xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 3e5bc1d795e8c41f3680a71e3954e72d079ee46d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_if.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 #include <inet/ip_if.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.  After enqueueing
56  * the data, the sender can either push (putnext) data up the receiver's
57  * read queue; or the sender can simply return and let the receiver
58  * retrieve the enqueued data via the synchronous streams entry point
59  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
60  * enabled (the default).  It is disabled if sockfs no longer resides
61  * directly on top of tcp module due to a module insertion or removal.
62  * It also needs to be temporarily disabled when sending urgent data
63  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
64  * by strsock_proto() hook.
65  *
66  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
67  * One of the requirements for fusion to succeed is that both endpoints
68  * need to be using the same squeue.  This ensures that neither side
69  * can disappear while the other side is still sending data.  By itself,
70  * squeue is not sufficient for guaranteeing safety when synchronous
71  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
72  * the squeue and its access to tcp_rcv_list and other fusion-related
73  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
74  * used for this purpose.  When there is urgent data, the sender needs
75  * to push the data up the receiver's streams read queue.  In order to
76  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
77  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
78  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
79  * after this point, it will see that synchronous streams is plugged and
80  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
81  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
82  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
83  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
84  * getq_noenab() to dequeue data from the stream head instead.  Once the
85  * data on the stream head has been consumed, tcp_fuse_rrw() may again
86  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
87  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
88  * effectively disabling synchronous streams.
89  *
90  * The following note applies only to the synchronous streams mode.
91  *
92  * Flow control is done by checking the size of receive buffer and
93  * the number of data blocks, both set to different limits.  This is
94  * different than regular streams flow control where cumulative size
95  * check dominates block count check -- streams queue high water mark
96  * typically represents bytes.  Each enqueue triggers notifications
97  * to the receiving process; a build up of data blocks indicates a
98  * slow receiver and the sender should be blocked or informed at the
99  * earliest moment instead of further wasting system resources.  In
100  * effect, this is equivalent to limiting the number of outstanding
101  * segments in flight.
102  */
103 
104 /*
105  * Setting this to false means we disable fusion altogether and
106  * loopback connections would go through the protocol paths.
107  */
108 boolean_t do_tcp_fusion = B_TRUE;
109 
110 /*
111  * Enabling this flag allows sockfs to retrieve data directly
112  * from a fused tcp endpoint using synchronous streams interface.
113  */
114 boolean_t do_tcp_direct_sockfs = B_TRUE;
115 
116 /*
117  * This is the minimum amount of outstanding writes allowed on
118  * a synchronous streams-enabled receiving endpoint before the
119  * sender gets flow-controlled.  Setting this value to 0 means
120  * that the data block limit is equivalent to the byte count
121  * limit, which essentially disables the check.
122  */
123 #define	TCP_FUSION_RCV_UNREAD_MIN	8
124 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
125 
126 static void		tcp_fuse_syncstr_enable(tcp_t *);
127 static void		tcp_fuse_syncstr_disable(tcp_t *);
128 static boolean_t	strrput_sig(queue_t *, boolean_t);
129 
130 /*
131  * Return true if this connection needs some IP functionality
132  */
133 static boolean_t
134 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
135 {
136 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
137 
138 	/*
139 	 * If ire is not cached, do not use fusion
140 	 */
141 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
142 		/*
143 		 * There is no need to hold conn_lock here because when called
144 		 * from tcp_fuse() there can be no window where conn_ire_cache
145 		 * can change. This is not true when called from
146 		 * tcp_fuse_output() as conn_ire_cache can become null just
147 		 * after the check. It will be necessary to recheck for a NULL
148 		 * conn_ire_cache in tcp_fuse_output() to avoid passing a
149 		 * stale ill pointer to FW_HOOKS.
150 		 */
151 		return (B_TRUE);
152 	}
153 	if (tcp->tcp_ipversion == IPV4_VERSION) {
154 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
155 			return (B_TRUE);
156 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
157 			return (B_TRUE);
158 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
159 			return (B_TRUE);
160 	} else {
161 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
162 			return (B_TRUE);
163 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
164 			return (B_TRUE);
165 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
166 			return (B_TRUE);
167 	}
168 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
169 		return (B_TRUE);
170 	return (B_FALSE);
171 }
172 
173 
174 /*
175  * This routine gets called by the eager tcp upon changing state from
176  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
177  * and the active connect tcp such that the regular tcp processings
178  * may be bypassed under allowable circumstances.  Because the fusion
179  * requires both endpoints to be in the same squeue, it does not work
180  * for simultaneous active connects because there is no easy way to
181  * switch from one squeue to another once the connection is created.
182  * This is different from the eager tcp case where we assign it the
183  * same squeue as the one given to the active connect tcp during open.
184  */
185 void
186 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
187 {
188 	conn_t *peer_connp, *connp = tcp->tcp_connp;
189 	tcp_t *peer_tcp;
190 	tcp_stack_t	*tcps = tcp->tcp_tcps;
191 	netstack_t	*ns;
192 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
193 
194 	ASSERT(!tcp->tcp_fused);
195 	ASSERT(tcp->tcp_loopback);
196 	ASSERT(tcp->tcp_loopback_peer == NULL);
197 	/*
198 	 * We need to inherit q_hiwat of the listener tcp, but we can't
199 	 * really use tcp_listener since we get here after sending up
200 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
201 	 * at which point tcp_listener is cleared; this is why we use
202 	 * tcp_saved_listener.  The listener itself is guaranteed to be
203 	 * around until tcp_accept_finish() is called on this eager --
204 	 * this won't happen until we're done since we're inside the
205 	 * eager's perimeter now.
206 	 *
207 	 * We can also get called in the case were a connection needs
208 	 * to be re-fused. In this case tcp_saved_listener will be
209 	 * NULL but tcp_refuse will be true.
210 	 */
211 	ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse);
212 	/*
213 	 * Lookup peer endpoint; search for the remote endpoint having
214 	 * the reversed address-port quadruplet in ESTABLISHED state,
215 	 * which is guaranteed to be unique in the system.  Zone check
216 	 * is applied accordingly for loopback address, but not for
217 	 * local address since we want fusion to happen across Zones.
218 	 */
219 	if (tcp->tcp_ipversion == IPV4_VERSION) {
220 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
221 		    (ipha_t *)iphdr, tcph, ipst);
222 	} else {
223 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
224 		    (ip6_t *)iphdr, tcph, ipst);
225 	}
226 
227 	/*
228 	 * We can only proceed if peer exists, resides in the same squeue
229 	 * as our conn and is not raw-socket.  The squeue assignment of
230 	 * this eager tcp was done earlier at the time of SYN processing
231 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
232 	 * doesn't guarantee a safe condition to fuse, hence we perform
233 	 * additional tests below.
234 	 */
235 	ASSERT(peer_connp == NULL || peer_connp != connp);
236 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
237 	    !IPCL_IS_TCP(peer_connp)) {
238 		if (peer_connp != NULL) {
239 			TCP_STAT(tcps, tcp_fusion_unqualified);
240 			CONN_DEC_REF(peer_connp);
241 		}
242 		return;
243 	}
244 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
245 
246 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
247 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
248 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
249 
250 	/*
251 	 * Fuse the endpoints; we perform further checks against both
252 	 * tcp endpoints to ensure that a fusion is allowed to happen.
253 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
254 	 * IPQoS policy/kernel SSL exists.
255 	 */
256 	ns = tcps->tcps_netstack;
257 	ipst = ns->netstack_ip;
258 
259 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
260 	    !tcp_loopback_needs_ip(tcp, ns) &&
261 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
262 	    tcp->tcp_kssl_ent == NULL &&
263 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
264 		mblk_t *mp;
265 		queue_t *peer_rq = peer_tcp->tcp_rq;
266 
267 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
268 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
269 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
270 		ASSERT(tcp->tcp_kssl_ctx == NULL);
271 
272 		/*
273 		 * We need to drain data on both endpoints during unfuse.
274 		 * If we need to send up SIGURG at the time of draining,
275 		 * we want to be sure that an mblk is readily available.
276 		 * This is why we pre-allocate the M_PCSIG mblks for both
277 		 * endpoints which will only be used during/after unfuse.
278 		 */
279 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
280 			if ((mp = allocb(1, BPRI_HI)) == NULL)
281 				goto failed;
282 
283 			tcp->tcp_fused_sigurg_mp = mp;
284 		}
285 
286 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
287 			if ((mp = allocb(1, BPRI_HI)) == NULL)
288 				goto failed;
289 
290 			peer_tcp->tcp_fused_sigurg_mp = mp;
291 		}
292 
293 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
294 		    (mp = allocb(sizeof (struct stroptions),
295 		    BPRI_HI)) == NULL) {
296 			goto failed;
297 		}
298 
299 		/* If either tcp or peer_tcp sodirect enabled then disable */
300 		if (tcp->tcp_sodirect != NULL) {
301 			mutex_enter(tcp->tcp_sodirect->sod_lockp);
302 			SOD_DISABLE(tcp->tcp_sodirect);
303 			mutex_exit(tcp->tcp_sodirect->sod_lockp);
304 			tcp->tcp_sodirect = NULL;
305 		}
306 		if (peer_tcp->tcp_sodirect != NULL) {
307 			mutex_enter(peer_tcp->tcp_sodirect->sod_lockp);
308 			SOD_DISABLE(peer_tcp->tcp_sodirect);
309 			mutex_exit(peer_tcp->tcp_sodirect->sod_lockp);
310 			peer_tcp->tcp_sodirect = NULL;
311 		}
312 
313 		/* Fuse both endpoints */
314 		peer_tcp->tcp_loopback_peer = tcp;
315 		tcp->tcp_loopback_peer = peer_tcp;
316 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
317 
318 		/*
319 		 * We never use regular tcp paths in fusion and should
320 		 * therefore clear tcp_unsent on both endpoints.  Having
321 		 * them set to non-zero values means asking for trouble
322 		 * especially after unfuse, where we may end up sending
323 		 * through regular tcp paths which expect xmit_list and
324 		 * friends to be correctly setup.
325 		 */
326 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
327 
328 		tcp_timers_stop(tcp);
329 		tcp_timers_stop(peer_tcp);
330 
331 		/*
332 		 * At this point we are a detached eager tcp and therefore
333 		 * don't have a queue assigned to us until accept happens.
334 		 * In the mean time the peer endpoint may immediately send
335 		 * us data as soon as fusion is finished, and we need to be
336 		 * able to flow control it in case it sends down huge amount
337 		 * of data while we're still detached.  To prevent that we
338 		 * inherit the listener's recv_hiwater value; this is temporary
339 		 * since we'll repeat the process intcp_accept_finish().
340 		 */
341 		if (!tcp->tcp_refuse) {
342 			(void) tcp_fuse_set_rcv_hiwat(tcp,
343 			    tcp->tcp_saved_listener->tcp_recv_hiwater);
344 
345 			/*
346 			 * Set the stream head's write offset value to zero
347 			 * since we won't be needing any room for TCP/IP
348 			 * headers; tell it to not break up the writes (this
349 			 * would reduce the amount of work done by kmem); and
350 			 * configure our receive buffer. Note that we can only
351 			 * do this for the active connect tcp since our eager is
352 			 * still detached; it will be dealt with later in
353 			 * tcp_accept_finish().
354 			 */
355 			if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
356 				struct stroptions *stropt;
357 
358 				DB_TYPE(mp) = M_SETOPTS;
359 				mp->b_wptr += sizeof (*stropt);
360 
361 				stropt = (struct stroptions *)mp->b_rptr;
362 				stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT;
363 				stropt->so_maxblk = tcp_maxpsz_set(peer_tcp,
364 				    B_FALSE);
365 				stropt->so_wroff = 0;
366 
367 				/*
368 				 * Record the stream head's high water mark for
369 				 * peer endpoint; this is used for flow-control
370 				 * purposes in tcp_fuse_output().
371 				 */
372 				stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(
373 				    peer_tcp, peer_rq->q_hiwat);
374 
375 				tcp->tcp_refuse = B_FALSE;
376 				peer_tcp->tcp_refuse = B_FALSE;
377 				/* Send the options up */
378 				putnext(peer_rq, mp);
379 			} else {
380 				struct sock_proto_props sopp;
381 
382 				/* The peer is a non-STREAMS end point */
383 				ASSERT(IPCL_IS_TCP(peer_connp));
384 
385 				(void) tcp_fuse_set_rcv_hiwat(tcp,
386 				    tcp->tcp_saved_listener->tcp_recv_hiwater);
387 
388 				sopp.sopp_flags = SOCKOPT_MAXBLK |
389 				    SOCKOPT_WROFF | SOCKOPT_RCVHIWAT;
390 				sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp,
391 				    B_FALSE);
392 				sopp.sopp_wroff = 0;
393 				sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat(
394 				    peer_tcp, peer_tcp->tcp_recv_hiwater);
395 				(*peer_connp->conn_upcalls->su_set_proto_props)
396 				    (peer_connp->conn_upper_handle, &sopp);
397 			}
398 		}
399 		tcp->tcp_refuse = B_FALSE;
400 		peer_tcp->tcp_refuse = B_FALSE;
401 	} else {
402 		TCP_STAT(tcps, tcp_fusion_unqualified);
403 	}
404 	CONN_DEC_REF(peer_connp);
405 	return;
406 
407 failed:
408 	if (tcp->tcp_fused_sigurg_mp != NULL) {
409 		freeb(tcp->tcp_fused_sigurg_mp);
410 		tcp->tcp_fused_sigurg_mp = NULL;
411 	}
412 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
413 		freeb(peer_tcp->tcp_fused_sigurg_mp);
414 		peer_tcp->tcp_fused_sigurg_mp = NULL;
415 	}
416 	CONN_DEC_REF(peer_connp);
417 }
418 
419 /*
420  * Unfuse a previously-fused pair of tcp loopback endpoints.
421  */
422 void
423 tcp_unfuse(tcp_t *tcp)
424 {
425 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
426 
427 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
428 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
429 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
430 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
431 
432 	/*
433 	 * We disable synchronous streams, drain any queued data and
434 	 * clear tcp_direct_sockfs.  The synchronous streams entry
435 	 * points will become no-ops after this point.
436 	 */
437 	tcp_fuse_disable_pair(tcp, B_TRUE);
438 
439 	/*
440 	 * Update th_seq and th_ack in the header template
441 	 */
442 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
443 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
444 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
445 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
446 
447 	/* Unfuse the endpoints */
448 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
449 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
450 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
451 		ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
452 		freeb(peer_tcp->tcp_fused_sigurg_mp);
453 		peer_tcp->tcp_fused_sigurg_mp = NULL;
454 	}
455 	if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
456 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
457 		freeb(tcp->tcp_fused_sigurg_mp);
458 		tcp->tcp_fused_sigurg_mp = NULL;
459 	}
460 }
461 
462 /*
463  * Fusion output routine for urgent data.  This routine is called by
464  * tcp_fuse_output() for handling non-M_DATA mblks.
465  */
466 void
467 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
468 {
469 	mblk_t *mp1;
470 	struct T_exdata_ind *tei;
471 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
472 	mblk_t *head, *prev_head = NULL;
473 	tcp_stack_t	*tcps = tcp->tcp_tcps;
474 
475 	ASSERT(tcp->tcp_fused);
476 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
477 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
478 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
479 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
480 
481 	/*
482 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
483 	 * Each occurence denotes a new urgent pointer.  For each new
484 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
485 	 * that it needs to go into urgent mode.  This is similar to the
486 	 * urgent data handling in the regular tcp.  We don't need to keep
487 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
488 	 * "advances" the urgent pointer for us.
489 	 *
490 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
491 	 * by a T_EXDATA_IND before being enqueued behind any existing data
492 	 * destined for the receiving app.  There is only a single urgent
493 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
494 	 * data arrives before the receiving app reads some existing urgent
495 	 * data, the previous marker is lost.  This behavior is emulated
496 	 * accordingly below, by removing any existing T_EXDATA_IND messages
497 	 * and essentially converting old urgent data into non-urgent.
498 	 */
499 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
500 	/* Let sender get out of urgent mode */
501 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
502 
503 	/*
504 	 * This flag indicates that a signal needs to be sent up.
505 	 * This flag will only get cleared once SIGURG is delivered and
506 	 * is not affected by the tcp_fused flag -- delivery will still
507 	 * happen even after an endpoint is unfused, to handle the case
508 	 * where the sending endpoint immediately closes/unfuses after
509 	 * sending urgent data and the accept is not yet finished.
510 	 */
511 	peer_tcp->tcp_fused_sigurg = B_TRUE;
512 
513 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
514 	DB_TYPE(mp) = M_PROTO;
515 	tei = (struct T_exdata_ind *)mp->b_rptr;
516 	tei->PRIM_type = T_EXDATA_IND;
517 	tei->MORE_flag = 0;
518 	mp->b_wptr = (uchar_t *)&tei[1];
519 
520 	TCP_STAT(tcps, tcp_fusion_urg);
521 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
522 
523 	head = peer_tcp->tcp_rcv_list;
524 	while (head != NULL) {
525 		/*
526 		 * Remove existing T_EXDATA_IND, keep the data which follows
527 		 * it and relink our list.  Note that we don't modify the
528 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
529 		 */
530 		if (DB_TYPE(head) != M_DATA) {
531 			mp1 = head;
532 
533 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
534 			head = mp1->b_cont;
535 			mp1->b_cont = NULL;
536 			head->b_next = mp1->b_next;
537 			mp1->b_next = NULL;
538 			if (prev_head != NULL)
539 				prev_head->b_next = head;
540 			if (peer_tcp->tcp_rcv_list == mp1)
541 				peer_tcp->tcp_rcv_list = head;
542 			if (peer_tcp->tcp_rcv_last_head == mp1)
543 				peer_tcp->tcp_rcv_last_head = head;
544 			freeb(mp1);
545 		}
546 		prev_head = head;
547 		head = head->b_next;
548 	}
549 }
550 
551 /*
552  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
553  * If we are modifying any member that can be changed outside the squeue,
554  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
555  */
556 boolean_t
557 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
558 {
559 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
560 	uint_t max_unread;
561 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
562 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
563 	boolean_t push = B_FALSE;
564 	mblk_t *mp1 = mp;
565 	ill_t *ilp, *olp;
566 	ipif_t *iifp, *oifp;
567 	ipha_t *ipha;
568 	ip6_t *ip6h;
569 	tcph_t *tcph;
570 	uint_t ip_hdr_len;
571 	uint32_t seq;
572 	uint32_t recv_size = send_size;
573 	tcp_stack_t	*tcps = tcp->tcp_tcps;
574 	netstack_t	*ns = tcps->tcps_netstack;
575 	ip_stack_t	*ipst = ns->netstack_ip;
576 
577 	ASSERT(tcp->tcp_fused);
578 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
579 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
580 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
581 	    DB_TYPE(mp) == M_PCPROTO);
582 
583 	/* If this connection requires IP, unfuse and use regular path */
584 	if (tcp_loopback_needs_ip(tcp, ns) ||
585 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
586 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) ||
587 	    list_head(&ipst->ips_ipobs_cb_list) != NULL) {
588 		TCP_STAT(tcps, tcp_fusion_aborted);
589 		tcp->tcp_refuse = B_TRUE;
590 		peer_tcp->tcp_refuse = B_TRUE;
591 
592 		bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph,
593 		    sizeof (tcph_t));
594 		bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph,
595 		    sizeof (tcph_t));
596 		if (tcp->tcp_ipversion == IPV4_VERSION) {
597 			bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha,
598 			    sizeof (ipha_t));
599 			bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha,
600 			    sizeof (ipha_t));
601 		} else {
602 			bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h,
603 			    sizeof (ip6_t));
604 			bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h,
605 			    sizeof (ip6_t));
606 		}
607 		goto unfuse;
608 	}
609 
610 	if (send_size == 0) {
611 		freemsg(mp);
612 		return (B_TRUE);
613 	}
614 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
615 
616 	/*
617 	 * Handle urgent data; we either send up SIGURG to the peer now
618 	 * or do it later when we drain, in case the peer is detached
619 	 * or if we're short of memory for M_PCSIG mblk.
620 	 */
621 	if (urgent) {
622 		/*
623 		 * We stop synchronous streams when we have urgent data
624 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
625 		 * for some reasons the urgent data can't be delivered
626 		 * below, synchronous streams will remain stopped until
627 		 * someone drains the tcp_rcv_list.
628 		 */
629 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
630 		tcp_fuse_output_urg(tcp, mp);
631 
632 		mp1 = mp->b_cont;
633 	}
634 
635 	if (tcp->tcp_ipversion == IPV4_VERSION &&
636 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
637 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
638 	    tcp->tcp_ipversion == IPV6_VERSION &&
639 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
640 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
641 		/*
642 		 * Build ip and tcp header to satisfy FW_HOOKS.
643 		 * We only build it when any hook is present.
644 		 */
645 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
646 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
647 			/* If tcp_xmit_mp fails, use regular path */
648 			goto unfuse;
649 
650 		/*
651 		 * The ipif and ill can be safely referenced under the
652 		 * protection of conn_lock - see head of function comment for
653 		 * conn_get_held_ipif(). It is necessary to check that both
654 		 * the ipif and ill can be looked up (i.e. not condemned). If
655 		 * not, bail out and unfuse this connection.
656 		 */
657 		mutex_enter(&peer_tcp->tcp_connp->conn_lock);
658 		if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) ||
659 		    (peer_tcp->tcp_connp->conn_ire_cache->ire_marks &
660 		    IRE_MARK_CONDEMNED) ||
661 		    ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif)
662 		    == NULL) ||
663 		    (!IPIF_CAN_LOOKUP(oifp)) ||
664 		    ((olp = oifp->ipif_ill) == NULL) ||
665 		    (ill_check_and_refhold(olp) != 0)) {
666 			mutex_exit(&peer_tcp->tcp_connp->conn_lock);
667 			goto unfuse;
668 		}
669 		mutex_exit(&peer_tcp->tcp_connp->conn_lock);
670 
671 		/* PFHooks: LOOPBACK_OUT */
672 		if (tcp->tcp_ipversion == IPV4_VERSION) {
673 			ipha = (ipha_t *)mp1->b_rptr;
674 
675 			DTRACE_PROBE4(ip4__loopback__out__start,
676 			    ill_t *, NULL, ill_t *, olp,
677 			    ipha_t *, ipha, mblk_t *, mp1);
678 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
679 			    ipst->ips_ipv4firewall_loopback_out,
680 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
681 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
682 		} else {
683 			ip6h = (ip6_t *)mp1->b_rptr;
684 
685 			DTRACE_PROBE4(ip6__loopback__out__start,
686 			    ill_t *, NULL, ill_t *, olp,
687 			    ip6_t *, ip6h, mblk_t *, mp1);
688 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
689 			    ipst->ips_ipv6firewall_loopback_out,
690 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
691 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
692 		}
693 		ill_refrele(olp);
694 
695 		if (mp1 == NULL)
696 			goto unfuse;
697 
698 		/*
699 		 * The ipif and ill can be safely referenced under the
700 		 * protection of conn_lock - see head of function comment for
701 		 * conn_get_held_ipif(). It is necessary to check that both
702 		 * the ipif and ill can be looked up (i.e. not condemned). If
703 		 * not, bail out and unfuse this connection.
704 		 */
705 		mutex_enter(&tcp->tcp_connp->conn_lock);
706 		if ((tcp->tcp_connp->conn_ire_cache == NULL) ||
707 		    (tcp->tcp_connp->conn_ire_cache->ire_marks &
708 		    IRE_MARK_CONDEMNED) ||
709 		    ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif)
710 		    == NULL) ||
711 		    (!IPIF_CAN_LOOKUP(iifp)) ||
712 		    ((ilp = iifp->ipif_ill) == NULL) ||
713 		    (ill_check_and_refhold(ilp) != 0)) {
714 			mutex_exit(&tcp->tcp_connp->conn_lock);
715 			goto unfuse;
716 		}
717 		mutex_exit(&tcp->tcp_connp->conn_lock);
718 
719 		/* PFHooks: LOOPBACK_IN */
720 		if (tcp->tcp_ipversion == IPV4_VERSION) {
721 			DTRACE_PROBE4(ip4__loopback__in__start,
722 			    ill_t *, ilp, ill_t *, NULL,
723 			    ipha_t *, ipha, mblk_t *, mp1);
724 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
725 			    ipst->ips_ipv4firewall_loopback_in,
726 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
727 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
728 			ill_refrele(ilp);
729 			if (mp1 == NULL)
730 				goto unfuse;
731 
732 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
733 		} else {
734 			DTRACE_PROBE4(ip6__loopback__in__start,
735 			    ill_t *, ilp, ill_t *, NULL,
736 			    ip6_t *, ip6h, mblk_t *, mp1);
737 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
738 			    ipst->ips_ipv6firewall_loopback_in,
739 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
740 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
741 			ill_refrele(ilp);
742 			if (mp1 == NULL)
743 				goto unfuse;
744 
745 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
746 		}
747 
748 		/* Data length might be changed by FW_HOOKS */
749 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
750 		seq = ABE32_TO_U32(tcph->th_seq);
751 		recv_size += seq - tcp->tcp_snxt;
752 
753 		/*
754 		 * The message duplicated by tcp_xmit_mp is freed.
755 		 * Note: the original message passed in remains unchanged.
756 		 */
757 		freemsg(mp1);
758 	}
759 
760 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
761 	/*
762 	 * Wake up and signal the peer; it is okay to do this before
763 	 * enqueueing because we are holding the lock.  One of the
764 	 * advantages of synchronous streams is the ability for us to
765 	 * find out when the application performs a read on the socket,
766 	 * by way of tcp_fuse_rrw() entry point being called.  Every
767 	 * data that gets enqueued onto the receiver is treated as if
768 	 * it has arrived at the receiving endpoint, thus generating
769 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
770 	 * case.  However, we only wake up the application when necessary,
771 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
772 	 * it will send everything upstream.
773 	 */
774 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
775 	    !TCP_IS_DETACHED(peer_tcp)) {
776 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
777 		STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq),
778 		    peer_tcp->tcp_rcv_list);
779 	}
780 
781 	/*
782 	 * Enqueue data into the peer's receive list; we may or may not
783 	 * drain the contents depending on the conditions below.
784 	 */
785 	if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
786 	    peer_tcp->tcp_connp->conn_upper_handle != NULL) {
787 		int error;
788 		int flags = 0;
789 
790 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
791 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
792 			flags = MSG_OOB;
793 			(*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob)
794 			    (peer_tcp->tcp_connp->conn_upper_handle, 0);
795 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
796 		}
797 		(*peer_tcp->tcp_connp->conn_upcalls->su_recv)(
798 		    peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size,
799 		    flags, &error, &push);
800 	} else {
801 		if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
802 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
803 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
804 			/*
805 			 * Can not deal with urgent pointers
806 			 * that arrive before the connection has been
807 			 * accept()ed.
808 			 */
809 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
810 			freemsg(mp);
811 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
812 			return (B_TRUE);
813 		}
814 
815 		tcp_rcv_enqueue(peer_tcp, mp, recv_size);
816 	}
817 
818 	/* In case it wrapped around and also to keep it constant */
819 	peer_tcp->tcp_rwnd += recv_size;
820 	/*
821 	 * We increase the peer's unread message count here whilst still
822 	 * holding it's tcp_non_sq_lock. This ensures that the increment
823 	 * occurs in the same lock acquisition perimeter as the enqueue.
824 	 * Depending on lock hierarchy, we can release these locks which
825 	 * creates a window in which we can race with tcp_fuse_rrw()
826 	 */
827 	peer_tcp->tcp_fuse_rcv_unread_cnt++;
828 
829 	/*
830 	 * Exercise flow-control when needed; we will get back-enabled
831 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
832 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
833 	 * we emulate streams flow control by checking the peer's queue
834 	 * size and high water mark; otherwise we simply use canputnext()
835 	 * to decide if we need to stop our flow.
836 	 *
837 	 * The outstanding unread data block check does not apply for a
838 	 * detached receiver; this is to avoid unnecessary blocking of the
839 	 * sender while the accept is currently in progress and is quite
840 	 * similar to the regular tcp.
841 	 */
842 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
843 		max_unread = UINT_MAX;
844 
845 	/*
846 	 * Since we are accessing our tcp_flow_stopped and might modify it,
847 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
848 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
849 	 * not be an issue here since we are within the squeue and the peer
850 	 * won't disappear.
851 	 */
852 	if (tcp > peer_tcp) {
853 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
854 		mutex_enter(&tcp->tcp_non_sq_lock);
855 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
856 	} else {
857 		mutex_enter(&tcp->tcp_non_sq_lock);
858 	}
859 	flow_stopped = tcp->tcp_flow_stopped;
860 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
861 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
862 	    peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
863 	    (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) &&
864 	    !IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
865 	    !canputnext(peer_tcp->tcp_rq))) {
866 		peer_data_queued = B_TRUE;
867 	}
868 
869 	if (!flow_stopped && (peer_data_queued ||
870 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
871 		tcp_setqfull(tcp);
872 		flow_stopped = B_TRUE;
873 		TCP_STAT(tcps, tcp_fusion_flowctl);
874 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
875 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
876 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
877 	} else if (flow_stopped && !peer_data_queued &&
878 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
879 		tcp_clrqfull(tcp);
880 		TCP_STAT(tcps, tcp_fusion_backenabled);
881 		flow_stopped = B_FALSE;
882 	}
883 	mutex_exit(&tcp->tcp_non_sq_lock);
884 
885 	/*
886 	 * If we are in synchronous streams mode and the peer read queue is
887 	 * not full then schedule a push timer if one is not scheduled
888 	 * already. This is needed for applications which use MSG_PEEK to
889 	 * determine the number of bytes available before issuing a 'real'
890 	 * read. It also makes flow control more deterministic, particularly
891 	 * for smaller message sizes.
892 	 */
893 	if (!urgent && peer_tcp->tcp_direct_sockfs &&
894 	    peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) &&
895 	    canputnext(peer_tcp->tcp_rq)) {
896 		peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer,
897 		    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
898 	}
899 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
900 	ipst->ips_loopback_packets++;
901 	tcp->tcp_last_sent_len = send_size;
902 
903 	/* Need to adjust the following SNMP MIB-related variables */
904 	tcp->tcp_snxt += send_size;
905 	tcp->tcp_suna = tcp->tcp_snxt;
906 	peer_tcp->tcp_rnxt += recv_size;
907 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
908 
909 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
910 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
911 
912 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
913 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
914 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
915 
916 	BUMP_LOCAL(tcp->tcp_obsegs);
917 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
918 
919 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
920 
921 	if (!TCP_IS_DETACHED(peer_tcp)) {
922 		/*
923 		 * Drain the peer's receive queue it has urgent data or if
924 		 * we're not flow-controlled.  There is no need for draining
925 		 * normal data when tcp_direct_sockfs is on because the peer
926 		 * will pull the data via tcp_fuse_rrw().
927 		 */
928 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
929 			ASSERT(IPCL_IS_NONSTR(peer_tcp->tcp_connp) ||
930 			    peer_tcp->tcp_rcv_list != NULL);
931 			/*
932 			 * For TLI-based streams, a thread in tcp_accept_swap()
933 			 * can race with us.  That thread will ensure that the
934 			 * correct peer_tcp->tcp_rq is globally visible before
935 			 * peer_tcp->tcp_detached is visible as clear, but we
936 			 * must also ensure that the load of tcp_rq cannot be
937 			 * reordered to be before the tcp_detached check.
938 			 */
939 			membar_consumer();
940 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
941 			    NULL);
942 			/*
943 			 * If synchronous streams was stopped above due
944 			 * to the presence of urgent data, re-enable it.
945 			 */
946 			if (urgent)
947 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
948 		}
949 	}
950 	return (B_TRUE);
951 unfuse:
952 	tcp_unfuse(tcp);
953 	return (B_FALSE);
954 }
955 
956 /*
957  * This routine gets called to deliver data upstream on a fused or
958  * previously fused tcp loopback endpoint; the latter happens only
959  * when there is a pending SIGURG signal plus urgent data that can't
960  * be sent upstream in the past.
961  */
962 boolean_t
963 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
964 {
965 	mblk_t *mp;
966 	conn_t	*connp = tcp->tcp_connp;
967 
968 #ifdef DEBUG
969 	uint_t cnt = 0;
970 #endif
971 	tcp_stack_t	*tcps = tcp->tcp_tcps;
972 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
973 	boolean_t	sd_rd_eof = B_FALSE;
974 
975 	ASSERT(tcp->tcp_loopback);
976 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
977 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
978 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
979 
980 	/* No need for the push timer now, in case it was scheduled */
981 	if (tcp->tcp_push_tid != 0) {
982 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
983 		tcp->tcp_push_tid = 0;
984 	}
985 	/*
986 	 * If there's urgent data sitting in receive list and we didn't
987 	 * get a chance to send up a SIGURG signal, make sure we send
988 	 * it first before draining in order to ensure that SIOCATMARK
989 	 * works properly.
990 	 */
991 	if (tcp->tcp_fused_sigurg) {
992 		tcp->tcp_fused_sigurg = B_FALSE;
993 		if (IPCL_IS_NONSTR(connp)) {
994 			(*connp->conn_upcalls->su_signal_oob)
995 			    (connp->conn_upper_handle, 0);
996 		} else {
997 			/*
998 			 * sigurg_mpp is normally NULL, i.e. when we're still
999 			 * fused and didn't get here because of tcp_unfuse().
1000 			 * In this case try hard to allocate the M_PCSIG mblk.
1001 			 */
1002 			if (sigurg_mpp == NULL &&
1003 			    (mp = allocb(1, BPRI_HI)) == NULL &&
1004 			    (mp = allocb_tryhard(1)) == NULL) {
1005 				/* Alloc failed; try again next time */
1006 				tcp->tcp_push_tid = TCP_TIMER(tcp,
1007 				    tcp_push_timer,
1008 				    MSEC_TO_TICK(
1009 				    tcps->tcps_push_timer_interval));
1010 				return (B_TRUE);
1011 			} else if (sigurg_mpp != NULL) {
1012 				/*
1013 				 * Use the supplied M_PCSIG mblk; it means we're
1014 				 * either unfused or in the process of unfusing,
1015 				 * and the drain must happen now.
1016 				 */
1017 				mp = *sigurg_mpp;
1018 				*sigurg_mpp = NULL;
1019 			}
1020 			ASSERT(mp != NULL);
1021 
1022 			/* Send up the signal */
1023 			DB_TYPE(mp) = M_PCSIG;
1024 			*mp->b_wptr++ = (uchar_t)SIGURG;
1025 			putnext(q, mp);
1026 		}
1027 		/*
1028 		 * Let the regular tcp_rcv_drain() path handle
1029 		 * draining the data if we're no longer fused.
1030 		 */
1031 		if (!tcp->tcp_fused)
1032 			return (B_FALSE);
1033 	}
1034 
1035 	/*
1036 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
1037 	 * each M_DATA that gets enqueued onto the receiver.  At this point
1038 	 * we are about to drain any queued data via putnext().  In order
1039 	 * to avoid extraneous signal generation from strrput(), we set
1040 	 * STRGETINPROG flag at the stream head prior to the draining and
1041 	 * restore it afterwards.  This masks out signal generation only
1042 	 * for M_DATA messages and does not affect urgent data. We only do
1043 	 * this if the STREOF flag is not set which can happen if the
1044 	 * application shuts down the read side of a stream. In this case
1045 	 * we simply free these messages to approximate the flushq behavior
1046 	 * which normally occurs when STREOF is on the stream head read queue.
1047 	 */
1048 	if (tcp->tcp_direct_sockfs)
1049 		sd_rd_eof = strrput_sig(q, B_FALSE);
1050 
1051 	/* Drain the data */
1052 	while ((mp = tcp->tcp_rcv_list) != NULL) {
1053 		tcp->tcp_rcv_list = mp->b_next;
1054 		mp->b_next = NULL;
1055 #ifdef DEBUG
1056 		cnt += msgdsize(mp);
1057 #endif
1058 		ASSERT(!IPCL_IS_NONSTR(connp));
1059 		if (sd_rd_eof) {
1060 			freemsg(mp);
1061 		} else {
1062 			putnext(q, mp);
1063 			TCP_STAT(tcps, tcp_fusion_putnext);
1064 		}
1065 	}
1066 
1067 	if (tcp->tcp_direct_sockfs && !sd_rd_eof)
1068 		(void) strrput_sig(q, B_TRUE);
1069 
1070 #ifdef DEBUG
1071 	ASSERT(cnt == tcp->tcp_rcv_cnt);
1072 #endif
1073 	tcp->tcp_rcv_last_head = NULL;
1074 	tcp->tcp_rcv_last_tail = NULL;
1075 	tcp->tcp_rcv_cnt = 0;
1076 	tcp->tcp_fuse_rcv_unread_cnt = 0;
1077 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
1078 
1079 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
1080 	    peer_tcp->tcp_xmit_lowater)) {
1081 		tcp_clrqfull(peer_tcp);
1082 		TCP_STAT(tcps, tcp_fusion_backenabled);
1083 	}
1084 
1085 	return (B_TRUE);
1086 }
1087 
1088 /*
1089  * Synchronous stream entry point for sockfs to retrieve
1090  * data directly from tcp_rcv_list.
1091  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
1092  * for which it  must take the tcp_non_sq_lock of the peer as well
1093  * making any change. The order of taking the locks is based on
1094  * the TCP pointer itself. Before we get the peer we need to take
1095  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
1096  * we cannot drop the lock if we have to grab the peer's lock (because
1097  * of ordering), since the peer might disappear in the interim. So,
1098  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
1099  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
1100  * desired order. Incrementing the conn ref on the peer means that the
1101  * peer won't disappear when we drop our tcp_non_sq_lock.
1102  */
1103 int
1104 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
1105 {
1106 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
1107 	mblk_t *mp;
1108 	tcp_t *peer_tcp;
1109 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1110 
1111 	mutex_enter(&tcp->tcp_non_sq_lock);
1112 
1113 	/*
1114 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
1115 	 * the underlying data to the stream head.  We need to wait until it's
1116 	 * done, then return EBUSY so that strget() will dequeue data from the
1117 	 * stream head to ensure data is drained in-order.
1118 	 */
1119 plugged:
1120 	if (tcp->tcp_fuse_syncstr_plugged) {
1121 		do {
1122 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
1123 		} while (tcp->tcp_fuse_syncstr_plugged);
1124 
1125 		mutex_exit(&tcp->tcp_non_sq_lock);
1126 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
1127 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
1128 		return (EBUSY);
1129 	}
1130 
1131 	peer_tcp = tcp->tcp_loopback_peer;
1132 
1133 	/*
1134 	 * If someone had turned off tcp_direct_sockfs or if synchronous
1135 	 * streams is stopped, we return EBUSY.  This causes strget() to
1136 	 * dequeue data from the stream head instead.
1137 	 */
1138 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1139 		mutex_exit(&tcp->tcp_non_sq_lock);
1140 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
1141 		return (EBUSY);
1142 	}
1143 
1144 	/*
1145 	 * Grab lock in order. The highest addressed tcp is locked first.
1146 	 * We don't do this within the tcp_rcv_list check since if we
1147 	 * have to drop the lock, for ordering, then the tcp_rcv_list
1148 	 * could change.
1149 	 */
1150 	if (peer_tcp > tcp) {
1151 		CONN_INC_REF(peer_tcp->tcp_connp);
1152 		mutex_exit(&tcp->tcp_non_sq_lock);
1153 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1154 		mutex_enter(&tcp->tcp_non_sq_lock);
1155 		/*
1156 		 * This might have changed in the interim
1157 		 * Once read-side tcp_non_sq_lock is dropped above
1158 		 * anything can happen, we need to check all
1159 		 * known conditions again once we reaquire
1160 		 * read-side tcp_non_sq_lock.
1161 		 */
1162 		if (tcp->tcp_fuse_syncstr_plugged) {
1163 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1164 			CONN_DEC_REF(peer_tcp->tcp_connp);
1165 			goto plugged;
1166 		}
1167 		if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1168 			mutex_exit(&tcp->tcp_non_sq_lock);
1169 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1170 			CONN_DEC_REF(peer_tcp->tcp_connp);
1171 			TCP_STAT(tcps, tcp_fusion_rrw_busy);
1172 			return (EBUSY);
1173 		}
1174 		CONN_DEC_REF(peer_tcp->tcp_connp);
1175 	} else {
1176 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1177 	}
1178 
1179 	if ((mp = tcp->tcp_rcv_list) != NULL) {
1180 
1181 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
1182 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
1183 
1184 		tcp->tcp_rcv_list = NULL;
1185 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
1186 
1187 		/*
1188 		 * At this point nothing should be left in tcp_rcv_list.
1189 		 * The only possible case where we would have a chain of
1190 		 * b_next-linked messages is urgent data, but we wouldn't
1191 		 * be here if that's true since urgent data is delivered
1192 		 * via putnext() and synchronous streams is stopped until
1193 		 * tcp_fuse_rcv_drain() is finished.
1194 		 */
1195 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
1196 
1197 		tcp->tcp_rcv_last_head = NULL;
1198 		tcp->tcp_rcv_last_tail = NULL;
1199 		tcp->tcp_rcv_cnt = 0;
1200 		tcp->tcp_fuse_rcv_unread_cnt = 0;
1201 
1202 		if (peer_tcp->tcp_flow_stopped &&
1203 		    (TCP_UNSENT_BYTES(peer_tcp) <=
1204 		    peer_tcp->tcp_xmit_lowater)) {
1205 			tcp_clrqfull(peer_tcp);
1206 			TCP_STAT(tcps, tcp_fusion_backenabled);
1207 		}
1208 	}
1209 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1210 	/*
1211 	 * Either we just dequeued everything or we get here from sockfs
1212 	 * and have nothing to return; in this case clear RSLEEP.
1213 	 */
1214 	ASSERT(tcp->tcp_rcv_last_head == NULL);
1215 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
1216 	ASSERT(tcp->tcp_rcv_cnt == 0);
1217 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
1218 	STR_WAKEUP_CLEAR(STREAM(q));
1219 
1220 	mutex_exit(&tcp->tcp_non_sq_lock);
1221 	dp->d_mp = mp;
1222 	return (0);
1223 }
1224 
1225 /*
1226  * Synchronous stream entry point used by certain ioctls to retrieve
1227  * information about or peek into the tcp_rcv_list.
1228  */
1229 int
1230 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1231 {
1232 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1233 	mblk_t	*mp;
1234 	uint_t	cmd = dp->d_cmd;
1235 	int	res = 0;
1236 	int	error = 0;
1237 	struct stdata *stp = STREAM(q);
1238 
1239 	mutex_enter(&tcp->tcp_non_sq_lock);
1240 	/* If shutdown on read has happened, return nothing */
1241 	mutex_enter(&stp->sd_lock);
1242 	if (stp->sd_flag & STREOF) {
1243 		mutex_exit(&stp->sd_lock);
1244 		goto done;
1245 	}
1246 	mutex_exit(&stp->sd_lock);
1247 
1248 	/*
1249 	 * It is OK not to return an answer if tcp_rcv_list is
1250 	 * currently not accessible.
1251 	 */
1252 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1253 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1254 		goto done;
1255 
1256 	if (cmd & INFOD_COUNT) {
1257 		/*
1258 		 * We have at least one message and
1259 		 * could return only one at a time.
1260 		 */
1261 		dp->d_count++;
1262 		res |= INFOD_COUNT;
1263 	}
1264 	if (cmd & INFOD_BYTES) {
1265 		/*
1266 		 * Return size of all data messages.
1267 		 */
1268 		dp->d_bytes += tcp->tcp_rcv_cnt;
1269 		res |= INFOD_BYTES;
1270 	}
1271 	if (cmd & INFOD_FIRSTBYTES) {
1272 		/*
1273 		 * Return size of first data message.
1274 		 */
1275 		dp->d_bytes = msgdsize(mp);
1276 		res |= INFOD_FIRSTBYTES;
1277 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1278 	}
1279 	if (cmd & INFOD_COPYOUT) {
1280 		mblk_t *mp1;
1281 		int n;
1282 
1283 		if (DB_TYPE(mp) == M_DATA) {
1284 			mp1 = mp;
1285 		} else {
1286 			mp1 = mp->b_cont;
1287 			ASSERT(mp1 != NULL);
1288 		}
1289 
1290 		/*
1291 		 * Return data contents of first message.
1292 		 */
1293 		ASSERT(DB_TYPE(mp1) == M_DATA);
1294 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1295 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1296 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1297 			    UIO_READ, dp->d_uiop)) != 0) {
1298 				goto done;
1299 			}
1300 			mp1 = mp1->b_cont;
1301 		}
1302 		res |= INFOD_COPYOUT;
1303 		dp->d_cmd &= ~INFOD_COPYOUT;
1304 	}
1305 done:
1306 	mutex_exit(&tcp->tcp_non_sq_lock);
1307 
1308 	dp->d_res |= res;
1309 
1310 	return (error);
1311 }
1312 
1313 /*
1314  * Enable synchronous streams on a fused tcp loopback endpoint.
1315  */
1316 static void
1317 tcp_fuse_syncstr_enable(tcp_t *tcp)
1318 {
1319 	queue_t *rq = tcp->tcp_rq;
1320 	struct stdata *stp = STREAM(rq);
1321 
1322 	/* We can only enable synchronous streams for sockfs mode */
1323 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1324 
1325 	if (!tcp->tcp_direct_sockfs)
1326 		return;
1327 
1328 	mutex_enter(&stp->sd_lock);
1329 	mutex_enter(QLOCK(rq));
1330 
1331 	/*
1332 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1333 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1334 	 * for every enqueued data in tcp_fuse_output().
1335 	 */
1336 	rq->q_qinfo = &tcp_loopback_rinit;
1337 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1338 	stp->sd_struiordq = rq;
1339 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1340 
1341 	mutex_exit(QLOCK(rq));
1342 	mutex_exit(&stp->sd_lock);
1343 }
1344 
1345 /*
1346  * Disable synchronous streams on a fused tcp loopback endpoint.
1347  */
1348 static void
1349 tcp_fuse_syncstr_disable(tcp_t *tcp)
1350 {
1351 	queue_t *rq = tcp->tcp_rq;
1352 	struct stdata *stp = STREAM(rq);
1353 
1354 	if (!tcp->tcp_direct_sockfs)
1355 		return;
1356 
1357 	mutex_enter(&stp->sd_lock);
1358 	mutex_enter(QLOCK(rq));
1359 
1360 	/*
1361 	 * Reset q_qinfo to point to the default tcp entry points.
1362 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1363 	 * the signals again for future M_DATA messages.
1364 	 */
1365 	rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
1366 	rq->q_struiot = tcp_rinitv4.qi_struiot;
1367 	stp->sd_struiordq = NULL;
1368 	stp->sd_rput_opt |= SR_SIGALLDATA;
1369 	tcp->tcp_direct_sockfs = B_FALSE;
1370 
1371 	mutex_exit(QLOCK(rq));
1372 	mutex_exit(&stp->sd_lock);
1373 }
1374 
1375 /*
1376  * Enable synchronous streams on a pair of fused tcp endpoints.
1377  */
1378 void
1379 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1380 {
1381 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1382 
1383 	ASSERT(tcp->tcp_fused);
1384 	ASSERT(peer_tcp != NULL);
1385 
1386 	tcp_fuse_syncstr_enable(tcp);
1387 	tcp_fuse_syncstr_enable(peer_tcp);
1388 }
1389 
1390 /*
1391  * Used to enable/disable signal generation at the stream head. We already
1392  * generated the signal(s) for these messages when they were enqueued on the
1393  * receiver. We also check if STREOF is set here. If it is, we return false
1394  * and let the caller decide what to do.
1395  */
1396 static boolean_t
1397 strrput_sig(queue_t *q, boolean_t on)
1398 {
1399 	struct stdata *stp = STREAM(q);
1400 
1401 	mutex_enter(&stp->sd_lock);
1402 	if (stp->sd_flag == STREOF) {
1403 		mutex_exit(&stp->sd_lock);
1404 		return (B_TRUE);
1405 	}
1406 	if (on)
1407 		stp->sd_flag &= ~STRGETINPROG;
1408 	else
1409 		stp->sd_flag |= STRGETINPROG;
1410 	mutex_exit(&stp->sd_lock);
1411 
1412 	return (B_FALSE);
1413 }
1414 
1415 /*
1416  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1417  * any queued data; called either during unfuse or upon transitioning from
1418  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1419  */
1420 void
1421 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1422 {
1423 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1424 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1425 
1426 	ASSERT(tcp->tcp_fused);
1427 	ASSERT(peer_tcp != NULL);
1428 
1429 	/*
1430 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1431 	 * onto the stream head.
1432 	 */
1433 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1434 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1435 
1436 	/*
1437 	 * Cancel any pending push timers.
1438 	 */
1439 	if (tcp->tcp_push_tid != 0) {
1440 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1441 		tcp->tcp_push_tid = 0;
1442 	}
1443 	if (peer_tcp->tcp_push_tid != 0) {
1444 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
1445 		peer_tcp->tcp_push_tid = 0;
1446 	}
1447 
1448 	/*
1449 	 * Drain any pending data; the detached check is needed because
1450 	 * we may be called as a result of a tcp_unfuse() triggered by
1451 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1452 	 * draining will happen later after the tcp is unfused.  For non-
1453 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1454 	 * If we have urgent data sitting in the receive list, we will
1455 	 * need to send up a SIGURG signal first before draining the data.
1456 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1457 	 * when called from tcp_rcv_drain().
1458 	 */
1459 	if (!TCP_IS_DETACHED(tcp)) {
1460 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1461 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1462 	}
1463 	if (!TCP_IS_DETACHED(peer_tcp)) {
1464 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1465 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1466 	}
1467 
1468 	/*
1469 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1470 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1471 	 * a given stream must be stopped prior to being unplugged (but the
1472 	 * ordering of operations between the streams is unimportant).
1473 	 */
1474 	TCP_FUSE_SYNCSTR_STOP(tcp);
1475 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1476 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1477 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1478 
1479 	/* Lift up any flow-control conditions */
1480 	if (tcp->tcp_flow_stopped) {
1481 		tcp_clrqfull(tcp);
1482 		TCP_STAT(tcps, tcp_fusion_backenabled);
1483 	}
1484 	if (peer_tcp->tcp_flow_stopped) {
1485 		tcp_clrqfull(peer_tcp);
1486 		TCP_STAT(tcps, tcp_fusion_backenabled);
1487 	}
1488 
1489 	/* Disable synchronous streams */
1490 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
1491 		tcp_fuse_syncstr_disable(tcp);
1492 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp))
1493 		tcp_fuse_syncstr_disable(peer_tcp);
1494 }
1495 
1496 /*
1497  * Calculate the size of receive buffer for a fused tcp endpoint.
1498  */
1499 size_t
1500 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1501 {
1502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1503 
1504 	ASSERT(tcp->tcp_fused);
1505 
1506 	/* Ensure that value is within the maximum upper bound */
1507 	if (rwnd > tcps->tcps_max_buf)
1508 		rwnd = tcps->tcps_max_buf;
1509 
1510 	/* Obey the absolute minimum tcp receive high water mark */
1511 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1512 		rwnd = tcps->tcps_sth_rcv_hiwat;
1513 
1514 	/*
1515 	 * Round up to system page size in case SO_RCVBUF is modified
1516 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1517 	 */
1518 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1519 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1520 	return (rwnd);
1521 }
1522 
1523 /*
1524  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1525  */
1526 int
1527 tcp_fuse_maxpsz_set(tcp_t *tcp)
1528 {
1529 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1530 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1531 	uint_t maxpsz = sndbuf;
1532 
1533 	ASSERT(tcp->tcp_fused);
1534 	ASSERT(peer_tcp != NULL);
1535 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1536 	/*
1537 	 * In the fused loopback case, we want the stream head to split
1538 	 * up larger writes into smaller chunks for a more accurate flow-
1539 	 * control accounting.  Our maxpsz is half of the sender's send
1540 	 * buffer or the receiver's receive buffer, whichever is smaller.
1541 	 * We round up the buffer to system page size due to the lack of
1542 	 * TCP MSS concept in Fusion.
1543 	 */
1544 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1545 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1546 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1547 
1548 	/*
1549 	 * Calculate the peer's limit for the number of outstanding unread
1550 	 * data block.  This is the amount of data blocks that are allowed
1551 	 * to reside in the receiver's queue before the sender gets flow
1552 	 * controlled.  It is used only in the synchronous streams mode as
1553 	 * a way to throttle the sender when it performs consecutive writes
1554 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1555 	 * order to give the sender some control; we divide it with a large
1556 	 * value (16KB) to produce a fairly low initial limit.
1557 	 */
1558 	if (tcp_fusion_rcv_unread_min == 0) {
1559 		/* A value of 0 means that we disable the check */
1560 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1561 	} else {
1562 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1563 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1564 	}
1565 	return (maxpsz);
1566 }
1567