			    bgep->param_link_tx_pause)
971 				fl = LINK_FLOWCTRL_BI;
972 			bcopy(&fl, pr_val, sizeof (fl));
973 			break;
974 		case MAC_PROP_ADV_1000FDX_CAP:
975 			*perm = MAC_PROP_PERM_READ;
976 			if (is_default) {
977 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
978 					*(uint8_t *)pr_val = 0;
979 				else
980 					*(uint8_t *)pr_val = 1;
981 			}
982 			else
983 				*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
984 			break;
985 		case MAC_PROP_EN_1000FDX_CAP:
986 			if (is_default) {
987 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
988 					*(uint8_t *)pr_val = 0;
989 				else
990 					*(uint8_t *)pr_val = 1;
991 			}
992 			else
993 				*(uint8_t *)pr_val = bgep->param_en_1000fdx;
994 			break;
995 		case MAC_PROP_ADV_1000HDX_CAP:
996 			*perm = MAC_PROP_PERM_READ;
997 			if (is_default) {
998 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
999 					*(uint8_t *)pr_val = 0;
1000 				else
1001 					*(uint8_t *)pr_val = 1;
1002 			}
1003 			else
1004 				*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
1005 			break;
1006 		case MAC_PROP_EN_1000HDX_CAP:
1007 			if (is_default) {
1008 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1009 					*(uint8_t *)pr_val = 0;
1010 				else
1011 					*(uint8_t *)pr_val = 1;
1012 			}
1013 			else
1014 				*(uint8_t *)pr_val = bgep->param_en_1000hdx;
1015 			break;
1016 		case MAC_PROP_ADV_100FDX_CAP:
1017 			*perm = MAC_PROP_PERM_READ;
1018 			if (is_default) {
1019 				*(uint8_t *)pr_val =
1020 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1021 			} else {
1022 				*(uint8_t *)pr_val = bgep->param_adv_100fdx;
1023 			}
1024 			break;
1025 		case MAC_PROP_EN_100FDX_CAP:
1026 			if (is_default) {
1027 				*(uint8_t *)pr_val =
1028 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1029 			} else {
1030 				*(uint8_t *)pr_val = bgep->param_en_100fdx;
1031 			}
1032 			break;
1033 		case MAC_PROP_ADV_100HDX_CAP:
1034 			*perm = MAC_PROP_PERM_READ;
1035 			if (is_default) {
1036 				*(uint8_t *)pr_val =
1037 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1038 			} else {
1039 				*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1040 			}
1041 			break;
1042 		case MAC_PROP_EN_100HDX_CAP:
1043 			if (is_default) {
1044 				*(uint8_t *)pr_val =
1045 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1046 			} else {
1047 				*(uint8_t *)pr_val = bgep->param_en_100hdx;
1048 			}
1049 			break;
1050 		case MAC_PROP_ADV_10FDX_CAP:
1051 			*perm = MAC_PROP_PERM_READ;
1052 			if (is_default) {
1053 				*(uint8_t *)pr_val =
1054 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1055 			} else {
1056 				*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1057 			}
1058 			break;
1059 		case MAC_PROP_EN_10FDX_CAP:
1060 			if (is_default) {
1061 				*(uint8_t *)pr_val =
1062 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1063 			} else {
1064 				*(uint8_t *)pr_val = bgep->param_en_10fdx;
1065 			}
1066 			break;
1067 		case MAC_PROP_ADV_10HDX_CAP:
1068 			*perm = MAC_PROP_PERM_READ;
1069 			if (is_default) {
1070 				*(uint8_t *)pr_val =
1071 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1072 			} else {
1073 				*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1074 			}
1075 			break;
1076 		case MAC_PROP_EN_10HDX_CAP:
1077 			if (is_default) {
1078 				*(uint8_t *)pr_val =
1079 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1080 			} else {
1081 				*(uint8_t *)pr_val = bgep->param_en_10hdx;
1082 			}
1083 			break;
1084 		case MAC_PROP_ADV_100T4_CAP:
1085 		case MAC_PROP_EN_100T4_CAP:
1086 			*perm = MAC_PROP_PERM_READ;
1087 			*(uint8_t *)pr_val = 0;
1088 			break;
1089 		case MAC_PROP_PRIVATE:
1090 			err = bge_get_priv_prop(bgep, pr_name, pr_flags,
1091 			    pr_valsize, pr_val);
1092 			return (err);
1093 		case MAC_PROP_MTU: {
1094 			mac_propval_range_t range;
1095 
1096 			if (!(pr_flags & MAC_PROP_POSSIBLE))
1097 				return (ENOTSUP);
1098 			if (pr_valsize < sizeof (mac_propval_range_t))
1099 				return (EINVAL);
1100 			range.mpr_count = 1;
1101 			range.mpr_type = MAC_PROPVAL_UINT32;
1102 			range.range_uint32[0].mpur_min =
1103 			    range.range_uint32[0].mpur_max = BGE_DEFAULT_MTU;
1104 			if (!(flags & CHIP_FLAG_NO_JUMBO))
1105 				range.range_uint32[0].mpur_max =
1106 				    BGE_MAXIMUM_MTU;
1107 			bcopy(&range, pr_val, sizeof (range));
1108 			break;
1109 		}
1110 		default:
1111 			return (ENOTSUP);
1112 	}
1113 	return (0);
1114 }
1115 
1116 /* ARGSUSED */
1117 static int
1118 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1119     const void *pr_val)
1120 {
1121 	int err = 0;
1122 	long result;
1123 
1124 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1125 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1126 		if (result > 1 || result < 0) {
1127 			err = EINVAL;
1128 		} else {
1129 			bgep->param_adv_pause = (uint32_t)result;
1130 			if (bge_reprogram(bgep) == IOC_INVAL)
1131 				err = EINVAL;
1132 		}
1133 		return (err);
1134 	}
1135 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1136 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1137 		if (result > 1 || result < 0) {
1138 			err = EINVAL;
1139 		} else {
1140 			bgep->param_adv_asym_pause = (uint32_t)result;
1141 			if (bge_reprogram(bgep) == IOC_INVAL)
1142 				err = EINVAL;
1143 		}
1144 		return (err);
1145 	}
1146 	if (strcmp(pr_name, "_drain_max") == 0) {
1147 
1148 		/*
1149 		 * on the Tx side, we need to update the h/w register for
1150 		 * real packet transmission per packet. The drain_max parameter
1151 		 * is used to reduce the register access. This parameter
1152 		 * controls the max number of packets that we will hold before
1153 		 * updating the bge h/w to trigger h/w transmit. The bge
1154 		 * chipset usually has a max of 512 Tx descriptors, thus
1155 		 * the upper bound on drain_max is 512.
1156 		 */
1157 		if (pr_val == NULL) {
1158 			err = EINVAL;
1159 			return (err);
1160 		}
1161 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1162 		if (result > 512 || result < 1)
1163 			err = EINVAL;
1164 		else {
1165 			bgep->param_drain_max = (uint32_t)result;
1166 			if (bge_reprogram(bgep) == IOC_INVAL)
1167 				err = EINVAL;
1168 		}
1169 		return (err);
1170 	}
1171 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1172 
1173 		if (pr_val == NULL) {
1174 			err = EINVAL;
1175 			return (err);
1176 		}
1177 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1178 		if (result > 7 || result < 0)
1179 			err = EINVAL;
1180 		else {
1181 			bgep->param_msi_cnt = (uint32_t)result;
1182 			if (bge_reprogram(bgep) == IOC_INVAL)
1183 				err = EINVAL;
1184 		}
1185 		return (err);
1186 	}
1187 	if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0) {
1188 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1189 			return (EINVAL);
1190 		if (result < 0)
1191 			err = EINVAL;
1192 		else {
1193 			bgep->chipid.rx_ticks_norm = (uint32_t)result;
1194 			bge_chip_coalesce_update(bgep);
1195 		}
1196 		return (err);
1197 	}
1198 
1199 	if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0) {
1200 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1201 			return (EINVAL);
1202 
1203 		if (result < 0)
1204 			err = EINVAL;
1205 		else {
1206 			bgep->chipid.rx_count_norm = (uint32_t)result;
1207 			bge_chip_coalesce_update(bgep);
1208 		}
1209 		return (err);
1210 	}
1211 	if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0) {
1212 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1213 			return (EINVAL);
1214 		if (result < 0)
1215 			err = EINVAL;
1216 		else {
1217 			bgep->chipid.tx_ticks_norm = (uint32_t)result;
1218 			bge_chip_coalesce_update(bgep);
1219 		}
1220 		return (err);
1221 	}
1222 
1223 	if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0) {
1224 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1225 			return (EINVAL);
1226 
1227 		if (result < 0)
1228 			err = EINVAL;
1229 		else {
1230 			bgep->chipid.tx_count_norm = (uint32_t)result;
1231 			bge_chip_coalesce_update(bgep);
1232 		}
1233 		return (err);
1234 	}
1235 	return (ENOTSUP);
1236 }
1237 
1238 static int
1239 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_flags,
1240     uint_t pr_valsize, void *pr_val)
1241 {
1242 	int err = ENOTSUP;
1243 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1244 	int value;
1245 
1246 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1247 		value = (is_default? 1 : bge->param_adv_pause);
1248 		err = 0;
1249 		goto done;
1250 	}
1251 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1252 		value = (is_default? 1 : bge->param_adv_asym_pause);
1253 		err = 0;
1254 		goto done;
1255 	}
1256 	if (strcmp(pr_name, "_drain_max") == 0) {
1257 		value = (is_default? 64 : bge->param_drain_max);
1258 		err = 0;
1259 		goto done;
1260 	}
1261 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1262 		value = (is_default? 0 : bge->param_msi_cnt);
1263 		err = 0;
1264 		goto done;
1265 	}
1266 
1267 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1268 		value = (is_default? bge_rx_ticks_norm :
1269 		    bge->chipid.rx_ticks_norm);
1270 		err = 0;
1271 		goto done;
1272 	}
1273 
1274 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1275 		value = (is_default? bge_rx_count_norm :
1276 		    bge->chipid.rx_count_norm);
1277 		err = 0;
1278 		goto done;
1279 	}
1280 
1281 done:
1282 	if (err == 0) {
1283 		(void) snprintf(pr_val, pr_valsize, "%d", value);
1284 	}
1285 	return (err);
1286 }
1287 
1288 /*
1289  * Compute the index of the required bit in the multicast hash map.
1290  * This must mirror the way the hardware actually does it!
1291  * See Broadcom document 570X-PG102-R page 125.
1292  */
1293 static uint32_t
1294 bge_hash_index(const uint8_t *mca)
1295 {
1296 	uint32_t hash;
1297 
1298 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1299 
1300 	return (hash);
1301 }
1302 
1303 /*
1304  *	bge_m_multicst_add() -- enable/disable a multicast address
1305  */
1306 static int
1307 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1308 {
1309 	bge_t *bgep = arg;		/* private device info	*/
1310 	uint32_t hash;
1311 	uint32_t index;
1312 	uint32_t word;
1313 	uint32_t bit;
1314 	uint8_t *refp;
1315 
1316 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1317 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1318 
1319 	/*
1320 	 * Precalculate all required masks, pointers etc ...
1321 	 */
1322 	hash = bge_hash_index(mca);
1323 	index = hash % BGE_HASH_TABLE_SIZE;
1324 	word = index/32u;
1325 	bit = 1 << (index % 32u);
1326 	refp = &bgep->mcast_refs[index];
1327 
1328 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1329 	    hash, index, word, bit, *refp));
1330 
1331 	/*
1332 	 * We must set the appropriate bit in the hash map (and the
1333 	 * corresponding h/w register) when the refcount goes from 0
1334 	 * to >0, and clear it when the last ref goes away (refcount
1335 	 * goes from >0 back to 0).  If we change the hash map, we
1336 	 * must also update the chip's hardware map registers.
1337 	 */
1338 	mutex_enter(bgep->genlock);
1339 	if (!(bgep->progress & PROGRESS_INTR)) {
1340 		/* can happen during autorecovery */
1341 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1342 		mutex_exit(bgep->genlock);
1343 		return (EIO);
1344 	}
1345 	if (add) {
1346 		if ((*refp)++ == 0) {
1347 			bgep->mcast_hash[word] |= bit;
1348 #ifdef BGE_IPMI_ASF
1349 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1350 #else
1351 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1352 #endif
1353 				(void) bge_check_acc_handle(bgep,
1354 				    bgep->cfg_handle);
1355 				(void) bge_check_acc_handle(bgep,
1356 				    bgep->io_handle);
1357 				ddi_fm_service_impact(bgep->devinfo,
1358 				    DDI_SERVICE_DEGRADED);
1359 				mutex_exit(bgep->genlock);
1360 				return (EIO);
1361 			}
1362 		}
1363 	} else {
1364 		if (--(*refp) == 0) {
1365 			bgep->mcast_hash[word] &= ~bit;
1366 #ifdef BGE_IPMI_ASF
1367 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1368 #else
1369 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1370 #endif
1371 				(void) bge_check_acc_handle(bgep,
1372 				    bgep->cfg_handle);
1373 				(void) bge_check_acc_handle(bgep,
1374 				    bgep->io_handle);
1375 				ddi_fm_service_impact(bgep->devinfo,
1376 				    DDI_SERVICE_DEGRADED);
1377 				mutex_exit(bgep->genlock);
1378 				return (EIO);
1379 			}
1380 		}
1381 	}
1382 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1383 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1384 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1385 		mutex_exit(bgep->genlock);
1386 		return (EIO);
1387 	}
1388 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1389 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1390 		mutex_exit(bgep->genlock);
1391 		return (EIO);
1392 	}
1393 	mutex_exit(bgep->genlock);
1394 
1395 	return (0);
1396 }
1397 
1398 /*
1399  * bge_m_promisc() -- set or reset promiscuous mode on the board
1400  *
1401  *	Program the hardware to enable/disable promiscuous and/or
1402  *	receive-all-multicast modes.
1403  */
1404 static int
1405 bge_m_promisc(void *arg, boolean_t on)
1406 {
1407 	bge_t *bgep = arg;
1408 
1409 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1410 
1411 	/*
1412 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1413 	 */
1414 	mutex_enter(bgep->genlock);
1415 	if (!(bgep->progress & PROGRESS_INTR)) {
1416 		/* can happen during autorecovery */
1417 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1418 		mutex_exit(bgep->genlock);
1419 		return (EIO);
1420 	}
1421 	bgep->promisc = on;
1422 #ifdef BGE_IPMI_ASF
1423 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1424 #else
1425 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1426 #endif
1427 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1428 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1429 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1430 		mutex_exit(bgep->genlock);
1431 		return (EIO);
1432 	}
1433 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1434 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1435 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1436 		mutex_exit(bgep->genlock);
1437 		return (EIO);
1438 	}
1439 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1440 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1441 		mutex_exit(bgep->genlock);
1442 		return (EIO);
1443 	}
1444 	mutex_exit(bgep->genlock);
1445 	return (0);
1446 }
1447 
1448 /*
1449  * Find the slot for the specified unicast address
1450  */
1451 int
1452 bge_unicst_find(bge_t *bgep, const uint8_t *mac_addr)
1453 {
1454 	int slot;
1455 
1456 	ASSERT(mutex_owned(bgep->genlock));
1457 
1458 	for (slot = 0; slot < bgep->unicst_addr_total; slot++) {
1459 		if (bcmp(bgep->curr_addr[slot].addr, mac_addr, ETHERADDRL) == 0)
1460 			return (slot);
1461 	}
1462 
1463 	return (-1);
1464 }
1465 
1466 /*
1467  * Programs the classifier to start steering packets matching 'mac_addr' to the
1468  * specified ring 'arg'.
1469  */
1470 static int
1471 bge_addmac(void *arg, const uint8_t *mac_addr)
1472 {
1473 	recv_ring_t *rrp = (recv_ring_t *)arg;
1474 	bge_t		*bgep = rrp->bgep;
1475 	bge_recv_rule_t	*rulep = bgep->recv_rules;
1476 	bge_rule_info_t	*rinfop = NULL;
1477 	uint8_t		ring = (uint8_t)(rrp - bgep->recv) + 1;
1478 	int		i;
1479 	uint16_t	tmp16;
1480 	uint32_t	tmp32;
1481 	int		slot;
1482 	int		err;
1483 
1484 	mutex_enter(bgep->genlock);
1485 	if (bgep->unicst_addr_avail == 0) {
1486 		mutex_exit(bgep->genlock);
1487 		return (ENOSPC);
1488 	}
1489 
1490 	/*
1491 	 * First add the unicast address to a available slot.
1492 	 */
1493 	slot = bge_unicst_find(bgep, mac_addr);
1494 	ASSERT(slot == -1);
1495 
1496 	for (slot = 0; slot < bgep->unicst_addr_total; slot++) {
1497 		if (!bgep->curr_addr[slot].set) {
1498 			bgep->curr_addr[slot].set = B_TRUE;
1499 			break;
1500 		}
1501 	}
1502 
1503 	ASSERT(slot < bgep->unicst_addr_total);
1504 	bgep->unicst_addr_avail--;
1505 	mutex_exit(bgep->genlock);
1506 
1507 	if ((err = bge_unicst_set(bgep, mac_addr, slot)) != 0)
1508 		goto fail;
1509 
1510 	/* A rule is already here. Deny this.  */
1511 	if (rrp->mac_addr_rule != NULL) {
1512 		err = ether_cmp(mac_addr, rrp->mac_addr_val) ? EEXIST : EBUSY;
1513 		goto fail;
1514 	}
1515 
1516 	/*
1517 	 * Allocate a bge_rule_info_t to keep track of which rule slots
1518 	 * are being used.
1519 	 */
1520 	rinfop = kmem_zalloc(sizeof (bge_rule_info_t), KM_NOSLEEP);
1521 	if (rinfop == NULL) {
1522 		err = ENOMEM;
1523 		goto fail;
1524 	}
1525 
1526 	/*
1527 	 * Look for the starting slot to place the rules.
1528 	 * The two slots we reserve must be contiguous.
1529 	 */
1530 	for (i = 0; i + 1 < RECV_RULES_NUM_MAX; i++)
1531 		if ((rulep[i].control & RECV_RULE_CTL_ENABLE) == 0 &&
1532 		    (rulep[i+1].control & RECV_RULE_CTL_ENABLE) == 0)
1533 			break;
1534 
1535 	ASSERT(i + 1 < RECV_RULES_NUM_MAX);
1536 
1537 	bcopy(mac_addr, &tmp32, sizeof (tmp32));
1538 	rulep[i].mask_value = ntohl(tmp32);
1539 	rulep[i].control = RULE_DEST_MAC_1(ring) | RECV_RULE_CTL_AND;
1540 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep[i].mask_value);
1541 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep[i].control);
1542 
1543 	bcopy(mac_addr + 4, &tmp16, sizeof (tmp16));
1544 	rulep[i+1].mask_value = 0xffff0000 | ntohs(tmp16);
1545 	rulep[i+1].control = RULE_DEST_MAC_2(ring);
1546 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(i+1), rulep[i+1].mask_value);
1547 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i+1), rulep[i+1].control);
1548 	rinfop->start = i;
1549 	rinfop->count = 2;
1550 
1551 	rrp->mac_addr_rule = rinfop;
1552 	bcopy(mac_addr, rrp->mac_addr_val, ETHERADDRL);
1553 
1554 	return (0);
1555 
1556 fail:
1557 	/* Clear the address just set */
1558 	(void) bge_unicst_set(bgep, zero_addr, slot);
1559 	mutex_enter(bgep->genlock);
1560 	bgep->curr_addr[slot].set = B_FALSE;
1561 	bgep->unicst_addr_avail++;
1562 	mutex_exit(bgep->genlock);
1563 
1564 	return (err);
1565 }
1566 
1567 /*
1568  * Stop classifying packets matching the MAC address to the specified ring.
1569  */
1570 static int
1571 bge_remmac(void *arg, const uint8_t *mac_addr)
1572 {
1573 	recv_ring_t	*rrp = (recv_ring_t *)arg;
1574 	bge_t		*bgep = rrp->bgep;
1575 	bge_recv_rule_t *rulep = bgep->recv_rules;
1576 	bge_rule_info_t *rinfop = rrp->mac_addr_rule;
1577 	int		start;
1578 	int		slot;
1579 	int		err;
1580 
1581 	/*
1582 	 * Remove the MAC address from its slot.
1583 	 */
1584 	mutex_enter(bgep->genlock);
1585 	slot = bge_unicst_find(bgep, mac_addr);
1586 	if (slot == -1) {
1587 		mutex_exit(bgep->genlock);
1588 		return (EINVAL);
1589 	}
1590 
1591 	ASSERT(bgep->curr_addr[slot].set);
1592 	mutex_exit(bgep->genlock);
1593 
1594 	if ((err = bge_unicst_set(bgep, zero_addr, slot)) != 0)
1595 		return (err);
1596 
1597 	if (rinfop == NULL || ether_cmp(mac_addr, rrp->mac_addr_val) != 0)
1598 		return (EINVAL);
1599 
1600 	start = rinfop->start;
1601 	rulep[start].mask_value = 0;
1602 	rulep[start].control = 0;
1603 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(start), rulep[start].mask_value);
1604 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(start), rulep[start].control);
1605 	start++;
1606 	rulep[start].mask_value = 0;
1607 	rulep[start].control = 0;
1608 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(start), rulep[start].mask_value);
1609 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(start), rulep[start].control);
1610 
1611 	kmem_free(rinfop, sizeof (bge_rule_info_t));
1612 	rrp->mac_addr_rule = NULL;
1613 	bzero(rrp->mac_addr_val, ETHERADDRL);
1614 
1615 	mutex_enter(bgep->genlock);
1616 	bgep->curr_addr[slot].set = B_FALSE;
1617 	bgep->unicst_addr_avail++;
1618 	mutex_exit(bgep->genlock);
1619 
1620 	return (0);
1621 }
1622 
1623 static int
1624 bge_flag_intr_enable(mac_intr_handle_t ih)
1625 {
1626 	recv_ring_t *rrp = (recv_ring_t *)ih;
1627 	bge_t *bgep = rrp->bgep;
1628 
1629 	mutex_enter(bgep->genlock);
1630 	rrp->poll_flag = 0;
1631 	mutex_exit(bgep->genlock);
1632 
1633 	return (0);
1634 }
1635 
1636 static int
1637 bge_flag_intr_disable(mac_intr_handle_t ih)
1638 {
1639 	recv_ring_t *rrp = (recv_ring_t *)ih;
1640 	bge_t *bgep = rrp->bgep;
1641 
1642 	mutex_enter(bgep->genlock);
1643 	rrp->poll_flag = 1;
1644 	mutex_exit(bgep->genlock);
1645 
1646 	return (0);
1647 }
1648 
1649 static int
1650 bge_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
1651 {
1652 	recv_ring_t *rx_ring;
1653 
1654 	rx_ring = (recv_ring_t *)rh;
1655 	mutex_enter(rx_ring->rx_lock);
1656 	rx_ring->ring_gen_num = mr_gen_num;
1657 	mutex_exit(rx_ring->rx_lock);
1658 	return (0);
1659 }
1660 
1661 
1662 /*
1663  * Callback funtion for MAC layer to register all rings
1664  * for given ring_group, noted by rg_index.
1665  */
1666 void
1667 bge_fill_ring(void *arg, mac_ring_type_t rtype, const int rg_index,
1668     const int index, mac_ring_info_t *infop, mac_ring_handle_t rh)
1669 {
1670 	bge_t *bgep = arg;
1671 	mac_intr_t *mintr;
1672 
1673 	switch (rtype) {
1674 	case MAC_RING_TYPE_RX: {
1675 		recv_ring_t *rx_ring;
1676 		ASSERT(rg_index >= 0 && rg_index < MIN(bgep->chipid.rx_rings,
1677 		    MAC_ADDRESS_REGS_MAX) && index == 0);
1678 
1679 		rx_ring = &bgep->recv[rg_index];
1680 		rx_ring->ring_handle = rh;
1681 
1682 		infop->mri_driver = (mac_ring_driver_t)rx_ring;
1683 		infop->mri_start = bge_ring_start;
1684 		infop->mri_stop = NULL;
1685 		infop->mri_poll = bge_poll_ring;
1686 
1687 		mintr = &infop->mri_intr;
1688 		mintr->mi_handle = (mac_intr_handle_t)rx_ring;
1689 		mintr->mi_enable = bge_flag_intr_enable;
1690 		mintr->mi_disable = bge_flag_intr_disable;
1691 
1692 		break;
1693 	}
1694 	case MAC_RING_TYPE_TX:
1695 	default:
1696 		ASSERT(0);
1697 		break;
1698 	}
1699 }
1700 
1701 /*
1702  * Fill infop passed as argument
1703  * fill in respective ring_group info
1704  * Each group has a single ring in it. We keep it simple
1705  * and use the same internal handle for rings and groups.
1706  */
1707 void
1708 bge_fill_group(void *arg, mac_ring_type_t rtype, const int rg_index,
1709 	mac_group_info_t *infop, mac_group_handle_t gh)
1710 {
1711 	bge_t *bgep = arg;
1712 
1713 	switch (rtype) {
1714 	case MAC_RING_TYPE_RX: {
1715 		recv_ring_t *rx_ring;
1716 
1717 		ASSERT(rg_index >= 0 && rg_index < MIN(bgep->chipid.rx_rings,
1718 		    MAC_ADDRESS_REGS_MAX));
1719 		rx_ring = &bgep->recv[rg_index];
1720 		rx_ring->ring_group_handle = gh;
1721 
1722 		infop->mgi_driver = (mac_group_driver_t)rx_ring;
1723 		infop->mgi_start = NULL;
1724 		infop->mgi_stop = NULL;
1725 		infop->mgi_addmac = bge_addmac;
1726 		infop->mgi_remmac = bge_remmac;
1727 		infop->mgi_count = 1;
1728 		break;
1729 	}
1730 	case MAC_RING_TYPE_TX:
1731 	default:
1732 		ASSERT(0);
1733 		break;
1734 	}
1735 }
1736 
1737 /*ARGSUSED*/
1738 static boolean_t
1739 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1740 {
1741 	bge_t *bgep = arg;
1742 
1743 	switch (cap) {
1744 	case MAC_CAPAB_HCKSUM: {
1745 		uint32_t *txflags = cap_data;
1746 
1747 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1748 		break;
1749 	}
1750 	case MAC_CAPAB_RINGS: {
1751 		mac_capab_rings_t *cap_rings = cap_data;
1752 
1753 		/* Temporarily disable multiple tx rings. */
1754 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
1755 			return (B_FALSE);
1756 
1757 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
1758 		cap_rings->mr_rnum = cap_rings->mr_gnum =
1759 		    MIN(bgep->chipid.rx_rings, MAC_ADDRESS_REGS_MAX);
1760 		cap_rings->mr_rget = bge_fill_ring;
1761 		cap_rings->mr_gget = bge_fill_group;
1762 		break;
1763 	}
1764 	default:
1765 		return (B_FALSE);
1766 	}
1767 	return (B_TRUE);
1768 }
1769 
1770 /*
1771  * Loopback ioctl code
1772  */
1773 
1774 static lb_property_t loopmodes[] = {
1775 	{ normal,	"normal",	BGE_LOOP_NONE		},
1776 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1777 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1778 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1779 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1780 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1781 };
1782 
1783 static enum ioc_reply
1784 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1785 {
1786 	/*
1787 	 * If the mode isn't being changed, there's nothing to do ...
1788 	 */
1789 	if (mode == bgep->param_loop_mode)
1790 		return (IOC_ACK);
1791 
1792 	/*
1793 	 * Validate the requested mode and prepare a suitable message
1794 	 * to explain the link down/up cycle that the change will
1795 	 * probably induce ...
1796 	 */
1797 	switch (mode) {
1798 	default:
1799 		return (IOC_INVAL);
1800 
1801 	case BGE_LOOP_NONE:
1802 	case BGE_LOOP_EXTERNAL_1000:
1803 	case BGE_LOOP_EXTERNAL_100:
1804 	case BGE_LOOP_EXTERNAL_10:
1805 	case BGE_LOOP_INTERNAL_PHY:
1806 	case BGE_LOOP_INTERNAL_MAC:
1807 		break;
1808 	}
1809 
1810 	/*
1811 	 * All OK; tell the caller to reprogram
1812 	 * the PHY and/or MAC for the new mode ...
1813 	 */
1814 	bgep->param_loop_mode = mode;
1815 	return (IOC_RESTART_ACK);
1816 }
1817 
1818 static enum ioc_reply
1819 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1820 {
1821 	lb_info_sz_t *lbsp;
1822 	lb_property_t *lbpp;
1823 	uint32_t *lbmp;
1824 	int cmd;
1825 
1826 	_NOTE(ARGUNUSED(wq))
1827 
1828 	/*
1829 	 * Validate format of ioctl
1830 	 */
1831 	if (mp->b_cont == NULL)
1832 		return (IOC_INVAL);
1833 
1834 	cmd = iocp->ioc_cmd;
1835 	switch (cmd) {
1836 	default:
1837 		/* NOTREACHED */
1838 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1839 		return (IOC_INVAL);
1840 
1841 	case LB_GET_INFO_SIZE:
1842 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1843 			return (IOC_INVAL);
1844 		lbsp = (void *)mp->b_cont->b_rptr;
1845 		*lbsp = sizeof (loopmodes);
1846 		return (IOC_REPLY);
1847 
1848 	case LB_GET_INFO:
1849 		if (iocp->ioc_count != sizeof (loopmodes))
1850 			return (IOC_INVAL);
1851 		lbpp = (void *)mp->b_cont->b_rptr;
1852 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1853 		return (IOC_REPLY);
1854 
1855 	case LB_GET_MODE:
1856 		if (iocp->ioc_count != sizeof (uint32_t))
1857 			return (IOC_INVAL);
1858 		lbmp = (void *)mp->b_cont->b_rptr;
1859 		*lbmp = bgep->param_loop_mode;
1860 		return (IOC_REPLY);
1861 
1862 	case LB_SET_MODE:
1863 		if (iocp->ioc_count != sizeof (uint32_t))
1864 			return (IOC_INVAL);
1865 		lbmp = (void *)mp->b_cont->b_rptr;
1866 		return (bge_set_loop_mode(bgep, *lbmp));
1867 	}
1868 }
1869 
1870 /*
1871  * Specific bge IOCTLs, the gld module handles the generic ones.
1872  */
1873 static void
1874 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1875 {
1876 	bge_t *bgep = arg;
1877 	struct iocblk *iocp;
1878 	enum ioc_reply status;
1879 	boolean_t need_privilege;
1880 	int err;
1881 	int cmd;
1882 
1883 	/*
1884 	 * Validate the command before bothering with the mutex ...
1885 	 */
1886 	iocp = (void *)mp->b_rptr;
1887 	iocp->ioc_error = 0;
1888 	need_privilege = B_TRUE;
1889 	cmd = iocp->ioc_cmd;
1890 	switch (cmd) {
1891 	default:
1892 		miocnak(wq, mp, 0, EINVAL);
1893 		return;
1894 
1895 	case BGE_MII_READ:
1896 	case BGE_MII_WRITE:
1897 	case BGE_SEE_READ:
1898 	case BGE_SEE_WRITE:
1899 	case BGE_FLASH_READ:
1900 	case BGE_FLASH_WRITE:
1901 	case BGE_DIAG:
1902 	case BGE_PEEK:
1903 	case BGE_POKE:
1904 	case BGE_PHY_RESET:
1905 	case BGE_SOFT_RESET:
1906 	case BGE_HARD_RESET:
1907 		break;
1908 
1909 	case LB_GET_INFO_SIZE:
1910 	case LB_GET_INFO:
1911 	case LB_GET_MODE:
1912 		need_privilege = B_FALSE;
1913 		/* FALLTHRU */
1914 	case LB_SET_MODE:
1915 		break;
1916 
1917 	}
1918 
1919 	if (need_privilege) {
1920 		/*
1921 		 * Check for specific net_config privilege on Solaris 10+.
1922 		 */
1923 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1924 		if (err != 0) {
1925 			miocnak(wq, mp, 0, err);
1926 			return;
1927 		}
1928 	}
1929 
1930 	mutex_enter(bgep->genlock);
1931 	if (!(bgep->progress & PROGRESS_INTR)) {
1932 		/* can happen during autorecovery */
1933 		mutex_exit(bgep->genlock);
1934 		miocnak(wq, mp, 0, EIO);
1935 		return;
1936 	}
1937 
1938 	switch (cmd) {
1939 	default:
1940 		_NOTE(NOTREACHED)
1941 		status = IOC_INVAL;
1942 		break;
1943 
1944 	case BGE_MII_READ:
1945 	case BGE_MII_WRITE:
1946 	case BGE_SEE_READ:
1947 	case BGE_SEE_WRITE:
1948 	case BGE_FLASH_READ:
1949 	case BGE_FLASH_WRITE:
1950 	case BGE_DIAG:
1951 	case BGE_PEEK:
1952 	case BGE_POKE:
1953 	case BGE_PHY_RESET:
1954 	case BGE_SOFT_RESET:
1955 	case BGE_HARD_RESET:
1956 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1957 		break;
1958 
1959 	case LB_GET_INFO_SIZE:
1960 	case LB_GET_INFO:
1961 	case LB_GET_MODE:
1962 	case LB_SET_MODE:
1963 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1964 		break;
1965 
1966 	}
1967 
1968 	/*
1969 	 * Do we need to reprogram the PHY and/or the MAC?
1970 	 * Do it now, while we still have the mutex.
1971 	 *
1972 	 * Note: update the PHY first, 'cos it controls the
1973 	 * speed/duplex parameters that the MAC code uses.
1974 	 */
1975 	switch (status) {
1976 	case IOC_RESTART_REPLY:
1977 	case IOC_RESTART_ACK:
1978 		if (bge_reprogram(bgep) == IOC_INVAL)
1979 			status = IOC_INVAL;
1980 		break;
1981 	}
1982 
1983 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1984 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1985 		status = IOC_INVAL;
1986 	}
1987 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1988 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1989 		status = IOC_INVAL;
1990 	}
1991 	mutex_exit(bgep->genlock);
1992 
1993 	/*
1994 	 * Finally, decide how to reply
1995 	 */
1996 	switch (status) {
1997 	default:
1998 	case IOC_INVAL:
1999 		/*
2000 		 * Error, reply with a NAK and EINVAL or the specified error
2001 		 */
2002 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
2003 		    EINVAL : iocp->ioc_error);
2004 		break;
2005 
2006 	case IOC_DONE:
2007 		/*
2008 		 * OK, reply already sent
2009 		 */
2010 		break;
2011 
2012 	case IOC_RESTART_ACK:
2013 	case IOC_ACK:
2014 		/*
2015 		 * OK, reply with an ACK
2016 		 */
2017 		miocack(wq, mp, 0, 0);
2018 		break;
2019 
2020 	case IOC_RESTART_REPLY:
2021 	case IOC_REPLY:
2022 		/*
2023 		 * OK, send prepared reply as ACK or NAK
2024 		 */
2025 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
2026 		    M_IOCACK : M_IOCNAK;
2027 		qreply(wq, mp);
2028 		break;
2029 	}
2030 }
2031 
2032 /*
2033  * ========== Per-instance setup/teardown code ==========
2034  */
2035 
2036 #undef	BGE_DBG
2037 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
2038 /*
2039  * Allocate an area of memory and a DMA handle for accessing it
2040  */
2041 static int
2042 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
2043 	uint_t dma_flags, dma_area_t *dma_p)
2044 {
2045 	caddr_t va;
2046 	int err;
2047 
2048 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
2049 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
2050 
2051 	/*
2052 	 * Allocate handle
2053 	 */
2054 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
2055 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
2056 	if (err != DDI_SUCCESS)
2057 		return (DDI_FAILURE);
2058 
2059 	/*
2060 	 * Allocate memory
2061 	 */
2062 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
2063 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
2064 	    &dma_p->acc_hdl);
2065 	if (err != DDI_SUCCESS)
2066 		return (DDI_FAILURE);
2067 
2068 	/*
2069 	 * Bind the two together
2070 	 */
2071 	dma_p->mem_va = va;
2072 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
2073 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
2074 	    &dma_p->cookie, &dma_p->ncookies);
2075 
2076 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
2077 	    dma_p->alength, err, dma_p->ncookies));
2078 
2079 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
2080 		return (DDI_FAILURE);
2081 
2082 	dma_p->nslots = ~0U;
2083 	dma_p->size = ~0U;
2084 	dma_p->token = ~0U;
2085 	dma_p->offset = 0;
2086 	return (DDI_SUCCESS);
2087 }
2088 
2089 /*
2090  * Free one allocated area of DMAable memory
2091  */
2092 static void
2093 bge_free_dma_mem(dma_area_t *dma_p)
2094 {
2095 	if (dma_p->dma_hdl != NULL) {
2096 		if (dma_p->ncookies) {
2097 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
2098 			dma_p->ncookies = 0;
2099 		}
2100 		ddi_dma_free_handle(&dma_p->dma_hdl);
2101 		dma_p->dma_hdl = NULL;
2102 	}
2103 
2104 	if (dma_p->acc_hdl != NULL) {
2105 		ddi_dma_mem_free(&dma_p->acc_hdl);
2106 		dma_p->acc_hdl = NULL;
2107 	}
2108 }
2109 /*
2110  * Utility routine to carve a slice off a chunk of allocated memory,
2111  * updating the chunk descriptor accordingly.  The size of the slice
2112  * is given by the product of the <qty> and <size> parameters.
2113  */
2114 static void
2115 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
2116 	uint32_t qty, uint32_t size)
2117 {
2118 	static uint32_t sequence = 0xbcd5704a;
2119 	size_t totsize;
2120 
2121 	totsize = qty*size;
2122 	ASSERT(totsize <= chunk->alength);
2123 
2124 	*slice = *chunk;
2125 	slice->nslots = qty;
2126 	slice->size = size;
2127 	slice->alength = totsize;
2128 	slice->token = ++sequence;
2129 
2130 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
2131 	chunk->alength -= totsize;
2132 	chunk->offset += totsize;
2133 	chunk->cookie.dmac_laddress += totsize;
2134 	chunk->cookie.dmac_size -= totsize;
2135 }
2136 
2137 /*
2138  * Initialise the specified Receive Producer (Buffer) Ring, using
2139  * the information in the <dma_area> descriptors that it contains
2140  * to set up all the other fields. This routine should be called
2141  * only once for each ring.
2142  */
2143 static void
2144 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
2145 {
2146 	buff_ring_t *brp;
2147 	bge_status_t *bsp;
2148 	sw_rbd_t *srbdp;
2149 	dma_area_t pbuf;
2150 	uint32_t bufsize;
2151 	uint32_t nslots;
2152 	uint32_t slot;
2153 	uint32_t split;
2154 
2155 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
2156 		NIC_MEM_SHADOW_BUFF_STD,
2157 		NIC_MEM_SHADOW_BUFF_JUMBO,
2158 		NIC_MEM_SHADOW_BUFF_MINI
2159 	};
2160 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
2161 		RECV_STD_PROD_INDEX_REG,
2162 		RECV_JUMBO_PROD_INDEX_REG,
2163 		RECV_MINI_PROD_INDEX_REG
2164 	};
2165 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
2166 		STATUS_STD_BUFF_CONS_INDEX,
2167 		STATUS_JUMBO_BUFF_CONS_INDEX,
2168 		STATUS_MINI_BUFF_CONS_INDEX
2169 	};
2170 
2171 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
2172 	    (void *)bgep, ring));
2173 
2174 	brp = &bgep->buff[ring];
2175 	nslots = brp->desc.nslots;
2176 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
2177 	bufsize = brp->buf[0].size;
2178 
2179 	/*
2180 	 * Set up the copy of the h/w RCB
2181 	 *
2182 	 * Note: unlike Send & Receive Return Rings, (where the max_len
2183 	 * field holds the number of slots), in a Receive Buffer Ring
2184 	 * this field indicates the size of each buffer in the ring.
2185 	 */
2186 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
2187 	brp->hw_rcb.max_len = (uint16_t)bufsize;
2188 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2189 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
2190 
2191 	/*
2192 	 * Other one-off initialisation of per-ring data
2193 	 */
2194 	brp->bgep = bgep;
2195 	bsp = DMA_VPTR(bgep->status_block);
2196 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
2197 	brp->chip_mbx_reg = mailbox_regs[ring];
2198 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
2199 	    DDI_INTR_PRI(bgep->intr_pri));
2200 
2201 	/*
2202 	 * Allocate the array of s/w Receive Buffer Descriptors
2203 	 */
2204 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
2205 	brp->sw_rbds = srbdp;
2206 
2207 	/*
2208 	 * Now initialise each array element once and for all
2209 	 */
2210 	for (split = 0; split < BGE_SPLIT; ++split) {
2211 		pbuf = brp->buf[split];
2212 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
2213 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
2214 		ASSERT(pbuf.alength == 0);
2215 	}
2216 }
2217 
2218 /*
2219  * Clean up initialisation done above before the memory is freed
2220  */
2221 static void
2222 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
2223 {
2224 	buff_ring_t *brp;
2225 	sw_rbd_t *srbdp;
2226 
2227 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2228 	    (void *)bgep, ring));
2229 
2230 	brp = &bgep->buff[ring];
2231 	srbdp = brp->sw_rbds;
2232 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2233 
2234 	mutex_destroy(brp->rf_lock);
2235 }
2236 
2237 /*
2238  * Initialise the specified Receive (Return) Ring, using the
2239  * information in the <dma_area> descriptors that it contains
2240  * to set up all the other fields. This routine should be called
2241  * only once for each ring.
2242  */
2243 static void
2244 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2245 {
2246 	recv_ring_t *rrp;
2247 	bge_status_t *bsp;
2248 	uint32_t nslots;
2249 
2250 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2251 	    (void *)bgep, ring));
2252 
2253 	/*
2254 	 * The chip architecture requires that receive return rings have
2255 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2256 	 */
2257 	rrp = &bgep->recv[ring];
2258 	nslots = rrp->desc.nslots;
2259 	ASSERT(nslots == 0 || nslots == 512 ||
2260 	    nslots == 1024 || nslots == 2048);
2261 
2262 	/*
2263 	 * Set up the copy of the h/w RCB
2264 	 */
2265 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2266 	rrp->hw_rcb.max_len = (uint16_t)nslots;
2267 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2268 	rrp->hw_rcb.nic_ring_addr = 0;
2269 
2270 	/*
2271 	 * Other one-off initialisation of per-ring data
2272 	 */
2273 	rrp->bgep = bgep;
2274 	bsp = DMA_VPTR(bgep->status_block);
2275 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2276 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2277 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2278 	    DDI_INTR_PRI(bgep->intr_pri));
2279 }
2280 
2281 
2282 /*
2283  * Clean up initialisation done above before the memory is freed
2284  */
2285 static void
2286 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2287 {
2288 	recv_ring_t *rrp;
2289 
2290 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2291 	    (void *)bgep, ring));
2292 
2293 	rrp = &bgep->recv[ring];
2294 	if (rrp->rx_softint)
2295 		ddi_remove_softintr(rrp->rx_softint);
2296 	mutex_destroy(rrp->rx_lock);
2297 }
2298 
2299 /*
2300  * Initialise the specified Send Ring, using the information in the
2301  * <dma_area> descriptors that it contains to set up all the other
2302  * fields. This routine should be called only once for each ring.
2303  */
2304 static void
2305 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2306 {
2307 	send_ring_t *srp;
2308 	bge_status_t *bsp;
2309 	sw_sbd_t *ssbdp;
2310 	dma_area_t desc;
2311 	dma_area_t pbuf;
2312 	uint32_t nslots;
2313 	uint32_t slot;
2314 	uint32_t split;
2315 	sw_txbuf_t *txbuf;
2316 
2317 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2318 	    (void *)bgep, ring));
2319 
2320 	/*
2321 	 * The chip architecture requires that host-based send rings
2322 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2323 	 */
2324 	srp = &bgep->send[ring];
2325 	nslots = srp->desc.nslots;
2326 	ASSERT(nslots == 0 || nslots == 512);
2327 
2328 	/*
2329 	 * Set up the copy of the h/w RCB
2330 	 */
2331 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2332 	srp->hw_rcb.max_len = (uint16_t)nslots;
2333 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2334 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2335 
2336 	/*
2337 	 * Other one-off initialisation of per-ring data
2338 	 */
2339 	srp->bgep = bgep;
2340 	bsp = DMA_VPTR(bgep->status_block);
2341 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2342 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2343 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2344 	    DDI_INTR_PRI(bgep->intr_pri));
2345 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2346 	    DDI_INTR_PRI(bgep->intr_pri));
2347 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2348 	    DDI_INTR_PRI(bgep->intr_pri));
2349 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2350 	    DDI_INTR_PRI(bgep->intr_pri));
2351 	if (nslots == 0)
2352 		return;
2353 
2354 	/*
2355 	 * Allocate the array of s/w Send Buffer Descriptors
2356 	 */
2357 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2358 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2359 	srp->txbuf_head =
2360 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2361 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2362 	srp->sw_sbds = ssbdp;
2363 	srp->txbuf = txbuf;
2364 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2365 	srp->tx_buffers_low = srp->tx_buffers / 4;
2366 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2367 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2368 	else
2369 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2370 	srp->tx_array = 1;
2371 
2372 	/*
2373 	 * Chunk tx desc area
2374 	 */
2375 	desc = srp->desc;
2376 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2377 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2378 		    sizeof (bge_sbd_t));
2379 	}
2380 	ASSERT(desc.alength == 0);
2381 
2382 	/*
2383 	 * Chunk tx buffer area
2384 	 */
2385 	for (split = 0; split < BGE_SPLIT; ++split) {
2386 		pbuf = srp->buf[0][split];
2387 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2388 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2389 			    bgep->chipid.snd_buff_size);
2390 			txbuf++;
2391 		}
2392 		ASSERT(pbuf.alength == 0);
2393 	}
2394 }
2395 
2396 /*
2397  * Clean up initialisation done above before the memory is freed
2398  */
2399 static void
2400 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2401 {
2402 	send_ring_t *srp;
2403 	uint32_t array;
2404 	uint32_t split;
2405 	uint32_t nslots;
2406 
2407 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2408 	    (void *)bgep, ring));
2409 
2410 	srp = &bgep->send[ring];
2411 	mutex_destroy(srp->tc_lock);
2412 	mutex_destroy(srp->freetxbuf_lock);
2413 	mutex_destroy(srp->txbuf_lock);
2414 	mutex_destroy(srp->tx_lock);
2415 	nslots = srp->desc.nslots;
2416 	if (nslots == 0)
2417 		return;
2418 
2419 	for (array = 1; array < srp->tx_array; ++array)
2420 		for (split = 0; split < BGE_SPLIT; ++split)
2421 			bge_free_dma_mem(&srp->buf[array][split]);
2422 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2423 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2424 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2425 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2426 	srp->sw_sbds = NULL;
2427 	srp->txbuf_head = NULL;
2428 	srp->txbuf = NULL;
2429 	srp->pktp = NULL;
2430 }
2431 
2432 /*
2433  * Initialise all transmit, receive, and buffer rings.
2434  */
2435 void
2436 bge_init_rings(bge_t *bgep)
2437 {
2438 	uint32_t ring;
2439 
2440 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2441 
2442 	/*
2443 	 * Perform one-off initialisation of each ring ...
2444 	 */
2445 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2446 		bge_init_send_ring(bgep, ring);
2447 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2448 		bge_init_recv_ring(bgep, ring);
2449 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2450 		bge_init_buff_ring(bgep, ring);
2451 }
2452 
2453 /*
2454  * Undo the work of bge_init_rings() above before the memory is freed
2455  */
2456 void
2457 bge_fini_rings(bge_t *bgep)
2458 {
2459 	uint32_t ring;
2460 
2461 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2462 
2463 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2464 		bge_fini_buff_ring(bgep, ring);
2465 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2466 		bge_fini_recv_ring(bgep, ring);
2467 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2468 		bge_fini_send_ring(bgep, ring);
2469 }
2470 
2471 /*
2472  * Called from the bge_m_stop() to free the tx buffers which are
2473  * allocated from the tx process.
2474  */
2475 void
2476 bge_free_txbuf_arrays(send_ring_t *srp)
2477 {
2478 	uint32_t array;
2479 	uint32_t split;
2480 
2481 	ASSERT(mutex_owned(srp->tx_lock));
2482 
2483 	/*
2484 	 * Free the extra tx buffer DMA area
2485 	 */
2486 	for (array = 1; array < srp->tx_array; ++array)
2487 		for (split = 0; split < BGE_SPLIT; ++split)
2488 			bge_free_dma_mem(&srp->buf[array][split]);
2489 
2490 	/*
2491 	 * Restore initial tx buffer numbers
2492 	 */
2493 	srp->tx_array = 1;
2494 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2495 	srp->tx_buffers_low = srp->tx_buffers / 4;
2496 	srp->tx_flow = 0;
2497 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2498 }
2499 
2500 /*
2501  * Called from tx process to allocate more tx buffers
2502  */
2503 bge_queue_item_t *
2504 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2505 {
2506 	bge_queue_t *txbuf_queue;
2507 	bge_queue_item_t *txbuf_item_last;
2508 	bge_queue_item_t *txbuf_item;
2509 	bge_queue_item_t *txbuf_item_rtn;
2510 	sw_txbuf_t *txbuf;
2511 	dma_area_t area;
2512 	size_t txbuffsize;
2513 	uint32_t slot;
2514 	uint32_t array;
2515 	uint32_t split;
2516 	uint32_t err;
2517 
2518 	ASSERT(mutex_owned(srp->tx_lock));
2519 
2520 	array = srp->tx_array;
2521 	if (array >= srp->tx_array_max)
2522 		return (NULL);
2523 
2524 	/*
2525 	 * Allocate memory & handles for TX buffers
2526 	 */
2527 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2528 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2529 	for (split = 0; split < BGE_SPLIT; ++split) {
2530 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2531 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2532 		    &srp->buf[array][split]);
2533 		if (err != DDI_SUCCESS) {
2534 			/* Free the last already allocated OK chunks */
2535 			for (slot = 0; slot <= split; ++slot)
2536 				bge_free_dma_mem(&srp->buf[array][slot]);
2537 			srp->tx_alloc_fail++;
2538 			return (NULL);
2539 		}
2540 	}
2541 
2542 	/*
2543 	 * Chunk tx buffer area
2544 	 */
2545 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2546 	for (split = 0; split < BGE_SPLIT; ++split) {
2547 		area = srp->buf[array][split];
2548 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2549 			bge_slice_chunk(&txbuf->buf, &area, 1,
2550 			    bgep->chipid.snd_buff_size);
2551 			txbuf++;
2552 		}
2553 	}
2554 
2555 	/*
2556 	 * Add above buffers to the tx buffer pop queue
2557 	 */
2558 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2559 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2560 	txbuf_item_last = NULL;
2561 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2562 		txbuf_item->item = txbuf;
2563 		txbuf_item->next = txbuf_item_last;
2564 		txbuf_item_last = txbuf_item;
2565 		txbuf++;
2566 		txbuf_item++;
2567 	}
2568 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2569 	txbuf_item_rtn = txbuf_item;
2570 	txbuf_item++;
2571 	txbuf_queue = srp->txbuf_pop_queue;
2572 	mutex_enter(txbuf_queue->lock);
2573 	txbuf_item->next = txbuf_queue->head;
2574 	txbuf_queue->head = txbuf_item_last;
2575 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2576 	mutex_exit(txbuf_queue->lock);
2577 
2578 	srp->tx_array++;
2579 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2580 	srp->tx_buffers_low = srp->tx_buffers / 4;
2581 
2582 	return (txbuf_item_rtn);
2583 }
2584 
2585 /*
2586  * This function allocates all the transmit and receive buffers
2587  * and descriptors, in four chunks.
2588  */
2589 int
2590 bge_alloc_bufs(bge_t *bgep)
2591 {
2592 	dma_area_t area;
2593 	size_t rxbuffsize;
2594 	size_t txbuffsize;
2595 	size_t rxbuffdescsize;
2596 	size_t rxdescsize;
2597 	size_t txdescsize;
2598 	uint32_t ring;
2599 	uint32_t rx_rings = bgep->chipid.rx_rings;
2600 	uint32_t tx_rings = bgep->chipid.tx_rings;
2601 	int split;
2602 	int err;
2603 
2604 	BGE_TRACE(("bge_alloc_bufs($%p)",
2605 	    (void *)bgep));
2606 
2607 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2608 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2609 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2610 
2611 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2612 	txbuffsize *= tx_rings;
2613 
2614 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2615 	rxdescsize *= sizeof (bge_rbd_t);
2616 
2617 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2618 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2619 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2620 	rxbuffdescsize *= sizeof (bge_rbd_t);
2621 
2622 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2623 	txdescsize *= sizeof (bge_sbd_t);
2624 	txdescsize += sizeof (bge_statistics_t);
2625 	txdescsize += sizeof (bge_status_t);
2626 	txdescsize += BGE_STATUS_PADDING;
2627 
2628 	/*
2629 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2630 	 */
2631 	if (bge_relaxed_ordering)
2632 		dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2633 
2634 	/*
2635 	 * Allocate memory & handles for RX buffers
2636 	 */
2637 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2638 	for (split = 0; split < BGE_SPLIT; ++split) {
2639 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2640 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2641 		    &bgep->rx_buff[split]);
2642 		if (err != DDI_SUCCESS)
2643 			return (DDI_FAILURE);
2644 	}
2645 
2646 	/*
2647 	 * Allocate memory & handles for TX buffers
2648 	 */
2649 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2650 	for (split = 0; split < BGE_SPLIT; ++split) {
2651 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2652 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2653 		    &bgep->tx_buff[split]);
2654 		if (err != DDI_SUCCESS)
2655 			return (DDI_FAILURE);
2656 	}
2657 
2658 	dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2659 
2660 	/*
2661 	 * Allocate memory & handles for receive return rings
2662 	 */
2663 	ASSERT((rxdescsize % rx_rings) == 0);
2664 	for (split = 0; split < rx_rings; ++split) {
2665 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2666 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2667 		    &bgep->rx_desc[split]);
2668 		if (err != DDI_SUCCESS)
2669 			return (DDI_FAILURE);
2670 	}
2671 
2672 	/*
2673 	 * Allocate memory & handles for buffer (producer) descriptor rings
2674 	 */
2675 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2676 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2677 	if (err != DDI_SUCCESS)
2678 		return (DDI_FAILURE);
2679 
2680 	/*
2681 	 * Allocate memory & handles for TX descriptor rings,
2682 	 * status block, and statistics area
2683 	 */
2684 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2685 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2686 	if (err != DDI_SUCCESS)
2687 		return (DDI_FAILURE);
2688 
2689 	/*
2690 	 * Now carve up each of the allocated areas ...
2691 	 */
2692 	for (split = 0; split < BGE_SPLIT; ++split) {
2693 		area = bgep->rx_buff[split];
2694 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2695 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2696 		    bgep->chipid.std_buf_size);
2697 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2698 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2699 		    bgep->chipid.recv_jumbo_size);
2700 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2701 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2702 		    BGE_MINI_BUFF_SIZE);
2703 	}
2704 
2705 	for (split = 0; split < BGE_SPLIT; ++split) {
2706 		area = bgep->tx_buff[split];
2707 		for (ring = 0; ring < tx_rings; ++ring)
2708 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2709 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2710 			    bgep->chipid.snd_buff_size);
2711 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2712 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2713 			    &area, 0, bgep->chipid.snd_buff_size);
2714 	}
2715 
2716 	for (ring = 0; ring < rx_rings; ++ring)
2717 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2718 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2719 
2720 	area = bgep->rx_desc[rx_rings];
2721 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2722 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2723 		    0, sizeof (bge_rbd_t));
2724 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2725 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2726 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2727 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2728 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2729 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2730 	ASSERT(area.alength == 0);
2731 
2732 	area = bgep->tx_desc;
2733 	for (ring = 0; ring < tx_rings; ++ring)
2734 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2735 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2736 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2737 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2738 		    0, sizeof (bge_sbd_t));
2739 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2740 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2741 	ASSERT(area.alength == BGE_STATUS_PADDING);
2742 	DMA_ZERO(bgep->status_block);
2743 
2744 	return (DDI_SUCCESS);
2745 }
2746 
2747 /*
2748  * This routine frees the transmit and receive buffers and descriptors.
2749  * Make sure the chip is stopped before calling it!
2750  */
2751 void
2752 bge_free_bufs(bge_t *bgep)
2753 {
2754 	int split;
2755 
2756 	BGE_TRACE(("bge_free_bufs($%p)",
2757 	    (void *)bgep));
2758 
2759 	bge_free_dma_mem(&bgep->tx_desc);
2760 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2761 		bge_free_dma_mem(&bgep->rx_desc[split]);
2762 	for (split = 0; split < BGE_SPLIT; ++split)
2763 		bge_free_dma_mem(&bgep->tx_buff[split]);
2764 	for (split = 0; split < BGE_SPLIT; ++split)
2765 		bge_free_dma_mem(&bgep->rx_buff[split]);
2766 }
2767 
2768 /*
2769  * Determine (initial) MAC address ("BIA") to use for this interface
2770  */
2771 
2772 static void
2773 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2774 {
2775 	struct ether_addr sysaddr;
2776 	char propbuf[8];		/* "true" or "false", plus NUL	*/
2777 	uchar_t *bytes;
2778 	int *ints;
2779 	uint_t nelts;
2780 	int err;
2781 
2782 	BGE_TRACE(("bge_find_mac_address($%p)",
2783 	    (void *)bgep));
2784 
2785 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2786 	    cidp->hw_mac_addr,
2787 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2788 	    cidp->vendor_addr.set ? "" : "not "));
2789 
2790 	/*
2791 	 * The "vendor's factory-set address" may already have
2792 	 * been extracted from the chip, but if the property
2793 	 * "local-mac-address" is set we use that instead.  It
2794 	 * will normally be set by OBP, but it could also be
2795 	 * specified in a .conf file(!)
2796 	 *
2797 	 * There doesn't seem to be a way to define byte-array
2798 	 * properties in a .conf, so we check whether it looks
2799 	 * like an array of 6 ints instead.
2800 	 *
2801 	 * Then, we check whether it looks like an array of 6
2802 	 * bytes (which it should, if OBP set it).  If we can't
2803 	 * make sense of it either way, we'll ignore it.
2804 	 */
2805 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2806 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2807 	if (err == DDI_PROP_SUCCESS) {
2808 		if (nelts == ETHERADDRL) {
2809 			while (nelts--)
2810 				cidp->vendor_addr.addr[nelts] = ints[nelts];
2811 			cidp->vendor_addr.set = B_TRUE;
2812 		}
2813 		ddi_prop_free(ints);
2814 	}
2815 
2816 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2817 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2818 	if (err == DDI_PROP_SUCCESS) {
2819 		if (nelts == ETHERADDRL) {
2820 			while (nelts--)
2821 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2822 			cidp->vendor_addr.set = B_TRUE;
2823 		}
2824 		ddi_prop_free(bytes);
2825 	}
2826 
2827 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2828 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2829 	    cidp->vendor_addr.set ? "" : "not "));
2830 
2831 	/*
2832 	 * Look up the OBP property "local-mac-address?".  Note that even
2833 	 * though its value is a string (which should be "true" or "false"),
2834 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
2835 	 * the buffer first and then fetch the property as an untyped array;
2836 	 * this may or may not include a final NUL, but since there will
2837 	 * always be one left at the end of the buffer we can now treat it
2838 	 * as a string anyway.
2839 	 */
2840 	nelts = sizeof (propbuf);
2841 	bzero(propbuf, nelts--);
2842 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2843 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2844 
2845 	/*
2846 	 * Now, if the address still isn't set from the hardware (SEEPROM)
2847 	 * or the OBP or .conf property, OR if the user has foolishly set
2848 	 * 'local-mac-address? = false', use "the system address" instead
2849 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2850 	 */
2851 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2852 		if (localetheraddr(NULL, &sysaddr) != 0) {
2853 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2854 			cidp->vendor_addr.set = B_TRUE;
2855 		}
2856 
2857 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2858 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2859 	    cidp->vendor_addr.set ? "" : "not "));
2860 
2861 	/*
2862 	 * Finally(!), if there's a valid "mac-address" property (created
2863 	 * if we netbooted from this interface), we must use this instead
2864 	 * of any of the above to ensure that the NFS/install server doesn't
2865 	 * get confused by the address changing as Solaris takes over!
2866 	 */
2867 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2868 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2869 	if (err == DDI_PROP_SUCCESS) {
2870 		if (nelts == ETHERADDRL) {
2871 			while (nelts--)
2872 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2873 			cidp->vendor_addr.set = B_TRUE;
2874 		}
2875 		ddi_prop_free(bytes);
2876 	}
2877 
2878 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2879 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2880 	    cidp->vendor_addr.set ? "" : "not "));
2881 }
2882 
2883 
2884 /*ARGSUSED*/
2885 int
2886 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2887 {
2888 	ddi_fm_error_t de;
2889 
2890 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2891 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2892 	return (de.fme_status);
2893 }
2894 
2895 /*ARGSUSED*/
2896 int
2897 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2898 {
2899 	ddi_fm_error_t de;
2900 
2901 	ASSERT(bgep->progress & PROGRESS_BUFS);
2902 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2903 	return (de.fme_status);
2904 }
2905 
2906 /*
2907  * The IO fault service error handling callback function
2908  */
2909 /*ARGSUSED*/
2910 static int
2911 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2912 {
2913 	/*
2914 	 * as the driver can always deal with an error in any dma or
2915 	 * access handle, we can just return the fme_status value.
2916 	 */
2917 	pci_ereport_post(dip, err, NULL);
2918 	return (err->fme_status);
2919 }
2920 
2921 static void
2922 bge_fm_init(bge_t *bgep)
2923 {
2924 	ddi_iblock_cookie_t iblk;
2925 
2926 	/* Only register with IO Fault Services if we have some capability */
2927 	if (bgep->fm_capabilities) {
2928 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2929 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2930 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2931 
2932 		/* Register capabilities with IO Fault Services */
2933 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2934 
2935 		/*
2936 		 * Initialize pci ereport capabilities if ereport capable
2937 		 */
2938 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2939 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2940 			pci_ereport_setup(bgep->devinfo);
2941 
2942 		/*
2943 		 * Register error callback if error callback capable
2944 		 */
2945 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2946 			ddi_fm_handler_register(bgep->devinfo,
2947 			    bge_fm_error_cb, (void*) bgep);
2948 	} else {
2949 		/*
2950 		 * These fields have to be cleared of FMA if there are no
2951 		 * FMA capabilities at runtime.
2952 		 */
2953 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2954 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2955 		dma_attr.dma_attr_flags = 0;
2956 	}
2957 }
2958 
2959 static void
2960 bge_fm_fini(bge_t *bgep)
2961 {
2962 	/* Only unregister FMA capabilities if we registered some */
2963 	if (bgep->fm_capabilities) {
2964 
2965 		/*
2966 		 * Release any resources allocated by pci_ereport_setup()
2967 		 */
2968 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2969 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2970 			pci_ereport_teardown(bgep->devinfo);
2971 
2972 		/*
2973 		 * Un-register error callback if error callback capable
2974 		 */
2975 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2976 			ddi_fm_handler_unregister(bgep->devinfo);
2977 
2978 		/* Unregister from IO Fault Services */
2979 		ddi_fm_fini(bgep->devinfo);
2980 	}
2981 }
2982 
2983 static void
2984 #ifdef BGE_IPMI_ASF
2985 bge_unattach(bge_t *bgep, uint_t asf_mode)
2986 #else
2987 bge_unattach(bge_t *bgep)
2988 #endif
2989 {
2990 	BGE_TRACE(("bge_unattach($%p)",
2991 		(void *)bgep));
2992 
2993 	/*
2994 	 * Flag that no more activity may be initiated
2995 	 */
2996 	bgep->progress &= ~PROGRESS_READY;
2997 
2998 	/*
2999 	 * Quiesce the PHY and MAC (leave it reset but still powered).
3000 	 * Clean up and free all BGE data structures
3001 	 */
3002 	if (bgep->periodic_id != NULL) {
3003 		ddi_periodic_delete(bgep->periodic_id);
3004 		bgep->periodic_id = NULL;
3005 	}
3006 	if (bgep->progress & PROGRESS_KSTATS)
3007 		bge_fini_kstats(bgep);
3008 	if (bgep->progress & PROGRESS_PHY)
3009 		bge_phys_reset(bgep);
3010 	if (bgep->progress & PROGRESS_HWINT) {
3011 		mutex_enter(bgep->genlock);
3012 #ifdef BGE_IPMI_ASF
3013 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
3014 #else
3015 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
3016 #endif
3017 			ddi_fm_service_impact(bgep->devinfo,
3018 			    DDI_SERVICE_UNAFFECTED);
3019 #ifdef BGE_IPMI_ASF
3020 		if (bgep->asf_enabled) {
3021 			/*
3022 			 * This register has been overlaid. We restore its
3023 			 * initial value here.
3024 			 */
3025 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
3026 			    BGE_NIC_DATA_SIG);
3027 		}
3028 #endif
3029 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3030 			ddi_fm_service_impact(bgep->devinfo,
3031 			    DDI_SERVICE_UNAFFECTED);
3032 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3033 			ddi_fm_service_impact(bgep->devinfo,
3034 			    DDI_SERVICE_UNAFFECTED);
3035 		mutex_exit(bgep->genlock);
3036 	}
3037 	if (bgep->progress & PROGRESS_INTR) {
3038 		bge_intr_disable(bgep);
3039 		bge_fini_rings(bgep);
3040 	}
3041 	if (bgep->progress & PROGRESS_HWINT) {
3042 		bge_rem_intrs(bgep);
3043 		rw_destroy(bgep->errlock);
3044 		mutex_destroy(bgep->softintrlock);
3045 		mutex_destroy(bgep->genlock);
3046 	}
3047 	if (bgep->progress & PROGRESS_FACTOTUM)
3048 		ddi_remove_softintr(bgep->factotum_id);
3049 	if (bgep->progress & PROGRESS_RESCHED)
3050 		ddi_remove_softintr(bgep->drain_id);
3051 	if (bgep->progress & PROGRESS_BUFS)
3052 		bge_free_bufs(bgep);
3053 	if (bgep->progress & PROGRESS_REGS)
3054 		ddi_regs_map_free(&bgep->io_handle);
3055 	if (bgep->progress & PROGRESS_CFG)
3056 		pci_config_teardown(&bgep->cfg_handle);
3057 
3058 	bge_fm_fini(bgep);
3059 
3060 	ddi_remove_minor_node(bgep->devinfo, NULL);
3061 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
3062 	kmem_free(bgep, sizeof (*bgep));
3063 }
3064 
3065 static int
3066 bge_resume(dev_info_t *devinfo)
3067 {
3068 	bge_t *bgep;				/* Our private data	*/
3069 	chip_id_t *cidp;
3070 	chip_id_t chipid;
3071 
3072 	bgep = ddi_get_driver_private(devinfo);
3073 	if (bgep == NULL)
3074 		return (DDI_FAILURE);
3075 
3076 	/*
3077 	 * Refuse to resume if the data structures aren't consistent
3078 	 */
3079 	if (bgep->devinfo != devinfo)
3080 		return (DDI_FAILURE);
3081 
3082 #ifdef BGE_IPMI_ASF
3083 	/*
3084 	 * Power management hasn't been supported in BGE now. If you
3085 	 * want to implement it, please add the ASF/IPMI related
3086 	 * code here.
3087 	 */
3088 
3089 #endif
3090 
3091 	/*
3092 	 * Read chip ID & set up config space command register(s)
3093 	 * Refuse to resume if the chip has changed its identity!
3094 	 */
3095 	cidp = &bgep->chipid;
3096 	mutex_enter(bgep->genlock);
3097 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
3098 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3099 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3100 		mutex_exit(bgep->genlock);
3101 		return (DDI_FAILURE);
3102 	}
3103 	mutex_exit(bgep->genlock);
3104 	if (chipid.vendor != cidp->vendor)
3105 		return (DDI_FAILURE);
3106 	if (chipid.device != cidp->device)
3107 		return (DDI_FAILURE);
3108 	if (chipid.revision != cidp->revision)
3109 		return (DDI_FAILURE);
3110 	if (chipid.asic_rev != cidp->asic_rev)
3111 		return (DDI_FAILURE);
3112 
3113 	/*
3114 	 * All OK, reinitialise h/w & kick off GLD scheduling
3115 	 */
3116 	mutex_enter(bgep->genlock);
3117 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
3118 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3119 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3120 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3121 		mutex_exit(bgep->genlock);
3122 		return (DDI_FAILURE);
3123 	}
3124 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3125 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3126 		mutex_exit(bgep->genlock);
3127 		return (DDI_FAILURE);
3128 	}
3129 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3130 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3131 		mutex_exit(bgep->genlock);
3132 		return (DDI_FAILURE);
3133 	}
3134 	mutex_exit(bgep->genlock);
3135 	return (DDI_SUCCESS);
3136 }
3137 
3138 /*
3139  * attach(9E) -- Attach a device to the system
3140  *
3141  * Called once for each board successfully probed.
3142  */
3143 static int
3144 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3145 {
3146 	bge_t *bgep;				/* Our private data	*/
3147 	mac_register_t *macp;
3148 	chip_id_t *cidp;
3149 	caddr_t regs;
3150 	int instance;
3151 	int err;
3152 	int intr_types;
3153 #ifdef BGE_IPMI_ASF
3154 	uint32_t mhcrValue;
3155 #ifdef __sparc
3156 	uint16_t value16;
3157 #endif
3158 #ifdef BGE_NETCONSOLE
3159 	int retval;
3160 #endif
3161 #endif
3162 
3163 	instance = ddi_get_instance(devinfo);
3164 
3165 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
3166 	    (void *)devinfo, cmd, instance));
3167 	BGE_BRKPT(NULL, "bge_attach");
3168 
3169 	switch (cmd) {
3170 	default:
3171 		return (DDI_FAILURE);
3172 
3173 	case DDI_RESUME:
3174 		return (bge_resume(devinfo));
3175 
3176 	case DDI_ATTACH:
3177 		break;
3178 	}
3179 
3180 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
3181 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
3182 	ddi_set_driver_private(devinfo, bgep);
3183 	bgep->bge_guard = BGE_GUARD;
3184 	bgep->devinfo = devinfo;
3185 	bgep->param_drain_max = 64;
3186 	bgep->param_msi_cnt = 0;
3187 	bgep->param_loop_mode = 0;
3188 
3189 	/*
3190 	 * Initialize more fields in BGE private data
3191 	 */
3192 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3193 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
3194 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
3195 	    BGE_DRIVER_NAME, instance);
3196 
3197 	/*
3198 	 * Initialize for fma support
3199 	 */
3200 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3201 	    DDI_PROP_DONTPASS, fm_cap,
3202 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3203 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3204 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
3205 	bge_fm_init(bgep);
3206 
3207 	/*
3208 	 * Look up the IOMMU's page size for DVMA mappings (must be
3209 	 * a power of 2) and convert to a mask.  This can be used to
3210 	 * determine whether a message buffer crosses a page boundary.
3211 	 * Note: in 2s complement binary notation, if X is a power of
3212 	 * 2, then -X has the representation "11...1100...00".
3213 	 */
3214 	bgep->pagemask = dvma_pagesize(devinfo);
3215 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
3216 	bgep->pagemask = -bgep->pagemask;
3217 
3218 	/*
3219 	 * Map config space registers
3220 	 * Read chip ID & set up config space command register(s)
3221 	 *
3222 	 * Note: this leaves the chip accessible by Memory Space
3223 	 * accesses, but with interrupts and Bus Mastering off.
3224 	 * This should ensure that nothing untoward will happen
3225 	 * if it has been left active by the (net-)bootloader.
3226 	 * We'll re-enable Bus Mastering once we've reset the chip,
3227 	 * and allow interrupts only when everything else is set up.
3228 	 */
3229 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3230 #ifdef BGE_IPMI_ASF
3231 #ifdef __sparc
3232 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3233 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3234 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3235 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3236 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3237 	    MHCR_MASK_INTERRUPT_MODE |
3238 	    MHCR_MASK_PCI_INT_OUTPUT |
3239 	    MHCR_CLEAR_INTERRUPT_INTA |
3240 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3241 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3242 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3243 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3244 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3245 	    MEMORY_ARBITER_ENABLE);
3246 #else
3247 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3248 #endif
3249 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3250 		bgep->asf_wordswapped = B_TRUE;
3251 	} else {
3252 		bgep->asf_wordswapped = B_FALSE;
3253 	}
3254 	bge_asf_get_config(bgep);
3255 #endif
3256 	if (err != DDI_SUCCESS) {
3257 		bge_problem(bgep, "pci_config_setup() failed");
3258 		goto attach_fail;
3259 	}
3260 	bgep->progress |= PROGRESS_CFG;
3261 	cidp = &bgep->chipid;
3262 	bzero(cidp, sizeof (*cidp));
3263 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3264 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3265 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3266 		goto attach_fail;
3267 	}
3268 
3269 #ifdef BGE_IPMI_ASF
3270 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3271 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3272 		bgep->asf_newhandshake = B_TRUE;
3273 	} else {
3274 		bgep->asf_newhandshake = B_FALSE;
3275 	}
3276 #endif
3277 
3278 	/*
3279 	 * Update those parts of the chip ID derived from volatile
3280 	 * registers with the values seen by OBP (in case the chip
3281 	 * has been reset externally and therefore lost them).
3282 	 */
3283 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3284 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3285 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3286 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3287 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3288 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3289 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3290 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3291 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3292 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3293 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3294 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3295 
3296 	cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3297 	    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3298 	if ((cidp->default_mtu < BGE_DEFAULT_MTU) ||
3299 	    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3300 		cidp->default_mtu = BGE_DEFAULT_MTU;
3301 	}
3302 
3303 	/*
3304 	 * Map operating registers
3305 	 */
3306 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3307 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3308 	if (err != DDI_SUCCESS) {
3309 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3310 		goto attach_fail;
3311 	}
3312 	bgep->io_regs = regs;
3313 	bgep->progress |= PROGRESS_REGS;
3314 
3315 	/*
3316 	 * Characterise the device, so we know its requirements.
3317 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3318 	 */
3319 	if (bge_chip_id_init(bgep) == EIO) {
3320 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3321 		goto attach_fail;
3322 	}
3323 
3324 	err = bge_alloc_bufs(bgep);
3325 	if (err != DDI_SUCCESS) {
3326 		bge_problem(bgep, "DMA buffer allocation failed");
3327 		goto attach_fail;
3328 	}
3329 	bgep->progress |= PROGRESS_BUFS;
3330 
3331 	/*
3332 	 * Add the softint handlers:
3333 	 *
3334 	 * Both of these handlers are used to avoid restrictions on the
3335 	 * context and/or mutexes required for some operations.  In
3336 	 * particular, the hardware interrupt handler and its subfunctions
3337 	 * can detect a number of conditions that we don't want to handle
3338 	 * in that context or with that set of mutexes held.  So, these
3339 	 * softints are triggered instead:
3340 	 *
3341 	 * the <resched> softint is triggered if we have previously
3342 	 * had to refuse to send a packet because of resource shortage
3343 	 * (we've run out of transmit buffers), but the send completion
3344 	 * interrupt handler has now detected that more buffers have
3345 	 * become available.
3346 	 *
3347 	 * the <factotum> is triggered if the h/w interrupt handler
3348 	 * sees the <link state changed> or <error> bits in the status
3349 	 * block.  It's also triggered periodically to poll the link
3350 	 * state, just in case we aren't getting link status change
3351 	 * interrupts ...
3352 	 */
3353 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3354 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3355 	if (err != DDI_SUCCESS) {
3356 		bge_problem(bgep, "ddi_add_softintr() failed");
3357 		goto attach_fail;
3358 	}
3359 	bgep->progress |= PROGRESS_RESCHED;
3360 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3361 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3362 	if (err != DDI_SUCCESS) {
3363 		bge_problem(bgep, "ddi_add_softintr() failed");
3364 		goto attach_fail;
3365 	}
3366 	bgep->progress |= PROGRESS_FACTOTUM;
3367 
3368 	/* Get supported interrupt types */
3369 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3370 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3371 
3372 		goto attach_fail;
3373 	}
3374 
3375 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3376 	    bgep->ifname, intr_types));
3377 
3378 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3379 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3380 			bge_error(bgep, "MSI registration failed, "
3381 			    "trying FIXED interrupt type\n");
3382 		} else {
3383 			BGE_DEBUG(("%s: Using MSI interrupt type",
3384 			    bgep->ifname));
3385 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3386 			bgep->progress |= PROGRESS_HWINT;
3387 		}
3388 	}
3389 
3390 	if (!(bgep->progress & PROGRESS_HWINT) &&
3391 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3392 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3393 			bge_error(bgep, "FIXED interrupt "
3394 			    "registration failed\n");
3395 			goto attach_fail;
3396 		}
3397 
3398 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3399 
3400 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3401 		bgep->progress |= PROGRESS_HWINT;
3402 	}
3403 
3404 	if (!(bgep->progress & PROGRESS_HWINT)) {
3405 		bge_error(bgep, "No interrupts registered\n");
3406 		goto attach_fail;
3407 	}
3408 
3409 	/*
3410 	 * Note that interrupts are not enabled yet as
3411 	 * mutex locks are not initialized. Initialize mutex locks.
3412 	 */
3413 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3414 	    DDI_INTR_PRI(bgep->intr_pri));
3415 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3416 	    DDI_INTR_PRI(bgep->intr_pri));
3417 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3418 	    DDI_INTR_PRI(bgep->intr_pri));
3419 
3420 	/*
3421 	 * Initialize rings.
3422 	 */
3423 	bge_init_rings(bgep);
3424 
3425 	/*
3426 	 * Now that mutex locks are initialized, enable interrupts.
3427 	 */
3428 	bge_intr_enable(bgep);
3429 	bgep->progress |= PROGRESS_INTR;
3430 
3431 	/*
3432 	 * Initialise link state variables
3433 	 * Stop, reset & reinitialise the chip.
3434 	 * Initialise the (internal) PHY.
3435 	 */
3436 	bgep->link_state = LINK_STATE_UNKNOWN;
3437 
3438 	mutex_enter(bgep->genlock);
3439 
3440 	/*
3441 	 * Reset chip & rings to initial state; also reset address
3442 	 * filtering, promiscuity, loopback mode.
3443 	 */
3444 #ifdef BGE_IPMI_ASF
3445 #ifdef BGE_NETCONSOLE
3446 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3447 #else
3448 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3449 #endif
3450 #else
3451 	if (bge_reset(bgep) != DDI_SUCCESS) {
3452 #endif
3453 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3454 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3455 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3456 		mutex_exit(bgep->genlock);
3457 		goto attach_fail;
3458 	}
3459 
3460 #ifdef BGE_IPMI_ASF
3461 	if (bgep->asf_enabled) {
3462 		bgep->asf_status = ASF_STAT_RUN_INIT;
3463 	}
3464 #endif
3465 
3466 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3467 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3468 	bgep->promisc = B_FALSE;
3469 	bgep->param_loop_mode = BGE_LOOP_NONE;
3470 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3471 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3472 		mutex_exit(bgep->genlock);
3473 		goto attach_fail;
3474 	}
3475 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3476 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3477 		mutex_exit(bgep->genlock);
3478 		goto attach_fail;
3479 	}
3480 
3481 	mutex_exit(bgep->genlock);
3482 
3483 	if (bge_phys_init(bgep) == EIO) {
3484 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3485 		goto attach_fail;
3486 	}
3487 	bgep->progress |= PROGRESS_PHY;
3488 
3489 	/*
3490 	 * initialize NDD-tweakable parameters
3491 	 */
3492 	if (bge_nd_init(bgep)) {
3493 		bge_problem(bgep, "bge_nd_init() failed");
3494 		goto attach_fail;
3495 	}
3496 	bgep->progress |= PROGRESS_NDD;
3497 
3498 	/*
3499 	 * Create & initialise named kstats
3500 	 */
3501 	bge_init_kstats(bgep, instance);
3502 	bgep->progress |= PROGRESS_KSTATS;
3503 
3504 	/*
3505 	 * Determine whether to override the chip's own MAC address
3506 	 */
3507 	bge_find_mac_address(bgep, cidp);
3508 
3509 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3510 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX;
3511 
3512 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3513 		goto attach_fail;
3514 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3515 	macp->m_driver = bgep;
3516 	macp->m_dip = devinfo;
3517 	macp->m_src_addr = cidp->vendor_addr.addr;
3518 	macp->m_callbacks = &bge_m_callbacks;
3519 	macp->m_min_sdu = 0;
3520 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3521 	macp->m_margin = VLAN_TAGSZ;
3522 	macp->m_priv_props = bge_priv_prop;
3523 	macp->m_priv_prop_count = BGE_MAX_PRIV_PROPS;
3524 	macp->m_v12n = MAC_VIRT_LEVEL1;
3525 
3526 	/*
3527 	 * Finally, we're ready to register ourselves with the MAC layer
3528 	 * interface; if this succeeds, we're all ready to start()
3529 	 */
3530 	err = mac_register(macp, &bgep->mh);
3531 	mac_free(macp);
3532 	if (err != 0)
3533 		goto attach_fail;
3534 
3535 	/*
3536 	 * Register a periodical handler.
3537 	 * bge_chip_cyclic() is invoked in kernel context.
3538 	 */
3539 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3540 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
3541 
3542 	bgep->progress |= PROGRESS_READY;
3543 	ASSERT(bgep->bge_guard == BGE_GUARD);
3544 #ifdef BGE_IPMI_ASF
3545 #ifdef BGE_NETCONSOLE
3546 	if (bgep->asf_enabled) {
3547 		mutex_enter(bgep->genlock);
3548 		retval = bge_chip_start(bgep, B_TRUE);
3549 		mutex_exit(bgep->genlock);
3550 		if (retval != DDI_SUCCESS)
3551 			goto attach_fail;
3552 	}
3553 #endif
3554 #endif
3555 
3556 	ddi_report_dev(devinfo);
3557 	BGE_REPORT((bgep, "bge version: %s", bge_version));
3558 
3559 	return (DDI_SUCCESS);
3560 
3561 attach_fail:
3562 #ifdef BGE_IPMI_ASF
3563 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3564 #else
3565 	bge_unattach(bgep);
3566 #endif
3567 	return (DDI_FAILURE);
3568 }
3569 
3570 /*
3571  *	bge_suspend() -- suspend transmit/receive for powerdown
3572  */
3573 static int
3574 bge_suspend(bge_t *bgep)
3575 {
3576 	/*
3577 	 * Stop processing and idle (powerdown) the PHY ...
3578 	 */
3579 	mutex_enter(bgep->genlock);
3580 #ifdef BGE_IPMI_ASF
3581 	/*
3582 	 * Power management hasn't been supported in BGE now. If you
3583 	 * want to implement it, please add the ASF/IPMI related
3584 	 * code here.
3585 	 */
3586 #endif
3587 	bge_stop(bgep);
3588 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3589 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3590 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3591 		mutex_exit(bgep->genlock);
3592 		return (DDI_FAILURE);
3593 	}
3594 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3595 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3596 		mutex_exit(bgep->genlock);
3597 		return (DDI_FAILURE);
3598 	}
3599 	mutex_exit(bgep->genlock);
3600 
3601 	return (DDI_SUCCESS);
3602 }
3603 
3604 /*
3605  * quiesce(9E) entry point.
3606  *
3607  * This function is called when the system is single-threaded at high
3608  * PIL with preemption disabled. Therefore, this function must not be
3609  * blocked.
3610  *
3611  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3612  * DDI_FAILURE indicates an error condition and should almost never happen.
3613  */
3614 #ifdef	__sparc
3615 #define	bge_quiesce	ddi_quiesce_not_supported
3616 #else
3617 static int
3618 bge_quiesce(dev_info_t *devinfo)
3619 {
3620 	bge_t *bgep = ddi_get_driver_private(devinfo);
3621 
3622 	if (bgep == NULL)
3623 		return (DDI_FAILURE);
3624 
3625 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3626 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3627 		    MHCR_MASK_PCI_INT_OUTPUT);
3628 	} else {
3629 		bge_reg_clr32(bgep, MSI_MODE_REG, MSI_MSI_ENABLE);
3630 	}
3631 
3632 	/* Stop the chip */
3633 	bge_chip_stop_nonblocking(bgep);
3634 
3635 	return (DDI_SUCCESS);
3636 }
3637 #endif
3638 
3639 /*
3640  * detach(9E) -- Detach a device from the system
3641  */
3642 static int
3643 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3644 {
3645 	bge_t *bgep;
3646 #ifdef BGE_IPMI_ASF
3647 	uint_t asf_mode;
3648 	asf_mode = ASF_MODE_NONE;
3649 #endif
3650 
3651 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3652 
3653 	bgep = ddi_get_driver_private(devinfo);
3654 
3655 	switch (cmd) {
3656 	default:
3657 		return (DDI_FAILURE);
3658 
3659 	case DDI_SUSPEND:
3660 		return (bge_suspend(bgep));
3661 
3662 	case DDI_DETACH:
3663 		break;
3664 	}
3665 
3666 #ifdef BGE_IPMI_ASF
3667 	mutex_enter(bgep->genlock);
3668 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3669 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3670 
3671 		bge_asf_update_status(bgep);
3672 		if (bgep->asf_status == ASF_STAT_RUN) {
3673 			bge_asf_stop_timer(bgep);
3674 		}
3675 		bgep->asf_status = ASF_STAT_STOP;
3676 
3677 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3678 
3679 		if (bgep->asf_pseudostop) {
3680 			bge_chip_stop(bgep, B_FALSE);
3681 			bgep->bge_mac_state = BGE_MAC_STOPPED;
3682 			bgep->asf_pseudostop = B_FALSE;
3683 		}
3684 
3685 		asf_mode = ASF_MODE_POST_SHUTDOWN;
3686 
3687 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3688 			ddi_fm_service_impact(bgep->devinfo,
3689 			    DDI_SERVICE_UNAFFECTED);
3690 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3691 			ddi_fm_service_impact(bgep->devinfo,
3692 			    DDI_SERVICE_UNAFFECTED);
3693 	}
3694 	mutex_exit(bgep->genlock);
3695 #endif
3696 
3697 	/*
3698 	 * Unregister from the GLD subsystem.  This can fail, in
3699 	 * particular if there are DLPI style-2 streams still open -
3700 	 * in which case we just return failure without shutting
3701 	 * down chip operations.
3702 	 */
3703 	if (mac_unregister(bgep->mh) != 0)
3704 		return (DDI_FAILURE);
3705 
3706 	/*
3707 	 * All activity stopped, so we can clean up & exit
3708 	 */
3709 #ifdef BGE_IPMI_ASF
3710 	bge_unattach(bgep, asf_mode);
3711 #else
3712 	bge_unattach(bgep);
3713 #endif
3714 	return (DDI_SUCCESS);
3715 }
3716 
3717 
3718 /*
3719  * ========== Module Loading Data & Entry Points ==========
3720  */
3721 
3722 #undef	BGE_DBG
3723 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3724 
3725 DDI_DEFINE_STREAM_OPS(bge_dev_ops,
3726 	nulldev,	/* identify */
3727 	nulldev,	/* probe */
3728 	bge_attach,	/* attach */
3729 	bge_detach,	/* detach */
3730 	nodev,		/* reset */
3731 	NULL,		/* cb_ops */
3732 	D_MP,		/* bus_ops */
3733 	NULL,		/* power */
3734 	bge_quiesce	/* quiesce */
3735 );
3736 
3737 static struct modldrv bge_modldrv = {
3738 	&mod_driverops,		/* Type of module.  This one is a driver */
3739 	bge_ident,		/* short description */
3740 	&bge_dev_ops		/* driver specific ops */
3741 };
3742 
3743 static struct modlinkage modlinkage = {
3744 	MODREV_1, (void *)&bge_modldrv, NULL
3745 };
3746 
3747 
3748 int
3749 _info(struct modinfo *modinfop)
3750 {
3751 	return (mod_info(&modlinkage, modinfop));
3752 }
3753 
3754 int
3755 _init(void)
3756 {
3757 	int status;
3758 
3759 	mac_init_ops(&bge_dev_ops, "bge");
3760 	status = mod_install(&modlinkage);
3761 	if (status == DDI_SUCCESS)
3762 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3763 	else
3764 		mac_fini_ops(&bge_dev_ops);
3765 	return (status);
3766 }
3767 
3768 int
3769 _fini(void)
3770 {
3771 	int status;
3772 
3773 	status = mod_remove(&modlinkage);
3774 	if (status == DDI_SUCCESS) {
3775 		mac_fini_ops(&bge_dev_ops);
3776 		mutex_destroy(bge_log_mutex);
3777 	}
3778 	return (status);
3779 }
3780 
3781 
3782 /*
3783  * bge_add_intrs:
3784  *
3785  * Register FIXED or MSI interrupts.
3786  */
3787 static int
3788 bge_add_intrs(bge_t *bgep, int	intr_type)
3789 {
3790 	dev_info_t	*dip = bgep->devinfo;
3791 	int		avail, actual, intr_size, count = 0;
3792 	int		i, flag, ret;
3793 
3794 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3795 
3796 	/* Get number of interrupts */
3797 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3798 	if ((ret != DDI_SUCCESS) || (count == 0)) {
3799 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3800 		    "count: %d", ret, count);
3801 
3802 		return (DDI_FAILURE);
3803 	}
3804 
3805 	/* Get number of available interrupts */
3806 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
3807 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
3808 		bge_error(bgep, "ddi_intr_get_navail() failure, "
3809 		    "ret: %d, avail: %d\n", ret, avail);
3810 
3811 		return (DDI_FAILURE);
3812 	}
3813 
3814 	if (avail < count) {
3815 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3816 		    bgep->ifname, count, avail));
3817 	}
3818 
3819 	/*
3820 	 * BGE hardware generates only single MSI even though it claims
3821 	 * to support multiple MSIs. So, hard code MSI count value to 1.
3822 	 */
3823 	if (intr_type == DDI_INTR_TYPE_MSI) {
3824 		count = 1;
3825 		flag = DDI_INTR_ALLOC_STRICT;
3826 	} else {
3827 		flag = DDI_INTR_ALLOC_NORMAL;
3828 	}
3829 
3830 	/* Allocate an array of interrupt handles */
3831 	intr_size = count * sizeof (ddi_intr_handle_t);
3832 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3833 
3834 	/* Call ddi_intr_alloc() */
3835 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3836 	    count, &actual, flag);
3837 
3838 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
3839 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3840 
3841 		kmem_free(bgep->htable, intr_size);
3842 		return (DDI_FAILURE);
3843 	}
3844 
3845 	if (actual < count) {
3846 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
3847 		    bgep->ifname, count, actual));
3848 	}
3849 
3850 	bgep->intr_cnt = actual;
3851 
3852 	/*
3853 	 * Get priority for first msi, assume remaining are all the same
3854 	 */
3855 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3856 	    DDI_SUCCESS) {
3857 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3858 
3859 		/* Free already allocated intr */
3860 		for (i = 0; i < actual; i++) {
3861 			(void) ddi_intr_free(bgep->htable[i]);
3862 		}
3863 
3864 		kmem_free(bgep->htable, intr_size);
3865 		return (DDI_FAILURE);
3866 	}
3867 
3868 	/* Call ddi_intr_add_handler() */
3869 	for (i = 0; i < actual; i++) {
3870 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3871 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3872 			bge_error(bgep, "ddi_intr_add_handler() "
3873 			    "failed %d\n", ret);
3874 
3875 			/* Free already allocated intr */
3876 			for (i = 0; i < actual; i++) {
3877 				(void) ddi_intr_free(bgep->htable[i]);
3878 			}
3879 
3880 			kmem_free(bgep->htable, intr_size);
3881 			return (DDI_FAILURE);
3882 		}
3883 	}
3884 
3885 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3886 	    != DDI_SUCCESS) {
3887 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3888 
3889 		for (i = 0; i < actual; i++) {
3890 			(void) ddi_intr_remove_handler(bgep->htable[i]);
3891 			(void) ddi_intr_free(bgep->htable[i]);
3892 		}
3893 
3894 		kmem_free(bgep->htable, intr_size);
3895 		return (DDI_FAILURE);
3896 	}
3897 
3898 	return (DDI_SUCCESS);
3899 }
3900 
3901 /*
3902  * bge_rem_intrs:
3903  *
3904  * Unregister FIXED or MSI interrupts
3905  */
3906 static void
3907 bge_rem_intrs(bge_t *bgep)
3908 {
3909 	int	i;
3910 
3911 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3912 
3913 	/* Call ddi_intr_remove_handler() */
3914 	for (i = 0; i < bgep->intr_cnt; i++) {
3915 		(void) ddi_intr_remove_handler(bgep->htable[i]);
3916 		(void) ddi_intr_free(bgep->htable[i]);
3917 	}
3918 
3919 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3920 }
3921 
3922 
3923 void
3924 bge_intr_enable(bge_t *bgep)
3925 {
3926 	int i;
3927 
3928 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3929 		/* Call ddi_intr_block_enable() for MSI interrupts */
3930 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3931 	} else {
3932 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3933 		for (i = 0; i < bgep->intr_cnt; i++) {
3934 			(void) ddi_intr_enable(bgep->htable[i]);
3935 		}
3936 	}
3937 }
3938 
3939 
3940 void
3941 bge_intr_disable(bge_t *bgep)
3942 {
3943 	int i;
3944 
3945 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3946 		/* Call ddi_intr_block_disable() */
3947 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3948 	} else {
3949 		for (i = 0; i < bgep->intr_cnt; i++) {
3950 			(void) ddi_intr_disable(bgep->htable[i]);
3951 		}
3952 	}
3953 }
3954 
3955 int
3956 bge_reprogram(bge_t *bgep)
3957 {
3958 	int status = 0;
3959 
3960 	ASSERT(mutex_owned(bgep->genlock));
3961 
3962 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
3963 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3964 		status = IOC_INVAL;
3965 	}
3966 #ifdef BGE_IPMI_ASF
3967 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3968 #else
3969 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
3970 #endif
3971 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3972 		status = IOC_INVAL;
3973 	}
3974 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3975 		bge_chip_msi_trig(bgep);
3976 	return (status);
3977 }
3978