1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent Inc. All rights reserved. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/optcom.h> 81 #include <inet/snmpcom.h> 82 #include <inet/kstatcom.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/tcp_cluster.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <sys/tsol/label.h> 100 #include <sys/tsol/tnet.h> 101 #include <rpc/pmap_prot.h> 102 #include <sys/callo.h> 103 104 /* 105 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 106 * 107 * (Read the detailed design doc in PSARC case directory) 108 * 109 * The entire tcp state is contained in tcp_t and conn_t structure 110 * which are allocated in tandem using ipcl_conn_create() and passing 111 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 112 * the references on the tcp_t. The tcp_t structure is never compressed 113 * and packets always land on the correct TCP perimeter from the time 114 * eager is created till the time tcp_t dies (as such the old mentat 115 * TCP global queue is not used for detached state and no IPSEC checking 116 * is required). The global queue is still allocated to send out resets 117 * for connection which have no listeners and IP directly calls 118 * tcp_xmit_listeners_reset() which does any policy check. 119 * 120 * Protection and Synchronisation mechanism: 121 * 122 * The tcp data structure does not use any kind of lock for protecting 123 * its state but instead uses 'squeues' for mutual exclusion from various 124 * read and write side threads. To access a tcp member, the thread should 125 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 126 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 127 * can pass any tcp function having prototype of edesc_t as argument 128 * (different from traditional STREAMs model where packets come in only 129 * designated entry points). The list of functions that can be directly 130 * called via squeue are listed before the usual function prototype. 131 * 132 * Referencing: 133 * 134 * TCP is MT-Hot and we use a reference based scheme to make sure that the 135 * tcp structure doesn't disappear when its needed. When the application 136 * creates an outgoing connection or accepts an incoming connection, we 137 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 138 * The IP reference is just a symbolic reference since ip_tcpclose() 139 * looks at tcp structure after tcp_close_output() returns which could 140 * have dropped the last TCP reference. So as long as the connection is 141 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 142 * conn_t. The classifier puts its own reference when the connection is 143 * inserted in listen or connected hash. Anytime a thread needs to enter 144 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 145 * on write side or by doing a classify on read side and then puts a 146 * reference on the conn before doing squeue_enter/tryenter/fill. For 147 * read side, the classifier itself puts the reference under fanout lock 148 * to make sure that tcp can't disappear before it gets processed. The 149 * squeue will drop this reference automatically so the called function 150 * doesn't have to do a DEC_REF. 151 * 152 * Opening a new connection: 153 * 154 * The outgoing connection open is pretty simple. tcp_open() does the 155 * work in creating the conn/tcp structure and initializing it. The 156 * squeue assignment is done based on the CPU the application 157 * is running on. So for outbound connections, processing is always done 158 * on application CPU which might be different from the incoming CPU 159 * being interrupted by the NIC. An optimal way would be to figure out 160 * the NIC <-> CPU binding at listen time, and assign the outgoing 161 * connection to the squeue attached to the CPU that will be interrupted 162 * for incoming packets (we know the NIC based on the bind IP address). 163 * This might seem like a problem if more data is going out but the 164 * fact is that in most cases the transmit is ACK driven transmit where 165 * the outgoing data normally sits on TCP's xmit queue waiting to be 166 * transmitted. 167 * 168 * Accepting a connection: 169 * 170 * This is a more interesting case because of various races involved in 171 * establishing a eager in its own perimeter. Read the meta comment on 172 * top of tcp_input_listener(). But briefly, the squeue is picked by 173 * ip_fanout based on the ring or the sender (if loopback). 174 * 175 * Closing a connection: 176 * 177 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 178 * via squeue to do the close and mark the tcp as detached if the connection 179 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 180 * reference but tcp_close() drop IP's reference always. So if tcp was 181 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 182 * and 1 because it is in classifier's connected hash. This is the condition 183 * we use to determine that its OK to clean up the tcp outside of squeue 184 * when time wait expires (check the ref under fanout and conn_lock and 185 * if it is 2, remove it from fanout hash and kill it). 186 * 187 * Although close just drops the necessary references and marks the 188 * tcp_detached state, tcp_close needs to know the tcp_detached has been 189 * set (under squeue) before letting the STREAM go away (because a 190 * inbound packet might attempt to go up the STREAM while the close 191 * has happened and tcp_detached is not set). So a special lock and 192 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 193 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 194 * tcp_detached. 195 * 196 * Special provisions and fast paths: 197 * 198 * We make special provisions for sockfs by marking tcp_issocket 199 * whenever we have only sockfs on top of TCP. This allows us to skip 200 * putting the tcp in acceptor hash since a sockfs listener can never 201 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 202 * since eager has already been allocated and the accept now happens 203 * on acceptor STREAM. There is a big blob of comment on top of 204 * tcp_input_listener explaining the new accept. When socket is POP'd, 205 * sockfs sends us an ioctl to mark the fact and we go back to old 206 * behaviour. Once tcp_issocket is unset, its never set for the 207 * life of that connection. 208 * 209 * IPsec notes : 210 * 211 * Since a packet is always executed on the correct TCP perimeter 212 * all IPsec processing is defered to IP including checking new 213 * connections and setting IPSEC policies for new connection. The 214 * only exception is tcp_xmit_listeners_reset() which is called 215 * directly from IP and needs to policy check to see if TH_RST 216 * can be sent out. 217 */ 218 219 /* 220 * Values for squeue switch: 221 * 1: SQ_NODRAIN 222 * 2: SQ_PROCESS 223 * 3: SQ_FILL 224 */ 225 int tcp_squeue_wput = 2; /* /etc/systems */ 226 int tcp_squeue_flag; 227 228 /* 229 * To prevent memory hog, limit the number of entries in tcp_free_list 230 * to 1% of available memory / number of cpus 231 */ 232 uint_t tcp_free_list_max_cnt = 0; 233 234 #define TCP_XMIT_LOWATER 4096 235 #define TCP_XMIT_HIWATER 49152 236 #define TCP_RECV_LOWATER 2048 237 #define TCP_RECV_HIWATER 128000 238 239 #define TIDUSZ 4096 /* transport interface data unit size */ 240 241 /* 242 * Size of acceptor hash list. It has to be a power of 2 for hashing. 243 */ 244 #define TCP_ACCEPTOR_FANOUT_SIZE 512 245 246 #ifdef _ILP32 247 #define TCP_ACCEPTOR_HASH(accid) \ 248 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 249 #else 250 #define TCP_ACCEPTOR_HASH(accid) \ 251 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 252 #endif /* _ILP32 */ 253 254 /* 255 * Minimum number of connections which can be created per listener. Used 256 * when the listener connection count is in effect. 257 */ 258 static uint32_t tcp_min_conn_listener = 2; 259 260 uint32_t tcp_early_abort = 30; 261 262 /* TCP Timer control structure */ 263 typedef struct tcpt_s { 264 pfv_t tcpt_pfv; /* The routine we are to call */ 265 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 266 } tcpt_t; 267 268 /* 269 * Functions called directly via squeue having a prototype of edesc_t. 270 */ 271 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 272 ip_recv_attr_t *ira); 273 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 274 ip_recv_attr_t *ira); 275 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 276 ip_recv_attr_t *dummy); 277 278 279 /* Prototype for TCP functions */ 280 static void tcp_random_init(void); 281 int tcp_random(void); 282 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 283 in_port_t dstport, uint_t srcid); 284 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 285 in_port_t dstport, uint32_t flowinfo, 286 uint_t srcid, uint32_t scope_id); 287 static void tcp_iss_init(tcp_t *tcp); 288 static void tcp_reinit(tcp_t *tcp); 289 static void tcp_reinit_values(tcp_t *tcp); 290 291 static void tcp_wsrv(queue_t *q); 292 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 293 static void tcp_update_zcopy(tcp_t *tcp); 294 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 295 ixa_notify_arg_t); 296 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 297 static void tcp_stack_fini(netstackid_t stackid, void *arg); 298 299 static int tcp_squeue_switch(int); 300 301 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 302 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 303 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 304 305 static void tcp_squeue_add(squeue_t *); 306 307 struct module_info tcp_rinfo = { 308 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 309 }; 310 311 static struct module_info tcp_winfo = { 312 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 313 }; 314 315 /* 316 * Entry points for TCP as a device. The normal case which supports 317 * the TCP functionality. 318 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 319 */ 320 struct qinit tcp_rinitv4 = { 321 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 322 }; 323 324 struct qinit tcp_rinitv6 = { 325 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 326 }; 327 328 struct qinit tcp_winit = { 329 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 330 }; 331 332 /* Initial entry point for TCP in socket mode. */ 333 struct qinit tcp_sock_winit = { 334 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 335 }; 336 337 /* TCP entry point during fallback */ 338 struct qinit tcp_fallback_sock_winit = { 339 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 340 }; 341 342 /* 343 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 344 * an accept. Avoid allocating data structures since eager has already 345 * been created. 346 */ 347 struct qinit tcp_acceptor_rinit = { 348 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 349 }; 350 351 struct qinit tcp_acceptor_winit = { 352 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 353 }; 354 355 /* For AF_INET aka /dev/tcp */ 356 struct streamtab tcpinfov4 = { 357 &tcp_rinitv4, &tcp_winit 358 }; 359 360 /* For AF_INET6 aka /dev/tcp6 */ 361 struct streamtab tcpinfov6 = { 362 &tcp_rinitv6, &tcp_winit 363 }; 364 365 /* 366 * Following assumes TPI alignment requirements stay along 32 bit 367 * boundaries 368 */ 369 #define ROUNDUP32(x) \ 370 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 371 372 /* Template for response to info request. */ 373 struct T_info_ack tcp_g_t_info_ack = { 374 T_INFO_ACK, /* PRIM_type */ 375 0, /* TSDU_size */ 376 T_INFINITE, /* ETSDU_size */ 377 T_INVALID, /* CDATA_size */ 378 T_INVALID, /* DDATA_size */ 379 sizeof (sin_t), /* ADDR_size */ 380 0, /* OPT_size - not initialized here */ 381 TIDUSZ, /* TIDU_size */ 382 T_COTS_ORD, /* SERV_type */ 383 TCPS_IDLE, /* CURRENT_state */ 384 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 385 }; 386 387 struct T_info_ack tcp_g_t_info_ack_v6 = { 388 T_INFO_ACK, /* PRIM_type */ 389 0, /* TSDU_size */ 390 T_INFINITE, /* ETSDU_size */ 391 T_INVALID, /* CDATA_size */ 392 T_INVALID, /* DDATA_size */ 393 sizeof (sin6_t), /* ADDR_size */ 394 0, /* OPT_size - not initialized here */ 395 TIDUSZ, /* TIDU_size */ 396 T_COTS_ORD, /* SERV_type */ 397 TCPS_IDLE, /* CURRENT_state */ 398 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 399 }; 400 401 /* 402 * TCP tunables related declarations. Definitions are in tcp_tunables.c 403 */ 404 extern mod_prop_info_t tcp_propinfo_tbl[]; 405 extern int tcp_propinfo_count; 406 407 #define IS_VMLOANED_MBLK(mp) \ 408 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 409 410 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 411 412 /* 413 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 414 * tunable settable via NDD. Otherwise, the per-connection behavior is 415 * determined dynamically during tcp_set_destination(), which is the default. 416 */ 417 boolean_t tcp_static_maxpsz = B_FALSE; 418 419 /* 420 * If the receive buffer size is changed, this function is called to update 421 * the upper socket layer on the new delayed receive wake up threshold. 422 */ 423 static void 424 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 425 { 426 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 427 428 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 429 conn_t *connp = tcp->tcp_connp; 430 struct sock_proto_props sopp; 431 432 /* 433 * only increase rcvthresh upto default_threshold 434 */ 435 if (new_rcvthresh > default_threshold) 436 new_rcvthresh = default_threshold; 437 438 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 439 sopp.sopp_rcvthresh = new_rcvthresh; 440 441 (*connp->conn_upcalls->su_set_proto_props) 442 (connp->conn_upper_handle, &sopp); 443 } 444 } 445 446 /* 447 * Figure out the value of window scale opton. Note that the rwnd is 448 * ASSUMED to be rounded up to the nearest MSS before the calculation. 449 * We cannot find the scale value and then do a round up of tcp_rwnd 450 * because the scale value may not be correct after that. 451 * 452 * Set the compiler flag to make this function inline. 453 */ 454 void 455 tcp_set_ws_value(tcp_t *tcp) 456 { 457 int i; 458 uint32_t rwnd = tcp->tcp_rwnd; 459 460 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 461 i++, rwnd >>= 1) 462 ; 463 tcp->tcp_rcv_ws = i; 464 } 465 466 /* 467 * Remove cached/latched IPsec references. 468 */ 469 void 470 tcp_ipsec_cleanup(tcp_t *tcp) 471 { 472 conn_t *connp = tcp->tcp_connp; 473 474 ASSERT(connp->conn_flags & IPCL_TCPCONN); 475 476 if (connp->conn_latch != NULL) { 477 IPLATCH_REFRELE(connp->conn_latch); 478 connp->conn_latch = NULL; 479 } 480 if (connp->conn_latch_in_policy != NULL) { 481 IPPOL_REFRELE(connp->conn_latch_in_policy); 482 connp->conn_latch_in_policy = NULL; 483 } 484 if (connp->conn_latch_in_action != NULL) { 485 IPACT_REFRELE(connp->conn_latch_in_action); 486 connp->conn_latch_in_action = NULL; 487 } 488 if (connp->conn_policy != NULL) { 489 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 490 connp->conn_policy = NULL; 491 } 492 } 493 494 /* 495 * Cleaup before placing on free list. 496 * Disassociate from the netstack/tcp_stack_t since the freelist 497 * is per squeue and not per netstack. 498 */ 499 void 500 tcp_cleanup(tcp_t *tcp) 501 { 502 mblk_t *mp; 503 conn_t *connp = tcp->tcp_connp; 504 tcp_stack_t *tcps = tcp->tcp_tcps; 505 netstack_t *ns = tcps->tcps_netstack; 506 mblk_t *tcp_rsrv_mp; 507 508 tcp_bind_hash_remove(tcp); 509 510 /* Cleanup that which needs the netstack first */ 511 tcp_ipsec_cleanup(tcp); 512 ixa_cleanup(connp->conn_ixa); 513 514 if (connp->conn_ht_iphc != NULL) { 515 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 516 connp->conn_ht_iphc = NULL; 517 connp->conn_ht_iphc_allocated = 0; 518 connp->conn_ht_iphc_len = 0; 519 connp->conn_ht_ulp = NULL; 520 connp->conn_ht_ulp_len = 0; 521 tcp->tcp_ipha = NULL; 522 tcp->tcp_ip6h = NULL; 523 tcp->tcp_tcpha = NULL; 524 } 525 526 /* We clear any IP_OPTIONS and extension headers */ 527 ip_pkt_free(&connp->conn_xmit_ipp); 528 529 tcp_free(tcp); 530 531 /* 532 * Since we will bzero the entire structure, we need to 533 * remove it and reinsert it in global hash list. We 534 * know the walkers can't get to this conn because we 535 * had set CONDEMNED flag earlier and checked reference 536 * under conn_lock so walker won't pick it and when we 537 * go the ipcl_globalhash_remove() below, no walker 538 * can get to it. 539 */ 540 ipcl_globalhash_remove(connp); 541 542 /* Save some state */ 543 mp = tcp->tcp_timercache; 544 545 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 546 547 if (connp->conn_cred != NULL) { 548 crfree(connp->conn_cred); 549 connp->conn_cred = NULL; 550 } 551 ipcl_conn_cleanup(connp); 552 connp->conn_flags = IPCL_TCPCONN; 553 554 /* 555 * Now it is safe to decrement the reference counts. 556 * This might be the last reference on the netstack 557 * in which case it will cause the freeing of the IP Instance. 558 */ 559 connp->conn_netstack = NULL; 560 connp->conn_ixa->ixa_ipst = NULL; 561 netstack_rele(ns); 562 ASSERT(tcps != NULL); 563 tcp->tcp_tcps = NULL; 564 565 bzero(tcp, sizeof (tcp_t)); 566 567 /* restore the state */ 568 tcp->tcp_timercache = mp; 569 570 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 571 572 tcp->tcp_connp = connp; 573 574 ASSERT(connp->conn_tcp == tcp); 575 ASSERT(connp->conn_flags & IPCL_TCPCONN); 576 connp->conn_state_flags = CONN_INCIPIENT; 577 ASSERT(connp->conn_proto == IPPROTO_TCP); 578 ASSERT(connp->conn_ref == 1); 579 } 580 581 /* 582 * Adapt to the information, such as rtt and rtt_sd, provided from the 583 * DCE and IRE maintained by IP. 584 * 585 * Checks for multicast and broadcast destination address. 586 * Returns zero if ok; an errno on failure. 587 * 588 * Note that the MSS calculation here is based on the info given in 589 * the DCE and IRE. We do not do any calculation based on TCP options. They 590 * will be handled in tcp_input_data() when TCP knows which options to use. 591 * 592 * Note on how TCP gets its parameters for a connection. 593 * 594 * When a tcp_t structure is allocated, it gets all the default parameters. 595 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 596 * spipe, rpipe, ... from the route metrics. Route metric overrides the 597 * default. 598 * 599 * An incoming SYN with a multicast or broadcast destination address is dropped 600 * in ip_fanout_v4/v6. 601 * 602 * An incoming SYN with a multicast or broadcast source address is always 603 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 604 * conn_connect. 605 * The same logic in tcp_set_destination also serves to 606 * reject an attempt to connect to a broadcast or multicast (destination) 607 * address. 608 */ 609 int 610 tcp_set_destination(tcp_t *tcp) 611 { 612 uint32_t mss_max; 613 uint32_t mss; 614 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 615 conn_t *connp = tcp->tcp_connp; 616 tcp_stack_t *tcps = tcp->tcp_tcps; 617 iulp_t uinfo; 618 int error; 619 uint32_t flags; 620 621 flags = IPDF_LSO | IPDF_ZCOPY; 622 /* 623 * Make sure we have a dce for the destination to avoid dce_ident 624 * contention for connected sockets. 625 */ 626 flags |= IPDF_UNIQUE_DCE; 627 628 if (!tcps->tcps_ignore_path_mtu) 629 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 630 631 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 632 mutex_enter(&connp->conn_lock); 633 error = conn_connect(connp, &uinfo, flags); 634 mutex_exit(&connp->conn_lock); 635 if (error != 0) 636 return (error); 637 638 error = tcp_build_hdrs(tcp); 639 if (error != 0) 640 return (error); 641 642 tcp->tcp_localnet = uinfo.iulp_localnet; 643 644 if (uinfo.iulp_rtt != 0) { 645 clock_t rto; 646 647 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 648 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 649 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 650 tcps->tcps_rexmit_interval_extra + 651 (tcp->tcp_rtt_sa >> 5); 652 653 TCP_SET_RTO(tcp, rto); 654 } 655 if (uinfo.iulp_ssthresh != 0) 656 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 657 else 658 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 659 if (uinfo.iulp_spipe > 0) { 660 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 661 tcps->tcps_max_buf); 662 if (tcps->tcps_snd_lowat_fraction != 0) { 663 connp->conn_sndlowat = connp->conn_sndbuf / 664 tcps->tcps_snd_lowat_fraction; 665 } 666 (void) tcp_maxpsz_set(tcp, B_TRUE); 667 } 668 /* 669 * Note that up till now, acceptor always inherits receive 670 * window from the listener. But if there is a metrics 671 * associated with a host, we should use that instead of 672 * inheriting it from listener. Thus we need to pass this 673 * info back to the caller. 674 */ 675 if (uinfo.iulp_rpipe > 0) { 676 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 677 tcps->tcps_max_buf); 678 } 679 680 if (uinfo.iulp_rtomax > 0) { 681 tcp->tcp_second_timer_threshold = 682 uinfo.iulp_rtomax; 683 } 684 685 /* 686 * Use the metric option settings, iulp_tstamp_ok and 687 * iulp_wscale_ok, only for active open. What this means 688 * is that if the other side uses timestamp or window 689 * scale option, TCP will also use those options. That 690 * is for passive open. If the application sets a 691 * large window, window scale is enabled regardless of 692 * the value in iulp_wscale_ok. This is the behavior 693 * since 2.6. So we keep it. 694 * The only case left in passive open processing is the 695 * check for SACK. 696 * For ECN, it should probably be like SACK. But the 697 * current value is binary, so we treat it like the other 698 * cases. The metric only controls active open.For passive 699 * open, the ndd param, tcp_ecn_permitted, controls the 700 * behavior. 701 */ 702 if (!tcp_detached) { 703 /* 704 * The if check means that the following can only 705 * be turned on by the metrics only IRE, but not off. 706 */ 707 if (uinfo.iulp_tstamp_ok) 708 tcp->tcp_snd_ts_ok = B_TRUE; 709 if (uinfo.iulp_wscale_ok) 710 tcp->tcp_snd_ws_ok = B_TRUE; 711 if (uinfo.iulp_sack == 2) 712 tcp->tcp_snd_sack_ok = B_TRUE; 713 if (uinfo.iulp_ecn_ok) 714 tcp->tcp_ecn_ok = B_TRUE; 715 } else { 716 /* 717 * Passive open. 718 * 719 * As above, the if check means that SACK can only be 720 * turned on by the metric only IRE. 721 */ 722 if (uinfo.iulp_sack > 0) { 723 tcp->tcp_snd_sack_ok = B_TRUE; 724 } 725 } 726 727 /* 728 * XXX Note that currently, iulp_mtu can be as small as 68 729 * because of PMTUd. So tcp_mss may go to negative if combined 730 * length of all those options exceeds 28 bytes. But because 731 * of the tcp_mss_min check below, we may not have a problem if 732 * tcp_mss_min is of a reasonable value. The default is 1 so 733 * the negative problem still exists. And the check defeats PMTUd. 734 * In fact, if PMTUd finds that the MSS should be smaller than 735 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 736 * value. 737 * 738 * We do not deal with that now. All those problems related to 739 * PMTUd will be fixed later. 740 */ 741 ASSERT(uinfo.iulp_mtu != 0); 742 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 743 744 /* Sanity check for MSS value. */ 745 if (connp->conn_ipversion == IPV4_VERSION) 746 mss_max = tcps->tcps_mss_max_ipv4; 747 else 748 mss_max = tcps->tcps_mss_max_ipv6; 749 750 if (tcp->tcp_ipsec_overhead == 0) 751 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 752 753 mss -= tcp->tcp_ipsec_overhead; 754 755 if (mss < tcps->tcps_mss_min) 756 mss = tcps->tcps_mss_min; 757 if (mss > mss_max) 758 mss = mss_max; 759 760 /* Note that this is the maximum MSS, excluding all options. */ 761 tcp->tcp_mss = mss; 762 763 /* 764 * Update the tcp connection with LSO capability. 765 */ 766 tcp_update_lso(tcp, connp->conn_ixa); 767 768 /* 769 * Initialize the ISS here now that we have the full connection ID. 770 * The RFC 1948 method of initial sequence number generation requires 771 * knowledge of the full connection ID before setting the ISS. 772 */ 773 tcp_iss_init(tcp); 774 775 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 776 777 /* 778 * Make sure that conn is not marked incipient 779 * for incoming connections. A blind 780 * removal of incipient flag is cheaper than 781 * check and removal. 782 */ 783 mutex_enter(&connp->conn_lock); 784 connp->conn_state_flags &= ~CONN_INCIPIENT; 785 mutex_exit(&connp->conn_lock); 786 return (0); 787 } 788 789 /* 790 * tcp_clean_death / tcp_close_detached must not be called more than once 791 * on a tcp. Thus every function that potentially calls tcp_clean_death 792 * must check for the tcp state before calling tcp_clean_death. 793 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 794 * tcp_timer_handler, all check for the tcp state. 795 */ 796 /* ARGSUSED */ 797 void 798 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 799 ip_recv_attr_t *dummy) 800 { 801 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 802 803 freemsg(mp); 804 if (tcp->tcp_state > TCPS_BOUND) 805 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 806 } 807 808 /* 809 * We are dying for some reason. Try to do it gracefully. (May be called 810 * as writer.) 811 * 812 * Return -1 if the structure was not cleaned up (if the cleanup had to be 813 * done by a service procedure). 814 * TBD - Should the return value distinguish between the tcp_t being 815 * freed and it being reinitialized? 816 */ 817 int 818 tcp_clean_death(tcp_t *tcp, int err) 819 { 820 mblk_t *mp; 821 queue_t *q; 822 conn_t *connp = tcp->tcp_connp; 823 tcp_stack_t *tcps = tcp->tcp_tcps; 824 825 if (tcp->tcp_fused) 826 tcp_unfuse(tcp); 827 828 if (tcp->tcp_linger_tid != 0 && 829 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 830 tcp_stop_lingering(tcp); 831 } 832 833 ASSERT(tcp != NULL); 834 ASSERT((connp->conn_family == AF_INET && 835 connp->conn_ipversion == IPV4_VERSION) || 836 (connp->conn_family == AF_INET6 && 837 (connp->conn_ipversion == IPV4_VERSION || 838 connp->conn_ipversion == IPV6_VERSION))); 839 840 if (TCP_IS_DETACHED(tcp)) { 841 if (tcp->tcp_hard_binding) { 842 /* 843 * Its an eager that we are dealing with. We close the 844 * eager but in case a conn_ind has already gone to the 845 * listener, let tcp_accept_finish() send a discon_ind 846 * to the listener and drop the last reference. If the 847 * listener doesn't even know about the eager i.e. the 848 * conn_ind hasn't gone up, blow away the eager and drop 849 * the last reference as well. If the conn_ind has gone 850 * up, state should be BOUND. tcp_accept_finish 851 * will figure out that the connection has received a 852 * RST and will send a DISCON_IND to the application. 853 */ 854 tcp_closei_local(tcp); 855 if (!tcp->tcp_tconnind_started) { 856 CONN_DEC_REF(connp); 857 } else { 858 tcp->tcp_state = TCPS_BOUND; 859 DTRACE_TCP6(state__change, void, NULL, 860 ip_xmit_attr_t *, connp->conn_ixa, 861 void, NULL, tcp_t *, tcp, void, NULL, 862 int32_t, TCPS_CLOSED); 863 } 864 } else { 865 tcp_close_detached(tcp); 866 } 867 return (0); 868 } 869 870 TCP_STAT(tcps, tcp_clean_death_nondetached); 871 872 /* 873 * The connection is dead. Decrement listener connection counter if 874 * necessary. 875 */ 876 if (tcp->tcp_listen_cnt != NULL) 877 TCP_DECR_LISTEN_CNT(tcp); 878 879 /* 880 * When a connection is moved to TIME_WAIT state, the connection 881 * counter is already decremented. So no need to decrement here 882 * again. See SET_TIME_WAIT() macro. 883 */ 884 if (tcp->tcp_state >= TCPS_ESTABLISHED && 885 tcp->tcp_state < TCPS_TIME_WAIT) { 886 TCPS_CONN_DEC(tcps); 887 } 888 889 q = connp->conn_rq; 890 891 /* Trash all inbound data */ 892 if (!IPCL_IS_NONSTR(connp)) { 893 ASSERT(q != NULL); 894 flushq(q, FLUSHALL); 895 } 896 897 /* 898 * If we are at least part way open and there is error 899 * (err==0 implies no error) 900 * notify our client by a T_DISCON_IND. 901 */ 902 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 903 if (tcp->tcp_state >= TCPS_ESTABLISHED && 904 !TCP_IS_SOCKET(tcp)) { 905 /* 906 * Send M_FLUSH according to TPI. Because sockets will 907 * (and must) ignore FLUSHR we do that only for TPI 908 * endpoints and sockets in STREAMS mode. 909 */ 910 (void) putnextctl1(q, M_FLUSH, FLUSHR); 911 } 912 if (connp->conn_debug) { 913 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 914 "tcp_clean_death: discon err %d", err); 915 } 916 if (IPCL_IS_NONSTR(connp)) { 917 /* Direct socket, use upcall */ 918 (*connp->conn_upcalls->su_disconnected)( 919 connp->conn_upper_handle, tcp->tcp_connid, err); 920 } else { 921 mp = mi_tpi_discon_ind(NULL, err, 0); 922 if (mp != NULL) { 923 putnext(q, mp); 924 } else { 925 if (connp->conn_debug) { 926 (void) strlog(TCP_MOD_ID, 0, 1, 927 SL_ERROR|SL_TRACE, 928 "tcp_clean_death, sending M_ERROR"); 929 } 930 (void) putnextctl1(q, M_ERROR, EPROTO); 931 } 932 } 933 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 934 /* SYN_SENT or SYN_RCVD */ 935 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 936 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 937 /* ESTABLISHED or CLOSE_WAIT */ 938 TCPS_BUMP_MIB(tcps, tcpEstabResets); 939 } 940 } 941 942 /* 943 * ESTABLISHED non-STREAMS eagers are not 'detached' because 944 * an upper handle is obtained when the SYN-ACK comes in. So it 945 * should receive the 'disconnected' upcall, but tcp_reinit should 946 * not be called since this is an eager. 947 */ 948 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 949 tcp_closei_local(tcp); 950 tcp->tcp_state = TCPS_BOUND; 951 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 952 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 953 int32_t, TCPS_CLOSED); 954 return (0); 955 } 956 957 tcp_reinit(tcp); 958 if (IPCL_IS_NONSTR(connp)) 959 (void) tcp_do_unbind(connp); 960 961 return (-1); 962 } 963 964 /* 965 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 966 * to expire, stop the wait and finish the close. 967 */ 968 void 969 tcp_stop_lingering(tcp_t *tcp) 970 { 971 clock_t delta = 0; 972 tcp_stack_t *tcps = tcp->tcp_tcps; 973 conn_t *connp = tcp->tcp_connp; 974 975 tcp->tcp_linger_tid = 0; 976 if (tcp->tcp_state > TCPS_LISTEN) { 977 tcp_acceptor_hash_remove(tcp); 978 mutex_enter(&tcp->tcp_non_sq_lock); 979 if (tcp->tcp_flow_stopped) { 980 tcp_clrqfull(tcp); 981 } 982 mutex_exit(&tcp->tcp_non_sq_lock); 983 984 if (tcp->tcp_timer_tid != 0) { 985 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 986 tcp->tcp_timer_tid = 0; 987 } 988 /* 989 * Need to cancel those timers which will not be used when 990 * TCP is detached. This has to be done before the conn_wq 991 * is cleared. 992 */ 993 tcp_timers_stop(tcp); 994 995 tcp->tcp_detached = B_TRUE; 996 connp->conn_rq = NULL; 997 connp->conn_wq = NULL; 998 999 if (tcp->tcp_state == TCPS_TIME_WAIT) { 1000 tcp_time_wait_append(tcp); 1001 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1002 goto finish; 1003 } 1004 1005 /* 1006 * If delta is zero the timer event wasn't executed and was 1007 * successfully canceled. In this case we need to restart it 1008 * with the minimal delta possible. 1009 */ 1010 if (delta >= 0) { 1011 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1012 delta ? delta : 1); 1013 } 1014 } else { 1015 tcp_closei_local(tcp); 1016 CONN_DEC_REF(connp); 1017 } 1018 finish: 1019 tcp->tcp_detached = B_TRUE; 1020 connp->conn_rq = NULL; 1021 connp->conn_wq = NULL; 1022 1023 /* Signal closing thread that it can complete close */ 1024 mutex_enter(&tcp->tcp_closelock); 1025 tcp->tcp_closed = 1; 1026 cv_signal(&tcp->tcp_closecv); 1027 mutex_exit(&tcp->tcp_closelock); 1028 1029 /* If we have an upper handle (socket), release it */ 1030 if (IPCL_IS_NONSTR(connp)) { 1031 ASSERT(connp->conn_upper_handle != NULL); 1032 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1033 connp->conn_upper_handle = NULL; 1034 connp->conn_upcalls = NULL; 1035 } 1036 } 1037 1038 void 1039 tcp_close_common(conn_t *connp, int flags) 1040 { 1041 tcp_t *tcp = connp->conn_tcp; 1042 mblk_t *mp = &tcp->tcp_closemp; 1043 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1044 mblk_t *bp; 1045 1046 ASSERT(connp->conn_ref >= 2); 1047 1048 /* 1049 * Mark the conn as closing. ipsq_pending_mp_add will not 1050 * add any mp to the pending mp list, after this conn has 1051 * started closing. 1052 */ 1053 mutex_enter(&connp->conn_lock); 1054 connp->conn_state_flags |= CONN_CLOSING; 1055 if (connp->conn_oper_pending_ill != NULL) 1056 conn_ioctl_cleanup_reqd = B_TRUE; 1057 CONN_INC_REF_LOCKED(connp); 1058 mutex_exit(&connp->conn_lock); 1059 tcp->tcp_closeflags = (uint8_t)flags; 1060 ASSERT(connp->conn_ref >= 3); 1061 1062 /* 1063 * tcp_closemp_used is used below without any protection of a lock 1064 * as we don't expect any one else to use it concurrently at this 1065 * point otherwise it would be a major defect. 1066 */ 1067 1068 if (mp->b_prev == NULL) 1069 tcp->tcp_closemp_used = B_TRUE; 1070 else 1071 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1072 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1073 1074 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1075 1076 /* 1077 * Cleanup any queued ioctls here. This must be done before the wq/rq 1078 * are re-written by tcp_close_output(). 1079 */ 1080 if (conn_ioctl_cleanup_reqd) 1081 conn_ioctl_cleanup(connp); 1082 1083 /* 1084 * As CONN_CLOSING is set, no further ioctls should be passed down to 1085 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1086 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1087 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1088 * was still in flight at the time, we wait for it here. See comments 1089 * for CONN_INC_IOCTLREF in ip.h for details. 1090 */ 1091 mutex_enter(&connp->conn_lock); 1092 while (connp->conn_ioctlref > 0) 1093 cv_wait(&connp->conn_cv, &connp->conn_lock); 1094 ASSERT(connp->conn_ioctlref == 0); 1095 ASSERT(connp->conn_oper_pending_ill == NULL); 1096 mutex_exit(&connp->conn_lock); 1097 1098 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1099 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1100 1101 /* 1102 * For non-STREAMS sockets, the normal case is that the conn makes 1103 * an upcall when it's finally closed, so there is no need to wait 1104 * in the protocol. But in case of SO_LINGER the thread sleeps here 1105 * so it can properly deal with the thread being interrupted. 1106 */ 1107 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1108 goto nowait; 1109 1110 mutex_enter(&tcp->tcp_closelock); 1111 while (!tcp->tcp_closed) { 1112 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1113 /* 1114 * The cv_wait_sig() was interrupted. We now do the 1115 * following: 1116 * 1117 * 1) If the endpoint was lingering, we allow this 1118 * to be interrupted by cancelling the linger timeout 1119 * and closing normally. 1120 * 1121 * 2) Revert to calling cv_wait() 1122 * 1123 * We revert to using cv_wait() to avoid an 1124 * infinite loop which can occur if the calling 1125 * thread is higher priority than the squeue worker 1126 * thread and is bound to the same cpu. 1127 */ 1128 if (connp->conn_linger && connp->conn_lingertime > 0) { 1129 mutex_exit(&tcp->tcp_closelock); 1130 /* Entering squeue, bump ref count. */ 1131 CONN_INC_REF(connp); 1132 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1133 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1134 tcp_linger_interrupted, connp, NULL, 1135 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1136 mutex_enter(&tcp->tcp_closelock); 1137 } 1138 break; 1139 } 1140 } 1141 while (!tcp->tcp_closed) 1142 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1143 mutex_exit(&tcp->tcp_closelock); 1144 1145 /* 1146 * In the case of listener streams that have eagers in the q or q0 1147 * we wait for the eagers to drop their reference to us. conn_rq and 1148 * conn_wq of the eagers point to our queues. By waiting for the 1149 * refcnt to drop to 1, we are sure that the eagers have cleaned 1150 * up their queue pointers and also dropped their references to us. 1151 * 1152 * For non-STREAMS sockets we do not have to wait here; the 1153 * listener will instead make a su_closed upcall when the last 1154 * reference is dropped. 1155 */ 1156 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1157 mutex_enter(&connp->conn_lock); 1158 while (connp->conn_ref != 1) { 1159 cv_wait(&connp->conn_cv, &connp->conn_lock); 1160 } 1161 mutex_exit(&connp->conn_lock); 1162 } 1163 1164 nowait: 1165 connp->conn_cpid = NOPID; 1166 } 1167 1168 /* 1169 * Called by tcp_close() routine via squeue when lingering is 1170 * interrupted by a signal. 1171 */ 1172 1173 /* ARGSUSED */ 1174 static void 1175 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1176 { 1177 conn_t *connp = (conn_t *)arg; 1178 tcp_t *tcp = connp->conn_tcp; 1179 1180 freeb(mp); 1181 if (tcp->tcp_linger_tid != 0 && 1182 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1183 tcp_stop_lingering(tcp); 1184 tcp->tcp_client_errno = EINTR; 1185 } 1186 } 1187 1188 /* 1189 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1190 * Some stream heads get upset if they see these later on as anything but NULL. 1191 */ 1192 void 1193 tcp_close_mpp(mblk_t **mpp) 1194 { 1195 mblk_t *mp; 1196 1197 if ((mp = *mpp) != NULL) { 1198 do { 1199 mp->b_next = NULL; 1200 mp->b_prev = NULL; 1201 } while ((mp = mp->b_cont) != NULL); 1202 1203 mp = *mpp; 1204 *mpp = NULL; 1205 freemsg(mp); 1206 } 1207 } 1208 1209 /* Do detached close. */ 1210 void 1211 tcp_close_detached(tcp_t *tcp) 1212 { 1213 if (tcp->tcp_fused) 1214 tcp_unfuse(tcp); 1215 1216 /* 1217 * Clustering code serializes TCP disconnect callbacks and 1218 * cluster tcp list walks by blocking a TCP disconnect callback 1219 * if a cluster tcp list walk is in progress. This ensures 1220 * accurate accounting of TCPs in the cluster code even though 1221 * the TCP list walk itself is not atomic. 1222 */ 1223 tcp_closei_local(tcp); 1224 CONN_DEC_REF(tcp->tcp_connp); 1225 } 1226 1227 /* 1228 * The tcp_t is going away. Remove it from all lists and set it 1229 * to TCPS_CLOSED. The freeing up of memory is deferred until 1230 * tcp_inactive. This is needed since a thread in tcp_rput might have 1231 * done a CONN_INC_REF on this structure before it was removed from the 1232 * hashes. 1233 */ 1234 void 1235 tcp_closei_local(tcp_t *tcp) 1236 { 1237 conn_t *connp = tcp->tcp_connp; 1238 tcp_stack_t *tcps = tcp->tcp_tcps; 1239 int32_t oldstate; 1240 1241 if (!TCP_IS_SOCKET(tcp)) 1242 tcp_acceptor_hash_remove(tcp); 1243 1244 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1245 tcp->tcp_ibsegs = 0; 1246 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1247 tcp->tcp_obsegs = 0; 1248 1249 /* 1250 * This can be called via tcp_time_wait_processing() if TCP gets a 1251 * SYN with sequence number outside the TIME-WAIT connection's 1252 * window. So we need to check for TIME-WAIT state here as the 1253 * connection counter is already decremented. See SET_TIME_WAIT() 1254 * macro 1255 */ 1256 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1257 tcp->tcp_state < TCPS_TIME_WAIT) { 1258 TCPS_CONN_DEC(tcps); 1259 } 1260 1261 /* 1262 * If we are an eager connection hanging off a listener that 1263 * hasn't formally accepted the connection yet, get off his 1264 * list and blow off any data that we have accumulated. 1265 */ 1266 if (tcp->tcp_listener != NULL) { 1267 tcp_t *listener = tcp->tcp_listener; 1268 mutex_enter(&listener->tcp_eager_lock); 1269 /* 1270 * tcp_tconnind_started == B_TRUE means that the 1271 * conn_ind has already gone to listener. At 1272 * this point, eager will be closed but we 1273 * leave it in listeners eager list so that 1274 * if listener decides to close without doing 1275 * accept, we can clean this up. In tcp_tli_accept 1276 * we take care of the case of accept on closed 1277 * eager. 1278 */ 1279 if (!tcp->tcp_tconnind_started) { 1280 tcp_eager_unlink(tcp); 1281 mutex_exit(&listener->tcp_eager_lock); 1282 /* 1283 * We don't want to have any pointers to the 1284 * listener queue, after we have released our 1285 * reference on the listener 1286 */ 1287 ASSERT(tcp->tcp_detached); 1288 connp->conn_rq = NULL; 1289 connp->conn_wq = NULL; 1290 CONN_DEC_REF(listener->tcp_connp); 1291 } else { 1292 mutex_exit(&listener->tcp_eager_lock); 1293 } 1294 } 1295 1296 /* Stop all the timers */ 1297 tcp_timers_stop(tcp); 1298 1299 if (tcp->tcp_state == TCPS_LISTEN) { 1300 if (tcp->tcp_ip_addr_cache) { 1301 kmem_free((void *)tcp->tcp_ip_addr_cache, 1302 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1303 tcp->tcp_ip_addr_cache = NULL; 1304 } 1305 } 1306 1307 /* Decrement listerner connection counter if necessary. */ 1308 if (tcp->tcp_listen_cnt != NULL) 1309 TCP_DECR_LISTEN_CNT(tcp); 1310 1311 mutex_enter(&tcp->tcp_non_sq_lock); 1312 if (tcp->tcp_flow_stopped) 1313 tcp_clrqfull(tcp); 1314 mutex_exit(&tcp->tcp_non_sq_lock); 1315 1316 tcp_bind_hash_remove(tcp); 1317 /* 1318 * If the tcp_time_wait_collector (which runs outside the squeue) 1319 * is trying to remove this tcp from the time wait list, we will 1320 * block in tcp_time_wait_remove while trying to acquire the 1321 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1322 * requires the ipcl_hash_remove to be ordered after the 1323 * tcp_time_wait_remove for the refcnt checks to work correctly. 1324 */ 1325 if (tcp->tcp_state == TCPS_TIME_WAIT) 1326 (void) tcp_time_wait_remove(tcp, NULL); 1327 CL_INET_DISCONNECT(connp); 1328 ipcl_hash_remove(connp); 1329 oldstate = tcp->tcp_state; 1330 tcp->tcp_state = TCPS_CLOSED; 1331 /* Need to probe before ixa_cleanup() is called */ 1332 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1333 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1334 int32_t, oldstate); 1335 ixa_cleanup(connp->conn_ixa); 1336 1337 /* 1338 * Mark the conn as CONDEMNED 1339 */ 1340 mutex_enter(&connp->conn_lock); 1341 connp->conn_state_flags |= CONN_CONDEMNED; 1342 mutex_exit(&connp->conn_lock); 1343 1344 ASSERT(tcp->tcp_time_wait_next == NULL); 1345 ASSERT(tcp->tcp_time_wait_prev == NULL); 1346 ASSERT(tcp->tcp_time_wait_expire == 0); 1347 1348 tcp_ipsec_cleanup(tcp); 1349 } 1350 1351 /* 1352 * tcp is dying (called from ipcl_conn_destroy and error cases). 1353 * Free the tcp_t in either case. 1354 */ 1355 void 1356 tcp_free(tcp_t *tcp) 1357 { 1358 mblk_t *mp; 1359 conn_t *connp = tcp->tcp_connp; 1360 1361 ASSERT(tcp != NULL); 1362 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1363 1364 connp->conn_rq = NULL; 1365 connp->conn_wq = NULL; 1366 1367 tcp_close_mpp(&tcp->tcp_xmit_head); 1368 tcp_close_mpp(&tcp->tcp_reass_head); 1369 if (tcp->tcp_rcv_list != NULL) { 1370 /* Free b_next chain */ 1371 tcp_close_mpp(&tcp->tcp_rcv_list); 1372 } 1373 if ((mp = tcp->tcp_urp_mp) != NULL) { 1374 freemsg(mp); 1375 } 1376 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1377 freemsg(mp); 1378 } 1379 1380 if (tcp->tcp_fused_sigurg_mp != NULL) { 1381 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1382 freeb(tcp->tcp_fused_sigurg_mp); 1383 tcp->tcp_fused_sigurg_mp = NULL; 1384 } 1385 1386 if (tcp->tcp_ordrel_mp != NULL) { 1387 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1388 freeb(tcp->tcp_ordrel_mp); 1389 tcp->tcp_ordrel_mp = NULL; 1390 } 1391 1392 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1393 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1394 1395 if (tcp->tcp_hopopts != NULL) { 1396 mi_free(tcp->tcp_hopopts); 1397 tcp->tcp_hopopts = NULL; 1398 tcp->tcp_hopoptslen = 0; 1399 } 1400 ASSERT(tcp->tcp_hopoptslen == 0); 1401 if (tcp->tcp_dstopts != NULL) { 1402 mi_free(tcp->tcp_dstopts); 1403 tcp->tcp_dstopts = NULL; 1404 tcp->tcp_dstoptslen = 0; 1405 } 1406 ASSERT(tcp->tcp_dstoptslen == 0); 1407 if (tcp->tcp_rthdrdstopts != NULL) { 1408 mi_free(tcp->tcp_rthdrdstopts); 1409 tcp->tcp_rthdrdstopts = NULL; 1410 tcp->tcp_rthdrdstoptslen = 0; 1411 } 1412 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1413 if (tcp->tcp_rthdr != NULL) { 1414 mi_free(tcp->tcp_rthdr); 1415 tcp->tcp_rthdr = NULL; 1416 tcp->tcp_rthdrlen = 0; 1417 } 1418 ASSERT(tcp->tcp_rthdrlen == 0); 1419 1420 /* 1421 * Following is really a blowing away a union. 1422 * It happens to have exactly two members of identical size 1423 * the following code is enough. 1424 */ 1425 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1426 1427 /* 1428 * If this is a non-STREAM socket still holding on to an upper 1429 * handle, release it. As a result of fallback we might also see 1430 * STREAMS based conns with upper handles, in which case there is 1431 * nothing to do other than clearing the field. 1432 */ 1433 if (connp->conn_upper_handle != NULL) { 1434 if (IPCL_IS_NONSTR(connp)) { 1435 (*connp->conn_upcalls->su_closed)( 1436 connp->conn_upper_handle); 1437 tcp->tcp_detached = B_TRUE; 1438 } 1439 connp->conn_upper_handle = NULL; 1440 connp->conn_upcalls = NULL; 1441 } 1442 } 1443 1444 /* 1445 * tcp_get_conn/tcp_free_conn 1446 * 1447 * tcp_get_conn is used to get a clean tcp connection structure. 1448 * It tries to reuse the connections put on the freelist by the 1449 * time_wait_collector failing which it goes to kmem_cache. This 1450 * way has two benefits compared to just allocating from and 1451 * freeing to kmem_cache. 1452 * 1) The time_wait_collector can free (which includes the cleanup) 1453 * outside the squeue. So when the interrupt comes, we have a clean 1454 * connection sitting in the freelist. Obviously, this buys us 1455 * performance. 1456 * 1457 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1458 * has multiple disadvantages - tying up the squeue during alloc. 1459 * But allocating the conn/tcp in IP land is also not the best since 1460 * we can't check the 'q' and 'q0' which are protected by squeue and 1461 * blindly allocate memory which might have to be freed here if we are 1462 * not allowed to accept the connection. By using the freelist and 1463 * putting the conn/tcp back in freelist, we don't pay a penalty for 1464 * allocating memory without checking 'q/q0' and freeing it if we can't 1465 * accept the connection. 1466 * 1467 * Care should be taken to put the conn back in the same squeue's freelist 1468 * from which it was allocated. Best results are obtained if conn is 1469 * allocated from listener's squeue and freed to the same. Time wait 1470 * collector will free up the freelist is the connection ends up sitting 1471 * there for too long. 1472 */ 1473 void * 1474 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1475 { 1476 tcp_t *tcp = NULL; 1477 conn_t *connp = NULL; 1478 squeue_t *sqp = (squeue_t *)arg; 1479 tcp_squeue_priv_t *tcp_time_wait; 1480 netstack_t *ns; 1481 mblk_t *tcp_rsrv_mp = NULL; 1482 1483 tcp_time_wait = 1484 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1485 1486 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1487 tcp = tcp_time_wait->tcp_free_list; 1488 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1489 if (tcp != NULL) { 1490 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1491 tcp_time_wait->tcp_free_list_cnt--; 1492 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1493 tcp->tcp_time_wait_next = NULL; 1494 connp = tcp->tcp_connp; 1495 connp->conn_flags |= IPCL_REUSED; 1496 1497 ASSERT(tcp->tcp_tcps == NULL); 1498 ASSERT(connp->conn_netstack == NULL); 1499 ASSERT(tcp->tcp_rsrv_mp != NULL); 1500 ns = tcps->tcps_netstack; 1501 netstack_hold(ns); 1502 connp->conn_netstack = ns; 1503 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1504 tcp->tcp_tcps = tcps; 1505 ipcl_globalhash_insert(connp); 1506 1507 connp->conn_ixa->ixa_notify_cookie = tcp; 1508 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1509 connp->conn_recv = tcp_input_data; 1510 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1511 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1512 return ((void *)connp); 1513 } 1514 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1515 /* 1516 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1517 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1518 */ 1519 tcp_rsrv_mp = allocb(0, BPRI_HI); 1520 if (tcp_rsrv_mp == NULL) 1521 return (NULL); 1522 1523 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1524 tcps->tcps_netstack)) == NULL) { 1525 freeb(tcp_rsrv_mp); 1526 return (NULL); 1527 } 1528 1529 tcp = connp->conn_tcp; 1530 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1531 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1532 1533 tcp->tcp_tcps = tcps; 1534 1535 connp->conn_recv = tcp_input_data; 1536 connp->conn_recvicmp = tcp_icmp_input; 1537 connp->conn_verifyicmp = tcp_verifyicmp; 1538 1539 /* 1540 * Register tcp_notify to listen to capability changes detected by IP. 1541 * This upcall is made in the context of the call to conn_ip_output 1542 * thus it is inside the squeue. 1543 */ 1544 connp->conn_ixa->ixa_notify = tcp_notify; 1545 connp->conn_ixa->ixa_notify_cookie = tcp; 1546 1547 return ((void *)connp); 1548 } 1549 1550 /* 1551 * Handle connect to IPv4 destinations, including connections for AF_INET6 1552 * sockets connecting to IPv4 mapped IPv6 destinations. 1553 * Returns zero if OK, a positive errno, or a negative TLI error. 1554 */ 1555 static int 1556 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1557 uint_t srcid) 1558 { 1559 ipaddr_t dstaddr = *dstaddrp; 1560 uint16_t lport; 1561 conn_t *connp = tcp->tcp_connp; 1562 tcp_stack_t *tcps = tcp->tcp_tcps; 1563 int error; 1564 1565 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1566 1567 /* Check for attempt to connect to INADDR_ANY */ 1568 if (dstaddr == INADDR_ANY) { 1569 /* 1570 * SunOS 4.x and 4.3 BSD allow an application 1571 * to connect a TCP socket to INADDR_ANY. 1572 * When they do this, the kernel picks the 1573 * address of one interface and uses it 1574 * instead. The kernel usually ends up 1575 * picking the address of the loopback 1576 * interface. This is an undocumented feature. 1577 * However, we provide the same thing here 1578 * in order to have source and binary 1579 * compatibility with SunOS 4.x. 1580 * Update the T_CONN_REQ (sin/sin6) since it is used to 1581 * generate the T_CONN_CON. 1582 */ 1583 dstaddr = htonl(INADDR_LOOPBACK); 1584 *dstaddrp = dstaddr; 1585 } 1586 1587 /* Handle __sin6_src_id if socket not bound to an IP address */ 1588 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1589 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1590 IPCL_ZONEID(connp), tcps->tcps_netstack); 1591 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1592 } 1593 1594 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1595 connp->conn_fport = dstport; 1596 1597 /* 1598 * At this point the remote destination address and remote port fields 1599 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1600 * have to see which state tcp was in so we can take appropriate action. 1601 */ 1602 if (tcp->tcp_state == TCPS_IDLE) { 1603 /* 1604 * We support a quick connect capability here, allowing 1605 * clients to transition directly from IDLE to SYN_SENT 1606 * tcp_bindi will pick an unused port, insert the connection 1607 * in the bind hash and transition to BOUND state. 1608 */ 1609 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1610 tcp, B_TRUE); 1611 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1612 B_FALSE, B_FALSE); 1613 if (lport == 0) 1614 return (-TNOADDR); 1615 } 1616 1617 /* 1618 * Lookup the route to determine a source address and the uinfo. 1619 * Setup TCP parameters based on the metrics/DCE. 1620 */ 1621 error = tcp_set_destination(tcp); 1622 if (error != 0) 1623 return (error); 1624 1625 /* 1626 * Don't let an endpoint connect to itself. 1627 */ 1628 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1629 connp->conn_fport == connp->conn_lport) 1630 return (-TBADADDR); 1631 1632 tcp->tcp_state = TCPS_SYN_SENT; 1633 1634 return (ipcl_conn_insert_v4(connp)); 1635 } 1636 1637 /* 1638 * Handle connect to IPv6 destinations. 1639 * Returns zero if OK, a positive errno, or a negative TLI error. 1640 */ 1641 static int 1642 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1643 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1644 { 1645 uint16_t lport; 1646 conn_t *connp = tcp->tcp_connp; 1647 tcp_stack_t *tcps = tcp->tcp_tcps; 1648 int error; 1649 1650 ASSERT(connp->conn_family == AF_INET6); 1651 1652 /* 1653 * If we're here, it means that the destination address is a native 1654 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1655 * reason why it might not be IPv6 is if the socket was bound to an 1656 * IPv4-mapped IPv6 address. 1657 */ 1658 if (connp->conn_ipversion != IPV6_VERSION) 1659 return (-TBADADDR); 1660 1661 /* 1662 * Interpret a zero destination to mean loopback. 1663 * Update the T_CONN_REQ (sin/sin6) since it is used to 1664 * generate the T_CONN_CON. 1665 */ 1666 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1667 *dstaddrp = ipv6_loopback; 1668 1669 /* Handle __sin6_src_id if socket not bound to an IP address */ 1670 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1671 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1672 IPCL_ZONEID(connp), tcps->tcps_netstack); 1673 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1674 } 1675 1676 /* 1677 * Take care of the scope_id now. 1678 */ 1679 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1680 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1681 connp->conn_ixa->ixa_scopeid = scope_id; 1682 } else { 1683 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1684 } 1685 1686 connp->conn_flowinfo = flowinfo; 1687 connp->conn_faddr_v6 = *dstaddrp; 1688 connp->conn_fport = dstport; 1689 1690 /* 1691 * At this point the remote destination address and remote port fields 1692 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1693 * have to see which state tcp was in so we can take appropriate action. 1694 */ 1695 if (tcp->tcp_state == TCPS_IDLE) { 1696 /* 1697 * We support a quick connect capability here, allowing 1698 * clients to transition directly from IDLE to SYN_SENT 1699 * tcp_bindi will pick an unused port, insert the connection 1700 * in the bind hash and transition to BOUND state. 1701 */ 1702 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1703 tcp, B_TRUE); 1704 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1705 B_FALSE, B_FALSE); 1706 if (lport == 0) 1707 return (-TNOADDR); 1708 } 1709 1710 /* 1711 * Lookup the route to determine a source address and the uinfo. 1712 * Setup TCP parameters based on the metrics/DCE. 1713 */ 1714 error = tcp_set_destination(tcp); 1715 if (error != 0) 1716 return (error); 1717 1718 /* 1719 * Don't let an endpoint connect to itself. 1720 */ 1721 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1722 connp->conn_fport == connp->conn_lport) 1723 return (-TBADADDR); 1724 1725 tcp->tcp_state = TCPS_SYN_SENT; 1726 1727 return (ipcl_conn_insert_v6(connp)); 1728 } 1729 1730 /* 1731 * Disconnect 1732 * Note that unlike other functions this returns a positive tli error 1733 * when it fails; it never returns an errno. 1734 */ 1735 static int 1736 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1737 { 1738 conn_t *lconnp; 1739 tcp_stack_t *tcps = tcp->tcp_tcps; 1740 conn_t *connp = tcp->tcp_connp; 1741 1742 /* 1743 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1744 * when the stream is in BOUND state. Do not send a reset, 1745 * since the destination IP address is not valid, and it can 1746 * be the initialized value of all zeros (broadcast address). 1747 */ 1748 if (tcp->tcp_state <= TCPS_BOUND) { 1749 if (connp->conn_debug) { 1750 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1751 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1752 } 1753 return (TOUTSTATE); 1754 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1755 TCPS_CONN_DEC(tcps); 1756 } 1757 1758 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1759 1760 /* 1761 * According to TPI, for non-listeners, ignore seqnum 1762 * and disconnect. 1763 * Following interpretation of -1 seqnum is historical 1764 * and implied TPI ? (TPI only states that for T_CONN_IND, 1765 * a valid seqnum should not be -1). 1766 * 1767 * -1 means disconnect everything 1768 * regardless even on a listener. 1769 */ 1770 1771 int old_state = tcp->tcp_state; 1772 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1773 1774 /* 1775 * The connection can't be on the tcp_time_wait_head list 1776 * since it is not detached. 1777 */ 1778 ASSERT(tcp->tcp_time_wait_next == NULL); 1779 ASSERT(tcp->tcp_time_wait_prev == NULL); 1780 ASSERT(tcp->tcp_time_wait_expire == 0); 1781 /* 1782 * If it used to be a listener, check to make sure no one else 1783 * has taken the port before switching back to LISTEN state. 1784 */ 1785 if (connp->conn_ipversion == IPV4_VERSION) { 1786 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1787 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1788 } else { 1789 uint_t ifindex = 0; 1790 1791 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1792 ifindex = connp->conn_ixa->ixa_scopeid; 1793 1794 /* Allow conn_bound_if listeners? */ 1795 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1796 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1797 ipst); 1798 } 1799 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1800 tcp->tcp_state = TCPS_LISTEN; 1801 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1802 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1803 NULL, int32_t, old_state); 1804 } else if (old_state > TCPS_BOUND) { 1805 tcp->tcp_conn_req_max = 0; 1806 tcp->tcp_state = TCPS_BOUND; 1807 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1808 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1809 NULL, int32_t, old_state); 1810 1811 /* 1812 * If this end point is not going to become a listener, 1813 * decrement the listener connection count if 1814 * necessary. Note that we do not do this if it is 1815 * going to be a listner (the above if case) since 1816 * then it may remove the counter struct. 1817 */ 1818 if (tcp->tcp_listen_cnt != NULL) 1819 TCP_DECR_LISTEN_CNT(tcp); 1820 } 1821 if (lconnp != NULL) 1822 CONN_DEC_REF(lconnp); 1823 switch (old_state) { 1824 case TCPS_SYN_SENT: 1825 case TCPS_SYN_RCVD: 1826 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1827 break; 1828 case TCPS_ESTABLISHED: 1829 case TCPS_CLOSE_WAIT: 1830 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1831 break; 1832 } 1833 1834 if (tcp->tcp_fused) 1835 tcp_unfuse(tcp); 1836 1837 mutex_enter(&tcp->tcp_eager_lock); 1838 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1839 (tcp->tcp_conn_req_cnt_q != 0)) { 1840 tcp_eager_cleanup(tcp, 0); 1841 } 1842 mutex_exit(&tcp->tcp_eager_lock); 1843 1844 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1845 tcp->tcp_rnxt, TH_RST | TH_ACK); 1846 1847 tcp_reinit(tcp); 1848 1849 return (0); 1850 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1851 return (TBADSEQ); 1852 } 1853 return (0); 1854 } 1855 1856 /* 1857 * Our client hereby directs us to reject the connection request 1858 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1859 * of sending the appropriate RST, not an ICMP error. 1860 */ 1861 void 1862 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1863 { 1864 t_scalar_t seqnum; 1865 int error; 1866 conn_t *connp = tcp->tcp_connp; 1867 1868 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1869 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1870 tcp_err_ack(tcp, mp, TPROTO, 0); 1871 return; 1872 } 1873 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1874 error = tcp_disconnect_common(tcp, seqnum); 1875 if (error != 0) 1876 tcp_err_ack(tcp, mp, error, 0); 1877 else { 1878 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1879 /* Send M_FLUSH according to TPI */ 1880 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1881 } 1882 mp = mi_tpi_ok_ack_alloc(mp); 1883 if (mp != NULL) 1884 putnext(connp->conn_rq, mp); 1885 } 1886 } 1887 1888 /* 1889 * Handle reinitialization of a tcp structure. 1890 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1891 */ 1892 static void 1893 tcp_reinit(tcp_t *tcp) 1894 { 1895 mblk_t *mp; 1896 tcp_stack_t *tcps = tcp->tcp_tcps; 1897 conn_t *connp = tcp->tcp_connp; 1898 int32_t oldstate; 1899 1900 /* tcp_reinit should never be called for detached tcp_t's */ 1901 ASSERT(tcp->tcp_listener == NULL); 1902 ASSERT((connp->conn_family == AF_INET && 1903 connp->conn_ipversion == IPV4_VERSION) || 1904 (connp->conn_family == AF_INET6 && 1905 (connp->conn_ipversion == IPV4_VERSION || 1906 connp->conn_ipversion == IPV6_VERSION))); 1907 1908 /* Cancel outstanding timers */ 1909 tcp_timers_stop(tcp); 1910 1911 /* 1912 * Reset everything in the state vector, after updating global 1913 * MIB data from instance counters. 1914 */ 1915 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1916 tcp->tcp_ibsegs = 0; 1917 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1918 tcp->tcp_obsegs = 0; 1919 1920 tcp_close_mpp(&tcp->tcp_xmit_head); 1921 if (tcp->tcp_snd_zcopy_aware) 1922 tcp_zcopy_notify(tcp); 1923 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1924 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1925 mutex_enter(&tcp->tcp_non_sq_lock); 1926 if (tcp->tcp_flow_stopped && 1927 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1928 tcp_clrqfull(tcp); 1929 } 1930 mutex_exit(&tcp->tcp_non_sq_lock); 1931 tcp_close_mpp(&tcp->tcp_reass_head); 1932 tcp->tcp_reass_tail = NULL; 1933 if (tcp->tcp_rcv_list != NULL) { 1934 /* Free b_next chain */ 1935 tcp_close_mpp(&tcp->tcp_rcv_list); 1936 tcp->tcp_rcv_last_head = NULL; 1937 tcp->tcp_rcv_last_tail = NULL; 1938 tcp->tcp_rcv_cnt = 0; 1939 } 1940 tcp->tcp_rcv_last_tail = NULL; 1941 1942 if ((mp = tcp->tcp_urp_mp) != NULL) { 1943 freemsg(mp); 1944 tcp->tcp_urp_mp = NULL; 1945 } 1946 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1947 freemsg(mp); 1948 tcp->tcp_urp_mark_mp = NULL; 1949 } 1950 if (tcp->tcp_fused_sigurg_mp != NULL) { 1951 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1952 freeb(tcp->tcp_fused_sigurg_mp); 1953 tcp->tcp_fused_sigurg_mp = NULL; 1954 } 1955 if (tcp->tcp_ordrel_mp != NULL) { 1956 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1957 freeb(tcp->tcp_ordrel_mp); 1958 tcp->tcp_ordrel_mp = NULL; 1959 } 1960 1961 /* 1962 * Following is a union with two members which are 1963 * identical types and size so the following cleanup 1964 * is enough. 1965 */ 1966 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1967 1968 CL_INET_DISCONNECT(connp); 1969 1970 /* 1971 * The connection can't be on the tcp_time_wait_head list 1972 * since it is not detached. 1973 */ 1974 ASSERT(tcp->tcp_time_wait_next == NULL); 1975 ASSERT(tcp->tcp_time_wait_prev == NULL); 1976 ASSERT(tcp->tcp_time_wait_expire == 0); 1977 1978 /* 1979 * Reset/preserve other values 1980 */ 1981 tcp_reinit_values(tcp); 1982 ipcl_hash_remove(connp); 1983 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1984 ixa_cleanup(connp->conn_ixa); 1985 tcp_ipsec_cleanup(tcp); 1986 1987 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1988 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1989 oldstate = tcp->tcp_state; 1990 1991 if (tcp->tcp_conn_req_max != 0) { 1992 /* 1993 * This is the case when a TLI program uses the same 1994 * transport end point to accept a connection. This 1995 * makes the TCP both a listener and acceptor. When 1996 * this connection is closed, we need to set the state 1997 * back to TCPS_LISTEN. Make sure that the eager list 1998 * is reinitialized. 1999 * 2000 * Note that this stream is still bound to the four 2001 * tuples of the previous connection in IP. If a new 2002 * SYN with different foreign address comes in, IP will 2003 * not find it and will send it to the global queue. In 2004 * the global queue, TCP will do a tcp_lookup_listener() 2005 * to find this stream. This works because this stream 2006 * is only removed from connected hash. 2007 * 2008 */ 2009 tcp->tcp_state = TCPS_LISTEN; 2010 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2011 tcp->tcp_eager_next_drop_q0 = tcp; 2012 tcp->tcp_eager_prev_drop_q0 = tcp; 2013 /* 2014 * Initially set conn_recv to tcp_input_listener_unbound to try 2015 * to pick a good squeue for the listener when the first SYN 2016 * arrives. tcp_input_listener_unbound sets it to 2017 * tcp_input_listener on that first SYN. 2018 */ 2019 connp->conn_recv = tcp_input_listener_unbound; 2020 2021 connp->conn_proto = IPPROTO_TCP; 2022 connp->conn_faddr_v6 = ipv6_all_zeros; 2023 connp->conn_fport = 0; 2024 2025 (void) ipcl_bind_insert(connp); 2026 } else { 2027 tcp->tcp_state = TCPS_BOUND; 2028 } 2029 2030 /* 2031 * Initialize to default values 2032 */ 2033 tcp_init_values(tcp, NULL); 2034 2035 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2036 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2037 int32_t, oldstate); 2038 2039 ASSERT(tcp->tcp_ptpbhn != NULL); 2040 tcp->tcp_rwnd = connp->conn_rcvbuf; 2041 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2042 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2043 } 2044 2045 /* 2046 * Force values to zero that need be zero. 2047 * Do not touch values asociated with the BOUND or LISTEN state 2048 * since the connection will end up in that state after the reinit. 2049 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2050 * structure! 2051 */ 2052 static void 2053 tcp_reinit_values(tcp) 2054 tcp_t *tcp; 2055 { 2056 tcp_stack_t *tcps = tcp->tcp_tcps; 2057 conn_t *connp = tcp->tcp_connp; 2058 2059 #ifndef lint 2060 #define DONTCARE(x) 2061 #define PRESERVE(x) 2062 #else 2063 #define DONTCARE(x) ((x) = (x)) 2064 #define PRESERVE(x) ((x) = (x)) 2065 #endif /* lint */ 2066 2067 PRESERVE(tcp->tcp_bind_hash_port); 2068 PRESERVE(tcp->tcp_bind_hash); 2069 PRESERVE(tcp->tcp_ptpbhn); 2070 PRESERVE(tcp->tcp_acceptor_hash); 2071 PRESERVE(tcp->tcp_ptpahn); 2072 2073 /* Should be ASSERT NULL on these with new code! */ 2074 ASSERT(tcp->tcp_time_wait_next == NULL); 2075 ASSERT(tcp->tcp_time_wait_prev == NULL); 2076 ASSERT(tcp->tcp_time_wait_expire == 0); 2077 PRESERVE(tcp->tcp_state); 2078 PRESERVE(connp->conn_rq); 2079 PRESERVE(connp->conn_wq); 2080 2081 ASSERT(tcp->tcp_xmit_head == NULL); 2082 ASSERT(tcp->tcp_xmit_last == NULL); 2083 ASSERT(tcp->tcp_unsent == 0); 2084 ASSERT(tcp->tcp_xmit_tail == NULL); 2085 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2086 2087 tcp->tcp_snxt = 0; /* Displayed in mib */ 2088 tcp->tcp_suna = 0; /* Displayed in mib */ 2089 tcp->tcp_swnd = 0; 2090 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2091 2092 ASSERT(tcp->tcp_ibsegs == 0); 2093 ASSERT(tcp->tcp_obsegs == 0); 2094 2095 if (connp->conn_ht_iphc != NULL) { 2096 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2097 connp->conn_ht_iphc = NULL; 2098 connp->conn_ht_iphc_allocated = 0; 2099 connp->conn_ht_iphc_len = 0; 2100 connp->conn_ht_ulp = NULL; 2101 connp->conn_ht_ulp_len = 0; 2102 tcp->tcp_ipha = NULL; 2103 tcp->tcp_ip6h = NULL; 2104 tcp->tcp_tcpha = NULL; 2105 } 2106 2107 /* We clear any IP_OPTIONS and extension headers */ 2108 ip_pkt_free(&connp->conn_xmit_ipp); 2109 2110 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2111 DONTCARE(tcp->tcp_ipha); 2112 DONTCARE(tcp->tcp_ip6h); 2113 DONTCARE(tcp->tcp_tcpha); 2114 tcp->tcp_valid_bits = 0; 2115 2116 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2117 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2118 tcp->tcp_last_rcv_lbolt = 0; 2119 2120 tcp->tcp_init_cwnd = 0; 2121 2122 tcp->tcp_urp_last_valid = 0; 2123 tcp->tcp_hard_binding = 0; 2124 2125 tcp->tcp_fin_acked = 0; 2126 tcp->tcp_fin_rcvd = 0; 2127 tcp->tcp_fin_sent = 0; 2128 tcp->tcp_ordrel_done = 0; 2129 2130 tcp->tcp_detached = 0; 2131 2132 tcp->tcp_snd_ws_ok = B_FALSE; 2133 tcp->tcp_snd_ts_ok = B_FALSE; 2134 tcp->tcp_zero_win_probe = 0; 2135 2136 tcp->tcp_loopback = 0; 2137 tcp->tcp_localnet = 0; 2138 tcp->tcp_syn_defense = 0; 2139 tcp->tcp_set_timer = 0; 2140 2141 tcp->tcp_active_open = 0; 2142 tcp->tcp_rexmit = B_FALSE; 2143 tcp->tcp_xmit_zc_clean = B_FALSE; 2144 2145 tcp->tcp_snd_sack_ok = B_FALSE; 2146 tcp->tcp_hwcksum = B_FALSE; 2147 2148 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2149 2150 tcp->tcp_conn_def_q0 = 0; 2151 tcp->tcp_ip_forward_progress = B_FALSE; 2152 tcp->tcp_ecn_ok = B_FALSE; 2153 2154 tcp->tcp_cwr = B_FALSE; 2155 tcp->tcp_ecn_echo_on = B_FALSE; 2156 tcp->tcp_is_wnd_shrnk = B_FALSE; 2157 2158 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2159 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2160 2161 tcp->tcp_rcv_ws = 0; 2162 tcp->tcp_snd_ws = 0; 2163 tcp->tcp_ts_recent = 0; 2164 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2165 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2166 tcp->tcp_initial_pmtu = 0; 2167 2168 ASSERT(tcp->tcp_reass_head == NULL); 2169 ASSERT(tcp->tcp_reass_tail == NULL); 2170 2171 tcp->tcp_cwnd_cnt = 0; 2172 2173 ASSERT(tcp->tcp_rcv_list == NULL); 2174 ASSERT(tcp->tcp_rcv_last_head == NULL); 2175 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2176 ASSERT(tcp->tcp_rcv_cnt == 0); 2177 2178 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2179 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2180 tcp->tcp_csuna = 0; 2181 2182 tcp->tcp_rto = 0; /* Displayed in MIB */ 2183 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2184 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2185 tcp->tcp_rtt_update = 0; 2186 2187 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2188 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2189 2190 tcp->tcp_rack = 0; /* Displayed in mib */ 2191 tcp->tcp_rack_cnt = 0; 2192 tcp->tcp_rack_cur_max = 0; 2193 tcp->tcp_rack_abs_max = 0; 2194 2195 tcp->tcp_max_swnd = 0; 2196 2197 ASSERT(tcp->tcp_listener == NULL); 2198 2199 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2200 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2201 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2202 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2203 2204 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2205 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2206 PRESERVE(tcp->tcp_conn_req_max); 2207 PRESERVE(tcp->tcp_conn_req_seqnum); 2208 2209 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2210 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2211 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2212 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2213 2214 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2215 ASSERT(tcp->tcp_urp_mp == NULL); 2216 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2217 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2218 2219 ASSERT(tcp->tcp_eager_next_q == NULL); 2220 ASSERT(tcp->tcp_eager_last_q == NULL); 2221 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2222 tcp->tcp_eager_prev_q0 == NULL) || 2223 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2224 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2225 2226 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2227 tcp->tcp_eager_prev_drop_q0 == NULL) || 2228 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2229 2230 tcp->tcp_client_errno = 0; 2231 2232 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2233 2234 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2235 2236 PRESERVE(connp->conn_bound_addr_v6); 2237 tcp->tcp_last_sent_len = 0; 2238 tcp->tcp_dupack_cnt = 0; 2239 2240 connp->conn_fport = 0; /* Displayed in MIB */ 2241 PRESERVE(connp->conn_lport); 2242 2243 PRESERVE(tcp->tcp_acceptor_lockp); 2244 2245 ASSERT(tcp->tcp_ordrel_mp == NULL); 2246 PRESERVE(tcp->tcp_acceptor_id); 2247 DONTCARE(tcp->tcp_ipsec_overhead); 2248 2249 PRESERVE(connp->conn_family); 2250 /* Remove any remnants of mapped address binding */ 2251 if (connp->conn_family == AF_INET6) { 2252 connp->conn_ipversion = IPV6_VERSION; 2253 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2254 } else { 2255 connp->conn_ipversion = IPV4_VERSION; 2256 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2257 } 2258 2259 connp->conn_bound_if = 0; 2260 connp->conn_recv_ancillary.crb_all = 0; 2261 tcp->tcp_recvifindex = 0; 2262 tcp->tcp_recvhops = 0; 2263 tcp->tcp_closed = 0; 2264 if (tcp->tcp_hopopts != NULL) { 2265 mi_free(tcp->tcp_hopopts); 2266 tcp->tcp_hopopts = NULL; 2267 tcp->tcp_hopoptslen = 0; 2268 } 2269 ASSERT(tcp->tcp_hopoptslen == 0); 2270 if (tcp->tcp_dstopts != NULL) { 2271 mi_free(tcp->tcp_dstopts); 2272 tcp->tcp_dstopts = NULL; 2273 tcp->tcp_dstoptslen = 0; 2274 } 2275 ASSERT(tcp->tcp_dstoptslen == 0); 2276 if (tcp->tcp_rthdrdstopts != NULL) { 2277 mi_free(tcp->tcp_rthdrdstopts); 2278 tcp->tcp_rthdrdstopts = NULL; 2279 tcp->tcp_rthdrdstoptslen = 0; 2280 } 2281 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2282 if (tcp->tcp_rthdr != NULL) { 2283 mi_free(tcp->tcp_rthdr); 2284 tcp->tcp_rthdr = NULL; 2285 tcp->tcp_rthdrlen = 0; 2286 } 2287 ASSERT(tcp->tcp_rthdrlen == 0); 2288 2289 /* Reset fusion-related fields */ 2290 tcp->tcp_fused = B_FALSE; 2291 tcp->tcp_unfusable = B_FALSE; 2292 tcp->tcp_fused_sigurg = B_FALSE; 2293 tcp->tcp_loopback_peer = NULL; 2294 2295 tcp->tcp_lso = B_FALSE; 2296 2297 tcp->tcp_in_ack_unsent = 0; 2298 tcp->tcp_cork = B_FALSE; 2299 tcp->tcp_tconnind_started = B_FALSE; 2300 2301 PRESERVE(tcp->tcp_squeue_bytes); 2302 2303 tcp->tcp_closemp_used = B_FALSE; 2304 2305 PRESERVE(tcp->tcp_rsrv_mp); 2306 PRESERVE(tcp->tcp_rsrv_mp_lock); 2307 2308 #ifdef DEBUG 2309 DONTCARE(tcp->tcmp_stk[0]); 2310 #endif 2311 2312 PRESERVE(tcp->tcp_connid); 2313 2314 ASSERT(tcp->tcp_listen_cnt == NULL); 2315 ASSERT(tcp->tcp_reass_tid == 0); 2316 2317 #undef DONTCARE 2318 #undef PRESERVE 2319 } 2320 2321 /* 2322 * Initialize the various fields in tcp_t. If parent (the listener) is non 2323 * NULL, certain values will be inheritted from it. 2324 */ 2325 void 2326 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2327 { 2328 tcp_stack_t *tcps = tcp->tcp_tcps; 2329 conn_t *connp = tcp->tcp_connp; 2330 clock_t rto; 2331 2332 ASSERT((connp->conn_family == AF_INET && 2333 connp->conn_ipversion == IPV4_VERSION) || 2334 (connp->conn_family == AF_INET6 && 2335 (connp->conn_ipversion == IPV4_VERSION || 2336 connp->conn_ipversion == IPV6_VERSION))); 2337 2338 if (parent == NULL) { 2339 tcp->tcp_naglim = tcps->tcps_naglim_def; 2340 2341 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2342 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2343 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2344 2345 tcp->tcp_first_ctimer_threshold = 2346 tcps->tcps_ip_notify_cinterval; 2347 tcp->tcp_second_ctimer_threshold = 2348 tcps->tcps_ip_abort_cinterval; 2349 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2350 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2351 2352 tcp->tcp_fin_wait_2_flush_interval = 2353 tcps->tcps_fin_wait_2_flush_interval; 2354 2355 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2356 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2357 2358 /* 2359 * Default value of tcp_init_cwnd is 0, so no need to set here 2360 * if parent is NULL. But we need to inherit it from parent. 2361 */ 2362 } else { 2363 /* Inherit various TCP parameters from the parent. */ 2364 tcp->tcp_naglim = parent->tcp_naglim; 2365 2366 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2367 tcp->tcp_rto_min = parent->tcp_rto_min; 2368 tcp->tcp_rto_max = parent->tcp_rto_max; 2369 2370 tcp->tcp_first_ctimer_threshold = 2371 parent->tcp_first_ctimer_threshold; 2372 tcp->tcp_second_ctimer_threshold = 2373 parent->tcp_second_ctimer_threshold; 2374 tcp->tcp_first_timer_threshold = 2375 parent->tcp_first_timer_threshold; 2376 tcp->tcp_second_timer_threshold = 2377 parent->tcp_second_timer_threshold; 2378 2379 tcp->tcp_fin_wait_2_flush_interval = 2380 parent->tcp_fin_wait_2_flush_interval; 2381 2382 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2383 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2384 2385 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2386 } 2387 2388 /* 2389 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2390 * will be close to tcp_rexmit_interval_initial. By doing this, we 2391 * allow the algorithm to adjust slowly to large fluctuations of RTT 2392 * during first few transmissions of a connection as seen in slow 2393 * links. 2394 */ 2395 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2396 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2397 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2398 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2399 tcps->tcps_conn_grace_period; 2400 TCP_SET_RTO(tcp, rto); 2401 2402 tcp->tcp_timer_backoff = 0; 2403 tcp->tcp_ms_we_have_waited = 0; 2404 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2405 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2406 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2407 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2408 2409 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2410 2411 /* NOTE: ISS is now set in tcp_set_destination(). */ 2412 2413 /* Reset fusion-related fields */ 2414 tcp->tcp_fused = B_FALSE; 2415 tcp->tcp_unfusable = B_FALSE; 2416 tcp->tcp_fused_sigurg = B_FALSE; 2417 tcp->tcp_loopback_peer = NULL; 2418 2419 /* We rebuild the header template on the next connect/conn_request */ 2420 2421 connp->conn_mlp_type = mlptSingle; 2422 2423 /* 2424 * Init the window scale to the max so tcp_rwnd_set() won't pare 2425 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2426 */ 2427 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2428 tcp->tcp_rwnd = connp->conn_rcvbuf; 2429 2430 tcp->tcp_cork = B_FALSE; 2431 /* 2432 * Init the tcp_debug option if it wasn't already set. This value 2433 * determines whether TCP 2434 * calls strlog() to print out debug messages. Doing this 2435 * initialization here means that this value is not inherited thru 2436 * tcp_reinit(). 2437 */ 2438 if (!connp->conn_debug) 2439 connp->conn_debug = tcps->tcps_dbg; 2440 } 2441 2442 /* 2443 * Update the TCP connection according to change of PMTU. 2444 * 2445 * Path MTU might have changed by either increase or decrease, so need to 2446 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2447 * or negative MSS, since tcp_mss_set() will do it. 2448 */ 2449 void 2450 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2451 { 2452 uint32_t pmtu; 2453 int32_t mss; 2454 conn_t *connp = tcp->tcp_connp; 2455 ip_xmit_attr_t *ixa = connp->conn_ixa; 2456 iaflags_t ixaflags; 2457 2458 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2459 return; 2460 2461 if (tcp->tcp_state < TCPS_ESTABLISHED) 2462 return; 2463 2464 /* 2465 * Always call ip_get_pmtu() to make sure that IP has updated 2466 * ixa_flags properly. 2467 */ 2468 pmtu = ip_get_pmtu(ixa); 2469 ixaflags = ixa->ixa_flags; 2470 2471 /* 2472 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2473 * IPsec overhead if applied. Make sure to use the most recent 2474 * IPsec information. 2475 */ 2476 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2477 2478 /* 2479 * Nothing to change, so just return. 2480 */ 2481 if (mss == tcp->tcp_mss) 2482 return; 2483 2484 /* 2485 * Currently, for ICMP errors, only PMTU decrease is handled. 2486 */ 2487 if (mss > tcp->tcp_mss && decrease_only) 2488 return; 2489 2490 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2491 2492 /* 2493 * Update ixa_fragsize and ixa_pmtu. 2494 */ 2495 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2496 2497 /* 2498 * Adjust MSS and all relevant variables. 2499 */ 2500 tcp_mss_set(tcp, mss); 2501 2502 /* 2503 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2504 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2505 * has a (potentially different) min size we do the same. Make sure to 2506 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2507 * fragment the packet. 2508 * 2509 * LSO over IPv6 can not be fragmented. So need to disable LSO 2510 * when IPv6 fragmentation is needed. 2511 */ 2512 if (mss < tcp->tcp_tcps->tcps_mss_min) 2513 ixaflags |= IXAF_PMTU_TOO_SMALL; 2514 2515 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2516 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2517 2518 if ((connp->conn_ipversion == IPV4_VERSION) && 2519 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2520 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2521 } 2522 ixa->ixa_flags = ixaflags; 2523 } 2524 2525 int 2526 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2527 { 2528 conn_t *connp = tcp->tcp_connp; 2529 queue_t *q = connp->conn_rq; 2530 int32_t mss = tcp->tcp_mss; 2531 int maxpsz; 2532 2533 if (TCP_IS_DETACHED(tcp)) 2534 return (mss); 2535 if (tcp->tcp_fused) { 2536 maxpsz = tcp_fuse_maxpsz(tcp); 2537 mss = INFPSZ; 2538 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2539 /* 2540 * Set the sd_qn_maxpsz according to the socket send buffer 2541 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2542 * instruct the stream head to copyin user data into contiguous 2543 * kernel-allocated buffers without breaking it up into smaller 2544 * chunks. We round up the buffer size to the nearest SMSS. 2545 */ 2546 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2547 mss = INFPSZ; 2548 } else { 2549 /* 2550 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2551 * (and a multiple of the mss). This instructs the stream 2552 * head to break down larger than SMSS writes into SMSS- 2553 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2554 */ 2555 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2556 if (maxpsz > connp->conn_sndbuf / 2) { 2557 maxpsz = connp->conn_sndbuf / 2; 2558 /* Round up to nearest mss */ 2559 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2560 } 2561 } 2562 2563 (void) proto_set_maxpsz(q, connp, maxpsz); 2564 if (!(IPCL_IS_NONSTR(connp))) 2565 connp->conn_wq->q_maxpsz = maxpsz; 2566 if (set_maxblk) 2567 (void) proto_set_tx_maxblk(q, connp, mss); 2568 return (mss); 2569 } 2570 2571 /* For /dev/tcp aka AF_INET open */ 2572 static int 2573 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2574 { 2575 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2576 } 2577 2578 /* For /dev/tcp6 aka AF_INET6 open */ 2579 static int 2580 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2581 { 2582 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2583 } 2584 2585 conn_t * 2586 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2587 int *errorp) 2588 { 2589 tcp_t *tcp = NULL; 2590 conn_t *connp; 2591 zoneid_t zoneid; 2592 tcp_stack_t *tcps; 2593 squeue_t *sqp; 2594 2595 ASSERT(errorp != NULL); 2596 /* 2597 * Find the proper zoneid and netstack. 2598 */ 2599 /* 2600 * Special case for install: miniroot needs to be able to 2601 * access files via NFS as though it were always in the 2602 * global zone. 2603 */ 2604 if (credp == kcred && nfs_global_client_only != 0) { 2605 zoneid = GLOBAL_ZONEID; 2606 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2607 netstack_tcp; 2608 ASSERT(tcps != NULL); 2609 } else { 2610 netstack_t *ns; 2611 int err; 2612 2613 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2614 *errorp = err; 2615 return (NULL); 2616 } 2617 2618 ns = netstack_find_by_cred(credp); 2619 ASSERT(ns != NULL); 2620 tcps = ns->netstack_tcp; 2621 ASSERT(tcps != NULL); 2622 2623 /* 2624 * For exclusive stacks we set the zoneid to zero 2625 * to make TCP operate as if in the global zone. 2626 */ 2627 if (tcps->tcps_netstack->netstack_stackid != 2628 GLOBAL_NETSTACKID) 2629 zoneid = GLOBAL_ZONEID; 2630 else 2631 zoneid = crgetzoneid(credp); 2632 } 2633 2634 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2635 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2636 /* 2637 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2638 * so we drop it by one. 2639 */ 2640 netstack_rele(tcps->tcps_netstack); 2641 if (connp == NULL) { 2642 *errorp = ENOSR; 2643 return (NULL); 2644 } 2645 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2646 2647 connp->conn_sqp = sqp; 2648 connp->conn_initial_sqp = connp->conn_sqp; 2649 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2650 tcp = connp->conn_tcp; 2651 2652 /* 2653 * Besides asking IP to set the checksum for us, have conn_ip_output 2654 * to do the following checks when necessary: 2655 * 2656 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2657 * IXAF_VERIFY_PMTU: verify PMTU changes 2658 * IXAF_VERIFY_LSO: verify LSO capability changes 2659 */ 2660 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2661 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2662 2663 if (!tcps->tcps_dev_flow_ctl) 2664 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2665 2666 if (isv6) { 2667 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2668 connp->conn_ipversion = IPV6_VERSION; 2669 connp->conn_family = AF_INET6; 2670 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2671 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2672 } else { 2673 connp->conn_ipversion = IPV4_VERSION; 2674 connp->conn_family = AF_INET; 2675 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2676 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2677 } 2678 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2679 2680 crhold(credp); 2681 connp->conn_cred = credp; 2682 connp->conn_cpid = curproc->p_pid; 2683 connp->conn_open_time = ddi_get_lbolt64(); 2684 2685 /* Cache things in the ixa without any refhold */ 2686 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2687 connp->conn_ixa->ixa_cred = credp; 2688 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2689 2690 connp->conn_zoneid = zoneid; 2691 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2692 connp->conn_ixa->ixa_zoneid = zoneid; 2693 connp->conn_mlp_type = mlptSingle; 2694 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2695 ASSERT(tcp->tcp_tcps == tcps); 2696 2697 /* 2698 * If the caller has the process-wide flag set, then default to MAC 2699 * exempt mode. This allows read-down to unlabeled hosts. 2700 */ 2701 if (getpflags(NET_MAC_AWARE, credp) != 0) 2702 connp->conn_mac_mode = CONN_MAC_AWARE; 2703 2704 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2705 2706 if (issocket) { 2707 tcp->tcp_issocket = 1; 2708 } 2709 2710 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2711 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2712 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2713 connp->conn_so_type = SOCK_STREAM; 2714 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2715 tcps->tcps_wroff_xtra; 2716 2717 SOCK_CONNID_INIT(tcp->tcp_connid); 2718 /* DTrace ignores this - it isn't a tcp:::state-change */ 2719 tcp->tcp_state = TCPS_IDLE; 2720 tcp_init_values(tcp, NULL); 2721 return (connp); 2722 } 2723 2724 static int 2725 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2726 boolean_t isv6) 2727 { 2728 tcp_t *tcp = NULL; 2729 conn_t *connp = NULL; 2730 int err; 2731 vmem_t *minor_arena = NULL; 2732 dev_t conn_dev; 2733 boolean_t issocket; 2734 2735 if (q->q_ptr != NULL) 2736 return (0); 2737 2738 if (sflag == MODOPEN) 2739 return (EINVAL); 2740 2741 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2742 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2743 minor_arena = ip_minor_arena_la; 2744 } else { 2745 /* 2746 * Either minor numbers in the large arena were exhausted 2747 * or a non socket application is doing the open. 2748 * Try to allocate from the small arena. 2749 */ 2750 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2751 return (EBUSY); 2752 } 2753 minor_arena = ip_minor_arena_sa; 2754 } 2755 2756 ASSERT(minor_arena != NULL); 2757 2758 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2759 2760 if (flag & SO_FALLBACK) { 2761 /* 2762 * Non streams socket needs a stream to fallback to 2763 */ 2764 RD(q)->q_ptr = (void *)conn_dev; 2765 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2766 WR(q)->q_ptr = (void *)minor_arena; 2767 qprocson(q); 2768 return (0); 2769 } else if (flag & SO_ACCEPTOR) { 2770 q->q_qinfo = &tcp_acceptor_rinit; 2771 /* 2772 * the conn_dev and minor_arena will be subsequently used by 2773 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2774 * the minor device number for this connection from the q_ptr. 2775 */ 2776 RD(q)->q_ptr = (void *)conn_dev; 2777 WR(q)->q_qinfo = &tcp_acceptor_winit; 2778 WR(q)->q_ptr = (void *)minor_arena; 2779 qprocson(q); 2780 return (0); 2781 } 2782 2783 issocket = flag & SO_SOCKSTR; 2784 connp = tcp_create_common(credp, isv6, issocket, &err); 2785 2786 if (connp == NULL) { 2787 inet_minor_free(minor_arena, conn_dev); 2788 q->q_ptr = WR(q)->q_ptr = NULL; 2789 return (err); 2790 } 2791 2792 connp->conn_rq = q; 2793 connp->conn_wq = WR(q); 2794 q->q_ptr = WR(q)->q_ptr = connp; 2795 2796 connp->conn_dev = conn_dev; 2797 connp->conn_minor_arena = minor_arena; 2798 2799 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2800 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2801 2802 tcp = connp->conn_tcp; 2803 2804 if (issocket) { 2805 WR(q)->q_qinfo = &tcp_sock_winit; 2806 } else { 2807 #ifdef _ILP32 2808 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2809 #else 2810 tcp->tcp_acceptor_id = conn_dev; 2811 #endif /* _ILP32 */ 2812 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2813 } 2814 2815 /* 2816 * Put the ref for TCP. Ref for IP was already put 2817 * by ipcl_conn_create. Also Make the conn_t globally 2818 * visible to walkers 2819 */ 2820 mutex_enter(&connp->conn_lock); 2821 CONN_INC_REF_LOCKED(connp); 2822 ASSERT(connp->conn_ref == 2); 2823 connp->conn_state_flags &= ~CONN_INCIPIENT; 2824 mutex_exit(&connp->conn_lock); 2825 2826 qprocson(q); 2827 return (0); 2828 } 2829 2830 /* 2831 * Build/update the tcp header template (in conn_ht_iphc) based on 2832 * conn_xmit_ipp. The headers include ip6_t, any extension 2833 * headers, and the maximum size tcp header (to avoid reallocation 2834 * on the fly for additional tcp options). 2835 * 2836 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2837 * Returns failure if can't allocate memory. 2838 */ 2839 int 2840 tcp_build_hdrs(tcp_t *tcp) 2841 { 2842 tcp_stack_t *tcps = tcp->tcp_tcps; 2843 conn_t *connp = tcp->tcp_connp; 2844 char buf[TCP_MAX_HDR_LENGTH]; 2845 uint_t buflen; 2846 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2847 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2848 tcpha_t *tcpha; 2849 uint32_t cksum; 2850 int error; 2851 2852 /* 2853 * We might be called after the connection is set up, and we might 2854 * have TS options already in the TCP header. Thus we save any 2855 * existing tcp header. 2856 */ 2857 buflen = connp->conn_ht_ulp_len; 2858 if (buflen != 0) { 2859 bcopy(connp->conn_ht_ulp, buf, buflen); 2860 extralen -= buflen - ulplen; 2861 ulplen = buflen; 2862 } 2863 2864 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2865 mutex_enter(&connp->conn_lock); 2866 error = conn_build_hdr_template(connp, ulplen, extralen, 2867 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2868 mutex_exit(&connp->conn_lock); 2869 if (error != 0) 2870 return (error); 2871 2872 /* 2873 * Any routing header/option has been massaged. The checksum difference 2874 * is stored in conn_sum for later use. 2875 */ 2876 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2877 tcp->tcp_tcpha = tcpha; 2878 2879 /* restore any old tcp header */ 2880 if (buflen != 0) { 2881 bcopy(buf, connp->conn_ht_ulp, buflen); 2882 } else { 2883 tcpha->tha_sum = 0; 2884 tcpha->tha_urp = 0; 2885 tcpha->tha_ack = 0; 2886 tcpha->tha_offset_and_reserved = (5 << 4); 2887 tcpha->tha_lport = connp->conn_lport; 2888 tcpha->tha_fport = connp->conn_fport; 2889 } 2890 2891 /* 2892 * IP wants our header length in the checksum field to 2893 * allow it to perform a single pseudo-header+checksum 2894 * calculation on behalf of TCP. 2895 * Include the adjustment for a source route once IP_OPTIONS is set. 2896 */ 2897 cksum = sizeof (tcpha_t) + connp->conn_sum; 2898 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2899 ASSERT(cksum < 0x10000); 2900 tcpha->tha_sum = htons(cksum); 2901 2902 if (connp->conn_ipversion == IPV4_VERSION) 2903 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2904 else 2905 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2906 2907 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2908 connp->conn_wroff) { 2909 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2910 tcps->tcps_wroff_xtra; 2911 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2912 connp->conn_wroff); 2913 } 2914 return (0); 2915 } 2916 2917 /* 2918 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2919 * We do not allow the receive window to shrink. After setting rwnd, 2920 * set the flow control hiwat of the stream. 2921 * 2922 * This function is called in 2 cases: 2923 * 2924 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2925 * connection (passive open) and in tcp_input_data() for active connect. 2926 * This is called after tcp_mss_set() when the desired MSS value is known. 2927 * This makes sure that our window size is a mutiple of the other side's 2928 * MSS. 2929 * 2) Handling SO_RCVBUF option. 2930 * 2931 * It is ASSUMED that the requested size is a multiple of the current MSS. 2932 * 2933 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2934 * user requests so. 2935 */ 2936 int 2937 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2938 { 2939 uint32_t mss = tcp->tcp_mss; 2940 uint32_t old_max_rwnd; 2941 uint32_t max_transmittable_rwnd; 2942 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2943 tcp_stack_t *tcps = tcp->tcp_tcps; 2944 conn_t *connp = tcp->tcp_connp; 2945 2946 /* 2947 * Insist on a receive window that is at least 2948 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2949 * funny TCP interactions of Nagle algorithm, SWS avoidance 2950 * and delayed acknowledgement. 2951 */ 2952 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2953 2954 if (tcp->tcp_fused) { 2955 size_t sth_hiwat; 2956 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2957 2958 ASSERT(peer_tcp != NULL); 2959 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2960 if (!tcp_detached) { 2961 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2962 sth_hiwat); 2963 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2964 } 2965 2966 /* Caller could have changed tcp_rwnd; update tha_win */ 2967 if (tcp->tcp_tcpha != NULL) { 2968 tcp->tcp_tcpha->tha_win = 2969 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2970 } 2971 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2972 tcp->tcp_cwnd_max = rwnd; 2973 2974 /* 2975 * In the fusion case, the maxpsz stream head value of 2976 * our peer is set according to its send buffer size 2977 * and our receive buffer size; since the latter may 2978 * have changed we need to update the peer's maxpsz. 2979 */ 2980 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2981 return (sth_hiwat); 2982 } 2983 2984 if (tcp_detached) 2985 old_max_rwnd = tcp->tcp_rwnd; 2986 else 2987 old_max_rwnd = connp->conn_rcvbuf; 2988 2989 2990 /* 2991 * If window size info has already been exchanged, TCP should not 2992 * shrink the window. Shrinking window is doable if done carefully. 2993 * We may add that support later. But so far there is not a real 2994 * need to do that. 2995 */ 2996 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2997 /* MSS may have changed, do a round up again. */ 2998 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2999 } 3000 3001 /* 3002 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3003 * can be applied even before the window scale option is decided. 3004 */ 3005 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3006 if (rwnd > max_transmittable_rwnd) { 3007 rwnd = max_transmittable_rwnd - 3008 (max_transmittable_rwnd % mss); 3009 if (rwnd < mss) 3010 rwnd = max_transmittable_rwnd; 3011 /* 3012 * If we're over the limit we may have to back down tcp_rwnd. 3013 * The increment below won't work for us. So we set all three 3014 * here and the increment below will have no effect. 3015 */ 3016 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3017 } 3018 if (tcp->tcp_localnet) { 3019 tcp->tcp_rack_abs_max = 3020 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3021 } else { 3022 /* 3023 * For a remote host on a different subnet (through a router), 3024 * we ack every other packet to be conforming to RFC1122. 3025 * tcp_deferred_acks_max is default to 2. 3026 */ 3027 tcp->tcp_rack_abs_max = 3028 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3029 } 3030 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3031 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3032 else 3033 tcp->tcp_rack_cur_max = 0; 3034 /* 3035 * Increment the current rwnd by the amount the maximum grew (we 3036 * can not overwrite it since we might be in the middle of a 3037 * connection.) 3038 */ 3039 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3040 connp->conn_rcvbuf = rwnd; 3041 3042 /* Are we already connected? */ 3043 if (tcp->tcp_tcpha != NULL) { 3044 tcp->tcp_tcpha->tha_win = 3045 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3046 } 3047 3048 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3049 tcp->tcp_cwnd_max = rwnd; 3050 3051 if (tcp_detached) 3052 return (rwnd); 3053 3054 tcp_set_recv_threshold(tcp, rwnd >> 3); 3055 3056 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3057 return (rwnd); 3058 } 3059 3060 int 3061 tcp_do_unbind(conn_t *connp) 3062 { 3063 tcp_t *tcp = connp->conn_tcp; 3064 int32_t oldstate; 3065 3066 switch (tcp->tcp_state) { 3067 case TCPS_BOUND: 3068 case TCPS_LISTEN: 3069 break; 3070 default: 3071 return (-TOUTSTATE); 3072 } 3073 3074 /* 3075 * Need to clean up all the eagers since after the unbind, segments 3076 * will no longer be delivered to this listener stream. 3077 */ 3078 mutex_enter(&tcp->tcp_eager_lock); 3079 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3080 tcp_eager_cleanup(tcp, 0); 3081 } 3082 mutex_exit(&tcp->tcp_eager_lock); 3083 3084 /* Clean up the listener connection counter if necessary. */ 3085 if (tcp->tcp_listen_cnt != NULL) 3086 TCP_DECR_LISTEN_CNT(tcp); 3087 connp->conn_laddr_v6 = ipv6_all_zeros; 3088 connp->conn_saddr_v6 = ipv6_all_zeros; 3089 tcp_bind_hash_remove(tcp); 3090 oldstate = tcp->tcp_state; 3091 tcp->tcp_state = TCPS_IDLE; 3092 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3093 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3094 int32_t, oldstate); 3095 3096 ip_unbind(connp); 3097 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3098 3099 return (0); 3100 } 3101 3102 /* 3103 * Collect protocol properties to send to the upper handle. 3104 */ 3105 void 3106 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3107 { 3108 conn_t *connp = tcp->tcp_connp; 3109 3110 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3111 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3112 3113 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3114 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3115 connp->conn_rcvbuf; 3116 /* 3117 * Determine what write offset value to use depending on SACK and 3118 * whether the endpoint is fused or not. 3119 */ 3120 if (tcp->tcp_fused) { 3121 ASSERT(tcp->tcp_loopback); 3122 ASSERT(tcp->tcp_loopback_peer != NULL); 3123 /* 3124 * For fused tcp loopback, set the stream head's write 3125 * offset value to zero since we won't be needing any room 3126 * for TCP/IP headers. This would also improve performance 3127 * since it would reduce the amount of work done by kmem. 3128 * Non-fused tcp loopback case is handled separately below. 3129 */ 3130 sopp->sopp_wroff = 0; 3131 /* 3132 * Update the peer's transmit parameters according to 3133 * our recently calculated high water mark value. 3134 */ 3135 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3136 } else if (tcp->tcp_snd_sack_ok) { 3137 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3138 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3139 } else { 3140 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3141 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3142 } 3143 3144 if (tcp->tcp_loopback) { 3145 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3146 sopp->sopp_loopback = B_TRUE; 3147 } 3148 } 3149 3150 /* 3151 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3152 */ 3153 boolean_t 3154 tcp_zcopy_check(tcp_t *tcp) 3155 { 3156 conn_t *connp = tcp->tcp_connp; 3157 ip_xmit_attr_t *ixa = connp->conn_ixa; 3158 boolean_t zc_enabled = B_FALSE; 3159 tcp_stack_t *tcps = tcp->tcp_tcps; 3160 3161 if (do_tcpzcopy == 2) 3162 zc_enabled = B_TRUE; 3163 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3164 zc_enabled = B_TRUE; 3165 3166 tcp->tcp_snd_zcopy_on = zc_enabled; 3167 if (!TCP_IS_DETACHED(tcp)) { 3168 if (zc_enabled) { 3169 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3170 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3171 ZCVMSAFE); 3172 TCP_STAT(tcps, tcp_zcopy_on); 3173 } else { 3174 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3175 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3176 ZCVMUNSAFE); 3177 TCP_STAT(tcps, tcp_zcopy_off); 3178 } 3179 } 3180 return (zc_enabled); 3181 } 3182 3183 /* 3184 * Backoff from a zero-copy message by copying data to a new allocated 3185 * message and freeing the original desballoca'ed segmapped message. 3186 * 3187 * This function is called by following two callers: 3188 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3189 * the origial desballoca'ed message and notify sockfs. This is in re- 3190 * transmit state. 3191 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3192 * to be copied to new message. 3193 */ 3194 mblk_t * 3195 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3196 { 3197 mblk_t *nbp; 3198 mblk_t *head = NULL; 3199 mblk_t *tail = NULL; 3200 tcp_stack_t *tcps = tcp->tcp_tcps; 3201 3202 ASSERT(bp != NULL); 3203 while (bp != NULL) { 3204 if (IS_VMLOANED_MBLK(bp)) { 3205 TCP_STAT(tcps, tcp_zcopy_backoff); 3206 if ((nbp = copyb(bp)) == NULL) { 3207 tcp->tcp_xmit_zc_clean = B_FALSE; 3208 if (tail != NULL) 3209 tail->b_cont = bp; 3210 return ((head == NULL) ? bp : head); 3211 } 3212 3213 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3214 if (fix_xmitlist) 3215 tcp_zcopy_notify(tcp); 3216 else 3217 nbp->b_datap->db_struioflag |= 3218 STRUIO_ZCNOTIFY; 3219 } 3220 nbp->b_cont = bp->b_cont; 3221 3222 /* 3223 * Copy saved information and adjust tcp_xmit_tail 3224 * if needed. 3225 */ 3226 if (fix_xmitlist) { 3227 nbp->b_prev = bp->b_prev; 3228 nbp->b_next = bp->b_next; 3229 3230 if (tcp->tcp_xmit_tail == bp) 3231 tcp->tcp_xmit_tail = nbp; 3232 } 3233 3234 /* Free the original message. */ 3235 bp->b_prev = NULL; 3236 bp->b_next = NULL; 3237 freeb(bp); 3238 3239 bp = nbp; 3240 } 3241 3242 if (head == NULL) { 3243 head = bp; 3244 } 3245 if (tail == NULL) { 3246 tail = bp; 3247 } else { 3248 tail->b_cont = bp; 3249 tail = bp; 3250 } 3251 3252 /* Move forward. */ 3253 bp = bp->b_cont; 3254 } 3255 3256 if (fix_xmitlist) { 3257 tcp->tcp_xmit_last = tail; 3258 tcp->tcp_xmit_zc_clean = B_TRUE; 3259 } 3260 3261 return (head); 3262 } 3263 3264 void 3265 tcp_zcopy_notify(tcp_t *tcp) 3266 { 3267 struct stdata *stp; 3268 conn_t *connp; 3269 3270 if (tcp->tcp_detached) 3271 return; 3272 connp = tcp->tcp_connp; 3273 if (IPCL_IS_NONSTR(connp)) { 3274 (*connp->conn_upcalls->su_zcopy_notify) 3275 (connp->conn_upper_handle); 3276 return; 3277 } 3278 stp = STREAM(connp->conn_rq); 3279 mutex_enter(&stp->sd_lock); 3280 stp->sd_flag |= STZCNOTIFY; 3281 cv_broadcast(&stp->sd_zcopy_wait); 3282 mutex_exit(&stp->sd_lock); 3283 } 3284 3285 /* 3286 * Update the TCP connection according to change of LSO capability. 3287 */ 3288 static void 3289 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3290 { 3291 /* 3292 * We check against IPv4 header length to preserve the old behavior 3293 * of only enabling LSO when there are no IP options. 3294 * But this restriction might not be necessary at all. Before removing 3295 * it, need to verify how LSO is handled for source routing case, with 3296 * which IP does software checksum. 3297 * 3298 * For IPv6, whenever any extension header is needed, LSO is supressed. 3299 */ 3300 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3301 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3302 return; 3303 3304 /* 3305 * Either the LSO capability newly became usable, or it has changed. 3306 */ 3307 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3308 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3309 3310 ASSERT(lsoc->ill_lso_max > 0); 3311 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3312 3313 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3314 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3315 3316 /* 3317 * If LSO to be enabled, notify the STREAM header with larger 3318 * data block. 3319 */ 3320 if (!tcp->tcp_lso) 3321 tcp->tcp_maxpsz_multiplier = 0; 3322 3323 tcp->tcp_lso = B_TRUE; 3324 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3325 } else { /* LSO capability is not usable any more. */ 3326 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3327 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3328 3329 /* 3330 * If LSO to be disabled, notify the STREAM header with smaller 3331 * data block. And need to restore fragsize to PMTU. 3332 */ 3333 if (tcp->tcp_lso) { 3334 tcp->tcp_maxpsz_multiplier = 3335 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3336 ixa->ixa_fragsize = ixa->ixa_pmtu; 3337 tcp->tcp_lso = B_FALSE; 3338 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3339 } 3340 } 3341 3342 (void) tcp_maxpsz_set(tcp, B_TRUE); 3343 } 3344 3345 /* 3346 * Update the TCP connection according to change of ZEROCOPY capability. 3347 */ 3348 static void 3349 tcp_update_zcopy(tcp_t *tcp) 3350 { 3351 conn_t *connp = tcp->tcp_connp; 3352 tcp_stack_t *tcps = tcp->tcp_tcps; 3353 3354 if (tcp->tcp_snd_zcopy_on) { 3355 tcp->tcp_snd_zcopy_on = B_FALSE; 3356 if (!TCP_IS_DETACHED(tcp)) { 3357 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3358 ZCVMUNSAFE); 3359 TCP_STAT(tcps, tcp_zcopy_off); 3360 } 3361 } else { 3362 tcp->tcp_snd_zcopy_on = B_TRUE; 3363 if (!TCP_IS_DETACHED(tcp)) { 3364 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3365 ZCVMSAFE); 3366 TCP_STAT(tcps, tcp_zcopy_on); 3367 } 3368 } 3369 } 3370 3371 /* 3372 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3373 * so it's safe to update the TCP connection. 3374 */ 3375 /* ARGSUSED1 */ 3376 static void 3377 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3378 ixa_notify_arg_t narg) 3379 { 3380 tcp_t *tcp = (tcp_t *)arg; 3381 conn_t *connp = tcp->tcp_connp; 3382 3383 switch (ntype) { 3384 case IXAN_LSO: 3385 tcp_update_lso(tcp, connp->conn_ixa); 3386 break; 3387 case IXAN_PMTU: 3388 tcp_update_pmtu(tcp, B_FALSE); 3389 break; 3390 case IXAN_ZCOPY: 3391 tcp_update_zcopy(tcp); 3392 break; 3393 default: 3394 break; 3395 } 3396 } 3397 3398 /* 3399 * The TCP write service routine should never be called... 3400 */ 3401 /* ARGSUSED */ 3402 static void 3403 tcp_wsrv(queue_t *q) 3404 { 3405 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3406 3407 TCP_STAT(tcps, tcp_wsrv_called); 3408 } 3409 3410 /* 3411 * Hash list lookup routine for tcp_t structures. 3412 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3413 */ 3414 tcp_t * 3415 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3416 { 3417 tf_t *tf; 3418 tcp_t *tcp; 3419 3420 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3421 mutex_enter(&tf->tf_lock); 3422 for (tcp = tf->tf_tcp; tcp != NULL; 3423 tcp = tcp->tcp_acceptor_hash) { 3424 if (tcp->tcp_acceptor_id == id) { 3425 CONN_INC_REF(tcp->tcp_connp); 3426 mutex_exit(&tf->tf_lock); 3427 return (tcp); 3428 } 3429 } 3430 mutex_exit(&tf->tf_lock); 3431 return (NULL); 3432 } 3433 3434 /* 3435 * Hash list insertion routine for tcp_t structures. 3436 */ 3437 void 3438 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3439 { 3440 tf_t *tf; 3441 tcp_t **tcpp; 3442 tcp_t *tcpnext; 3443 tcp_stack_t *tcps = tcp->tcp_tcps; 3444 3445 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3446 3447 if (tcp->tcp_ptpahn != NULL) 3448 tcp_acceptor_hash_remove(tcp); 3449 tcpp = &tf->tf_tcp; 3450 mutex_enter(&tf->tf_lock); 3451 tcpnext = tcpp[0]; 3452 if (tcpnext) 3453 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3454 tcp->tcp_acceptor_hash = tcpnext; 3455 tcp->tcp_ptpahn = tcpp; 3456 tcpp[0] = tcp; 3457 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3458 mutex_exit(&tf->tf_lock); 3459 } 3460 3461 /* 3462 * Hash list removal routine for tcp_t structures. 3463 */ 3464 void 3465 tcp_acceptor_hash_remove(tcp_t *tcp) 3466 { 3467 tcp_t *tcpnext; 3468 kmutex_t *lockp; 3469 3470 /* 3471 * Extract the lock pointer in case there are concurrent 3472 * hash_remove's for this instance. 3473 */ 3474 lockp = tcp->tcp_acceptor_lockp; 3475 3476 if (tcp->tcp_ptpahn == NULL) 3477 return; 3478 3479 ASSERT(lockp != NULL); 3480 mutex_enter(lockp); 3481 if (tcp->tcp_ptpahn) { 3482 tcpnext = tcp->tcp_acceptor_hash; 3483 if (tcpnext) { 3484 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3485 tcp->tcp_acceptor_hash = NULL; 3486 } 3487 *tcp->tcp_ptpahn = tcpnext; 3488 tcp->tcp_ptpahn = NULL; 3489 } 3490 mutex_exit(lockp); 3491 tcp->tcp_acceptor_lockp = NULL; 3492 } 3493 3494 /* 3495 * Type three generator adapted from the random() function in 4.4 BSD: 3496 */ 3497 3498 /* 3499 * Copyright (c) 1983, 1993 3500 * The Regents of the University of California. All rights reserved. 3501 * 3502 * Redistribution and use in source and binary forms, with or without 3503 * modification, are permitted provided that the following conditions 3504 * are met: 3505 * 1. Redistributions of source code must retain the above copyright 3506 * notice, this list of conditions and the following disclaimer. 3507 * 2. Redistributions in binary form must reproduce the above copyright 3508 * notice, this list of conditions and the following disclaimer in the 3509 * documentation and/or other materials provided with the distribution. 3510 * 3. All advertising materials mentioning features or use of this software 3511 * must display the following acknowledgement: 3512 * This product includes software developed by the University of 3513 * California, Berkeley and its contributors. 3514 * 4. Neither the name of the University nor the names of its contributors 3515 * may be used to endorse or promote products derived from this software 3516 * without specific prior written permission. 3517 * 3518 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3519 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3520 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3521 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3522 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3523 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3524 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3525 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3526 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3527 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3528 * SUCH DAMAGE. 3529 */ 3530 3531 /* Type 3 -- x**31 + x**3 + 1 */ 3532 #define DEG_3 31 3533 #define SEP_3 3 3534 3535 3536 /* Protected by tcp_random_lock */ 3537 static int tcp_randtbl[DEG_3 + 1]; 3538 3539 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3540 static int *tcp_random_rptr = &tcp_randtbl[1]; 3541 3542 static int *tcp_random_state = &tcp_randtbl[1]; 3543 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3544 3545 kmutex_t tcp_random_lock; 3546 3547 void 3548 tcp_random_init(void) 3549 { 3550 int i; 3551 hrtime_t hrt; 3552 time_t wallclock; 3553 uint64_t result; 3554 3555 /* 3556 * Use high-res timer and current time for seed. Gethrtime() returns 3557 * a longlong, which may contain resolution down to nanoseconds. 3558 * The current time will either be a 32-bit or a 64-bit quantity. 3559 * XOR the two together in a 64-bit result variable. 3560 * Convert the result to a 32-bit value by multiplying the high-order 3561 * 32-bits by the low-order 32-bits. 3562 */ 3563 3564 hrt = gethrtime(); 3565 (void) drv_getparm(TIME, &wallclock); 3566 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3567 mutex_enter(&tcp_random_lock); 3568 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3569 (result & 0xffffffff); 3570 3571 for (i = 1; i < DEG_3; i++) 3572 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3573 + 12345; 3574 tcp_random_fptr = &tcp_random_state[SEP_3]; 3575 tcp_random_rptr = &tcp_random_state[0]; 3576 mutex_exit(&tcp_random_lock); 3577 for (i = 0; i < 10 * DEG_3; i++) 3578 (void) tcp_random(); 3579 } 3580 3581 /* 3582 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3583 * This range is selected to be approximately centered on TCP_ISS / 2, 3584 * and easy to compute. We get this value by generating a 32-bit random 3585 * number, selecting out the high-order 17 bits, and then adding one so 3586 * that we never return zero. 3587 */ 3588 int 3589 tcp_random(void) 3590 { 3591 int i; 3592 3593 mutex_enter(&tcp_random_lock); 3594 *tcp_random_fptr += *tcp_random_rptr; 3595 3596 /* 3597 * The high-order bits are more random than the low-order bits, 3598 * so we select out the high-order 17 bits and add one so that 3599 * we never return zero. 3600 */ 3601 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3602 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3603 tcp_random_fptr = tcp_random_state; 3604 ++tcp_random_rptr; 3605 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3606 tcp_random_rptr = tcp_random_state; 3607 3608 mutex_exit(&tcp_random_lock); 3609 return (i); 3610 } 3611 3612 /* 3613 * Split this function out so that if the secret changes, I'm okay. 3614 * 3615 * Initialize the tcp_iss_cookie and tcp_iss_key. 3616 */ 3617 3618 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3619 3620 void 3621 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3622 { 3623 struct { 3624 int32_t current_time; 3625 uint32_t randnum; 3626 uint16_t pad; 3627 uint8_t ether[6]; 3628 uint8_t passwd[PASSWD_SIZE]; 3629 } tcp_iss_cookie; 3630 time_t t; 3631 3632 /* 3633 * Start with the current absolute time. 3634 */ 3635 (void) drv_getparm(TIME, &t); 3636 tcp_iss_cookie.current_time = t; 3637 3638 /* 3639 * XXX - Need a more random number per RFC 1750, not this crap. 3640 * OTOH, if what follows is pretty random, then I'm in better shape. 3641 */ 3642 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3643 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3644 3645 /* 3646 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3647 * as a good template. 3648 */ 3649 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3650 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3651 3652 /* 3653 * The pass-phrase. Normally this is supplied by user-called NDD. 3654 */ 3655 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3656 3657 /* 3658 * See 4010593 if this section becomes a problem again, 3659 * but the local ethernet address is useful here. 3660 */ 3661 (void) localetheraddr(NULL, 3662 (struct ether_addr *)&tcp_iss_cookie.ether); 3663 3664 /* 3665 * Hash 'em all together. The MD5Final is called per-connection. 3666 */ 3667 mutex_enter(&tcps->tcps_iss_key_lock); 3668 MD5Init(&tcps->tcps_iss_key); 3669 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3670 sizeof (tcp_iss_cookie)); 3671 mutex_exit(&tcps->tcps_iss_key_lock); 3672 } 3673 3674 /* 3675 * Called by IP when IP is loaded into the kernel 3676 */ 3677 void 3678 tcp_ddi_g_init(void) 3679 { 3680 tcp_timercache = kmem_cache_create("tcp_timercache", 3681 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3682 NULL, NULL, NULL, NULL, NULL, 0); 3683 3684 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3685 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3686 3687 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3688 3689 /* Initialize the random number generator */ 3690 tcp_random_init(); 3691 3692 /* A single callback independently of how many netstacks we have */ 3693 ip_squeue_init(tcp_squeue_add); 3694 3695 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3696 3697 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3698 3699 /* 3700 * We want to be informed each time a stack is created or 3701 * destroyed in the kernel, so we can maintain the 3702 * set of tcp_stack_t's. 3703 */ 3704 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3705 } 3706 3707 3708 #define INET_NAME "ip" 3709 3710 /* 3711 * Initialize the TCP stack instance. 3712 */ 3713 static void * 3714 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3715 { 3716 tcp_stack_t *tcps; 3717 int i; 3718 int error = 0; 3719 major_t major; 3720 size_t arrsz; 3721 3722 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3723 tcps->tcps_netstack = ns; 3724 3725 /* Initialize locks */ 3726 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3727 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3728 3729 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3730 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3731 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3732 tcps->tcps_min_anonpriv_port = 512; 3733 3734 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3735 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3736 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3737 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3738 3739 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3740 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3741 MUTEX_DEFAULT, NULL); 3742 } 3743 3744 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3745 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3746 MUTEX_DEFAULT, NULL); 3747 } 3748 3749 /* TCP's IPsec code calls the packet dropper. */ 3750 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3751 3752 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3753 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3754 KM_SLEEP); 3755 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3756 3757 /* 3758 * Note: To really walk the device tree you need the devinfo 3759 * pointer to your device which is only available after probe/attach. 3760 * The following is safe only because it uses ddi_root_node() 3761 */ 3762 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3763 tcp_opt_obj.odb_opt_arr_cnt); 3764 3765 /* 3766 * Initialize RFC 1948 secret values. This will probably be reset once 3767 * by the boot scripts. 3768 * 3769 * Use NULL name, as the name is caught by the new lockstats. 3770 * 3771 * Initialize with some random, non-guessable string, like the global 3772 * T_INFO_ACK. 3773 */ 3774 3775 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3776 sizeof (tcp_g_t_info_ack), tcps); 3777 3778 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3779 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3780 3781 major = mod_name_to_major(INET_NAME); 3782 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3783 ASSERT(error == 0); 3784 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3785 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3786 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 3787 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3788 3789 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3790 tcps->tcps_reclaim = B_FALSE; 3791 tcps->tcps_reclaim_tid = 0; 3792 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3793 3794 /* 3795 * ncpus is the current number of CPUs, which can be bigger than 3796 * boot_ncpus. But we don't want to use ncpus to allocate all the 3797 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3798 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3799 * there are many CPUs as we will be adding them 1 by 1. 3800 * 3801 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3802 * are not freed until the stack is going away. So there is no need 3803 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3804 */ 3805 mutex_enter(&cpu_lock); 3806 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3807 mutex_exit(&cpu_lock); 3808 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3809 KM_SLEEP); 3810 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3811 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3812 KM_SLEEP); 3813 } 3814 3815 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3816 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3817 offsetof(tcp_listener_t, tl_link)); 3818 3819 return (tcps); 3820 } 3821 3822 /* 3823 * Called when the IP module is about to be unloaded. 3824 */ 3825 void 3826 tcp_ddi_g_destroy(void) 3827 { 3828 tcp_g_kstat_fini(tcp_g_kstat); 3829 tcp_g_kstat = NULL; 3830 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3831 3832 mutex_destroy(&tcp_random_lock); 3833 3834 kmem_cache_destroy(tcp_timercache); 3835 kmem_cache_destroy(tcp_notsack_blk_cache); 3836 3837 netstack_unregister(NS_TCP); 3838 } 3839 3840 /* 3841 * Free the TCP stack instance. 3842 */ 3843 static void 3844 tcp_stack_fini(netstackid_t stackid, void *arg) 3845 { 3846 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3847 int i; 3848 3849 freeb(tcps->tcps_ixa_cleanup_mp); 3850 tcps->tcps_ixa_cleanup_mp = NULL; 3851 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 3852 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3853 3854 /* 3855 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3856 * the timer. 3857 */ 3858 mutex_enter(&tcps->tcps_reclaim_lock); 3859 tcps->tcps_reclaim = B_FALSE; 3860 mutex_exit(&tcps->tcps_reclaim_lock); 3861 if (tcps->tcps_reclaim_tid != 0) 3862 (void) untimeout(tcps->tcps_reclaim_tid); 3863 mutex_destroy(&tcps->tcps_reclaim_lock); 3864 3865 tcp_listener_conf_cleanup(tcps); 3866 3867 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3868 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3869 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3870 3871 kmem_free(tcps->tcps_propinfo_tbl, 3872 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3873 tcps->tcps_propinfo_tbl = NULL; 3874 3875 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3876 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3877 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3878 } 3879 3880 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3881 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3882 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3883 } 3884 3885 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3886 tcps->tcps_bind_fanout = NULL; 3887 3888 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3889 TCP_ACCEPTOR_FANOUT_SIZE); 3890 tcps->tcps_acceptor_fanout = NULL; 3891 3892 mutex_destroy(&tcps->tcps_iss_key_lock); 3893 mutex_destroy(&tcps->tcps_epriv_port_lock); 3894 3895 ip_drop_unregister(&tcps->tcps_dropper); 3896 3897 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3898 tcps->tcps_kstat = NULL; 3899 3900 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3901 tcps->tcps_mibkp = NULL; 3902 3903 ldi_ident_release(tcps->tcps_ldi_ident); 3904 kmem_free(tcps, sizeof (*tcps)); 3905 } 3906 3907 /* 3908 * Generate ISS, taking into account NDD changes may happen halfway through. 3909 * (If the iss is not zero, set it.) 3910 */ 3911 3912 static void 3913 tcp_iss_init(tcp_t *tcp) 3914 { 3915 MD5_CTX context; 3916 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3917 uint32_t answer[4]; 3918 tcp_stack_t *tcps = tcp->tcp_tcps; 3919 conn_t *connp = tcp->tcp_connp; 3920 3921 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 3922 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3923 switch (tcps->tcps_strong_iss) { 3924 case 2: 3925 mutex_enter(&tcps->tcps_iss_key_lock); 3926 context = tcps->tcps_iss_key; 3927 mutex_exit(&tcps->tcps_iss_key_lock); 3928 arg.ports = connp->conn_ports; 3929 arg.src = connp->conn_laddr_v6; 3930 arg.dst = connp->conn_faddr_v6; 3931 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3932 MD5Final((uchar_t *)answer, &context); 3933 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3934 /* 3935 * Now that we've hashed into a unique per-connection sequence 3936 * space, add a random increment per strong_iss == 1. So I 3937 * guess we'll have to... 3938 */ 3939 /* FALLTHRU */ 3940 case 1: 3941 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3942 break; 3943 default: 3944 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 3945 break; 3946 } 3947 tcp->tcp_valid_bits = TCP_ISS_VALID; 3948 tcp->tcp_fss = tcp->tcp_iss - 1; 3949 tcp->tcp_suna = tcp->tcp_iss; 3950 tcp->tcp_snxt = tcp->tcp_iss + 1; 3951 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3952 tcp->tcp_csuna = tcp->tcp_snxt; 3953 } 3954 3955 /* 3956 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3957 * on the specified backing STREAMS q. Note, the caller may make the 3958 * decision to call based on the tcp_t.tcp_flow_stopped value which 3959 * when check outside the q's lock is only an advisory check ... 3960 */ 3961 void 3962 tcp_setqfull(tcp_t *tcp) 3963 { 3964 tcp_stack_t *tcps = tcp->tcp_tcps; 3965 conn_t *connp = tcp->tcp_connp; 3966 3967 if (tcp->tcp_closed) 3968 return; 3969 3970 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3971 if (tcp->tcp_flow_stopped) 3972 TCP_STAT(tcps, tcp_flwctl_on); 3973 } 3974 3975 void 3976 tcp_clrqfull(tcp_t *tcp) 3977 { 3978 conn_t *connp = tcp->tcp_connp; 3979 3980 if (tcp->tcp_closed) 3981 return; 3982 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3983 } 3984 3985 static int 3986 tcp_squeue_switch(int val) 3987 { 3988 int rval = SQ_FILL; 3989 3990 switch (val) { 3991 case 1: 3992 rval = SQ_NODRAIN; 3993 break; 3994 case 2: 3995 rval = SQ_PROCESS; 3996 break; 3997 default: 3998 break; 3999 } 4000 return (rval); 4001 } 4002 4003 /* 4004 * This is called once for each squeue - globally for all stack 4005 * instances. 4006 */ 4007 static void 4008 tcp_squeue_add(squeue_t *sqp) 4009 { 4010 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4011 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4012 4013 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4014 if (tcp_free_list_max_cnt == 0) { 4015 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4016 max_ncpus : boot_max_ncpus); 4017 4018 /* 4019 * Limit number of entries to 1% of availble memory / tcp_ncpus 4020 */ 4021 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4022 (tcp_ncpus * sizeof (tcp_t) * 100); 4023 } 4024 tcp_time_wait->tcp_free_list_cnt = 0; 4025 } 4026 /* 4027 * Return unix error is tli error is TSYSERR, otherwise return a negative 4028 * tli error. 4029 */ 4030 int 4031 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4032 boolean_t bind_to_req_port_only) 4033 { 4034 int error; 4035 tcp_t *tcp = connp->conn_tcp; 4036 4037 if (tcp->tcp_state >= TCPS_BOUND) { 4038 if (connp->conn_debug) { 4039 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4040 "tcp_bind: bad state, %d", tcp->tcp_state); 4041 } 4042 return (-TOUTSTATE); 4043 } 4044 4045 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4046 if (error != 0) 4047 return (error); 4048 4049 ASSERT(tcp->tcp_state == TCPS_BOUND); 4050 tcp->tcp_conn_req_max = 0; 4051 return (0); 4052 } 4053 4054 /* 4055 * If the return value from this function is positive, it's a UNIX error. 4056 * Otherwise, if it's negative, then the absolute value is a TLI error. 4057 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4058 */ 4059 int 4060 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4061 cred_t *cr, pid_t pid) 4062 { 4063 tcp_t *tcp = connp->conn_tcp; 4064 sin_t *sin = (sin_t *)sa; 4065 sin6_t *sin6 = (sin6_t *)sa; 4066 ipaddr_t *dstaddrp; 4067 in_port_t dstport; 4068 uint_t srcid; 4069 int error; 4070 uint32_t mss; 4071 mblk_t *syn_mp; 4072 tcp_stack_t *tcps = tcp->tcp_tcps; 4073 int32_t oldstate; 4074 ip_xmit_attr_t *ixa = connp->conn_ixa; 4075 4076 oldstate = tcp->tcp_state; 4077 4078 switch (len) { 4079 default: 4080 /* 4081 * Should never happen 4082 */ 4083 return (EINVAL); 4084 4085 case sizeof (sin_t): 4086 sin = (sin_t *)sa; 4087 if (sin->sin_port == 0) { 4088 return (-TBADADDR); 4089 } 4090 if (connp->conn_ipv6_v6only) { 4091 return (EAFNOSUPPORT); 4092 } 4093 break; 4094 4095 case sizeof (sin6_t): 4096 sin6 = (sin6_t *)sa; 4097 if (sin6->sin6_port == 0) { 4098 return (-TBADADDR); 4099 } 4100 break; 4101 } 4102 /* 4103 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4104 * make sure that the conn_ipversion is IPV4_VERSION. We 4105 * need to this before we call tcp_bindi() so that the port lookup 4106 * code will look for ports in the correct port space (IPv4 and 4107 * IPv6 have separate port spaces). 4108 */ 4109 if (connp->conn_family == AF_INET6 && 4110 connp->conn_ipversion == IPV6_VERSION && 4111 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4112 if (connp->conn_ipv6_v6only) 4113 return (EADDRNOTAVAIL); 4114 4115 connp->conn_ipversion = IPV4_VERSION; 4116 } 4117 4118 switch (tcp->tcp_state) { 4119 case TCPS_LISTEN: 4120 /* 4121 * Listening sockets are not allowed to issue connect(). 4122 */ 4123 if (IPCL_IS_NONSTR(connp)) 4124 return (EOPNOTSUPP); 4125 /* FALLTHRU */ 4126 case TCPS_IDLE: 4127 /* 4128 * We support quick connect, refer to comments in 4129 * tcp_connect_*() 4130 */ 4131 /* FALLTHRU */ 4132 case TCPS_BOUND: 4133 break; 4134 default: 4135 return (-TOUTSTATE); 4136 } 4137 4138 /* 4139 * We update our cred/cpid based on the caller of connect 4140 */ 4141 if (connp->conn_cred != cr) { 4142 crhold(cr); 4143 crfree(connp->conn_cred); 4144 connp->conn_cred = cr; 4145 } 4146 connp->conn_cpid = pid; 4147 4148 /* Cache things in the ixa without any refhold */ 4149 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4150 ixa->ixa_cred = cr; 4151 ixa->ixa_cpid = pid; 4152 if (is_system_labeled()) { 4153 /* We need to restart with a label based on the cred */ 4154 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4155 } 4156 4157 if (connp->conn_family == AF_INET6) { 4158 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4159 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4160 sin6->sin6_port, sin6->sin6_flowinfo, 4161 sin6->__sin6_src_id, sin6->sin6_scope_id); 4162 } else { 4163 /* 4164 * Destination adress is mapped IPv6 address. 4165 * Source bound address should be unspecified or 4166 * IPv6 mapped address as well. 4167 */ 4168 if (!IN6_IS_ADDR_UNSPECIFIED( 4169 &connp->conn_bound_addr_v6) && 4170 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4171 return (EADDRNOTAVAIL); 4172 } 4173 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4174 dstport = sin6->sin6_port; 4175 srcid = sin6->__sin6_src_id; 4176 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4177 srcid); 4178 } 4179 } else { 4180 dstaddrp = &sin->sin_addr.s_addr; 4181 dstport = sin->sin_port; 4182 srcid = 0; 4183 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4184 } 4185 4186 if (error != 0) 4187 goto connect_failed; 4188 4189 CL_INET_CONNECT(connp, B_TRUE, error); 4190 if (error != 0) 4191 goto connect_failed; 4192 4193 /* connect succeeded */ 4194 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4195 tcp->tcp_active_open = 1; 4196 4197 /* 4198 * tcp_set_destination() does not adjust for TCP/IP header length. 4199 */ 4200 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4201 4202 /* 4203 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4204 * to the nearest MSS. 4205 * 4206 * We do the round up here because we need to get the interface MTU 4207 * first before we can do the round up. 4208 */ 4209 tcp->tcp_rwnd = connp->conn_rcvbuf; 4210 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4211 tcps->tcps_recv_hiwat_minmss * mss); 4212 connp->conn_rcvbuf = tcp->tcp_rwnd; 4213 tcp_set_ws_value(tcp); 4214 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4215 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4216 tcp->tcp_snd_ws_ok = B_TRUE; 4217 4218 /* 4219 * Set tcp_snd_ts_ok to true 4220 * so that tcp_xmit_mp will 4221 * include the timestamp 4222 * option in the SYN segment. 4223 */ 4224 if (tcps->tcps_tstamp_always || 4225 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4226 tcp->tcp_snd_ts_ok = B_TRUE; 4227 } 4228 4229 /* 4230 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4231 * the SACK metric is set. So here we just check the per stack SACK 4232 * permitted param. 4233 */ 4234 if (tcps->tcps_sack_permitted == 2) { 4235 ASSERT(tcp->tcp_num_sack_blk == 0); 4236 ASSERT(tcp->tcp_notsack_list == NULL); 4237 tcp->tcp_snd_sack_ok = B_TRUE; 4238 } 4239 4240 /* 4241 * Should we use ECN? Note that the current 4242 * default value (SunOS 5.9) of tcp_ecn_permitted 4243 * is 1. The reason for doing this is that there 4244 * are equipments out there that will drop ECN 4245 * enabled IP packets. Setting it to 1 avoids 4246 * compatibility problems. 4247 */ 4248 if (tcps->tcps_ecn_permitted == 2) 4249 tcp->tcp_ecn_ok = B_TRUE; 4250 4251 /* Trace change from BOUND -> SYN_SENT here */ 4252 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4253 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4254 int32_t, TCPS_BOUND); 4255 4256 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4257 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4258 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4259 if (syn_mp != NULL) { 4260 /* 4261 * We must bump the generation before sending the syn 4262 * to ensure that we use the right generation in case 4263 * this thread issues a "connected" up call. 4264 */ 4265 SOCK_CONNID_BUMP(tcp->tcp_connid); 4266 /* 4267 * DTrace sending the first SYN as a 4268 * tcp:::connect-request event. 4269 */ 4270 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4271 ip_xmit_attr_t *, connp->conn_ixa, 4272 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4273 tcph_t *, 4274 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4275 tcp_send_data(tcp, syn_mp); 4276 } 4277 4278 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4279 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4280 return (0); 4281 4282 connect_failed: 4283 connp->conn_faddr_v6 = ipv6_all_zeros; 4284 connp->conn_fport = 0; 4285 tcp->tcp_state = oldstate; 4286 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4287 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4288 return (error); 4289 } 4290 4291 int 4292 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4293 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4294 { 4295 tcp_t *tcp = connp->conn_tcp; 4296 int error = 0; 4297 tcp_stack_t *tcps = tcp->tcp_tcps; 4298 int32_t oldstate; 4299 4300 /* All Solaris components should pass a cred for this operation. */ 4301 ASSERT(cr != NULL); 4302 4303 if (tcp->tcp_state >= TCPS_BOUND) { 4304 if ((tcp->tcp_state == TCPS_BOUND || 4305 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4306 /* 4307 * Handle listen() increasing backlog. 4308 * This is more "liberal" then what the TPI spec 4309 * requires but is needed to avoid a t_unbind 4310 * when handling listen() since the port number 4311 * might be "stolen" between the unbind and bind. 4312 */ 4313 goto do_listen; 4314 } 4315 if (connp->conn_debug) { 4316 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4317 "tcp_listen: bad state, %d", tcp->tcp_state); 4318 } 4319 return (-TOUTSTATE); 4320 } else { 4321 if (sa == NULL) { 4322 sin6_t addr; 4323 sin_t *sin; 4324 sin6_t *sin6; 4325 4326 ASSERT(IPCL_IS_NONSTR(connp)); 4327 /* Do an implicit bind: Request for a generic port. */ 4328 if (connp->conn_family == AF_INET) { 4329 len = sizeof (sin_t); 4330 sin = (sin_t *)&addr; 4331 *sin = sin_null; 4332 sin->sin_family = AF_INET; 4333 } else { 4334 ASSERT(connp->conn_family == AF_INET6); 4335 len = sizeof (sin6_t); 4336 sin6 = (sin6_t *)&addr; 4337 *sin6 = sin6_null; 4338 sin6->sin6_family = AF_INET6; 4339 } 4340 sa = (struct sockaddr *)&addr; 4341 } 4342 4343 error = tcp_bind_check(connp, sa, len, cr, 4344 bind_to_req_port_only); 4345 if (error) 4346 return (error); 4347 /* Fall through and do the fanout insertion */ 4348 } 4349 4350 do_listen: 4351 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4352 tcp->tcp_conn_req_max = backlog; 4353 if (tcp->tcp_conn_req_max) { 4354 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4355 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4356 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4357 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4358 /* 4359 * If this is a listener, do not reset the eager list 4360 * and other stuffs. Note that we don't check if the 4361 * existing eager list meets the new tcp_conn_req_max 4362 * requirement. 4363 */ 4364 if (tcp->tcp_state != TCPS_LISTEN) { 4365 tcp->tcp_state = TCPS_LISTEN; 4366 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4367 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4368 void, NULL, int32_t, TCPS_BOUND); 4369 /* Initialize the chain. Don't need the eager_lock */ 4370 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4371 tcp->tcp_eager_next_drop_q0 = tcp; 4372 tcp->tcp_eager_prev_drop_q0 = tcp; 4373 tcp->tcp_second_ctimer_threshold = 4374 tcps->tcps_ip_abort_linterval; 4375 } 4376 } 4377 4378 /* 4379 * We need to make sure that the conn_recv is set to a non-null 4380 * value before we insert the conn into the classifier table. 4381 * This is to avoid a race with an incoming packet which does an 4382 * ipcl_classify(). 4383 * We initially set it to tcp_input_listener_unbound to try to 4384 * pick a good squeue for the listener when the first SYN arrives. 4385 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4386 * first SYN. 4387 */ 4388 connp->conn_recv = tcp_input_listener_unbound; 4389 4390 /* Insert the listener in the classifier table */ 4391 error = ip_laddr_fanout_insert(connp); 4392 if (error != 0) { 4393 /* Undo the bind - release the port number */ 4394 oldstate = tcp->tcp_state; 4395 tcp->tcp_state = TCPS_IDLE; 4396 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4397 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4398 int32_t, oldstate); 4399 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4400 4401 connp->conn_laddr_v6 = ipv6_all_zeros; 4402 connp->conn_saddr_v6 = ipv6_all_zeros; 4403 connp->conn_ports = 0; 4404 4405 if (connp->conn_anon_port) { 4406 zone_t *zone; 4407 4408 zone = crgetzone(cr); 4409 connp->conn_anon_port = B_FALSE; 4410 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4411 connp->conn_proto, connp->conn_lport, B_FALSE); 4412 } 4413 connp->conn_mlp_type = mlptSingle; 4414 4415 tcp_bind_hash_remove(tcp); 4416 return (error); 4417 } else { 4418 /* 4419 * If there is a connection limit, allocate and initialize 4420 * the counter struct. Note that since listen can be called 4421 * multiple times, the struct may have been allready allocated. 4422 */ 4423 if (!list_is_empty(&tcps->tcps_listener_conf) && 4424 tcp->tcp_listen_cnt == NULL) { 4425 tcp_listen_cnt_t *tlc; 4426 uint32_t ratio; 4427 4428 ratio = tcp_find_listener_conf(tcps, 4429 ntohs(connp->conn_lport)); 4430 if (ratio != 0) { 4431 uint32_t mem_ratio, tot_buf; 4432 4433 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4434 KM_SLEEP); 4435 /* 4436 * Calculate the connection limit based on 4437 * the configured ratio and maxusers. Maxusers 4438 * are calculated based on memory size, 4439 * ~ 1 user per MB. Note that the conn_rcvbuf 4440 * and conn_sndbuf may change after a 4441 * connection is accepted. So what we have 4442 * is only an approximation. 4443 */ 4444 if ((tot_buf = connp->conn_rcvbuf + 4445 connp->conn_sndbuf) < MB) { 4446 mem_ratio = MB / tot_buf; 4447 tlc->tlc_max = maxusers / ratio * 4448 mem_ratio; 4449 } else { 4450 mem_ratio = tot_buf / MB; 4451 tlc->tlc_max = maxusers / ratio / 4452 mem_ratio; 4453 } 4454 /* At least we should allow two connections! */ 4455 if (tlc->tlc_max <= tcp_min_conn_listener) 4456 tlc->tlc_max = tcp_min_conn_listener; 4457 tlc->tlc_cnt = 1; 4458 tlc->tlc_drop = 0; 4459 tcp->tcp_listen_cnt = tlc; 4460 } 4461 } 4462 } 4463 return (error); 4464 } 4465