1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 #include <inet/ip_netinfo.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 #include <sys/iphada.h> 91 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <inet/ipclassifier.h> 96 #include <sys/mac.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 typedef struct ip_sock_ar_s { 118 union { 119 area_t ip_sock_area; 120 ared_t ip_sock_ared; 121 areq_t ip_sock_areq; 122 } ip_sock_ar_u; 123 queue_t *ip_sock_ar_q; 124 } ip_sock_ar_t; 125 126 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 127 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 128 char *value, caddr_t cp, cred_t *ioc_cr); 129 130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 137 queue_t *q, mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 145 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 148 static void ipsq_flush(ill_t *ill); 149 static void ipsq_clean_all(ill_t *ill); 150 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 151 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 152 queue_t *q, mblk_t *mp, boolean_t need_up); 153 static void ipsq_delete(ipsq_t *); 154 155 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 156 boolean_t initialize); 157 static void ipif_check_bcast_ires(ipif_t *test_ipif); 158 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 159 static void ipif_delete_cache_ire(ire_t *, char *); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_free(ipif_t *ipif); 162 static void ipif_free_tail(ipif_t *ipif); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_dl_down(ill_t *ill); 183 static void ill_down(ill_t *ill); 184 static void ill_downi(ire_t *ire, char *ill_arg); 185 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 186 static void ill_down_tail(ill_t *ill); 187 static void ill_free_mib(ill_t *ill); 188 static void ill_glist_delete(ill_t *); 189 static boolean_t ill_has_usable_ipif(ill_t *); 190 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 191 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 192 static void ill_phyint_free(ill_t *ill); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 196 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 197 static void ill_stq_cache_delete(ire_t *, char *); 198 199 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 202 in6_addr_t *); 203 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 204 ipaddr_t *); 205 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 211 static void ipif_save_ire(ipif_t *, ire_t *); 212 static void ipif_remove_ire(ipif_t *, ire_t *); 213 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 214 static void ip_cgtp_bcast_delete(ire_t *); 215 216 /* 217 * Per-ill IPsec capabilities management. 218 */ 219 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 220 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 221 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 222 static void ill_ipsec_capab_delete(ill_t *, uint_t); 223 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 224 static void ill_capability_proto(ill_t *, int, mblk_t *); 225 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 226 boolean_t); 227 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 230 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 231 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 232 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 234 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 235 dl_capability_sub_t *); 236 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 237 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_lso_reset(ill_t *, mblk_t **); 239 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 240 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 241 static void ill_capability_dls_reset(ill_t *, mblk_t **); 242 static void ill_capability_dls_disable(ill_t *); 243 244 static void illgrp_cache_delete(ire_t *, char *); 245 static void illgrp_delete(ill_t *ill); 246 static void illgrp_reset_schednext(ill_t *ill); 247 248 static ill_t *ill_prev_usesrc(ill_t *); 249 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 250 static void ill_disband_usesrc_group(ill_t *); 251 252 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 253 254 /* 255 * if we go over the memory footprint limit more than once in this msec 256 * interval, we'll start pruning aggressively. 257 */ 258 int ip_min_frag_prune_time = 0; 259 260 /* 261 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 262 * and the IPsec DOI 263 */ 264 #define MAX_IPSEC_ALGS 256 265 266 #define BITSPERBYTE 8 267 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 268 269 #define IPSEC_ALG_ENABLE(algs, algid) \ 270 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 271 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 272 273 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 typedef uint8_t ipsec_capab_elem_t; 278 279 /* 280 * Per-algorithm parameters. Note that at present, only encryption 281 * algorithms have variable keysize (IKE does not provide a way to negotiate 282 * auth algorithm keysize). 283 * 284 * All sizes here are in bits. 285 */ 286 typedef struct 287 { 288 uint16_t minkeylen; 289 uint16_t maxkeylen; 290 } ipsec_capab_algparm_t; 291 292 /* 293 * Per-ill capabilities. 294 */ 295 struct ill_ipsec_capab_s { 296 ipsec_capab_elem_t *encr_hw_algs; 297 ipsec_capab_elem_t *auth_hw_algs; 298 uint32_t algs_size; /* size of _hw_algs in bytes */ 299 /* algorithm key lengths */ 300 ipsec_capab_algparm_t *encr_algparm; 301 uint32_t encr_algparm_size; 302 uint32_t encr_algparm_end; 303 }; 304 305 /* 306 * List of AH and ESP IPsec acceleration capable ills 307 */ 308 typedef struct ipsec_capab_ill_s { 309 uint_t ill_index; 310 boolean_t ill_isv6; 311 struct ipsec_capab_ill_s *next; 312 } ipsec_capab_ill_t; 313 314 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 315 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 316 krwlock_t ipsec_capab_ills_lock; 317 318 /* 319 * The field values are larger than strictly necessary for simple 320 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 321 */ 322 static area_t ip_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IP_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 /* 341 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 342 * support 343 */ 344 static area_t ip6_area_template = { 345 AR_ENTRY_ADD, /* area_cmd */ 346 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 347 /* area_name_offset */ 348 /* area_name_length temporarily holds this structure length */ 349 sizeof (area_t), /* area_name_length */ 350 IP_ARP_PROTO_TYPE, /* area_proto */ 351 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 352 IPV6_ADDR_LEN, /* area_proto_addr_length */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 354 /* area_proto_mask_offset */ 355 0, /* area_flags */ 356 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 357 /* area_hw_addr_offset */ 358 /* Zero length hw_addr_length means 'use your idea of the address' */ 359 0 /* area_hw_addr_length */ 360 }; 361 362 static ared_t ip_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IP_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IP_ADDR_LEN 369 }; 370 371 static ared_t ip6_ared_template = { 372 AR_ENTRY_DELETE, 373 sizeof (ared_t) + IPV6_ADDR_LEN, 374 sizeof (ared_t), 375 IP_ARP_PROTO_TYPE, 376 sizeof (ared_t), 377 IPV6_ADDR_LEN 378 }; 379 380 /* 381 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 382 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 383 * areq is used). 384 */ 385 static areq_t ip_areq_template = { 386 AR_ENTRY_QUERY, /* cmd */ 387 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 388 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 389 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 390 sizeof (areq_t), /* target addr offset */ 391 IP_ADDR_LEN, /* target addr_length */ 392 0, /* flags */ 393 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 394 IP_ADDR_LEN, /* sender addr length */ 395 6, /* xmit_count */ 396 1000, /* (re)xmit_interval in milliseconds */ 397 4 /* max # of requests to buffer */ 398 /* anything else filled in by the code */ 399 }; 400 401 static arc_t ip_aru_template = { 402 AR_INTERFACE_UP, 403 sizeof (arc_t), /* Name offset */ 404 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 405 }; 406 407 static arc_t ip_ard_template = { 408 AR_INTERFACE_DOWN, 409 sizeof (arc_t), /* Name offset */ 410 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 411 }; 412 413 static arc_t ip_aron_template = { 414 AR_INTERFACE_ON, 415 sizeof (arc_t), /* Name offset */ 416 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 417 }; 418 419 static arc_t ip_aroff_template = { 420 AR_INTERFACE_OFF, 421 sizeof (arc_t), /* Name offset */ 422 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 423 }; 424 425 426 static arma_t ip_arma_multi_template = { 427 AR_MAPPING_ADD, 428 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 429 /* Name offset */ 430 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 431 IP_ARP_PROTO_TYPE, 432 sizeof (arma_t), /* proto_addr_offset */ 433 IP_ADDR_LEN, /* proto_addr_length */ 434 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 435 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 436 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 437 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 438 IP_MAX_HW_LEN, /* hw_addr_length */ 439 0, /* hw_mapping_start */ 440 }; 441 442 static ipft_t ip_ioctl_ftbl[] = { 443 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 444 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 447 IPFT_F_NO_REPLY }, 448 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 449 { 0 } 450 }; 451 452 /* Simple ICMP IP Header Template */ 453 static ipha_t icmp_ipha = { 454 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 455 }; 456 457 /* Flag descriptors for ip_ipif_report */ 458 static nv_t ipif_nv_tbl[] = { 459 { IPIF_UP, "UP" }, 460 { IPIF_BROADCAST, "BROADCAST" }, 461 { ILLF_DEBUG, "DEBUG" }, 462 { PHYI_LOOPBACK, "LOOPBACK" }, 463 { IPIF_POINTOPOINT, "POINTOPOINT" }, 464 { ILLF_NOTRAILERS, "NOTRAILERS" }, 465 { PHYI_RUNNING, "RUNNING" }, 466 { ILLF_NOARP, "NOARP" }, 467 { PHYI_PROMISC, "PROMISC" }, 468 { PHYI_ALLMULTI, "ALLMULTI" }, 469 { PHYI_INTELLIGENT, "INTELLIGENT" }, 470 { ILLF_MULTICAST, "MULTICAST" }, 471 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 472 { IPIF_UNNUMBERED, "UNNUMBERED" }, 473 { IPIF_DHCPRUNNING, "DHCP" }, 474 { IPIF_PRIVATE, "PRIVATE" }, 475 { IPIF_NOXMIT, "NOXMIT" }, 476 { IPIF_NOLOCAL, "NOLOCAL" }, 477 { IPIF_DEPRECATED, "DEPRECATED" }, 478 { IPIF_PREFERRED, "PREFERRED" }, 479 { IPIF_TEMPORARY, "TEMPORARY" }, 480 { IPIF_ADDRCONF, "ADDRCONF" }, 481 { PHYI_VIRTUAL, "VIRTUAL" }, 482 { ILLF_ROUTER, "ROUTER" }, 483 { ILLF_NONUD, "NONUD" }, 484 { IPIF_ANYCAST, "ANYCAST" }, 485 { ILLF_NORTEXCH, "NORTEXCH" }, 486 { ILLF_IPV4, "IPV4" }, 487 { ILLF_IPV6, "IPV6" }, 488 { IPIF_MIPRUNNING, "MIP" }, 489 { IPIF_NOFAILOVER, "NOFAILOVER" }, 490 { PHYI_FAILED, "FAILED" }, 491 { PHYI_STANDBY, "STANDBY" }, 492 { PHYI_INACTIVE, "INACTIVE" }, 493 { PHYI_OFFLINE, "OFFLINE" }, 494 }; 495 496 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 497 498 static ip_m_t ip_m_tbl[] = { 499 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_nodef_v6intfid }, 507 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_ether_v6intfid }, 509 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 510 ip_ib_v6intfid }, 511 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 512 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 513 ip_nodef_v6intfid } 514 }; 515 516 static ill_t ill_null; /* Empty ILL for init. */ 517 char ipif_loopback_name[] = "lo0"; 518 static char *ipv4_forward_suffix = ":ip_forwarding"; 519 static char *ipv6_forward_suffix = ":ip6_forwarding"; 520 static kstat_t *loopback_ksp = NULL; 521 static sin6_t sin6_null; /* Zero address for quick clears */ 522 static sin_t sin_null; /* Zero address for quick clears */ 523 static uint_t ill_index = 1; /* Used to assign interface indicies */ 524 /* When set search for unused index */ 525 static boolean_t ill_index_wrap = B_FALSE; 526 /* When set search for unused ipif_seqid */ 527 static ipif_t ipif_zero; 528 uint_t ipif_src_random; 529 530 /* 531 * For details on the protection offered by these locks please refer 532 * to the notes under the Synchronization section at the start of ip.c 533 */ 534 krwlock_t ill_g_lock; /* The global ill_g_lock */ 535 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 536 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 537 538 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 539 540 /* 541 * illgrp_head/ifgrp_head is protected by IP's perimeter. 542 */ 543 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 544 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 545 546 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 547 548 /* 549 * ppa arena is created after these many 550 * interfaces have been plumbed. 551 */ 552 uint_t ill_no_arena = 12; 553 554 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 555 static phyint_list_t phyint_g_list; /* start of phyint list */ 556 557 /* 558 * Reflects value of FAILBACK variable in IPMP config file 559 * /etc/default/mpathd. Default value is B_TRUE. 560 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 561 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 562 */ 563 static boolean_t ipmp_enable_failback = B_TRUE; 564 565 /* 566 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 567 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 568 * set through platform specific code (Niagara/Ontario). 569 */ 570 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 571 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 572 573 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 574 575 static uint_t 576 ipif_rand(void) 577 { 578 ipif_src_random = ipif_src_random * 1103515245 + 12345; 579 return ((ipif_src_random >> 16) & 0x7fff); 580 } 581 582 /* 583 * Allocate per-interface mibs. Only used for ipv6. 584 * Returns true if ok. False otherwise. 585 * ipsq may not yet be allocated (loopback case ). 586 */ 587 static boolean_t 588 ill_allocate_mibs(ill_t *ill) 589 { 590 ASSERT(ill->ill_isv6); 591 592 /* Already allocated? */ 593 if (ill->ill_ip6_mib != NULL) { 594 ASSERT(ill->ill_icmp6_mib != NULL); 595 return (B_TRUE); 596 } 597 598 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 599 KM_NOSLEEP); 600 if (ill->ill_ip6_mib == NULL) { 601 return (B_FALSE); 602 } 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 607 ill->ill_ip6_mib = NULL; 608 return (B_FALSE); 609 } 610 /* 611 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 612 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 613 * -> ill_phyint_reinit 614 */ 615 return (B_TRUE); 616 } 617 618 /* 619 * Common code for preparation of ARP commands. Two points to remember: 620 * 1) The ill_name is tacked on at the end of the allocated space so 621 * the templates name_offset field must contain the total space 622 * to allocate less the name length. 623 * 624 * 2) The templates name_length field should contain the *template* 625 * length. We use it as a parameter to bcopy() and then write 626 * the real ill_name_length into the name_length field of the copy. 627 * (Always called as writer.) 628 */ 629 mblk_t * 630 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 631 { 632 arc_t *arc = (arc_t *)template; 633 char *cp; 634 int len; 635 mblk_t *mp; 636 uint_t name_length = ill->ill_name_length; 637 uint_t template_len = arc->arc_name_length; 638 639 len = arc->arc_name_offset + name_length; 640 mp = allocb(len, BPRI_HI); 641 if (mp == NULL) 642 return (NULL); 643 cp = (char *)mp->b_rptr; 644 mp->b_wptr = (uchar_t *)&cp[len]; 645 if (template_len) 646 bcopy(template, cp, template_len); 647 if (len > template_len) 648 bzero(&cp[template_len], len - template_len); 649 mp->b_datap->db_type = M_PROTO; 650 651 arc = (arc_t *)cp; 652 arc->arc_name_length = name_length; 653 cp = (char *)arc + arc->arc_name_offset; 654 bcopy(ill->ill_name, cp, name_length); 655 656 if (addr) { 657 area_t *area = (area_t *)mp->b_rptr; 658 659 cp = (char *)area + area->area_proto_addr_offset; 660 bcopy(addr, cp, area->area_proto_addr_length); 661 if (area->area_cmd == AR_ENTRY_ADD) { 662 cp = (char *)area; 663 len = area->area_proto_addr_length; 664 if (area->area_proto_mask_offset) 665 cp += area->area_proto_mask_offset; 666 else 667 cp += area->area_proto_addr_offset + len; 668 while (len-- > 0) 669 *cp++ = (char)~0; 670 } 671 } 672 return (mp); 673 } 674 675 mblk_t * 676 ipif_area_alloc(ipif_t *ipif) 677 { 678 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 679 (char *)&ipif->ipif_lcl_addr)); 680 } 681 682 mblk_t * 683 ipif_ared_alloc(ipif_t *ipif) 684 { 685 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 686 (char *)&ipif->ipif_lcl_addr)); 687 } 688 689 mblk_t * 690 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 691 { 692 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 693 (char *)&addr)); 694 } 695 696 /* 697 * Completely vaporize a lower level tap and all associated interfaces. 698 * ill_delete is called only out of ip_close when the device control 699 * stream is being closed. 700 */ 701 void 702 ill_delete(ill_t *ill) 703 { 704 ipif_t *ipif; 705 ill_t *prev_ill; 706 707 /* 708 * ill_delete may be forcibly entering the ipsq. The previous 709 * ioctl may not have completed and may need to be aborted. 710 * ipsq_flush takes care of it. If we don't need to enter the 711 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 712 * ill_delete_tail is sufficient. 713 */ 714 ipsq_flush(ill); 715 716 /* 717 * Nuke all interfaces. ipif_free will take down the interface, 718 * remove it from the list, and free the data structure. 719 * Walk down the ipif list and remove the logical interfaces 720 * first before removing the main ipif. We can't unplumb 721 * zeroth interface first in the case of IPv6 as reset_conn_ill 722 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 723 * POINTOPOINT. 724 * 725 * If ill_ipif was not properly initialized (i.e low on memory), 726 * then no interfaces to clean up. In this case just clean up the 727 * ill. 728 */ 729 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 730 ipif_free(ipif); 731 732 /* 733 * Used only by ill_arp_on and ill_arp_off, which are writers. 734 * So nobody can be using this mp now. Free the mp allocated for 735 * honoring ILLF_NOARP 736 */ 737 freemsg(ill->ill_arp_on_mp); 738 ill->ill_arp_on_mp = NULL; 739 740 /* Clean up msgs on pending upcalls for mrouted */ 741 reset_mrt_ill(ill); 742 743 /* 744 * ipif_free -> reset_conn_ipif will remove all multicast 745 * references for IPv4. For IPv6, we need to do it here as 746 * it points only at ills. 747 */ 748 reset_conn_ill(ill); 749 750 /* 751 * ill_down will arrange to blow off any IRE's dependent on this 752 * ILL, and shut down fragmentation reassembly. 753 */ 754 ill_down(ill); 755 756 /* Let SCTP know, so that it can remove this from its list. */ 757 sctp_update_ill(ill, SCTP_ILL_REMOVE); 758 759 /* 760 * If an address on this ILL is being used as a source address then 761 * clear out the pointers in other ILLs that point to this ILL. 762 */ 763 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 764 if (ill->ill_usesrc_grp_next != NULL) { 765 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 766 ill_disband_usesrc_group(ill); 767 } else { /* consumer of the usesrc ILL */ 768 prev_ill = ill_prev_usesrc(ill); 769 prev_ill->ill_usesrc_grp_next = 770 ill->ill_usesrc_grp_next; 771 } 772 } 773 rw_exit(&ill_g_usesrc_lock); 774 } 775 776 static void 777 ipif_non_duplicate(ipif_t *ipif) 778 { 779 ill_t *ill = ipif->ipif_ill; 780 mutex_enter(&ill->ill_lock); 781 if (ipif->ipif_flags & IPIF_DUPLICATE) { 782 ipif->ipif_flags &= ~IPIF_DUPLICATE; 783 ASSERT(ill->ill_ipif_dup_count > 0); 784 ill->ill_ipif_dup_count--; 785 } 786 mutex_exit(&ill->ill_lock); 787 } 788 789 /* 790 * Send all deferred messages without waiting for their ACKs. 791 */ 792 void 793 ill_send_all_deferred_mp(ill_t *ill) 794 { 795 mblk_t *mp, *next; 796 797 /* 798 * Clear ill_dlpi_pending so that the message is not queued in 799 * ill_dlpi_send(). 800 */ 801 ill->ill_dlpi_pending = DL_PRIM_INVAL; 802 803 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 804 next = mp->b_next; 805 mp->b_next = NULL; 806 ill_dlpi_send(ill, mp); 807 } 808 ill->ill_dlpi_deferred = NULL; 809 } 810 811 /* 812 * ill_delete_tail is called from ip_modclose after all references 813 * to the closing ill are gone. The wait is done in ip_modclose 814 */ 815 void 816 ill_delete_tail(ill_t *ill) 817 { 818 mblk_t **mpp; 819 ipif_t *ipif; 820 821 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 822 ipif_non_duplicate(ipif); 823 ipif_down_tail(ipif); 824 } 825 826 ASSERT(ill->ill_ipif_dup_count == 0 && 827 ill->ill_arp_down_mp == NULL && 828 ill->ill_arp_del_mapping_mp == NULL); 829 830 /* 831 * If polling capability is enabled (which signifies direct 832 * upcall into IP and driver has ill saved as a handle), 833 * we need to make sure that unbind has completed before we 834 * let the ill disappear and driver no longer has any reference 835 * to this ill. 836 */ 837 mutex_enter(&ill->ill_lock); 838 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 839 cv_wait(&ill->ill_cv, &ill->ill_lock); 840 mutex_exit(&ill->ill_lock); 841 842 /* 843 * Clean up polling and soft ring capabilities 844 */ 845 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 846 ill_capability_dls_disable(ill); 847 848 /* 849 * Send the detach if there's one to send (i.e., if we're above a 850 * style 2 DLPI driver). 851 */ 852 if (ill->ill_detach_mp != NULL) { 853 ill_dlpi_send(ill, ill->ill_detach_mp); 854 ill->ill_detach_mp = NULL; 855 } 856 857 if (ill->ill_net_type != IRE_LOOPBACK) 858 qprocsoff(ill->ill_rq); 859 860 /* 861 * We do an ipsq_flush once again now. New messages could have 862 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 863 * could also have landed up if an ioctl thread had looked up 864 * the ill before we set the ILL_CONDEMNED flag, but not yet 865 * enqueued the ioctl when we did the ipsq_flush last time. 866 */ 867 ipsq_flush(ill); 868 869 /* 870 * Free capabilities. 871 */ 872 if (ill->ill_ipsec_capab_ah != NULL) { 873 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 874 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 875 ill->ill_ipsec_capab_ah = NULL; 876 } 877 878 if (ill->ill_ipsec_capab_esp != NULL) { 879 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 880 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 881 ill->ill_ipsec_capab_esp = NULL; 882 } 883 884 if (ill->ill_mdt_capab != NULL) { 885 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 886 ill->ill_mdt_capab = NULL; 887 } 888 889 if (ill->ill_hcksum_capab != NULL) { 890 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 891 ill->ill_hcksum_capab = NULL; 892 } 893 894 if (ill->ill_zerocopy_capab != NULL) { 895 kmem_free(ill->ill_zerocopy_capab, 896 sizeof (ill_zerocopy_capab_t)); 897 ill->ill_zerocopy_capab = NULL; 898 } 899 900 if (ill->ill_lso_capab != NULL) { 901 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 902 ill->ill_lso_capab = NULL; 903 } 904 905 if (ill->ill_dls_capab != NULL) { 906 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 907 ill->ill_dls_capab->ill_unbind_conn = NULL; 908 kmem_free(ill->ill_dls_capab, 909 sizeof (ill_dls_capab_t) + 910 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 911 ill->ill_dls_capab = NULL; 912 } 913 914 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 915 916 while (ill->ill_ipif != NULL) 917 ipif_free_tail(ill->ill_ipif); 918 919 ill_down_tail(ill); 920 921 /* 922 * We have removed all references to ilm from conn and the ones joined 923 * within the kernel. 924 * 925 * We don't walk conns, mrts and ires because 926 * 927 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 928 * 2) ill_down ->ill_downi walks all the ires and cleans up 929 * ill references. 930 */ 931 ASSERT(ilm_walk_ill(ill) == 0); 932 /* 933 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 934 * could free the phyint. No more reference to the phyint after this 935 * point. 936 */ 937 (void) ill_glist_delete(ill); 938 939 rw_enter(&ip_g_nd_lock, RW_WRITER); 940 if (ill->ill_ndd_name != NULL) 941 nd_unload(&ip_g_nd, ill->ill_ndd_name); 942 rw_exit(&ip_g_nd_lock); 943 944 945 if (ill->ill_frag_ptr != NULL) { 946 uint_t count; 947 948 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 949 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 950 } 951 mi_free(ill->ill_frag_ptr); 952 ill->ill_frag_ptr = NULL; 953 ill->ill_frag_hash_tbl = NULL; 954 } 955 if (ill->ill_nd_lla_mp != NULL) 956 freemsg(ill->ill_nd_lla_mp); 957 /* Free all retained control messages. */ 958 mpp = &ill->ill_first_mp_to_free; 959 do { 960 while (mpp[0]) { 961 mblk_t *mp; 962 mblk_t *mp1; 963 964 mp = mpp[0]; 965 mpp[0] = mp->b_next; 966 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 967 mp1->b_next = NULL; 968 mp1->b_prev = NULL; 969 } 970 freemsg(mp); 971 } 972 } while (mpp++ != &ill->ill_last_mp_to_free); 973 974 ill_free_mib(ill); 975 ILL_TRACE_CLEANUP(ill); 976 } 977 978 static void 979 ill_free_mib(ill_t *ill) 980 { 981 if (ill->ill_ip6_mib != NULL) { 982 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 983 ill->ill_ip6_mib = NULL; 984 } 985 if (ill->ill_icmp6_mib != NULL) { 986 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 987 ill->ill_icmp6_mib = NULL; 988 } 989 } 990 991 /* 992 * Concatenate together a physical address and a sap. 993 * 994 * Sap_lengths are interpreted as follows: 995 * sap_length == 0 ==> no sap 996 * sap_length > 0 ==> sap is at the head of the dlpi address 997 * sap_length < 0 ==> sap is at the tail of the dlpi address 998 */ 999 static void 1000 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1001 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1002 { 1003 uint16_t sap_addr = (uint16_t)sap_src; 1004 1005 if (sap_length == 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 } else if (sap_length < 0) { 1011 if (phys_src == NULL) 1012 bzero(dst, phys_length); 1013 else 1014 bcopy(phys_src, dst, phys_length); 1015 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1016 } else { 1017 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1018 if (phys_src == NULL) 1019 bzero((char *)dst + sap_length, phys_length); 1020 else 1021 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1022 } 1023 } 1024 1025 /* 1026 * Generate a dl_unitdata_req mblk for the device and address given. 1027 * addr_length is the length of the physical portion of the address. 1028 * If addr is NULL include an all zero address of the specified length. 1029 * TRUE? In any case, addr_length is taken to be the entire length of the 1030 * dlpi address, including the absolute value of sap_length. 1031 */ 1032 mblk_t * 1033 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1034 t_scalar_t sap_length) 1035 { 1036 dl_unitdata_req_t *dlur; 1037 mblk_t *mp; 1038 t_scalar_t abs_sap_length; /* absolute value */ 1039 1040 abs_sap_length = ABS(sap_length); 1041 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1042 DL_UNITDATA_REQ); 1043 if (mp == NULL) 1044 return (NULL); 1045 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1046 /* HACK: accomodate incompatible DLPI drivers */ 1047 if (addr_length == 8) 1048 addr_length = 6; 1049 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1050 dlur->dl_dest_addr_offset = sizeof (*dlur); 1051 dlur->dl_priority.dl_min = 0; 1052 dlur->dl_priority.dl_max = 0; 1053 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1054 (uchar_t *)&dlur[1]); 1055 return (mp); 1056 } 1057 1058 /* 1059 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1060 * Return an error if we already have 1 or more ioctls in progress. 1061 * This is used only for non-exclusive ioctls. Currently this is used 1062 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1063 * and thus need to use ipsq_pending_mp_add. 1064 */ 1065 boolean_t 1066 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1067 { 1068 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1069 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1070 /* 1071 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1072 */ 1073 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1074 (add_mp->b_datap->db_type == M_IOCTL)); 1075 1076 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1077 /* 1078 * Return error if the conn has started closing. The conn 1079 * could have finished cleaning up the pending mp list, 1080 * If so we should not add another mp to the list negating 1081 * the cleanup. 1082 */ 1083 if (connp->conn_state_flags & CONN_CLOSING) 1084 return (B_FALSE); 1085 /* 1086 * Add the pending mp to the head of the list, chained by b_next. 1087 * Note down the conn on which the ioctl request came, in b_prev. 1088 * This will be used to later get the conn, when we get a response 1089 * on the ill queue, from some other module (typically arp) 1090 */ 1091 add_mp->b_next = (void *)ill->ill_pending_mp; 1092 add_mp->b_queue = CONNP_TO_WQ(connp); 1093 ill->ill_pending_mp = add_mp; 1094 if (connp != NULL) 1095 connp->conn_oper_pending_ill = ill; 1096 return (B_TRUE); 1097 } 1098 1099 /* 1100 * Retrieve the ill_pending_mp and return it. We have to walk the list 1101 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1102 */ 1103 mblk_t * 1104 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1105 { 1106 mblk_t *prev = NULL; 1107 mblk_t *curr = NULL; 1108 uint_t id; 1109 conn_t *connp; 1110 1111 /* 1112 * When the conn closes, conn_ioctl_cleanup needs to clean 1113 * up the pending mp, but it does not know the ioc_id and 1114 * passes in a zero for it. 1115 */ 1116 mutex_enter(&ill->ill_lock); 1117 if (ioc_id != 0) 1118 *connpp = NULL; 1119 1120 /* Search the list for the appropriate ioctl based on ioc_id */ 1121 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1122 prev = curr, curr = curr->b_next) { 1123 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1124 connp = Q_TO_CONN(curr->b_queue); 1125 /* Match based on the ioc_id or based on the conn */ 1126 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1127 break; 1128 } 1129 1130 if (curr != NULL) { 1131 /* Unlink the mblk from the pending mp list */ 1132 if (prev != NULL) { 1133 prev->b_next = curr->b_next; 1134 } else { 1135 ASSERT(ill->ill_pending_mp == curr); 1136 ill->ill_pending_mp = curr->b_next; 1137 } 1138 1139 /* 1140 * conn refcnt must have been bumped up at the start of 1141 * the ioctl. So we can safely access the conn. 1142 */ 1143 ASSERT(CONN_Q(curr->b_queue)); 1144 *connpp = Q_TO_CONN(curr->b_queue); 1145 curr->b_next = NULL; 1146 curr->b_queue = NULL; 1147 } 1148 1149 mutex_exit(&ill->ill_lock); 1150 1151 return (curr); 1152 } 1153 1154 /* 1155 * Add the pending mp to the list. There can be only 1 pending mp 1156 * in the list. Any exclusive ioctl that needs to wait for a response 1157 * from another module or driver needs to use this function to set 1158 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1159 * the other module/driver. This is also used while waiting for the 1160 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1161 */ 1162 boolean_t 1163 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1164 int waitfor) 1165 { 1166 ipsq_t *ipsq; 1167 1168 ASSERT(IAM_WRITER_IPIF(ipif)); 1169 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1170 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1171 /* 1172 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1173 * M_ERROR/M_HANGUP from driver 1174 */ 1175 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1176 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1177 1178 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1179 if (connp != NULL) { 1180 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1181 /* 1182 * Return error if the conn has started closing. The conn 1183 * could have finished cleaning up the pending mp list, 1184 * If so we should not add another mp to the list negating 1185 * the cleanup. 1186 */ 1187 if (connp->conn_state_flags & CONN_CLOSING) 1188 return (B_FALSE); 1189 } 1190 mutex_enter(&ipsq->ipsq_lock); 1191 ipsq->ipsq_pending_ipif = ipif; 1192 /* 1193 * Note down the queue in b_queue. This will be returned by 1194 * ipsq_pending_mp_get. Caller will then use these values to restart 1195 * the processing 1196 */ 1197 add_mp->b_next = NULL; 1198 add_mp->b_queue = q; 1199 ipsq->ipsq_pending_mp = add_mp; 1200 ipsq->ipsq_waitfor = waitfor; 1201 /* 1202 * ipsq_current_ipif is needed to restart the operation from 1203 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1204 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1205 * been set until now. 1206 */ 1207 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1208 ASSERT(ipsq->ipsq_current_ipif == NULL); 1209 ipsq->ipsq_current_ipif = ipif; 1210 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1211 } 1212 if (connp != NULL) 1213 connp->conn_oper_pending_ill = ipif->ipif_ill; 1214 mutex_exit(&ipsq->ipsq_lock); 1215 return (B_TRUE); 1216 } 1217 1218 /* 1219 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1220 * queued in the list. 1221 */ 1222 mblk_t * 1223 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1224 { 1225 mblk_t *curr = NULL; 1226 1227 mutex_enter(&ipsq->ipsq_lock); 1228 *connpp = NULL; 1229 if (ipsq->ipsq_pending_mp == NULL) { 1230 mutex_exit(&ipsq->ipsq_lock); 1231 return (NULL); 1232 } 1233 1234 /* There can be only 1 such excl message */ 1235 curr = ipsq->ipsq_pending_mp; 1236 ASSERT(curr != NULL && curr->b_next == NULL); 1237 ipsq->ipsq_pending_ipif = NULL; 1238 ipsq->ipsq_pending_mp = NULL; 1239 ipsq->ipsq_waitfor = 0; 1240 mutex_exit(&ipsq->ipsq_lock); 1241 1242 if (CONN_Q(curr->b_queue)) { 1243 /* 1244 * This mp did a refhold on the conn, at the start of the ioctl. 1245 * So we can safely return a pointer to the conn to the caller. 1246 */ 1247 *connpp = Q_TO_CONN(curr->b_queue); 1248 } else { 1249 *connpp = NULL; 1250 } 1251 curr->b_next = NULL; 1252 curr->b_prev = NULL; 1253 return (curr); 1254 } 1255 1256 /* 1257 * Cleanup the ioctl mp queued in ipsq_pending_mp 1258 * - Called in the ill_delete path 1259 * - Called in the M_ERROR or M_HANGUP path on the ill. 1260 * - Called in the conn close path. 1261 */ 1262 boolean_t 1263 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1264 { 1265 mblk_t *mp; 1266 ipsq_t *ipsq; 1267 queue_t *q; 1268 ipif_t *ipif; 1269 1270 ASSERT(IAM_WRITER_ILL(ill)); 1271 ipsq = ill->ill_phyint->phyint_ipsq; 1272 mutex_enter(&ipsq->ipsq_lock); 1273 /* 1274 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1275 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1276 * even if it is meant for another ill, since we have to enqueue 1277 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1278 * If connp is non-null we are called from the conn close path. 1279 */ 1280 mp = ipsq->ipsq_pending_mp; 1281 if (mp == NULL || (connp != NULL && 1282 mp->b_queue != CONNP_TO_WQ(connp))) { 1283 mutex_exit(&ipsq->ipsq_lock); 1284 return (B_FALSE); 1285 } 1286 /* Now remove from the ipsq_pending_mp */ 1287 ipsq->ipsq_pending_mp = NULL; 1288 q = mp->b_queue; 1289 mp->b_next = NULL; 1290 mp->b_prev = NULL; 1291 mp->b_queue = NULL; 1292 1293 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1294 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1295 if (ill->ill_move_in_progress) { 1296 ILL_CLEAR_MOVE(ill); 1297 } else if (ill->ill_up_ipifs) { 1298 ill_group_cleanup(ill); 1299 } 1300 1301 ipif = ipsq->ipsq_pending_ipif; 1302 ipsq->ipsq_pending_ipif = NULL; 1303 ipsq->ipsq_waitfor = 0; 1304 ipsq->ipsq_current_ipif = NULL; 1305 mutex_exit(&ipsq->ipsq_lock); 1306 1307 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1308 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1309 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1310 } else { 1311 /* 1312 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1313 * be just inet_freemsg. we have to restart it 1314 * otherwise the thread will be stuck. 1315 */ 1316 inet_freemsg(mp); 1317 } 1318 return (B_TRUE); 1319 } 1320 1321 /* 1322 * The ill is closing. Cleanup all the pending mps. Called exclusively 1323 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1324 * knows this ill, and hence nobody can add an mp to this list 1325 */ 1326 static void 1327 ill_pending_mp_cleanup(ill_t *ill) 1328 { 1329 mblk_t *mp; 1330 queue_t *q; 1331 1332 ASSERT(IAM_WRITER_ILL(ill)); 1333 1334 mutex_enter(&ill->ill_lock); 1335 /* 1336 * Every mp on the pending mp list originating from an ioctl 1337 * added 1 to the conn refcnt, at the start of the ioctl. 1338 * So bump it down now. See comments in ip_wput_nondata() 1339 */ 1340 while (ill->ill_pending_mp != NULL) { 1341 mp = ill->ill_pending_mp; 1342 ill->ill_pending_mp = mp->b_next; 1343 mutex_exit(&ill->ill_lock); 1344 1345 q = mp->b_queue; 1346 ASSERT(CONN_Q(q)); 1347 mp->b_next = NULL; 1348 mp->b_prev = NULL; 1349 mp->b_queue = NULL; 1350 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1351 mutex_enter(&ill->ill_lock); 1352 } 1353 ill->ill_pending_ipif = NULL; 1354 1355 mutex_exit(&ill->ill_lock); 1356 } 1357 1358 /* 1359 * Called in the conn close path and ill delete path 1360 */ 1361 static void 1362 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1363 { 1364 ipsq_t *ipsq; 1365 mblk_t *prev; 1366 mblk_t *curr; 1367 mblk_t *next; 1368 queue_t *q; 1369 mblk_t *tmp_list = NULL; 1370 1371 ASSERT(IAM_WRITER_ILL(ill)); 1372 if (connp != NULL) 1373 q = CONNP_TO_WQ(connp); 1374 else 1375 q = ill->ill_wq; 1376 1377 ipsq = ill->ill_phyint->phyint_ipsq; 1378 /* 1379 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1380 * In the case of ioctl from a conn, there can be only 1 mp 1381 * queued on the ipsq. If an ill is being unplumbed, only messages 1382 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1383 * ioctls meant for this ill form conn's are not flushed. They will 1384 * be processed during ipsq_exit and will not find the ill and will 1385 * return error. 1386 */ 1387 mutex_enter(&ipsq->ipsq_lock); 1388 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1389 curr = next) { 1390 next = curr->b_next; 1391 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1392 /* Unlink the mblk from the pending mp list */ 1393 if (prev != NULL) { 1394 prev->b_next = curr->b_next; 1395 } else { 1396 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1397 ipsq->ipsq_xopq_mphead = curr->b_next; 1398 } 1399 if (ipsq->ipsq_xopq_mptail == curr) 1400 ipsq->ipsq_xopq_mptail = prev; 1401 /* 1402 * Create a temporary list and release the ipsq lock 1403 * New elements are added to the head of the tmp_list 1404 */ 1405 curr->b_next = tmp_list; 1406 tmp_list = curr; 1407 } else { 1408 prev = curr; 1409 } 1410 } 1411 mutex_exit(&ipsq->ipsq_lock); 1412 1413 while (tmp_list != NULL) { 1414 curr = tmp_list; 1415 tmp_list = curr->b_next; 1416 curr->b_next = NULL; 1417 curr->b_prev = NULL; 1418 curr->b_queue = NULL; 1419 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1420 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1421 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1422 } else { 1423 /* 1424 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1425 * this can't be just inet_freemsg. we have to 1426 * restart it otherwise the thread will be stuck. 1427 */ 1428 inet_freemsg(curr); 1429 } 1430 } 1431 } 1432 1433 /* 1434 * This conn has started closing. Cleanup any pending ioctl from this conn. 1435 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1436 */ 1437 void 1438 conn_ioctl_cleanup(conn_t *connp) 1439 { 1440 mblk_t *curr; 1441 ipsq_t *ipsq; 1442 ill_t *ill; 1443 boolean_t refheld; 1444 1445 /* 1446 * Is any exclusive ioctl pending ? If so clean it up. If the 1447 * ioctl has not yet started, the mp is pending in the list headed by 1448 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1449 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1450 * is currently executing now the mp is not queued anywhere but 1451 * conn_oper_pending_ill is null. The conn close will wait 1452 * till the conn_ref drops to zero. 1453 */ 1454 mutex_enter(&connp->conn_lock); 1455 ill = connp->conn_oper_pending_ill; 1456 if (ill == NULL) { 1457 mutex_exit(&connp->conn_lock); 1458 return; 1459 } 1460 1461 curr = ill_pending_mp_get(ill, &connp, 0); 1462 if (curr != NULL) { 1463 mutex_exit(&connp->conn_lock); 1464 CONN_DEC_REF(connp); 1465 inet_freemsg(curr); 1466 return; 1467 } 1468 /* 1469 * We may not be able to refhold the ill if the ill/ipif 1470 * is changing. But we need to make sure that the ill will 1471 * not vanish. So we just bump up the ill_waiter count. 1472 */ 1473 refheld = ill_waiter_inc(ill); 1474 mutex_exit(&connp->conn_lock); 1475 if (refheld) { 1476 if (ipsq_enter(ill, B_TRUE)) { 1477 ill_waiter_dcr(ill); 1478 /* 1479 * Check whether this ioctl has started and is 1480 * pending now in ipsq_pending_mp. If it is not 1481 * found there then check whether this ioctl has 1482 * not even started and is in the ipsq_xopq list. 1483 */ 1484 if (!ipsq_pending_mp_cleanup(ill, connp)) 1485 ipsq_xopq_mp_cleanup(ill, connp); 1486 ipsq = ill->ill_phyint->phyint_ipsq; 1487 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1488 return; 1489 } 1490 } 1491 1492 /* 1493 * The ill is also closing and we could not bump up the 1494 * ill_waiter_count or we could not enter the ipsq. Leave 1495 * the cleanup to ill_delete 1496 */ 1497 mutex_enter(&connp->conn_lock); 1498 while (connp->conn_oper_pending_ill != NULL) 1499 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1500 mutex_exit(&connp->conn_lock); 1501 if (refheld) 1502 ill_waiter_dcr(ill); 1503 } 1504 1505 /* 1506 * ipcl_walk function for cleaning up conn_*_ill fields. 1507 */ 1508 static void 1509 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1510 { 1511 ill_t *ill = (ill_t *)arg; 1512 ire_t *ire; 1513 1514 mutex_enter(&connp->conn_lock); 1515 if (connp->conn_multicast_ill == ill) { 1516 /* Revert to late binding */ 1517 connp->conn_multicast_ill = NULL; 1518 connp->conn_orig_multicast_ifindex = 0; 1519 } 1520 if (connp->conn_incoming_ill == ill) 1521 connp->conn_incoming_ill = NULL; 1522 if (connp->conn_outgoing_ill == ill) 1523 connp->conn_outgoing_ill = NULL; 1524 if (connp->conn_outgoing_pill == ill) 1525 connp->conn_outgoing_pill = NULL; 1526 if (connp->conn_nofailover_ill == ill) 1527 connp->conn_nofailover_ill = NULL; 1528 if (connp->conn_xmit_if_ill == ill) 1529 connp->conn_xmit_if_ill = NULL; 1530 if (connp->conn_ire_cache != NULL) { 1531 ire = connp->conn_ire_cache; 1532 /* 1533 * ip_newroute creates IRE_CACHE with ire_stq coming from 1534 * interface X and ipif coming from interface Y, if interface 1535 * X and Y are part of the same IPMPgroup. Thus whenever 1536 * interface X goes down, remove all references to it by 1537 * checking both on ire_ipif and ire_stq. 1538 */ 1539 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1540 (ire->ire_type == IRE_CACHE && 1541 ire->ire_stq == ill->ill_wq)) { 1542 connp->conn_ire_cache = NULL; 1543 mutex_exit(&connp->conn_lock); 1544 ire_refrele_notr(ire); 1545 return; 1546 } 1547 } 1548 mutex_exit(&connp->conn_lock); 1549 1550 } 1551 1552 /* ARGSUSED */ 1553 void 1554 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1555 { 1556 ill_t *ill = q->q_ptr; 1557 ipif_t *ipif; 1558 1559 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1560 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1561 ipif_non_duplicate(ipif); 1562 ipif_down_tail(ipif); 1563 } 1564 ill_down_tail(ill); 1565 freemsg(mp); 1566 ipsq->ipsq_current_ipif = NULL; 1567 } 1568 1569 /* 1570 * ill_down_start is called when we want to down this ill and bring it up again 1571 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1572 * all interfaces, but don't tear down any plumbing. 1573 */ 1574 boolean_t 1575 ill_down_start(queue_t *q, mblk_t *mp) 1576 { 1577 ill_t *ill; 1578 ipif_t *ipif; 1579 1580 ill = q->q_ptr; 1581 1582 ASSERT(IAM_WRITER_ILL(ill)); 1583 1584 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1585 (void) ipif_down(ipif, NULL, NULL); 1586 1587 ill_down(ill); 1588 1589 (void) ipsq_pending_mp_cleanup(ill, NULL); 1590 mutex_enter(&ill->ill_lock); 1591 /* 1592 * Atomically test and add the pending mp if references are 1593 * still active. 1594 */ 1595 if (!ill_is_quiescent(ill)) { 1596 /* 1597 * Get rid of any pending mps and cleanup. Call will 1598 * not fail since we are passing a null connp. 1599 */ 1600 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1601 mp, ILL_DOWN); 1602 mutex_exit(&ill->ill_lock); 1603 return (B_FALSE); 1604 } 1605 mutex_exit(&ill->ill_lock); 1606 return (B_TRUE); 1607 } 1608 1609 static void 1610 ill_down(ill_t *ill) 1611 { 1612 /* Blow off any IREs dependent on this ILL. */ 1613 ire_walk(ill_downi, (char *)ill); 1614 1615 mutex_enter(&ire_mrtun_lock); 1616 if (ire_mrtun_count != 0) { 1617 mutex_exit(&ire_mrtun_lock); 1618 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1619 (char *)ill, NULL); 1620 } else { 1621 mutex_exit(&ire_mrtun_lock); 1622 } 1623 1624 /* 1625 * If any interface based forwarding table exists 1626 * Blow off the ires there dependent on this ill 1627 */ 1628 mutex_enter(&ire_srcif_table_lock); 1629 if (ire_srcif_table_count > 0) { 1630 mutex_exit(&ire_srcif_table_lock); 1631 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1632 } else { 1633 mutex_exit(&ire_srcif_table_lock); 1634 } 1635 1636 /* Remove any conn_*_ill depending on this ill */ 1637 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1638 1639 if (ill->ill_group != NULL) { 1640 illgrp_delete(ill); 1641 } 1642 1643 } 1644 1645 static void 1646 ill_down_tail(ill_t *ill) 1647 { 1648 int i; 1649 1650 /* Destroy ill_srcif_table if it exists */ 1651 /* Lock not reqd really because nobody should be able to access */ 1652 mutex_enter(&ill->ill_lock); 1653 if (ill->ill_srcif_table != NULL) { 1654 ill->ill_srcif_refcnt = 0; 1655 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1656 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1657 } 1658 kmem_free(ill->ill_srcif_table, 1659 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1660 ill->ill_srcif_table = NULL; 1661 ill->ill_srcif_refcnt = 0; 1662 ill->ill_mrtun_refcnt = 0; 1663 } 1664 mutex_exit(&ill->ill_lock); 1665 } 1666 1667 /* 1668 * ire_walk routine used to delete every IRE that depends on queues 1669 * associated with 'ill'. (Always called as writer.) 1670 */ 1671 static void 1672 ill_downi(ire_t *ire, char *ill_arg) 1673 { 1674 ill_t *ill = (ill_t *)ill_arg; 1675 1676 /* 1677 * ip_newroute creates IRE_CACHE with ire_stq coming from 1678 * interface X and ipif coming from interface Y, if interface 1679 * X and Y are part of the same IPMP group. Thus whenever interface 1680 * X goes down, remove all references to it by checking both 1681 * on ire_ipif and ire_stq. 1682 */ 1683 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1684 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1685 ire_delete(ire); 1686 } 1687 } 1688 1689 /* 1690 * A seperate routine for deleting revtun and srcif based routes 1691 * are needed because the ires only deleted when the interface 1692 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1693 * we want to keep mobile IP specific code separate. 1694 */ 1695 static void 1696 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1697 { 1698 ill_t *ill = (ill_t *)ill_arg; 1699 1700 ASSERT(ire->ire_in_ill != NULL); 1701 1702 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1703 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1704 ire_delete(ire); 1705 } 1706 } 1707 1708 /* 1709 * Remove ire/nce from the fastpath list. 1710 */ 1711 void 1712 ill_fastpath_nack(ill_t *ill) 1713 { 1714 if (ill->ill_isv6) { 1715 nce_fastpath_list_dispatch(ill, NULL, NULL); 1716 } else { 1717 ire_fastpath_list_dispatch(ill, NULL, NULL); 1718 } 1719 } 1720 1721 /* Consume an M_IOCACK of the fastpath probe. */ 1722 void 1723 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1724 { 1725 mblk_t *mp1 = mp; 1726 1727 /* 1728 * If this was the first attempt turn on the fastpath probing. 1729 */ 1730 mutex_enter(&ill->ill_lock); 1731 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1732 ill->ill_dlpi_fastpath_state = IDS_OK; 1733 mutex_exit(&ill->ill_lock); 1734 1735 /* Free the M_IOCACK mblk, hold on to the data */ 1736 mp = mp->b_cont; 1737 freeb(mp1); 1738 if (mp == NULL) 1739 return; 1740 if (mp->b_cont != NULL) { 1741 /* 1742 * Update all IRE's or NCE's that are waiting for 1743 * fastpath update. 1744 */ 1745 if (ill->ill_isv6) { 1746 /* 1747 * update nce's in the fastpath list. 1748 */ 1749 nce_fastpath_list_dispatch(ill, 1750 ndp_fastpath_update, mp); 1751 } else { 1752 1753 /* 1754 * update ire's in the fastpath list. 1755 */ 1756 ire_fastpath_list_dispatch(ill, 1757 ire_fastpath_update, mp); 1758 /* 1759 * Check if we need to traverse reverse tunnel table. 1760 * Since there is only single ire_type (IRE_MIPRTUN) 1761 * in the table, we don't need to match on ire_type. 1762 * We have to check ire_mrtun_count and not the 1763 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1764 * on the incoming ill and here we are dealing with 1765 * outgoing ill. 1766 */ 1767 mutex_enter(&ire_mrtun_lock); 1768 if (ire_mrtun_count != 0) { 1769 mutex_exit(&ire_mrtun_lock); 1770 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1771 (void (*)(ire_t *, void *)) 1772 ire_fastpath_update, mp, ill); 1773 } else { 1774 mutex_exit(&ire_mrtun_lock); 1775 } 1776 } 1777 mp1 = mp->b_cont; 1778 freeb(mp); 1779 mp = mp1; 1780 } else { 1781 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1782 } 1783 1784 freeb(mp); 1785 } 1786 1787 /* 1788 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1789 * The data portion of the request is a dl_unitdata_req_t template for 1790 * what we would send downstream in the absence of a fastpath confirmation. 1791 */ 1792 int 1793 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1794 { 1795 struct iocblk *ioc; 1796 mblk_t *mp; 1797 1798 if (dlur_mp == NULL) 1799 return (EINVAL); 1800 1801 mutex_enter(&ill->ill_lock); 1802 switch (ill->ill_dlpi_fastpath_state) { 1803 case IDS_FAILED: 1804 /* 1805 * Driver NAKed the first fastpath ioctl - assume it doesn't 1806 * support it. 1807 */ 1808 mutex_exit(&ill->ill_lock); 1809 return (ENOTSUP); 1810 case IDS_UNKNOWN: 1811 /* This is the first probe */ 1812 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1813 break; 1814 default: 1815 break; 1816 } 1817 mutex_exit(&ill->ill_lock); 1818 1819 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1820 return (EAGAIN); 1821 1822 mp->b_cont = copyb(dlur_mp); 1823 if (mp->b_cont == NULL) { 1824 freeb(mp); 1825 return (EAGAIN); 1826 } 1827 1828 ioc = (struct iocblk *)mp->b_rptr; 1829 ioc->ioc_count = msgdsize(mp->b_cont); 1830 1831 putnext(ill->ill_wq, mp); 1832 return (0); 1833 } 1834 1835 void 1836 ill_capability_probe(ill_t *ill) 1837 { 1838 /* 1839 * Do so only if negotiation is enabled, capabilities are unknown, 1840 * and a capability negotiation is not already in progress. 1841 */ 1842 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1843 ill->ill_dlpi_capab_state != IDS_RENEG) 1844 return; 1845 1846 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1847 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1848 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1849 } 1850 1851 void 1852 ill_capability_reset(ill_t *ill) 1853 { 1854 mblk_t *sc_mp = NULL; 1855 mblk_t *tmp; 1856 1857 /* 1858 * Note here that we reset the state to UNKNOWN, and later send 1859 * down the DL_CAPABILITY_REQ without first setting the state to 1860 * INPROGRESS. We do this in order to distinguish the 1861 * DL_CAPABILITY_ACK response which may come back in response to 1862 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1863 * also handle the case where the driver doesn't send us back 1864 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1865 * requires the state to be in UNKNOWN anyway. In any case, all 1866 * features are turned off until the state reaches IDS_OK. 1867 */ 1868 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1869 1870 /* 1871 * Disable sub-capabilities and request a list of sub-capability 1872 * messages which will be sent down to the driver. Each handler 1873 * allocates the corresponding dl_capability_sub_t inside an 1874 * mblk, and links it to the existing sc_mp mblk, or return it 1875 * as sc_mp if it's the first sub-capability (the passed in 1876 * sc_mp is NULL). Upon returning from all capability handlers, 1877 * sc_mp will be pulled-up, before passing it downstream. 1878 */ 1879 ill_capability_mdt_reset(ill, &sc_mp); 1880 ill_capability_hcksum_reset(ill, &sc_mp); 1881 ill_capability_zerocopy_reset(ill, &sc_mp); 1882 ill_capability_ipsec_reset(ill, &sc_mp); 1883 ill_capability_dls_reset(ill, &sc_mp); 1884 ill_capability_lso_reset(ill, &sc_mp); 1885 1886 /* Nothing to send down in order to disable the capabilities? */ 1887 if (sc_mp == NULL) 1888 return; 1889 1890 tmp = msgpullup(sc_mp, -1); 1891 freemsg(sc_mp); 1892 if ((sc_mp = tmp) == NULL) { 1893 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1894 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1895 return; 1896 } 1897 1898 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1899 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1900 } 1901 1902 /* 1903 * Request or set new-style hardware capabilities supported by DLS provider. 1904 */ 1905 static void 1906 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1907 { 1908 mblk_t *mp; 1909 dl_capability_req_t *capb; 1910 size_t size = 0; 1911 uint8_t *ptr; 1912 1913 if (reqp != NULL) 1914 size = MBLKL(reqp); 1915 1916 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1917 if (mp == NULL) { 1918 freemsg(reqp); 1919 return; 1920 } 1921 ptr = mp->b_rptr; 1922 1923 capb = (dl_capability_req_t *)ptr; 1924 ptr += sizeof (dl_capability_req_t); 1925 1926 if (reqp != NULL) { 1927 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1928 capb->dl_sub_length = size; 1929 bcopy(reqp->b_rptr, ptr, size); 1930 ptr += size; 1931 mp->b_cont = reqp->b_cont; 1932 freeb(reqp); 1933 } 1934 ASSERT(ptr == mp->b_wptr); 1935 1936 ill_dlpi_send(ill, mp); 1937 } 1938 1939 static void 1940 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1941 { 1942 dl_capab_id_t *id_ic; 1943 uint_t sub_dl_cap = outers->dl_cap; 1944 dl_capability_sub_t *inners; 1945 uint8_t *capend; 1946 1947 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1948 1949 /* 1950 * Note: range checks here are not absolutely sufficient to 1951 * make us robust against malformed messages sent by drivers; 1952 * this is in keeping with the rest of IP's dlpi handling. 1953 * (Remember, it's coming from something else in the kernel 1954 * address space) 1955 */ 1956 1957 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1958 if (capend > mp->b_wptr) { 1959 cmn_err(CE_WARN, "ill_capability_id_ack: " 1960 "malformed sub-capability too long for mblk"); 1961 return; 1962 } 1963 1964 id_ic = (dl_capab_id_t *)(outers + 1); 1965 1966 if (outers->dl_length < sizeof (*id_ic) || 1967 (inners = &id_ic->id_subcap, 1968 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1969 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1970 "encapsulated capab type %d too long for mblk", 1971 inners->dl_cap); 1972 return; 1973 } 1974 1975 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1976 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1977 "isn't as expected; pass-thru module(s) detected, " 1978 "discarding capability\n", inners->dl_cap)); 1979 return; 1980 } 1981 1982 /* Process the encapsulated sub-capability */ 1983 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1984 } 1985 1986 /* 1987 * Process Multidata Transmit capability negotiation ack received from a 1988 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1989 * DL_CAPABILITY_ACK message. 1990 */ 1991 static void 1992 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1993 { 1994 mblk_t *nmp = NULL; 1995 dl_capability_req_t *oc; 1996 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1997 ill_mdt_capab_t **ill_mdt_capab; 1998 uint_t sub_dl_cap = isub->dl_cap; 1999 uint8_t *capend; 2000 2001 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 2002 2003 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 2004 2005 /* 2006 * Note: range checks here are not absolutely sufficient to 2007 * make us robust against malformed messages sent by drivers; 2008 * this is in keeping with the rest of IP's dlpi handling. 2009 * (Remember, it's coming from something else in the kernel 2010 * address space) 2011 */ 2012 2013 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2014 if (capend > mp->b_wptr) { 2015 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2016 "malformed sub-capability too long for mblk"); 2017 return; 2018 } 2019 2020 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2021 2022 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2023 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2024 "unsupported MDT sub-capability (version %d, expected %d)", 2025 mdt_ic->mdt_version, MDT_VERSION_2); 2026 return; 2027 } 2028 2029 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2030 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2031 "capability isn't as expected; pass-thru module(s) " 2032 "detected, discarding capability\n")); 2033 return; 2034 } 2035 2036 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2037 2038 if (*ill_mdt_capab == NULL) { 2039 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2040 KM_NOSLEEP); 2041 2042 if (*ill_mdt_capab == NULL) { 2043 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2044 "could not enable MDT version %d " 2045 "for %s (ENOMEM)\n", MDT_VERSION_2, 2046 ill->ill_name); 2047 return; 2048 } 2049 } 2050 2051 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2052 "MDT version %d (%d bytes leading, %d bytes trailing " 2053 "header spaces, %d max pld bufs, %d span limit)\n", 2054 ill->ill_name, MDT_VERSION_2, 2055 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2056 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2057 2058 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2059 (*ill_mdt_capab)->ill_mdt_on = 1; 2060 /* 2061 * Round the following values to the nearest 32-bit; ULP 2062 * may further adjust them to accomodate for additional 2063 * protocol headers. We pass these values to ULP during 2064 * bind time. 2065 */ 2066 (*ill_mdt_capab)->ill_mdt_hdr_head = 2067 roundup(mdt_ic->mdt_hdr_head, 4); 2068 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2069 roundup(mdt_ic->mdt_hdr_tail, 4); 2070 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2071 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2072 2073 ill->ill_capabilities |= ILL_CAPAB_MDT; 2074 } else { 2075 uint_t size; 2076 uchar_t *rptr; 2077 2078 size = sizeof (dl_capability_req_t) + 2079 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2080 2081 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2082 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2083 "could not enable MDT for %s (ENOMEM)\n", 2084 ill->ill_name); 2085 return; 2086 } 2087 2088 rptr = nmp->b_rptr; 2089 /* initialize dl_capability_req_t */ 2090 oc = (dl_capability_req_t *)nmp->b_rptr; 2091 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2092 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2093 sizeof (dl_capab_mdt_t); 2094 nmp->b_rptr += sizeof (dl_capability_req_t); 2095 2096 /* initialize dl_capability_sub_t */ 2097 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2098 nmp->b_rptr += sizeof (*isub); 2099 2100 /* initialize dl_capab_mdt_t */ 2101 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2102 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2103 2104 nmp->b_rptr = rptr; 2105 2106 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2107 "to enable MDT version %d\n", ill->ill_name, 2108 MDT_VERSION_2)); 2109 2110 /* set ENABLE flag */ 2111 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2112 2113 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2114 ill_dlpi_send(ill, nmp); 2115 } 2116 } 2117 2118 static void 2119 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2120 { 2121 mblk_t *mp; 2122 dl_capab_mdt_t *mdt_subcap; 2123 dl_capability_sub_t *dl_subcap; 2124 int size; 2125 2126 if (!ILL_MDT_CAPABLE(ill)) 2127 return; 2128 2129 ASSERT(ill->ill_mdt_capab != NULL); 2130 /* 2131 * Clear the capability flag for MDT but retain the ill_mdt_capab 2132 * structure since it's possible that another thread is still 2133 * referring to it. The structure only gets deallocated when 2134 * we destroy the ill. 2135 */ 2136 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2137 2138 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2139 2140 mp = allocb(size, BPRI_HI); 2141 if (mp == NULL) { 2142 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2143 "request to disable MDT\n")); 2144 return; 2145 } 2146 2147 mp->b_wptr = mp->b_rptr + size; 2148 2149 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2150 dl_subcap->dl_cap = DL_CAPAB_MDT; 2151 dl_subcap->dl_length = sizeof (*mdt_subcap); 2152 2153 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2154 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2155 mdt_subcap->mdt_flags = 0; 2156 mdt_subcap->mdt_hdr_head = 0; 2157 mdt_subcap->mdt_hdr_tail = 0; 2158 2159 if (*sc_mp != NULL) 2160 linkb(*sc_mp, mp); 2161 else 2162 *sc_mp = mp; 2163 } 2164 2165 /* 2166 * Send a DL_NOTIFY_REQ to the specified ill to enable 2167 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2168 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2169 * acceleration. 2170 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2171 */ 2172 static boolean_t 2173 ill_enable_promisc_notify(ill_t *ill) 2174 { 2175 mblk_t *mp; 2176 dl_notify_req_t *req; 2177 2178 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2179 2180 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2181 if (mp == NULL) 2182 return (B_FALSE); 2183 2184 req = (dl_notify_req_t *)mp->b_rptr; 2185 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2186 DL_NOTE_PROMISC_OFF_PHYS; 2187 2188 ill_dlpi_send(ill, mp); 2189 2190 return (B_TRUE); 2191 } 2192 2193 2194 /* 2195 * Allocate an IPsec capability request which will be filled by our 2196 * caller to turn on support for one or more algorithms. 2197 */ 2198 static mblk_t * 2199 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2200 { 2201 mblk_t *nmp; 2202 dl_capability_req_t *ocap; 2203 dl_capab_ipsec_t *ocip; 2204 dl_capab_ipsec_t *icip; 2205 uint8_t *ptr; 2206 icip = (dl_capab_ipsec_t *)(isub + 1); 2207 2208 /* 2209 * The first time around, we send a DL_NOTIFY_REQ to enable 2210 * PROMISC_ON/OFF notification from the provider. We need to 2211 * do this before enabling the algorithms to avoid leakage of 2212 * cleartext packets. 2213 */ 2214 2215 if (!ill_enable_promisc_notify(ill)) 2216 return (NULL); 2217 2218 /* 2219 * Allocate new mblk which will contain a new capability 2220 * request to enable the capabilities. 2221 */ 2222 2223 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2224 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2225 if (nmp == NULL) 2226 return (NULL); 2227 2228 ptr = nmp->b_rptr; 2229 2230 /* initialize dl_capability_req_t */ 2231 ocap = (dl_capability_req_t *)ptr; 2232 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2233 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2234 ptr += sizeof (dl_capability_req_t); 2235 2236 /* initialize dl_capability_sub_t */ 2237 bcopy(isub, ptr, sizeof (*isub)); 2238 ptr += sizeof (*isub); 2239 2240 /* initialize dl_capab_ipsec_t */ 2241 ocip = (dl_capab_ipsec_t *)ptr; 2242 bcopy(icip, ocip, sizeof (*icip)); 2243 2244 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2245 return (nmp); 2246 } 2247 2248 /* 2249 * Process an IPsec capability negotiation ack received from a DLS Provider. 2250 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2251 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2252 */ 2253 static void 2254 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2255 { 2256 dl_capab_ipsec_t *icip; 2257 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2258 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2259 uint_t cipher, nciphers; 2260 mblk_t *nmp; 2261 uint_t alg_len; 2262 boolean_t need_sadb_dump; 2263 uint_t sub_dl_cap = isub->dl_cap; 2264 ill_ipsec_capab_t **ill_capab; 2265 uint64_t ill_capab_flag; 2266 uint8_t *capend, *ciphend; 2267 boolean_t sadb_resync; 2268 2269 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2270 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2271 2272 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2273 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2274 ill_capab_flag = ILL_CAPAB_AH; 2275 } else { 2276 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2277 ill_capab_flag = ILL_CAPAB_ESP; 2278 } 2279 2280 /* 2281 * If the ill capability structure exists, then this incoming 2282 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2283 * If this is so, then we'd need to resynchronize the SADB 2284 * after re-enabling the offloaded ciphers. 2285 */ 2286 sadb_resync = (*ill_capab != NULL); 2287 2288 /* 2289 * Note: range checks here are not absolutely sufficient to 2290 * make us robust against malformed messages sent by drivers; 2291 * this is in keeping with the rest of IP's dlpi handling. 2292 * (Remember, it's coming from something else in the kernel 2293 * address space) 2294 */ 2295 2296 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2297 if (capend > mp->b_wptr) { 2298 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2299 "malformed sub-capability too long for mblk"); 2300 return; 2301 } 2302 2303 /* 2304 * There are two types of acks we process here: 2305 * 1. acks in reply to a (first form) generic capability req 2306 * (no ENABLE flag set) 2307 * 2. acks in reply to a ENABLE capability req. 2308 * (ENABLE flag set) 2309 * 2310 * We process the subcapability passed as argument as follows: 2311 * 1 do initializations 2312 * 1.1 initialize nmp = NULL 2313 * 1.2 set need_sadb_dump to B_FALSE 2314 * 2 for each cipher in subcapability: 2315 * 2.1 if ENABLE flag is set: 2316 * 2.1.1 update per-ill ipsec capabilities info 2317 * 2.1.2 set need_sadb_dump to B_TRUE 2318 * 2.2 if ENABLE flag is not set: 2319 * 2.2.1 if nmp is NULL: 2320 * 2.2.1.1 allocate and initialize nmp 2321 * 2.2.1.2 init current pos in nmp 2322 * 2.2.2 copy current cipher to current pos in nmp 2323 * 2.2.3 set ENABLE flag in nmp 2324 * 2.2.4 update current pos 2325 * 3 if nmp is not equal to NULL, send enable request 2326 * 3.1 send capability request 2327 * 4 if need_sadb_dump is B_TRUE 2328 * 4.1 enable promiscuous on/off notifications 2329 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2330 * AH or ESP SA's to interface. 2331 */ 2332 2333 nmp = NULL; 2334 oalg = NULL; 2335 need_sadb_dump = B_FALSE; 2336 icip = (dl_capab_ipsec_t *)(isub + 1); 2337 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2338 2339 nciphers = icip->cip_nciphers; 2340 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2341 2342 if (ciphend > capend) { 2343 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2344 "too many ciphers for sub-capability len"); 2345 return; 2346 } 2347 2348 for (cipher = 0; cipher < nciphers; cipher++) { 2349 alg_len = sizeof (dl_capab_ipsec_alg_t); 2350 2351 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2352 /* 2353 * TBD: when we provide a way to disable capabilities 2354 * from above, need to manage the request-pending state 2355 * and fail if we were not expecting this ACK. 2356 */ 2357 IPSECHW_DEBUG(IPSECHW_CAPAB, 2358 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2359 2360 /* 2361 * Update IPsec capabilities for this ill 2362 */ 2363 2364 if (*ill_capab == NULL) { 2365 IPSECHW_DEBUG(IPSECHW_CAPAB, 2366 ("ill_capability_ipsec_ack: " 2367 "allocating ipsec_capab for ill\n")); 2368 *ill_capab = ill_ipsec_capab_alloc(); 2369 2370 if (*ill_capab == NULL) { 2371 cmn_err(CE_WARN, 2372 "ill_capability_ipsec_ack: " 2373 "could not enable IPsec Hardware " 2374 "acceleration for %s (ENOMEM)\n", 2375 ill->ill_name); 2376 return; 2377 } 2378 } 2379 2380 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2381 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2382 2383 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2384 cmn_err(CE_WARN, 2385 "ill_capability_ipsec_ack: " 2386 "malformed IPsec algorithm id %d", 2387 ialg->alg_prim); 2388 continue; 2389 } 2390 2391 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2392 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2393 ialg->alg_prim); 2394 } else { 2395 ipsec_capab_algparm_t *alp; 2396 2397 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2398 ialg->alg_prim); 2399 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2400 ialg->alg_prim)) { 2401 cmn_err(CE_WARN, 2402 "ill_capability_ipsec_ack: " 2403 "no space for IPsec alg id %d", 2404 ialg->alg_prim); 2405 continue; 2406 } 2407 alp = &((*ill_capab)->encr_algparm[ 2408 ialg->alg_prim]); 2409 alp->minkeylen = ialg->alg_minbits; 2410 alp->maxkeylen = ialg->alg_maxbits; 2411 } 2412 ill->ill_capabilities |= ill_capab_flag; 2413 /* 2414 * indicate that a capability was enabled, which 2415 * will be used below to kick off a SADB dump 2416 * to the ill. 2417 */ 2418 need_sadb_dump = B_TRUE; 2419 } else { 2420 IPSECHW_DEBUG(IPSECHW_CAPAB, 2421 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2422 ialg->alg_prim)); 2423 2424 if (nmp == NULL) { 2425 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2426 if (nmp == NULL) { 2427 /* 2428 * Sending the PROMISC_ON/OFF 2429 * notification request failed. 2430 * We cannot enable the algorithms 2431 * since the Provider will not 2432 * notify IP of promiscous mode 2433 * changes, which could lead 2434 * to leakage of packets. 2435 */ 2436 cmn_err(CE_WARN, 2437 "ill_capability_ipsec_ack: " 2438 "could not enable IPsec Hardware " 2439 "acceleration for %s (ENOMEM)\n", 2440 ill->ill_name); 2441 return; 2442 } 2443 /* ptr to current output alg specifier */ 2444 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2445 } 2446 2447 /* 2448 * Copy current alg specifier, set ENABLE 2449 * flag, and advance to next output alg. 2450 * For now we enable all IPsec capabilities. 2451 */ 2452 ASSERT(oalg != NULL); 2453 bcopy(ialg, oalg, alg_len); 2454 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2455 nmp->b_wptr += alg_len; 2456 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2457 } 2458 2459 /* move to next input algorithm specifier */ 2460 ialg = (dl_capab_ipsec_alg_t *) 2461 ((char *)ialg + alg_len); 2462 } 2463 2464 if (nmp != NULL) 2465 /* 2466 * nmp points to a DL_CAPABILITY_REQ message to enable 2467 * IPsec hardware acceleration. 2468 */ 2469 ill_dlpi_send(ill, nmp); 2470 2471 if (need_sadb_dump) 2472 /* 2473 * An acknowledgement corresponding to a request to 2474 * enable acceleration was received, notify SADB. 2475 */ 2476 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2477 } 2478 2479 /* 2480 * Given an mblk with enough space in it, create sub-capability entries for 2481 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2482 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2483 * in preparation for the reset the DL_CAPABILITY_REQ message. 2484 */ 2485 static void 2486 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2487 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2488 { 2489 dl_capab_ipsec_t *oipsec; 2490 dl_capab_ipsec_alg_t *oalg; 2491 dl_capability_sub_t *dl_subcap; 2492 int i, k; 2493 2494 ASSERT(nciphers > 0); 2495 ASSERT(ill_cap != NULL); 2496 ASSERT(mp != NULL); 2497 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2498 2499 /* dl_capability_sub_t for "stype" */ 2500 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2501 dl_subcap->dl_cap = stype; 2502 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2503 mp->b_wptr += sizeof (dl_capability_sub_t); 2504 2505 /* dl_capab_ipsec_t for "stype" */ 2506 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2507 oipsec->cip_version = 1; 2508 oipsec->cip_nciphers = nciphers; 2509 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2510 2511 /* create entries for "stype" AUTH ciphers */ 2512 for (i = 0; i < ill_cap->algs_size; i++) { 2513 for (k = 0; k < BITSPERBYTE; k++) { 2514 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2515 continue; 2516 2517 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2518 bzero((void *)oalg, sizeof (*oalg)); 2519 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2520 oalg->alg_prim = k + (BITSPERBYTE * i); 2521 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2522 } 2523 } 2524 /* create entries for "stype" ENCR ciphers */ 2525 for (i = 0; i < ill_cap->algs_size; i++) { 2526 for (k = 0; k < BITSPERBYTE; k++) { 2527 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2528 continue; 2529 2530 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2531 bzero((void *)oalg, sizeof (*oalg)); 2532 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2533 oalg->alg_prim = k + (BITSPERBYTE * i); 2534 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2535 } 2536 } 2537 } 2538 2539 /* 2540 * Macro to count number of 1s in a byte (8-bit word). The total count is 2541 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2542 * POPC instruction, but our macro is more flexible for an arbitrary length 2543 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2544 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2545 * stays that way, we can reduce the number of iterations required. 2546 */ 2547 #define COUNT_1S(val, sum) { \ 2548 uint8_t x = val & 0xff; \ 2549 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2550 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2551 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2552 } 2553 2554 /* ARGSUSED */ 2555 static void 2556 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2557 { 2558 mblk_t *mp; 2559 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2560 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2561 uint64_t ill_capabilities = ill->ill_capabilities; 2562 int ah_cnt = 0, esp_cnt = 0; 2563 int ah_len = 0, esp_len = 0; 2564 int i, size = 0; 2565 2566 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2567 return; 2568 2569 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2570 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2571 2572 /* Find out the number of ciphers for AH */ 2573 if (cap_ah != NULL) { 2574 for (i = 0; i < cap_ah->algs_size; i++) { 2575 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2576 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2577 } 2578 if (ah_cnt > 0) { 2579 size += sizeof (dl_capability_sub_t) + 2580 sizeof (dl_capab_ipsec_t); 2581 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2582 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2583 size += ah_len; 2584 } 2585 } 2586 2587 /* Find out the number of ciphers for ESP */ 2588 if (cap_esp != NULL) { 2589 for (i = 0; i < cap_esp->algs_size; i++) { 2590 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2591 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2592 } 2593 if (esp_cnt > 0) { 2594 size += sizeof (dl_capability_sub_t) + 2595 sizeof (dl_capab_ipsec_t); 2596 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2597 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2598 size += esp_len; 2599 } 2600 } 2601 2602 if (size == 0) { 2603 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2604 "there's nothing to reset\n")); 2605 return; 2606 } 2607 2608 mp = allocb(size, BPRI_HI); 2609 if (mp == NULL) { 2610 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2611 "request to disable IPSEC Hardware Acceleration\n")); 2612 return; 2613 } 2614 2615 /* 2616 * Clear the capability flags for IPSec HA but retain the ill 2617 * capability structures since it's possible that another thread 2618 * is still referring to them. The structures only get deallocated 2619 * when we destroy the ill. 2620 * 2621 * Various places check the flags to see if the ill is capable of 2622 * hardware acceleration, and by clearing them we ensure that new 2623 * outbound IPSec packets are sent down encrypted. 2624 */ 2625 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2626 2627 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2628 if (ah_cnt > 0) { 2629 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2630 cap_ah, mp); 2631 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2632 } 2633 2634 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2635 if (esp_cnt > 0) { 2636 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2637 cap_esp, mp); 2638 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2639 } 2640 2641 /* 2642 * At this point we've composed a bunch of sub-capabilities to be 2643 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2644 * by the caller. Upon receiving this reset message, the driver 2645 * must stop inbound decryption (by destroying all inbound SAs) 2646 * and let the corresponding packets come in encrypted. 2647 */ 2648 2649 if (*sc_mp != NULL) 2650 linkb(*sc_mp, mp); 2651 else 2652 *sc_mp = mp; 2653 } 2654 2655 static void 2656 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2657 boolean_t encapsulated) 2658 { 2659 boolean_t legacy = B_FALSE; 2660 2661 /* 2662 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2663 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2664 * instructed the driver to disable its advertised capabilities, 2665 * so there's no point in accepting any response at this moment. 2666 */ 2667 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2668 return; 2669 2670 /* 2671 * Note that only the following two sub-capabilities may be 2672 * considered as "legacy", since their original definitions 2673 * do not incorporate the dl_mid_t module ID token, and hence 2674 * may require the use of the wrapper sub-capability. 2675 */ 2676 switch (subp->dl_cap) { 2677 case DL_CAPAB_IPSEC_AH: 2678 case DL_CAPAB_IPSEC_ESP: 2679 legacy = B_TRUE; 2680 break; 2681 } 2682 2683 /* 2684 * For legacy sub-capabilities which don't incorporate a queue_t 2685 * pointer in their structures, discard them if we detect that 2686 * there are intermediate modules in between IP and the driver. 2687 */ 2688 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2689 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2690 "%d discarded; %d module(s) present below IP\n", 2691 subp->dl_cap, ill->ill_lmod_cnt)); 2692 return; 2693 } 2694 2695 switch (subp->dl_cap) { 2696 case DL_CAPAB_IPSEC_AH: 2697 case DL_CAPAB_IPSEC_ESP: 2698 ill_capability_ipsec_ack(ill, mp, subp); 2699 break; 2700 case DL_CAPAB_MDT: 2701 ill_capability_mdt_ack(ill, mp, subp); 2702 break; 2703 case DL_CAPAB_HCKSUM: 2704 ill_capability_hcksum_ack(ill, mp, subp); 2705 break; 2706 case DL_CAPAB_ZEROCOPY: 2707 ill_capability_zerocopy_ack(ill, mp, subp); 2708 break; 2709 case DL_CAPAB_POLL: 2710 if (!SOFT_RINGS_ENABLED()) 2711 ill_capability_dls_ack(ill, mp, subp); 2712 break; 2713 case DL_CAPAB_SOFT_RING: 2714 if (SOFT_RINGS_ENABLED()) 2715 ill_capability_dls_ack(ill, mp, subp); 2716 break; 2717 case DL_CAPAB_LSO: 2718 ill_capability_lso_ack(ill, mp, subp); 2719 break; 2720 default: 2721 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2722 subp->dl_cap)); 2723 } 2724 } 2725 2726 /* 2727 * As part of negotiating polling capability, the driver tells us 2728 * the default (or normal) blanking interval and packet threshold 2729 * (the receive timer fires if blanking interval is reached or 2730 * the packet threshold is reached). 2731 * 2732 * As part of manipulating the polling interval, we always use our 2733 * estimated interval (avg service time * number of packets queued 2734 * on the squeue) but we try to blank for a minimum of 2735 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2736 * packet threshold during this time. When we are not in polling mode 2737 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2738 * rr_min_blank_ratio but up the packet cnt by a ratio of 2739 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2740 * possible although for a shorter interval. 2741 */ 2742 #define RR_MAX_BLANK_RATIO 20 2743 #define RR_MIN_BLANK_RATIO 10 2744 #define RR_MAX_PKT_CNT_RATIO 3 2745 #define RR_MIN_PKT_CNT_RATIO 3 2746 2747 /* 2748 * These can be tuned via /etc/system. 2749 */ 2750 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2751 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2752 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2753 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2754 2755 static mac_resource_handle_t 2756 ill_ring_add(void *arg, mac_resource_t *mrp) 2757 { 2758 ill_t *ill = (ill_t *)arg; 2759 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2760 ill_rx_ring_t *rx_ring; 2761 int ip_rx_index; 2762 2763 ASSERT(mrp != NULL); 2764 if (mrp->mr_type != MAC_RX_FIFO) { 2765 return (NULL); 2766 } 2767 ASSERT(ill != NULL); 2768 ASSERT(ill->ill_dls_capab != NULL); 2769 2770 mutex_enter(&ill->ill_lock); 2771 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2772 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2773 ASSERT(rx_ring != NULL); 2774 2775 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2776 time_t normal_blank_time = 2777 mrfp->mrf_normal_blank_time; 2778 uint_t normal_pkt_cnt = 2779 mrfp->mrf_normal_pkt_count; 2780 2781 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2782 2783 rx_ring->rr_blank = mrfp->mrf_blank; 2784 rx_ring->rr_handle = mrfp->mrf_arg; 2785 rx_ring->rr_ill = ill; 2786 rx_ring->rr_normal_blank_time = normal_blank_time; 2787 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2788 2789 rx_ring->rr_max_blank_time = 2790 normal_blank_time * rr_max_blank_ratio; 2791 rx_ring->rr_min_blank_time = 2792 normal_blank_time * rr_min_blank_ratio; 2793 rx_ring->rr_max_pkt_cnt = 2794 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2795 rx_ring->rr_min_pkt_cnt = 2796 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2797 2798 rx_ring->rr_ring_state = ILL_RING_INUSE; 2799 mutex_exit(&ill->ill_lock); 2800 2801 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2802 (int), ip_rx_index); 2803 return ((mac_resource_handle_t)rx_ring); 2804 } 2805 } 2806 2807 /* 2808 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2809 * we have devices which can overwhelm this limit, ILL_MAX_RING 2810 * should be made configurable. Meanwhile it cause no panic because 2811 * driver will pass ip_input a NULL handle which will make 2812 * IP allocate the default squeue and Polling mode will not 2813 * be used for this ring. 2814 */ 2815 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2816 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2817 2818 mutex_exit(&ill->ill_lock); 2819 return (NULL); 2820 } 2821 2822 static boolean_t 2823 ill_capability_dls_init(ill_t *ill) 2824 { 2825 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2826 conn_t *connp; 2827 size_t sz; 2828 2829 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2830 if (ill_dls == NULL) { 2831 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2832 "soft_ring enabled for ill=%s (%p) but data " 2833 "structs uninitialized\n", ill->ill_name, 2834 (void *)ill); 2835 } 2836 return (B_TRUE); 2837 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2838 if (ill_dls == NULL) { 2839 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2840 "polling enabled for ill=%s (%p) but data " 2841 "structs uninitialized\n", ill->ill_name, 2842 (void *)ill); 2843 } 2844 return (B_TRUE); 2845 } 2846 2847 if (ill_dls != NULL) { 2848 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2849 /* Soft_Ring or polling is being re-enabled */ 2850 2851 connp = ill_dls->ill_unbind_conn; 2852 ASSERT(rx_ring != NULL); 2853 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2854 bzero((void *)rx_ring, 2855 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2856 ill_dls->ill_ring_tbl = rx_ring; 2857 ill_dls->ill_unbind_conn = connp; 2858 return (B_TRUE); 2859 } 2860 2861 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2862 return (B_FALSE); 2863 2864 sz = sizeof (ill_dls_capab_t); 2865 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2866 2867 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2868 if (ill_dls == NULL) { 2869 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2870 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2871 (void *)ill); 2872 CONN_DEC_REF(connp); 2873 return (B_FALSE); 2874 } 2875 2876 /* Allocate space to hold ring table */ 2877 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2878 ill->ill_dls_capab = ill_dls; 2879 ill_dls->ill_unbind_conn = connp; 2880 return (B_TRUE); 2881 } 2882 2883 /* 2884 * ill_capability_dls_disable: disable soft_ring and/or polling 2885 * capability. Since any of the rings might already be in use, need 2886 * to call ipsq_clean_all() which gets behind the squeue to disable 2887 * direct calls if necessary. 2888 */ 2889 static void 2890 ill_capability_dls_disable(ill_t *ill) 2891 { 2892 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2893 2894 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2895 ipsq_clean_all(ill); 2896 ill_dls->ill_tx = NULL; 2897 ill_dls->ill_tx_handle = NULL; 2898 ill_dls->ill_dls_change_status = NULL; 2899 ill_dls->ill_dls_bind = NULL; 2900 ill_dls->ill_dls_unbind = NULL; 2901 } 2902 2903 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2904 } 2905 2906 static void 2907 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2908 dl_capability_sub_t *isub) 2909 { 2910 uint_t size; 2911 uchar_t *rptr; 2912 dl_capab_dls_t dls, *odls; 2913 ill_dls_capab_t *ill_dls; 2914 mblk_t *nmp = NULL; 2915 dl_capability_req_t *ocap; 2916 uint_t sub_dl_cap = isub->dl_cap; 2917 2918 if (!ill_capability_dls_init(ill)) 2919 return; 2920 ill_dls = ill->ill_dls_capab; 2921 2922 /* Copy locally to get the members aligned */ 2923 bcopy((void *)idls, (void *)&dls, 2924 sizeof (dl_capab_dls_t)); 2925 2926 /* Get the tx function and handle from dld */ 2927 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2928 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2929 2930 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2931 ill_dls->ill_dls_change_status = 2932 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2933 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2934 ill_dls->ill_dls_unbind = 2935 (ip_dls_unbind_t)dls.dls_ring_unbind; 2936 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2937 } 2938 2939 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2940 isub->dl_length; 2941 2942 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2943 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2944 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2945 ill->ill_name, (void *)ill); 2946 return; 2947 } 2948 2949 /* initialize dl_capability_req_t */ 2950 rptr = nmp->b_rptr; 2951 ocap = (dl_capability_req_t *)rptr; 2952 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2953 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2954 rptr += sizeof (dl_capability_req_t); 2955 2956 /* initialize dl_capability_sub_t */ 2957 bcopy(isub, rptr, sizeof (*isub)); 2958 rptr += sizeof (*isub); 2959 2960 odls = (dl_capab_dls_t *)rptr; 2961 rptr += sizeof (dl_capab_dls_t); 2962 2963 /* initialize dl_capab_dls_t to be sent down */ 2964 dls.dls_rx_handle = (uintptr_t)ill; 2965 dls.dls_rx = (uintptr_t)ip_input; 2966 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2967 2968 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2969 dls.dls_ring_cnt = ip_soft_rings_cnt; 2970 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2971 dls.dls_flags = SOFT_RING_ENABLE; 2972 } else { 2973 dls.dls_flags = POLL_ENABLE; 2974 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2975 "to enable polling\n", ill->ill_name)); 2976 } 2977 bcopy((void *)&dls, (void *)odls, 2978 sizeof (dl_capab_dls_t)); 2979 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2980 /* 2981 * nmp points to a DL_CAPABILITY_REQ message to 2982 * enable either soft_ring or polling 2983 */ 2984 ill_dlpi_send(ill, nmp); 2985 } 2986 2987 static void 2988 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2989 { 2990 mblk_t *mp; 2991 dl_capab_dls_t *idls; 2992 dl_capability_sub_t *dl_subcap; 2993 int size; 2994 2995 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2996 return; 2997 2998 ASSERT(ill->ill_dls_capab != NULL); 2999 3000 size = sizeof (*dl_subcap) + sizeof (*idls); 3001 3002 mp = allocb(size, BPRI_HI); 3003 if (mp == NULL) { 3004 ip1dbg(("ill_capability_dls_reset: unable to allocate " 3005 "request to disable soft_ring\n")); 3006 return; 3007 } 3008 3009 mp->b_wptr = mp->b_rptr + size; 3010 3011 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3012 dl_subcap->dl_length = sizeof (*idls); 3013 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3014 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3015 else 3016 dl_subcap->dl_cap = DL_CAPAB_POLL; 3017 3018 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3019 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3020 idls->dls_flags = SOFT_RING_DISABLE; 3021 else 3022 idls->dls_flags = POLL_DISABLE; 3023 3024 if (*sc_mp != NULL) 3025 linkb(*sc_mp, mp); 3026 else 3027 *sc_mp = mp; 3028 } 3029 3030 /* 3031 * Process a soft_ring/poll capability negotiation ack received 3032 * from a DLS Provider.isub must point to the sub-capability 3033 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3034 */ 3035 static void 3036 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3037 { 3038 dl_capab_dls_t *idls; 3039 uint_t sub_dl_cap = isub->dl_cap; 3040 uint8_t *capend; 3041 3042 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3043 sub_dl_cap == DL_CAPAB_POLL); 3044 3045 if (ill->ill_isv6) 3046 return; 3047 3048 /* 3049 * Note: range checks here are not absolutely sufficient to 3050 * make us robust against malformed messages sent by drivers; 3051 * this is in keeping with the rest of IP's dlpi handling. 3052 * (Remember, it's coming from something else in the kernel 3053 * address space) 3054 */ 3055 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3056 if (capend > mp->b_wptr) { 3057 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3058 "malformed sub-capability too long for mblk"); 3059 return; 3060 } 3061 3062 /* 3063 * There are two types of acks we process here: 3064 * 1. acks in reply to a (first form) generic capability req 3065 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3066 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3067 * capability req. 3068 */ 3069 idls = (dl_capab_dls_t *)(isub + 1); 3070 3071 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3072 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3073 "capability isn't as expected; pass-thru " 3074 "module(s) detected, discarding capability\n")); 3075 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3076 /* 3077 * This is a capability renegotitation case. 3078 * The interface better be unusable at this 3079 * point other wise bad things will happen 3080 * if we disable direct calls on a running 3081 * and up interface. 3082 */ 3083 ill_capability_dls_disable(ill); 3084 } 3085 return; 3086 } 3087 3088 switch (idls->dls_flags) { 3089 default: 3090 /* Disable if unknown flag */ 3091 case SOFT_RING_DISABLE: 3092 case POLL_DISABLE: 3093 ill_capability_dls_disable(ill); 3094 break; 3095 case SOFT_RING_CAPABLE: 3096 case POLL_CAPABLE: 3097 /* 3098 * If the capability was already enabled, its safe 3099 * to disable it first to get rid of stale information 3100 * and then start enabling it again. 3101 */ 3102 ill_capability_dls_disable(ill); 3103 ill_capability_dls_capable(ill, idls, isub); 3104 break; 3105 case SOFT_RING_ENABLE: 3106 case POLL_ENABLE: 3107 mutex_enter(&ill->ill_lock); 3108 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3109 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3110 ASSERT(ill->ill_dls_capab != NULL); 3111 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3112 } 3113 if (sub_dl_cap == DL_CAPAB_POLL && 3114 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3115 ASSERT(ill->ill_dls_capab != NULL); 3116 ill->ill_capabilities |= ILL_CAPAB_POLL; 3117 ip1dbg(("ill_capability_dls_ack: interface %s " 3118 "has enabled polling\n", ill->ill_name)); 3119 } 3120 mutex_exit(&ill->ill_lock); 3121 break; 3122 } 3123 } 3124 3125 /* 3126 * Process a hardware checksum offload capability negotiation ack received 3127 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3128 * of a DL_CAPABILITY_ACK message. 3129 */ 3130 static void 3131 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3132 { 3133 dl_capability_req_t *ocap; 3134 dl_capab_hcksum_t *ihck, *ohck; 3135 ill_hcksum_capab_t **ill_hcksum; 3136 mblk_t *nmp = NULL; 3137 uint_t sub_dl_cap = isub->dl_cap; 3138 uint8_t *capend; 3139 3140 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3141 3142 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3143 3144 /* 3145 * Note: range checks here are not absolutely sufficient to 3146 * make us robust against malformed messages sent by drivers; 3147 * this is in keeping with the rest of IP's dlpi handling. 3148 * (Remember, it's coming from something else in the kernel 3149 * address space) 3150 */ 3151 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3152 if (capend > mp->b_wptr) { 3153 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3154 "malformed sub-capability too long for mblk"); 3155 return; 3156 } 3157 3158 /* 3159 * There are two types of acks we process here: 3160 * 1. acks in reply to a (first form) generic capability req 3161 * (no ENABLE flag set) 3162 * 2. acks in reply to a ENABLE capability req. 3163 * (ENABLE flag set) 3164 */ 3165 ihck = (dl_capab_hcksum_t *)(isub + 1); 3166 3167 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3168 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3169 "unsupported hardware checksum " 3170 "sub-capability (version %d, expected %d)", 3171 ihck->hcksum_version, HCKSUM_VERSION_1); 3172 return; 3173 } 3174 3175 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3176 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3177 "checksum capability isn't as expected; pass-thru " 3178 "module(s) detected, discarding capability\n")); 3179 return; 3180 } 3181 3182 #define CURR_HCKSUM_CAPAB \ 3183 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3184 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3185 3186 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3187 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3188 /* do ENABLE processing */ 3189 if (*ill_hcksum == NULL) { 3190 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3191 KM_NOSLEEP); 3192 3193 if (*ill_hcksum == NULL) { 3194 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3195 "could not enable hcksum version %d " 3196 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3197 ill->ill_name); 3198 return; 3199 } 3200 } 3201 3202 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3203 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3204 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3205 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3206 "has enabled hardware checksumming\n ", 3207 ill->ill_name)); 3208 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3209 /* 3210 * Enabling hardware checksum offload 3211 * Currently IP supports {TCP,UDP}/IPv4 3212 * partial and full cksum offload and 3213 * IPv4 header checksum offload. 3214 * Allocate new mblk which will 3215 * contain a new capability request 3216 * to enable hardware checksum offload. 3217 */ 3218 uint_t size; 3219 uchar_t *rptr; 3220 3221 size = sizeof (dl_capability_req_t) + 3222 sizeof (dl_capability_sub_t) + isub->dl_length; 3223 3224 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3225 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3226 "could not enable hardware cksum for %s (ENOMEM)\n", 3227 ill->ill_name); 3228 return; 3229 } 3230 3231 rptr = nmp->b_rptr; 3232 /* initialize dl_capability_req_t */ 3233 ocap = (dl_capability_req_t *)nmp->b_rptr; 3234 ocap->dl_sub_offset = 3235 sizeof (dl_capability_req_t); 3236 ocap->dl_sub_length = 3237 sizeof (dl_capability_sub_t) + 3238 isub->dl_length; 3239 nmp->b_rptr += sizeof (dl_capability_req_t); 3240 3241 /* initialize dl_capability_sub_t */ 3242 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3243 nmp->b_rptr += sizeof (*isub); 3244 3245 /* initialize dl_capab_hcksum_t */ 3246 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3247 bcopy(ihck, ohck, sizeof (*ihck)); 3248 3249 nmp->b_rptr = rptr; 3250 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3251 3252 /* Set ENABLE flag */ 3253 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3254 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3255 3256 /* 3257 * nmp points to a DL_CAPABILITY_REQ message to enable 3258 * hardware checksum acceleration. 3259 */ 3260 ill_dlpi_send(ill, nmp); 3261 } else { 3262 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3263 "advertised %x hardware checksum capability flags\n", 3264 ill->ill_name, ihck->hcksum_txflags)); 3265 } 3266 } 3267 3268 static void 3269 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3270 { 3271 mblk_t *mp; 3272 dl_capab_hcksum_t *hck_subcap; 3273 dl_capability_sub_t *dl_subcap; 3274 int size; 3275 3276 if (!ILL_HCKSUM_CAPABLE(ill)) 3277 return; 3278 3279 ASSERT(ill->ill_hcksum_capab != NULL); 3280 /* 3281 * Clear the capability flag for hardware checksum offload but 3282 * retain the ill_hcksum_capab structure since it's possible that 3283 * another thread is still referring to it. The structure only 3284 * gets deallocated when we destroy the ill. 3285 */ 3286 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3287 3288 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3289 3290 mp = allocb(size, BPRI_HI); 3291 if (mp == NULL) { 3292 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3293 "request to disable hardware checksum offload\n")); 3294 return; 3295 } 3296 3297 mp->b_wptr = mp->b_rptr + size; 3298 3299 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3300 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3301 dl_subcap->dl_length = sizeof (*hck_subcap); 3302 3303 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3304 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3305 hck_subcap->hcksum_txflags = 0; 3306 3307 if (*sc_mp != NULL) 3308 linkb(*sc_mp, mp); 3309 else 3310 *sc_mp = mp; 3311 } 3312 3313 static void 3314 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3315 { 3316 mblk_t *nmp = NULL; 3317 dl_capability_req_t *oc; 3318 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3319 ill_zerocopy_capab_t **ill_zerocopy_capab; 3320 uint_t sub_dl_cap = isub->dl_cap; 3321 uint8_t *capend; 3322 3323 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3324 3325 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3326 3327 /* 3328 * Note: range checks here are not absolutely sufficient to 3329 * make us robust against malformed messages sent by drivers; 3330 * this is in keeping with the rest of IP's dlpi handling. 3331 * (Remember, it's coming from something else in the kernel 3332 * address space) 3333 */ 3334 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3335 if (capend > mp->b_wptr) { 3336 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3337 "malformed sub-capability too long for mblk"); 3338 return; 3339 } 3340 3341 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3342 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3343 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3344 "unsupported ZEROCOPY sub-capability (version %d, " 3345 "expected %d)", zc_ic->zerocopy_version, 3346 ZEROCOPY_VERSION_1); 3347 return; 3348 } 3349 3350 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3351 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3352 "capability isn't as expected; pass-thru module(s) " 3353 "detected, discarding capability\n")); 3354 return; 3355 } 3356 3357 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3358 if (*ill_zerocopy_capab == NULL) { 3359 *ill_zerocopy_capab = 3360 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3361 KM_NOSLEEP); 3362 3363 if (*ill_zerocopy_capab == NULL) { 3364 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3365 "could not enable Zero-copy version %d " 3366 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3367 ill->ill_name); 3368 return; 3369 } 3370 } 3371 3372 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3373 "supports Zero-copy version %d\n", ill->ill_name, 3374 ZEROCOPY_VERSION_1)); 3375 3376 (*ill_zerocopy_capab)->ill_zerocopy_version = 3377 zc_ic->zerocopy_version; 3378 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3379 zc_ic->zerocopy_flags; 3380 3381 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3382 } else { 3383 uint_t size; 3384 uchar_t *rptr; 3385 3386 size = sizeof (dl_capability_req_t) + 3387 sizeof (dl_capability_sub_t) + 3388 sizeof (dl_capab_zerocopy_t); 3389 3390 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3391 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3392 "could not enable zerocopy for %s (ENOMEM)\n", 3393 ill->ill_name); 3394 return; 3395 } 3396 3397 rptr = nmp->b_rptr; 3398 /* initialize dl_capability_req_t */ 3399 oc = (dl_capability_req_t *)rptr; 3400 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3401 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3402 sizeof (dl_capab_zerocopy_t); 3403 rptr += sizeof (dl_capability_req_t); 3404 3405 /* initialize dl_capability_sub_t */ 3406 bcopy(isub, rptr, sizeof (*isub)); 3407 rptr += sizeof (*isub); 3408 3409 /* initialize dl_capab_zerocopy_t */ 3410 zc_oc = (dl_capab_zerocopy_t *)rptr; 3411 *zc_oc = *zc_ic; 3412 3413 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3414 "to enable zero-copy version %d\n", ill->ill_name, 3415 ZEROCOPY_VERSION_1)); 3416 3417 /* set VMSAFE_MEM flag */ 3418 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3419 3420 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3421 ill_dlpi_send(ill, nmp); 3422 } 3423 } 3424 3425 static void 3426 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3427 { 3428 mblk_t *mp; 3429 dl_capab_zerocopy_t *zerocopy_subcap; 3430 dl_capability_sub_t *dl_subcap; 3431 int size; 3432 3433 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3434 return; 3435 3436 ASSERT(ill->ill_zerocopy_capab != NULL); 3437 /* 3438 * Clear the capability flag for Zero-copy but retain the 3439 * ill_zerocopy_capab structure since it's possible that another 3440 * thread is still referring to it. The structure only gets 3441 * deallocated when we destroy the ill. 3442 */ 3443 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3444 3445 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3446 3447 mp = allocb(size, BPRI_HI); 3448 if (mp == NULL) { 3449 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3450 "request to disable Zero-copy\n")); 3451 return; 3452 } 3453 3454 mp->b_wptr = mp->b_rptr + size; 3455 3456 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3457 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3458 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3459 3460 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3461 zerocopy_subcap->zerocopy_version = 3462 ill->ill_zerocopy_capab->ill_zerocopy_version; 3463 zerocopy_subcap->zerocopy_flags = 0; 3464 3465 if (*sc_mp != NULL) 3466 linkb(*sc_mp, mp); 3467 else 3468 *sc_mp = mp; 3469 } 3470 3471 /* 3472 * Process Large Segment Offload capability negotiation ack received from a 3473 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3474 * DL_CAPABILITY_ACK message. 3475 */ 3476 static void 3477 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3478 { 3479 mblk_t *nmp = NULL; 3480 dl_capability_req_t *oc; 3481 dl_capab_lso_t *lso_ic, *lso_oc; 3482 ill_lso_capab_t **ill_lso_capab; 3483 uint_t sub_dl_cap = isub->dl_cap; 3484 uint8_t *capend; 3485 3486 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3487 3488 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3489 3490 /* 3491 * Note: range checks here are not absolutely sufficient to 3492 * make us robust against malformed messages sent by drivers; 3493 * this is in keeping with the rest of IP's dlpi handling. 3494 * (Remember, it's coming from something else in the kernel 3495 * address space) 3496 */ 3497 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3498 if (capend > mp->b_wptr) { 3499 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3500 "malformed sub-capability too long for mblk"); 3501 return; 3502 } 3503 3504 lso_ic = (dl_capab_lso_t *)(isub + 1); 3505 3506 if (lso_ic->lso_version != LSO_VERSION_1) { 3507 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3508 "unsupported LSO sub-capability (version %d, expected %d)", 3509 lso_ic->lso_version, LSO_VERSION_1); 3510 return; 3511 } 3512 3513 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3514 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3515 "capability isn't as expected; pass-thru module(s) " 3516 "detected, discarding capability\n")); 3517 return; 3518 } 3519 3520 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3521 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3522 if (*ill_lso_capab == NULL) { 3523 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3524 KM_NOSLEEP); 3525 3526 if (*ill_lso_capab == NULL) { 3527 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3528 "could not enable LSO version %d " 3529 "for %s (ENOMEM)\n", LSO_VERSION_1, 3530 ill->ill_name); 3531 return; 3532 } 3533 } 3534 3535 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3536 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3537 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3538 ill->ill_capabilities |= ILL_CAPAB_LSO; 3539 3540 ip1dbg(("ill_capability_lso_ack: interface %s " 3541 "has enabled LSO\n ", ill->ill_name)); 3542 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3543 uint_t size; 3544 uchar_t *rptr; 3545 3546 size = sizeof (dl_capability_req_t) + 3547 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3548 3549 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3550 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3551 "could not enable LSO for %s (ENOMEM)\n", 3552 ill->ill_name); 3553 return; 3554 } 3555 3556 rptr = nmp->b_rptr; 3557 /* initialize dl_capability_req_t */ 3558 oc = (dl_capability_req_t *)nmp->b_rptr; 3559 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3560 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3561 sizeof (dl_capab_lso_t); 3562 nmp->b_rptr += sizeof (dl_capability_req_t); 3563 3564 /* initialize dl_capability_sub_t */ 3565 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3566 nmp->b_rptr += sizeof (*isub); 3567 3568 /* initialize dl_capab_lso_t */ 3569 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3570 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3571 3572 nmp->b_rptr = rptr; 3573 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3574 3575 /* set ENABLE flag */ 3576 lso_oc->lso_flags |= LSO_TX_ENABLE; 3577 3578 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3579 ill_dlpi_send(ill, nmp); 3580 } else { 3581 ip1dbg(("ill_capability_lso_ack: interface %s has " 3582 "advertised %x LSO capability flags\n", 3583 ill->ill_name, lso_ic->lso_flags)); 3584 } 3585 } 3586 3587 3588 static void 3589 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3590 { 3591 mblk_t *mp; 3592 dl_capab_lso_t *lso_subcap; 3593 dl_capability_sub_t *dl_subcap; 3594 int size; 3595 3596 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3597 return; 3598 3599 ASSERT(ill->ill_lso_capab != NULL); 3600 /* 3601 * Clear the capability flag for LSO but retain the 3602 * ill_lso_capab structure since it's possible that another 3603 * thread is still referring to it. The structure only gets 3604 * deallocated when we destroy the ill. 3605 */ 3606 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3607 3608 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3609 3610 mp = allocb(size, BPRI_HI); 3611 if (mp == NULL) { 3612 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3613 "request to disable LSO\n")); 3614 return; 3615 } 3616 3617 mp->b_wptr = mp->b_rptr + size; 3618 3619 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3620 dl_subcap->dl_cap = DL_CAPAB_LSO; 3621 dl_subcap->dl_length = sizeof (*lso_subcap); 3622 3623 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3624 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3625 lso_subcap->lso_flags = 0; 3626 3627 if (*sc_mp != NULL) 3628 linkb(*sc_mp, mp); 3629 else 3630 *sc_mp = mp; 3631 } 3632 3633 /* 3634 * Consume a new-style hardware capabilities negotiation ack. 3635 * Called from ip_rput_dlpi_writer(). 3636 */ 3637 void 3638 ill_capability_ack(ill_t *ill, mblk_t *mp) 3639 { 3640 dl_capability_ack_t *capp; 3641 dl_capability_sub_t *subp, *endp; 3642 3643 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3644 ill->ill_dlpi_capab_state = IDS_OK; 3645 3646 capp = (dl_capability_ack_t *)mp->b_rptr; 3647 3648 if (capp->dl_sub_length == 0) 3649 /* no new-style capabilities */ 3650 return; 3651 3652 /* make sure the driver supplied correct dl_sub_length */ 3653 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3654 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3655 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3656 return; 3657 } 3658 3659 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3660 /* 3661 * There are sub-capabilities. Process the ones we know about. 3662 * Loop until we don't have room for another sub-cap header.. 3663 */ 3664 for (subp = SC(capp, capp->dl_sub_offset), 3665 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3666 subp <= endp; 3667 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3668 3669 switch (subp->dl_cap) { 3670 case DL_CAPAB_ID_WRAPPER: 3671 ill_capability_id_ack(ill, mp, subp); 3672 break; 3673 default: 3674 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3675 break; 3676 } 3677 } 3678 #undef SC 3679 } 3680 3681 /* 3682 * This routine is called to scan the fragmentation reassembly table for 3683 * the specified ILL for any packets that are starting to smell. 3684 * dead_interval is the maximum time in seconds that will be tolerated. It 3685 * will either be the value specified in ip_g_frag_timeout, or zero if the 3686 * ILL is shutting down and it is time to blow everything off. 3687 * 3688 * It returns the number of seconds (as a time_t) that the next frag timer 3689 * should be scheduled for, 0 meaning that the timer doesn't need to be 3690 * re-started. Note that the method of calculating next_timeout isn't 3691 * entirely accurate since time will flow between the time we grab 3692 * current_time and the time we schedule the next timeout. This isn't a 3693 * big problem since this is the timer for sending an ICMP reassembly time 3694 * exceeded messages, and it doesn't have to be exactly accurate. 3695 * 3696 * This function is 3697 * sometimes called as writer, although this is not required. 3698 */ 3699 time_t 3700 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3701 { 3702 ipfb_t *ipfb; 3703 ipfb_t *endp; 3704 ipf_t *ipf; 3705 ipf_t *ipfnext; 3706 mblk_t *mp; 3707 time_t current_time = gethrestime_sec(); 3708 time_t next_timeout = 0; 3709 uint32_t hdr_length; 3710 mblk_t *send_icmp_head; 3711 mblk_t *send_icmp_head_v6; 3712 zoneid_t zoneid; 3713 3714 ipfb = ill->ill_frag_hash_tbl; 3715 if (ipfb == NULL) 3716 return (B_FALSE); 3717 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3718 /* Walk the frag hash table. */ 3719 for (; ipfb < endp; ipfb++) { 3720 send_icmp_head = NULL; 3721 send_icmp_head_v6 = NULL; 3722 mutex_enter(&ipfb->ipfb_lock); 3723 while ((ipf = ipfb->ipfb_ipf) != 0) { 3724 time_t frag_time = current_time - ipf->ipf_timestamp; 3725 time_t frag_timeout; 3726 3727 if (frag_time < dead_interval) { 3728 /* 3729 * There are some outstanding fragments 3730 * that will timeout later. Make note of 3731 * the time so that we can reschedule the 3732 * next timeout appropriately. 3733 */ 3734 frag_timeout = dead_interval - frag_time; 3735 if (next_timeout == 0 || 3736 frag_timeout < next_timeout) { 3737 next_timeout = frag_timeout; 3738 } 3739 break; 3740 } 3741 /* Time's up. Get it out of here. */ 3742 hdr_length = ipf->ipf_nf_hdr_len; 3743 ipfnext = ipf->ipf_hash_next; 3744 if (ipfnext) 3745 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3746 *ipf->ipf_ptphn = ipfnext; 3747 mp = ipf->ipf_mp->b_cont; 3748 for (; mp; mp = mp->b_cont) { 3749 /* Extra points for neatness. */ 3750 IP_REASS_SET_START(mp, 0); 3751 IP_REASS_SET_END(mp, 0); 3752 } 3753 mp = ipf->ipf_mp->b_cont; 3754 ill->ill_frag_count -= ipf->ipf_count; 3755 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3756 ipfb->ipfb_count -= ipf->ipf_count; 3757 ASSERT(ipfb->ipfb_frag_pkts > 0); 3758 ipfb->ipfb_frag_pkts--; 3759 /* 3760 * We do not send any icmp message from here because 3761 * we currently are holding the ipfb_lock for this 3762 * hash chain. If we try and send any icmp messages 3763 * from here we may end up via a put back into ip 3764 * trying to get the same lock, causing a recursive 3765 * mutex panic. Instead we build a list and send all 3766 * the icmp messages after we have dropped the lock. 3767 */ 3768 if (ill->ill_isv6) { 3769 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3770 if (hdr_length != 0) { 3771 mp->b_next = send_icmp_head_v6; 3772 send_icmp_head_v6 = mp; 3773 } else { 3774 freemsg(mp); 3775 } 3776 } else { 3777 BUMP_MIB(&ip_mib, ipReasmFails); 3778 if (hdr_length != 0) { 3779 mp->b_next = send_icmp_head; 3780 send_icmp_head = mp; 3781 } else { 3782 freemsg(mp); 3783 } 3784 } 3785 freeb(ipf->ipf_mp); 3786 } 3787 mutex_exit(&ipfb->ipfb_lock); 3788 /* 3789 * Now need to send any icmp messages that we delayed from 3790 * above. 3791 */ 3792 while (send_icmp_head_v6 != NULL) { 3793 ip6_t *ip6h; 3794 3795 mp = send_icmp_head_v6; 3796 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3797 mp->b_next = NULL; 3798 if (mp->b_datap->db_type == M_CTL) 3799 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3800 else 3801 ip6h = (ip6_t *)mp->b_rptr; 3802 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3803 ill); 3804 if (zoneid == ALL_ZONES) { 3805 freemsg(mp); 3806 } else { 3807 icmp_time_exceeded_v6(ill->ill_wq, mp, 3808 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3809 B_FALSE, zoneid); 3810 } 3811 } 3812 while (send_icmp_head != NULL) { 3813 ipaddr_t dst; 3814 3815 mp = send_icmp_head; 3816 send_icmp_head = send_icmp_head->b_next; 3817 mp->b_next = NULL; 3818 3819 if (mp->b_datap->db_type == M_CTL) 3820 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3821 else 3822 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3823 3824 zoneid = ipif_lookup_addr_zoneid(dst, ill); 3825 if (zoneid == ALL_ZONES) { 3826 freemsg(mp); 3827 } else { 3828 icmp_time_exceeded(ill->ill_wq, mp, 3829 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid); 3830 } 3831 } 3832 } 3833 /* 3834 * A non-dying ILL will use the return value to decide whether to 3835 * restart the frag timer, and for how long. 3836 */ 3837 return (next_timeout); 3838 } 3839 3840 /* 3841 * This routine is called when the approximate count of mblk memory used 3842 * for the specified ILL has exceeded max_count. 3843 */ 3844 void 3845 ill_frag_prune(ill_t *ill, uint_t max_count) 3846 { 3847 ipfb_t *ipfb; 3848 ipf_t *ipf; 3849 size_t count; 3850 3851 /* 3852 * If we are here within ip_min_frag_prune_time msecs remove 3853 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3854 * ill_frag_free_num_pkts. 3855 */ 3856 mutex_enter(&ill->ill_lock); 3857 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3858 (ip_min_frag_prune_time != 0 ? 3859 ip_min_frag_prune_time : msec_per_tick)) { 3860 3861 ill->ill_frag_free_num_pkts++; 3862 3863 } else { 3864 ill->ill_frag_free_num_pkts = 0; 3865 } 3866 ill->ill_last_frag_clean_time = lbolt; 3867 mutex_exit(&ill->ill_lock); 3868 3869 /* 3870 * free ill_frag_free_num_pkts oldest packets from each bucket. 3871 */ 3872 if (ill->ill_frag_free_num_pkts != 0) { 3873 int ix; 3874 3875 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3876 ipfb = &ill->ill_frag_hash_tbl[ix]; 3877 mutex_enter(&ipfb->ipfb_lock); 3878 if (ipfb->ipfb_ipf != NULL) { 3879 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3880 ill->ill_frag_free_num_pkts); 3881 } 3882 mutex_exit(&ipfb->ipfb_lock); 3883 } 3884 } 3885 /* 3886 * While the reassembly list for this ILL is too big, prune a fragment 3887 * queue by age, oldest first. Note that the per ILL count is 3888 * approximate, while the per frag hash bucket counts are accurate. 3889 */ 3890 while (ill->ill_frag_count > max_count) { 3891 int ix; 3892 ipfb_t *oipfb = NULL; 3893 uint_t oldest = UINT_MAX; 3894 3895 count = 0; 3896 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3897 ipfb = &ill->ill_frag_hash_tbl[ix]; 3898 mutex_enter(&ipfb->ipfb_lock); 3899 ipf = ipfb->ipfb_ipf; 3900 if (ipf != NULL && ipf->ipf_gen < oldest) { 3901 oldest = ipf->ipf_gen; 3902 oipfb = ipfb; 3903 } 3904 count += ipfb->ipfb_count; 3905 mutex_exit(&ipfb->ipfb_lock); 3906 } 3907 /* Refresh the per ILL count */ 3908 ill->ill_frag_count = count; 3909 if (oipfb == NULL) { 3910 ill->ill_frag_count = 0; 3911 break; 3912 } 3913 if (count <= max_count) 3914 return; /* Somebody beat us to it, nothing to do */ 3915 mutex_enter(&oipfb->ipfb_lock); 3916 ipf = oipfb->ipfb_ipf; 3917 if (ipf != NULL) { 3918 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3919 } 3920 mutex_exit(&oipfb->ipfb_lock); 3921 } 3922 } 3923 3924 /* 3925 * free 'free_cnt' fragmented packets starting at ipf. 3926 */ 3927 void 3928 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3929 { 3930 size_t count; 3931 mblk_t *mp; 3932 mblk_t *tmp; 3933 ipf_t **ipfp = ipf->ipf_ptphn; 3934 3935 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3936 ASSERT(ipfp != NULL); 3937 ASSERT(ipf != NULL); 3938 3939 while (ipf != NULL && free_cnt-- > 0) { 3940 count = ipf->ipf_count; 3941 mp = ipf->ipf_mp; 3942 ipf = ipf->ipf_hash_next; 3943 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3944 IP_REASS_SET_START(tmp, 0); 3945 IP_REASS_SET_END(tmp, 0); 3946 } 3947 ill->ill_frag_count -= count; 3948 ASSERT(ipfb->ipfb_count >= count); 3949 ipfb->ipfb_count -= count; 3950 ASSERT(ipfb->ipfb_frag_pkts > 0); 3951 ipfb->ipfb_frag_pkts--; 3952 freemsg(mp); 3953 BUMP_MIB(&ip_mib, ipReasmFails); 3954 } 3955 3956 if (ipf) 3957 ipf->ipf_ptphn = ipfp; 3958 ipfp[0] = ipf; 3959 } 3960 3961 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3962 "obsolete and may be removed in a future release of Solaris. Use " \ 3963 "ifconfig(1M) to manipulate the forwarding status of an interface." 3964 3965 /* 3966 * For obsolete per-interface forwarding configuration; 3967 * called in response to ND_GET. 3968 */ 3969 /* ARGSUSED */ 3970 static int 3971 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3972 { 3973 ill_t *ill = (ill_t *)cp; 3974 3975 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3976 3977 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3978 return (0); 3979 } 3980 3981 /* 3982 * For obsolete per-interface forwarding configuration; 3983 * called in response to ND_SET. 3984 */ 3985 /* ARGSUSED */ 3986 static int 3987 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3988 cred_t *ioc_cr) 3989 { 3990 long value; 3991 int retval; 3992 3993 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3994 3995 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3996 value < 0 || value > 1) { 3997 return (EINVAL); 3998 } 3999 4000 rw_enter(&ill_g_lock, RW_READER); 4001 retval = ill_forward_set(q, mp, (value != 0), cp); 4002 rw_exit(&ill_g_lock); 4003 return (retval); 4004 } 4005 4006 /* 4007 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4008 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4009 * up RTS_IFINFO routing socket messages for each interface whose flags we 4010 * change. 4011 */ 4012 /* ARGSUSED */ 4013 int 4014 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4015 { 4016 ill_t *ill = (ill_t *)cp; 4017 ill_group_t *illgrp; 4018 4019 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 4020 4021 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4022 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4023 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4024 return (EINVAL); 4025 4026 /* 4027 * If the ill is in an IPMP group, set the forwarding policy on all 4028 * members of the group to the same value. 4029 */ 4030 illgrp = ill->ill_group; 4031 if (illgrp != NULL) { 4032 ill_t *tmp_ill; 4033 4034 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4035 tmp_ill = tmp_ill->ill_group_next) { 4036 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4037 (enable ? "Enabling" : "Disabling"), 4038 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4039 tmp_ill->ill_name)); 4040 mutex_enter(&tmp_ill->ill_lock); 4041 if (enable) 4042 tmp_ill->ill_flags |= ILLF_ROUTER; 4043 else 4044 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4045 mutex_exit(&tmp_ill->ill_lock); 4046 if (tmp_ill->ill_isv6) 4047 ill_set_nce_router_flags(tmp_ill, enable); 4048 /* Notify routing socket listeners of this change. */ 4049 ip_rts_ifmsg(tmp_ill->ill_ipif); 4050 } 4051 } else { 4052 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4053 (enable ? "Enabling" : "Disabling"), 4054 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4055 mutex_enter(&ill->ill_lock); 4056 if (enable) 4057 ill->ill_flags |= ILLF_ROUTER; 4058 else 4059 ill->ill_flags &= ~ILLF_ROUTER; 4060 mutex_exit(&ill->ill_lock); 4061 if (ill->ill_isv6) 4062 ill_set_nce_router_flags(ill, enable); 4063 /* Notify routing socket listeners of this change. */ 4064 ip_rts_ifmsg(ill->ill_ipif); 4065 } 4066 4067 return (0); 4068 } 4069 4070 /* 4071 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4072 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4073 * set or clear. 4074 */ 4075 static void 4076 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4077 { 4078 ipif_t *ipif; 4079 nce_t *nce; 4080 4081 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4082 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4083 if (nce != NULL) { 4084 mutex_enter(&nce->nce_lock); 4085 if (enable) 4086 nce->nce_flags |= NCE_F_ISROUTER; 4087 else 4088 nce->nce_flags &= ~NCE_F_ISROUTER; 4089 mutex_exit(&nce->nce_lock); 4090 NCE_REFRELE(nce); 4091 } 4092 } 4093 } 4094 4095 /* 4096 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4097 * for this ill. Make sure the v6/v4 question has been answered about this 4098 * ill. The creation of this ndd variable is only for backwards compatibility. 4099 * The preferred way to control per-interface IP forwarding is through the 4100 * ILLF_ROUTER interface flag. 4101 */ 4102 static int 4103 ill_set_ndd_name(ill_t *ill) 4104 { 4105 char *suffix; 4106 4107 ASSERT(IAM_WRITER_ILL(ill)); 4108 4109 if (ill->ill_isv6) 4110 suffix = ipv6_forward_suffix; 4111 else 4112 suffix = ipv4_forward_suffix; 4113 4114 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4115 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4116 /* 4117 * Copies over the '\0'. 4118 * Note that strlen(suffix) is always bounded. 4119 */ 4120 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4121 strlen(suffix) + 1); 4122 4123 /* 4124 * Use of the nd table requires holding the reader lock. 4125 * Modifying the nd table thru nd_load/nd_unload requires 4126 * the writer lock. 4127 */ 4128 rw_enter(&ip_g_nd_lock, RW_WRITER); 4129 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4130 nd_ill_forward_set, (caddr_t)ill)) { 4131 /* 4132 * If the nd_load failed, it only meant that it could not 4133 * allocate a new bunch of room for further NDD expansion. 4134 * Because of that, the ill_ndd_name will be set to 0, and 4135 * this interface is at the mercy of the global ip_forwarding 4136 * variable. 4137 */ 4138 rw_exit(&ip_g_nd_lock); 4139 ill->ill_ndd_name = NULL; 4140 return (ENOMEM); 4141 } 4142 rw_exit(&ip_g_nd_lock); 4143 return (0); 4144 } 4145 4146 /* 4147 * Intializes the context structure and returns the first ill in the list 4148 * cuurently start_list and end_list can have values: 4149 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4150 * IP_V4_G_HEAD Traverse IPV4 list only. 4151 * IP_V6_G_HEAD Traverse IPV6 list only. 4152 */ 4153 4154 /* 4155 * We don't check for CONDEMNED ills here. Caller must do that if 4156 * necessary under the ill lock. 4157 */ 4158 ill_t * 4159 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 4160 { 4161 ill_if_t *ifp; 4162 ill_t *ill; 4163 avl_tree_t *avl_tree; 4164 4165 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4166 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4167 4168 /* 4169 * setup the lists to search 4170 */ 4171 if (end_list != MAX_G_HEADS) { 4172 ctx->ctx_current_list = start_list; 4173 ctx->ctx_last_list = end_list; 4174 } else { 4175 ctx->ctx_last_list = MAX_G_HEADS - 1; 4176 ctx->ctx_current_list = 0; 4177 } 4178 4179 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4180 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4181 if (ifp != (ill_if_t *) 4182 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4183 avl_tree = &ifp->illif_avl_by_ppa; 4184 ill = avl_first(avl_tree); 4185 /* 4186 * ill is guaranteed to be non NULL or ifp should have 4187 * not existed. 4188 */ 4189 ASSERT(ill != NULL); 4190 return (ill); 4191 } 4192 ctx->ctx_current_list++; 4193 } 4194 4195 return (NULL); 4196 } 4197 4198 /* 4199 * returns the next ill in the list. ill_first() must have been called 4200 * before calling ill_next() or bad things will happen. 4201 */ 4202 4203 /* 4204 * We don't check for CONDEMNED ills here. Caller must do that if 4205 * necessary under the ill lock. 4206 */ 4207 ill_t * 4208 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4209 { 4210 ill_if_t *ifp; 4211 ill_t *ill; 4212 4213 4214 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4215 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4216 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 4217 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4218 AVL_AFTER)) != NULL) { 4219 return (ill); 4220 } 4221 4222 /* goto next ill_ifp in the list. */ 4223 ifp = lastill->ill_ifptr->illif_next; 4224 4225 /* make sure not at end of circular list */ 4226 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4227 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4228 return (NULL); 4229 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4230 } 4231 4232 return (avl_first(&ifp->illif_avl_by_ppa)); 4233 } 4234 4235 /* 4236 * Check interface name for correct format which is name+ppa. 4237 * name can contain characters and digits, the right most digits 4238 * make up the ppa number. use of octal is not allowed, name must contain 4239 * a ppa, return pointer to the start of ppa. 4240 * In case of error return NULL. 4241 */ 4242 static char * 4243 ill_get_ppa_ptr(char *name) 4244 { 4245 int namelen = mi_strlen(name); 4246 4247 int len = namelen; 4248 4249 name += len; 4250 while (len > 0) { 4251 name--; 4252 if (*name < '0' || *name > '9') 4253 break; 4254 len--; 4255 } 4256 4257 /* empty string, all digits, or no trailing digits */ 4258 if (len == 0 || len == (int)namelen) 4259 return (NULL); 4260 4261 name++; 4262 /* check for attempted use of octal */ 4263 if (*name == '0' && len != (int)namelen - 1) 4264 return (NULL); 4265 return (name); 4266 } 4267 4268 /* 4269 * use avl tree to locate the ill. 4270 */ 4271 static ill_t * 4272 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4273 ipsq_func_t func, int *error) 4274 { 4275 char *ppa_ptr = NULL; 4276 int len; 4277 uint_t ppa; 4278 ill_t *ill = NULL; 4279 ill_if_t *ifp; 4280 int list; 4281 ipsq_t *ipsq; 4282 4283 if (error != NULL) 4284 *error = 0; 4285 4286 /* 4287 * get ppa ptr 4288 */ 4289 if (isv6) 4290 list = IP_V6_G_HEAD; 4291 else 4292 list = IP_V4_G_HEAD; 4293 4294 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4295 if (error != NULL) 4296 *error = ENXIO; 4297 return (NULL); 4298 } 4299 4300 len = ppa_ptr - name + 1; 4301 4302 ppa = stoi(&ppa_ptr); 4303 4304 ifp = IP_VX_ILL_G_LIST(list); 4305 4306 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4307 /* 4308 * match is done on len - 1 as the name is not null 4309 * terminated it contains ppa in addition to the interface 4310 * name. 4311 */ 4312 if ((ifp->illif_name_len == len) && 4313 bcmp(ifp->illif_name, name, len - 1) == 0) { 4314 break; 4315 } else { 4316 ifp = ifp->illif_next; 4317 } 4318 } 4319 4320 4321 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4322 /* 4323 * Even the interface type does not exist. 4324 */ 4325 if (error != NULL) 4326 *error = ENXIO; 4327 return (NULL); 4328 } 4329 4330 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4331 if (ill != NULL) { 4332 /* 4333 * The block comment at the start of ipif_down 4334 * explains the use of the macros used below 4335 */ 4336 GRAB_CONN_LOCK(q); 4337 mutex_enter(&ill->ill_lock); 4338 if (ILL_CAN_LOOKUP(ill)) { 4339 ill_refhold_locked(ill); 4340 mutex_exit(&ill->ill_lock); 4341 RELEASE_CONN_LOCK(q); 4342 return (ill); 4343 } else if (ILL_CAN_WAIT(ill, q)) { 4344 ipsq = ill->ill_phyint->phyint_ipsq; 4345 mutex_enter(&ipsq->ipsq_lock); 4346 mutex_exit(&ill->ill_lock); 4347 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4348 mutex_exit(&ipsq->ipsq_lock); 4349 RELEASE_CONN_LOCK(q); 4350 *error = EINPROGRESS; 4351 return (NULL); 4352 } 4353 mutex_exit(&ill->ill_lock); 4354 RELEASE_CONN_LOCK(q); 4355 } 4356 if (error != NULL) 4357 *error = ENXIO; 4358 return (NULL); 4359 } 4360 4361 /* 4362 * comparison function for use with avl. 4363 */ 4364 static int 4365 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4366 { 4367 uint_t ppa; 4368 uint_t ill_ppa; 4369 4370 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4371 4372 ppa = *((uint_t *)ppa_ptr); 4373 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4374 /* 4375 * We want the ill with the lowest ppa to be on the 4376 * top. 4377 */ 4378 if (ill_ppa < ppa) 4379 return (1); 4380 if (ill_ppa > ppa) 4381 return (-1); 4382 return (0); 4383 } 4384 4385 /* 4386 * remove an interface type from the global list. 4387 */ 4388 static void 4389 ill_delete_interface_type(ill_if_t *interface) 4390 { 4391 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4392 4393 ASSERT(interface != NULL); 4394 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4395 4396 avl_destroy(&interface->illif_avl_by_ppa); 4397 if (interface->illif_ppa_arena != NULL) 4398 vmem_destroy(interface->illif_ppa_arena); 4399 4400 remque(interface); 4401 4402 mi_free(interface); 4403 } 4404 4405 /* Defined in ip_netinfo.c */ 4406 extern ddi_taskq_t *eventq_queue_nic; 4407 4408 /* 4409 * remove ill from the global list. 4410 */ 4411 static void 4412 ill_glist_delete(ill_t *ill) 4413 { 4414 char *nicname; 4415 size_t nicnamelen; 4416 hook_nic_event_t *info; 4417 4418 if (ill == NULL) 4419 return; 4420 4421 rw_enter(&ill_g_lock, RW_WRITER); 4422 4423 if (ill->ill_name != NULL) { 4424 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4425 if (nicname != NULL) { 4426 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4427 nicnamelen = ill->ill_name_length; 4428 } 4429 } else { 4430 nicname = NULL; 4431 nicnamelen = 0; 4432 } 4433 4434 /* 4435 * If the ill was never inserted into the AVL tree 4436 * we skip the if branch. 4437 */ 4438 if (ill->ill_ifptr != NULL) { 4439 /* 4440 * remove from AVL tree and free ppa number 4441 */ 4442 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4443 4444 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4445 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4446 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4447 } 4448 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4449 ill_delete_interface_type(ill->ill_ifptr); 4450 } 4451 4452 /* 4453 * Indicate ill is no longer in the list. 4454 */ 4455 ill->ill_ifptr = NULL; 4456 ill->ill_name_length = 0; 4457 ill->ill_name[0] = '\0'; 4458 ill->ill_ppa = UINT_MAX; 4459 } 4460 4461 /* 4462 * Run the unplumb hook after the NIC has disappeared from being 4463 * visible so that attempts to revalidate its existance will fail. 4464 * 4465 * This needs to be run inside the ill_g_lock perimeter to ensure 4466 * that the ordering of delivered events to listeners matches the 4467 * order of them in the kernel. 4468 */ 4469 if ((info = ill->ill_nic_event_info) != NULL) { 4470 if (info->hne_event != NE_DOWN) { 4471 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4472 "attached for %s\n", info->hne_event, 4473 ill->ill_name)); 4474 if (info->hne_data != NULL) 4475 kmem_free(info->hne_data, info->hne_datalen); 4476 kmem_free(info, sizeof (hook_nic_event_t)); 4477 } else { 4478 if (ddi_taskq_dispatch(eventq_queue_nic, 4479 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4480 == DDI_FAILURE) { 4481 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4482 "failed\n")); 4483 if (info->hne_data != NULL) 4484 kmem_free(info->hne_data, 4485 info->hne_datalen); 4486 kmem_free(info, sizeof (hook_nic_event_t)); 4487 } 4488 } 4489 } 4490 4491 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4492 if (info != NULL) { 4493 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4494 info->hne_lif = 0; 4495 info->hne_event = NE_UNPLUMB; 4496 info->hne_data = nicname; 4497 info->hne_datalen = nicnamelen; 4498 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 4499 } else { 4500 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4501 "information for %s (ENOMEM)\n", ill->ill_name)); 4502 if (nicname != NULL) 4503 kmem_free(nicname, nicnamelen); 4504 } 4505 4506 ill->ill_nic_event_info = info; 4507 4508 ill_phyint_free(ill); 4509 4510 rw_exit(&ill_g_lock); 4511 } 4512 4513 /* 4514 * allocate a ppa, if the number of plumbed interfaces of this type are 4515 * less than ill_no_arena do a linear search to find a unused ppa. 4516 * When the number goes beyond ill_no_arena switch to using an arena. 4517 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4518 * is the return value for an error condition, so allocation starts at one 4519 * and is decremented by one. 4520 */ 4521 static int 4522 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4523 { 4524 ill_t *tmp_ill; 4525 uint_t start, end; 4526 int ppa; 4527 4528 if (ifp->illif_ppa_arena == NULL && 4529 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4530 /* 4531 * Create an arena. 4532 */ 4533 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4534 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4535 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4536 /* allocate what has already been assigned */ 4537 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4538 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4539 tmp_ill, AVL_AFTER)) { 4540 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4541 1, /* size */ 4542 1, /* align/quantum */ 4543 0, /* phase */ 4544 0, /* nocross */ 4545 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4546 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4547 VM_NOSLEEP|VM_FIRSTFIT); 4548 if (ppa == 0) { 4549 ip1dbg(("ill_alloc_ppa: ppa allocation" 4550 " failed while switching")); 4551 vmem_destroy(ifp->illif_ppa_arena); 4552 ifp->illif_ppa_arena = NULL; 4553 break; 4554 } 4555 } 4556 } 4557 4558 if (ifp->illif_ppa_arena != NULL) { 4559 if (ill->ill_ppa == UINT_MAX) { 4560 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4561 1, VM_NOSLEEP|VM_FIRSTFIT); 4562 if (ppa == 0) 4563 return (EAGAIN); 4564 ill->ill_ppa = --ppa; 4565 } else { 4566 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4567 1, /* size */ 4568 1, /* align/quantum */ 4569 0, /* phase */ 4570 0, /* nocross */ 4571 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4572 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4573 VM_NOSLEEP|VM_FIRSTFIT); 4574 /* 4575 * Most likely the allocation failed because 4576 * the requested ppa was in use. 4577 */ 4578 if (ppa == 0) 4579 return (EEXIST); 4580 } 4581 return (0); 4582 } 4583 4584 /* 4585 * No arena is in use and not enough (>ill_no_arena) interfaces have 4586 * been plumbed to create one. Do a linear search to get a unused ppa. 4587 */ 4588 if (ill->ill_ppa == UINT_MAX) { 4589 end = UINT_MAX - 1; 4590 start = 0; 4591 } else { 4592 end = start = ill->ill_ppa; 4593 } 4594 4595 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4596 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4597 if (start++ >= end) { 4598 if (ill->ill_ppa == UINT_MAX) 4599 return (EAGAIN); 4600 else 4601 return (EEXIST); 4602 } 4603 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4604 } 4605 ill->ill_ppa = start; 4606 return (0); 4607 } 4608 4609 /* 4610 * Insert ill into the list of configured ill's. Once this function completes, 4611 * the ill is globally visible and is available through lookups. More precisely 4612 * this happens after the caller drops the ill_g_lock. 4613 */ 4614 static int 4615 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4616 { 4617 ill_if_t *ill_interface; 4618 avl_index_t where = 0; 4619 int error; 4620 int name_length; 4621 int index; 4622 boolean_t check_length = B_FALSE; 4623 4624 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4625 4626 name_length = mi_strlen(name) + 1; 4627 4628 if (isv6) 4629 index = IP_V6_G_HEAD; 4630 else 4631 index = IP_V4_G_HEAD; 4632 4633 ill_interface = IP_VX_ILL_G_LIST(index); 4634 /* 4635 * Search for interface type based on name 4636 */ 4637 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4638 if ((ill_interface->illif_name_len == name_length) && 4639 (strcmp(ill_interface->illif_name, name) == 0)) { 4640 break; 4641 } 4642 ill_interface = ill_interface->illif_next; 4643 } 4644 4645 /* 4646 * Interface type not found, create one. 4647 */ 4648 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4649 4650 ill_g_head_t ghead; 4651 4652 /* 4653 * allocate ill_if_t structure 4654 */ 4655 4656 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4657 if (ill_interface == NULL) { 4658 return (ENOMEM); 4659 } 4660 4661 4662 4663 (void) strcpy(ill_interface->illif_name, name); 4664 ill_interface->illif_name_len = name_length; 4665 4666 avl_create(&ill_interface->illif_avl_by_ppa, 4667 ill_compare_ppa, sizeof (ill_t), 4668 offsetof(struct ill_s, ill_avl_byppa)); 4669 4670 /* 4671 * link the structure in the back to maintain order 4672 * of configuration for ifconfig output. 4673 */ 4674 ghead = ill_g_heads[index]; 4675 insque(ill_interface, ghead.ill_g_list_tail); 4676 4677 } 4678 4679 if (ill->ill_ppa == UINT_MAX) 4680 check_length = B_TRUE; 4681 4682 error = ill_alloc_ppa(ill_interface, ill); 4683 if (error != 0) { 4684 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4685 ill_delete_interface_type(ill->ill_ifptr); 4686 return (error); 4687 } 4688 4689 /* 4690 * When the ppa is choosen by the system, check that there is 4691 * enough space to insert ppa. if a specific ppa was passed in this 4692 * check is not required as the interface name passed in will have 4693 * the right ppa in it. 4694 */ 4695 if (check_length) { 4696 /* 4697 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4698 */ 4699 char buf[sizeof (uint_t) * 3]; 4700 4701 /* 4702 * convert ppa to string to calculate the amount of space 4703 * required for it in the name. 4704 */ 4705 numtos(ill->ill_ppa, buf); 4706 4707 /* Do we have enough space to insert ppa ? */ 4708 4709 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4710 /* Free ppa and interface type struct */ 4711 if (ill_interface->illif_ppa_arena != NULL) { 4712 vmem_free(ill_interface->illif_ppa_arena, 4713 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4714 } 4715 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4716 0) { 4717 ill_delete_interface_type(ill->ill_ifptr); 4718 } 4719 4720 return (EINVAL); 4721 } 4722 } 4723 4724 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4725 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4726 4727 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4728 &where); 4729 ill->ill_ifptr = ill_interface; 4730 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4731 4732 ill_phyint_reinit(ill); 4733 return (0); 4734 } 4735 4736 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4737 static boolean_t 4738 ipsq_init(ill_t *ill) 4739 { 4740 ipsq_t *ipsq; 4741 4742 /* Init the ipsq and impicitly enter as writer */ 4743 ill->ill_phyint->phyint_ipsq = 4744 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4745 if (ill->ill_phyint->phyint_ipsq == NULL) 4746 return (B_FALSE); 4747 ipsq = ill->ill_phyint->phyint_ipsq; 4748 ipsq->ipsq_phyint_list = ill->ill_phyint; 4749 ill->ill_phyint->phyint_ipsq_next = NULL; 4750 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4751 ipsq->ipsq_refs = 1; 4752 ipsq->ipsq_writer = curthread; 4753 ipsq->ipsq_reentry_cnt = 1; 4754 #ifdef ILL_DEBUG 4755 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4756 #endif 4757 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4758 return (B_TRUE); 4759 } 4760 4761 /* 4762 * ill_init is called by ip_open when a device control stream is opened. 4763 * It does a few initializations, and shoots a DL_INFO_REQ message down 4764 * to the driver. The response is later picked up in ip_rput_dlpi and 4765 * used to set up default mechanisms for talking to the driver. (Always 4766 * called as writer.) 4767 * 4768 * If this function returns error, ip_open will call ip_close which in 4769 * turn will call ill_delete to clean up any memory allocated here that 4770 * is not yet freed. 4771 */ 4772 int 4773 ill_init(queue_t *q, ill_t *ill) 4774 { 4775 int count; 4776 dl_info_req_t *dlir; 4777 mblk_t *info_mp; 4778 uchar_t *frag_ptr; 4779 4780 /* 4781 * The ill is initialized to zero by mi_alloc*(). In addition 4782 * some fields already contain valid values, initialized in 4783 * ip_open(), before we reach here. 4784 */ 4785 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4786 4787 ill->ill_rq = q; 4788 ill->ill_wq = WR(q); 4789 4790 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4791 BPRI_HI); 4792 if (info_mp == NULL) 4793 return (ENOMEM); 4794 4795 /* 4796 * Allocate sufficient space to contain our fragment hash table and 4797 * the device name. 4798 */ 4799 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4800 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4801 if (frag_ptr == NULL) { 4802 freemsg(info_mp); 4803 return (ENOMEM); 4804 } 4805 ill->ill_frag_ptr = frag_ptr; 4806 ill->ill_frag_free_num_pkts = 0; 4807 ill->ill_last_frag_clean_time = 0; 4808 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4809 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4810 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4811 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4812 NULL, MUTEX_DEFAULT, NULL); 4813 } 4814 4815 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4816 if (ill->ill_phyint == NULL) { 4817 freemsg(info_mp); 4818 mi_free(frag_ptr); 4819 return (ENOMEM); 4820 } 4821 4822 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4823 /* 4824 * For now pretend this is a v4 ill. We need to set phyint_ill* 4825 * at this point because of the following reason. If we can't 4826 * enter the ipsq at some point and cv_wait, the writer that 4827 * wakes us up tries to locate us using the list of all phyints 4828 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4829 * If we don't set it now, we risk a missed wakeup. 4830 */ 4831 ill->ill_phyint->phyint_illv4 = ill; 4832 ill->ill_ppa = UINT_MAX; 4833 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4834 4835 if (!ipsq_init(ill)) { 4836 freemsg(info_mp); 4837 mi_free(frag_ptr); 4838 mi_free(ill->ill_phyint); 4839 return (ENOMEM); 4840 } 4841 4842 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4843 4844 4845 /* Frag queue limit stuff */ 4846 ill->ill_frag_count = 0; 4847 ill->ill_ipf_gen = 0; 4848 4849 ill->ill_global_timer = INFINITY; 4850 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4851 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4852 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4853 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4854 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4855 4856 /* 4857 * Initialize IPv6 configuration variables. The IP module is always 4858 * opened as an IPv4 module. Instead tracking down the cases where 4859 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4860 * here for convenience, this has no effect until the ill is set to do 4861 * IPv6. 4862 */ 4863 ill->ill_reachable_time = ND_REACHABLE_TIME; 4864 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4865 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4866 ill->ill_max_buf = ND_MAX_Q; 4867 ill->ill_refcnt = 0; 4868 4869 /* Send down the Info Request to the driver. */ 4870 info_mp->b_datap->db_type = M_PCPROTO; 4871 dlir = (dl_info_req_t *)info_mp->b_rptr; 4872 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4873 dlir->dl_primitive = DL_INFO_REQ; 4874 4875 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4876 4877 qprocson(q); 4878 ill_dlpi_send(ill, info_mp); 4879 4880 return (0); 4881 } 4882 4883 /* 4884 * ill_dls_info 4885 * creates datalink socket info from the device. 4886 */ 4887 int 4888 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4889 { 4890 size_t length; 4891 ill_t *ill = ipif->ipif_ill; 4892 4893 sdl->sdl_family = AF_LINK; 4894 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4895 sdl->sdl_type = ipif->ipif_type; 4896 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4897 length = mi_strlen(sdl->sdl_data); 4898 ASSERT(length < 256); 4899 sdl->sdl_nlen = (uchar_t)length; 4900 sdl->sdl_alen = ill->ill_phys_addr_length; 4901 mutex_enter(&ill->ill_lock); 4902 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4903 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4904 ill->ill_phys_addr_length); 4905 } 4906 mutex_exit(&ill->ill_lock); 4907 sdl->sdl_slen = 0; 4908 return (sizeof (struct sockaddr_dl)); 4909 } 4910 4911 /* 4912 * ill_xarp_info 4913 * creates xarp info from the device. 4914 */ 4915 static int 4916 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4917 { 4918 sdl->sdl_family = AF_LINK; 4919 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4920 sdl->sdl_type = ill->ill_type; 4921 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4922 sizeof (sdl->sdl_data)); 4923 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4924 sdl->sdl_alen = ill->ill_phys_addr_length; 4925 sdl->sdl_slen = 0; 4926 return (sdl->sdl_nlen); 4927 } 4928 4929 static int 4930 loopback_kstat_update(kstat_t *ksp, int rw) 4931 { 4932 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4933 4934 if (rw == KSTAT_WRITE) 4935 return (EACCES); 4936 kn[0].value.ui32 = loopback_packets; 4937 kn[1].value.ui32 = loopback_packets; 4938 return (0); 4939 } 4940 4941 4942 /* 4943 * Has ifindex been plumbed already. 4944 */ 4945 static boolean_t 4946 phyint_exists(uint_t index) 4947 { 4948 phyint_t *phyi; 4949 4950 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4951 /* 4952 * Indexes are stored in the phyint - a common structure 4953 * to both IPv4 and IPv6. 4954 */ 4955 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4956 (void *) &index, NULL); 4957 return (phyi != NULL); 4958 } 4959 4960 /* 4961 * Assign a unique interface index for the phyint. 4962 */ 4963 static boolean_t 4964 phyint_assign_ifindex(phyint_t *phyi) 4965 { 4966 uint_t starting_index; 4967 4968 ASSERT(phyi->phyint_ifindex == 0); 4969 if (!ill_index_wrap) { 4970 phyi->phyint_ifindex = ill_index++; 4971 if (ill_index == 0) { 4972 /* Reached the uint_t limit Next time wrap */ 4973 ill_index_wrap = B_TRUE; 4974 } 4975 return (B_TRUE); 4976 } 4977 4978 /* 4979 * Start reusing unused indexes. Note that we hold the ill_g_lock 4980 * at this point and don't want to call any function that attempts 4981 * to get the lock again. 4982 */ 4983 starting_index = ill_index++; 4984 for (; ill_index != starting_index; ill_index++) { 4985 if (ill_index != 0 && !phyint_exists(ill_index)) { 4986 /* found unused index - use it */ 4987 phyi->phyint_ifindex = ill_index; 4988 return (B_TRUE); 4989 } 4990 } 4991 4992 /* 4993 * all interface indicies are inuse. 4994 */ 4995 return (B_FALSE); 4996 } 4997 4998 /* 4999 * Return a pointer to the ill which matches the supplied name. Note that 5000 * the ill name length includes the null termination character. (May be 5001 * called as writer.) 5002 * If do_alloc and the interface is "lo0" it will be automatically created. 5003 * Cannot bump up reference on condemned ills. So dup detect can't be done 5004 * using this func. 5005 */ 5006 ill_t * 5007 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5008 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 5009 { 5010 ill_t *ill; 5011 ipif_t *ipif; 5012 kstat_named_t *kn; 5013 boolean_t isloopback; 5014 ipsq_t *old_ipsq; 5015 5016 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5017 5018 rw_enter(&ill_g_lock, RW_READER); 5019 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5020 rw_exit(&ill_g_lock); 5021 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5022 return (ill); 5023 5024 /* 5025 * Couldn't find it. Does this happen to be a lookup for the 5026 * loopback device and are we allowed to allocate it? 5027 */ 5028 if (!isloopback || !do_alloc) 5029 return (NULL); 5030 5031 rw_enter(&ill_g_lock, RW_WRITER); 5032 5033 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5034 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5035 rw_exit(&ill_g_lock); 5036 return (ill); 5037 } 5038 5039 /* Create the loopback device on demand */ 5040 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5041 sizeof (ipif_loopback_name), BPRI_MED)); 5042 if (ill == NULL) 5043 goto done; 5044 5045 *ill = ill_null; 5046 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5047 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5048 if (ill->ill_phyint == NULL) 5049 goto done; 5050 5051 if (isv6) 5052 ill->ill_phyint->phyint_illv6 = ill; 5053 else 5054 ill->ill_phyint->phyint_illv4 = ill; 5055 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5056 ill->ill_max_frag = IP_LOOPBACK_MTU; 5057 /* Add room for tcp+ip headers */ 5058 if (isv6) { 5059 ill->ill_isv6 = B_TRUE; 5060 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5061 if (!ill_allocate_mibs(ill)) 5062 goto done; 5063 } else { 5064 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5065 } 5066 ill->ill_max_mtu = ill->ill_max_frag; 5067 /* 5068 * ipif_loopback_name can't be pointed at directly because its used 5069 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5070 * from the glist, ill_glist_delete() sets the first character of 5071 * ill_name to '\0'. 5072 */ 5073 ill->ill_name = (char *)ill + sizeof (*ill); 5074 (void) strcpy(ill->ill_name, ipif_loopback_name); 5075 ill->ill_name_length = sizeof (ipif_loopback_name); 5076 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5077 5078 ill->ill_global_timer = INFINITY; 5079 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5080 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5081 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5082 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5083 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5084 5085 /* No resolver here. */ 5086 ill->ill_net_type = IRE_LOOPBACK; 5087 5088 /* Initialize the ipsq */ 5089 if (!ipsq_init(ill)) 5090 goto done; 5091 5092 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5093 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5094 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5095 #ifdef ILL_DEBUG 5096 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5097 #endif 5098 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5099 if (ipif == NULL) 5100 goto done; 5101 5102 ill->ill_flags = ILLF_MULTICAST; 5103 5104 /* Set up default loopback address and mask. */ 5105 if (!isv6) { 5106 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5107 5108 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5109 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5110 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5111 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5112 ipif->ipif_v6subnet); 5113 ill->ill_flags |= ILLF_IPV4; 5114 } else { 5115 ipif->ipif_v6lcl_addr = ipv6_loopback; 5116 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5117 ipif->ipif_v6net_mask = ipv6_all_ones; 5118 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5119 ipif->ipif_v6subnet); 5120 ill->ill_flags |= ILLF_IPV6; 5121 } 5122 5123 /* 5124 * Chain us in at the end of the ill list. hold the ill 5125 * before we make it globally visible. 1 for the lookup. 5126 */ 5127 ill->ill_refcnt = 0; 5128 ill_refhold(ill); 5129 5130 ill->ill_frag_count = 0; 5131 ill->ill_frag_free_num_pkts = 0; 5132 ill->ill_last_frag_clean_time = 0; 5133 5134 old_ipsq = ill->ill_phyint->phyint_ipsq; 5135 5136 if (ill_glist_insert(ill, "lo", isv6) != 0) 5137 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5138 5139 /* Let SCTP know so that it can add this to its list */ 5140 sctp_update_ill(ill, SCTP_ILL_INSERT); 5141 5142 /* Let SCTP know about this IPIF, so that it can add it to its list */ 5143 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 5144 5145 /* 5146 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5147 */ 5148 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5149 /* Loopback ills aren't in any IPMP group */ 5150 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5151 ipsq_delete(old_ipsq); 5152 } 5153 5154 /* 5155 * Delay this till the ipif is allocated as ipif_allocate 5156 * de-references ill_phyint for getting the ifindex. We 5157 * can't do this before ipif_allocate because ill_phyint_reinit 5158 * -> phyint_assign_ifindex expects ipif to be present. 5159 */ 5160 mutex_enter(&ill->ill_phyint->phyint_lock); 5161 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5162 mutex_exit(&ill->ill_phyint->phyint_lock); 5163 5164 if (loopback_ksp == NULL) { 5165 /* Export loopback interface statistics */ 5166 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 5167 KSTAT_TYPE_NAMED, 2, 0); 5168 if (loopback_ksp != NULL) { 5169 loopback_ksp->ks_update = loopback_kstat_update; 5170 kn = KSTAT_NAMED_PTR(loopback_ksp); 5171 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5172 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5173 kstat_install(loopback_ksp); 5174 } 5175 } 5176 5177 if (error != NULL) 5178 *error = 0; 5179 *did_alloc = B_TRUE; 5180 rw_exit(&ill_g_lock); 5181 return (ill); 5182 done: 5183 if (ill != NULL) { 5184 if (ill->ill_phyint != NULL) { 5185 ipsq_t *ipsq; 5186 5187 ipsq = ill->ill_phyint->phyint_ipsq; 5188 if (ipsq != NULL) 5189 kmem_free(ipsq, sizeof (ipsq_t)); 5190 mi_free(ill->ill_phyint); 5191 } 5192 ill_free_mib(ill); 5193 mi_free(ill); 5194 } 5195 rw_exit(&ill_g_lock); 5196 if (error != NULL) 5197 *error = ENOMEM; 5198 return (NULL); 5199 } 5200 5201 /* 5202 * Return a pointer to the ill which matches the index and IP version type. 5203 */ 5204 ill_t * 5205 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5206 ipsq_func_t func, int *err) 5207 { 5208 ill_t *ill; 5209 ipsq_t *ipsq; 5210 phyint_t *phyi; 5211 5212 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5213 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5214 5215 if (err != NULL) 5216 *err = 0; 5217 5218 /* 5219 * Indexes are stored in the phyint - a common structure 5220 * to both IPv4 and IPv6. 5221 */ 5222 rw_enter(&ill_g_lock, RW_READER); 5223 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 5224 (void *) &index, NULL); 5225 if (phyi != NULL) { 5226 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5227 if (ill != NULL) { 5228 /* 5229 * The block comment at the start of ipif_down 5230 * explains the use of the macros used below 5231 */ 5232 GRAB_CONN_LOCK(q); 5233 mutex_enter(&ill->ill_lock); 5234 if (ILL_CAN_LOOKUP(ill)) { 5235 ill_refhold_locked(ill); 5236 mutex_exit(&ill->ill_lock); 5237 RELEASE_CONN_LOCK(q); 5238 rw_exit(&ill_g_lock); 5239 return (ill); 5240 } else if (ILL_CAN_WAIT(ill, q)) { 5241 ipsq = ill->ill_phyint->phyint_ipsq; 5242 mutex_enter(&ipsq->ipsq_lock); 5243 rw_exit(&ill_g_lock); 5244 mutex_exit(&ill->ill_lock); 5245 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5246 mutex_exit(&ipsq->ipsq_lock); 5247 RELEASE_CONN_LOCK(q); 5248 *err = EINPROGRESS; 5249 return (NULL); 5250 } 5251 RELEASE_CONN_LOCK(q); 5252 mutex_exit(&ill->ill_lock); 5253 } 5254 } 5255 rw_exit(&ill_g_lock); 5256 if (err != NULL) 5257 *err = ENXIO; 5258 return (NULL); 5259 } 5260 5261 /* 5262 * Return the ifindex next in sequence after the passed in ifindex. 5263 * If there is no next ifindex for the given protocol, return 0. 5264 */ 5265 uint_t 5266 ill_get_next_ifindex(uint_t index, boolean_t isv6) 5267 { 5268 phyint_t *phyi; 5269 phyint_t *phyi_initial; 5270 uint_t ifindex; 5271 5272 rw_enter(&ill_g_lock, RW_READER); 5273 5274 if (index == 0) { 5275 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 5276 } else { 5277 phyi = phyi_initial = avl_find( 5278 &phyint_g_list.phyint_list_avl_by_index, 5279 (void *) &index, NULL); 5280 } 5281 5282 for (; phyi != NULL; 5283 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 5284 phyi, AVL_AFTER)) { 5285 /* 5286 * If we're not returning the first interface in the tree 5287 * and we still haven't moved past the phyint_t that 5288 * corresponds to index, avl_walk needs to be called again 5289 */ 5290 if (!((index != 0) && (phyi == phyi_initial))) { 5291 if (isv6) { 5292 if ((phyi->phyint_illv6) && 5293 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5294 (phyi->phyint_illv6->ill_isv6 == 1)) 5295 break; 5296 } else { 5297 if ((phyi->phyint_illv4) && 5298 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5299 (phyi->phyint_illv4->ill_isv6 == 0)) 5300 break; 5301 } 5302 } 5303 } 5304 5305 rw_exit(&ill_g_lock); 5306 5307 if (phyi != NULL) 5308 ifindex = phyi->phyint_ifindex; 5309 else 5310 ifindex = 0; 5311 5312 return (ifindex); 5313 } 5314 5315 5316 /* 5317 * Return the ifindex for the named interface. 5318 * If there is no next ifindex for the interface, return 0. 5319 */ 5320 uint_t 5321 ill_get_ifindex_by_name(char *name) 5322 { 5323 phyint_t *phyi; 5324 avl_index_t where = 0; 5325 uint_t ifindex; 5326 5327 rw_enter(&ill_g_lock, RW_READER); 5328 5329 if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 5330 name, &where)) == NULL) { 5331 rw_exit(&ill_g_lock); 5332 return (0); 5333 } 5334 5335 ifindex = phyi->phyint_ifindex; 5336 5337 rw_exit(&ill_g_lock); 5338 5339 return (ifindex); 5340 } 5341 5342 5343 /* 5344 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5345 * that gives a running thread a reference to the ill. This reference must be 5346 * released by the thread when it is done accessing the ill and related 5347 * objects. ill_refcnt can not be used to account for static references 5348 * such as other structures pointing to an ill. Callers must generally 5349 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5350 * or be sure that the ill is not being deleted or changing state before 5351 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5352 * ill won't change any of its critical state such as address, netmask etc. 5353 */ 5354 void 5355 ill_refhold(ill_t *ill) 5356 { 5357 mutex_enter(&ill->ill_lock); 5358 ill->ill_refcnt++; 5359 ILL_TRACE_REF(ill); 5360 mutex_exit(&ill->ill_lock); 5361 } 5362 5363 void 5364 ill_refhold_locked(ill_t *ill) 5365 { 5366 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5367 ill->ill_refcnt++; 5368 ILL_TRACE_REF(ill); 5369 } 5370 5371 int 5372 ill_check_and_refhold(ill_t *ill) 5373 { 5374 mutex_enter(&ill->ill_lock); 5375 if (ILL_CAN_LOOKUP(ill)) { 5376 ill_refhold_locked(ill); 5377 mutex_exit(&ill->ill_lock); 5378 return (0); 5379 } 5380 mutex_exit(&ill->ill_lock); 5381 return (ILL_LOOKUP_FAILED); 5382 } 5383 5384 /* 5385 * Must not be called while holding any locks. Otherwise if this is 5386 * the last reference to be released, there is a chance of recursive mutex 5387 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5388 * to restart an ioctl. 5389 */ 5390 void 5391 ill_refrele(ill_t *ill) 5392 { 5393 mutex_enter(&ill->ill_lock); 5394 ASSERT(ill->ill_refcnt != 0); 5395 ill->ill_refcnt--; 5396 ILL_UNTRACE_REF(ill); 5397 if (ill->ill_refcnt != 0) { 5398 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5399 mutex_exit(&ill->ill_lock); 5400 return; 5401 } 5402 5403 /* Drops the ill_lock */ 5404 ipif_ill_refrele_tail(ill); 5405 } 5406 5407 /* 5408 * Obtain a weak reference count on the ill. This reference ensures the 5409 * ill won't be freed, but the ill may change any of its critical state 5410 * such as netmask, address etc. Returns an error if the ill has started 5411 * closing. 5412 */ 5413 boolean_t 5414 ill_waiter_inc(ill_t *ill) 5415 { 5416 mutex_enter(&ill->ill_lock); 5417 if (ill->ill_state_flags & ILL_CONDEMNED) { 5418 mutex_exit(&ill->ill_lock); 5419 return (B_FALSE); 5420 } 5421 ill->ill_waiters++; 5422 mutex_exit(&ill->ill_lock); 5423 return (B_TRUE); 5424 } 5425 5426 void 5427 ill_waiter_dcr(ill_t *ill) 5428 { 5429 mutex_enter(&ill->ill_lock); 5430 ill->ill_waiters--; 5431 if (ill->ill_waiters == 0) 5432 cv_broadcast(&ill->ill_cv); 5433 mutex_exit(&ill->ill_lock); 5434 } 5435 5436 /* 5437 * Named Dispatch routine to produce a formatted report on all ILLs. 5438 * This report is accessed by using the ndd utility to "get" ND variable 5439 * "ip_ill_status". 5440 */ 5441 /* ARGSUSED */ 5442 int 5443 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5444 { 5445 ill_t *ill; 5446 ill_walk_context_t ctx; 5447 5448 (void) mi_mpprintf(mp, 5449 "ILL " MI_COL_HDRPAD_STR 5450 /* 01234567[89ABCDEF] */ 5451 "rq " MI_COL_HDRPAD_STR 5452 /* 01234567[89ABCDEF] */ 5453 "wq " MI_COL_HDRPAD_STR 5454 /* 01234567[89ABCDEF] */ 5455 "upcnt mxfrg err name"); 5456 /* 12345 12345 123 xxxxxxxx */ 5457 5458 rw_enter(&ill_g_lock, RW_READER); 5459 ill = ILL_START_WALK_ALL(&ctx); 5460 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5461 (void) mi_mpprintf(mp, 5462 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5463 "%05u %05u %03d %s", 5464 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5465 ill->ill_ipif_up_count, 5466 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5467 } 5468 rw_exit(&ill_g_lock); 5469 5470 return (0); 5471 } 5472 5473 /* 5474 * Named Dispatch routine to produce a formatted report on all IPIFs. 5475 * This report is accessed by using the ndd utility to "get" ND variable 5476 * "ip_ipif_status". 5477 */ 5478 /* ARGSUSED */ 5479 int 5480 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5481 { 5482 char buf1[INET6_ADDRSTRLEN]; 5483 char buf2[INET6_ADDRSTRLEN]; 5484 char buf3[INET6_ADDRSTRLEN]; 5485 char buf4[INET6_ADDRSTRLEN]; 5486 char buf5[INET6_ADDRSTRLEN]; 5487 char buf6[INET6_ADDRSTRLEN]; 5488 char buf[LIFNAMSIZ]; 5489 ill_t *ill; 5490 ipif_t *ipif; 5491 nv_t *nvp; 5492 uint64_t flags; 5493 zoneid_t zoneid; 5494 ill_walk_context_t ctx; 5495 5496 (void) mi_mpprintf(mp, 5497 "IPIF metric mtu in/out/forward name zone flags...\n" 5498 "\tlocal address\n" 5499 "\tsrc address\n" 5500 "\tsubnet\n" 5501 "\tmask\n" 5502 "\tbroadcast\n" 5503 "\tp-p-dst"); 5504 5505 ASSERT(q->q_next == NULL); 5506 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5507 5508 rw_enter(&ill_g_lock, RW_READER); 5509 ill = ILL_START_WALK_ALL(&ctx); 5510 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5511 for (ipif = ill->ill_ipif; ipif != NULL; 5512 ipif = ipif->ipif_next) { 5513 if (zoneid != GLOBAL_ZONEID && 5514 zoneid != ipif->ipif_zoneid && 5515 ipif->ipif_zoneid != ALL_ZONES) 5516 continue; 5517 (void) mi_mpprintf(mp, 5518 MI_COL_PTRFMT_STR 5519 "%04u %05u %u/%u/%u %s %d", 5520 (void *)ipif, 5521 ipif->ipif_metric, ipif->ipif_mtu, 5522 ipif->ipif_ib_pkt_count, 5523 ipif->ipif_ob_pkt_count, 5524 ipif->ipif_fo_pkt_count, 5525 ipif_get_name(ipif, buf, sizeof (buf)), 5526 ipif->ipif_zoneid); 5527 5528 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5529 ipif->ipif_ill->ill_phyint->phyint_flags; 5530 5531 /* Tack on text strings for any flags. */ 5532 nvp = ipif_nv_tbl; 5533 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5534 if (nvp->nv_value & flags) 5535 (void) mi_mpprintf_nr(mp, " %s", 5536 nvp->nv_name); 5537 } 5538 (void) mi_mpprintf(mp, 5539 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5540 inet_ntop(AF_INET6, 5541 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5542 inet_ntop(AF_INET6, 5543 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5544 inet_ntop(AF_INET6, 5545 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5546 inet_ntop(AF_INET6, 5547 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5548 inet_ntop(AF_INET6, 5549 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5550 inet_ntop(AF_INET6, 5551 &ipif->ipif_v6pp_dst_addr, 5552 buf6, sizeof (buf6))); 5553 } 5554 } 5555 rw_exit(&ill_g_lock); 5556 return (0); 5557 } 5558 5559 /* 5560 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5561 * driver. We construct best guess defaults for lower level information that 5562 * we need. If an interface is brought up without injection of any overriding 5563 * information from outside, we have to be ready to go with these defaults. 5564 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5565 * we primarely want the dl_provider_style. 5566 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5567 * at which point we assume the other part of the information is valid. 5568 */ 5569 void 5570 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5571 { 5572 uchar_t *brdcst_addr; 5573 uint_t brdcst_addr_length, phys_addr_length; 5574 t_scalar_t sap_length; 5575 dl_info_ack_t *dlia; 5576 ip_m_t *ipm; 5577 dl_qos_cl_sel1_t *sel1; 5578 5579 ASSERT(IAM_WRITER_ILL(ill)); 5580 5581 /* 5582 * Till the ill is fully up ILL_CHANGING will be set and 5583 * the ill is not globally visible. So no need for a lock. 5584 */ 5585 dlia = (dl_info_ack_t *)mp->b_rptr; 5586 ill->ill_mactype = dlia->dl_mac_type; 5587 5588 ipm = ip_m_lookup(dlia->dl_mac_type); 5589 if (ipm == NULL) { 5590 ipm = ip_m_lookup(DL_OTHER); 5591 ASSERT(ipm != NULL); 5592 } 5593 ill->ill_media = ipm; 5594 5595 /* 5596 * When the new DLPI stuff is ready we'll pull lengths 5597 * from dlia. 5598 */ 5599 if (dlia->dl_version == DL_VERSION_2) { 5600 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5601 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5602 brdcst_addr_length); 5603 if (brdcst_addr == NULL) { 5604 brdcst_addr_length = 0; 5605 } 5606 sap_length = dlia->dl_sap_length; 5607 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5608 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5609 brdcst_addr_length, sap_length, phys_addr_length)); 5610 } else { 5611 brdcst_addr_length = 6; 5612 brdcst_addr = ip_six_byte_all_ones; 5613 sap_length = -2; 5614 phys_addr_length = brdcst_addr_length; 5615 } 5616 5617 ill->ill_bcast_addr_length = brdcst_addr_length; 5618 ill->ill_phys_addr_length = phys_addr_length; 5619 ill->ill_sap_length = sap_length; 5620 ill->ill_max_frag = dlia->dl_max_sdu; 5621 ill->ill_max_mtu = ill->ill_max_frag; 5622 5623 ill->ill_type = ipm->ip_m_type; 5624 5625 if (!ill->ill_dlpi_style_set) { 5626 if (dlia->dl_provider_style == DL_STYLE2) 5627 ill->ill_needs_attach = 1; 5628 5629 /* 5630 * Allocate the first ipif on this ill. We don't delay it 5631 * further as ioctl handling assumes atleast one ipif to 5632 * be present. 5633 * 5634 * At this point we don't know whether the ill is v4 or v6. 5635 * We will know this whan the SIOCSLIFNAME happens and 5636 * the correct value for ill_isv6 will be assigned in 5637 * ipif_set_values(). We need to hold the ill lock and 5638 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5639 * the wakeup. 5640 */ 5641 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5642 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5643 mutex_enter(&ill->ill_lock); 5644 ASSERT(ill->ill_dlpi_style_set == 0); 5645 ill->ill_dlpi_style_set = 1; 5646 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5647 cv_broadcast(&ill->ill_cv); 5648 mutex_exit(&ill->ill_lock); 5649 freemsg(mp); 5650 return; 5651 } 5652 ASSERT(ill->ill_ipif != NULL); 5653 /* 5654 * We know whether it is IPv4 or IPv6 now, as this is the 5655 * second DL_INFO_ACK we are recieving in response to the 5656 * DL_INFO_REQ sent in ipif_set_values. 5657 */ 5658 if (ill->ill_isv6) 5659 ill->ill_sap = IP6_DL_SAP; 5660 else 5661 ill->ill_sap = IP_DL_SAP; 5662 /* 5663 * Set ipif_mtu which is used to set the IRE's 5664 * ire_max_frag value. The driver could have sent 5665 * a different mtu from what it sent last time. No 5666 * need to call ipif_mtu_change because IREs have 5667 * not yet been created. 5668 */ 5669 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5670 /* 5671 * Clear all the flags that were set based on ill_bcast_addr_length 5672 * and ill_phys_addr_length (in ipif_set_values) as these could have 5673 * changed now and we need to re-evaluate. 5674 */ 5675 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5676 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5677 5678 /* 5679 * Free ill_resolver_mp and ill_bcast_mp as things could have 5680 * changed now. 5681 */ 5682 if (ill->ill_bcast_addr_length == 0) { 5683 if (ill->ill_resolver_mp != NULL) 5684 freemsg(ill->ill_resolver_mp); 5685 if (ill->ill_bcast_mp != NULL) 5686 freemsg(ill->ill_bcast_mp); 5687 if (ill->ill_flags & ILLF_XRESOLV) 5688 ill->ill_net_type = IRE_IF_RESOLVER; 5689 else 5690 ill->ill_net_type = IRE_IF_NORESOLVER; 5691 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5692 ill->ill_phys_addr_length, 5693 ill->ill_sap, 5694 ill->ill_sap_length); 5695 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5696 5697 if (ill->ill_isv6) 5698 /* 5699 * Note: xresolv interfaces will eventually need NOARP 5700 * set here as well, but that will require those 5701 * external resolvers to have some knowledge of 5702 * that flag and act appropriately. Not to be changed 5703 * at present. 5704 */ 5705 ill->ill_flags |= ILLF_NONUD; 5706 else 5707 ill->ill_flags |= ILLF_NOARP; 5708 5709 if (ill->ill_phys_addr_length == 0) { 5710 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5711 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5712 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5713 } else { 5714 /* pt-pt supports multicast. */ 5715 ill->ill_flags |= ILLF_MULTICAST; 5716 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5717 } 5718 } 5719 } else { 5720 ill->ill_net_type = IRE_IF_RESOLVER; 5721 if (ill->ill_bcast_mp != NULL) 5722 freemsg(ill->ill_bcast_mp); 5723 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5724 ill->ill_bcast_addr_length, ill->ill_sap, 5725 ill->ill_sap_length); 5726 /* 5727 * Later detect lack of DLPI driver multicast 5728 * capability by catching DL_ENABMULTI errors in 5729 * ip_rput_dlpi. 5730 */ 5731 ill->ill_flags |= ILLF_MULTICAST; 5732 if (!ill->ill_isv6) 5733 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5734 } 5735 /* By default an interface does not support any CoS marking */ 5736 ill->ill_flags &= ~ILLF_COS_ENABLED; 5737 5738 /* 5739 * If we get QoS information in DL_INFO_ACK, the device supports 5740 * some form of CoS marking, set ILLF_COS_ENABLED. 5741 */ 5742 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5743 dlia->dl_qos_length); 5744 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5745 ill->ill_flags |= ILLF_COS_ENABLED; 5746 } 5747 5748 /* Clear any previous error indication. */ 5749 ill->ill_error = 0; 5750 freemsg(mp); 5751 } 5752 5753 /* 5754 * Perform various checks to verify that an address would make sense as a 5755 * local, remote, or subnet interface address. 5756 */ 5757 static boolean_t 5758 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5759 { 5760 ipaddr_t net_mask; 5761 5762 /* 5763 * Don't allow all zeroes, all ones or experimental address, but allow 5764 * all ones netmask. 5765 */ 5766 if ((net_mask = ip_net_mask(addr)) == 0) 5767 return (B_FALSE); 5768 /* A given netmask overrides the "guess" netmask */ 5769 if (subnet_mask != 0) 5770 net_mask = subnet_mask; 5771 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5772 (addr == (addr | ~net_mask)))) { 5773 return (B_FALSE); 5774 } 5775 if (CLASSD(addr)) 5776 return (B_FALSE); 5777 5778 return (B_TRUE); 5779 } 5780 5781 /* 5782 * ipif_lookup_group 5783 * Returns held ipif 5784 */ 5785 ipif_t * 5786 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5787 { 5788 ire_t *ire; 5789 ipif_t *ipif; 5790 5791 ire = ire_lookup_multi(group, zoneid); 5792 if (ire == NULL) 5793 return (NULL); 5794 ipif = ire->ire_ipif; 5795 ipif_refhold(ipif); 5796 ire_refrele(ire); 5797 return (ipif); 5798 } 5799 5800 /* 5801 * Look for an ipif with the specified interface address and destination. 5802 * The destination address is used only for matching point-to-point interfaces. 5803 */ 5804 ipif_t * 5805 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5806 ipsq_func_t func, int *error) 5807 { 5808 ipif_t *ipif; 5809 ill_t *ill; 5810 ill_walk_context_t ctx; 5811 ipsq_t *ipsq; 5812 5813 if (error != NULL) 5814 *error = 0; 5815 5816 /* 5817 * First match all the point-to-point interfaces 5818 * before looking at non-point-to-point interfaces. 5819 * This is done to avoid returning non-point-to-point 5820 * ipif instead of unnumbered point-to-point ipif. 5821 */ 5822 rw_enter(&ill_g_lock, RW_READER); 5823 ill = ILL_START_WALK_V4(&ctx); 5824 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5825 GRAB_CONN_LOCK(q); 5826 mutex_enter(&ill->ill_lock); 5827 for (ipif = ill->ill_ipif; ipif != NULL; 5828 ipif = ipif->ipif_next) { 5829 /* Allow the ipif to be down */ 5830 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5831 (ipif->ipif_lcl_addr == if_addr) && 5832 (ipif->ipif_pp_dst_addr == dst)) { 5833 /* 5834 * The block comment at the start of ipif_down 5835 * explains the use of the macros used below 5836 */ 5837 if (IPIF_CAN_LOOKUP(ipif)) { 5838 ipif_refhold_locked(ipif); 5839 mutex_exit(&ill->ill_lock); 5840 RELEASE_CONN_LOCK(q); 5841 rw_exit(&ill_g_lock); 5842 return (ipif); 5843 } else if (IPIF_CAN_WAIT(ipif, q)) { 5844 ipsq = ill->ill_phyint->phyint_ipsq; 5845 mutex_enter(&ipsq->ipsq_lock); 5846 mutex_exit(&ill->ill_lock); 5847 rw_exit(&ill_g_lock); 5848 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5849 ill); 5850 mutex_exit(&ipsq->ipsq_lock); 5851 RELEASE_CONN_LOCK(q); 5852 *error = EINPROGRESS; 5853 return (NULL); 5854 } 5855 } 5856 } 5857 mutex_exit(&ill->ill_lock); 5858 RELEASE_CONN_LOCK(q); 5859 } 5860 rw_exit(&ill_g_lock); 5861 5862 /* lookup the ipif based on interface address */ 5863 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5864 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5865 return (ipif); 5866 } 5867 5868 /* 5869 * Look for an ipif with the specified address. For point-point links 5870 * we look for matches on either the destination address and the local 5871 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5872 * is set. 5873 * Matches on a specific ill if match_ill is set. 5874 */ 5875 ipif_t * 5876 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5877 mblk_t *mp, ipsq_func_t func, int *error) 5878 { 5879 ipif_t *ipif; 5880 ill_t *ill; 5881 boolean_t ptp = B_FALSE; 5882 ipsq_t *ipsq; 5883 ill_walk_context_t ctx; 5884 5885 if (error != NULL) 5886 *error = 0; 5887 5888 rw_enter(&ill_g_lock, RW_READER); 5889 /* 5890 * Repeat twice, first based on local addresses and 5891 * next time for pointopoint. 5892 */ 5893 repeat: 5894 ill = ILL_START_WALK_V4(&ctx); 5895 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5896 if (match_ill != NULL && ill != match_ill) { 5897 continue; 5898 } 5899 GRAB_CONN_LOCK(q); 5900 mutex_enter(&ill->ill_lock); 5901 for (ipif = ill->ill_ipif; ipif != NULL; 5902 ipif = ipif->ipif_next) { 5903 if (zoneid != ALL_ZONES && 5904 zoneid != ipif->ipif_zoneid && 5905 ipif->ipif_zoneid != ALL_ZONES) 5906 continue; 5907 /* Allow the ipif to be down */ 5908 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5909 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5910 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5911 (ipif->ipif_pp_dst_addr == addr))) { 5912 /* 5913 * The block comment at the start of ipif_down 5914 * explains the use of the macros used below 5915 */ 5916 if (IPIF_CAN_LOOKUP(ipif)) { 5917 ipif_refhold_locked(ipif); 5918 mutex_exit(&ill->ill_lock); 5919 RELEASE_CONN_LOCK(q); 5920 rw_exit(&ill_g_lock); 5921 return (ipif); 5922 } else if (IPIF_CAN_WAIT(ipif, q)) { 5923 ipsq = ill->ill_phyint->phyint_ipsq; 5924 mutex_enter(&ipsq->ipsq_lock); 5925 mutex_exit(&ill->ill_lock); 5926 rw_exit(&ill_g_lock); 5927 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5928 ill); 5929 mutex_exit(&ipsq->ipsq_lock); 5930 RELEASE_CONN_LOCK(q); 5931 *error = EINPROGRESS; 5932 return (NULL); 5933 } 5934 } 5935 } 5936 mutex_exit(&ill->ill_lock); 5937 RELEASE_CONN_LOCK(q); 5938 } 5939 5940 /* If we already did the ptp case, then we are done */ 5941 if (ptp) { 5942 rw_exit(&ill_g_lock); 5943 if (error != NULL) 5944 *error = ENXIO; 5945 return (NULL); 5946 } 5947 ptp = B_TRUE; 5948 goto repeat; 5949 } 5950 5951 /* 5952 * Look for an ipif with the specified address. For point-point links 5953 * we look for matches on either the destination address and the local 5954 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5955 * is set. 5956 * Matches on a specific ill if match_ill is set. 5957 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5958 */ 5959 zoneid_t 5960 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill) 5961 { 5962 zoneid_t zoneid; 5963 ipif_t *ipif; 5964 ill_t *ill; 5965 boolean_t ptp = B_FALSE; 5966 ill_walk_context_t ctx; 5967 5968 rw_enter(&ill_g_lock, RW_READER); 5969 /* 5970 * Repeat twice, first based on local addresses and 5971 * next time for pointopoint. 5972 */ 5973 repeat: 5974 ill = ILL_START_WALK_V4(&ctx); 5975 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5976 if (match_ill != NULL && ill != match_ill) { 5977 continue; 5978 } 5979 mutex_enter(&ill->ill_lock); 5980 for (ipif = ill->ill_ipif; ipif != NULL; 5981 ipif = ipif->ipif_next) { 5982 /* Allow the ipif to be down */ 5983 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5984 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5985 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5986 (ipif->ipif_pp_dst_addr == addr)) && 5987 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5988 zoneid = ipif->ipif_zoneid; 5989 mutex_exit(&ill->ill_lock); 5990 rw_exit(&ill_g_lock); 5991 /* 5992 * If ipif_zoneid was ALL_ZONES then we have 5993 * a trusted extensions shared IP address. 5994 * In that case GLOBAL_ZONEID works to send. 5995 */ 5996 if (zoneid == ALL_ZONES) 5997 zoneid = GLOBAL_ZONEID; 5998 return (zoneid); 5999 } 6000 } 6001 mutex_exit(&ill->ill_lock); 6002 } 6003 6004 /* If we already did the ptp case, then we are done */ 6005 if (ptp) { 6006 rw_exit(&ill_g_lock); 6007 return (ALL_ZONES); 6008 } 6009 ptp = B_TRUE; 6010 goto repeat; 6011 } 6012 6013 /* 6014 * Look for an ipif that matches the specified remote address i.e. the 6015 * ipif that would receive the specified packet. 6016 * First look for directly connected interfaces and then do a recursive 6017 * IRE lookup and pick the first ipif corresponding to the source address in the 6018 * ire. 6019 * Returns: held ipif 6020 */ 6021 ipif_t * 6022 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6023 { 6024 ipif_t *ipif; 6025 ire_t *ire; 6026 6027 ASSERT(!ill->ill_isv6); 6028 6029 /* 6030 * Someone could be changing this ipif currently or change it 6031 * after we return this. Thus a few packets could use the old 6032 * old values. However structure updates/creates (ire, ilg, ilm etc) 6033 * will atomically be updated or cleaned up with the new value 6034 * Thus we don't need a lock to check the flags or other attrs below. 6035 */ 6036 mutex_enter(&ill->ill_lock); 6037 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6038 if (!IPIF_CAN_LOOKUP(ipif)) 6039 continue; 6040 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6041 ipif->ipif_zoneid != ALL_ZONES) 6042 continue; 6043 /* Allow the ipif to be down */ 6044 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6045 if ((ipif->ipif_pp_dst_addr == addr) || 6046 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6047 ipif->ipif_lcl_addr == addr)) { 6048 ipif_refhold_locked(ipif); 6049 mutex_exit(&ill->ill_lock); 6050 return (ipif); 6051 } 6052 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6053 ipif_refhold_locked(ipif); 6054 mutex_exit(&ill->ill_lock); 6055 return (ipif); 6056 } 6057 } 6058 mutex_exit(&ill->ill_lock); 6059 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6060 NULL, MATCH_IRE_RECURSIVE); 6061 if (ire != NULL) { 6062 /* 6063 * The callers of this function wants to know the 6064 * interface on which they have to send the replies 6065 * back. For IRE_CACHES that have ire_stq and ire_ipif 6066 * derived from different ills, we really don't care 6067 * what we return here. 6068 */ 6069 ipif = ire->ire_ipif; 6070 if (ipif != NULL) { 6071 ipif_refhold(ipif); 6072 ire_refrele(ire); 6073 return (ipif); 6074 } 6075 ire_refrele(ire); 6076 } 6077 /* Pick the first interface */ 6078 ipif = ipif_get_next_ipif(NULL, ill); 6079 return (ipif); 6080 } 6081 6082 /* 6083 * This func does not prevent refcnt from increasing. But if 6084 * the caller has taken steps to that effect, then this func 6085 * can be used to determine whether the ill has become quiescent 6086 */ 6087 boolean_t 6088 ill_is_quiescent(ill_t *ill) 6089 { 6090 ipif_t *ipif; 6091 6092 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6093 6094 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6095 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6096 return (B_FALSE); 6097 } 6098 } 6099 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6100 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6101 ill->ill_mrtun_refcnt != 0) { 6102 return (B_FALSE); 6103 } 6104 return (B_TRUE); 6105 } 6106 6107 /* 6108 * This func does not prevent refcnt from increasing. But if 6109 * the caller has taken steps to that effect, then this func 6110 * can be used to determine whether the ipif has become quiescent 6111 */ 6112 static boolean_t 6113 ipif_is_quiescent(ipif_t *ipif) 6114 { 6115 ill_t *ill; 6116 6117 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6118 6119 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6120 return (B_FALSE); 6121 } 6122 6123 ill = ipif->ipif_ill; 6124 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6125 ill->ill_logical_down) { 6126 return (B_TRUE); 6127 } 6128 6129 /* This is the last ipif going down or being deleted on this ill */ 6130 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6131 return (B_FALSE); 6132 } 6133 6134 return (B_TRUE); 6135 } 6136 6137 /* 6138 * This func does not prevent refcnt from increasing. But if 6139 * the caller has taken steps to that effect, then this func 6140 * can be used to determine whether the ipifs marked with IPIF_MOVING 6141 * have become quiescent and can be moved in a failover/failback. 6142 */ 6143 static ipif_t * 6144 ill_quiescent_to_move(ill_t *ill) 6145 { 6146 ipif_t *ipif; 6147 6148 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6149 6150 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6151 if (ipif->ipif_state_flags & IPIF_MOVING) { 6152 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6153 return (ipif); 6154 } 6155 } 6156 } 6157 return (NULL); 6158 } 6159 6160 /* 6161 * The ipif/ill/ire has been refreled. Do the tail processing. 6162 * Determine if the ipif or ill in question has become quiescent and if so 6163 * wakeup close and/or restart any queued pending ioctl that is waiting 6164 * for the ipif_down (or ill_down) 6165 */ 6166 void 6167 ipif_ill_refrele_tail(ill_t *ill) 6168 { 6169 mblk_t *mp; 6170 conn_t *connp; 6171 ipsq_t *ipsq; 6172 ipif_t *ipif; 6173 6174 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6175 6176 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6177 ill_is_quiescent(ill)) { 6178 /* ill_close may be waiting */ 6179 cv_broadcast(&ill->ill_cv); 6180 } 6181 6182 /* ipsq can't change because ill_lock is held */ 6183 ipsq = ill->ill_phyint->phyint_ipsq; 6184 if (ipsq->ipsq_waitfor == 0) { 6185 /* Not waiting for anything, just return. */ 6186 mutex_exit(&ill->ill_lock); 6187 return; 6188 } 6189 ASSERT(ipsq->ipsq_pending_mp != NULL && 6190 ipsq->ipsq_pending_ipif != NULL); 6191 /* 6192 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6193 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6194 * be zero for restarting an ioctl that ends up downing the ill. 6195 */ 6196 ipif = ipsq->ipsq_pending_ipif; 6197 if (ipif->ipif_ill != ill) { 6198 /* The ioctl is pending on some other ill. */ 6199 mutex_exit(&ill->ill_lock); 6200 return; 6201 } 6202 6203 switch (ipsq->ipsq_waitfor) { 6204 case IPIF_DOWN: 6205 case IPIF_FREE: 6206 if (!ipif_is_quiescent(ipif)) { 6207 mutex_exit(&ill->ill_lock); 6208 return; 6209 } 6210 break; 6211 6212 case ILL_DOWN: 6213 case ILL_FREE: 6214 /* 6215 * case ILL_FREE arises only for loopback. otherwise ill_delete 6216 * waits synchronously in ip_close, and no message is queued in 6217 * ipsq_pending_mp at all in this case 6218 */ 6219 if (!ill_is_quiescent(ill)) { 6220 mutex_exit(&ill->ill_lock); 6221 return; 6222 } 6223 6224 break; 6225 6226 case ILL_MOVE_OK: 6227 if (ill_quiescent_to_move(ill) != NULL) { 6228 mutex_exit(&ill->ill_lock); 6229 return; 6230 } 6231 6232 break; 6233 default: 6234 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6235 (void *)ipsq, ipsq->ipsq_waitfor); 6236 } 6237 6238 /* 6239 * Incr refcnt for the qwriter_ip call below which 6240 * does a refrele 6241 */ 6242 ill_refhold_locked(ill); 6243 mutex_exit(&ill->ill_lock); 6244 6245 mp = ipsq_pending_mp_get(ipsq, &connp); 6246 ASSERT(mp != NULL); 6247 6248 switch (mp->b_datap->db_type) { 6249 case M_ERROR: 6250 case M_HANGUP: 6251 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 6252 ipif_all_down_tail, CUR_OP, B_TRUE); 6253 return; 6254 6255 case M_IOCTL: 6256 case M_IOCDATA: 6257 (void) qwriter_ip(NULL, ill, 6258 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 6259 ip_reprocess_ioctl, CUR_OP, B_TRUE); 6260 return; 6261 6262 default: 6263 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6264 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6265 } 6266 } 6267 6268 #ifdef ILL_DEBUG 6269 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6270 void 6271 th_trace_rrecord(th_trace_t *th_trace) 6272 { 6273 tr_buf_t *tr_buf; 6274 uint_t lastref; 6275 6276 lastref = th_trace->th_trace_lastref; 6277 lastref++; 6278 if (lastref == TR_BUF_MAX) 6279 lastref = 0; 6280 th_trace->th_trace_lastref = lastref; 6281 tr_buf = &th_trace->th_trbuf[lastref]; 6282 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6283 } 6284 6285 th_trace_t * 6286 th_trace_ipif_lookup(ipif_t *ipif) 6287 { 6288 int bucket_id; 6289 th_trace_t *th_trace; 6290 6291 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6292 6293 bucket_id = IP_TR_HASH(curthread); 6294 ASSERT(bucket_id < IP_TR_HASH_MAX); 6295 6296 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6297 th_trace = th_trace->th_next) { 6298 if (th_trace->th_id == curthread) 6299 return (th_trace); 6300 } 6301 return (NULL); 6302 } 6303 6304 void 6305 ipif_trace_ref(ipif_t *ipif) 6306 { 6307 int bucket_id; 6308 th_trace_t *th_trace; 6309 6310 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6311 6312 if (ipif->ipif_trace_disable) 6313 return; 6314 6315 /* 6316 * Attempt to locate the trace buffer for the curthread. 6317 * If it does not exist, then allocate a new trace buffer 6318 * and link it in list of trace bufs for this ipif, at the head 6319 */ 6320 th_trace = th_trace_ipif_lookup(ipif); 6321 if (th_trace == NULL) { 6322 bucket_id = IP_TR_HASH(curthread); 6323 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6324 KM_NOSLEEP); 6325 if (th_trace == NULL) { 6326 ipif->ipif_trace_disable = B_TRUE; 6327 ipif_trace_cleanup(ipif); 6328 return; 6329 } 6330 th_trace->th_id = curthread; 6331 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6332 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6333 if (th_trace->th_next != NULL) 6334 th_trace->th_next->th_prev = &th_trace->th_next; 6335 ipif->ipif_trace[bucket_id] = th_trace; 6336 } 6337 ASSERT(th_trace->th_refcnt >= 0 && 6338 th_trace->th_refcnt < TR_BUF_MAX -1); 6339 th_trace->th_refcnt++; 6340 th_trace_rrecord(th_trace); 6341 } 6342 6343 void 6344 ipif_untrace_ref(ipif_t *ipif) 6345 { 6346 th_trace_t *th_trace; 6347 6348 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6349 6350 if (ipif->ipif_trace_disable) 6351 return; 6352 th_trace = th_trace_ipif_lookup(ipif); 6353 ASSERT(th_trace != NULL); 6354 ASSERT(th_trace->th_refcnt > 0); 6355 6356 th_trace->th_refcnt--; 6357 th_trace_rrecord(th_trace); 6358 } 6359 6360 th_trace_t * 6361 th_trace_ill_lookup(ill_t *ill) 6362 { 6363 th_trace_t *th_trace; 6364 int bucket_id; 6365 6366 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6367 6368 bucket_id = IP_TR_HASH(curthread); 6369 ASSERT(bucket_id < IP_TR_HASH_MAX); 6370 6371 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6372 th_trace = th_trace->th_next) { 6373 if (th_trace->th_id == curthread) 6374 return (th_trace); 6375 } 6376 return (NULL); 6377 } 6378 6379 void 6380 ill_trace_ref(ill_t *ill) 6381 { 6382 int bucket_id; 6383 th_trace_t *th_trace; 6384 6385 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6386 if (ill->ill_trace_disable) 6387 return; 6388 /* 6389 * Attempt to locate the trace buffer for the curthread. 6390 * If it does not exist, then allocate a new trace buffer 6391 * and link it in list of trace bufs for this ill, at the head 6392 */ 6393 th_trace = th_trace_ill_lookup(ill); 6394 if (th_trace == NULL) { 6395 bucket_id = IP_TR_HASH(curthread); 6396 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6397 KM_NOSLEEP); 6398 if (th_trace == NULL) { 6399 ill->ill_trace_disable = B_TRUE; 6400 ill_trace_cleanup(ill); 6401 return; 6402 } 6403 th_trace->th_id = curthread; 6404 th_trace->th_next = ill->ill_trace[bucket_id]; 6405 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6406 if (th_trace->th_next != NULL) 6407 th_trace->th_next->th_prev = &th_trace->th_next; 6408 ill->ill_trace[bucket_id] = th_trace; 6409 } 6410 ASSERT(th_trace->th_refcnt >= 0 && 6411 th_trace->th_refcnt < TR_BUF_MAX - 1); 6412 6413 th_trace->th_refcnt++; 6414 th_trace_rrecord(th_trace); 6415 } 6416 6417 void 6418 ill_untrace_ref(ill_t *ill) 6419 { 6420 th_trace_t *th_trace; 6421 6422 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6423 6424 if (ill->ill_trace_disable) 6425 return; 6426 th_trace = th_trace_ill_lookup(ill); 6427 ASSERT(th_trace != NULL); 6428 ASSERT(th_trace->th_refcnt > 0); 6429 6430 th_trace->th_refcnt--; 6431 th_trace_rrecord(th_trace); 6432 } 6433 6434 /* 6435 * Verify that this thread has no refs to the ipif and free 6436 * the trace buffers 6437 */ 6438 /* ARGSUSED */ 6439 void 6440 ipif_thread_exit(ipif_t *ipif, void *dummy) 6441 { 6442 th_trace_t *th_trace; 6443 6444 mutex_enter(&ipif->ipif_ill->ill_lock); 6445 6446 th_trace = th_trace_ipif_lookup(ipif); 6447 if (th_trace == NULL) { 6448 mutex_exit(&ipif->ipif_ill->ill_lock); 6449 return; 6450 } 6451 ASSERT(th_trace->th_refcnt == 0); 6452 /* unlink th_trace and free it */ 6453 *th_trace->th_prev = th_trace->th_next; 6454 if (th_trace->th_next != NULL) 6455 th_trace->th_next->th_prev = th_trace->th_prev; 6456 th_trace->th_next = NULL; 6457 th_trace->th_prev = NULL; 6458 kmem_free(th_trace, sizeof (th_trace_t)); 6459 6460 mutex_exit(&ipif->ipif_ill->ill_lock); 6461 } 6462 6463 /* 6464 * Verify that this thread has no refs to the ill and free 6465 * the trace buffers 6466 */ 6467 /* ARGSUSED */ 6468 void 6469 ill_thread_exit(ill_t *ill, void *dummy) 6470 { 6471 th_trace_t *th_trace; 6472 6473 mutex_enter(&ill->ill_lock); 6474 6475 th_trace = th_trace_ill_lookup(ill); 6476 if (th_trace == NULL) { 6477 mutex_exit(&ill->ill_lock); 6478 return; 6479 } 6480 ASSERT(th_trace->th_refcnt == 0); 6481 /* unlink th_trace and free it */ 6482 *th_trace->th_prev = th_trace->th_next; 6483 if (th_trace->th_next != NULL) 6484 th_trace->th_next->th_prev = th_trace->th_prev; 6485 th_trace->th_next = NULL; 6486 th_trace->th_prev = NULL; 6487 kmem_free(th_trace, sizeof (th_trace_t)); 6488 6489 mutex_exit(&ill->ill_lock); 6490 } 6491 #endif 6492 6493 #ifdef ILL_DEBUG 6494 void 6495 ip_thread_exit(void) 6496 { 6497 ill_t *ill; 6498 ipif_t *ipif; 6499 ill_walk_context_t ctx; 6500 6501 rw_enter(&ill_g_lock, RW_READER); 6502 ill = ILL_START_WALK_ALL(&ctx); 6503 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6504 for (ipif = ill->ill_ipif; ipif != NULL; 6505 ipif = ipif->ipif_next) { 6506 ipif_thread_exit(ipif, NULL); 6507 } 6508 ill_thread_exit(ill, NULL); 6509 } 6510 rw_exit(&ill_g_lock); 6511 6512 ire_walk(ire_thread_exit, NULL); 6513 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6514 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6515 } 6516 6517 /* 6518 * Called when ipif is unplumbed or when memory alloc fails 6519 */ 6520 void 6521 ipif_trace_cleanup(ipif_t *ipif) 6522 { 6523 int i; 6524 th_trace_t *th_trace; 6525 th_trace_t *th_trace_next; 6526 6527 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6528 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6529 th_trace = th_trace_next) { 6530 th_trace_next = th_trace->th_next; 6531 kmem_free(th_trace, sizeof (th_trace_t)); 6532 } 6533 ipif->ipif_trace[i] = NULL; 6534 } 6535 } 6536 6537 /* 6538 * Called when ill is unplumbed or when memory alloc fails 6539 */ 6540 void 6541 ill_trace_cleanup(ill_t *ill) 6542 { 6543 int i; 6544 th_trace_t *th_trace; 6545 th_trace_t *th_trace_next; 6546 6547 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6548 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6549 th_trace = th_trace_next) { 6550 th_trace_next = th_trace->th_next; 6551 kmem_free(th_trace, sizeof (th_trace_t)); 6552 } 6553 ill->ill_trace[i] = NULL; 6554 } 6555 } 6556 6557 #else 6558 void ip_thread_exit(void) {} 6559 #endif 6560 6561 void 6562 ipif_refhold_locked(ipif_t *ipif) 6563 { 6564 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6565 ipif->ipif_refcnt++; 6566 IPIF_TRACE_REF(ipif); 6567 } 6568 6569 void 6570 ipif_refhold(ipif_t *ipif) 6571 { 6572 ill_t *ill; 6573 6574 ill = ipif->ipif_ill; 6575 mutex_enter(&ill->ill_lock); 6576 ipif->ipif_refcnt++; 6577 IPIF_TRACE_REF(ipif); 6578 mutex_exit(&ill->ill_lock); 6579 } 6580 6581 /* 6582 * Must not be called while holding any locks. Otherwise if this is 6583 * the last reference to be released there is a chance of recursive mutex 6584 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6585 * to restart an ioctl. 6586 */ 6587 void 6588 ipif_refrele(ipif_t *ipif) 6589 { 6590 ill_t *ill; 6591 6592 ill = ipif->ipif_ill; 6593 6594 mutex_enter(&ill->ill_lock); 6595 ASSERT(ipif->ipif_refcnt != 0); 6596 ipif->ipif_refcnt--; 6597 IPIF_UNTRACE_REF(ipif); 6598 if (ipif->ipif_refcnt != 0) { 6599 mutex_exit(&ill->ill_lock); 6600 return; 6601 } 6602 6603 /* Drops the ill_lock */ 6604 ipif_ill_refrele_tail(ill); 6605 } 6606 6607 ipif_t * 6608 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6609 { 6610 ipif_t *ipif; 6611 6612 mutex_enter(&ill->ill_lock); 6613 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6614 ipif != NULL; ipif = ipif->ipif_next) { 6615 if (!IPIF_CAN_LOOKUP(ipif)) 6616 continue; 6617 ipif_refhold_locked(ipif); 6618 mutex_exit(&ill->ill_lock); 6619 return (ipif); 6620 } 6621 mutex_exit(&ill->ill_lock); 6622 return (NULL); 6623 } 6624 6625 /* 6626 * TODO: make this table extendible at run time 6627 * Return a pointer to the mac type info for 'mac_type' 6628 */ 6629 static ip_m_t * 6630 ip_m_lookup(t_uscalar_t mac_type) 6631 { 6632 ip_m_t *ipm; 6633 6634 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6635 if (ipm->ip_m_mac_type == mac_type) 6636 return (ipm); 6637 return (NULL); 6638 } 6639 6640 /* 6641 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6642 * ipif_arg is passed in to associate it with the correct interface. 6643 * We may need to restart this operation if the ipif cannot be looked up 6644 * due to an exclusive operation that is currently in progress. The restart 6645 * entry point is specified by 'func' 6646 */ 6647 int 6648 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6649 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6650 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6651 ipsq_func_t func, struct rtsa_s *sp) 6652 { 6653 ire_t *ire; 6654 ire_t *gw_ire = NULL; 6655 ipif_t *ipif = NULL; 6656 boolean_t ipif_refheld = B_FALSE; 6657 uint_t type; 6658 int match_flags = MATCH_IRE_TYPE; 6659 int error; 6660 tsol_gc_t *gc = NULL; 6661 tsol_gcgrp_t *gcgrp = NULL; 6662 boolean_t gcgrp_xtraref = B_FALSE; 6663 6664 ip1dbg(("ip_rt_add:")); 6665 6666 if (ire_arg != NULL) 6667 *ire_arg = NULL; 6668 6669 /* 6670 * If this is the case of RTF_HOST being set, then we set the netmask 6671 * to all ones (regardless if one was supplied). 6672 */ 6673 if (flags & RTF_HOST) 6674 mask = IP_HOST_MASK; 6675 6676 /* 6677 * Prevent routes with a zero gateway from being created (since 6678 * interfaces can currently be plumbed and brought up no assigned 6679 * address). 6680 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6681 */ 6682 if (gw_addr == 0 && src_ipif == NULL) 6683 return (ENETUNREACH); 6684 /* 6685 * Get the ipif, if any, corresponding to the gw_addr 6686 */ 6687 if (gw_addr != 0) { 6688 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6689 &error); 6690 if (ipif != NULL) { 6691 if (IS_VNI(ipif->ipif_ill)) { 6692 ipif_refrele(ipif); 6693 return (EINVAL); 6694 } 6695 ipif_refheld = B_TRUE; 6696 } else if (error == EINPROGRESS) { 6697 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6698 return (EINPROGRESS); 6699 } else { 6700 error = 0; 6701 } 6702 } 6703 6704 if (ipif != NULL) { 6705 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6706 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6707 } else { 6708 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6709 } 6710 6711 /* 6712 * GateD will attempt to create routes with a loopback interface 6713 * address as the gateway and with RTF_GATEWAY set. We allow 6714 * these routes to be added, but create them as interface routes 6715 * since the gateway is an interface address. 6716 */ 6717 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6718 flags &= ~RTF_GATEWAY; 6719 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6720 mask == IP_HOST_MASK) { 6721 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6722 ALL_ZONES, NULL, match_flags); 6723 if (ire != NULL) { 6724 ire_refrele(ire); 6725 if (ipif_refheld) 6726 ipif_refrele(ipif); 6727 return (EEXIST); 6728 } 6729 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6730 "for 0x%x\n", (void *)ipif, 6731 ipif->ipif_ire_type, 6732 ntohl(ipif->ipif_lcl_addr))); 6733 ire = ire_create( 6734 (uchar_t *)&dst_addr, /* dest address */ 6735 (uchar_t *)&mask, /* mask */ 6736 (uchar_t *)&ipif->ipif_src_addr, 6737 NULL, /* no gateway */ 6738 NULL, 6739 &ipif->ipif_mtu, 6740 NULL, 6741 ipif->ipif_rq, /* recv-from queue */ 6742 NULL, /* no send-to queue */ 6743 ipif->ipif_ire_type, /* LOOPBACK */ 6744 NULL, 6745 ipif, 6746 NULL, 6747 0, 6748 0, 6749 0, 6750 (ipif->ipif_flags & IPIF_PRIVATE) ? 6751 RTF_PRIVATE : 0, 6752 &ire_uinfo_null, 6753 NULL, 6754 NULL); 6755 6756 if (ire == NULL) { 6757 if (ipif_refheld) 6758 ipif_refrele(ipif); 6759 return (ENOMEM); 6760 } 6761 error = ire_add(&ire, q, mp, func, B_FALSE); 6762 if (error == 0) 6763 goto save_ire; 6764 if (ipif_refheld) 6765 ipif_refrele(ipif); 6766 return (error); 6767 6768 } 6769 } 6770 6771 /* 6772 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6773 * and the gateway address provided is one of the system's interface 6774 * addresses. By using the routing socket interface and supplying an 6775 * RTA_IFP sockaddr with an interface index, an alternate method of 6776 * specifying an interface route to be created is available which uses 6777 * the interface index that specifies the outgoing interface rather than 6778 * the address of an outgoing interface (which may not be able to 6779 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6780 * flag, routes can be specified which not only specify the next-hop to 6781 * be used when routing to a certain prefix, but also which outgoing 6782 * interface should be used. 6783 * 6784 * Previously, interfaces would have unique addresses assigned to them 6785 * and so the address assigned to a particular interface could be used 6786 * to identify a particular interface. One exception to this was the 6787 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6788 * 6789 * With the advent of IPv6 and its link-local addresses, this 6790 * restriction was relaxed and interfaces could share addresses between 6791 * themselves. In fact, typically all of the link-local interfaces on 6792 * an IPv6 node or router will have the same link-local address. In 6793 * order to differentiate between these interfaces, the use of an 6794 * interface index is necessary and this index can be carried inside a 6795 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6796 * of using the interface index, however, is that all of the ipif's that 6797 * are part of an ill have the same index and so the RTA_IFP sockaddr 6798 * cannot be used to differentiate between ipif's (or logical 6799 * interfaces) that belong to the same ill (physical interface). 6800 * 6801 * For example, in the following case involving IPv4 interfaces and 6802 * logical interfaces 6803 * 6804 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6805 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6806 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6807 * 6808 * the ipif's corresponding to each of these interface routes can be 6809 * uniquely identified by the "gateway" (actually interface address). 6810 * 6811 * In this case involving multiple IPv6 default routes to a particular 6812 * link-local gateway, the use of RTA_IFP is necessary to specify which 6813 * default route is of interest: 6814 * 6815 * default fe80::123:4567:89ab:cdef U if0 6816 * default fe80::123:4567:89ab:cdef U if1 6817 */ 6818 6819 /* RTF_GATEWAY not set */ 6820 if (!(flags & RTF_GATEWAY)) { 6821 queue_t *stq; 6822 queue_t *rfq = NULL; 6823 ill_t *in_ill = NULL; 6824 6825 if (sp != NULL) { 6826 ip2dbg(("ip_rt_add: gateway security attributes " 6827 "cannot be set with interface route\n")); 6828 if (ipif_refheld) 6829 ipif_refrele(ipif); 6830 return (EINVAL); 6831 } 6832 6833 /* 6834 * As the interface index specified with the RTA_IFP sockaddr is 6835 * the same for all ipif's off of an ill, the matching logic 6836 * below uses MATCH_IRE_ILL if such an index was specified. 6837 * This means that routes sharing the same prefix when added 6838 * using a RTA_IFP sockaddr must have distinct interface 6839 * indices (namely, they must be on distinct ill's). 6840 * 6841 * On the other hand, since the gateway address will usually be 6842 * different for each ipif on the system, the matching logic 6843 * uses MATCH_IRE_IPIF in the case of a traditional interface 6844 * route. This means that interface routes for the same prefix 6845 * can be created if they belong to distinct ipif's and if a 6846 * RTA_IFP sockaddr is not present. 6847 */ 6848 if (ipif_arg != NULL) { 6849 if (ipif_refheld) { 6850 ipif_refrele(ipif); 6851 ipif_refheld = B_FALSE; 6852 } 6853 ipif = ipif_arg; 6854 match_flags |= MATCH_IRE_ILL; 6855 } else { 6856 /* 6857 * Check the ipif corresponding to the gw_addr 6858 */ 6859 if (ipif == NULL) 6860 return (ENETUNREACH); 6861 match_flags |= MATCH_IRE_IPIF; 6862 } 6863 ASSERT(ipif != NULL); 6864 /* 6865 * If src_ipif is not NULL, we have to create 6866 * an ire with non-null ire_in_ill value 6867 */ 6868 if (src_ipif != NULL) { 6869 in_ill = src_ipif->ipif_ill; 6870 } 6871 6872 /* 6873 * We check for an existing entry at this point. 6874 * 6875 * Since a netmask isn't passed in via the ioctl interface 6876 * (SIOCADDRT), we don't check for a matching netmask in that 6877 * case. 6878 */ 6879 if (!ioctl_msg) 6880 match_flags |= MATCH_IRE_MASK; 6881 if (src_ipif != NULL) { 6882 /* Look up in the special table */ 6883 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6884 ipif, src_ipif->ipif_ill, match_flags); 6885 } else { 6886 ire = ire_ftable_lookup(dst_addr, mask, 0, 6887 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6888 NULL, match_flags); 6889 } 6890 if (ire != NULL) { 6891 ire_refrele(ire); 6892 if (ipif_refheld) 6893 ipif_refrele(ipif); 6894 return (EEXIST); 6895 } 6896 6897 if (src_ipif != NULL) { 6898 /* 6899 * Create the special ire for the IRE table 6900 * which hangs out of ire_in_ill. This ire 6901 * is in-between IRE_CACHE and IRE_INTERFACE. 6902 * Thus rfq is non-NULL. 6903 */ 6904 rfq = ipif->ipif_rq; 6905 } 6906 /* Create the usual interface ires */ 6907 6908 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6909 ? ipif->ipif_rq : ipif->ipif_wq; 6910 6911 /* 6912 * Create a copy of the IRE_LOOPBACK, 6913 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6914 * the modified address and netmask. 6915 */ 6916 ire = ire_create( 6917 (uchar_t *)&dst_addr, 6918 (uint8_t *)&mask, 6919 (uint8_t *)&ipif->ipif_src_addr, 6920 NULL, 6921 NULL, 6922 &ipif->ipif_mtu, 6923 NULL, 6924 rfq, 6925 stq, 6926 ipif->ipif_net_type, 6927 ipif->ipif_resolver_mp, 6928 ipif, 6929 in_ill, 6930 0, 6931 0, 6932 0, 6933 flags, 6934 &ire_uinfo_null, 6935 NULL, 6936 NULL); 6937 if (ire == NULL) { 6938 if (ipif_refheld) 6939 ipif_refrele(ipif); 6940 return (ENOMEM); 6941 } 6942 6943 /* 6944 * Some software (for example, GateD and Sun Cluster) attempts 6945 * to create (what amount to) IRE_PREFIX routes with the 6946 * loopback address as the gateway. This is primarily done to 6947 * set up prefixes with the RTF_REJECT flag set (for example, 6948 * when generating aggregate routes.) 6949 * 6950 * If the IRE type (as defined by ipif->ipif_net_type) is 6951 * IRE_LOOPBACK, then we map the request into a 6952 * IRE_IF_NORESOLVER. 6953 * 6954 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6955 * routine, but rather using ire_create() directly. 6956 * 6957 */ 6958 if (ipif->ipif_net_type == IRE_LOOPBACK) 6959 ire->ire_type = IRE_IF_NORESOLVER; 6960 6961 error = ire_add(&ire, q, mp, func, B_FALSE); 6962 if (error == 0) 6963 goto save_ire; 6964 6965 /* 6966 * In the result of failure, ire_add() will have already 6967 * deleted the ire in question, so there is no need to 6968 * do that here. 6969 */ 6970 if (ipif_refheld) 6971 ipif_refrele(ipif); 6972 return (error); 6973 } 6974 if (ipif_refheld) { 6975 ipif_refrele(ipif); 6976 ipif_refheld = B_FALSE; 6977 } 6978 6979 if (src_ipif != NULL) { 6980 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6981 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6982 return (EINVAL); 6983 } 6984 /* 6985 * Get an interface IRE for the specified gateway. 6986 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6987 * gateway, it is currently unreachable and we fail the request 6988 * accordingly. 6989 */ 6990 ipif = ipif_arg; 6991 if (ipif_arg != NULL) 6992 match_flags |= MATCH_IRE_ILL; 6993 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6994 ALL_ZONES, 0, NULL, match_flags); 6995 if (gw_ire == NULL) 6996 return (ENETUNREACH); 6997 6998 /* 6999 * We create one of three types of IREs as a result of this request 7000 * based on the netmask. A netmask of all ones (which is automatically 7001 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7002 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7003 * created. Otherwise, an IRE_PREFIX route is created for the 7004 * destination prefix. 7005 */ 7006 if (mask == IP_HOST_MASK) 7007 type = IRE_HOST; 7008 else if (mask == 0) 7009 type = IRE_DEFAULT; 7010 else 7011 type = IRE_PREFIX; 7012 7013 /* check for a duplicate entry */ 7014 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7015 NULL, ALL_ZONES, 0, NULL, 7016 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 7017 if (ire != NULL) { 7018 ire_refrele(gw_ire); 7019 ire_refrele(ire); 7020 return (EEXIST); 7021 } 7022 7023 /* Security attribute exists */ 7024 if (sp != NULL) { 7025 tsol_gcgrp_addr_t ga; 7026 7027 /* find or create the gateway credentials group */ 7028 ga.ga_af = AF_INET; 7029 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7030 7031 /* we hold reference to it upon success */ 7032 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7033 if (gcgrp == NULL) { 7034 ire_refrele(gw_ire); 7035 return (ENOMEM); 7036 } 7037 7038 /* 7039 * Create and add the security attribute to the group; a 7040 * reference to the group is made upon allocating a new 7041 * entry successfully. If it finds an already-existing 7042 * entry for the security attribute in the group, it simply 7043 * returns it and no new reference is made to the group. 7044 */ 7045 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7046 if (gc == NULL) { 7047 /* release reference held by gcgrp_lookup */ 7048 GCGRP_REFRELE(gcgrp); 7049 ire_refrele(gw_ire); 7050 return (ENOMEM); 7051 } 7052 } 7053 7054 /* Create the IRE. */ 7055 ire = ire_create( 7056 (uchar_t *)&dst_addr, /* dest address */ 7057 (uchar_t *)&mask, /* mask */ 7058 /* src address assigned by the caller? */ 7059 (uchar_t *)(((src_addr != INADDR_ANY) && 7060 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7061 (uchar_t *)&gw_addr, /* gateway address */ 7062 NULL, /* no in-srcaddress */ 7063 &gw_ire->ire_max_frag, 7064 NULL, /* no Fast Path header */ 7065 NULL, /* no recv-from queue */ 7066 NULL, /* no send-to queue */ 7067 (ushort_t)type, /* IRE type */ 7068 NULL, 7069 ipif_arg, 7070 NULL, 7071 0, 7072 0, 7073 0, 7074 flags, 7075 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7076 gc, /* security attribute */ 7077 NULL); 7078 /* 7079 * The ire holds a reference to the 'gc' and the 'gc' holds a 7080 * reference to the 'gcgrp'. We can now release the extra reference 7081 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7082 */ 7083 if (gcgrp_xtraref) 7084 GCGRP_REFRELE(gcgrp); 7085 if (ire == NULL) { 7086 if (gc != NULL) 7087 GC_REFRELE(gc); 7088 ire_refrele(gw_ire); 7089 return (ENOMEM); 7090 } 7091 7092 /* 7093 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7094 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7095 */ 7096 7097 /* Add the new IRE. */ 7098 error = ire_add(&ire, q, mp, func, B_FALSE); 7099 if (error != 0) { 7100 /* 7101 * In the result of failure, ire_add() will have already 7102 * deleted the ire in question, so there is no need to 7103 * do that here. 7104 */ 7105 ire_refrele(gw_ire); 7106 return (error); 7107 } 7108 7109 if (flags & RTF_MULTIRT) { 7110 /* 7111 * Invoke the CGTP (multirouting) filtering module 7112 * to add the dst address in the filtering database. 7113 * Replicated inbound packets coming from that address 7114 * will be filtered to discard the duplicates. 7115 * It is not necessary to call the CGTP filter hook 7116 * when the dst address is a broadcast or multicast, 7117 * because an IP source address cannot be a broadcast 7118 * or a multicast. 7119 */ 7120 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7121 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 7122 if (ire_dst != NULL) { 7123 ip_cgtp_bcast_add(ire, ire_dst); 7124 ire_refrele(ire_dst); 7125 goto save_ire; 7126 } 7127 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 7128 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7129 ire->ire_addr, 7130 ire->ire_gateway_addr, 7131 ire->ire_src_addr, 7132 gw_ire->ire_src_addr); 7133 if (res != 0) { 7134 ire_refrele(gw_ire); 7135 ire_delete(ire); 7136 return (res); 7137 } 7138 } 7139 } 7140 7141 /* 7142 * Now that the prefix IRE entry has been created, delete any 7143 * existing gateway IRE cache entries as well as any IRE caches 7144 * using the gateway, and force them to be created through 7145 * ip_newroute. 7146 */ 7147 if (gc != NULL) { 7148 ASSERT(gcgrp != NULL); 7149 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 7150 } 7151 7152 save_ire: 7153 if (gw_ire != NULL) { 7154 ire_refrele(gw_ire); 7155 } 7156 /* 7157 * We do not do save_ire for the routes added with RTA_SRCIFP 7158 * flag. This route is only added and deleted by mipagent. 7159 * So, for simplicity of design, we refrain from saving 7160 * ires that are created with srcif value. This may change 7161 * in future if we find more usage of srcifp feature. 7162 */ 7163 if (ipif != NULL && src_ipif == NULL) { 7164 /* 7165 * Save enough information so that we can recreate the IRE if 7166 * the interface goes down and then up. The metrics associated 7167 * with the route will be saved as well when rts_setmetrics() is 7168 * called after the IRE has been created. In the case where 7169 * memory cannot be allocated, none of this information will be 7170 * saved. 7171 */ 7172 ipif_save_ire(ipif, ire); 7173 } 7174 if (ioctl_msg) 7175 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 7176 if (ire_arg != NULL) { 7177 /* 7178 * Store the ire that was successfully added into where ire_arg 7179 * points to so that callers don't have to look it up 7180 * themselves (but they are responsible for ire_refrele()ing 7181 * the ire when they are finished with it). 7182 */ 7183 *ire_arg = ire; 7184 } else { 7185 ire_refrele(ire); /* Held in ire_add */ 7186 } 7187 if (ipif_refheld) 7188 ipif_refrele(ipif); 7189 return (0); 7190 } 7191 7192 /* 7193 * ip_rt_delete is called to delete an IPv4 route. 7194 * ipif_arg is passed in to associate it with the correct interface. 7195 * src_ipif is passed to associate the incoming interface of the packet. 7196 * We may need to restart this operation if the ipif cannot be looked up 7197 * due to an exclusive operation that is currently in progress. The restart 7198 * entry point is specified by 'func' 7199 */ 7200 /* ARGSUSED4 */ 7201 int 7202 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7203 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7204 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 7205 { 7206 ire_t *ire = NULL; 7207 ipif_t *ipif; 7208 boolean_t ipif_refheld = B_FALSE; 7209 uint_t type; 7210 uint_t match_flags = MATCH_IRE_TYPE; 7211 int err = 0; 7212 7213 ip1dbg(("ip_rt_delete:")); 7214 /* 7215 * If this is the case of RTF_HOST being set, then we set the netmask 7216 * to all ones. Otherwise, we use the netmask if one was supplied. 7217 */ 7218 if (flags & RTF_HOST) { 7219 mask = IP_HOST_MASK; 7220 match_flags |= MATCH_IRE_MASK; 7221 } else if (rtm_addrs & RTA_NETMASK) { 7222 match_flags |= MATCH_IRE_MASK; 7223 } 7224 7225 /* 7226 * Note that RTF_GATEWAY is never set on a delete, therefore 7227 * we check if the gateway address is one of our interfaces first, 7228 * and fall back on RTF_GATEWAY routes. 7229 * 7230 * This makes it possible to delete an original 7231 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7232 * 7233 * As the interface index specified with the RTA_IFP sockaddr is the 7234 * same for all ipif's off of an ill, the matching logic below uses 7235 * MATCH_IRE_ILL if such an index was specified. This means a route 7236 * sharing the same prefix and interface index as the the route 7237 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7238 * is specified in the request. 7239 * 7240 * On the other hand, since the gateway address will usually be 7241 * different for each ipif on the system, the matching logic 7242 * uses MATCH_IRE_IPIF in the case of a traditional interface 7243 * route. This means that interface routes for the same prefix can be 7244 * uniquely identified if they belong to distinct ipif's and if a 7245 * RTA_IFP sockaddr is not present. 7246 * 7247 * For more detail on specifying routes by gateway address and by 7248 * interface index, see the comments in ip_rt_add(). 7249 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7250 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7251 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7252 * succeed. 7253 */ 7254 if (src_ipif != NULL) { 7255 if (ipif_arg == NULL && gw_addr != 0) { 7256 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7257 q, mp, func, &err); 7258 if (ipif_arg != NULL) 7259 ipif_refheld = B_TRUE; 7260 } 7261 if (ipif_arg == NULL) { 7262 err = (err == EINPROGRESS) ? err : ESRCH; 7263 return (err); 7264 } 7265 ipif = ipif_arg; 7266 } else { 7267 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7268 q, mp, func, &err); 7269 if (ipif != NULL) 7270 ipif_refheld = B_TRUE; 7271 else if (err == EINPROGRESS) 7272 return (err); 7273 else 7274 err = 0; 7275 } 7276 if (ipif != NULL) { 7277 if (ipif_arg != NULL) { 7278 if (ipif_refheld) { 7279 ipif_refrele(ipif); 7280 ipif_refheld = B_FALSE; 7281 } 7282 ipif = ipif_arg; 7283 match_flags |= MATCH_IRE_ILL; 7284 } else { 7285 match_flags |= MATCH_IRE_IPIF; 7286 } 7287 if (src_ipif != NULL) { 7288 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7289 ipif, src_ipif->ipif_ill, match_flags); 7290 } else { 7291 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7292 ire = ire_ctable_lookup(dst_addr, 0, 7293 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7294 match_flags); 7295 } 7296 if (ire == NULL) { 7297 ire = ire_ftable_lookup(dst_addr, mask, 0, 7298 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7299 NULL, match_flags); 7300 } 7301 } 7302 } 7303 7304 if (ire == NULL) { 7305 /* 7306 * At this point, the gateway address is not one of our own 7307 * addresses or a matching interface route was not found. We 7308 * set the IRE type to lookup based on whether 7309 * this is a host route, a default route or just a prefix. 7310 * 7311 * If an ipif_arg was passed in, then the lookup is based on an 7312 * interface index so MATCH_IRE_ILL is added to match_flags. 7313 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7314 * set as the route being looked up is not a traditional 7315 * interface route. 7316 * Since we do not add gateway route with srcipif, we don't 7317 * expect to find it either. 7318 */ 7319 if (src_ipif != NULL) { 7320 if (ipif_refheld) 7321 ipif_refrele(ipif); 7322 return (ESRCH); 7323 } else { 7324 match_flags &= ~MATCH_IRE_IPIF; 7325 match_flags |= MATCH_IRE_GW; 7326 if (ipif_arg != NULL) 7327 match_flags |= MATCH_IRE_ILL; 7328 if (mask == IP_HOST_MASK) 7329 type = IRE_HOST; 7330 else if (mask == 0) 7331 type = IRE_DEFAULT; 7332 else 7333 type = IRE_PREFIX; 7334 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7335 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 7336 } 7337 } 7338 7339 if (ipif_refheld) 7340 ipif_refrele(ipif); 7341 7342 /* ipif is not refheld anymore */ 7343 if (ire == NULL) 7344 return (ESRCH); 7345 7346 if (ire->ire_flags & RTF_MULTIRT) { 7347 /* 7348 * Invoke the CGTP (multirouting) filtering module 7349 * to remove the dst address from the filtering database. 7350 * Packets coming from that address will no longer be 7351 * filtered to remove duplicates. 7352 */ 7353 if (ip_cgtp_filter_ops != NULL) { 7354 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 7355 ire->ire_gateway_addr); 7356 } 7357 ip_cgtp_bcast_delete(ire); 7358 } 7359 7360 ipif = ire->ire_ipif; 7361 /* 7362 * Removing from ipif_saved_ire_mp is not necessary 7363 * when src_ipif being non-NULL. ip_rt_add does not 7364 * save the ires which src_ipif being non-NULL. 7365 */ 7366 if (ipif != NULL && src_ipif == NULL) { 7367 ipif_remove_ire(ipif, ire); 7368 } 7369 if (ioctl_msg) 7370 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 7371 ire_delete(ire); 7372 ire_refrele(ire); 7373 return (err); 7374 } 7375 7376 /* 7377 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7378 */ 7379 /* ARGSUSED */ 7380 int 7381 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7382 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7383 { 7384 ipaddr_t dst_addr; 7385 ipaddr_t gw_addr; 7386 ipaddr_t mask; 7387 int error = 0; 7388 mblk_t *mp1; 7389 struct rtentry *rt; 7390 ipif_t *ipif = NULL; 7391 7392 ip1dbg(("ip_siocaddrt:")); 7393 /* Existence of mp1 verified in ip_wput_nondata */ 7394 mp1 = mp->b_cont->b_cont; 7395 rt = (struct rtentry *)mp1->b_rptr; 7396 7397 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7398 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7399 7400 /* 7401 * If the RTF_HOST flag is on, this is a request to assign a gateway 7402 * to a particular host address. In this case, we set the netmask to 7403 * all ones for the particular destination address. Otherwise, 7404 * determine the netmask to be used based on dst_addr and the interfaces 7405 * in use. 7406 */ 7407 if (rt->rt_flags & RTF_HOST) { 7408 mask = IP_HOST_MASK; 7409 } else { 7410 /* 7411 * Note that ip_subnet_mask returns a zero mask in the case of 7412 * default (an all-zeroes address). 7413 */ 7414 mask = ip_subnet_mask(dst_addr, &ipif); 7415 } 7416 7417 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7418 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 7419 if (ipif != NULL) 7420 ipif_refrele(ipif); 7421 return (error); 7422 } 7423 7424 /* 7425 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7426 */ 7427 /* ARGSUSED */ 7428 int 7429 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7430 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7431 { 7432 ipaddr_t dst_addr; 7433 ipaddr_t gw_addr; 7434 ipaddr_t mask; 7435 int error; 7436 mblk_t *mp1; 7437 struct rtentry *rt; 7438 ipif_t *ipif = NULL; 7439 7440 ip1dbg(("ip_siocdelrt:")); 7441 /* Existence of mp1 verified in ip_wput_nondata */ 7442 mp1 = mp->b_cont->b_cont; 7443 rt = (struct rtentry *)mp1->b_rptr; 7444 7445 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7446 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7447 7448 /* 7449 * If the RTF_HOST flag is on, this is a request to delete a gateway 7450 * to a particular host address. In this case, we set the netmask to 7451 * all ones for the particular destination address. Otherwise, 7452 * determine the netmask to be used based on dst_addr and the interfaces 7453 * in use. 7454 */ 7455 if (rt->rt_flags & RTF_HOST) { 7456 mask = IP_HOST_MASK; 7457 } else { 7458 /* 7459 * Note that ip_subnet_mask returns a zero mask in the case of 7460 * default (an all-zeroes address). 7461 */ 7462 mask = ip_subnet_mask(dst_addr, &ipif); 7463 } 7464 7465 error = ip_rt_delete(dst_addr, mask, gw_addr, 7466 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7467 B_TRUE, q, mp, ip_process_ioctl); 7468 if (ipif != NULL) 7469 ipif_refrele(ipif); 7470 return (error); 7471 } 7472 7473 /* 7474 * Enqueue the mp onto the ipsq, chained by b_next. 7475 * b_prev stores the function to be executed later, and b_queue the queue 7476 * where this mp originated. 7477 */ 7478 void 7479 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7480 ill_t *pending_ill) 7481 { 7482 conn_t *connp = NULL; 7483 7484 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7485 ASSERT(func != NULL); 7486 7487 mp->b_queue = q; 7488 mp->b_prev = (void *)func; 7489 mp->b_next = NULL; 7490 7491 switch (type) { 7492 case CUR_OP: 7493 if (ipsq->ipsq_mptail != NULL) { 7494 ASSERT(ipsq->ipsq_mphead != NULL); 7495 ipsq->ipsq_mptail->b_next = mp; 7496 } else { 7497 ASSERT(ipsq->ipsq_mphead == NULL); 7498 ipsq->ipsq_mphead = mp; 7499 } 7500 ipsq->ipsq_mptail = mp; 7501 break; 7502 7503 case NEW_OP: 7504 if (ipsq->ipsq_xopq_mptail != NULL) { 7505 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7506 ipsq->ipsq_xopq_mptail->b_next = mp; 7507 } else { 7508 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7509 ipsq->ipsq_xopq_mphead = mp; 7510 } 7511 ipsq->ipsq_xopq_mptail = mp; 7512 break; 7513 default: 7514 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7515 } 7516 7517 if (CONN_Q(q) && pending_ill != NULL) { 7518 connp = Q_TO_CONN(q); 7519 7520 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7521 connp->conn_oper_pending_ill = pending_ill; 7522 } 7523 } 7524 7525 /* 7526 * Return the mp at the head of the ipsq. After emptying the ipsq 7527 * look at the next ioctl, if this ioctl is complete. Otherwise 7528 * return, we will resume when we complete the current ioctl. 7529 * The current ioctl will wait till it gets a response from the 7530 * driver below. 7531 */ 7532 static mblk_t * 7533 ipsq_dq(ipsq_t *ipsq) 7534 { 7535 mblk_t *mp; 7536 7537 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7538 7539 mp = ipsq->ipsq_mphead; 7540 if (mp != NULL) { 7541 ipsq->ipsq_mphead = mp->b_next; 7542 if (ipsq->ipsq_mphead == NULL) 7543 ipsq->ipsq_mptail = NULL; 7544 mp->b_next = NULL; 7545 return (mp); 7546 } 7547 if (ipsq->ipsq_current_ipif != NULL) 7548 return (NULL); 7549 mp = ipsq->ipsq_xopq_mphead; 7550 if (mp != NULL) { 7551 ipsq->ipsq_xopq_mphead = mp->b_next; 7552 if (ipsq->ipsq_xopq_mphead == NULL) 7553 ipsq->ipsq_xopq_mptail = NULL; 7554 mp->b_next = NULL; 7555 return (mp); 7556 } 7557 return (NULL); 7558 } 7559 7560 /* 7561 * Enter the ipsq corresponding to ill, by waiting synchronously till 7562 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7563 * will have to drain completely before ipsq_enter returns success. 7564 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7565 * and the ipsq_exit logic will start the next enqueued ioctl after 7566 * completion of the current ioctl. If 'force' is used, we don't wait 7567 * for the enqueued ioctls. This is needed when a conn_close wants to 7568 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7569 * of an ill can also use this option. But we dont' use it currently. 7570 */ 7571 #define ENTER_SQ_WAIT_TICKS 100 7572 boolean_t 7573 ipsq_enter(ill_t *ill, boolean_t force) 7574 { 7575 ipsq_t *ipsq; 7576 boolean_t waited_enough = B_FALSE; 7577 7578 /* 7579 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7580 * Since the <ill-ipsq> assocs could change while we wait for the 7581 * writer, it is easier to wait on a fixed global rather than try to 7582 * cv_wait on a changing ipsq. 7583 */ 7584 mutex_enter(&ill->ill_lock); 7585 for (;;) { 7586 if (ill->ill_state_flags & ILL_CONDEMNED) { 7587 mutex_exit(&ill->ill_lock); 7588 return (B_FALSE); 7589 } 7590 7591 ipsq = ill->ill_phyint->phyint_ipsq; 7592 mutex_enter(&ipsq->ipsq_lock); 7593 if (ipsq->ipsq_writer == NULL && 7594 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7595 break; 7596 } else if (ipsq->ipsq_writer != NULL) { 7597 mutex_exit(&ipsq->ipsq_lock); 7598 cv_wait(&ill->ill_cv, &ill->ill_lock); 7599 } else { 7600 mutex_exit(&ipsq->ipsq_lock); 7601 if (force) { 7602 (void) cv_timedwait(&ill->ill_cv, 7603 &ill->ill_lock, 7604 lbolt + ENTER_SQ_WAIT_TICKS); 7605 waited_enough = B_TRUE; 7606 continue; 7607 } else { 7608 cv_wait(&ill->ill_cv, &ill->ill_lock); 7609 } 7610 } 7611 } 7612 7613 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7614 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7615 ipsq->ipsq_writer = curthread; 7616 ipsq->ipsq_reentry_cnt++; 7617 #ifdef ILL_DEBUG 7618 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7619 #endif 7620 mutex_exit(&ipsq->ipsq_lock); 7621 mutex_exit(&ill->ill_lock); 7622 return (B_TRUE); 7623 } 7624 7625 /* 7626 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7627 * certain critical operations like plumbing (i.e. most set ioctls), 7628 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7629 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7630 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7631 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7632 * threads executing in the ipsq. Responses from the driver pertain to the 7633 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7634 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7635 * 7636 * If a thread does not want to reenter the ipsq when it is already writer, 7637 * it must make sure that the specified reentry point to be called later 7638 * when the ipsq is empty, nor any code path starting from the specified reentry 7639 * point must never ever try to enter the ipsq again. Otherwise it can lead 7640 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7641 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7642 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7643 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7644 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7645 * ioctl if the current ioctl has completed. If the current ioctl is still 7646 * in progress it simply returns. The current ioctl could be waiting for 7647 * a response from another module (arp_ or the driver or could be waiting for 7648 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7649 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7650 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7651 * ipsq_current_ipif is clear which happens only on ioctl completion. 7652 */ 7653 7654 /* 7655 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7656 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7657 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7658 * completion. 7659 */ 7660 ipsq_t * 7661 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7662 ipsq_func_t func, int type, boolean_t reentry_ok) 7663 { 7664 ipsq_t *ipsq; 7665 7666 /* Only 1 of ipif or ill can be specified */ 7667 ASSERT((ipif != NULL) ^ (ill != NULL)); 7668 if (ipif != NULL) 7669 ill = ipif->ipif_ill; 7670 7671 /* 7672 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7673 * ipsq of an ill can't change when ill_lock is held. 7674 */ 7675 GRAB_CONN_LOCK(q); 7676 mutex_enter(&ill->ill_lock); 7677 ipsq = ill->ill_phyint->phyint_ipsq; 7678 mutex_enter(&ipsq->ipsq_lock); 7679 7680 /* 7681 * 1. Enter the ipsq if we are already writer and reentry is ok. 7682 * (Note: If the caller does not specify reentry_ok then neither 7683 * 'func' nor any of its callees must ever attempt to enter the ipsq 7684 * again. Otherwise it can lead to an infinite loop 7685 * 2. Enter the ipsq if there is no current writer and this attempted 7686 * entry is part of the current ioctl or operation 7687 * 3. Enter the ipsq if there is no current writer and this is a new 7688 * ioctl (or operation) and the ioctl (or operation) queue is 7689 * empty and there is no ioctl (or operation) currently in progress 7690 */ 7691 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7692 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7693 ipsq->ipsq_current_ipif == NULL))) || 7694 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7695 /* Success. */ 7696 ipsq->ipsq_reentry_cnt++; 7697 ipsq->ipsq_writer = curthread; 7698 mutex_exit(&ipsq->ipsq_lock); 7699 mutex_exit(&ill->ill_lock); 7700 RELEASE_CONN_LOCK(q); 7701 #ifdef ILL_DEBUG 7702 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7703 #endif 7704 return (ipsq); 7705 } 7706 7707 ipsq_enq(ipsq, q, mp, func, type, ill); 7708 7709 mutex_exit(&ipsq->ipsq_lock); 7710 mutex_exit(&ill->ill_lock); 7711 RELEASE_CONN_LOCK(q); 7712 return (NULL); 7713 } 7714 7715 /* 7716 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7717 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7718 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7719 * completion. 7720 * 7721 * This function does a refrele on the ipif/ill. 7722 */ 7723 void 7724 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7725 ipsq_func_t func, int type, boolean_t reentry_ok) 7726 { 7727 ipsq_t *ipsq; 7728 7729 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7730 /* 7731 * Caller must have done a refhold on the ipif. ipif_refrele 7732 * happens on the passed ipif. We can do this since we are 7733 * already exclusive, or we won't access ipif henceforth, Both 7734 * this func and caller will just return if we ipsq_try_enter 7735 * fails above. This is needed because func needs to 7736 * see the correct refcount. Eg. removeif can work only then. 7737 */ 7738 if (ipif != NULL) 7739 ipif_refrele(ipif); 7740 else 7741 ill_refrele(ill); 7742 if (ipsq != NULL) { 7743 (*func)(ipsq, q, mp, NULL); 7744 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7745 } 7746 } 7747 7748 /* 7749 * If there are more than ILL_GRP_CNT ills in a group, 7750 * we use kmem alloc'd buffers, else use the stack 7751 */ 7752 #define ILL_GRP_CNT 14 7753 /* 7754 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7755 * Called by a thread that is currently exclusive on this ipsq. 7756 */ 7757 void 7758 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7759 { 7760 queue_t *q; 7761 mblk_t *mp; 7762 ipsq_func_t func; 7763 int next; 7764 ill_t **ill_list = NULL; 7765 size_t ill_list_size = 0; 7766 int cnt = 0; 7767 boolean_t need_ipsq_free = B_FALSE; 7768 7769 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7770 mutex_enter(&ipsq->ipsq_lock); 7771 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7772 if (ipsq->ipsq_reentry_cnt != 1) { 7773 ipsq->ipsq_reentry_cnt--; 7774 mutex_exit(&ipsq->ipsq_lock); 7775 return; 7776 } 7777 7778 mp = ipsq_dq(ipsq); 7779 while (mp != NULL) { 7780 again: 7781 mutex_exit(&ipsq->ipsq_lock); 7782 func = (ipsq_func_t)mp->b_prev; 7783 q = (queue_t *)mp->b_queue; 7784 mp->b_prev = NULL; 7785 mp->b_queue = NULL; 7786 7787 /* 7788 * If 'q' is an conn queue, it is valid, since we did a 7789 * a refhold on the connp, at the start of the ioctl. 7790 * If 'q' is an ill queue, it is valid, since close of an 7791 * ill will clean up the 'ipsq'. 7792 */ 7793 (*func)(ipsq, q, mp, NULL); 7794 7795 mutex_enter(&ipsq->ipsq_lock); 7796 mp = ipsq_dq(ipsq); 7797 } 7798 7799 mutex_exit(&ipsq->ipsq_lock); 7800 7801 /* 7802 * Need to grab the locks in the right order. Need to 7803 * atomically check (under ipsq_lock) that there are no 7804 * messages before relinquishing the ipsq. Also need to 7805 * atomically wakeup waiters on ill_cv while holding ill_lock. 7806 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7807 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7808 * to grab ill_g_lock as writer. 7809 */ 7810 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7811 7812 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7813 if (ipsq->ipsq_refs != 0) { 7814 /* At most 2 ills v4/v6 per phyint */ 7815 cnt = ipsq->ipsq_refs << 1; 7816 ill_list_size = cnt * sizeof (ill_t *); 7817 /* 7818 * If memory allocation fails, we will do the split 7819 * the next time ipsq_exit is called for whatever reason. 7820 * As long as the ipsq_split flag is set the need to 7821 * split is remembered. 7822 */ 7823 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7824 if (ill_list != NULL) 7825 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7826 } 7827 mutex_enter(&ipsq->ipsq_lock); 7828 mp = ipsq_dq(ipsq); 7829 if (mp != NULL) { 7830 /* oops, some message has landed up, we can't get out */ 7831 if (ill_list != NULL) 7832 ill_unlock_ills(ill_list, cnt); 7833 rw_exit(&ill_g_lock); 7834 if (ill_list != NULL) 7835 kmem_free(ill_list, ill_list_size); 7836 ill_list = NULL; 7837 ill_list_size = 0; 7838 cnt = 0; 7839 goto again; 7840 } 7841 7842 /* 7843 * Split only if no ioctl is pending and if memory alloc succeeded 7844 * above. 7845 */ 7846 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7847 ill_list != NULL) { 7848 /* 7849 * No new ill can join this ipsq since we are holding the 7850 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7851 * ipsq. ill_split_ipsq may fail due to memory shortage. 7852 * If so we will retry on the next ipsq_exit. 7853 */ 7854 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7855 } 7856 7857 /* 7858 * We are holding the ipsq lock, hence no new messages can 7859 * land up on the ipsq, and there are no messages currently. 7860 * Now safe to get out. Wake up waiters and relinquish ipsq 7861 * atomically while holding ill locks. 7862 */ 7863 ipsq->ipsq_writer = NULL; 7864 ipsq->ipsq_reentry_cnt--; 7865 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7866 #ifdef ILL_DEBUG 7867 ipsq->ipsq_depth = 0; 7868 #endif 7869 mutex_exit(&ipsq->ipsq_lock); 7870 /* 7871 * For IPMP this should wake up all ills in this ipsq. 7872 * We need to hold the ill_lock while waking up waiters to 7873 * avoid missed wakeups. But there is no need to acquire all 7874 * the ill locks and then wakeup. If we have not acquired all 7875 * the locks (due to memory failure above) ill_signal_ipsq_ills 7876 * wakes up ills one at a time after getting the right ill_lock 7877 */ 7878 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7879 if (ill_list != NULL) 7880 ill_unlock_ills(ill_list, cnt); 7881 if (ipsq->ipsq_refs == 0) 7882 need_ipsq_free = B_TRUE; 7883 rw_exit(&ill_g_lock); 7884 if (ill_list != 0) 7885 kmem_free(ill_list, ill_list_size); 7886 7887 if (need_ipsq_free) { 7888 /* 7889 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7890 * looked up. ipsq can be looked up only thru ill or phyint 7891 * and there are no ills/phyint on this ipsq. 7892 */ 7893 ipsq_delete(ipsq); 7894 } 7895 /* 7896 * Now start any igmp or mld timers that could not be started 7897 * while inside the ipsq. The timers can't be started while inside 7898 * the ipsq, since igmp_start_timers may need to call untimeout() 7899 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7900 * there could be a deadlock since the timeout handlers 7901 * mld_timeout_handler / igmp_timeout_handler also synchronously 7902 * wait in ipsq_enter() trying to get the ipsq. 7903 * 7904 * However there is one exception to the above. If this thread is 7905 * itself the igmp/mld timeout handler thread, then we don't want 7906 * to start any new timer until the current handler is done. The 7907 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7908 * all others pass B_TRUE. 7909 */ 7910 if (start_igmp_timer) { 7911 mutex_enter(&igmp_timer_lock); 7912 next = igmp_deferred_next; 7913 igmp_deferred_next = INFINITY; 7914 mutex_exit(&igmp_timer_lock); 7915 7916 if (next != INFINITY) 7917 igmp_start_timers(next); 7918 } 7919 7920 if (start_mld_timer) { 7921 mutex_enter(&mld_timer_lock); 7922 next = mld_deferred_next; 7923 mld_deferred_next = INFINITY; 7924 mutex_exit(&mld_timer_lock); 7925 7926 if (next != INFINITY) 7927 mld_start_timers(next); 7928 } 7929 } 7930 7931 /* 7932 * The ill is closing. Flush all messages on the ipsq that originated 7933 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7934 * for this ill since ipsq_enter could not have entered until then. 7935 * New messages can't be queued since the CONDEMNED flag is set. 7936 */ 7937 static void 7938 ipsq_flush(ill_t *ill) 7939 { 7940 queue_t *q; 7941 mblk_t *prev; 7942 mblk_t *mp; 7943 mblk_t *mp_next; 7944 ipsq_t *ipsq; 7945 7946 ASSERT(IAM_WRITER_ILL(ill)); 7947 ipsq = ill->ill_phyint->phyint_ipsq; 7948 /* 7949 * Flush any messages sent up by the driver. 7950 */ 7951 mutex_enter(&ipsq->ipsq_lock); 7952 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7953 mp_next = mp->b_next; 7954 q = mp->b_queue; 7955 if (q == ill->ill_rq || q == ill->ill_wq) { 7956 /* Remove the mp from the ipsq */ 7957 if (prev == NULL) 7958 ipsq->ipsq_mphead = mp->b_next; 7959 else 7960 prev->b_next = mp->b_next; 7961 if (ipsq->ipsq_mptail == mp) { 7962 ASSERT(mp_next == NULL); 7963 ipsq->ipsq_mptail = prev; 7964 } 7965 inet_freemsg(mp); 7966 } else { 7967 prev = mp; 7968 } 7969 } 7970 mutex_exit(&ipsq->ipsq_lock); 7971 (void) ipsq_pending_mp_cleanup(ill, NULL); 7972 ipsq_xopq_mp_cleanup(ill, NULL); 7973 ill_pending_mp_cleanup(ill); 7974 } 7975 7976 /* 7977 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7978 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7979 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7980 * time (possible with one port going down for aggr and someone tearing down the 7981 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7982 * to indicate when the cleanup has started (1 ref) and when the cleanup 7983 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7984 * putting 2 ref on ill_inuse_ref. 7985 */ 7986 static void 7987 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7988 { 7989 conn_t *connp; 7990 squeue_t *sqp; 7991 mblk_t *mp; 7992 7993 ASSERT(rx_ring != NULL); 7994 7995 /* Just clean one squeue */ 7996 mutex_enter(&ill->ill_lock); 7997 /* 7998 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7999 * ip_squeue_soft_ring_affinty() will not go 8000 * ahead with assigning rings. 8001 */ 8002 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8003 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8004 /* Some operations pending on the ring. Wait */ 8005 cv_wait(&ill->ill_cv, &ill->ill_lock); 8006 8007 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8008 /* 8009 * Someone already trying to clean 8010 * this squeue or its already been cleaned. 8011 */ 8012 mutex_exit(&ill->ill_lock); 8013 return; 8014 } 8015 sqp = rx_ring->rr_sqp; 8016 8017 if (sqp == NULL) { 8018 /* 8019 * The rx_ring never had a squeue assigned to it. 8020 * We are under ill_lock so we can clean it up 8021 * here itself since no one can get to it. 8022 */ 8023 rx_ring->rr_blank = NULL; 8024 rx_ring->rr_handle = NULL; 8025 rx_ring->rr_sqp = NULL; 8026 rx_ring->rr_ring_state = ILL_RING_FREE; 8027 mutex_exit(&ill->ill_lock); 8028 return; 8029 } 8030 8031 /* Set the state that its being cleaned */ 8032 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8033 ASSERT(sqp != NULL); 8034 mutex_exit(&ill->ill_lock); 8035 8036 /* 8037 * Use the preallocated ill_unbind_conn for this purpose 8038 */ 8039 connp = ill->ill_dls_capab->ill_unbind_conn; 8040 8041 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8042 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8043 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8044 connp->conn_tcp->tcp_closemp_used = 1; 8045 else 8046 connp->conn_tcp->tcp_closemp_used++; 8047 mp = &connp->conn_tcp->tcp_closemp; 8048 CONN_INC_REF(connp); 8049 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8050 8051 mutex_enter(&ill->ill_lock); 8052 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8053 cv_wait(&ill->ill_cv, &ill->ill_lock); 8054 8055 mutex_exit(&ill->ill_lock); 8056 } 8057 8058 static void 8059 ipsq_clean_all(ill_t *ill) 8060 { 8061 int idx; 8062 8063 /* 8064 * No need to clean if poll_capab isn't set for this ill 8065 */ 8066 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8067 return; 8068 8069 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8070 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8071 ipsq_clean_ring(ill, ipr); 8072 } 8073 8074 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8075 } 8076 8077 /* ARGSUSED */ 8078 int 8079 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8080 ip_ioctl_cmd_t *ipip, void *ifreq) 8081 { 8082 ill_t *ill; 8083 struct lifreq *lifr = (struct lifreq *)ifreq; 8084 boolean_t isv6; 8085 conn_t *connp; 8086 8087 connp = Q_TO_CONN(q); 8088 isv6 = connp->conn_af_isv6; 8089 /* 8090 * Set original index. 8091 * Failover and failback move logical interfaces 8092 * from one physical interface to another. The 8093 * original index indicates the parent of a logical 8094 * interface, in other words, the physical interface 8095 * the logical interface will be moved back to on 8096 * failback. 8097 */ 8098 8099 /* 8100 * Don't allow the original index to be changed 8101 * for non-failover addresses, autoconfigured 8102 * addresses, or IPv6 link local addresses. 8103 */ 8104 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8105 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8106 return (EINVAL); 8107 } 8108 /* 8109 * The new original index must be in use by some 8110 * physical interface. 8111 */ 8112 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8113 NULL, NULL); 8114 if (ill == NULL) 8115 return (ENXIO); 8116 ill_refrele(ill); 8117 8118 ipif->ipif_orig_ifindex = lifr->lifr_index; 8119 /* 8120 * When this ipif gets failed back, don't 8121 * preserve the original id, as it is no 8122 * longer applicable. 8123 */ 8124 ipif->ipif_orig_ipifid = 0; 8125 /* 8126 * For IPv4, change the original index of any 8127 * multicast addresses associated with the 8128 * ipif to the new value. 8129 */ 8130 if (!isv6) { 8131 ilm_t *ilm; 8132 8133 mutex_enter(&ipif->ipif_ill->ill_lock); 8134 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8135 ilm = ilm->ilm_next) { 8136 if (ilm->ilm_ipif == ipif) { 8137 ilm->ilm_orig_ifindex = lifr->lifr_index; 8138 } 8139 } 8140 mutex_exit(&ipif->ipif_ill->ill_lock); 8141 } 8142 return (0); 8143 } 8144 8145 /* ARGSUSED */ 8146 int 8147 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8148 ip_ioctl_cmd_t *ipip, void *ifreq) 8149 { 8150 struct lifreq *lifr = (struct lifreq *)ifreq; 8151 8152 /* 8153 * Get the original interface index i.e the one 8154 * before FAILOVER if it ever happened. 8155 */ 8156 lifr->lifr_index = ipif->ipif_orig_ifindex; 8157 return (0); 8158 } 8159 8160 /* 8161 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8162 * refhold and return the associated ipif 8163 */ 8164 int 8165 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8166 { 8167 boolean_t exists; 8168 struct iftun_req *ta; 8169 ipif_t *ipif; 8170 ill_t *ill; 8171 boolean_t isv6; 8172 mblk_t *mp1; 8173 int error; 8174 conn_t *connp; 8175 8176 /* Existence verified in ip_wput_nondata */ 8177 mp1 = mp->b_cont->b_cont; 8178 ta = (struct iftun_req *)mp1->b_rptr; 8179 /* 8180 * Null terminate the string to protect against buffer 8181 * overrun. String was generated by user code and may not 8182 * be trusted. 8183 */ 8184 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8185 8186 connp = Q_TO_CONN(q); 8187 isv6 = connp->conn_af_isv6; 8188 8189 /* Disallows implicit create */ 8190 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8191 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8192 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 8193 if (ipif == NULL) 8194 return (error); 8195 8196 if (ipif->ipif_id != 0) { 8197 /* 8198 * We really don't want to set/get tunnel parameters 8199 * on virtual tunnel interfaces. Only allow the 8200 * base tunnel to do these. 8201 */ 8202 ipif_refrele(ipif); 8203 return (EINVAL); 8204 } 8205 8206 /* 8207 * Send down to tunnel mod for ioctl processing. 8208 * Will finish ioctl in ip_rput_other(). 8209 */ 8210 ill = ipif->ipif_ill; 8211 if (ill->ill_net_type == IRE_LOOPBACK) { 8212 ipif_refrele(ipif); 8213 return (EOPNOTSUPP); 8214 } 8215 8216 if (ill->ill_wq == NULL) { 8217 ipif_refrele(ipif); 8218 return (ENXIO); 8219 } 8220 /* 8221 * Mark the ioctl as coming from an IPv6 interface for 8222 * tun's convenience. 8223 */ 8224 if (ill->ill_isv6) 8225 ta->ifta_flags |= 0x80000000; 8226 *ipifp = ipif; 8227 return (0); 8228 } 8229 8230 /* 8231 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8232 * and return the associated ipif. 8233 * Return value: 8234 * Non zero: An error has occurred. ci may not be filled out. 8235 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8236 * a held ipif in ci.ci_ipif. 8237 */ 8238 int 8239 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8240 cmd_info_t *ci, ipsq_func_t func) 8241 { 8242 sin_t *sin; 8243 sin6_t *sin6; 8244 char *name; 8245 struct ifreq *ifr; 8246 struct lifreq *lifr; 8247 ipif_t *ipif = NULL; 8248 ill_t *ill; 8249 conn_t *connp; 8250 boolean_t isv6; 8251 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8252 boolean_t exists; 8253 int err; 8254 mblk_t *mp1; 8255 zoneid_t zoneid; 8256 8257 if (q->q_next != NULL) { 8258 ill = (ill_t *)q->q_ptr; 8259 isv6 = ill->ill_isv6; 8260 connp = NULL; 8261 zoneid = ALL_ZONES; 8262 } else { 8263 ill = NULL; 8264 connp = Q_TO_CONN(q); 8265 isv6 = connp->conn_af_isv6; 8266 zoneid = connp->conn_zoneid; 8267 if (zoneid == GLOBAL_ZONEID) { 8268 /* global zone can access ipifs in all zones */ 8269 zoneid = ALL_ZONES; 8270 } 8271 } 8272 8273 /* Has been checked in ip_wput_nondata */ 8274 mp1 = mp->b_cont->b_cont; 8275 8276 8277 if (cmd_type == IF_CMD) { 8278 /* This a old style SIOC[GS]IF* command */ 8279 ifr = (struct ifreq *)mp1->b_rptr; 8280 /* 8281 * Null terminate the string to protect against buffer 8282 * overrun. String was generated by user code and may not 8283 * be trusted. 8284 */ 8285 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8286 sin = (sin_t *)&ifr->ifr_addr; 8287 name = ifr->ifr_name; 8288 ci->ci_sin = sin; 8289 ci->ci_sin6 = NULL; 8290 ci->ci_lifr = (struct lifreq *)ifr; 8291 } else { 8292 /* This a new style SIOC[GS]LIF* command */ 8293 ASSERT(cmd_type == LIF_CMD); 8294 lifr = (struct lifreq *)mp1->b_rptr; 8295 /* 8296 * Null terminate the string to protect against buffer 8297 * overrun. String was generated by user code and may not 8298 * be trusted. 8299 */ 8300 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8301 name = lifr->lifr_name; 8302 sin = (sin_t *)&lifr->lifr_addr; 8303 sin6 = (sin6_t *)&lifr->lifr_addr; 8304 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8305 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8306 LIFNAMSIZ); 8307 } 8308 ci->ci_sin = sin; 8309 ci->ci_sin6 = sin6; 8310 ci->ci_lifr = lifr; 8311 } 8312 8313 8314 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8315 /* 8316 * The ioctl will be failed if the ioctl comes down 8317 * an conn stream 8318 */ 8319 if (ill == NULL) { 8320 /* 8321 * Not an ill queue, return EINVAL same as the 8322 * old error code. 8323 */ 8324 return (ENXIO); 8325 } 8326 ipif = ill->ill_ipif; 8327 ipif_refhold(ipif); 8328 } else { 8329 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8330 &exists, isv6, zoneid, 8331 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 8332 if (ipif == NULL) { 8333 if (err == EINPROGRESS) 8334 return (err); 8335 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8336 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8337 /* 8338 * Need to try both v4 and v6 since this 8339 * ioctl can come down either v4 or v6 8340 * socket. The lifreq.lifr_family passed 8341 * down by this ioctl is AF_UNSPEC. 8342 */ 8343 ipif = ipif_lookup_on_name(name, 8344 mi_strlen(name), B_FALSE, &exists, !isv6, 8345 zoneid, (connp == NULL) ? q : 8346 CONNP_TO_WQ(connp), mp, func, &err); 8347 if (err == EINPROGRESS) 8348 return (err); 8349 } 8350 err = 0; /* Ensure we don't use it below */ 8351 } 8352 } 8353 8354 /* 8355 * Old style [GS]IFCMD does not admit IPv6 ipif 8356 */ 8357 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8358 ipif_refrele(ipif); 8359 return (ENXIO); 8360 } 8361 8362 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8363 name[0] == '\0') { 8364 /* 8365 * Handle a or a SIOC?IF* with a null name 8366 * during plumb (on the ill queue before the I_PLINK). 8367 */ 8368 ipif = ill->ill_ipif; 8369 ipif_refhold(ipif); 8370 } 8371 8372 if (ipif == NULL) 8373 return (ENXIO); 8374 8375 /* 8376 * Allow only GET operations if this ipif has been created 8377 * temporarily due to a MOVE operation. 8378 */ 8379 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8380 ipif_refrele(ipif); 8381 return (EINVAL); 8382 } 8383 8384 ci->ci_ipif = ipif; 8385 return (0); 8386 } 8387 8388 /* 8389 * Return the total number of ipifs. 8390 */ 8391 static uint_t 8392 ip_get_numifs(zoneid_t zoneid) 8393 { 8394 uint_t numifs = 0; 8395 ill_t *ill; 8396 ill_walk_context_t ctx; 8397 ipif_t *ipif; 8398 8399 rw_enter(&ill_g_lock, RW_READER); 8400 ill = ILL_START_WALK_V4(&ctx); 8401 8402 while (ill != NULL) { 8403 for (ipif = ill->ill_ipif; ipif != NULL; 8404 ipif = ipif->ipif_next) { 8405 if (ipif->ipif_zoneid == zoneid || 8406 ipif->ipif_zoneid == ALL_ZONES) 8407 numifs++; 8408 } 8409 ill = ill_next(&ctx, ill); 8410 } 8411 rw_exit(&ill_g_lock); 8412 return (numifs); 8413 } 8414 8415 /* 8416 * Return the total number of ipifs. 8417 */ 8418 static uint_t 8419 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 8420 { 8421 uint_t numifs = 0; 8422 ill_t *ill; 8423 ipif_t *ipif; 8424 ill_walk_context_t ctx; 8425 8426 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8427 8428 rw_enter(&ill_g_lock, RW_READER); 8429 if (family == AF_INET) 8430 ill = ILL_START_WALK_V4(&ctx); 8431 else if (family == AF_INET6) 8432 ill = ILL_START_WALK_V6(&ctx); 8433 else 8434 ill = ILL_START_WALK_ALL(&ctx); 8435 8436 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8437 for (ipif = ill->ill_ipif; ipif != NULL; 8438 ipif = ipif->ipif_next) { 8439 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8440 !(lifn_flags & LIFC_NOXMIT)) 8441 continue; 8442 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8443 !(lifn_flags & LIFC_TEMPORARY)) 8444 continue; 8445 if (((ipif->ipif_flags & 8446 (IPIF_NOXMIT|IPIF_NOLOCAL| 8447 IPIF_DEPRECATED)) || 8448 (ill->ill_phyint->phyint_flags & 8449 PHYI_LOOPBACK) || 8450 !(ipif->ipif_flags & IPIF_UP)) && 8451 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8452 continue; 8453 8454 if (zoneid != ipif->ipif_zoneid && 8455 ipif->ipif_zoneid != ALL_ZONES && 8456 (zoneid != GLOBAL_ZONEID || 8457 !(lifn_flags & LIFC_ALLZONES))) 8458 continue; 8459 8460 numifs++; 8461 } 8462 } 8463 rw_exit(&ill_g_lock); 8464 return (numifs); 8465 } 8466 8467 uint_t 8468 ip_get_lifsrcofnum(ill_t *ill) 8469 { 8470 uint_t numifs = 0; 8471 ill_t *ill_head = ill; 8472 8473 /* 8474 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8475 * other thread may be trying to relink the ILLs in this usesrc group 8476 * and adjusting the ill_usesrc_grp_next pointers 8477 */ 8478 rw_enter(&ill_g_usesrc_lock, RW_READER); 8479 if ((ill->ill_usesrc_ifindex == 0) && 8480 (ill->ill_usesrc_grp_next != NULL)) { 8481 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8482 ill = ill->ill_usesrc_grp_next) 8483 numifs++; 8484 } 8485 rw_exit(&ill_g_usesrc_lock); 8486 8487 return (numifs); 8488 } 8489 8490 /* Null values are passed in for ipif, sin, and ifreq */ 8491 /* ARGSUSED */ 8492 int 8493 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8494 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8495 { 8496 int *nump; 8497 8498 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8499 8500 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8501 nump = (int *)mp->b_cont->b_cont->b_rptr; 8502 8503 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8504 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8505 return (0); 8506 } 8507 8508 /* Null values are passed in for ipif, sin, and ifreq */ 8509 /* ARGSUSED */ 8510 int 8511 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8512 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8513 { 8514 struct lifnum *lifn; 8515 mblk_t *mp1; 8516 8517 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8518 8519 /* Existence checked in ip_wput_nondata */ 8520 mp1 = mp->b_cont->b_cont; 8521 8522 lifn = (struct lifnum *)mp1->b_rptr; 8523 switch (lifn->lifn_family) { 8524 case AF_UNSPEC: 8525 case AF_INET: 8526 case AF_INET6: 8527 break; 8528 default: 8529 return (EAFNOSUPPORT); 8530 } 8531 8532 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8533 Q_TO_CONN(q)->conn_zoneid); 8534 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8535 return (0); 8536 } 8537 8538 /* ARGSUSED */ 8539 int 8540 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8541 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8542 { 8543 STRUCT_HANDLE(ifconf, ifc); 8544 mblk_t *mp1; 8545 struct iocblk *iocp; 8546 struct ifreq *ifr; 8547 ill_walk_context_t ctx; 8548 ill_t *ill; 8549 ipif_t *ipif; 8550 struct sockaddr_in *sin; 8551 int32_t ifclen; 8552 zoneid_t zoneid; 8553 8554 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8555 8556 ip1dbg(("ip_sioctl_get_ifconf")); 8557 /* Existence verified in ip_wput_nondata */ 8558 mp1 = mp->b_cont->b_cont; 8559 iocp = (struct iocblk *)mp->b_rptr; 8560 zoneid = Q_TO_CONN(q)->conn_zoneid; 8561 8562 /* 8563 * The original SIOCGIFCONF passed in a struct ifconf which specified 8564 * the user buffer address and length into which the list of struct 8565 * ifreqs was to be copied. Since AT&T Streams does not seem to 8566 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8567 * the SIOCGIFCONF operation was redefined to simply provide 8568 * a large output buffer into which we are supposed to jam the ifreq 8569 * array. The same ioctl command code was used, despite the fact that 8570 * both the applications and the kernel code had to change, thus making 8571 * it impossible to support both interfaces. 8572 * 8573 * For reasons not good enough to try to explain, the following 8574 * algorithm is used for deciding what to do with one of these: 8575 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8576 * form with the output buffer coming down as the continuation message. 8577 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8578 * and we have to copy in the ifconf structure to find out how big the 8579 * output buffer is and where to copy out to. Sure no problem... 8580 * 8581 */ 8582 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8583 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8584 int numifs = 0; 8585 size_t ifc_bufsize; 8586 8587 /* 8588 * Must be (better be!) continuation of a TRANSPARENT 8589 * IOCTL. We just copied in the ifconf structure. 8590 */ 8591 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8592 (struct ifconf *)mp1->b_rptr); 8593 8594 /* 8595 * Allocate a buffer to hold requested information. 8596 * 8597 * If ifc_len is larger than what is needed, we only 8598 * allocate what we will use. 8599 * 8600 * If ifc_len is smaller than what is needed, return 8601 * EINVAL. 8602 * 8603 * XXX: the ill_t structure can hava 2 counters, for 8604 * v4 and v6 (not just ill_ipif_up_count) to store the 8605 * number of interfaces for a device, so we don't need 8606 * to count them here... 8607 */ 8608 numifs = ip_get_numifs(zoneid); 8609 8610 ifclen = STRUCT_FGET(ifc, ifc_len); 8611 ifc_bufsize = numifs * sizeof (struct ifreq); 8612 if (ifc_bufsize > ifclen) { 8613 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8614 /* old behaviour */ 8615 return (EINVAL); 8616 } else { 8617 ifc_bufsize = ifclen; 8618 } 8619 } 8620 8621 mp1 = mi_copyout_alloc(q, mp, 8622 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8623 if (mp1 == NULL) 8624 return (ENOMEM); 8625 8626 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8627 } 8628 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8629 /* 8630 * the SIOCGIFCONF ioctl only knows about 8631 * IPv4 addresses, so don't try to tell 8632 * it about interfaces with IPv6-only 8633 * addresses. (Last parm 'isv6' is B_FALSE) 8634 */ 8635 8636 ifr = (struct ifreq *)mp1->b_rptr; 8637 8638 rw_enter(&ill_g_lock, RW_READER); 8639 ill = ILL_START_WALK_V4(&ctx); 8640 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8641 for (ipif = ill->ill_ipif; ipif != NULL; 8642 ipif = ipif->ipif_next) { 8643 if (zoneid != ipif->ipif_zoneid && 8644 ipif->ipif_zoneid != ALL_ZONES) 8645 continue; 8646 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8647 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8648 /* old behaviour */ 8649 rw_exit(&ill_g_lock); 8650 return (EINVAL); 8651 } else { 8652 goto if_copydone; 8653 } 8654 } 8655 (void) ipif_get_name(ipif, 8656 ifr->ifr_name, 8657 sizeof (ifr->ifr_name)); 8658 sin = (sin_t *)&ifr->ifr_addr; 8659 *sin = sin_null; 8660 sin->sin_family = AF_INET; 8661 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8662 ifr++; 8663 } 8664 } 8665 if_copydone: 8666 rw_exit(&ill_g_lock); 8667 mp1->b_wptr = (uchar_t *)ifr; 8668 8669 if (STRUCT_BUF(ifc) != NULL) { 8670 STRUCT_FSET(ifc, ifc_len, 8671 (int)((uchar_t *)ifr - mp1->b_rptr)); 8672 } 8673 return (0); 8674 } 8675 8676 /* 8677 * Get the interfaces using the address hosted on the interface passed in, 8678 * as a source adddress 8679 */ 8680 /* ARGSUSED */ 8681 int 8682 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8683 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8684 { 8685 mblk_t *mp1; 8686 ill_t *ill, *ill_head; 8687 ipif_t *ipif, *orig_ipif; 8688 int numlifs = 0; 8689 size_t lifs_bufsize, lifsmaxlen; 8690 struct lifreq *lifr; 8691 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8692 uint_t ifindex; 8693 zoneid_t zoneid; 8694 int err = 0; 8695 boolean_t isv6 = B_FALSE; 8696 struct sockaddr_in *sin; 8697 struct sockaddr_in6 *sin6; 8698 8699 STRUCT_HANDLE(lifsrcof, lifs); 8700 8701 ASSERT(q->q_next == NULL); 8702 8703 zoneid = Q_TO_CONN(q)->conn_zoneid; 8704 8705 /* Existence verified in ip_wput_nondata */ 8706 mp1 = mp->b_cont->b_cont; 8707 8708 /* 8709 * Must be (better be!) continuation of a TRANSPARENT 8710 * IOCTL. We just copied in the lifsrcof structure. 8711 */ 8712 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8713 (struct lifsrcof *)mp1->b_rptr); 8714 8715 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8716 return (EINVAL); 8717 8718 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8719 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8720 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8721 ip_process_ioctl, &err); 8722 if (ipif == NULL) { 8723 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8724 ifindex)); 8725 return (err); 8726 } 8727 8728 8729 /* Allocate a buffer to hold requested information */ 8730 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8731 lifs_bufsize = numlifs * sizeof (struct lifreq); 8732 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8733 /* The actual size needed is always returned in lifs_len */ 8734 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8735 8736 /* If the amount we need is more than what is passed in, abort */ 8737 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8738 ipif_refrele(ipif); 8739 return (0); 8740 } 8741 8742 mp1 = mi_copyout_alloc(q, mp, 8743 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8744 if (mp1 == NULL) { 8745 ipif_refrele(ipif); 8746 return (ENOMEM); 8747 } 8748 8749 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8750 bzero(mp1->b_rptr, lifs_bufsize); 8751 8752 lifr = (struct lifreq *)mp1->b_rptr; 8753 8754 ill = ill_head = ipif->ipif_ill; 8755 orig_ipif = ipif; 8756 8757 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8758 rw_enter(&ill_g_usesrc_lock, RW_READER); 8759 rw_enter(&ill_g_lock, RW_READER); 8760 8761 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8762 for (; (ill != NULL) && (ill != ill_head); 8763 ill = ill->ill_usesrc_grp_next) { 8764 8765 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8766 break; 8767 8768 ipif = ill->ill_ipif; 8769 (void) ipif_get_name(ipif, 8770 lifr->lifr_name, sizeof (lifr->lifr_name)); 8771 if (ipif->ipif_isv6) { 8772 sin6 = (sin6_t *)&lifr->lifr_addr; 8773 *sin6 = sin6_null; 8774 sin6->sin6_family = AF_INET6; 8775 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8776 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8777 &ipif->ipif_v6net_mask); 8778 } else { 8779 sin = (sin_t *)&lifr->lifr_addr; 8780 *sin = sin_null; 8781 sin->sin_family = AF_INET; 8782 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8783 lifr->lifr_addrlen = ip_mask_to_plen( 8784 ipif->ipif_net_mask); 8785 } 8786 lifr++; 8787 } 8788 rw_exit(&ill_g_usesrc_lock); 8789 rw_exit(&ill_g_lock); 8790 ipif_refrele(orig_ipif); 8791 mp1->b_wptr = (uchar_t *)lifr; 8792 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8793 8794 return (0); 8795 } 8796 8797 /* ARGSUSED */ 8798 int 8799 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8800 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8801 { 8802 mblk_t *mp1; 8803 int list; 8804 ill_t *ill; 8805 ipif_t *ipif; 8806 int flags; 8807 int numlifs = 0; 8808 size_t lifc_bufsize; 8809 struct lifreq *lifr; 8810 sa_family_t family; 8811 struct sockaddr_in *sin; 8812 struct sockaddr_in6 *sin6; 8813 ill_walk_context_t ctx; 8814 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8815 int32_t lifclen; 8816 zoneid_t zoneid; 8817 STRUCT_HANDLE(lifconf, lifc); 8818 8819 ip1dbg(("ip_sioctl_get_lifconf")); 8820 8821 ASSERT(q->q_next == NULL); 8822 8823 zoneid = Q_TO_CONN(q)->conn_zoneid; 8824 8825 /* Existence verified in ip_wput_nondata */ 8826 mp1 = mp->b_cont->b_cont; 8827 8828 /* 8829 * An extended version of SIOCGIFCONF that takes an 8830 * additional address family and flags field. 8831 * AF_UNSPEC retrieve both IPv4 and IPv6. 8832 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8833 * interfaces are omitted. 8834 * Similarly, IPIF_TEMPORARY interfaces are omitted 8835 * unless LIFC_TEMPORARY is specified. 8836 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8837 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8838 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8839 * has priority over LIFC_NOXMIT. 8840 */ 8841 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8842 8843 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8844 return (EINVAL); 8845 8846 /* 8847 * Must be (better be!) continuation of a TRANSPARENT 8848 * IOCTL. We just copied in the lifconf structure. 8849 */ 8850 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8851 8852 family = STRUCT_FGET(lifc, lifc_family); 8853 flags = STRUCT_FGET(lifc, lifc_flags); 8854 8855 switch (family) { 8856 case AF_UNSPEC: 8857 /* 8858 * walk all ILL's. 8859 */ 8860 list = MAX_G_HEADS; 8861 break; 8862 case AF_INET: 8863 /* 8864 * walk only IPV4 ILL's. 8865 */ 8866 list = IP_V4_G_HEAD; 8867 break; 8868 case AF_INET6: 8869 /* 8870 * walk only IPV6 ILL's. 8871 */ 8872 list = IP_V6_G_HEAD; 8873 break; 8874 default: 8875 return (EAFNOSUPPORT); 8876 } 8877 8878 /* 8879 * Allocate a buffer to hold requested information. 8880 * 8881 * If lifc_len is larger than what is needed, we only 8882 * allocate what we will use. 8883 * 8884 * If lifc_len is smaller than what is needed, return 8885 * EINVAL. 8886 */ 8887 numlifs = ip_get_numlifs(family, flags, zoneid); 8888 lifc_bufsize = numlifs * sizeof (struct lifreq); 8889 lifclen = STRUCT_FGET(lifc, lifc_len); 8890 if (lifc_bufsize > lifclen) { 8891 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8892 return (EINVAL); 8893 else 8894 lifc_bufsize = lifclen; 8895 } 8896 8897 mp1 = mi_copyout_alloc(q, mp, 8898 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8899 if (mp1 == NULL) 8900 return (ENOMEM); 8901 8902 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8903 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8904 8905 lifr = (struct lifreq *)mp1->b_rptr; 8906 8907 rw_enter(&ill_g_lock, RW_READER); 8908 ill = ill_first(list, list, &ctx); 8909 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8910 for (ipif = ill->ill_ipif; ipif != NULL; 8911 ipif = ipif->ipif_next) { 8912 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8913 !(flags & LIFC_NOXMIT)) 8914 continue; 8915 8916 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8917 !(flags & LIFC_TEMPORARY)) 8918 continue; 8919 8920 if (((ipif->ipif_flags & 8921 (IPIF_NOXMIT|IPIF_NOLOCAL| 8922 IPIF_DEPRECATED)) || 8923 (ill->ill_phyint->phyint_flags & 8924 PHYI_LOOPBACK) || 8925 !(ipif->ipif_flags & IPIF_UP)) && 8926 (flags & LIFC_EXTERNAL_SOURCE)) 8927 continue; 8928 8929 if (zoneid != ipif->ipif_zoneid && 8930 ipif->ipif_zoneid != ALL_ZONES && 8931 (zoneid != GLOBAL_ZONEID || 8932 !(flags & LIFC_ALLZONES))) 8933 continue; 8934 8935 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8936 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8937 rw_exit(&ill_g_lock); 8938 return (EINVAL); 8939 } else { 8940 goto lif_copydone; 8941 } 8942 } 8943 8944 (void) ipif_get_name(ipif, 8945 lifr->lifr_name, 8946 sizeof (lifr->lifr_name)); 8947 if (ipif->ipif_isv6) { 8948 sin6 = (sin6_t *)&lifr->lifr_addr; 8949 *sin6 = sin6_null; 8950 sin6->sin6_family = AF_INET6; 8951 sin6->sin6_addr = 8952 ipif->ipif_v6lcl_addr; 8953 lifr->lifr_addrlen = 8954 ip_mask_to_plen_v6( 8955 &ipif->ipif_v6net_mask); 8956 } else { 8957 sin = (sin_t *)&lifr->lifr_addr; 8958 *sin = sin_null; 8959 sin->sin_family = AF_INET; 8960 sin->sin_addr.s_addr = 8961 ipif->ipif_lcl_addr; 8962 lifr->lifr_addrlen = 8963 ip_mask_to_plen( 8964 ipif->ipif_net_mask); 8965 } 8966 lifr++; 8967 } 8968 } 8969 lif_copydone: 8970 rw_exit(&ill_g_lock); 8971 8972 mp1->b_wptr = (uchar_t *)lifr; 8973 if (STRUCT_BUF(lifc) != NULL) { 8974 STRUCT_FSET(lifc, lifc_len, 8975 (int)((uchar_t *)lifr - mp1->b_rptr)); 8976 } 8977 return (0); 8978 } 8979 8980 /* ARGSUSED */ 8981 int 8982 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8983 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8984 { 8985 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8986 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8987 return (0); 8988 } 8989 8990 static void 8991 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8992 { 8993 ip6_asp_t *table; 8994 size_t table_size; 8995 mblk_t *data_mp; 8996 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8997 8998 /* These two ioctls are I_STR only */ 8999 if (iocp->ioc_count == TRANSPARENT) { 9000 miocnak(q, mp, 0, EINVAL); 9001 return; 9002 } 9003 9004 data_mp = mp->b_cont; 9005 if (data_mp == NULL) { 9006 /* The user passed us a NULL argument */ 9007 table = NULL; 9008 table_size = iocp->ioc_count; 9009 } else { 9010 /* 9011 * The user provided a table. The stream head 9012 * may have copied in the user data in chunks, 9013 * so make sure everything is pulled up 9014 * properly. 9015 */ 9016 if (MBLKL(data_mp) < iocp->ioc_count) { 9017 mblk_t *new_data_mp; 9018 if ((new_data_mp = msgpullup(data_mp, -1)) == 9019 NULL) { 9020 miocnak(q, mp, 0, ENOMEM); 9021 return; 9022 } 9023 freemsg(data_mp); 9024 data_mp = new_data_mp; 9025 mp->b_cont = data_mp; 9026 } 9027 table = (ip6_asp_t *)data_mp->b_rptr; 9028 table_size = iocp->ioc_count; 9029 } 9030 9031 switch (iocp->ioc_cmd) { 9032 case SIOCGIP6ADDRPOLICY: 9033 iocp->ioc_rval = ip6_asp_get(table, table_size); 9034 if (iocp->ioc_rval == -1) 9035 iocp->ioc_error = EINVAL; 9036 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9037 else if (table != NULL && 9038 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9039 ip6_asp_t *src = table; 9040 ip6_asp32_t *dst = (void *)table; 9041 int count = table_size / sizeof (ip6_asp_t); 9042 int i; 9043 9044 /* 9045 * We need to do an in-place shrink of the array 9046 * to match the alignment attributes of the 9047 * 32-bit ABI looking at it. 9048 */ 9049 /* LINTED: logical expression always true: op "||" */ 9050 ASSERT(sizeof (*src) > sizeof (*dst)); 9051 for (i = 1; i < count; i++) 9052 bcopy(src + i, dst + i, sizeof (*dst)); 9053 } 9054 #endif 9055 break; 9056 9057 case SIOCSIP6ADDRPOLICY: 9058 ASSERT(mp->b_prev == NULL); 9059 mp->b_prev = (void *)q; 9060 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9061 /* 9062 * We pass in the datamodel here so that the ip6_asp_replace() 9063 * routine can handle converting from 32-bit to native formats 9064 * where necessary. 9065 * 9066 * A better way to handle this might be to convert the inbound 9067 * data structure here, and hang it off a new 'mp'; thus the 9068 * ip6_asp_replace() logic would always be dealing with native 9069 * format data structures.. 9070 * 9071 * (An even simpler way to handle these ioctls is to just 9072 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9073 * and just recompile everything that depends on it.) 9074 */ 9075 #endif 9076 ip6_asp_replace(mp, table, table_size, B_FALSE, 9077 iocp->ioc_flag & IOC_MODELS); 9078 return; 9079 } 9080 9081 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9082 qreply(q, mp); 9083 } 9084 9085 static void 9086 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9087 { 9088 mblk_t *data_mp; 9089 struct dstinforeq *dir; 9090 uint8_t *end, *cur; 9091 in6_addr_t *daddr, *saddr; 9092 ipaddr_t v4daddr; 9093 ire_t *ire; 9094 char *slabel, *dlabel; 9095 boolean_t isipv4; 9096 int match_ire; 9097 ill_t *dst_ill; 9098 ipif_t *src_ipif, *ire_ipif; 9099 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9100 zoneid_t zoneid; 9101 9102 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9103 zoneid = Q_TO_CONN(q)->conn_zoneid; 9104 9105 /* 9106 * This ioctl is I_STR only, and must have a 9107 * data mblk following the M_IOCTL mblk. 9108 */ 9109 data_mp = mp->b_cont; 9110 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9111 miocnak(q, mp, 0, EINVAL); 9112 return; 9113 } 9114 9115 if (MBLKL(data_mp) < iocp->ioc_count) { 9116 mblk_t *new_data_mp; 9117 9118 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9119 miocnak(q, mp, 0, ENOMEM); 9120 return; 9121 } 9122 freemsg(data_mp); 9123 data_mp = new_data_mp; 9124 mp->b_cont = data_mp; 9125 } 9126 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9127 9128 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9129 end - cur >= sizeof (struct dstinforeq); 9130 cur += sizeof (struct dstinforeq)) { 9131 dir = (struct dstinforeq *)cur; 9132 daddr = &dir->dir_daddr; 9133 saddr = &dir->dir_saddr; 9134 9135 /* 9136 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9137 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9138 * and ipif_select_source[_v6]() do not. 9139 */ 9140 dir->dir_dscope = ip_addr_scope_v6(daddr); 9141 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 9142 9143 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9144 if (isipv4) { 9145 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9146 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9147 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9148 } else { 9149 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9150 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9151 } 9152 if (ire == NULL) { 9153 dir->dir_dreachable = 0; 9154 9155 /* move on to next dst addr */ 9156 continue; 9157 } 9158 dir->dir_dreachable = 1; 9159 9160 ire_ipif = ire->ire_ipif; 9161 if (ire_ipif == NULL) 9162 goto next_dst; 9163 9164 /* 9165 * We expect to get back an interface ire or a 9166 * gateway ire cache entry. For both types, the 9167 * output interface is ire_ipif->ipif_ill. 9168 */ 9169 dst_ill = ire_ipif->ipif_ill; 9170 dir->dir_dmactype = dst_ill->ill_mactype; 9171 9172 if (isipv4) { 9173 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9174 } else { 9175 src_ipif = ipif_select_source_v6(dst_ill, 9176 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9177 zoneid); 9178 } 9179 if (src_ipif == NULL) 9180 goto next_dst; 9181 9182 *saddr = src_ipif->ipif_v6lcl_addr; 9183 dir->dir_sscope = ip_addr_scope_v6(saddr); 9184 slabel = ip6_asp_lookup(saddr, NULL); 9185 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9186 dir->dir_sdeprecated = 9187 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9188 ipif_refrele(src_ipif); 9189 next_dst: 9190 ire_refrele(ire); 9191 } 9192 miocack(q, mp, iocp->ioc_count, 0); 9193 } 9194 9195 9196 /* 9197 * Check if this is an address assigned to this machine. 9198 * Skips interfaces that are down by using ire checks. 9199 * Translates mapped addresses to v4 addresses and then 9200 * treats them as such, returning true if the v4 address 9201 * associated with this mapped address is configured. 9202 * Note: Applications will have to be careful what they do 9203 * with the response; use of mapped addresses limits 9204 * what can be done with the socket, especially with 9205 * respect to socket options and ioctls - neither IPv4 9206 * options nor IPv6 sticky options/ancillary data options 9207 * may be used. 9208 */ 9209 /* ARGSUSED */ 9210 int 9211 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9212 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9213 { 9214 struct sioc_addrreq *sia; 9215 sin_t *sin; 9216 ire_t *ire; 9217 mblk_t *mp1; 9218 zoneid_t zoneid; 9219 9220 ip1dbg(("ip_sioctl_tmyaddr")); 9221 9222 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9223 zoneid = Q_TO_CONN(q)->conn_zoneid; 9224 9225 /* Existence verified in ip_wput_nondata */ 9226 mp1 = mp->b_cont->b_cont; 9227 sia = (struct sioc_addrreq *)mp1->b_rptr; 9228 sin = (sin_t *)&sia->sa_addr; 9229 switch (sin->sin_family) { 9230 case AF_INET6: { 9231 sin6_t *sin6 = (sin6_t *)sin; 9232 9233 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9234 ipaddr_t v4_addr; 9235 9236 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9237 v4_addr); 9238 ire = ire_ctable_lookup(v4_addr, 0, 9239 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9240 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9241 } else { 9242 in6_addr_t v6addr; 9243 9244 v6addr = sin6->sin6_addr; 9245 ire = ire_ctable_lookup_v6(&v6addr, 0, 9246 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9247 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9248 } 9249 break; 9250 } 9251 case AF_INET: { 9252 ipaddr_t v4addr; 9253 9254 v4addr = sin->sin_addr.s_addr; 9255 ire = ire_ctable_lookup(v4addr, 0, 9256 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9257 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9258 break; 9259 } 9260 default: 9261 return (EAFNOSUPPORT); 9262 } 9263 if (ire != NULL) { 9264 sia->sa_res = 1; 9265 ire_refrele(ire); 9266 } else { 9267 sia->sa_res = 0; 9268 } 9269 return (0); 9270 } 9271 9272 /* 9273 * Check if this is an address assigned on-link i.e. neighbor, 9274 * and makes sure it's reachable from the current zone. 9275 * Returns true for my addresses as well. 9276 * Translates mapped addresses to v4 addresses and then 9277 * treats them as such, returning true if the v4 address 9278 * associated with this mapped address is configured. 9279 * Note: Applications will have to be careful what they do 9280 * with the response; use of mapped addresses limits 9281 * what can be done with the socket, especially with 9282 * respect to socket options and ioctls - neither IPv4 9283 * options nor IPv6 sticky options/ancillary data options 9284 * may be used. 9285 */ 9286 /* ARGSUSED */ 9287 int 9288 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9289 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9290 { 9291 struct sioc_addrreq *sia; 9292 sin_t *sin; 9293 mblk_t *mp1; 9294 ire_t *ire = NULL; 9295 zoneid_t zoneid; 9296 9297 ip1dbg(("ip_sioctl_tonlink")); 9298 9299 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9300 zoneid = Q_TO_CONN(q)->conn_zoneid; 9301 9302 /* Existence verified in ip_wput_nondata */ 9303 mp1 = mp->b_cont->b_cont; 9304 sia = (struct sioc_addrreq *)mp1->b_rptr; 9305 sin = (sin_t *)&sia->sa_addr; 9306 9307 /* 9308 * Match addresses with a zero gateway field to avoid 9309 * routes going through a router. 9310 * Exclude broadcast and multicast addresses. 9311 */ 9312 switch (sin->sin_family) { 9313 case AF_INET6: { 9314 sin6_t *sin6 = (sin6_t *)sin; 9315 9316 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9317 ipaddr_t v4_addr; 9318 9319 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9320 v4_addr); 9321 if (!CLASSD(v4_addr)) { 9322 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9323 NULL, NULL, zoneid, NULL, 9324 MATCH_IRE_GW); 9325 } 9326 } else { 9327 in6_addr_t v6addr; 9328 in6_addr_t v6gw; 9329 9330 v6addr = sin6->sin6_addr; 9331 v6gw = ipv6_all_zeros; 9332 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9333 ire = ire_route_lookup_v6(&v6addr, 0, 9334 &v6gw, 0, NULL, NULL, zoneid, 9335 NULL, MATCH_IRE_GW); 9336 } 9337 } 9338 break; 9339 } 9340 case AF_INET: { 9341 ipaddr_t v4addr; 9342 9343 v4addr = sin->sin_addr.s_addr; 9344 if (!CLASSD(v4addr)) { 9345 ire = ire_route_lookup(v4addr, 0, 0, 0, 9346 NULL, NULL, zoneid, NULL, 9347 MATCH_IRE_GW); 9348 } 9349 break; 9350 } 9351 default: 9352 return (EAFNOSUPPORT); 9353 } 9354 sia->sa_res = 0; 9355 if (ire != NULL) { 9356 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9357 IRE_LOCAL|IRE_LOOPBACK)) { 9358 sia->sa_res = 1; 9359 } 9360 ire_refrele(ire); 9361 } 9362 return (0); 9363 } 9364 9365 /* 9366 * TBD: implement when kernel maintaines a list of site prefixes. 9367 */ 9368 /* ARGSUSED */ 9369 int 9370 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9371 ip_ioctl_cmd_t *ipip, void *ifreq) 9372 { 9373 return (ENXIO); 9374 } 9375 9376 /* ARGSUSED */ 9377 int 9378 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9379 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9380 { 9381 ill_t *ill; 9382 mblk_t *mp1; 9383 conn_t *connp; 9384 boolean_t success; 9385 9386 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9387 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9388 /* ioctl comes down on an conn */ 9389 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9390 connp = Q_TO_CONN(q); 9391 9392 mp->b_datap->db_type = M_IOCTL; 9393 9394 /* 9395 * Send down a copy. (copymsg does not copy b_next/b_prev). 9396 * The original mp contains contaminated b_next values due to 'mi', 9397 * which is needed to do the mi_copy_done. Unfortunately if we 9398 * send down the original mblk itself and if we are popped due to an 9399 * an unplumb before the response comes back from tunnel, 9400 * the streamhead (which does a freemsg) will see this contaminated 9401 * message and the assertion in freemsg about non-null b_next/b_prev 9402 * will panic a DEBUG kernel. 9403 */ 9404 mp1 = copymsg(mp); 9405 if (mp1 == NULL) 9406 return (ENOMEM); 9407 9408 ill = ipif->ipif_ill; 9409 mutex_enter(&connp->conn_lock); 9410 mutex_enter(&ill->ill_lock); 9411 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9412 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9413 mp, 0); 9414 } else { 9415 success = ill_pending_mp_add(ill, connp, mp); 9416 } 9417 mutex_exit(&ill->ill_lock); 9418 mutex_exit(&connp->conn_lock); 9419 9420 if (success) { 9421 ip1dbg(("sending down tunparam request ")); 9422 putnext(ill->ill_wq, mp1); 9423 return (EINPROGRESS); 9424 } else { 9425 /* The conn has started closing */ 9426 freemsg(mp1); 9427 return (EINTR); 9428 } 9429 } 9430 9431 static int 9432 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9433 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9434 { 9435 mblk_t *mp1; 9436 mblk_t *mp2; 9437 mblk_t *pending_mp; 9438 ipaddr_t ipaddr; 9439 area_t *area; 9440 struct iocblk *iocp; 9441 conn_t *connp; 9442 struct arpreq *ar; 9443 struct xarpreq *xar; 9444 boolean_t success; 9445 int flags, alength; 9446 char *lladdr; 9447 9448 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9449 connp = Q_TO_CONN(q); 9450 9451 iocp = (struct iocblk *)mp->b_rptr; 9452 /* 9453 * ill has already been set depending on whether 9454 * bsd style or interface style ioctl. 9455 */ 9456 ASSERT(ill != NULL); 9457 9458 /* 9459 * Is this one of the new SIOC*XARP ioctls? 9460 */ 9461 if (x_arp_ioctl) { 9462 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9463 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9464 ar = NULL; 9465 9466 flags = xar->xarp_flags; 9467 lladdr = LLADDR(&xar->xarp_ha); 9468 /* 9469 * Validate against user's link layer address length 9470 * input and name and addr length limits. 9471 */ 9472 alength = ill->ill_phys_addr_length; 9473 if (iocp->ioc_cmd == SIOCSXARP) { 9474 if (alength != xar->xarp_ha.sdl_alen || 9475 (alength + xar->xarp_ha.sdl_nlen > 9476 sizeof (xar->xarp_ha.sdl_data))) 9477 return (EINVAL); 9478 } 9479 } else { 9480 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9481 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9482 xar = NULL; 9483 9484 flags = ar->arp_flags; 9485 lladdr = ar->arp_ha.sa_data; 9486 /* 9487 * Theoretically, the sa_family could tell us what link 9488 * layer type this operation is trying to deal with. By 9489 * common usage AF_UNSPEC means ethernet. We'll assume 9490 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9491 * for now. Our new SIOC*XARP ioctls can be used more 9492 * generally. 9493 * 9494 * If the underlying media happens to have a non 6 byte 9495 * address, arp module will fail set/get, but the del 9496 * operation will succeed. 9497 */ 9498 alength = 6; 9499 if ((iocp->ioc_cmd != SIOCDARP) && 9500 (alength != ill->ill_phys_addr_length)) { 9501 return (EINVAL); 9502 } 9503 } 9504 9505 /* 9506 * We are going to pass up to ARP a packet chain that looks 9507 * like: 9508 * 9509 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9510 * 9511 * Get a copy of the original IOCTL mblk to head the chain, 9512 * to be sent up (in mp1). Also get another copy to store 9513 * in the ill_pending_mp list, for matching the response 9514 * when it comes back from ARP. 9515 */ 9516 mp1 = copyb(mp); 9517 pending_mp = copymsg(mp); 9518 if (mp1 == NULL || pending_mp == NULL) { 9519 if (mp1 != NULL) 9520 freeb(mp1); 9521 if (pending_mp != NULL) 9522 inet_freemsg(pending_mp); 9523 return (ENOMEM); 9524 } 9525 9526 ipaddr = sin->sin_addr.s_addr; 9527 9528 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9529 (caddr_t)&ipaddr); 9530 if (mp2 == NULL) { 9531 freeb(mp1); 9532 inet_freemsg(pending_mp); 9533 return (ENOMEM); 9534 } 9535 /* Put together the chain. */ 9536 mp1->b_cont = mp2; 9537 mp1->b_datap->db_type = M_IOCTL; 9538 mp2->b_cont = mp; 9539 mp2->b_datap->db_type = M_DATA; 9540 9541 iocp = (struct iocblk *)mp1->b_rptr; 9542 9543 /* 9544 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9545 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9546 * cp_private field (or cp_rval on 32-bit systems) in place of the 9547 * ioc_count field; set ioc_count to be correct. 9548 */ 9549 iocp->ioc_count = MBLKL(mp1->b_cont); 9550 9551 /* 9552 * Set the proper command in the ARP message. 9553 * Convert the SIOC{G|S|D}ARP calls into our 9554 * AR_ENTRY_xxx calls. 9555 */ 9556 area = (area_t *)mp2->b_rptr; 9557 switch (iocp->ioc_cmd) { 9558 case SIOCDARP: 9559 case SIOCDXARP: 9560 /* 9561 * We defer deleting the corresponding IRE until 9562 * we return from arp. 9563 */ 9564 area->area_cmd = AR_ENTRY_DELETE; 9565 area->area_proto_mask_offset = 0; 9566 break; 9567 case SIOCGARP: 9568 case SIOCGXARP: 9569 area->area_cmd = AR_ENTRY_SQUERY; 9570 area->area_proto_mask_offset = 0; 9571 break; 9572 case SIOCSARP: 9573 case SIOCSXARP: { 9574 /* 9575 * Delete the corresponding ire to make sure IP will 9576 * pick up any change from arp. 9577 */ 9578 if (!if_arp_ioctl) { 9579 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9580 break; 9581 } else { 9582 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9583 if (ipif != NULL) { 9584 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9585 ipif_refrele(ipif); 9586 } 9587 break; 9588 } 9589 } 9590 } 9591 iocp->ioc_cmd = area->area_cmd; 9592 9593 /* 9594 * Before sending 'mp' to ARP, we have to clear the b_next 9595 * and b_prev. Otherwise if STREAMS encounters such a message 9596 * in freemsg(), (because ARP can close any time) it can cause 9597 * a panic. But mi code needs the b_next and b_prev values of 9598 * mp->b_cont, to complete the ioctl. So we store it here 9599 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9600 * when the response comes down from ARP. 9601 */ 9602 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9603 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9604 mp->b_cont->b_next = NULL; 9605 mp->b_cont->b_prev = NULL; 9606 9607 mutex_enter(&connp->conn_lock); 9608 mutex_enter(&ill->ill_lock); 9609 /* conn has not yet started closing, hence this can't fail */ 9610 success = ill_pending_mp_add(ill, connp, pending_mp); 9611 ASSERT(success); 9612 mutex_exit(&ill->ill_lock); 9613 mutex_exit(&connp->conn_lock); 9614 9615 /* 9616 * Fill in the rest of the ARP operation fields. 9617 */ 9618 area->area_hw_addr_length = alength; 9619 bcopy(lladdr, 9620 (char *)area + area->area_hw_addr_offset, 9621 area->area_hw_addr_length); 9622 /* Translate the flags. */ 9623 if (flags & ATF_PERM) 9624 area->area_flags |= ACE_F_PERMANENT; 9625 if (flags & ATF_PUBL) 9626 area->area_flags |= ACE_F_PUBLISH; 9627 if (flags & ATF_AUTHORITY) 9628 area->area_flags |= ACE_F_AUTHORITY; 9629 9630 /* 9631 * Up to ARP it goes. The response will come 9632 * back in ip_wput as an M_IOCACK message, and 9633 * will be handed to ip_sioctl_iocack for 9634 * completion. 9635 */ 9636 putnext(ill->ill_rq, mp1); 9637 return (EINPROGRESS); 9638 } 9639 9640 /* ARGSUSED */ 9641 int 9642 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9643 ip_ioctl_cmd_t *ipip, void *ifreq) 9644 { 9645 struct xarpreq *xar; 9646 boolean_t isv6; 9647 mblk_t *mp1; 9648 int err; 9649 conn_t *connp; 9650 int ifnamelen; 9651 ire_t *ire = NULL; 9652 ill_t *ill = NULL; 9653 struct sockaddr_in *sin; 9654 boolean_t if_arp_ioctl = B_FALSE; 9655 9656 /* ioctl comes down on an conn */ 9657 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9658 connp = Q_TO_CONN(q); 9659 isv6 = connp->conn_af_isv6; 9660 9661 /* Existance verified in ip_wput_nondata */ 9662 mp1 = mp->b_cont->b_cont; 9663 9664 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9665 xar = (struct xarpreq *)mp1->b_rptr; 9666 sin = (sin_t *)&xar->xarp_pa; 9667 9668 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9669 (xar->xarp_pa.ss_family != AF_INET)) 9670 return (ENXIO); 9671 9672 ifnamelen = xar->xarp_ha.sdl_nlen; 9673 if (ifnamelen != 0) { 9674 char *cptr, cval; 9675 9676 if (ifnamelen >= LIFNAMSIZ) 9677 return (EINVAL); 9678 9679 /* 9680 * Instead of bcopying a bunch of bytes, 9681 * null-terminate the string in-situ. 9682 */ 9683 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9684 cval = *cptr; 9685 *cptr = '\0'; 9686 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9687 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9688 &err, NULL); 9689 *cptr = cval; 9690 if (ill == NULL) 9691 return (err); 9692 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9693 ill_refrele(ill); 9694 return (ENXIO); 9695 } 9696 9697 if_arp_ioctl = B_TRUE; 9698 } else { 9699 /* 9700 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9701 * as an extended BSD ioctl. The kernel uses the IP address 9702 * to figure out the network interface. 9703 */ 9704 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9705 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9706 ((ill = ire_to_ill(ire)) == NULL) || 9707 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9708 if (ire != NULL) 9709 ire_refrele(ire); 9710 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9711 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9712 NULL, MATCH_IRE_TYPE); 9713 if ((ire == NULL) || 9714 ((ill = ire_to_ill(ire)) == NULL)) { 9715 if (ire != NULL) 9716 ire_refrele(ire); 9717 return (ENXIO); 9718 } 9719 } 9720 ASSERT(ire != NULL && ill != NULL); 9721 } 9722 9723 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9724 if (if_arp_ioctl) 9725 ill_refrele(ill); 9726 if (ire != NULL) 9727 ire_refrele(ire); 9728 9729 return (err); 9730 } 9731 9732 /* 9733 * ARP IOCTLs. 9734 * How does IP get in the business of fronting ARP configuration/queries? 9735 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9736 * are by tradition passed in through a datagram socket. That lands in IP. 9737 * As it happens, this is just as well since the interface is quite crude in 9738 * that it passes in no information about protocol or hardware types, or 9739 * interface association. After making the protocol assumption, IP is in 9740 * the position to look up the name of the ILL, which ARP will need, and 9741 * format a request that can be handled by ARP. The request is passed up 9742 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9743 * back a response. ARP supports its own set of more general IOCTLs, in 9744 * case anyone is interested. 9745 */ 9746 /* ARGSUSED */ 9747 int 9748 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9749 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9750 { 9751 struct arpreq *ar; 9752 struct sockaddr_in *sin; 9753 ire_t *ire; 9754 boolean_t isv6; 9755 mblk_t *mp1; 9756 int err; 9757 conn_t *connp; 9758 ill_t *ill; 9759 9760 /* ioctl comes down on an conn */ 9761 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9762 connp = Q_TO_CONN(q); 9763 isv6 = connp->conn_af_isv6; 9764 if (isv6) 9765 return (ENXIO); 9766 9767 /* Existance verified in ip_wput_nondata */ 9768 mp1 = mp->b_cont->b_cont; 9769 9770 ar = (struct arpreq *)mp1->b_rptr; 9771 sin = (sin_t *)&ar->arp_pa; 9772 9773 /* 9774 * We need to let ARP know on which interface the IP 9775 * address has an ARP mapping. In the IPMP case, a 9776 * simple forwarding table lookup will return the 9777 * IRE_IF_RESOLVER for the first interface in the group, 9778 * which might not be the interface on which the 9779 * requested IP address was resolved due to the ill 9780 * selection algorithm (see ip_newroute_get_dst_ill()). 9781 * So we do a cache table lookup first: if the IRE cache 9782 * entry for the IP address is still there, it will 9783 * contain the ill pointer for the right interface, so 9784 * we use that. If the cache entry has been flushed, we 9785 * fall back to the forwarding table lookup. This should 9786 * be rare enough since IRE cache entries have a longer 9787 * life expectancy than ARP cache entries. 9788 */ 9789 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9790 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9791 ((ill = ire_to_ill(ire)) == NULL)) { 9792 if (ire != NULL) 9793 ire_refrele(ire); 9794 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9795 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9796 NULL, MATCH_IRE_TYPE); 9797 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9798 if (ire != NULL) 9799 ire_refrele(ire); 9800 return (ENXIO); 9801 } 9802 } 9803 ASSERT(ire != NULL && ill != NULL); 9804 9805 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9806 ire_refrele(ire); 9807 return (err); 9808 } 9809 9810 /* 9811 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9812 * atomically set/clear the muxids. Also complete the ioctl by acking or 9813 * naking it. Note that the code is structured such that the link type, 9814 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9815 * its clones use the persistent link, while pppd(1M) and perhaps many 9816 * other daemons may use non-persistent link. When combined with some 9817 * ill_t states, linking and unlinking lower streams may be used as 9818 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9819 */ 9820 /* ARGSUSED */ 9821 void 9822 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9823 { 9824 mblk_t *mp1; 9825 mblk_t *mp2; 9826 struct linkblk *li; 9827 queue_t *ipwq; 9828 char *name; 9829 struct qinit *qinfo; 9830 struct ipmx_s *ipmxp; 9831 ill_t *ill = NULL; 9832 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9833 int err = 0; 9834 boolean_t entered_ipsq = B_FALSE; 9835 boolean_t islink; 9836 queue_t *dwq = NULL; 9837 9838 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9839 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9840 9841 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9842 B_TRUE : B_FALSE; 9843 9844 mp1 = mp->b_cont; /* This is the linkblk info */ 9845 li = (struct linkblk *)mp1->b_rptr; 9846 9847 /* 9848 * ARP has added this special mblk, and the utility is asking us 9849 * to perform consistency checks, and also atomically set the 9850 * muxid. Ifconfig is an example. It achieves this by using 9851 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9852 * to /dev/udp[6] stream for use as the mux when plinking the IP 9853 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9854 * and other comments in this routine for more details. 9855 */ 9856 mp2 = mp1->b_cont; /* This is added by ARP */ 9857 9858 /* 9859 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9860 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9861 * get the special mblk above. For backward compatibility, we just 9862 * return success. The utility will use SIOCSLIFMUXID to store 9863 * the muxids. This is not atomic, and can leave the streams 9864 * unplumbable if the utility is interrrupted, before it does the 9865 * SIOCSLIFMUXID. 9866 */ 9867 if (mp2 == NULL) { 9868 /* 9869 * At this point we don't know whether or not this is the 9870 * IP module stream or the ARP device stream. We need to 9871 * walk the lower stream in order to find this out, since 9872 * the capability negotiation is done only on the IP module 9873 * stream. IP module instance is identified by the module 9874 * name IP, non-null q_next, and it's wput not being ip_lwput. 9875 * STREAMS ensures that the lower stream (l_qbot) will not 9876 * vanish until this ioctl completes. So we can safely walk 9877 * the stream or refer to the q_ptr. 9878 */ 9879 ipwq = li->l_qbot; 9880 while (ipwq != NULL) { 9881 qinfo = ipwq->q_qinfo; 9882 name = qinfo->qi_minfo->mi_idname; 9883 if (name != NULL && name[0] != NULL && 9884 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9885 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9886 (ipwq->q_next != NULL)) { 9887 break; 9888 } 9889 ipwq = ipwq->q_next; 9890 } 9891 /* 9892 * This looks like an IP module stream, so trigger 9893 * the capability reset or re-negotiation if necessary. 9894 */ 9895 if (ipwq != NULL) { 9896 ill = ipwq->q_ptr; 9897 ASSERT(ill != NULL); 9898 9899 if (ipsq == NULL) { 9900 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9901 ip_sioctl_plink, NEW_OP, B_TRUE); 9902 if (ipsq == NULL) 9903 return; 9904 entered_ipsq = B_TRUE; 9905 } 9906 ASSERT(IAM_WRITER_ILL(ill)); 9907 /* 9908 * Store the upper read queue of the module 9909 * immediately below IP, and count the total 9910 * number of lower modules. Do this only 9911 * for I_PLINK or I_LINK event. 9912 */ 9913 ill->ill_lmod_rq = NULL; 9914 ill->ill_lmod_cnt = 0; 9915 if (islink && (dwq = ipwq->q_next) != NULL) { 9916 ill->ill_lmod_rq = RD(dwq); 9917 9918 while (dwq != NULL) { 9919 ill->ill_lmod_cnt++; 9920 dwq = dwq->q_next; 9921 } 9922 } 9923 /* 9924 * There's no point in resetting or re-negotiating if 9925 * we are not bound to the driver, so only do this if 9926 * the DLPI state is idle (up); we assume such state 9927 * since ill_ipif_up_count gets incremented in 9928 * ipif_up_done(), which is after we are bound to the 9929 * driver. Note that in the case of logical 9930 * interfaces, IP won't rebind to the driver unless 9931 * the ill_ipif_up_count is 0, meaning that all other 9932 * IP interfaces (including the main ipif) are in the 9933 * down state. Because of this, we use such counter 9934 * as an indicator, instead of relying on the IPIF_UP 9935 * flag, which is per ipif instance. 9936 */ 9937 if (ill->ill_ipif_up_count > 0) { 9938 if (islink) 9939 ill_capability_probe(ill); 9940 else 9941 ill_capability_reset(ill); 9942 } 9943 } 9944 goto done; 9945 } 9946 9947 /* 9948 * This is an I_{P}LINK sent down by ifconfig on 9949 * /dev/arp. ARP has appended this last (3rd) mblk, 9950 * giving more info. STREAMS ensures that the lower 9951 * stream (l_qbot) will not vanish until this ioctl 9952 * completes. So we can safely walk the stream or refer 9953 * to the q_ptr. 9954 */ 9955 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9956 if (ipmxp->ipmx_arpdev_stream) { 9957 /* 9958 * The operation is occuring on the arp-device 9959 * stream. 9960 */ 9961 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9962 q, mp, ip_sioctl_plink, &err, NULL); 9963 if (ill == NULL) { 9964 if (err == EINPROGRESS) { 9965 return; 9966 } else { 9967 err = EINVAL; 9968 goto done; 9969 } 9970 } 9971 9972 if (ipsq == NULL) { 9973 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9974 NEW_OP, B_TRUE); 9975 if (ipsq == NULL) { 9976 ill_refrele(ill); 9977 return; 9978 } 9979 entered_ipsq = B_TRUE; 9980 } 9981 ASSERT(IAM_WRITER_ILL(ill)); 9982 ill_refrele(ill); 9983 /* 9984 * To ensure consistency between IP and ARP, 9985 * the following LIFO scheme is used in 9986 * plink/punlink. (IP first, ARP last). 9987 * This is because the muxid's are stored 9988 * in the IP stream on the ill. 9989 * 9990 * I_{P}LINK: ifconfig plinks the IP stream before 9991 * plinking the ARP stream. On an arp-dev 9992 * stream, IP checks that it is not yet 9993 * plinked, and it also checks that the 9994 * corresponding IP stream is already plinked. 9995 * 9996 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9997 * before punlinking the IP stream. IP does 9998 * not allow punlink of the IP stream unless 9999 * the arp stream has been punlinked. 10000 * 10001 */ 10002 if ((islink && 10003 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10004 (!islink && 10005 ill->ill_arp_muxid != li->l_index)) { 10006 err = EINVAL; 10007 goto done; 10008 } 10009 if (islink) { 10010 ill->ill_arp_muxid = li->l_index; 10011 } else { 10012 ill->ill_arp_muxid = 0; 10013 } 10014 } else { 10015 /* 10016 * This must be the IP module stream with or 10017 * without arp. Walk the stream and locate the 10018 * IP module. An IP module instance is 10019 * identified by the module name IP, non-null 10020 * q_next, and it's wput not being ip_lwput. 10021 */ 10022 ipwq = li->l_qbot; 10023 while (ipwq != NULL) { 10024 qinfo = ipwq->q_qinfo; 10025 name = qinfo->qi_minfo->mi_idname; 10026 if (name != NULL && name[0] != NULL && 10027 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10028 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10029 (ipwq->q_next != NULL)) { 10030 break; 10031 } 10032 ipwq = ipwq->q_next; 10033 } 10034 if (ipwq != NULL) { 10035 ill = ipwq->q_ptr; 10036 ASSERT(ill != NULL); 10037 10038 if (ipsq == NULL) { 10039 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10040 ip_sioctl_plink, NEW_OP, B_TRUE); 10041 if (ipsq == NULL) 10042 return; 10043 entered_ipsq = B_TRUE; 10044 } 10045 ASSERT(IAM_WRITER_ILL(ill)); 10046 /* 10047 * Return error if the ip_mux_id is 10048 * non-zero and command is I_{P}LINK. 10049 * If command is I_{P}UNLINK, return 10050 * error if the arp-devstr is not 10051 * yet punlinked. 10052 */ 10053 if ((islink && ill->ill_ip_muxid != 0) || 10054 (!islink && ill->ill_arp_muxid != 0)) { 10055 err = EINVAL; 10056 goto done; 10057 } 10058 ill->ill_lmod_rq = NULL; 10059 ill->ill_lmod_cnt = 0; 10060 if (islink) { 10061 /* 10062 * Store the upper read queue of the module 10063 * immediately below IP, and count the total 10064 * number of lower modules. 10065 */ 10066 if ((dwq = ipwq->q_next) != NULL) { 10067 ill->ill_lmod_rq = RD(dwq); 10068 10069 while (dwq != NULL) { 10070 ill->ill_lmod_cnt++; 10071 dwq = dwq->q_next; 10072 } 10073 } 10074 ill->ill_ip_muxid = li->l_index; 10075 } else { 10076 ill->ill_ip_muxid = 0; 10077 } 10078 10079 /* 10080 * See comments above about resetting/re- 10081 * negotiating driver sub-capabilities. 10082 */ 10083 if (ill->ill_ipif_up_count > 0) { 10084 if (islink) 10085 ill_capability_probe(ill); 10086 else 10087 ill_capability_reset(ill); 10088 } 10089 } 10090 } 10091 done: 10092 iocp->ioc_count = 0; 10093 iocp->ioc_error = err; 10094 if (err == 0) 10095 mp->b_datap->db_type = M_IOCACK; 10096 else 10097 mp->b_datap->db_type = M_IOCNAK; 10098 qreply(q, mp); 10099 10100 /* Conn was refheld in ip_sioctl_copyin_setup */ 10101 if (CONN_Q(q)) 10102 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10103 if (entered_ipsq) 10104 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10105 } 10106 10107 /* 10108 * Search the ioctl command in the ioctl tables and return a pointer 10109 * to the ioctl command information. The ioctl command tables are 10110 * static and fully populated at compile time. 10111 */ 10112 ip_ioctl_cmd_t * 10113 ip_sioctl_lookup(int ioc_cmd) 10114 { 10115 int index; 10116 ip_ioctl_cmd_t *ipip; 10117 ip_ioctl_cmd_t *ipip_end; 10118 10119 if (ioc_cmd == IPI_DONTCARE) 10120 return (NULL); 10121 10122 /* 10123 * Do a 2 step search. First search the indexed table 10124 * based on the least significant byte of the ioctl cmd. 10125 * If we don't find a match, then search the misc table 10126 * serially. 10127 */ 10128 index = ioc_cmd & 0xFF; 10129 if (index < ip_ndx_ioctl_count) { 10130 ipip = &ip_ndx_ioctl_table[index]; 10131 if (ipip->ipi_cmd == ioc_cmd) { 10132 /* Found a match in the ndx table */ 10133 return (ipip); 10134 } 10135 } 10136 10137 /* Search the misc table */ 10138 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10139 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10140 if (ipip->ipi_cmd == ioc_cmd) 10141 /* Found a match in the misc table */ 10142 return (ipip); 10143 } 10144 10145 return (NULL); 10146 } 10147 10148 /* 10149 * Wrapper function for resuming deferred ioctl processing 10150 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10151 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10152 */ 10153 /* ARGSUSED */ 10154 void 10155 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10156 void *dummy_arg) 10157 { 10158 ip_sioctl_copyin_setup(q, mp); 10159 } 10160 10161 /* 10162 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10163 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10164 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10165 * We establish here the size of the block to be copied in. mi_copyin 10166 * arranges for this to happen, an processing continues in ip_wput with 10167 * an M_IOCDATA message. 10168 */ 10169 void 10170 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10171 { 10172 int copyin_size; 10173 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10174 ip_ioctl_cmd_t *ipip; 10175 cred_t *cr; 10176 10177 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10178 if (ipip == NULL) { 10179 /* 10180 * The ioctl is not one we understand or own. 10181 * Pass it along to be processed down stream, 10182 * if this is a module instance of IP, else nak 10183 * the ioctl. 10184 */ 10185 if (q->q_next == NULL) { 10186 goto nak; 10187 } else { 10188 putnext(q, mp); 10189 return; 10190 } 10191 } 10192 10193 /* 10194 * If this is deferred, then we will do all the checks when we 10195 * come back. 10196 */ 10197 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10198 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 10199 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10200 return; 10201 } 10202 10203 /* 10204 * Only allow a very small subset of IP ioctls on this stream if 10205 * IP is a module and not a driver. Allowing ioctls to be processed 10206 * in this case may cause assert failures or data corruption. 10207 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10208 * ioctls allowed on an IP module stream, after which this stream 10209 * normally becomes a multiplexor (at which time the stream head 10210 * will fail all ioctls). 10211 */ 10212 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10213 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10214 /* 10215 * Pass common Streams ioctls which the IP 10216 * module does not own or consume along to 10217 * be processed down stream. 10218 */ 10219 putnext(q, mp); 10220 return; 10221 } else { 10222 goto nak; 10223 } 10224 } 10225 10226 /* Make sure we have ioctl data to process. */ 10227 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10228 goto nak; 10229 10230 /* 10231 * Prefer dblk credential over ioctl credential; some synthesized 10232 * ioctls have kcred set because there's no way to crhold() 10233 * a credential in some contexts. (ioc_cr is not crfree() by 10234 * the framework; the caller of ioctl needs to hold the reference 10235 * for the duration of the call). 10236 */ 10237 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10238 10239 /* Make sure normal users don't send down privileged ioctls */ 10240 if ((ipip->ipi_flags & IPI_PRIV) && 10241 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 10242 /* We checked the privilege earlier but log it here */ 10243 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 10244 return; 10245 } 10246 10247 /* 10248 * The ioctl command tables can only encode fixed length 10249 * ioctl data. If the length is variable, the table will 10250 * encode the length as zero. Such special cases are handled 10251 * below in the switch. 10252 */ 10253 if (ipip->ipi_copyin_size != 0) { 10254 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10255 return; 10256 } 10257 10258 switch (iocp->ioc_cmd) { 10259 case O_SIOCGIFCONF: 10260 case SIOCGIFCONF: 10261 /* 10262 * This IOCTL is hilarious. See comments in 10263 * ip_sioctl_get_ifconf for the story. 10264 */ 10265 if (iocp->ioc_count == TRANSPARENT) 10266 copyin_size = SIZEOF_STRUCT(ifconf, 10267 iocp->ioc_flag); 10268 else 10269 copyin_size = iocp->ioc_count; 10270 mi_copyin(q, mp, NULL, copyin_size); 10271 return; 10272 10273 case O_SIOCGLIFCONF: 10274 case SIOCGLIFCONF: 10275 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10276 mi_copyin(q, mp, NULL, copyin_size); 10277 return; 10278 10279 case SIOCGLIFSRCOF: 10280 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10281 mi_copyin(q, mp, NULL, copyin_size); 10282 return; 10283 case SIOCGIP6ADDRPOLICY: 10284 ip_sioctl_ip6addrpolicy(q, mp); 10285 ip6_asp_table_refrele(); 10286 return; 10287 10288 case SIOCSIP6ADDRPOLICY: 10289 ip_sioctl_ip6addrpolicy(q, mp); 10290 return; 10291 10292 case SIOCGDSTINFO: 10293 ip_sioctl_dstinfo(q, mp); 10294 ip6_asp_table_refrele(); 10295 return; 10296 10297 case I_PLINK: 10298 case I_PUNLINK: 10299 case I_LINK: 10300 case I_UNLINK: 10301 /* 10302 * We treat non-persistent link similarly as the persistent 10303 * link case, in terms of plumbing/unplumbing, as well as 10304 * dynamic re-plumbing events indicator. See comments 10305 * in ip_sioctl_plink() for more. 10306 * 10307 * Request can be enqueued in the 'ipsq' while waiting 10308 * to become exclusive. So bump up the conn ref. 10309 */ 10310 if (CONN_Q(q)) 10311 CONN_INC_REF(Q_TO_CONN(q)); 10312 ip_sioctl_plink(NULL, q, mp, NULL); 10313 return; 10314 10315 case ND_GET: 10316 case ND_SET: 10317 /* 10318 * Use of the nd table requires holding the reader lock. 10319 * Modifying the nd table thru nd_load/nd_unload requires 10320 * the writer lock. 10321 */ 10322 rw_enter(&ip_g_nd_lock, RW_READER); 10323 if (nd_getset(q, ip_g_nd, mp)) { 10324 rw_exit(&ip_g_nd_lock); 10325 10326 if (iocp->ioc_error) 10327 iocp->ioc_count = 0; 10328 mp->b_datap->db_type = M_IOCACK; 10329 qreply(q, mp); 10330 return; 10331 } 10332 rw_exit(&ip_g_nd_lock); 10333 /* 10334 * We don't understand this subioctl of ND_GET / ND_SET. 10335 * Maybe intended for some driver / module below us 10336 */ 10337 if (q->q_next) { 10338 putnext(q, mp); 10339 } else { 10340 iocp->ioc_error = ENOENT; 10341 mp->b_datap->db_type = M_IOCNAK; 10342 iocp->ioc_count = 0; 10343 qreply(q, mp); 10344 } 10345 return; 10346 10347 case IP_IOCTL: 10348 ip_wput_ioctl(q, mp); 10349 return; 10350 default: 10351 cmn_err(CE_PANIC, "should not happen "); 10352 } 10353 nak: 10354 if (mp->b_cont != NULL) { 10355 freemsg(mp->b_cont); 10356 mp->b_cont = NULL; 10357 } 10358 iocp->ioc_error = EINVAL; 10359 mp->b_datap->db_type = M_IOCNAK; 10360 iocp->ioc_count = 0; 10361 qreply(q, mp); 10362 } 10363 10364 /* ip_wput hands off ARP IOCTL responses to us */ 10365 void 10366 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10367 { 10368 struct arpreq *ar; 10369 struct xarpreq *xar; 10370 area_t *area; 10371 mblk_t *area_mp; 10372 struct iocblk *iocp; 10373 mblk_t *orig_ioc_mp, *tmp; 10374 struct iocblk *orig_iocp; 10375 ill_t *ill; 10376 conn_t *connp = NULL; 10377 uint_t ioc_id; 10378 mblk_t *pending_mp; 10379 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10380 int *flagsp; 10381 char *storage = NULL; 10382 sin_t *sin; 10383 ipaddr_t addr; 10384 int err; 10385 10386 ill = q->q_ptr; 10387 ASSERT(ill != NULL); 10388 10389 /* 10390 * We should get back from ARP a packet chain that looks like: 10391 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10392 */ 10393 if (!(area_mp = mp->b_cont) || 10394 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10395 !(orig_ioc_mp = area_mp->b_cont) || 10396 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10397 freemsg(mp); 10398 return; 10399 } 10400 10401 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10402 10403 tmp = (orig_ioc_mp->b_cont)->b_cont; 10404 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10405 (orig_iocp->ioc_cmd == SIOCSXARP) || 10406 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10407 x_arp_ioctl = B_TRUE; 10408 xar = (struct xarpreq *)tmp->b_rptr; 10409 sin = (sin_t *)&xar->xarp_pa; 10410 flagsp = &xar->xarp_flags; 10411 storage = xar->xarp_ha.sdl_data; 10412 if (xar->xarp_ha.sdl_nlen != 0) 10413 ifx_arp_ioctl = B_TRUE; 10414 } else { 10415 ar = (struct arpreq *)tmp->b_rptr; 10416 sin = (sin_t *)&ar->arp_pa; 10417 flagsp = &ar->arp_flags; 10418 storage = ar->arp_ha.sa_data; 10419 } 10420 10421 iocp = (struct iocblk *)mp->b_rptr; 10422 10423 /* 10424 * Pick out the originating queue based on the ioc_id. 10425 */ 10426 ioc_id = iocp->ioc_id; 10427 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10428 if (pending_mp == NULL) { 10429 ASSERT(connp == NULL); 10430 inet_freemsg(mp); 10431 return; 10432 } 10433 ASSERT(connp != NULL); 10434 q = CONNP_TO_WQ(connp); 10435 10436 /* Uncouple the internally generated IOCTL from the original one */ 10437 area = (area_t *)area_mp->b_rptr; 10438 area_mp->b_cont = NULL; 10439 10440 /* 10441 * Restore the b_next and b_prev used by mi code. This is needed 10442 * to complete the ioctl using mi* functions. We stored them in 10443 * the pending mp prior to sending the request to ARP. 10444 */ 10445 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10446 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10447 inet_freemsg(pending_mp); 10448 10449 /* 10450 * We're done if there was an error or if this is not an SIOCG{X}ARP 10451 * Catch the case where there is an IRE_CACHE by no entry in the 10452 * arp table. 10453 */ 10454 addr = sin->sin_addr.s_addr; 10455 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10456 ire_t *ire; 10457 dl_unitdata_req_t *dlup; 10458 mblk_t *llmp; 10459 int addr_len; 10460 ill_t *ipsqill = NULL; 10461 10462 if (ifx_arp_ioctl) { 10463 /* 10464 * There's no need to lookup the ill, since 10465 * we've already done that when we started 10466 * processing the ioctl and sent the message 10467 * to ARP on that ill. So use the ill that 10468 * is stored in q->q_ptr. 10469 */ 10470 ipsqill = ill; 10471 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10472 ipsqill->ill_ipif, ALL_ZONES, 10473 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10474 } else { 10475 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10476 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10477 if (ire != NULL) 10478 ipsqill = ire_to_ill(ire); 10479 } 10480 10481 if ((x_arp_ioctl) && (ipsqill != NULL)) 10482 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10483 10484 if (ire != NULL) { 10485 /* 10486 * Since the ire obtained from cachetable is used for 10487 * mac addr copying below, treat an incomplete ire as if 10488 * as if we never found it. 10489 */ 10490 if (ire->ire_nce != NULL && 10491 ire->ire_nce->nce_state != ND_REACHABLE) { 10492 ire_refrele(ire); 10493 ire = NULL; 10494 ipsqill = NULL; 10495 goto errack; 10496 } 10497 *flagsp = ATF_INUSE; 10498 llmp = (ire->ire_nce != NULL ? 10499 ire->ire_nce->nce_res_mp : NULL); 10500 if (llmp != NULL && ipsqill != NULL) { 10501 uchar_t *macaddr; 10502 10503 addr_len = ipsqill->ill_phys_addr_length; 10504 if (x_arp_ioctl && ((addr_len + 10505 ipsqill->ill_name_length) > 10506 sizeof (xar->xarp_ha.sdl_data))) { 10507 ire_refrele(ire); 10508 freemsg(mp); 10509 ip_ioctl_finish(q, orig_ioc_mp, 10510 EINVAL, NO_COPYOUT, NULL, NULL); 10511 return; 10512 } 10513 *flagsp |= ATF_COM; 10514 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10515 if (ipsqill->ill_sap_length < 0) 10516 macaddr = llmp->b_rptr + 10517 dlup->dl_dest_addr_offset; 10518 else 10519 macaddr = llmp->b_rptr + 10520 dlup->dl_dest_addr_offset + 10521 ipsqill->ill_sap_length; 10522 /* 10523 * For SIOCGARP, MAC address length 10524 * validation has already been done 10525 * before the ioctl was issued to ARP to 10526 * allow it to progress only on 6 byte 10527 * addressable (ethernet like) media. Thus 10528 * the mac address copying can not overwrite 10529 * the sa_data area below. 10530 */ 10531 bcopy(macaddr, storage, addr_len); 10532 } 10533 /* Ditch the internal IOCTL. */ 10534 freemsg(mp); 10535 ire_refrele(ire); 10536 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10537 return; 10538 } 10539 } 10540 10541 /* 10542 * Delete the coresponding IRE_CACHE if any. 10543 * Reset the error if there was one (in case there was no entry 10544 * in arp.) 10545 */ 10546 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10547 ipif_t *ipintf = NULL; 10548 10549 if (ifx_arp_ioctl) { 10550 /* 10551 * There's no need to lookup the ill, since 10552 * we've already done that when we started 10553 * processing the ioctl and sent the message 10554 * to ARP on that ill. So use the ill that 10555 * is stored in q->q_ptr. 10556 */ 10557 ipintf = ill->ill_ipif; 10558 } 10559 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10560 /* 10561 * The address in "addr" may be an entry for a 10562 * router. If that's true, then any off-net 10563 * IRE_CACHE entries that go through the router 10564 * with address "addr" must be clobbered. Use 10565 * ire_walk to achieve this goal. 10566 */ 10567 if (ifx_arp_ioctl) 10568 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10569 ire_delete_cache_gw, (char *)&addr, ill); 10570 else 10571 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10572 ALL_ZONES); 10573 iocp->ioc_error = 0; 10574 } 10575 } 10576 errack: 10577 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10578 err = iocp->ioc_error; 10579 freemsg(mp); 10580 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10581 return; 10582 } 10583 10584 /* 10585 * Completion of an SIOCG{X}ARP. Translate the information from 10586 * the area_t into the struct {x}arpreq. 10587 */ 10588 if (x_arp_ioctl) { 10589 storage += ill_xarp_info(&xar->xarp_ha, ill); 10590 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10591 sizeof (xar->xarp_ha.sdl_data)) { 10592 freemsg(mp); 10593 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10594 NO_COPYOUT, NULL, NULL); 10595 return; 10596 } 10597 } 10598 *flagsp = ATF_INUSE; 10599 if (area->area_flags & ACE_F_PERMANENT) 10600 *flagsp |= ATF_PERM; 10601 if (area->area_flags & ACE_F_PUBLISH) 10602 *flagsp |= ATF_PUBL; 10603 if (area->area_flags & ACE_F_AUTHORITY) 10604 *flagsp |= ATF_AUTHORITY; 10605 if (area->area_hw_addr_length != 0) { 10606 *flagsp |= ATF_COM; 10607 /* 10608 * For SIOCGARP, MAC address length validation has 10609 * already been done before the ioctl was issued to ARP 10610 * to allow it to progress only on 6 byte addressable 10611 * (ethernet like) media. Thus the mac address copying 10612 * can not overwrite the sa_data area below. 10613 */ 10614 bcopy((char *)area + area->area_hw_addr_offset, 10615 storage, area->area_hw_addr_length); 10616 } 10617 10618 /* Ditch the internal IOCTL. */ 10619 freemsg(mp); 10620 /* Complete the original. */ 10621 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10622 } 10623 10624 /* 10625 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10626 * interface) create the next available logical interface for this 10627 * physical interface. 10628 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10629 * ipif with the specified name. 10630 * 10631 * If the address family is not AF_UNSPEC then set the address as well. 10632 * 10633 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10634 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10635 * 10636 * Executed as a writer on the ill or ill group. 10637 * So no lock is needed to traverse the ipif chain, or examine the 10638 * phyint flags. 10639 */ 10640 /* ARGSUSED */ 10641 int 10642 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10643 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10644 { 10645 mblk_t *mp1; 10646 struct lifreq *lifr; 10647 boolean_t isv6; 10648 boolean_t exists; 10649 char *name; 10650 char *endp; 10651 char *cp; 10652 int namelen; 10653 ipif_t *ipif; 10654 long id; 10655 ipsq_t *ipsq; 10656 ill_t *ill; 10657 sin_t *sin; 10658 int err = 0; 10659 boolean_t found_sep = B_FALSE; 10660 conn_t *connp; 10661 zoneid_t zoneid; 10662 int orig_ifindex = 0; 10663 10664 ip1dbg(("ip_sioctl_addif\n")); 10665 /* Existence of mp1 has been checked in ip_wput_nondata */ 10666 mp1 = mp->b_cont->b_cont; 10667 /* 10668 * Null terminate the string to protect against buffer 10669 * overrun. String was generated by user code and may not 10670 * be trusted. 10671 */ 10672 lifr = (struct lifreq *)mp1->b_rptr; 10673 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10674 name = lifr->lifr_name; 10675 ASSERT(CONN_Q(q)); 10676 connp = Q_TO_CONN(q); 10677 isv6 = connp->conn_af_isv6; 10678 zoneid = connp->conn_zoneid; 10679 namelen = mi_strlen(name); 10680 if (namelen == 0) 10681 return (EINVAL); 10682 10683 exists = B_FALSE; 10684 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10685 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10686 /* 10687 * Allow creating lo0 using SIOCLIFADDIF. 10688 * can't be any other writer thread. So can pass null below 10689 * for the last 4 args to ipif_lookup_name. 10690 */ 10691 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10692 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10693 /* Prevent any further action */ 10694 if (ipif == NULL) { 10695 return (ENOBUFS); 10696 } else if (!exists) { 10697 /* We created the ipif now and as writer */ 10698 ipif_refrele(ipif); 10699 return (0); 10700 } else { 10701 ill = ipif->ipif_ill; 10702 ill_refhold(ill); 10703 ipif_refrele(ipif); 10704 } 10705 } else { 10706 /* Look for a colon in the name. */ 10707 endp = &name[namelen]; 10708 for (cp = endp; --cp > name; ) { 10709 if (*cp == IPIF_SEPARATOR_CHAR) { 10710 found_sep = B_TRUE; 10711 /* 10712 * Reject any non-decimal aliases for plumbing 10713 * of logical interfaces. Aliases with leading 10714 * zeroes are also rejected as they introduce 10715 * ambiguity in the naming of the interfaces. 10716 * Comparing with "0" takes care of all such 10717 * cases. 10718 */ 10719 if ((strncmp("0", cp+1, 1)) == 0) 10720 return (EINVAL); 10721 10722 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10723 id <= 0 || *endp != '\0') { 10724 return (EINVAL); 10725 } 10726 *cp = '\0'; 10727 break; 10728 } 10729 } 10730 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10731 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10732 if (found_sep) 10733 *cp = IPIF_SEPARATOR_CHAR; 10734 if (ill == NULL) 10735 return (err); 10736 } 10737 10738 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10739 B_TRUE); 10740 10741 /* 10742 * Release the refhold due to the lookup, now that we are excl 10743 * or we are just returning 10744 */ 10745 ill_refrele(ill); 10746 10747 if (ipsq == NULL) 10748 return (EINPROGRESS); 10749 10750 /* 10751 * If the interface is failed, inactive or offlined, look for a working 10752 * interface in the ill group and create the ipif there. If we can't 10753 * find a good interface, create the ipif anyway so that in.mpathd can 10754 * move it to the first repaired interface. 10755 */ 10756 if ((ill->ill_phyint->phyint_flags & 10757 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10758 ill->ill_phyint->phyint_groupname_len != 0) { 10759 phyint_t *phyi; 10760 char *groupname = ill->ill_phyint->phyint_groupname; 10761 10762 /* 10763 * We're looking for a working interface, but it doesn't matter 10764 * if it's up or down; so instead of following the group lists, 10765 * we look at each physical interface and compare the groupname. 10766 * We're only interested in interfaces with IPv4 (resp. IPv6) 10767 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10768 * Otherwise we create the ipif on the failed interface. 10769 */ 10770 rw_enter(&ill_g_lock, RW_READER); 10771 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10772 for (; phyi != NULL; 10773 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10774 phyi, AVL_AFTER)) { 10775 if (phyi->phyint_groupname_len == 0) 10776 continue; 10777 ASSERT(phyi->phyint_groupname != NULL); 10778 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10779 !(phyi->phyint_flags & 10780 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10781 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10782 (phyi->phyint_illv4 != NULL))) { 10783 break; 10784 } 10785 } 10786 rw_exit(&ill_g_lock); 10787 10788 if (phyi != NULL) { 10789 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10790 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10791 phyi->phyint_illv4); 10792 } 10793 } 10794 10795 /* 10796 * We are now exclusive on the ipsq, so an ill move will be serialized 10797 * before or after us. 10798 */ 10799 ASSERT(IAM_WRITER_ILL(ill)); 10800 ASSERT(ill->ill_move_in_progress == B_FALSE); 10801 10802 if (found_sep && orig_ifindex == 0) { 10803 /* Now see if there is an IPIF with this unit number. */ 10804 for (ipif = ill->ill_ipif; ipif != NULL; 10805 ipif = ipif->ipif_next) { 10806 if (ipif->ipif_id == id) { 10807 err = EEXIST; 10808 goto done; 10809 } 10810 } 10811 } 10812 10813 /* 10814 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10815 * of lo0. We never come here when we plumb lo0:0. It 10816 * happens in ipif_lookup_on_name. 10817 * The specified unit number is ignored when we create the ipif on a 10818 * different interface. However, we save it in ipif_orig_ipifid below so 10819 * that the ipif fails back to the right position. 10820 */ 10821 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10822 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10823 err = ENOBUFS; 10824 goto done; 10825 } 10826 10827 /* Return created name with ioctl */ 10828 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10829 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10830 ip1dbg(("created %s\n", lifr->lifr_name)); 10831 10832 /* Set address */ 10833 sin = (sin_t *)&lifr->lifr_addr; 10834 if (sin->sin_family != AF_UNSPEC) { 10835 err = ip_sioctl_addr(ipif, sin, q, mp, 10836 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10837 } 10838 10839 /* Set ifindex and unit number for failback */ 10840 if (err == 0 && orig_ifindex != 0) { 10841 ipif->ipif_orig_ifindex = orig_ifindex; 10842 if (found_sep) { 10843 ipif->ipif_orig_ipifid = id; 10844 } 10845 } 10846 10847 done: 10848 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10849 return (err); 10850 } 10851 10852 /* 10853 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10854 * interface) delete it based on the IP address (on this physical interface). 10855 * Otherwise delete it based on the ipif_id. 10856 * Also, special handling to allow a removeif of lo0. 10857 */ 10858 /* ARGSUSED */ 10859 int 10860 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10861 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10862 { 10863 conn_t *connp; 10864 ill_t *ill = ipif->ipif_ill; 10865 boolean_t success; 10866 10867 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10868 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10869 ASSERT(IAM_WRITER_IPIF(ipif)); 10870 10871 connp = Q_TO_CONN(q); 10872 /* 10873 * Special case for unplumbing lo0 (the loopback physical interface). 10874 * If unplumbing lo0, the incoming address structure has been 10875 * initialized to all zeros. When unplumbing lo0, all its logical 10876 * interfaces must be removed too. 10877 * 10878 * Note that this interface may be called to remove a specific 10879 * loopback logical interface (eg, lo0:1). But in that case 10880 * ipif->ipif_id != 0 so that the code path for that case is the 10881 * same as any other interface (meaning it skips the code directly 10882 * below). 10883 */ 10884 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10885 if (sin->sin_family == AF_UNSPEC && 10886 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10887 /* 10888 * Mark it condemned. No new ref. will be made to ill. 10889 */ 10890 mutex_enter(&ill->ill_lock); 10891 ill->ill_state_flags |= ILL_CONDEMNED; 10892 for (ipif = ill->ill_ipif; ipif != NULL; 10893 ipif = ipif->ipif_next) { 10894 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10895 } 10896 mutex_exit(&ill->ill_lock); 10897 10898 ipif = ill->ill_ipif; 10899 /* unplumb the loopback interface */ 10900 ill_delete(ill); 10901 mutex_enter(&connp->conn_lock); 10902 mutex_enter(&ill->ill_lock); 10903 ASSERT(ill->ill_group == NULL); 10904 10905 /* Are any references to this ill active */ 10906 if (ill_is_quiescent(ill)) { 10907 mutex_exit(&ill->ill_lock); 10908 mutex_exit(&connp->conn_lock); 10909 ill_delete_tail(ill); 10910 mi_free(ill); 10911 return (0); 10912 } 10913 success = ipsq_pending_mp_add(connp, ipif, 10914 CONNP_TO_WQ(connp), mp, ILL_FREE); 10915 mutex_exit(&connp->conn_lock); 10916 mutex_exit(&ill->ill_lock); 10917 if (success) 10918 return (EINPROGRESS); 10919 else 10920 return (EINTR); 10921 } 10922 } 10923 10924 /* 10925 * We are exclusive on the ipsq, so an ill move will be serialized 10926 * before or after us. 10927 */ 10928 ASSERT(ill->ill_move_in_progress == B_FALSE); 10929 10930 if (ipif->ipif_id == 0) { 10931 /* Find based on address */ 10932 if (ipif->ipif_isv6) { 10933 sin6_t *sin6; 10934 10935 if (sin->sin_family != AF_INET6) 10936 return (EAFNOSUPPORT); 10937 10938 sin6 = (sin6_t *)sin; 10939 /* We are a writer, so we should be able to lookup */ 10940 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10941 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10942 if (ipif == NULL) { 10943 /* 10944 * Maybe the address in on another interface in 10945 * the same IPMP group? We check this below. 10946 */ 10947 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10948 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10949 } 10950 } else { 10951 ipaddr_t addr; 10952 10953 if (sin->sin_family != AF_INET) 10954 return (EAFNOSUPPORT); 10955 10956 addr = sin->sin_addr.s_addr; 10957 /* We are a writer, so we should be able to lookup */ 10958 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10959 NULL, NULL, NULL); 10960 if (ipif == NULL) { 10961 /* 10962 * Maybe the address in on another interface in 10963 * the same IPMP group? We check this below. 10964 */ 10965 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10966 NULL, NULL, NULL, NULL); 10967 } 10968 } 10969 if (ipif == NULL) { 10970 return (EADDRNOTAVAIL); 10971 } 10972 /* 10973 * When the address to be removed is hosted on a different 10974 * interface, we check if the interface is in the same IPMP 10975 * group as the specified one; if so we proceed with the 10976 * removal. 10977 * ill->ill_group is NULL when the ill is down, so we have to 10978 * compare the group names instead. 10979 */ 10980 if (ipif->ipif_ill != ill && 10981 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10982 ill->ill_phyint->phyint_groupname_len == 0 || 10983 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10984 ill->ill_phyint->phyint_groupname) != 0)) { 10985 ipif_refrele(ipif); 10986 return (EADDRNOTAVAIL); 10987 } 10988 10989 /* This is a writer */ 10990 ipif_refrele(ipif); 10991 } 10992 10993 /* 10994 * Can not delete instance zero since it is tied to the ill. 10995 */ 10996 if (ipif->ipif_id == 0) 10997 return (EBUSY); 10998 10999 mutex_enter(&ill->ill_lock); 11000 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11001 mutex_exit(&ill->ill_lock); 11002 11003 ipif_free(ipif); 11004 11005 mutex_enter(&connp->conn_lock); 11006 mutex_enter(&ill->ill_lock); 11007 11008 /* Are any references to this ipif active */ 11009 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11010 mutex_exit(&ill->ill_lock); 11011 mutex_exit(&connp->conn_lock); 11012 ipif_non_duplicate(ipif); 11013 ipif_down_tail(ipif); 11014 ipif_free_tail(ipif); 11015 return (0); 11016 } 11017 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11018 IPIF_FREE); 11019 mutex_exit(&ill->ill_lock); 11020 mutex_exit(&connp->conn_lock); 11021 if (success) 11022 return (EINPROGRESS); 11023 else 11024 return (EINTR); 11025 } 11026 11027 /* 11028 * Restart the removeif ioctl. The refcnt has gone down to 0. 11029 * The ipif is already condemned. So can't find it thru lookups. 11030 */ 11031 /* ARGSUSED */ 11032 int 11033 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11034 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11035 { 11036 ill_t *ill; 11037 11038 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11040 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11041 ill = ipif->ipif_ill; 11042 ASSERT(IAM_WRITER_ILL(ill)); 11043 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11044 (ill->ill_state_flags & IPIF_CONDEMNED)); 11045 ill_delete_tail(ill); 11046 mi_free(ill); 11047 return (0); 11048 } 11049 11050 ill = ipif->ipif_ill; 11051 ASSERT(IAM_WRITER_IPIF(ipif)); 11052 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11053 11054 ipif_non_duplicate(ipif); 11055 ipif_down_tail(ipif); 11056 ipif_free_tail(ipif); 11057 11058 ILL_UNMARK_CHANGING(ill); 11059 return (0); 11060 } 11061 11062 /* 11063 * Set the local interface address. 11064 * Allow an address of all zero when the interface is down. 11065 */ 11066 /* ARGSUSED */ 11067 int 11068 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11069 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11070 { 11071 int err = 0; 11072 in6_addr_t v6addr; 11073 boolean_t need_up = B_FALSE; 11074 11075 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11076 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11077 11078 ASSERT(IAM_WRITER_IPIF(ipif)); 11079 11080 if (ipif->ipif_isv6) { 11081 sin6_t *sin6; 11082 ill_t *ill; 11083 phyint_t *phyi; 11084 11085 if (sin->sin_family != AF_INET6) 11086 return (EAFNOSUPPORT); 11087 11088 sin6 = (sin6_t *)sin; 11089 v6addr = sin6->sin6_addr; 11090 ill = ipif->ipif_ill; 11091 phyi = ill->ill_phyint; 11092 11093 /* 11094 * Enforce that true multicast interfaces have a link-local 11095 * address for logical unit 0. 11096 */ 11097 if (ipif->ipif_id == 0 && 11098 (ill->ill_flags & ILLF_MULTICAST) && 11099 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11100 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11101 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11102 return (EADDRNOTAVAIL); 11103 } 11104 11105 /* 11106 * up interfaces shouldn't have the unspecified address 11107 * unless they also have the IPIF_NOLOCAL flags set and 11108 * have a subnet assigned. 11109 */ 11110 if ((ipif->ipif_flags & IPIF_UP) && 11111 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11112 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11113 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11114 return (EADDRNOTAVAIL); 11115 } 11116 11117 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11118 return (EADDRNOTAVAIL); 11119 } else { 11120 ipaddr_t addr; 11121 11122 if (sin->sin_family != AF_INET) 11123 return (EAFNOSUPPORT); 11124 11125 addr = sin->sin_addr.s_addr; 11126 11127 /* Allow 0 as the local address. */ 11128 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11129 return (EADDRNOTAVAIL); 11130 11131 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11132 } 11133 11134 11135 /* 11136 * Even if there is no change we redo things just to rerun 11137 * ipif_set_default. 11138 */ 11139 if (ipif->ipif_flags & IPIF_UP) { 11140 /* 11141 * Setting a new local address, make sure 11142 * we have net and subnet bcast ire's for 11143 * the old address if we need them. 11144 */ 11145 if (!ipif->ipif_isv6) 11146 ipif_check_bcast_ires(ipif); 11147 /* 11148 * If the interface is already marked up, 11149 * we call ipif_down which will take care 11150 * of ditching any IREs that have been set 11151 * up based on the old interface address. 11152 */ 11153 err = ipif_logical_down(ipif, q, mp); 11154 if (err == EINPROGRESS) 11155 return (err); 11156 ipif_down_tail(ipif); 11157 need_up = 1; 11158 } 11159 11160 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11161 return (err); 11162 } 11163 11164 int 11165 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11166 boolean_t need_up) 11167 { 11168 in6_addr_t v6addr; 11169 ipaddr_t addr; 11170 sin6_t *sin6; 11171 int sinlen; 11172 int err = 0; 11173 ill_t *ill = ipif->ipif_ill; 11174 boolean_t need_dl_down; 11175 boolean_t need_arp_down; 11176 struct iocblk *iocp; 11177 11178 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11179 11180 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11181 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11182 ASSERT(IAM_WRITER_IPIF(ipif)); 11183 11184 /* Must cancel any pending timer before taking the ill_lock */ 11185 if (ipif->ipif_recovery_id != 0) 11186 (void) untimeout(ipif->ipif_recovery_id); 11187 ipif->ipif_recovery_id = 0; 11188 11189 if (ipif->ipif_isv6) { 11190 sin6 = (sin6_t *)sin; 11191 v6addr = sin6->sin6_addr; 11192 sinlen = sizeof (struct sockaddr_in6); 11193 } else { 11194 addr = sin->sin_addr.s_addr; 11195 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11196 sinlen = sizeof (struct sockaddr_in); 11197 } 11198 mutex_enter(&ill->ill_lock); 11199 ipif->ipif_v6lcl_addr = v6addr; 11200 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11201 ipif->ipif_v6src_addr = ipv6_all_zeros; 11202 } else { 11203 ipif->ipif_v6src_addr = v6addr; 11204 } 11205 ipif->ipif_addr_ready = 0; 11206 11207 /* 11208 * If the interface was previously marked as a duplicate, then since 11209 * we've now got a "new" address, it should no longer be considered a 11210 * duplicate -- even if the "new" address is the same as the old one. 11211 * Note that if all ipifs are down, we may have a pending ARP down 11212 * event to handle. This is because we want to recover from duplicates 11213 * and thus delay tearing down ARP until the duplicates have been 11214 * removed or disabled. 11215 */ 11216 need_dl_down = need_arp_down = B_FALSE; 11217 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11218 need_arp_down = !need_up; 11219 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11220 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11221 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11222 need_dl_down = B_TRUE; 11223 } 11224 } 11225 11226 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11227 !ill->ill_is_6to4tun) { 11228 queue_t *wqp = ill->ill_wq; 11229 11230 /* 11231 * The local address of this interface is a 6to4 address, 11232 * check if this interface is in fact a 6to4 tunnel or just 11233 * an interface configured with a 6to4 address. We are only 11234 * interested in the former. 11235 */ 11236 if (wqp != NULL) { 11237 while ((wqp->q_next != NULL) && 11238 (wqp->q_next->q_qinfo != NULL) && 11239 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11240 11241 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11242 == TUN6TO4_MODID) { 11243 /* set for use in IP */ 11244 ill->ill_is_6to4tun = 1; 11245 break; 11246 } 11247 wqp = wqp->q_next; 11248 } 11249 } 11250 } 11251 11252 ipif_set_default(ipif); 11253 11254 /* 11255 * When publishing an interface address change event, we only notify 11256 * the event listeners of the new address. It is assumed that if they 11257 * actively care about the addresses assigned that they will have 11258 * already discovered the previous address assigned (if there was one.) 11259 * 11260 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11261 */ 11262 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11263 hook_nic_event_t *info; 11264 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11265 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11266 "attached for %s\n", info->hne_event, 11267 ill->ill_name)); 11268 if (info->hne_data != NULL) 11269 kmem_free(info->hne_data, info->hne_datalen); 11270 kmem_free(info, sizeof (hook_nic_event_t)); 11271 } 11272 11273 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11274 if (info != NULL) { 11275 info->hne_nic = 11276 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11277 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11278 info->hne_event = NE_ADDRESS_CHANGE; 11279 info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4; 11280 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11281 if (info->hne_data != NULL) { 11282 info->hne_datalen = sinlen; 11283 bcopy(sin, info->hne_data, sinlen); 11284 } else { 11285 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11286 "address information for ADDRESS_CHANGE nic" 11287 " event of %s (ENOMEM)\n", 11288 ipif->ipif_ill->ill_name)); 11289 kmem_free(info, sizeof (hook_nic_event_t)); 11290 } 11291 } else 11292 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11293 "ADDRESS_CHANGE nic event information for %s " 11294 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11295 11296 ipif->ipif_ill->ill_nic_event_info = info; 11297 } 11298 11299 mutex_exit(&ipif->ipif_ill->ill_lock); 11300 11301 if (need_up) { 11302 /* 11303 * Now bring the interface back up. If this 11304 * is the only IPIF for the ILL, ipif_up 11305 * will have to re-bind to the device, so 11306 * we may get back EINPROGRESS, in which 11307 * case, this IOCTL will get completed in 11308 * ip_rput_dlpi when we see the DL_BIND_ACK. 11309 */ 11310 err = ipif_up(ipif, q, mp); 11311 } else { 11312 /* 11313 * Update the IPIF list in SCTP, ipif_up_done() will do it 11314 * if need_up is true. 11315 */ 11316 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11317 } 11318 11319 if (need_dl_down) 11320 ill_dl_down(ill); 11321 if (need_arp_down) 11322 ipif_arp_down(ipif); 11323 11324 return (err); 11325 } 11326 11327 11328 /* 11329 * Restart entry point to restart the address set operation after the 11330 * refcounts have dropped to zero. 11331 */ 11332 /* ARGSUSED */ 11333 int 11334 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11335 ip_ioctl_cmd_t *ipip, void *ifreq) 11336 { 11337 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11338 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11339 ASSERT(IAM_WRITER_IPIF(ipif)); 11340 ipif_down_tail(ipif); 11341 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11342 } 11343 11344 /* ARGSUSED */ 11345 int 11346 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11347 ip_ioctl_cmd_t *ipip, void *if_req) 11348 { 11349 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11350 struct lifreq *lifr = (struct lifreq *)if_req; 11351 11352 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11353 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11354 /* 11355 * The net mask and address can't change since we have a 11356 * reference to the ipif. So no lock is necessary. 11357 */ 11358 if (ipif->ipif_isv6) { 11359 *sin6 = sin6_null; 11360 sin6->sin6_family = AF_INET6; 11361 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11362 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11363 lifr->lifr_addrlen = 11364 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11365 } else { 11366 *sin = sin_null; 11367 sin->sin_family = AF_INET; 11368 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11369 if (ipip->ipi_cmd_type == LIF_CMD) { 11370 lifr->lifr_addrlen = 11371 ip_mask_to_plen(ipif->ipif_net_mask); 11372 } 11373 } 11374 return (0); 11375 } 11376 11377 /* 11378 * Set the destination address for a pt-pt interface. 11379 */ 11380 /* ARGSUSED */ 11381 int 11382 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11383 ip_ioctl_cmd_t *ipip, void *if_req) 11384 { 11385 int err = 0; 11386 in6_addr_t v6addr; 11387 boolean_t need_up = B_FALSE; 11388 11389 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11390 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11391 ASSERT(IAM_WRITER_IPIF(ipif)); 11392 11393 if (ipif->ipif_isv6) { 11394 sin6_t *sin6; 11395 11396 if (sin->sin_family != AF_INET6) 11397 return (EAFNOSUPPORT); 11398 11399 sin6 = (sin6_t *)sin; 11400 v6addr = sin6->sin6_addr; 11401 11402 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11403 return (EADDRNOTAVAIL); 11404 } else { 11405 ipaddr_t addr; 11406 11407 if (sin->sin_family != AF_INET) 11408 return (EAFNOSUPPORT); 11409 11410 addr = sin->sin_addr.s_addr; 11411 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11412 return (EADDRNOTAVAIL); 11413 11414 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11415 } 11416 11417 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11418 return (0); /* No change */ 11419 11420 if (ipif->ipif_flags & IPIF_UP) { 11421 /* 11422 * If the interface is already marked up, 11423 * we call ipif_down which will take care 11424 * of ditching any IREs that have been set 11425 * up based on the old pp dst address. 11426 */ 11427 err = ipif_logical_down(ipif, q, mp); 11428 if (err == EINPROGRESS) 11429 return (err); 11430 ipif_down_tail(ipif); 11431 need_up = B_TRUE; 11432 } 11433 /* 11434 * could return EINPROGRESS. If so ioctl will complete in 11435 * ip_rput_dlpi_writer 11436 */ 11437 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11438 return (err); 11439 } 11440 11441 static int 11442 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11443 boolean_t need_up) 11444 { 11445 in6_addr_t v6addr; 11446 ill_t *ill = ipif->ipif_ill; 11447 int err = 0; 11448 boolean_t need_dl_down; 11449 boolean_t need_arp_down; 11450 11451 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11452 ipif->ipif_id, (void *)ipif)); 11453 11454 /* Must cancel any pending timer before taking the ill_lock */ 11455 if (ipif->ipif_recovery_id != 0) 11456 (void) untimeout(ipif->ipif_recovery_id); 11457 ipif->ipif_recovery_id = 0; 11458 11459 if (ipif->ipif_isv6) { 11460 sin6_t *sin6; 11461 11462 sin6 = (sin6_t *)sin; 11463 v6addr = sin6->sin6_addr; 11464 } else { 11465 ipaddr_t addr; 11466 11467 addr = sin->sin_addr.s_addr; 11468 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11469 } 11470 mutex_enter(&ill->ill_lock); 11471 /* Set point to point destination address. */ 11472 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11473 /* 11474 * Allow this as a means of creating logical 11475 * pt-pt interfaces on top of e.g. an Ethernet. 11476 * XXX Undocumented HACK for testing. 11477 * pt-pt interfaces are created with NUD disabled. 11478 */ 11479 ipif->ipif_flags |= IPIF_POINTOPOINT; 11480 ipif->ipif_flags &= ~IPIF_BROADCAST; 11481 if (ipif->ipif_isv6) 11482 ill->ill_flags |= ILLF_NONUD; 11483 } 11484 11485 /* 11486 * If the interface was previously marked as a duplicate, then since 11487 * we've now got a "new" address, it should no longer be considered a 11488 * duplicate -- even if the "new" address is the same as the old one. 11489 * Note that if all ipifs are down, we may have a pending ARP down 11490 * event to handle. 11491 */ 11492 need_dl_down = need_arp_down = B_FALSE; 11493 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11494 need_arp_down = !need_up; 11495 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11496 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11497 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11498 need_dl_down = B_TRUE; 11499 } 11500 } 11501 11502 /* Set the new address. */ 11503 ipif->ipif_v6pp_dst_addr = v6addr; 11504 /* Make sure subnet tracks pp_dst */ 11505 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11506 mutex_exit(&ill->ill_lock); 11507 11508 if (need_up) { 11509 /* 11510 * Now bring the interface back up. If this 11511 * is the only IPIF for the ILL, ipif_up 11512 * will have to re-bind to the device, so 11513 * we may get back EINPROGRESS, in which 11514 * case, this IOCTL will get completed in 11515 * ip_rput_dlpi when we see the DL_BIND_ACK. 11516 */ 11517 err = ipif_up(ipif, q, mp); 11518 } 11519 11520 if (need_dl_down) 11521 ill_dl_down(ill); 11522 11523 if (need_arp_down) 11524 ipif_arp_down(ipif); 11525 return (err); 11526 } 11527 11528 /* 11529 * Restart entry point to restart the dstaddress set operation after the 11530 * refcounts have dropped to zero. 11531 */ 11532 /* ARGSUSED */ 11533 int 11534 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11535 ip_ioctl_cmd_t *ipip, void *ifreq) 11536 { 11537 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11538 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11539 ipif_down_tail(ipif); 11540 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11541 } 11542 11543 /* ARGSUSED */ 11544 int 11545 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11546 ip_ioctl_cmd_t *ipip, void *if_req) 11547 { 11548 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11549 11550 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11551 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11552 /* 11553 * Get point to point destination address. The addresses can't 11554 * change since we hold a reference to the ipif. 11555 */ 11556 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11557 return (EADDRNOTAVAIL); 11558 11559 if (ipif->ipif_isv6) { 11560 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11561 *sin6 = sin6_null; 11562 sin6->sin6_family = AF_INET6; 11563 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11564 } else { 11565 *sin = sin_null; 11566 sin->sin_family = AF_INET; 11567 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11568 } 11569 return (0); 11570 } 11571 11572 /* 11573 * part of ipmp, make this func return the active/inactive state and 11574 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11575 */ 11576 /* 11577 * This function either sets or clears the IFF_INACTIVE flag. 11578 * 11579 * As long as there are some addresses or multicast memberships on the 11580 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11581 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11582 * will be used for outbound packets. 11583 * 11584 * Caller needs to verify the validity of setting IFF_INACTIVE. 11585 */ 11586 static void 11587 phyint_inactive(phyint_t *phyi) 11588 { 11589 ill_t *ill_v4; 11590 ill_t *ill_v6; 11591 ipif_t *ipif; 11592 ilm_t *ilm; 11593 11594 ill_v4 = phyi->phyint_illv4; 11595 ill_v6 = phyi->phyint_illv6; 11596 11597 /* 11598 * No need for a lock while traversing the list since iam 11599 * a writer 11600 */ 11601 if (ill_v4 != NULL) { 11602 ASSERT(IAM_WRITER_ILL(ill_v4)); 11603 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11604 ipif = ipif->ipif_next) { 11605 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11606 mutex_enter(&phyi->phyint_lock); 11607 phyi->phyint_flags &= ~PHYI_INACTIVE; 11608 mutex_exit(&phyi->phyint_lock); 11609 return; 11610 } 11611 } 11612 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11613 ilm = ilm->ilm_next) { 11614 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11615 mutex_enter(&phyi->phyint_lock); 11616 phyi->phyint_flags &= ~PHYI_INACTIVE; 11617 mutex_exit(&phyi->phyint_lock); 11618 return; 11619 } 11620 } 11621 } 11622 if (ill_v6 != NULL) { 11623 ill_v6 = phyi->phyint_illv6; 11624 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11625 ipif = ipif->ipif_next) { 11626 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11627 mutex_enter(&phyi->phyint_lock); 11628 phyi->phyint_flags &= ~PHYI_INACTIVE; 11629 mutex_exit(&phyi->phyint_lock); 11630 return; 11631 } 11632 } 11633 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11634 ilm = ilm->ilm_next) { 11635 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11636 mutex_enter(&phyi->phyint_lock); 11637 phyi->phyint_flags &= ~PHYI_INACTIVE; 11638 mutex_exit(&phyi->phyint_lock); 11639 return; 11640 } 11641 } 11642 } 11643 mutex_enter(&phyi->phyint_lock); 11644 phyi->phyint_flags |= PHYI_INACTIVE; 11645 mutex_exit(&phyi->phyint_lock); 11646 } 11647 11648 /* 11649 * This function is called only when the phyint flags change. Currently 11650 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11651 * that we can select a good ill. 11652 */ 11653 static void 11654 ip_redo_nomination(phyint_t *phyi) 11655 { 11656 ill_t *ill_v4; 11657 11658 ill_v4 = phyi->phyint_illv4; 11659 11660 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11661 ASSERT(IAM_WRITER_ILL(ill_v4)); 11662 if (ill_v4->ill_group->illgrp_ill_count > 1) 11663 ill_nominate_bcast_rcv(ill_v4->ill_group); 11664 } 11665 } 11666 11667 /* 11668 * Heuristic to check if ill is INACTIVE. 11669 * Checks if ill has an ipif with an usable ip address. 11670 * 11671 * Return values: 11672 * B_TRUE - ill is INACTIVE; has no usable ipif 11673 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11674 */ 11675 static boolean_t 11676 ill_is_inactive(ill_t *ill) 11677 { 11678 ipif_t *ipif; 11679 11680 /* Check whether it is in an IPMP group */ 11681 if (ill->ill_phyint->phyint_groupname == NULL) 11682 return (B_FALSE); 11683 11684 if (ill->ill_ipif_up_count == 0) 11685 return (B_TRUE); 11686 11687 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11688 uint64_t flags = ipif->ipif_flags; 11689 11690 /* 11691 * This ipif is usable if it is IPIF_UP and not a 11692 * dedicated test address. A dedicated test address 11693 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11694 * (note in particular that V6 test addresses are 11695 * link-local data addresses and thus are marked 11696 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11697 */ 11698 if ((flags & IPIF_UP) && 11699 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11700 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11701 return (B_FALSE); 11702 } 11703 return (B_TRUE); 11704 } 11705 11706 /* 11707 * Set interface flags. 11708 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11709 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11710 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11711 * 11712 * NOTE : We really don't enforce that ipif_id zero should be used 11713 * for setting any flags other than IFF_LOGINT_FLAGS. This 11714 * is because applications generally does SICGLIFFLAGS and 11715 * ORs in the new flags (that affects the logical) and does a 11716 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11717 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11718 * flags that will be turned on is correct with respect to 11719 * ipif_id 0. For backward compatibility reasons, it is not done. 11720 */ 11721 /* ARGSUSED */ 11722 int 11723 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11724 ip_ioctl_cmd_t *ipip, void *if_req) 11725 { 11726 uint64_t turn_on; 11727 uint64_t turn_off; 11728 int err; 11729 boolean_t need_up = B_FALSE; 11730 phyint_t *phyi; 11731 ill_t *ill; 11732 uint64_t intf_flags; 11733 boolean_t phyint_flags_modified = B_FALSE; 11734 uint64_t flags; 11735 struct ifreq *ifr; 11736 struct lifreq *lifr; 11737 boolean_t set_linklocal = B_FALSE; 11738 boolean_t zero_source = B_FALSE; 11739 11740 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11741 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11742 11743 ASSERT(IAM_WRITER_IPIF(ipif)); 11744 11745 ill = ipif->ipif_ill; 11746 phyi = ill->ill_phyint; 11747 11748 if (ipip->ipi_cmd_type == IF_CMD) { 11749 ifr = (struct ifreq *)if_req; 11750 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11751 } else { 11752 lifr = (struct lifreq *)if_req; 11753 flags = lifr->lifr_flags; 11754 } 11755 11756 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11757 11758 /* 11759 * Has the flags been set correctly till now ? 11760 */ 11761 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11762 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11763 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11764 /* 11765 * Compare the new flags to the old, and partition 11766 * into those coming on and those going off. 11767 * For the 16 bit command keep the bits above bit 16 unchanged. 11768 */ 11769 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11770 flags |= intf_flags & ~0xFFFF; 11771 11772 /* 11773 * First check which bits will change and then which will 11774 * go on and off 11775 */ 11776 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11777 if (!turn_on) 11778 return (0); /* No change */ 11779 11780 turn_off = intf_flags & turn_on; 11781 turn_on ^= turn_off; 11782 err = 0; 11783 11784 /* 11785 * Don't allow any bits belonging to the logical interface 11786 * to be set or cleared on the replacement ipif that was 11787 * created temporarily during a MOVE. 11788 */ 11789 if (ipif->ipif_replace_zero && 11790 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11791 return (EINVAL); 11792 } 11793 11794 /* 11795 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11796 * IPv6 interfaces. 11797 */ 11798 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11799 return (EINVAL); 11800 11801 /* 11802 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11803 * interfaces. It makes no sense in that context. 11804 */ 11805 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11806 return (EINVAL); 11807 11808 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11809 zero_source = B_TRUE; 11810 11811 /* 11812 * For IPv6 ipif_id 0, don't allow the interface to be up without 11813 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11814 * If the link local address isn't set, and can be set, it will get 11815 * set later on in this function. 11816 */ 11817 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11818 (flags & IFF_UP) && !zero_source && 11819 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11820 if (ipif_cant_setlinklocal(ipif)) 11821 return (EINVAL); 11822 set_linklocal = B_TRUE; 11823 } 11824 11825 /* 11826 * ILL cannot be part of a usesrc group and and IPMP group at the 11827 * same time. No need to grab ill_g_usesrc_lock here, see 11828 * synchronization notes in ip.c 11829 */ 11830 if (turn_on & PHYI_STANDBY && 11831 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11832 return (EINVAL); 11833 } 11834 11835 /* 11836 * If we modify physical interface flags, we'll potentially need to 11837 * send up two routing socket messages for the changes (one for the 11838 * IPv4 ill, and another for the IPv6 ill). Note that here. 11839 */ 11840 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11841 phyint_flags_modified = B_TRUE; 11842 11843 /* 11844 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11845 * we need to flush the IRE_CACHES belonging to this ill. 11846 * We handle this case here without doing the DOWN/UP dance 11847 * like it is done for other flags. If some other flags are 11848 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11849 * below will handle it by bringing it down and then 11850 * bringing it UP. 11851 */ 11852 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11853 ill_t *ill_v4, *ill_v6; 11854 11855 ill_v4 = phyi->phyint_illv4; 11856 ill_v6 = phyi->phyint_illv6; 11857 11858 /* 11859 * First set the INACTIVE flag if needed. Then delete the ires. 11860 * ire_add will atomically prevent creating new IRE_CACHEs 11861 * unless hidden flag is set. 11862 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11863 */ 11864 if ((turn_on & PHYI_FAILED) && 11865 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11866 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11867 phyi->phyint_flags &= ~PHYI_INACTIVE; 11868 } 11869 if ((turn_off & PHYI_FAILED) && 11870 ((intf_flags & PHYI_STANDBY) || 11871 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11872 phyint_inactive(phyi); 11873 } 11874 11875 if (turn_on & PHYI_STANDBY) { 11876 /* 11877 * We implicitly set INACTIVE only when STANDBY is set. 11878 * INACTIVE is also set on non-STANDBY phyint when user 11879 * disables FAILBACK using configuration file. 11880 * Do not allow STANDBY to be set on such INACTIVE 11881 * phyint 11882 */ 11883 if (phyi->phyint_flags & PHYI_INACTIVE) 11884 return (EINVAL); 11885 if (!(phyi->phyint_flags & PHYI_FAILED)) 11886 phyint_inactive(phyi); 11887 } 11888 if (turn_off & PHYI_STANDBY) { 11889 if (ipmp_enable_failback) { 11890 /* 11891 * Reset PHYI_INACTIVE. 11892 */ 11893 phyi->phyint_flags &= ~PHYI_INACTIVE; 11894 } else if (ill_is_inactive(ill) && 11895 !(phyi->phyint_flags & PHYI_FAILED)) { 11896 /* 11897 * Need to set INACTIVE, when user sets 11898 * STANDBY on a non-STANDBY phyint and 11899 * later resets STANDBY 11900 */ 11901 phyint_inactive(phyi); 11902 } 11903 } 11904 /* 11905 * We should always send up a message so that the 11906 * daemons come to know of it. Note that the zeroth 11907 * interface can be down and the check below for IPIF_UP 11908 * will not make sense as we are actually setting 11909 * a phyint flag here. We assume that the ipif used 11910 * is always the zeroth ipif. (ip_rts_ifmsg does not 11911 * send up any message for non-zero ipifs). 11912 */ 11913 phyint_flags_modified = B_TRUE; 11914 11915 if (ill_v4 != NULL) { 11916 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11917 IRE_CACHE, ill_stq_cache_delete, 11918 (char *)ill_v4, ill_v4); 11919 illgrp_reset_schednext(ill_v4); 11920 } 11921 if (ill_v6 != NULL) { 11922 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11923 IRE_CACHE, ill_stq_cache_delete, 11924 (char *)ill_v6, ill_v6); 11925 illgrp_reset_schednext(ill_v6); 11926 } 11927 } 11928 11929 /* 11930 * If ILLF_ROUTER changes, we need to change the ip forwarding 11931 * status of the interface and, if the interface is part of an IPMP 11932 * group, all other interfaces that are part of the same IPMP 11933 * group. 11934 */ 11935 if ((turn_on | turn_off) & ILLF_ROUTER) { 11936 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11937 (caddr_t)ill); 11938 } 11939 11940 /* 11941 * If the interface is not UP and we are not going to 11942 * bring it UP, record the flags and return. When the 11943 * interface comes UP later, the right actions will be 11944 * taken. 11945 */ 11946 if (!(ipif->ipif_flags & IPIF_UP) && 11947 !(turn_on & IPIF_UP)) { 11948 /* Record new flags in their respective places. */ 11949 mutex_enter(&ill->ill_lock); 11950 mutex_enter(&ill->ill_phyint->phyint_lock); 11951 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11952 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11953 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11954 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11955 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11956 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11957 mutex_exit(&ill->ill_lock); 11958 mutex_exit(&ill->ill_phyint->phyint_lock); 11959 11960 /* 11961 * We do the broadcast and nomination here rather 11962 * than waiting for a FAILOVER/FAILBACK to happen. In 11963 * the case of FAILBACK from INACTIVE standby to the 11964 * interface that has been repaired, PHYI_FAILED has not 11965 * been cleared yet. If there are only two interfaces in 11966 * that group, all we have is a FAILED and INACTIVE 11967 * interface. If we do the nomination soon after a failback, 11968 * the broadcast nomination code would select the 11969 * INACTIVE interface for receiving broadcasts as FAILED is 11970 * not yet cleared. As we don't want STANDBY/INACTIVE to 11971 * receive broadcast packets, we need to redo nomination 11972 * when the FAILED is cleared here. Thus, in general we 11973 * always do the nomination here for FAILED, STANDBY 11974 * and OFFLINE. 11975 */ 11976 if (((turn_on | turn_off) & 11977 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11978 ip_redo_nomination(phyi); 11979 } 11980 if (phyint_flags_modified) { 11981 if (phyi->phyint_illv4 != NULL) { 11982 ip_rts_ifmsg(phyi->phyint_illv4-> 11983 ill_ipif); 11984 } 11985 if (phyi->phyint_illv6 != NULL) { 11986 ip_rts_ifmsg(phyi->phyint_illv6-> 11987 ill_ipif); 11988 } 11989 } 11990 return (0); 11991 } else if (set_linklocal || zero_source) { 11992 mutex_enter(&ill->ill_lock); 11993 if (set_linklocal) 11994 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11995 if (zero_source) 11996 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11997 mutex_exit(&ill->ill_lock); 11998 } 11999 12000 /* 12001 * Disallow IPv6 interfaces coming up that have the unspecified address, 12002 * or point-to-point interfaces with an unspecified destination. We do 12003 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12004 * have a subnet assigned, which is how in.ndpd currently manages its 12005 * onlink prefix list when no addresses are configured with those 12006 * prefixes. 12007 */ 12008 if (ipif->ipif_isv6 && 12009 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12010 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12011 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12012 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12013 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12014 return (EINVAL); 12015 } 12016 12017 /* 12018 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12019 * from being brought up. 12020 */ 12021 if (!ipif->ipif_isv6 && 12022 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12023 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12024 return (EINVAL); 12025 } 12026 12027 /* 12028 * The only flag changes that we currently take specific action on 12029 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12030 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12031 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12032 * the flags and bringing it back up again. 12033 */ 12034 if ((turn_on|turn_off) & 12035 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12036 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12037 /* 12038 * Taking this ipif down, make sure we have 12039 * valid net and subnet bcast ire's for other 12040 * logical interfaces, if we need them. 12041 */ 12042 if (!ipif->ipif_isv6) 12043 ipif_check_bcast_ires(ipif); 12044 12045 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12046 !(turn_off & IPIF_UP)) { 12047 need_up = B_TRUE; 12048 if (ipif->ipif_flags & IPIF_UP) 12049 ill->ill_logical_down = 1; 12050 turn_on &= ~IPIF_UP; 12051 } 12052 err = ipif_down(ipif, q, mp); 12053 ip1dbg(("ipif_down returns %d err ", err)); 12054 if (err == EINPROGRESS) 12055 return (err); 12056 ipif_down_tail(ipif); 12057 } 12058 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12059 } 12060 12061 static int 12062 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12063 boolean_t need_up) 12064 { 12065 ill_t *ill; 12066 phyint_t *phyi; 12067 uint64_t turn_on; 12068 uint64_t turn_off; 12069 uint64_t intf_flags; 12070 boolean_t phyint_flags_modified = B_FALSE; 12071 int err = 0; 12072 boolean_t set_linklocal = B_FALSE; 12073 boolean_t zero_source = B_FALSE; 12074 12075 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12076 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12077 12078 ASSERT(IAM_WRITER_IPIF(ipif)); 12079 12080 ill = ipif->ipif_ill; 12081 phyi = ill->ill_phyint; 12082 12083 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12084 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12085 12086 turn_off = intf_flags & turn_on; 12087 turn_on ^= turn_off; 12088 12089 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12090 phyint_flags_modified = B_TRUE; 12091 12092 /* 12093 * Now we change the flags. Track current value of 12094 * other flags in their respective places. 12095 */ 12096 mutex_enter(&ill->ill_lock); 12097 mutex_enter(&phyi->phyint_lock); 12098 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12099 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12100 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12101 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12102 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12103 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12104 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12105 set_linklocal = B_TRUE; 12106 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12107 } 12108 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12109 zero_source = B_TRUE; 12110 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12111 } 12112 mutex_exit(&ill->ill_lock); 12113 mutex_exit(&phyi->phyint_lock); 12114 12115 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12116 ip_redo_nomination(phyi); 12117 12118 if (set_linklocal) 12119 (void) ipif_setlinklocal(ipif); 12120 12121 if (zero_source) 12122 ipif->ipif_v6src_addr = ipv6_all_zeros; 12123 else 12124 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12125 12126 if (need_up) { 12127 /* 12128 * XXX ipif_up really does not know whether a phyint flags 12129 * was modified or not. So, it sends up information on 12130 * only one routing sockets message. As we don't bring up 12131 * the interface and also set STANDBY/FAILED simultaneously 12132 * it should be okay. 12133 */ 12134 err = ipif_up(ipif, q, mp); 12135 } else { 12136 /* 12137 * Make sure routing socket sees all changes to the flags. 12138 * ipif_up_done* handles this when we use ipif_up. 12139 */ 12140 if (phyint_flags_modified) { 12141 if (phyi->phyint_illv4 != NULL) { 12142 ip_rts_ifmsg(phyi->phyint_illv4-> 12143 ill_ipif); 12144 } 12145 if (phyi->phyint_illv6 != NULL) { 12146 ip_rts_ifmsg(phyi->phyint_illv6-> 12147 ill_ipif); 12148 } 12149 } else { 12150 ip_rts_ifmsg(ipif); 12151 } 12152 } 12153 return (err); 12154 } 12155 12156 /* 12157 * Restart entry point to restart the flags restart operation after the 12158 * refcounts have dropped to zero. 12159 */ 12160 /* ARGSUSED */ 12161 int 12162 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12163 ip_ioctl_cmd_t *ipip, void *if_req) 12164 { 12165 int err; 12166 struct ifreq *ifr = (struct ifreq *)if_req; 12167 struct lifreq *lifr = (struct lifreq *)if_req; 12168 12169 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12170 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12171 12172 ipif_down_tail(ipif); 12173 if (ipip->ipi_cmd_type == IF_CMD) { 12174 /* 12175 * Since ip_sioctl_flags expects an int and ifr_flags 12176 * is a short we need to cast ifr_flags into an int 12177 * to avoid having sign extension cause bits to get 12178 * set that should not be. 12179 */ 12180 err = ip_sioctl_flags_tail(ipif, 12181 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12182 q, mp, B_TRUE); 12183 } else { 12184 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12185 q, mp, B_TRUE); 12186 } 12187 return (err); 12188 } 12189 12190 /* ARGSUSED */ 12191 int 12192 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12193 ip_ioctl_cmd_t *ipip, void *if_req) 12194 { 12195 /* 12196 * Has the flags been set correctly till now ? 12197 */ 12198 ill_t *ill = ipif->ipif_ill; 12199 phyint_t *phyi = ill->ill_phyint; 12200 12201 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12202 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12203 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12204 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12205 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12206 12207 /* 12208 * Need a lock since some flags can be set even when there are 12209 * references to the ipif. 12210 */ 12211 mutex_enter(&ill->ill_lock); 12212 if (ipip->ipi_cmd_type == IF_CMD) { 12213 struct ifreq *ifr = (struct ifreq *)if_req; 12214 12215 /* Get interface flags (low 16 only). */ 12216 ifr->ifr_flags = ((ipif->ipif_flags | 12217 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12218 } else { 12219 struct lifreq *lifr = (struct lifreq *)if_req; 12220 12221 /* Get interface flags. */ 12222 lifr->lifr_flags = ipif->ipif_flags | 12223 ill->ill_flags | phyi->phyint_flags; 12224 } 12225 mutex_exit(&ill->ill_lock); 12226 return (0); 12227 } 12228 12229 /* ARGSUSED */ 12230 int 12231 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12232 ip_ioctl_cmd_t *ipip, void *if_req) 12233 { 12234 int mtu; 12235 int ip_min_mtu; 12236 struct ifreq *ifr; 12237 struct lifreq *lifr; 12238 ire_t *ire; 12239 12240 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12241 ipif->ipif_id, (void *)ipif)); 12242 if (ipip->ipi_cmd_type == IF_CMD) { 12243 ifr = (struct ifreq *)if_req; 12244 mtu = ifr->ifr_metric; 12245 } else { 12246 lifr = (struct lifreq *)if_req; 12247 mtu = lifr->lifr_mtu; 12248 } 12249 12250 if (ipif->ipif_isv6) 12251 ip_min_mtu = IPV6_MIN_MTU; 12252 else 12253 ip_min_mtu = IP_MIN_MTU; 12254 12255 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12256 return (EINVAL); 12257 12258 /* 12259 * Change the MTU size in all relevant ire's. 12260 * Mtu change Vs. new ire creation - protocol below. 12261 * First change ipif_mtu and the ire_max_frag of the 12262 * interface ire. Then do an ire walk and change the 12263 * ire_max_frag of all affected ires. During ire_add 12264 * under the bucket lock, set the ire_max_frag of the 12265 * new ire being created from the ipif/ire from which 12266 * it is being derived. If an mtu change happens after 12267 * the ire is added, the new ire will be cleaned up. 12268 * Conversely if the mtu change happens before the ire 12269 * is added, ire_add will see the new value of the mtu. 12270 */ 12271 ipif->ipif_mtu = mtu; 12272 ipif->ipif_flags |= IPIF_FIXEDMTU; 12273 12274 if (ipif->ipif_isv6) 12275 ire = ipif_to_ire_v6(ipif); 12276 else 12277 ire = ipif_to_ire(ipif); 12278 if (ire != NULL) { 12279 ire->ire_max_frag = ipif->ipif_mtu; 12280 ire_refrele(ire); 12281 } 12282 if (ipif->ipif_flags & IPIF_UP) { 12283 if (ipif->ipif_isv6) 12284 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12285 else 12286 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12287 } 12288 /* Update the MTU in SCTP's list */ 12289 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12290 return (0); 12291 } 12292 12293 /* Get interface MTU. */ 12294 /* ARGSUSED */ 12295 int 12296 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12297 ip_ioctl_cmd_t *ipip, void *if_req) 12298 { 12299 struct ifreq *ifr; 12300 struct lifreq *lifr; 12301 12302 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12303 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12304 if (ipip->ipi_cmd_type == IF_CMD) { 12305 ifr = (struct ifreq *)if_req; 12306 ifr->ifr_metric = ipif->ipif_mtu; 12307 } else { 12308 lifr = (struct lifreq *)if_req; 12309 lifr->lifr_mtu = ipif->ipif_mtu; 12310 } 12311 return (0); 12312 } 12313 12314 /* Set interface broadcast address. */ 12315 /* ARGSUSED2 */ 12316 int 12317 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12318 ip_ioctl_cmd_t *ipip, void *if_req) 12319 { 12320 ipaddr_t addr; 12321 ire_t *ire; 12322 12323 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12324 ipif->ipif_id)); 12325 12326 ASSERT(IAM_WRITER_IPIF(ipif)); 12327 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12328 return (EADDRNOTAVAIL); 12329 12330 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12331 12332 if (sin->sin_family != AF_INET) 12333 return (EAFNOSUPPORT); 12334 12335 addr = sin->sin_addr.s_addr; 12336 if (ipif->ipif_flags & IPIF_UP) { 12337 /* 12338 * If we are already up, make sure the new 12339 * broadcast address makes sense. If it does, 12340 * there should be an IRE for it already. 12341 * Don't match on ipif, only on the ill 12342 * since we are sharing these now. Don't use 12343 * MATCH_IRE_ILL_GROUP as we are looking for 12344 * the broadcast ire on this ill and each ill 12345 * in the group has its own broadcast ire. 12346 */ 12347 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12348 ipif, ALL_ZONES, NULL, 12349 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 12350 if (ire == NULL) { 12351 return (EINVAL); 12352 } else { 12353 ire_refrele(ire); 12354 } 12355 } 12356 /* 12357 * Changing the broadcast addr for this ipif. 12358 * Make sure we have valid net and subnet bcast 12359 * ire's for other logical interfaces, if needed. 12360 */ 12361 if (addr != ipif->ipif_brd_addr) 12362 ipif_check_bcast_ires(ipif); 12363 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12364 return (0); 12365 } 12366 12367 /* Get interface broadcast address. */ 12368 /* ARGSUSED */ 12369 int 12370 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12371 ip_ioctl_cmd_t *ipip, void *if_req) 12372 { 12373 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12374 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12375 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12376 return (EADDRNOTAVAIL); 12377 12378 /* IPIF_BROADCAST not possible with IPv6 */ 12379 ASSERT(!ipif->ipif_isv6); 12380 *sin = sin_null; 12381 sin->sin_family = AF_INET; 12382 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12383 return (0); 12384 } 12385 12386 /* 12387 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12388 */ 12389 /* ARGSUSED */ 12390 int 12391 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12392 ip_ioctl_cmd_t *ipip, void *if_req) 12393 { 12394 int err = 0; 12395 in6_addr_t v6mask; 12396 12397 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12398 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12399 12400 ASSERT(IAM_WRITER_IPIF(ipif)); 12401 12402 if (ipif->ipif_isv6) { 12403 sin6_t *sin6; 12404 12405 if (sin->sin_family != AF_INET6) 12406 return (EAFNOSUPPORT); 12407 12408 sin6 = (sin6_t *)sin; 12409 v6mask = sin6->sin6_addr; 12410 } else { 12411 ipaddr_t mask; 12412 12413 if (sin->sin_family != AF_INET) 12414 return (EAFNOSUPPORT); 12415 12416 mask = sin->sin_addr.s_addr; 12417 V4MASK_TO_V6(mask, v6mask); 12418 } 12419 12420 /* 12421 * No big deal if the interface isn't already up, or the mask 12422 * isn't really changing, or this is pt-pt. 12423 */ 12424 if (!(ipif->ipif_flags & IPIF_UP) || 12425 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12426 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12427 ipif->ipif_v6net_mask = v6mask; 12428 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12429 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12430 ipif->ipif_v6net_mask, 12431 ipif->ipif_v6subnet); 12432 } 12433 return (0); 12434 } 12435 /* 12436 * Make sure we have valid net and subnet broadcast ire's 12437 * for the old netmask, if needed by other logical interfaces. 12438 */ 12439 if (!ipif->ipif_isv6) 12440 ipif_check_bcast_ires(ipif); 12441 12442 err = ipif_logical_down(ipif, q, mp); 12443 if (err == EINPROGRESS) 12444 return (err); 12445 ipif_down_tail(ipif); 12446 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12447 return (err); 12448 } 12449 12450 static int 12451 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12452 { 12453 in6_addr_t v6mask; 12454 int err = 0; 12455 12456 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12458 12459 if (ipif->ipif_isv6) { 12460 sin6_t *sin6; 12461 12462 sin6 = (sin6_t *)sin; 12463 v6mask = sin6->sin6_addr; 12464 } else { 12465 ipaddr_t mask; 12466 12467 mask = sin->sin_addr.s_addr; 12468 V4MASK_TO_V6(mask, v6mask); 12469 } 12470 12471 ipif->ipif_v6net_mask = v6mask; 12472 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12473 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12474 ipif->ipif_v6subnet); 12475 } 12476 err = ipif_up(ipif, q, mp); 12477 12478 if (err == 0 || err == EINPROGRESS) { 12479 /* 12480 * The interface must be DL_BOUND if this packet has to 12481 * go out on the wire. Since we only go through a logical 12482 * down and are bound with the driver during an internal 12483 * down/up that is satisfied. 12484 */ 12485 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12486 /* Potentially broadcast an address mask reply. */ 12487 ipif_mask_reply(ipif); 12488 } 12489 } 12490 return (err); 12491 } 12492 12493 /* ARGSUSED */ 12494 int 12495 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12496 ip_ioctl_cmd_t *ipip, void *if_req) 12497 { 12498 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12499 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12500 ipif_down_tail(ipif); 12501 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12502 } 12503 12504 /* Get interface net mask. */ 12505 /* ARGSUSED */ 12506 int 12507 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12508 ip_ioctl_cmd_t *ipip, void *if_req) 12509 { 12510 struct lifreq *lifr = (struct lifreq *)if_req; 12511 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12512 12513 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12514 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12515 12516 /* 12517 * net mask can't change since we have a reference to the ipif. 12518 */ 12519 if (ipif->ipif_isv6) { 12520 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12521 *sin6 = sin6_null; 12522 sin6->sin6_family = AF_INET6; 12523 sin6->sin6_addr = ipif->ipif_v6net_mask; 12524 lifr->lifr_addrlen = 12525 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12526 } else { 12527 *sin = sin_null; 12528 sin->sin_family = AF_INET; 12529 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12530 if (ipip->ipi_cmd_type == LIF_CMD) { 12531 lifr->lifr_addrlen = 12532 ip_mask_to_plen(ipif->ipif_net_mask); 12533 } 12534 } 12535 return (0); 12536 } 12537 12538 /* ARGSUSED */ 12539 int 12540 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12541 ip_ioctl_cmd_t *ipip, void *if_req) 12542 { 12543 12544 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12545 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12546 /* 12547 * Set interface metric. We don't use this for 12548 * anything but we keep track of it in case it is 12549 * important to routing applications or such. 12550 */ 12551 if (ipip->ipi_cmd_type == IF_CMD) { 12552 struct ifreq *ifr; 12553 12554 ifr = (struct ifreq *)if_req; 12555 ipif->ipif_metric = ifr->ifr_metric; 12556 } else { 12557 struct lifreq *lifr; 12558 12559 lifr = (struct lifreq *)if_req; 12560 ipif->ipif_metric = lifr->lifr_metric; 12561 } 12562 return (0); 12563 } 12564 12565 12566 /* ARGSUSED */ 12567 int 12568 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12569 ip_ioctl_cmd_t *ipip, void *if_req) 12570 { 12571 12572 /* Get interface metric. */ 12573 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12574 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12575 if (ipip->ipi_cmd_type == IF_CMD) { 12576 struct ifreq *ifr; 12577 12578 ifr = (struct ifreq *)if_req; 12579 ifr->ifr_metric = ipif->ipif_metric; 12580 } else { 12581 struct lifreq *lifr; 12582 12583 lifr = (struct lifreq *)if_req; 12584 lifr->lifr_metric = ipif->ipif_metric; 12585 } 12586 12587 return (0); 12588 } 12589 12590 /* ARGSUSED */ 12591 int 12592 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12593 ip_ioctl_cmd_t *ipip, void *if_req) 12594 { 12595 12596 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12597 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12598 /* 12599 * Set the muxid returned from I_PLINK. 12600 */ 12601 if (ipip->ipi_cmd_type == IF_CMD) { 12602 struct ifreq *ifr = (struct ifreq *)if_req; 12603 12604 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12605 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12606 } else { 12607 struct lifreq *lifr = (struct lifreq *)if_req; 12608 12609 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12610 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12611 } 12612 return (0); 12613 } 12614 12615 /* ARGSUSED */ 12616 int 12617 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12618 ip_ioctl_cmd_t *ipip, void *if_req) 12619 { 12620 12621 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12622 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12623 /* 12624 * Get the muxid saved in ill for I_PUNLINK. 12625 */ 12626 if (ipip->ipi_cmd_type == IF_CMD) { 12627 struct ifreq *ifr = (struct ifreq *)if_req; 12628 12629 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12630 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12631 } else { 12632 struct lifreq *lifr = (struct lifreq *)if_req; 12633 12634 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12635 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12636 } 12637 return (0); 12638 } 12639 12640 /* 12641 * Set the subnet prefix. Does not modify the broadcast address. 12642 */ 12643 /* ARGSUSED */ 12644 int 12645 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12646 ip_ioctl_cmd_t *ipip, void *if_req) 12647 { 12648 int err = 0; 12649 in6_addr_t v6addr; 12650 in6_addr_t v6mask; 12651 boolean_t need_up = B_FALSE; 12652 int addrlen; 12653 12654 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12655 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12656 12657 ASSERT(IAM_WRITER_IPIF(ipif)); 12658 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12659 12660 if (ipif->ipif_isv6) { 12661 sin6_t *sin6; 12662 12663 if (sin->sin_family != AF_INET6) 12664 return (EAFNOSUPPORT); 12665 12666 sin6 = (sin6_t *)sin; 12667 v6addr = sin6->sin6_addr; 12668 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12669 return (EADDRNOTAVAIL); 12670 } else { 12671 ipaddr_t addr; 12672 12673 if (sin->sin_family != AF_INET) 12674 return (EAFNOSUPPORT); 12675 12676 addr = sin->sin_addr.s_addr; 12677 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12678 return (EADDRNOTAVAIL); 12679 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12680 /* Add 96 bits */ 12681 addrlen += IPV6_ABITS - IP_ABITS; 12682 } 12683 12684 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12685 return (EINVAL); 12686 12687 /* Check if bits in the address is set past the mask */ 12688 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12689 return (EINVAL); 12690 12691 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12692 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12693 return (0); /* No change */ 12694 12695 if (ipif->ipif_flags & IPIF_UP) { 12696 /* 12697 * If the interface is already marked up, 12698 * we call ipif_down which will take care 12699 * of ditching any IREs that have been set 12700 * up based on the old interface address. 12701 */ 12702 err = ipif_logical_down(ipif, q, mp); 12703 if (err == EINPROGRESS) 12704 return (err); 12705 ipif_down_tail(ipif); 12706 need_up = B_TRUE; 12707 } 12708 12709 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12710 return (err); 12711 } 12712 12713 static int 12714 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12715 queue_t *q, mblk_t *mp, boolean_t need_up) 12716 { 12717 ill_t *ill = ipif->ipif_ill; 12718 int err = 0; 12719 12720 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12721 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12722 12723 /* Set the new address. */ 12724 mutex_enter(&ill->ill_lock); 12725 ipif->ipif_v6net_mask = v6mask; 12726 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12727 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12728 ipif->ipif_v6subnet); 12729 } 12730 mutex_exit(&ill->ill_lock); 12731 12732 if (need_up) { 12733 /* 12734 * Now bring the interface back up. If this 12735 * is the only IPIF for the ILL, ipif_up 12736 * will have to re-bind to the device, so 12737 * we may get back EINPROGRESS, in which 12738 * case, this IOCTL will get completed in 12739 * ip_rput_dlpi when we see the DL_BIND_ACK. 12740 */ 12741 err = ipif_up(ipif, q, mp); 12742 if (err == EINPROGRESS) 12743 return (err); 12744 } 12745 return (err); 12746 } 12747 12748 /* ARGSUSED */ 12749 int 12750 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12751 ip_ioctl_cmd_t *ipip, void *if_req) 12752 { 12753 int addrlen; 12754 in6_addr_t v6addr; 12755 in6_addr_t v6mask; 12756 struct lifreq *lifr = (struct lifreq *)if_req; 12757 12758 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12760 ipif_down_tail(ipif); 12761 12762 addrlen = lifr->lifr_addrlen; 12763 if (ipif->ipif_isv6) { 12764 sin6_t *sin6; 12765 12766 sin6 = (sin6_t *)sin; 12767 v6addr = sin6->sin6_addr; 12768 } else { 12769 ipaddr_t addr; 12770 12771 addr = sin->sin_addr.s_addr; 12772 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12773 addrlen += IPV6_ABITS - IP_ABITS; 12774 } 12775 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12776 12777 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12778 } 12779 12780 /* ARGSUSED */ 12781 int 12782 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12783 ip_ioctl_cmd_t *ipip, void *if_req) 12784 { 12785 struct lifreq *lifr = (struct lifreq *)if_req; 12786 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12787 12788 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12789 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12790 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12791 12792 if (ipif->ipif_isv6) { 12793 *sin6 = sin6_null; 12794 sin6->sin6_family = AF_INET6; 12795 sin6->sin6_addr = ipif->ipif_v6subnet; 12796 lifr->lifr_addrlen = 12797 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12798 } else { 12799 *sin = sin_null; 12800 sin->sin_family = AF_INET; 12801 sin->sin_addr.s_addr = ipif->ipif_subnet; 12802 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12803 } 12804 return (0); 12805 } 12806 12807 /* 12808 * Set the IPv6 address token. 12809 */ 12810 /* ARGSUSED */ 12811 int 12812 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12813 ip_ioctl_cmd_t *ipi, void *if_req) 12814 { 12815 ill_t *ill = ipif->ipif_ill; 12816 int err; 12817 in6_addr_t v6addr; 12818 in6_addr_t v6mask; 12819 boolean_t need_up = B_FALSE; 12820 int i; 12821 sin6_t *sin6 = (sin6_t *)sin; 12822 struct lifreq *lifr = (struct lifreq *)if_req; 12823 int addrlen; 12824 12825 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12826 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12827 ASSERT(IAM_WRITER_IPIF(ipif)); 12828 12829 addrlen = lifr->lifr_addrlen; 12830 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12831 if (ipif->ipif_id != 0) 12832 return (EINVAL); 12833 12834 if (!ipif->ipif_isv6) 12835 return (EINVAL); 12836 12837 if (addrlen > IPV6_ABITS) 12838 return (EINVAL); 12839 12840 v6addr = sin6->sin6_addr; 12841 12842 /* 12843 * The length of the token is the length from the end. To get 12844 * the proper mask for this, compute the mask of the bits not 12845 * in the token; ie. the prefix, and then xor to get the mask. 12846 */ 12847 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12848 return (EINVAL); 12849 for (i = 0; i < 4; i++) { 12850 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12851 } 12852 12853 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12854 ill->ill_token_length == addrlen) 12855 return (0); /* No change */ 12856 12857 if (ipif->ipif_flags & IPIF_UP) { 12858 err = ipif_logical_down(ipif, q, mp); 12859 if (err == EINPROGRESS) 12860 return (err); 12861 ipif_down_tail(ipif); 12862 need_up = B_TRUE; 12863 } 12864 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12865 return (err); 12866 } 12867 12868 static int 12869 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12870 mblk_t *mp, boolean_t need_up) 12871 { 12872 in6_addr_t v6addr; 12873 in6_addr_t v6mask; 12874 ill_t *ill = ipif->ipif_ill; 12875 int i; 12876 int err = 0; 12877 12878 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12879 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12880 v6addr = sin6->sin6_addr; 12881 /* 12882 * The length of the token is the length from the end. To get 12883 * the proper mask for this, compute the mask of the bits not 12884 * in the token; ie. the prefix, and then xor to get the mask. 12885 */ 12886 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12887 for (i = 0; i < 4; i++) 12888 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12889 12890 mutex_enter(&ill->ill_lock); 12891 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12892 ill->ill_token_length = addrlen; 12893 mutex_exit(&ill->ill_lock); 12894 12895 if (need_up) { 12896 /* 12897 * Now bring the interface back up. If this 12898 * is the only IPIF for the ILL, ipif_up 12899 * will have to re-bind to the device, so 12900 * we may get back EINPROGRESS, in which 12901 * case, this IOCTL will get completed in 12902 * ip_rput_dlpi when we see the DL_BIND_ACK. 12903 */ 12904 err = ipif_up(ipif, q, mp); 12905 if (err == EINPROGRESS) 12906 return (err); 12907 } 12908 return (err); 12909 } 12910 12911 /* ARGSUSED */ 12912 int 12913 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12914 ip_ioctl_cmd_t *ipi, void *if_req) 12915 { 12916 ill_t *ill; 12917 sin6_t *sin6 = (sin6_t *)sin; 12918 struct lifreq *lifr = (struct lifreq *)if_req; 12919 12920 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12921 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12922 if (ipif->ipif_id != 0) 12923 return (EINVAL); 12924 12925 ill = ipif->ipif_ill; 12926 if (!ill->ill_isv6) 12927 return (ENXIO); 12928 12929 *sin6 = sin6_null; 12930 sin6->sin6_family = AF_INET6; 12931 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12932 sin6->sin6_addr = ill->ill_token; 12933 lifr->lifr_addrlen = ill->ill_token_length; 12934 return (0); 12935 } 12936 12937 /* 12938 * Set (hardware) link specific information that might override 12939 * what was acquired through the DL_INFO_ACK. 12940 * The logic is as follows. 12941 * 12942 * become exclusive 12943 * set CHANGING flag 12944 * change mtu on affected IREs 12945 * clear CHANGING flag 12946 * 12947 * An ire add that occurs before the CHANGING flag is set will have its mtu 12948 * changed by the ip_sioctl_lnkinfo. 12949 * 12950 * During the time the CHANGING flag is set, no new ires will be added to the 12951 * bucket, and ire add will fail (due the CHANGING flag). 12952 * 12953 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12954 * before it is added to the bucket. 12955 * 12956 * Obviously only 1 thread can set the CHANGING flag and we need to become 12957 * exclusive to set the flag. 12958 */ 12959 /* ARGSUSED */ 12960 int 12961 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12962 ip_ioctl_cmd_t *ipi, void *if_req) 12963 { 12964 ill_t *ill = ipif->ipif_ill; 12965 ipif_t *nipif; 12966 int ip_min_mtu; 12967 boolean_t mtu_walk = B_FALSE; 12968 struct lifreq *lifr = (struct lifreq *)if_req; 12969 lif_ifinfo_req_t *lir; 12970 ire_t *ire; 12971 12972 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12973 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12974 lir = &lifr->lifr_ifinfo; 12975 ASSERT(IAM_WRITER_IPIF(ipif)); 12976 12977 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12978 if (ipif->ipif_id != 0) 12979 return (EINVAL); 12980 12981 /* Set interface MTU. */ 12982 if (ipif->ipif_isv6) 12983 ip_min_mtu = IPV6_MIN_MTU; 12984 else 12985 ip_min_mtu = IP_MIN_MTU; 12986 12987 /* 12988 * Verify values before we set anything. Allow zero to 12989 * mean unspecified. 12990 */ 12991 if (lir->lir_maxmtu != 0 && 12992 (lir->lir_maxmtu > ill->ill_max_frag || 12993 lir->lir_maxmtu < ip_min_mtu)) 12994 return (EINVAL); 12995 if (lir->lir_reachtime != 0 && 12996 lir->lir_reachtime > ND_MAX_REACHTIME) 12997 return (EINVAL); 12998 if (lir->lir_reachretrans != 0 && 12999 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13000 return (EINVAL); 13001 13002 mutex_enter(&ill->ill_lock); 13003 ill->ill_state_flags |= ILL_CHANGING; 13004 for (nipif = ill->ill_ipif; nipif != NULL; 13005 nipif = nipif->ipif_next) { 13006 nipif->ipif_state_flags |= IPIF_CHANGING; 13007 } 13008 13009 mutex_exit(&ill->ill_lock); 13010 13011 if (lir->lir_maxmtu != 0) { 13012 ill->ill_max_mtu = lir->lir_maxmtu; 13013 ill->ill_mtu_userspecified = 1; 13014 mtu_walk = B_TRUE; 13015 } 13016 13017 if (lir->lir_reachtime != 0) 13018 ill->ill_reachable_time = lir->lir_reachtime; 13019 13020 if (lir->lir_reachretrans != 0) 13021 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13022 13023 ill->ill_max_hops = lir->lir_maxhops; 13024 13025 ill->ill_max_buf = ND_MAX_Q; 13026 13027 if (mtu_walk) { 13028 /* 13029 * Set the MTU on all ipifs associated with this ill except 13030 * for those whose MTU was fixed via SIOCSLIFMTU. 13031 */ 13032 for (nipif = ill->ill_ipif; nipif != NULL; 13033 nipif = nipif->ipif_next) { 13034 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13035 continue; 13036 13037 nipif->ipif_mtu = ill->ill_max_mtu; 13038 13039 if (!(nipif->ipif_flags & IPIF_UP)) 13040 continue; 13041 13042 if (nipif->ipif_isv6) 13043 ire = ipif_to_ire_v6(nipif); 13044 else 13045 ire = ipif_to_ire(nipif); 13046 if (ire != NULL) { 13047 ire->ire_max_frag = ipif->ipif_mtu; 13048 ire_refrele(ire); 13049 } 13050 if (ill->ill_isv6) { 13051 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13052 ipif_mtu_change, (char *)nipif, 13053 ill); 13054 } else { 13055 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13056 ipif_mtu_change, (char *)nipif, 13057 ill); 13058 } 13059 } 13060 } 13061 13062 mutex_enter(&ill->ill_lock); 13063 for (nipif = ill->ill_ipif; nipif != NULL; 13064 nipif = nipif->ipif_next) { 13065 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13066 } 13067 ILL_UNMARK_CHANGING(ill); 13068 mutex_exit(&ill->ill_lock); 13069 13070 return (0); 13071 } 13072 13073 /* ARGSUSED */ 13074 int 13075 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13076 ip_ioctl_cmd_t *ipi, void *if_req) 13077 { 13078 struct lif_ifinfo_req *lir; 13079 ill_t *ill = ipif->ipif_ill; 13080 13081 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13083 if (ipif->ipif_id != 0) 13084 return (EINVAL); 13085 13086 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13087 lir->lir_maxhops = ill->ill_max_hops; 13088 lir->lir_reachtime = ill->ill_reachable_time; 13089 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13090 lir->lir_maxmtu = ill->ill_max_mtu; 13091 13092 return (0); 13093 } 13094 13095 /* 13096 * Return best guess as to the subnet mask for the specified address. 13097 * Based on the subnet masks for all the configured interfaces. 13098 * 13099 * We end up returning a zero mask in the case of default, multicast or 13100 * experimental. 13101 */ 13102 static ipaddr_t 13103 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 13104 { 13105 ipaddr_t net_mask; 13106 ill_t *ill; 13107 ipif_t *ipif; 13108 ill_walk_context_t ctx; 13109 ipif_t *fallback_ipif = NULL; 13110 13111 net_mask = ip_net_mask(addr); 13112 if (net_mask == 0) { 13113 *ipifp = NULL; 13114 return (0); 13115 } 13116 13117 /* Let's check to see if this is maybe a local subnet route. */ 13118 /* this function only applies to IPv4 interfaces */ 13119 rw_enter(&ill_g_lock, RW_READER); 13120 ill = ILL_START_WALK_V4(&ctx); 13121 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13122 mutex_enter(&ill->ill_lock); 13123 for (ipif = ill->ill_ipif; ipif != NULL; 13124 ipif = ipif->ipif_next) { 13125 if (!IPIF_CAN_LOOKUP(ipif)) 13126 continue; 13127 if (!(ipif->ipif_flags & IPIF_UP)) 13128 continue; 13129 if ((ipif->ipif_subnet & net_mask) == 13130 (addr & net_mask)) { 13131 /* 13132 * Don't trust pt-pt interfaces if there are 13133 * other interfaces. 13134 */ 13135 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13136 if (fallback_ipif == NULL) { 13137 ipif_refhold_locked(ipif); 13138 fallback_ipif = ipif; 13139 } 13140 continue; 13141 } 13142 13143 /* 13144 * Fine. Just assume the same net mask as the 13145 * directly attached subnet interface is using. 13146 */ 13147 ipif_refhold_locked(ipif); 13148 mutex_exit(&ill->ill_lock); 13149 rw_exit(&ill_g_lock); 13150 if (fallback_ipif != NULL) 13151 ipif_refrele(fallback_ipif); 13152 *ipifp = ipif; 13153 return (ipif->ipif_net_mask); 13154 } 13155 } 13156 mutex_exit(&ill->ill_lock); 13157 } 13158 rw_exit(&ill_g_lock); 13159 13160 *ipifp = fallback_ipif; 13161 return ((fallback_ipif != NULL) ? 13162 fallback_ipif->ipif_net_mask : net_mask); 13163 } 13164 13165 /* 13166 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13167 */ 13168 static void 13169 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13170 { 13171 IOCP iocp; 13172 ipft_t *ipft; 13173 ipllc_t *ipllc; 13174 mblk_t *mp1; 13175 cred_t *cr; 13176 int error = 0; 13177 conn_t *connp; 13178 13179 ip1dbg(("ip_wput_ioctl")); 13180 iocp = (IOCP)mp->b_rptr; 13181 mp1 = mp->b_cont; 13182 if (mp1 == NULL) { 13183 iocp->ioc_error = EINVAL; 13184 mp->b_datap->db_type = M_IOCNAK; 13185 iocp->ioc_count = 0; 13186 qreply(q, mp); 13187 return; 13188 } 13189 13190 /* 13191 * These IOCTLs provide various control capabilities to 13192 * upstream agents such as ULPs and processes. There 13193 * are currently two such IOCTLs implemented. They 13194 * are used by TCP to provide update information for 13195 * existing IREs and to forcibly delete an IRE for a 13196 * host that is not responding, thereby forcing an 13197 * attempt at a new route. 13198 */ 13199 iocp->ioc_error = EINVAL; 13200 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13201 goto done; 13202 13203 ipllc = (ipllc_t *)mp1->b_rptr; 13204 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13205 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13206 break; 13207 } 13208 /* 13209 * prefer credential from mblk over ioctl; 13210 * see ip_sioctl_copyin_setup 13211 */ 13212 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13213 13214 /* 13215 * Refhold the conn in case the request gets queued up in some lookup 13216 */ 13217 ASSERT(CONN_Q(q)); 13218 connp = Q_TO_CONN(q); 13219 CONN_INC_REF(connp); 13220 if (ipft->ipft_pfi && 13221 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13222 pullupmsg(mp1, ipft->ipft_min_size))) { 13223 error = (*ipft->ipft_pfi)(q, 13224 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13225 } 13226 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13227 /* 13228 * CONN_OPER_PENDING_DONE happens in the function called 13229 * through ipft_pfi above. 13230 */ 13231 return; 13232 } 13233 13234 CONN_OPER_PENDING_DONE(connp); 13235 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13236 freemsg(mp); 13237 return; 13238 } 13239 iocp->ioc_error = error; 13240 13241 done: 13242 mp->b_datap->db_type = M_IOCACK; 13243 if (iocp->ioc_error) 13244 iocp->ioc_count = 0; 13245 qreply(q, mp); 13246 } 13247 13248 /* 13249 * Lookup an ipif using the sequence id (ipif_seqid) 13250 */ 13251 ipif_t * 13252 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13253 { 13254 ipif_t *ipif; 13255 13256 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13257 13258 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13259 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13260 return (ipif); 13261 } 13262 return (NULL); 13263 } 13264 13265 uint64_t ipif_g_seqid; 13266 13267 /* 13268 * Assign a unique id for the ipif. This is used later when we send 13269 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13270 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13271 * IRE is added, we verify that ipif has not disappeared. 13272 */ 13273 13274 static void 13275 ipif_assign_seqid(ipif_t *ipif) 13276 { 13277 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 13278 } 13279 13280 /* 13281 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13282 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13283 * be inserted into the first space available in the list. The value of 13284 * ipif_id will then be set to the appropriate value for its position. 13285 */ 13286 static int 13287 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13288 { 13289 ill_t *ill; 13290 ipif_t *tipif; 13291 ipif_t **tipifp; 13292 int id; 13293 13294 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13295 IAM_WRITER_IPIF(ipif)); 13296 13297 ill = ipif->ipif_ill; 13298 ASSERT(ill != NULL); 13299 13300 /* 13301 * In the case of lo0:0 we already hold the ill_g_lock. 13302 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13303 * ipif_insert. Another such caller is ipif_move. 13304 */ 13305 if (acquire_g_lock) 13306 rw_enter(&ill_g_lock, RW_WRITER); 13307 if (acquire_ill_lock) 13308 mutex_enter(&ill->ill_lock); 13309 id = ipif->ipif_id; 13310 tipifp = &(ill->ill_ipif); 13311 if (id == -1) { /* need to find a real id */ 13312 id = 0; 13313 while ((tipif = *tipifp) != NULL) { 13314 ASSERT(tipif->ipif_id >= id); 13315 if (tipif->ipif_id != id) 13316 break; /* non-consecutive id */ 13317 id++; 13318 tipifp = &(tipif->ipif_next); 13319 } 13320 /* limit number of logical interfaces */ 13321 if (id >= ip_addrs_per_if) { 13322 if (acquire_ill_lock) 13323 mutex_exit(&ill->ill_lock); 13324 if (acquire_g_lock) 13325 rw_exit(&ill_g_lock); 13326 return (-1); 13327 } 13328 ipif->ipif_id = id; /* assign new id */ 13329 } else if (id < ip_addrs_per_if) { 13330 /* we have a real id; insert ipif in the right place */ 13331 while ((tipif = *tipifp) != NULL) { 13332 ASSERT(tipif->ipif_id != id); 13333 if (tipif->ipif_id > id) 13334 break; /* found correct location */ 13335 tipifp = &(tipif->ipif_next); 13336 } 13337 } else { 13338 if (acquire_ill_lock) 13339 mutex_exit(&ill->ill_lock); 13340 if (acquire_g_lock) 13341 rw_exit(&ill_g_lock); 13342 return (-1); 13343 } 13344 13345 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13346 13347 ipif->ipif_next = tipif; 13348 *tipifp = ipif; 13349 if (acquire_ill_lock) 13350 mutex_exit(&ill->ill_lock); 13351 if (acquire_g_lock) 13352 rw_exit(&ill_g_lock); 13353 return (0); 13354 } 13355 13356 /* 13357 * Allocate and initialize a new interface control structure. (Always 13358 * called as writer.) 13359 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13360 * is not part of the global linked list of ills. ipif_seqid is unique 13361 * in the system and to preserve the uniqueness, it is assigned only 13362 * when ill becomes part of the global list. At that point ill will 13363 * have a name. If it doesn't get assigned here, it will get assigned 13364 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13365 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13366 * the interface flags or any other information from the DL_INFO_ACK for 13367 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13368 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13369 * second DL_INFO_ACK comes in from the driver. 13370 */ 13371 static ipif_t * 13372 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13373 { 13374 ipif_t *ipif; 13375 phyint_t *phyi; 13376 13377 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13378 ill->ill_name, id, (void *)ill)); 13379 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13380 13381 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13382 return (NULL); 13383 *ipif = ipif_zero; /* start clean */ 13384 13385 ipif->ipif_ill = ill; 13386 ipif->ipif_id = id; /* could be -1 */ 13387 ipif->ipif_zoneid = GLOBAL_ZONEID; 13388 13389 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13390 13391 ipif->ipif_refcnt = 0; 13392 ipif->ipif_saved_ire_cnt = 0; 13393 13394 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13395 mi_free(ipif); 13396 return (NULL); 13397 } 13398 /* -1 id should have been replaced by real id */ 13399 id = ipif->ipif_id; 13400 ASSERT(id >= 0); 13401 13402 if (ill->ill_name[0] != '\0') { 13403 ipif_assign_seqid(ipif); 13404 if (ill->ill_phyint->phyint_ifindex != 0) 13405 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13406 } 13407 /* 13408 * Keep a copy of original id in ipif_orig_ipifid. Failback 13409 * will attempt to restore the original id. The SIOCSLIFOINDEX 13410 * ioctl sets ipif_orig_ipifid to zero. 13411 */ 13412 ipif->ipif_orig_ipifid = id; 13413 13414 /* 13415 * We grab the ill_lock and phyint_lock to protect the flag changes. 13416 * The ipif is still not up and can't be looked up until the 13417 * ioctl completes and the IPIF_CHANGING flag is cleared. 13418 */ 13419 mutex_enter(&ill->ill_lock); 13420 mutex_enter(&ill->ill_phyint->phyint_lock); 13421 /* 13422 * Set the running flag when logical interface zero is created. 13423 * For subsequent logical interfaces, a DLPI link down 13424 * notification message may have cleared the running flag to 13425 * indicate the link is down, so we shouldn't just blindly set it. 13426 */ 13427 if (id == 0) 13428 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13429 ipif->ipif_ire_type = ire_type; 13430 phyi = ill->ill_phyint; 13431 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13432 13433 if (ipif->ipif_isv6) { 13434 ill->ill_flags |= ILLF_IPV6; 13435 } else { 13436 ipaddr_t inaddr_any = INADDR_ANY; 13437 13438 ill->ill_flags |= ILLF_IPV4; 13439 13440 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13441 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13442 &ipif->ipif_v6lcl_addr); 13443 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13444 &ipif->ipif_v6src_addr); 13445 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13446 &ipif->ipif_v6subnet); 13447 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13448 &ipif->ipif_v6net_mask); 13449 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13450 &ipif->ipif_v6brd_addr); 13451 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13452 &ipif->ipif_v6pp_dst_addr); 13453 } 13454 13455 /* 13456 * Don't set the interface flags etc. now, will do it in 13457 * ip_ll_subnet_defaults. 13458 */ 13459 if (!initialize) { 13460 mutex_exit(&ill->ill_lock); 13461 mutex_exit(&ill->ill_phyint->phyint_lock); 13462 return (ipif); 13463 } 13464 ipif->ipif_mtu = ill->ill_max_mtu; 13465 13466 if (ill->ill_bcast_addr_length != 0) { 13467 /* 13468 * Later detect lack of DLPI driver multicast 13469 * capability by catching DL_ENABMULTI errors in 13470 * ip_rput_dlpi. 13471 */ 13472 ill->ill_flags |= ILLF_MULTICAST; 13473 if (!ipif->ipif_isv6) 13474 ipif->ipif_flags |= IPIF_BROADCAST; 13475 } else { 13476 if (ill->ill_net_type != IRE_LOOPBACK) { 13477 if (ipif->ipif_isv6) 13478 /* 13479 * Note: xresolv interfaces will eventually need 13480 * NOARP set here as well, but that will require 13481 * those external resolvers to have some 13482 * knowledge of that flag and act appropriately. 13483 * Not to be changed at present. 13484 */ 13485 ill->ill_flags |= ILLF_NONUD; 13486 else 13487 ill->ill_flags |= ILLF_NOARP; 13488 } 13489 if (ill->ill_phys_addr_length == 0) { 13490 if (ill->ill_media && 13491 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13492 ipif->ipif_flags |= IPIF_NOXMIT; 13493 phyi->phyint_flags |= PHYI_VIRTUAL; 13494 } else { 13495 /* pt-pt supports multicast. */ 13496 ill->ill_flags |= ILLF_MULTICAST; 13497 if (ill->ill_net_type == IRE_LOOPBACK) { 13498 phyi->phyint_flags |= 13499 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13500 } else { 13501 ipif->ipif_flags |= IPIF_POINTOPOINT; 13502 } 13503 } 13504 } 13505 } 13506 mutex_exit(&ill->ill_lock); 13507 mutex_exit(&ill->ill_phyint->phyint_lock); 13508 return (ipif); 13509 } 13510 13511 /* 13512 * If appropriate, send a message up to the resolver delete the entry 13513 * for the address of this interface which is going out of business. 13514 * (Always called as writer). 13515 * 13516 * NOTE : We need to check for NULL mps as some of the fields are 13517 * initialized only for some interface types. See ipif_resolver_up() 13518 * for details. 13519 */ 13520 void 13521 ipif_arp_down(ipif_t *ipif) 13522 { 13523 mblk_t *mp; 13524 ill_t *ill = ipif->ipif_ill; 13525 13526 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13527 ASSERT(IAM_WRITER_IPIF(ipif)); 13528 13529 /* Delete the mapping for the local address */ 13530 mp = ipif->ipif_arp_del_mp; 13531 if (mp != NULL) { 13532 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13533 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13534 putnext(ill->ill_rq, mp); 13535 ipif->ipif_arp_del_mp = NULL; 13536 } 13537 13538 /* 13539 * If this is the last ipif that is going down and there are no 13540 * duplicate addresses we may yet attempt to re-probe, then we need to 13541 * clean up ARP completely. 13542 */ 13543 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13544 13545 /* Send up AR_INTERFACE_DOWN message */ 13546 mp = ill->ill_arp_down_mp; 13547 if (mp != NULL) { 13548 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13549 *(unsigned *)mp->b_rptr, ill->ill_name, 13550 ipif->ipif_id)); 13551 putnext(ill->ill_rq, mp); 13552 ill->ill_arp_down_mp = NULL; 13553 } 13554 13555 /* Tell ARP to delete the multicast mappings */ 13556 mp = ill->ill_arp_del_mapping_mp; 13557 if (mp != NULL) { 13558 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13559 *(unsigned *)mp->b_rptr, ill->ill_name, 13560 ipif->ipif_id)); 13561 putnext(ill->ill_rq, mp); 13562 ill->ill_arp_del_mapping_mp = NULL; 13563 } 13564 } 13565 } 13566 13567 /* 13568 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13569 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13570 * that it wants the add_mp allocated in this function to be returned 13571 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13572 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13573 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13574 * as it does a ipif_arp_down after calling this function - which will 13575 * remove what we add here. 13576 * 13577 * Returns -1 on failures and 0 on success. 13578 */ 13579 int 13580 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13581 { 13582 mblk_t *del_mp = NULL; 13583 mblk_t *add_mp = NULL; 13584 mblk_t *mp; 13585 ill_t *ill = ipif->ipif_ill; 13586 phyint_t *phyi = ill->ill_phyint; 13587 ipaddr_t addr, mask, extract_mask = 0; 13588 arma_t *arma; 13589 uint8_t *maddr, *bphys_addr; 13590 uint32_t hw_start; 13591 dl_unitdata_req_t *dlur; 13592 13593 ASSERT(IAM_WRITER_IPIF(ipif)); 13594 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13595 return (0); 13596 13597 /* 13598 * Delete the existing mapping from ARP. Normally ipif_down 13599 * -> ipif_arp_down should send this up to ARP. The only 13600 * reason we would find this when we are switching from 13601 * Multicast to Broadcast where we did not do a down. 13602 */ 13603 mp = ill->ill_arp_del_mapping_mp; 13604 if (mp != NULL) { 13605 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13606 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13607 putnext(ill->ill_rq, mp); 13608 ill->ill_arp_del_mapping_mp = NULL; 13609 } 13610 13611 if (arp_add_mapping_mp != NULL) 13612 *arp_add_mapping_mp = NULL; 13613 13614 /* 13615 * Check that the address is not to long for the constant 13616 * length reserved in the template arma_t. 13617 */ 13618 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13619 return (-1); 13620 13621 /* Add mapping mblk */ 13622 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13623 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13624 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13625 (caddr_t)&addr); 13626 if (add_mp == NULL) 13627 return (-1); 13628 arma = (arma_t *)add_mp->b_rptr; 13629 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13630 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13631 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13632 13633 /* 13634 * Determine the broadcast address. 13635 */ 13636 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13637 if (ill->ill_sap_length < 0) 13638 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13639 else 13640 bphys_addr = (uchar_t *)dlur + 13641 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13642 /* 13643 * Check PHYI_MULTI_BCAST and length of physical 13644 * address to determine if we use the mapping or the 13645 * broadcast address. 13646 */ 13647 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13648 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13649 bphys_addr, maddr, &hw_start, &extract_mask)) 13650 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13651 13652 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13653 (ill->ill_flags & ILLF_MULTICAST)) { 13654 /* Make sure this will not match the "exact" entry. */ 13655 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13656 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13657 (caddr_t)&addr); 13658 if (del_mp == NULL) { 13659 freemsg(add_mp); 13660 return (-1); 13661 } 13662 bcopy(&extract_mask, (char *)arma + 13663 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13664 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13665 /* Use link-layer broadcast address for MULTI_BCAST */ 13666 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13667 ip2dbg(("ipif_arp_setup_multicast: adding" 13668 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13669 } else { 13670 arma->arma_hw_mapping_start = hw_start; 13671 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13672 " ARP setup for %s\n", ill->ill_name)); 13673 } 13674 } else { 13675 freemsg(add_mp); 13676 ASSERT(del_mp == NULL); 13677 /* It is neither MULTICAST nor MULTI_BCAST */ 13678 return (0); 13679 } 13680 ASSERT(add_mp != NULL && del_mp != NULL); 13681 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13682 ill->ill_arp_del_mapping_mp = del_mp; 13683 if (arp_add_mapping_mp != NULL) { 13684 /* The caller just wants the mblks allocated */ 13685 *arp_add_mapping_mp = add_mp; 13686 } else { 13687 /* The caller wants us to send it to arp */ 13688 putnext(ill->ill_rq, add_mp); 13689 } 13690 return (0); 13691 } 13692 13693 /* 13694 * Get the resolver set up for a new interface address. 13695 * (Always called as writer.) 13696 * Called both for IPv4 and IPv6 interfaces, 13697 * though it only sets up the resolver for v6 13698 * if it's an xresolv interface (one using an external resolver). 13699 * Honors ILLF_NOARP. 13700 * The enumerated value res_act is used to tune the behavior. 13701 * If set to Res_act_initial, then we set up all the resolver 13702 * structures for a new interface. If set to Res_act_move, then 13703 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13704 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13705 * asynchronous hardware address change notification. If set to 13706 * Res_act_defend, then we tell ARP that it needs to send a single 13707 * gratuitous message in defense of the address. 13708 * Returns error on failure. 13709 */ 13710 int 13711 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13712 { 13713 caddr_t addr; 13714 mblk_t *arp_up_mp = NULL; 13715 mblk_t *arp_down_mp = NULL; 13716 mblk_t *arp_add_mp = NULL; 13717 mblk_t *arp_del_mp = NULL; 13718 mblk_t *arp_add_mapping_mp = NULL; 13719 mblk_t *arp_del_mapping_mp = NULL; 13720 ill_t *ill = ipif->ipif_ill; 13721 uchar_t *area_p = NULL; 13722 uchar_t *ared_p = NULL; 13723 int err = ENOMEM; 13724 boolean_t was_dup; 13725 13726 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13727 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13728 ASSERT(IAM_WRITER_IPIF(ipif)); 13729 13730 was_dup = B_FALSE; 13731 if (res_act == Res_act_initial) { 13732 ipif->ipif_addr_ready = 0; 13733 /* 13734 * We're bringing an interface up here. There's no way that we 13735 * should need to shut down ARP now. 13736 */ 13737 mutex_enter(&ill->ill_lock); 13738 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13739 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13740 ill->ill_ipif_dup_count--; 13741 was_dup = B_TRUE; 13742 } 13743 mutex_exit(&ill->ill_lock); 13744 } 13745 if (ipif->ipif_recovery_id != 0) 13746 (void) untimeout(ipif->ipif_recovery_id); 13747 ipif->ipif_recovery_id = 0; 13748 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13749 ipif->ipif_addr_ready = 1; 13750 return (0); 13751 } 13752 /* NDP will set the ipif_addr_ready flag when it's ready */ 13753 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13754 return (0); 13755 13756 if (ill->ill_isv6) { 13757 /* 13758 * External resolver for IPv6 13759 */ 13760 ASSERT(res_act == Res_act_initial); 13761 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13762 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13763 area_p = (uchar_t *)&ip6_area_template; 13764 ared_p = (uchar_t *)&ip6_ared_template; 13765 } 13766 } else { 13767 /* 13768 * IPv4 arp case. If the ARP stream has already started 13769 * closing, fail this request for ARP bringup. Else 13770 * record the fact that an ARP bringup is pending. 13771 */ 13772 mutex_enter(&ill->ill_lock); 13773 if (ill->ill_arp_closing) { 13774 mutex_exit(&ill->ill_lock); 13775 err = EINVAL; 13776 goto failed; 13777 } else { 13778 if (ill->ill_ipif_up_count == 0 && 13779 ill->ill_ipif_dup_count == 0 && !was_dup) 13780 ill->ill_arp_bringup_pending = 1; 13781 mutex_exit(&ill->ill_lock); 13782 } 13783 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13784 addr = (caddr_t)&ipif->ipif_lcl_addr; 13785 area_p = (uchar_t *)&ip_area_template; 13786 ared_p = (uchar_t *)&ip_ared_template; 13787 } 13788 } 13789 13790 /* 13791 * Add an entry for the local address in ARP only if it 13792 * is not UNNUMBERED and the address is not INADDR_ANY. 13793 */ 13794 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13795 area_t *area; 13796 13797 /* Now ask ARP to publish our address. */ 13798 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13799 if (arp_add_mp == NULL) 13800 goto failed; 13801 area = (area_t *)arp_add_mp->b_rptr; 13802 if (res_act != Res_act_initial) { 13803 /* 13804 * Copy the new hardware address and length into 13805 * arp_add_mp to be sent to ARP. 13806 */ 13807 area->area_hw_addr_length = 13808 ill->ill_phys_addr_length; 13809 bcopy((char *)ill->ill_phys_addr, 13810 ((char *)area + area->area_hw_addr_offset), 13811 area->area_hw_addr_length); 13812 } 13813 13814 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13815 ACE_F_MYADDR; 13816 13817 if (res_act == Res_act_defend) { 13818 area->area_flags |= ACE_F_DEFEND; 13819 /* 13820 * If we're just defending our address now, then 13821 * there's no need to set up ARP multicast mappings. 13822 * The publish command is enough. 13823 */ 13824 goto done; 13825 } 13826 13827 if (res_act != Res_act_initial) 13828 goto arp_setup_multicast; 13829 13830 /* 13831 * Allocate an ARP deletion message so we know we can tell ARP 13832 * when the interface goes down. 13833 */ 13834 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13835 if (arp_del_mp == NULL) 13836 goto failed; 13837 13838 } else { 13839 if (res_act != Res_act_initial) 13840 goto done; 13841 } 13842 /* 13843 * Need to bring up ARP or setup multicast mapping only 13844 * when the first interface is coming UP. 13845 */ 13846 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13847 was_dup) { 13848 goto done; 13849 } 13850 13851 /* 13852 * Allocate an ARP down message (to be saved) and an ARP up 13853 * message. 13854 */ 13855 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13856 if (arp_down_mp == NULL) 13857 goto failed; 13858 13859 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13860 if (arp_up_mp == NULL) 13861 goto failed; 13862 13863 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13864 goto done; 13865 13866 arp_setup_multicast: 13867 /* 13868 * Setup the multicast mappings. This function initializes 13869 * ill_arp_del_mapping_mp also. This does not need to be done for 13870 * IPv6. 13871 */ 13872 if (!ill->ill_isv6) { 13873 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13874 if (err != 0) 13875 goto failed; 13876 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13877 ASSERT(arp_add_mapping_mp != NULL); 13878 } 13879 13880 done: 13881 if (arp_del_mp != NULL) { 13882 ASSERT(ipif->ipif_arp_del_mp == NULL); 13883 ipif->ipif_arp_del_mp = arp_del_mp; 13884 } 13885 if (arp_down_mp != NULL) { 13886 ASSERT(ill->ill_arp_down_mp == NULL); 13887 ill->ill_arp_down_mp = arp_down_mp; 13888 } 13889 if (arp_del_mapping_mp != NULL) { 13890 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13891 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13892 } 13893 if (arp_up_mp != NULL) { 13894 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13895 ill->ill_name, ipif->ipif_id)); 13896 putnext(ill->ill_rq, arp_up_mp); 13897 } 13898 if (arp_add_mp != NULL) { 13899 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13900 ill->ill_name, ipif->ipif_id)); 13901 /* 13902 * If it's an extended ARP implementation, then we'll wait to 13903 * hear that DAD has finished before using the interface. 13904 */ 13905 if (!ill->ill_arp_extend) 13906 ipif->ipif_addr_ready = 1; 13907 putnext(ill->ill_rq, arp_add_mp); 13908 } else { 13909 ipif->ipif_addr_ready = 1; 13910 } 13911 if (arp_add_mapping_mp != NULL) { 13912 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13913 ill->ill_name, ipif->ipif_id)); 13914 putnext(ill->ill_rq, arp_add_mapping_mp); 13915 } 13916 if (res_act != Res_act_initial) 13917 return (0); 13918 13919 if (ill->ill_flags & ILLF_NOARP) 13920 err = ill_arp_off(ill); 13921 else 13922 err = ill_arp_on(ill); 13923 if (err != 0) { 13924 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13925 freemsg(ipif->ipif_arp_del_mp); 13926 freemsg(ill->ill_arp_down_mp); 13927 freemsg(ill->ill_arp_del_mapping_mp); 13928 ipif->ipif_arp_del_mp = NULL; 13929 ill->ill_arp_down_mp = NULL; 13930 ill->ill_arp_del_mapping_mp = NULL; 13931 return (err); 13932 } 13933 return ((ill->ill_ipif_up_count != 0 || was_dup || 13934 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13935 13936 failed: 13937 ip1dbg(("ipif_resolver_up: FAILED\n")); 13938 freemsg(arp_add_mp); 13939 freemsg(arp_del_mp); 13940 freemsg(arp_add_mapping_mp); 13941 freemsg(arp_up_mp); 13942 freemsg(arp_down_mp); 13943 ill->ill_arp_bringup_pending = 0; 13944 return (err); 13945 } 13946 13947 /* 13948 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13949 * just gone back up. 13950 */ 13951 static void 13952 ipif_arp_start_dad(ipif_t *ipif) 13953 { 13954 ill_t *ill = ipif->ipif_ill; 13955 mblk_t *arp_add_mp; 13956 area_t *area; 13957 13958 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13959 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13960 ipif->ipif_lcl_addr == INADDR_ANY || 13961 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13962 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13963 /* 13964 * If we can't contact ARP for some reason, that's not really a 13965 * problem. Just send out the routing socket notification that 13966 * DAD completion would have done, and continue. 13967 */ 13968 ipif_mask_reply(ipif); 13969 ip_rts_ifmsg(ipif); 13970 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13971 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13972 ipif->ipif_addr_ready = 1; 13973 return; 13974 } 13975 13976 /* Setting the 'unverified' flag restarts DAD */ 13977 area = (area_t *)arp_add_mp->b_rptr; 13978 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13979 ACE_F_UNVERIFIED; 13980 putnext(ill->ill_rq, arp_add_mp); 13981 } 13982 13983 static void 13984 ipif_ndp_start_dad(ipif_t *ipif) 13985 { 13986 nce_t *nce; 13987 13988 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13989 if (nce == NULL) 13990 return; 13991 13992 if (!ndp_restart_dad(nce)) { 13993 /* 13994 * If we can't restart DAD for some reason, that's not really a 13995 * problem. Just send out the routing socket notification that 13996 * DAD completion would have done, and continue. 13997 */ 13998 ip_rts_ifmsg(ipif); 13999 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14000 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14001 ipif->ipif_addr_ready = 1; 14002 } 14003 NCE_REFRELE(nce); 14004 } 14005 14006 /* 14007 * Restart duplicate address detection on all interfaces on the given ill. 14008 * 14009 * This is called when an interface transitions from down to up 14010 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14011 * 14012 * Note that since the underlying physical link has transitioned, we must cause 14013 * at least one routing socket message to be sent here, either via DAD 14014 * completion or just by default on the first ipif. (If we don't do this, then 14015 * in.mpathd will see long delays when doing link-based failure recovery.) 14016 */ 14017 void 14018 ill_restart_dad(ill_t *ill, boolean_t went_up) 14019 { 14020 ipif_t *ipif; 14021 14022 if (ill == NULL) 14023 return; 14024 14025 /* 14026 * If layer two doesn't support duplicate address detection, then just 14027 * send the routing socket message now and be done with it. 14028 */ 14029 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14030 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14031 ip_rts_ifmsg(ill->ill_ipif); 14032 return; 14033 } 14034 14035 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14036 if (went_up) { 14037 if (ipif->ipif_flags & IPIF_UP) { 14038 if (ill->ill_isv6) 14039 ipif_ndp_start_dad(ipif); 14040 else 14041 ipif_arp_start_dad(ipif); 14042 } else if (ill->ill_isv6 && 14043 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14044 /* 14045 * For IPv4, the ARP module itself will 14046 * automatically start the DAD process when it 14047 * sees DL_NOTE_LINK_UP. We respond to the 14048 * AR_CN_READY at the completion of that task. 14049 * For IPv6, we must kick off the bring-up 14050 * process now. 14051 */ 14052 ndp_do_recovery(ipif); 14053 } else { 14054 /* 14055 * Unfortunately, the first ipif is "special" 14056 * and represents the underlying ill in the 14057 * routing socket messages. Thus, when this 14058 * one ipif is down, we must still notify so 14059 * that the user knows the IFF_RUNNING status 14060 * change. (If the first ipif is up, then 14061 * we'll handle eventual routing socket 14062 * notification via DAD completion.) 14063 */ 14064 if (ipif == ill->ill_ipif) 14065 ip_rts_ifmsg(ill->ill_ipif); 14066 } 14067 } else { 14068 /* 14069 * After link down, we'll need to send a new routing 14070 * message when the link comes back, so clear 14071 * ipif_addr_ready. 14072 */ 14073 ipif->ipif_addr_ready = 0; 14074 } 14075 } 14076 14077 /* 14078 * If we've torn down links, then notify the user right away. 14079 */ 14080 if (!went_up) 14081 ip_rts_ifmsg(ill->ill_ipif); 14082 } 14083 14084 /* 14085 * Wakeup all threads waiting to enter the ipsq, and sleeping 14086 * on any of the ills in this ipsq. The ill_lock of the ill 14087 * must be held so that waiters don't miss wakeups 14088 */ 14089 static void 14090 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14091 { 14092 phyint_t *phyint; 14093 14094 phyint = ipsq->ipsq_phyint_list; 14095 while (phyint != NULL) { 14096 if (phyint->phyint_illv4) { 14097 if (!caller_holds_lock) 14098 mutex_enter(&phyint->phyint_illv4->ill_lock); 14099 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14100 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14101 if (!caller_holds_lock) 14102 mutex_exit(&phyint->phyint_illv4->ill_lock); 14103 } 14104 if (phyint->phyint_illv6) { 14105 if (!caller_holds_lock) 14106 mutex_enter(&phyint->phyint_illv6->ill_lock); 14107 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14108 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14109 if (!caller_holds_lock) 14110 mutex_exit(&phyint->phyint_illv6->ill_lock); 14111 } 14112 phyint = phyint->phyint_ipsq_next; 14113 } 14114 } 14115 14116 static ipsq_t * 14117 ipsq_create(char *groupname) 14118 { 14119 ipsq_t *ipsq; 14120 14121 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14122 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14123 if (ipsq == NULL) { 14124 return (NULL); 14125 } 14126 14127 if (groupname != NULL) 14128 (void) strcpy(ipsq->ipsq_name, groupname); 14129 else 14130 ipsq->ipsq_name[0] = '\0'; 14131 14132 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14133 ipsq->ipsq_flags |= IPSQ_GROUP; 14134 ipsq->ipsq_next = ipsq_g_head; 14135 ipsq_g_head = ipsq; 14136 return (ipsq); 14137 } 14138 14139 /* 14140 * Return an ipsq correspoding to the groupname. If 'create' is true 14141 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14142 * uniquely with an IPMP group. However during IPMP groupname operations, 14143 * multiple IPMP groups may be associated with a single ipsq. But no 14144 * IPMP group can be associated with more than 1 ipsq at any time. 14145 * For example 14146 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14147 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14148 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14149 * 14150 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14151 * status shown below during the execution of the above command. 14152 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14153 * 14154 * After the completion of the above groupname command we return to the stable 14155 * state shown below. 14156 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14157 * hme4 mpk17-85 ipsq2 mpk17-85 1 14158 * 14159 * Because of the above, we don't search based on the ipsq_name since that 14160 * would miss the correct ipsq during certain windows as shown above. 14161 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14162 * natural state. 14163 */ 14164 static ipsq_t * 14165 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 14166 { 14167 ipsq_t *ipsq; 14168 int group_len; 14169 phyint_t *phyint; 14170 14171 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14172 14173 group_len = strlen(groupname); 14174 ASSERT(group_len != 0); 14175 group_len++; 14176 14177 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 14178 /* 14179 * When an ipsq is being split, and ill_split_ipsq 14180 * calls this function, we exclude it from being considered. 14181 */ 14182 if (ipsq == exclude_ipsq) 14183 continue; 14184 14185 /* 14186 * Compare against the ipsq_name. The groupname change happens 14187 * in 2 phases. The 1st phase merges the from group into 14188 * the to group's ipsq, by calling ill_merge_groups and restarts 14189 * the ioctl. The 2nd phase then locates the ipsq again thru 14190 * ipsq_name. At this point the phyint_groupname has not been 14191 * updated. 14192 */ 14193 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14194 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14195 /* 14196 * Verify that an ipmp groupname is exactly 14197 * part of 1 ipsq and is not found in any other 14198 * ipsq. 14199 */ 14200 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 14201 NULL); 14202 return (ipsq); 14203 } 14204 14205 /* 14206 * Comparison against ipsq_name alone is not sufficient. 14207 * In the case when groups are currently being 14208 * merged, the ipsq could hold other IPMP groups temporarily. 14209 * so we walk the phyint list and compare against the 14210 * phyint_groupname as well. 14211 */ 14212 phyint = ipsq->ipsq_phyint_list; 14213 while (phyint != NULL) { 14214 if ((group_len == phyint->phyint_groupname_len) && 14215 (bcmp(phyint->phyint_groupname, groupname, 14216 group_len) == 0)) { 14217 /* 14218 * Verify that an ipmp groupname is exactly 14219 * part of 1 ipsq and is not found in any other 14220 * ipsq. 14221 */ 14222 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 14223 == NULL); 14224 return (ipsq); 14225 } 14226 phyint = phyint->phyint_ipsq_next; 14227 } 14228 } 14229 if (create) 14230 ipsq = ipsq_create(groupname); 14231 return (ipsq); 14232 } 14233 14234 static void 14235 ipsq_delete(ipsq_t *ipsq) 14236 { 14237 ipsq_t *nipsq; 14238 ipsq_t *pipsq = NULL; 14239 14240 /* 14241 * We don't hold the ipsq lock, but we are sure no new 14242 * messages can land up, since the ipsq_refs is zero. 14243 * i.e. this ipsq is unnamed and no phyint or phyint group 14244 * is associated with this ipsq. (Lookups are based on ill_name 14245 * or phyint_group_name) 14246 */ 14247 ASSERT(ipsq->ipsq_refs == 0); 14248 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14249 ASSERT(ipsq->ipsq_pending_mp == NULL); 14250 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14251 /* 14252 * This is not the ipsq of an IPMP group. 14253 */ 14254 kmem_free(ipsq, sizeof (ipsq_t)); 14255 return; 14256 } 14257 14258 rw_enter(&ill_g_lock, RW_WRITER); 14259 14260 /* 14261 * Locate the ipsq before we can remove it from 14262 * the singly linked list of ipsq's. 14263 */ 14264 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 14265 if (nipsq == ipsq) { 14266 break; 14267 } 14268 pipsq = nipsq; 14269 } 14270 14271 ASSERT(nipsq == ipsq); 14272 14273 /* unlink ipsq from the list */ 14274 if (pipsq != NULL) 14275 pipsq->ipsq_next = ipsq->ipsq_next; 14276 else 14277 ipsq_g_head = ipsq->ipsq_next; 14278 kmem_free(ipsq, sizeof (ipsq_t)); 14279 rw_exit(&ill_g_lock); 14280 } 14281 14282 static void 14283 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14284 queue_t *q) 14285 14286 { 14287 14288 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14289 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14290 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14291 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14292 ASSERT(current_mp != NULL); 14293 14294 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14295 NEW_OP, NULL); 14296 14297 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14298 new_ipsq->ipsq_xopq_mphead != NULL); 14299 14300 /* 14301 * move from old ipsq to the new ipsq. 14302 */ 14303 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14304 if (old_ipsq->ipsq_xopq_mphead != NULL) 14305 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14306 14307 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14308 } 14309 14310 void 14311 ill_group_cleanup(ill_t *ill) 14312 { 14313 ill_t *ill_v4; 14314 ill_t *ill_v6; 14315 ipif_t *ipif; 14316 14317 ill_v4 = ill->ill_phyint->phyint_illv4; 14318 ill_v6 = ill->ill_phyint->phyint_illv6; 14319 14320 if (ill_v4 != NULL) { 14321 mutex_enter(&ill_v4->ill_lock); 14322 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14323 ipif = ipif->ipif_next) { 14324 IPIF_UNMARK_MOVING(ipif); 14325 } 14326 ill_v4->ill_up_ipifs = B_FALSE; 14327 mutex_exit(&ill_v4->ill_lock); 14328 } 14329 14330 if (ill_v6 != NULL) { 14331 mutex_enter(&ill_v6->ill_lock); 14332 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14333 ipif = ipif->ipif_next) { 14334 IPIF_UNMARK_MOVING(ipif); 14335 } 14336 ill_v6->ill_up_ipifs = B_FALSE; 14337 mutex_exit(&ill_v6->ill_lock); 14338 } 14339 } 14340 /* 14341 * This function is called when an ill has had a change in its group status 14342 * to bring up all the ipifs that were up before the change. 14343 */ 14344 int 14345 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14346 { 14347 ipif_t *ipif; 14348 ill_t *ill_v4; 14349 ill_t *ill_v6; 14350 ill_t *from_ill; 14351 int err = 0; 14352 14353 14354 ASSERT(IAM_WRITER_ILL(ill)); 14355 14356 /* 14357 * Except for ipif_state_flags and ill_state_flags the other 14358 * fields of the ipif/ill that are modified below are protected 14359 * implicitly since we are a writer. We would have tried to down 14360 * even an ipif that was already down, in ill_down_ipifs. So we 14361 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14362 */ 14363 ill_v4 = ill->ill_phyint->phyint_illv4; 14364 ill_v6 = ill->ill_phyint->phyint_illv6; 14365 if (ill_v4 != NULL) { 14366 ill_v4->ill_up_ipifs = B_TRUE; 14367 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14368 ipif = ipif->ipif_next) { 14369 mutex_enter(&ill_v4->ill_lock); 14370 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14371 IPIF_UNMARK_MOVING(ipif); 14372 mutex_exit(&ill_v4->ill_lock); 14373 if (ipif->ipif_was_up) { 14374 if (!(ipif->ipif_flags & IPIF_UP)) 14375 err = ipif_up(ipif, q, mp); 14376 ipif->ipif_was_up = B_FALSE; 14377 if (err != 0) { 14378 /* 14379 * Can there be any other error ? 14380 */ 14381 ASSERT(err == EINPROGRESS); 14382 return (err); 14383 } 14384 } 14385 } 14386 mutex_enter(&ill_v4->ill_lock); 14387 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14388 mutex_exit(&ill_v4->ill_lock); 14389 ill_v4->ill_up_ipifs = B_FALSE; 14390 if (ill_v4->ill_move_in_progress) { 14391 ASSERT(ill_v4->ill_move_peer != NULL); 14392 ill_v4->ill_move_in_progress = B_FALSE; 14393 from_ill = ill_v4->ill_move_peer; 14394 from_ill->ill_move_in_progress = B_FALSE; 14395 from_ill->ill_move_peer = NULL; 14396 mutex_enter(&from_ill->ill_lock); 14397 from_ill->ill_state_flags &= ~ILL_CHANGING; 14398 mutex_exit(&from_ill->ill_lock); 14399 if (ill_v6 == NULL) { 14400 if (from_ill->ill_phyint->phyint_flags & 14401 PHYI_STANDBY) { 14402 phyint_inactive(from_ill->ill_phyint); 14403 } 14404 if (ill_v4->ill_phyint->phyint_flags & 14405 PHYI_STANDBY) { 14406 phyint_inactive(ill_v4->ill_phyint); 14407 } 14408 } 14409 ill_v4->ill_move_peer = NULL; 14410 } 14411 } 14412 14413 if (ill_v6 != NULL) { 14414 ill_v6->ill_up_ipifs = B_TRUE; 14415 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14416 ipif = ipif->ipif_next) { 14417 mutex_enter(&ill_v6->ill_lock); 14418 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14419 IPIF_UNMARK_MOVING(ipif); 14420 mutex_exit(&ill_v6->ill_lock); 14421 if (ipif->ipif_was_up) { 14422 if (!(ipif->ipif_flags & IPIF_UP)) 14423 err = ipif_up(ipif, q, mp); 14424 ipif->ipif_was_up = B_FALSE; 14425 if (err != 0) { 14426 /* 14427 * Can there be any other error ? 14428 */ 14429 ASSERT(err == EINPROGRESS); 14430 return (err); 14431 } 14432 } 14433 } 14434 mutex_enter(&ill_v6->ill_lock); 14435 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14436 mutex_exit(&ill_v6->ill_lock); 14437 ill_v6->ill_up_ipifs = B_FALSE; 14438 if (ill_v6->ill_move_in_progress) { 14439 ASSERT(ill_v6->ill_move_peer != NULL); 14440 ill_v6->ill_move_in_progress = B_FALSE; 14441 from_ill = ill_v6->ill_move_peer; 14442 from_ill->ill_move_in_progress = B_FALSE; 14443 from_ill->ill_move_peer = NULL; 14444 mutex_enter(&from_ill->ill_lock); 14445 from_ill->ill_state_flags &= ~ILL_CHANGING; 14446 mutex_exit(&from_ill->ill_lock); 14447 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14448 phyint_inactive(from_ill->ill_phyint); 14449 } 14450 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14451 phyint_inactive(ill_v6->ill_phyint); 14452 } 14453 ill_v6->ill_move_peer = NULL; 14454 } 14455 } 14456 return (0); 14457 } 14458 14459 /* 14460 * bring down all the approriate ipifs. 14461 */ 14462 /* ARGSUSED */ 14463 static void 14464 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14465 { 14466 ipif_t *ipif; 14467 14468 ASSERT(IAM_WRITER_ILL(ill)); 14469 14470 /* 14471 * Except for ipif_state_flags the other fields of the ipif/ill that 14472 * are modified below are protected implicitly since we are a writer 14473 */ 14474 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14475 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14476 continue; 14477 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14478 /* 14479 * We go through the ipif_down logic even if the ipif 14480 * is already down, since routes can be added based 14481 * on down ipifs. Going through ipif_down once again 14482 * will delete any IREs created based on these routes. 14483 */ 14484 if (ipif->ipif_flags & IPIF_UP) 14485 ipif->ipif_was_up = B_TRUE; 14486 /* 14487 * If called with chk_nofailover true ipif is moving. 14488 */ 14489 mutex_enter(&ill->ill_lock); 14490 if (chk_nofailover) { 14491 ipif->ipif_state_flags |= 14492 IPIF_MOVING | IPIF_CHANGING; 14493 } else { 14494 ipif->ipif_state_flags |= IPIF_CHANGING; 14495 } 14496 mutex_exit(&ill->ill_lock); 14497 /* 14498 * Need to re-create net/subnet bcast ires if 14499 * they are dependent on ipif. 14500 */ 14501 if (!ipif->ipif_isv6) 14502 ipif_check_bcast_ires(ipif); 14503 (void) ipif_logical_down(ipif, NULL, NULL); 14504 ipif_non_duplicate(ipif); 14505 ipif_down_tail(ipif); 14506 /* 14507 * We don't do ipif_multicast_down for IPv4 in 14508 * ipif_down. We need to set this so that 14509 * ipif_multicast_up will join the 14510 * ALLHOSTS_GROUP on to_ill. 14511 */ 14512 ipif->ipif_multicast_up = B_FALSE; 14513 } 14514 } 14515 } 14516 14517 #define IPSQ_INC_REF(ipsq) { \ 14518 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14519 (ipsq)->ipsq_refs++; \ 14520 } 14521 14522 #define IPSQ_DEC_REF(ipsq) { \ 14523 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14524 (ipsq)->ipsq_refs--; \ 14525 if ((ipsq)->ipsq_refs == 0) \ 14526 (ipsq)->ipsq_name[0] = '\0'; \ 14527 } 14528 14529 /* 14530 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14531 * new_ipsq. 14532 */ 14533 static void 14534 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14535 { 14536 phyint_t *phyint; 14537 phyint_t *next_phyint; 14538 14539 /* 14540 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14541 * writer and the ill_lock of the ill in question. Also the dest 14542 * ipsq can't vanish while we hold the ill_g_lock as writer. 14543 */ 14544 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14545 14546 phyint = cur_ipsq->ipsq_phyint_list; 14547 cur_ipsq->ipsq_phyint_list = NULL; 14548 while (phyint != NULL) { 14549 next_phyint = phyint->phyint_ipsq_next; 14550 IPSQ_DEC_REF(cur_ipsq); 14551 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14552 new_ipsq->ipsq_phyint_list = phyint; 14553 IPSQ_INC_REF(new_ipsq); 14554 phyint->phyint_ipsq = new_ipsq; 14555 phyint = next_phyint; 14556 } 14557 } 14558 14559 #define SPLIT_SUCCESS 0 14560 #define SPLIT_NOT_NEEDED 1 14561 #define SPLIT_FAILED 2 14562 14563 int 14564 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14565 { 14566 ipsq_t *newipsq = NULL; 14567 14568 /* 14569 * Assertions denote pre-requisites for changing the ipsq of 14570 * a phyint 14571 */ 14572 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14573 /* 14574 * <ill-phyint> assocs can't change while ill_g_lock 14575 * is held as writer. See ill_phyint_reinit() 14576 */ 14577 ASSERT(phyint->phyint_illv4 == NULL || 14578 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14579 ASSERT(phyint->phyint_illv6 == NULL || 14580 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14581 14582 if ((phyint->phyint_groupname_len != 14583 (strlen(cur_ipsq->ipsq_name) + 1) || 14584 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14585 phyint->phyint_groupname_len) != 0)) { 14586 /* 14587 * Once we fail in creating a new ipsq due to memory shortage, 14588 * don't attempt to create new ipsq again, based on another 14589 * phyint, since we want all phyints belonging to an IPMP group 14590 * to be in the same ipsq even in the event of mem alloc fails. 14591 */ 14592 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14593 cur_ipsq); 14594 if (newipsq == NULL) { 14595 /* Memory allocation failure */ 14596 return (SPLIT_FAILED); 14597 } else { 14598 /* ipsq_refs protected by ill_g_lock (writer) */ 14599 IPSQ_DEC_REF(cur_ipsq); 14600 phyint->phyint_ipsq = newipsq; 14601 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14602 newipsq->ipsq_phyint_list = phyint; 14603 IPSQ_INC_REF(newipsq); 14604 return (SPLIT_SUCCESS); 14605 } 14606 } 14607 return (SPLIT_NOT_NEEDED); 14608 } 14609 14610 /* 14611 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14612 * to do this split 14613 */ 14614 static int 14615 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14616 { 14617 ipsq_t *newipsq; 14618 14619 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14620 /* 14621 * <ill-phyint> assocs can't change while ill_g_lock 14622 * is held as writer. See ill_phyint_reinit() 14623 */ 14624 14625 ASSERT(phyint->phyint_illv4 == NULL || 14626 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14627 ASSERT(phyint->phyint_illv6 == NULL || 14628 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14629 14630 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14631 phyint->phyint_illv4: phyint->phyint_illv6)) { 14632 /* 14633 * ipsq_init failed due to no memory 14634 * caller will use the same ipsq 14635 */ 14636 return (SPLIT_FAILED); 14637 } 14638 14639 /* ipsq_ref is protected by ill_g_lock (writer) */ 14640 IPSQ_DEC_REF(cur_ipsq); 14641 14642 /* 14643 * This is a new ipsq that is unknown to the world. 14644 * So we don't need to hold ipsq_lock, 14645 */ 14646 newipsq = phyint->phyint_ipsq; 14647 newipsq->ipsq_writer = NULL; 14648 newipsq->ipsq_reentry_cnt--; 14649 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14650 #ifdef ILL_DEBUG 14651 newipsq->ipsq_depth = 0; 14652 #endif 14653 14654 return (SPLIT_SUCCESS); 14655 } 14656 14657 /* 14658 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14659 * ipsq's representing their individual groups or themselves. Return 14660 * whether split needs to be retried again later. 14661 */ 14662 static boolean_t 14663 ill_split_ipsq(ipsq_t *cur_ipsq) 14664 { 14665 phyint_t *phyint; 14666 phyint_t *next_phyint; 14667 int error; 14668 boolean_t need_retry = B_FALSE; 14669 14670 phyint = cur_ipsq->ipsq_phyint_list; 14671 cur_ipsq->ipsq_phyint_list = NULL; 14672 while (phyint != NULL) { 14673 next_phyint = phyint->phyint_ipsq_next; 14674 /* 14675 * 'created' will tell us whether the callee actually 14676 * created an ipsq. Lack of memory may force the callee 14677 * to return without creating an ipsq. 14678 */ 14679 if (phyint->phyint_groupname == NULL) { 14680 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14681 } else { 14682 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14683 need_retry); 14684 } 14685 14686 switch (error) { 14687 case SPLIT_FAILED: 14688 need_retry = B_TRUE; 14689 /* FALLTHRU */ 14690 case SPLIT_NOT_NEEDED: 14691 /* 14692 * Keep it on the list. 14693 */ 14694 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14695 cur_ipsq->ipsq_phyint_list = phyint; 14696 break; 14697 case SPLIT_SUCCESS: 14698 break; 14699 default: 14700 ASSERT(0); 14701 } 14702 14703 phyint = next_phyint; 14704 } 14705 return (need_retry); 14706 } 14707 14708 /* 14709 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14710 * and return the ills in the list. This list will be 14711 * needed to unlock all the ills later on by the caller. 14712 * The <ill-ipsq> associations could change between the 14713 * lock and unlock. Hence the unlock can't traverse the 14714 * ipsq to get the list of ills. 14715 */ 14716 static int 14717 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14718 { 14719 int cnt = 0; 14720 phyint_t *phyint; 14721 14722 /* 14723 * The caller holds ill_g_lock to ensure that the ill memberships 14724 * of the ipsq don't change 14725 */ 14726 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14727 14728 phyint = ipsq->ipsq_phyint_list; 14729 while (phyint != NULL) { 14730 if (phyint->phyint_illv4 != NULL) { 14731 ASSERT(cnt < list_max); 14732 list[cnt++] = phyint->phyint_illv4; 14733 } 14734 if (phyint->phyint_illv6 != NULL) { 14735 ASSERT(cnt < list_max); 14736 list[cnt++] = phyint->phyint_illv6; 14737 } 14738 phyint = phyint->phyint_ipsq_next; 14739 } 14740 ill_lock_ills(list, cnt); 14741 return (cnt); 14742 } 14743 14744 void 14745 ill_lock_ills(ill_t **list, int cnt) 14746 { 14747 int i; 14748 14749 if (cnt > 1) { 14750 boolean_t try_again; 14751 do { 14752 try_again = B_FALSE; 14753 for (i = 0; i < cnt - 1; i++) { 14754 if (list[i] < list[i + 1]) { 14755 ill_t *tmp; 14756 14757 /* swap the elements */ 14758 tmp = list[i]; 14759 list[i] = list[i + 1]; 14760 list[i + 1] = tmp; 14761 try_again = B_TRUE; 14762 } 14763 } 14764 } while (try_again); 14765 } 14766 14767 for (i = 0; i < cnt; i++) { 14768 if (i == 0) { 14769 if (list[i] != NULL) 14770 mutex_enter(&list[i]->ill_lock); 14771 else 14772 return; 14773 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14774 mutex_enter(&list[i]->ill_lock); 14775 } 14776 } 14777 } 14778 14779 void 14780 ill_unlock_ills(ill_t **list, int cnt) 14781 { 14782 int i; 14783 14784 for (i = 0; i < cnt; i++) { 14785 if ((i == 0) && (list[i] != NULL)) { 14786 mutex_exit(&list[i]->ill_lock); 14787 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14788 mutex_exit(&list[i]->ill_lock); 14789 } 14790 } 14791 } 14792 14793 /* 14794 * Merge all the ills from 1 ipsq group into another ipsq group. 14795 * The source ipsq group is specified by the ipsq associated with 14796 * 'from_ill'. The destination ipsq group is specified by the ipsq 14797 * associated with 'to_ill' or 'groupname' respectively. 14798 * Note that ipsq itself does not have a reference count mechanism 14799 * and functions don't look up an ipsq and pass it around. Instead 14800 * functions pass around an ill or groupname, and the ipsq is looked 14801 * up from the ill or groupname and the required operation performed 14802 * atomically with the lookup on the ipsq. 14803 */ 14804 static int 14805 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14806 queue_t *q) 14807 { 14808 ipsq_t *old_ipsq; 14809 ipsq_t *new_ipsq; 14810 ill_t **ill_list; 14811 int cnt; 14812 size_t ill_list_size; 14813 boolean_t became_writer_on_new_sq = B_FALSE; 14814 14815 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14816 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14817 14818 /* 14819 * Need to hold ill_g_lock as writer and also the ill_lock to 14820 * change the <ill-ipsq> assoc of an ill. Need to hold the 14821 * ipsq_lock to prevent new messages from landing on an ipsq. 14822 */ 14823 rw_enter(&ill_g_lock, RW_WRITER); 14824 14825 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14826 if (groupname != NULL) 14827 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14828 else { 14829 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14830 } 14831 14832 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14833 14834 /* 14835 * both groups are on the same ipsq. 14836 */ 14837 if (old_ipsq == new_ipsq) { 14838 rw_exit(&ill_g_lock); 14839 return (0); 14840 } 14841 14842 cnt = old_ipsq->ipsq_refs << 1; 14843 ill_list_size = cnt * sizeof (ill_t *); 14844 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14845 if (ill_list == NULL) { 14846 rw_exit(&ill_g_lock); 14847 return (ENOMEM); 14848 } 14849 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14850 14851 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14852 mutex_enter(&new_ipsq->ipsq_lock); 14853 if ((new_ipsq->ipsq_writer == NULL && 14854 new_ipsq->ipsq_current_ipif == NULL) || 14855 (new_ipsq->ipsq_writer == curthread)) { 14856 new_ipsq->ipsq_writer = curthread; 14857 new_ipsq->ipsq_reentry_cnt++; 14858 became_writer_on_new_sq = B_TRUE; 14859 } 14860 14861 /* 14862 * We are holding ill_g_lock as writer and all the ill locks of 14863 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14864 * message can land up on the old ipsq even though we don't hold the 14865 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14866 */ 14867 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14868 14869 /* 14870 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14871 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14872 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14873 */ 14874 ill_merge_ipsq(old_ipsq, new_ipsq); 14875 14876 /* 14877 * Mark the new ipsq as needing a split since it is currently 14878 * being shared by more than 1 IPMP group. The split will 14879 * occur at the end of ipsq_exit 14880 */ 14881 new_ipsq->ipsq_split = B_TRUE; 14882 14883 /* Now release all the locks */ 14884 mutex_exit(&new_ipsq->ipsq_lock); 14885 ill_unlock_ills(ill_list, cnt); 14886 rw_exit(&ill_g_lock); 14887 14888 kmem_free(ill_list, ill_list_size); 14889 14890 /* 14891 * If we succeeded in becoming writer on the new ipsq, then 14892 * drain the new ipsq and start processing all enqueued messages 14893 * including the current ioctl we are processing which is either 14894 * a set groupname or failover/failback. 14895 */ 14896 if (became_writer_on_new_sq) 14897 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14898 14899 /* 14900 * syncq has been changed and all the messages have been moved. 14901 */ 14902 mutex_enter(&old_ipsq->ipsq_lock); 14903 old_ipsq->ipsq_current_ipif = NULL; 14904 mutex_exit(&old_ipsq->ipsq_lock); 14905 return (EINPROGRESS); 14906 } 14907 14908 /* 14909 * Delete and add the loopback copy and non-loopback copy of 14910 * the BROADCAST ire corresponding to ill and addr. Used to 14911 * group broadcast ires together when ill becomes part of 14912 * a group. 14913 * 14914 * This function is also called when ill is leaving the group 14915 * so that the ires belonging to the group gets re-grouped. 14916 */ 14917 static void 14918 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14919 { 14920 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14921 ire_t **ire_ptpn = &ire_head; 14922 14923 /* 14924 * The loopback and non-loopback IREs are inserted in the order in which 14925 * they're found, on the basis that they are correctly ordered (loopback 14926 * first). 14927 */ 14928 for (;;) { 14929 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14930 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14931 if (ire == NULL) 14932 break; 14933 14934 /* 14935 * we are passing in KM_SLEEP because it is not easy to 14936 * go back to a sane state in case of memory failure. 14937 */ 14938 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14939 ASSERT(nire != NULL); 14940 bzero(nire, sizeof (ire_t)); 14941 /* 14942 * Don't use ire_max_frag directly since we don't 14943 * hold on to 'ire' until we add the new ire 'nire' and 14944 * we don't want the new ire to have a dangling reference 14945 * to 'ire'. The ire_max_frag of a broadcast ire must 14946 * be in sync with the ipif_mtu of the associate ipif. 14947 * For eg. this happens as a result of SIOCSLIFNAME, 14948 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14949 * the driver. A change in ire_max_frag triggered as 14950 * as a result of path mtu discovery, or due to an 14951 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14952 * route change -mtu command does not apply to broadcast ires. 14953 * 14954 * XXX We need a recovery strategy here if ire_init fails 14955 */ 14956 if (ire_init(nire, 14957 (uchar_t *)&ire->ire_addr, 14958 (uchar_t *)&ire->ire_mask, 14959 (uchar_t *)&ire->ire_src_addr, 14960 (uchar_t *)&ire->ire_gateway_addr, 14961 (uchar_t *)&ire->ire_in_src_addr, 14962 ire->ire_stq == NULL ? &ip_loopback_mtu : 14963 &ire->ire_ipif->ipif_mtu, 14964 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 14965 ire->ire_rfq, 14966 ire->ire_stq, 14967 ire->ire_type, 14968 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 14969 ire->ire_ipif, 14970 ire->ire_in_ill, 14971 ire->ire_cmask, 14972 ire->ire_phandle, 14973 ire->ire_ihandle, 14974 ire->ire_flags, 14975 &ire->ire_uinfo, 14976 NULL, 14977 NULL) == NULL) { 14978 cmn_err(CE_PANIC, "ire_init() failed"); 14979 } 14980 ire_delete(ire); 14981 ire_refrele(ire); 14982 14983 /* 14984 * The newly created IREs are inserted at the tail of the list 14985 * starting with ire_head. As we've just allocated them no one 14986 * knows about them so it's safe. 14987 */ 14988 *ire_ptpn = nire; 14989 ire_ptpn = &nire->ire_next; 14990 } 14991 14992 for (nire = ire_head; nire != NULL; nire = nire_next) { 14993 int error; 14994 ire_t *oire; 14995 /* unlink the IRE from our list before calling ire_add() */ 14996 nire_next = nire->ire_next; 14997 nire->ire_next = NULL; 14998 14999 /* ire_add adds the ire at the right place in the list */ 15000 oire = nire; 15001 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15002 ASSERT(error == 0); 15003 ASSERT(oire == nire); 15004 ire_refrele(nire); /* Held in ire_add */ 15005 } 15006 } 15007 15008 /* 15009 * This function is usually called when an ill is inserted in 15010 * a group and all the ipifs are already UP. As all the ipifs 15011 * are already UP, the broadcast ires have already been created 15012 * and been inserted. But, ire_add_v4 would not have grouped properly. 15013 * We need to re-group for the benefit of ip_wput_ire which 15014 * expects BROADCAST ires to be grouped properly to avoid sending 15015 * more than one copy of the broadcast packet per group. 15016 * 15017 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15018 * because when ipif_up_done ends up calling this, ires have 15019 * already been added before illgrp_insert i.e before ill_group 15020 * has been initialized. 15021 */ 15022 static void 15023 ill_group_bcast_for_xmit(ill_t *ill) 15024 { 15025 ill_group_t *illgrp; 15026 ipif_t *ipif; 15027 ipaddr_t addr; 15028 ipaddr_t net_mask; 15029 ipaddr_t subnet_netmask; 15030 15031 illgrp = ill->ill_group; 15032 15033 /* 15034 * This function is called even when an ill is deleted from 15035 * the group. Hence, illgrp could be null. 15036 */ 15037 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15038 return; 15039 15040 /* 15041 * Delete all the BROADCAST ires matching this ill and add 15042 * them back. This time, ire_add_v4 should take care of 15043 * grouping them with others because ill is part of the 15044 * group. 15045 */ 15046 ill_bcast_delete_and_add(ill, 0); 15047 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15048 15049 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15050 15051 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15052 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15053 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15054 } else { 15055 net_mask = htonl(IN_CLASSA_NET); 15056 } 15057 addr = net_mask & ipif->ipif_subnet; 15058 ill_bcast_delete_and_add(ill, addr); 15059 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15060 15061 subnet_netmask = ipif->ipif_net_mask; 15062 addr = ipif->ipif_subnet; 15063 ill_bcast_delete_and_add(ill, addr); 15064 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15065 } 15066 } 15067 15068 /* 15069 * This function is called from illgrp_delete when ill is being deleted 15070 * from the group. 15071 * 15072 * As ill is not there in the group anymore, any address belonging 15073 * to this ill should be cleared of IRE_MARK_NORECV. 15074 */ 15075 static void 15076 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15077 { 15078 ire_t *ire; 15079 irb_t *irb; 15080 15081 ASSERT(ill->ill_group == NULL); 15082 15083 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15084 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 15085 15086 if (ire != NULL) { 15087 /* 15088 * IPMP and plumbing operations are serialized on the ipsq, so 15089 * no one will insert or delete a broadcast ire under our feet. 15090 */ 15091 irb = ire->ire_bucket; 15092 rw_enter(&irb->irb_lock, RW_READER); 15093 ire_refrele(ire); 15094 15095 for (; ire != NULL; ire = ire->ire_next) { 15096 if (ire->ire_addr != addr) 15097 break; 15098 if (ire_to_ill(ire) != ill) 15099 continue; 15100 15101 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15102 ire->ire_marks &= ~IRE_MARK_NORECV; 15103 } 15104 rw_exit(&irb->irb_lock); 15105 } 15106 } 15107 15108 /* 15109 * This function must be called only after the broadcast ires 15110 * have been grouped together. For a given address addr, nominate 15111 * only one of the ires whose interface is not FAILED or OFFLINE. 15112 * 15113 * This is also called when an ipif goes down, so that we can nominate 15114 * a different ire with the same address for receiving. 15115 */ 15116 static void 15117 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 15118 { 15119 irb_t *irb; 15120 ire_t *ire; 15121 ire_t *ire1; 15122 ire_t *save_ire; 15123 ire_t **irep = NULL; 15124 boolean_t first = B_TRUE; 15125 ire_t *clear_ire = NULL; 15126 ire_t *start_ire = NULL; 15127 ire_t *new_lb_ire; 15128 ire_t *new_nlb_ire; 15129 boolean_t new_lb_ire_used = B_FALSE; 15130 boolean_t new_nlb_ire_used = B_FALSE; 15131 uint64_t match_flags; 15132 uint64_t phyi_flags; 15133 boolean_t fallback = B_FALSE; 15134 15135 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15136 NULL, MATCH_IRE_TYPE); 15137 /* 15138 * We may not be able to find some ires if a previous 15139 * ire_create failed. This happens when an ipif goes 15140 * down and we are unable to create BROADCAST ires due 15141 * to memory failure. Thus, we have to check for NULL 15142 * below. This should handle the case for LOOPBACK, 15143 * POINTOPOINT and interfaces with some POINTOPOINT 15144 * logicals for which there are no BROADCAST ires. 15145 */ 15146 if (ire == NULL) 15147 return; 15148 /* 15149 * Currently IRE_BROADCASTS are deleted when an ipif 15150 * goes down which runs exclusively. Thus, setting 15151 * IRE_MARK_RCVD should not race with ire_delete marking 15152 * IRE_MARK_CONDEMNED. We grab the lock below just to 15153 * be consistent with other parts of the code that walks 15154 * a given bucket. 15155 */ 15156 save_ire = ire; 15157 irb = ire->ire_bucket; 15158 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15159 if (new_lb_ire == NULL) { 15160 ire_refrele(ire); 15161 return; 15162 } 15163 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15164 if (new_nlb_ire == NULL) { 15165 ire_refrele(ire); 15166 kmem_cache_free(ire_cache, new_lb_ire); 15167 return; 15168 } 15169 IRB_REFHOLD(irb); 15170 rw_enter(&irb->irb_lock, RW_WRITER); 15171 /* 15172 * Get to the first ire matching the address and the 15173 * group. If the address does not match we are done 15174 * as we could not find the IRE. If the address matches 15175 * we should get to the first one matching the group. 15176 */ 15177 while (ire != NULL) { 15178 if (ire->ire_addr != addr || 15179 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15180 break; 15181 } 15182 ire = ire->ire_next; 15183 } 15184 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15185 start_ire = ire; 15186 redo: 15187 while (ire != NULL && ire->ire_addr == addr && 15188 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15189 /* 15190 * The first ire for any address within a group 15191 * should always be the one with IRE_MARK_NORECV cleared 15192 * so that ip_wput_ire can avoid searching for one. 15193 * Note down the insertion point which will be used 15194 * later. 15195 */ 15196 if (first && (irep == NULL)) 15197 irep = ire->ire_ptpn; 15198 /* 15199 * PHYI_FAILED is set when the interface fails. 15200 * This interface might have become good, but the 15201 * daemon has not yet detected. We should still 15202 * not receive on this. PHYI_OFFLINE should never 15203 * be picked as this has been offlined and soon 15204 * be removed. 15205 */ 15206 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15207 if (phyi_flags & PHYI_OFFLINE) { 15208 ire->ire_marks |= IRE_MARK_NORECV; 15209 ire = ire->ire_next; 15210 continue; 15211 } 15212 if (phyi_flags & match_flags) { 15213 ire->ire_marks |= IRE_MARK_NORECV; 15214 ire = ire->ire_next; 15215 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15216 PHYI_INACTIVE) { 15217 fallback = B_TRUE; 15218 } 15219 continue; 15220 } 15221 if (first) { 15222 /* 15223 * We will move this to the front of the list later 15224 * on. 15225 */ 15226 clear_ire = ire; 15227 ire->ire_marks &= ~IRE_MARK_NORECV; 15228 } else { 15229 ire->ire_marks |= IRE_MARK_NORECV; 15230 } 15231 first = B_FALSE; 15232 ire = ire->ire_next; 15233 } 15234 /* 15235 * If we never nominated anybody, try nominating at least 15236 * an INACTIVE, if we found one. Do it only once though. 15237 */ 15238 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15239 fallback) { 15240 match_flags = PHYI_FAILED; 15241 ire = start_ire; 15242 irep = NULL; 15243 goto redo; 15244 } 15245 ire_refrele(save_ire); 15246 15247 /* 15248 * irep non-NULL indicates that we entered the while loop 15249 * above. If clear_ire is at the insertion point, we don't 15250 * have to do anything. clear_ire will be NULL if all the 15251 * interfaces are failed. 15252 * 15253 * We cannot unlink and reinsert the ire at the right place 15254 * in the list since there can be other walkers of this bucket. 15255 * Instead we delete and recreate the ire 15256 */ 15257 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15258 ire_t *clear_ire_stq = NULL; 15259 mblk_t *fp_mp = NULL, *res_mp = NULL; 15260 15261 bzero(new_lb_ire, sizeof (ire_t)); 15262 if (clear_ire->ire_nce != NULL) { 15263 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15264 res_mp = clear_ire->ire_nce->nce_res_mp; 15265 } 15266 /* XXX We need a recovery strategy here. */ 15267 if (ire_init(new_lb_ire, 15268 (uchar_t *)&clear_ire->ire_addr, 15269 (uchar_t *)&clear_ire->ire_mask, 15270 (uchar_t *)&clear_ire->ire_src_addr, 15271 (uchar_t *)&clear_ire->ire_gateway_addr, 15272 (uchar_t *)&clear_ire->ire_in_src_addr, 15273 &clear_ire->ire_max_frag, 15274 fp_mp, 15275 clear_ire->ire_rfq, 15276 clear_ire->ire_stq, 15277 clear_ire->ire_type, 15278 res_mp, 15279 clear_ire->ire_ipif, 15280 clear_ire->ire_in_ill, 15281 clear_ire->ire_cmask, 15282 clear_ire->ire_phandle, 15283 clear_ire->ire_ihandle, 15284 clear_ire->ire_flags, 15285 &clear_ire->ire_uinfo, 15286 NULL, 15287 NULL) == NULL) 15288 cmn_err(CE_PANIC, "ire_init() failed"); 15289 if (clear_ire->ire_stq == NULL) { 15290 ire_t *ire_next = clear_ire->ire_next; 15291 if (ire_next != NULL && 15292 ire_next->ire_stq != NULL && 15293 ire_next->ire_addr == clear_ire->ire_addr && 15294 ire_next->ire_ipif->ipif_ill == 15295 clear_ire->ire_ipif->ipif_ill) { 15296 clear_ire_stq = ire_next; 15297 15298 bzero(new_nlb_ire, sizeof (ire_t)); 15299 if (clear_ire_stq->ire_nce != NULL) { 15300 fp_mp = 15301 clear_ire_stq->ire_nce->nce_fp_mp; 15302 res_mp = 15303 clear_ire_stq->ire_nce->nce_res_mp; 15304 } else { 15305 fp_mp = res_mp = NULL; 15306 } 15307 /* XXX We need a recovery strategy here. */ 15308 if (ire_init(new_nlb_ire, 15309 (uchar_t *)&clear_ire_stq->ire_addr, 15310 (uchar_t *)&clear_ire_stq->ire_mask, 15311 (uchar_t *)&clear_ire_stq->ire_src_addr, 15312 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15313 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15314 &clear_ire_stq->ire_max_frag, 15315 fp_mp, 15316 clear_ire_stq->ire_rfq, 15317 clear_ire_stq->ire_stq, 15318 clear_ire_stq->ire_type, 15319 res_mp, 15320 clear_ire_stq->ire_ipif, 15321 clear_ire_stq->ire_in_ill, 15322 clear_ire_stq->ire_cmask, 15323 clear_ire_stq->ire_phandle, 15324 clear_ire_stq->ire_ihandle, 15325 clear_ire_stq->ire_flags, 15326 &clear_ire_stq->ire_uinfo, 15327 NULL, 15328 NULL) == NULL) 15329 cmn_err(CE_PANIC, "ire_init() failed"); 15330 } 15331 } 15332 15333 /* 15334 * Delete the ire. We can't call ire_delete() since 15335 * we are holding the bucket lock. We can't release the 15336 * bucket lock since we can't allow irep to change. So just 15337 * mark it CONDEMNED. The IRB_REFRELE will delete the 15338 * ire from the list and do the refrele. 15339 */ 15340 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15341 irb->irb_marks |= IRB_MARK_CONDEMNED; 15342 15343 if (clear_ire_stq != NULL) { 15344 ire_fastpath_list_delete( 15345 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 15346 clear_ire_stq); 15347 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15348 } 15349 15350 /* 15351 * Also take care of otherfields like ib/ob pkt count 15352 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15353 */ 15354 15355 /* Add the new ire's. Insert at *irep */ 15356 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15357 ire1 = *irep; 15358 if (ire1 != NULL) 15359 ire1->ire_ptpn = &new_lb_ire->ire_next; 15360 new_lb_ire->ire_next = ire1; 15361 /* Link the new one in. */ 15362 new_lb_ire->ire_ptpn = irep; 15363 membar_producer(); 15364 *irep = new_lb_ire; 15365 new_lb_ire_used = B_TRUE; 15366 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15367 new_lb_ire->ire_bucket->irb_ire_cnt++; 15368 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15369 15370 if (clear_ire_stq != NULL) { 15371 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15372 irep = &new_lb_ire->ire_next; 15373 /* Add the new ire. Insert at *irep */ 15374 ire1 = *irep; 15375 if (ire1 != NULL) 15376 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15377 new_nlb_ire->ire_next = ire1; 15378 /* Link the new one in. */ 15379 new_nlb_ire->ire_ptpn = irep; 15380 membar_producer(); 15381 *irep = new_nlb_ire; 15382 new_nlb_ire_used = B_TRUE; 15383 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15384 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15385 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15386 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15387 } 15388 } 15389 rw_exit(&irb->irb_lock); 15390 if (!new_lb_ire_used) 15391 kmem_cache_free(ire_cache, new_lb_ire); 15392 if (!new_nlb_ire_used) 15393 kmem_cache_free(ire_cache, new_nlb_ire); 15394 IRB_REFRELE(irb); 15395 } 15396 15397 /* 15398 * Whenever an ipif goes down we have to renominate a different 15399 * broadcast ire to receive. Whenever an ipif comes up, we need 15400 * to make sure that we have only one nominated to receive. 15401 */ 15402 static void 15403 ipif_renominate_bcast(ipif_t *ipif) 15404 { 15405 ill_t *ill = ipif->ipif_ill; 15406 ipaddr_t subnet_addr; 15407 ipaddr_t net_addr; 15408 ipaddr_t net_mask = 0; 15409 ipaddr_t subnet_netmask; 15410 ipaddr_t addr; 15411 ill_group_t *illgrp; 15412 15413 illgrp = ill->ill_group; 15414 /* 15415 * If this is the last ipif going down, it might take 15416 * the ill out of the group. In that case ipif_down -> 15417 * illgrp_delete takes care of doing the nomination. 15418 * ipif_down does not call for this case. 15419 */ 15420 ASSERT(illgrp != NULL); 15421 15422 /* There could not have been any ires associated with this */ 15423 if (ipif->ipif_subnet == 0) 15424 return; 15425 15426 ill_mark_bcast(illgrp, 0); 15427 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15428 15429 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15430 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15431 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15432 } else { 15433 net_mask = htonl(IN_CLASSA_NET); 15434 } 15435 addr = net_mask & ipif->ipif_subnet; 15436 ill_mark_bcast(illgrp, addr); 15437 15438 net_addr = ~net_mask | addr; 15439 ill_mark_bcast(illgrp, net_addr); 15440 15441 subnet_netmask = ipif->ipif_net_mask; 15442 addr = ipif->ipif_subnet; 15443 ill_mark_bcast(illgrp, addr); 15444 15445 subnet_addr = ~subnet_netmask | addr; 15446 ill_mark_bcast(illgrp, subnet_addr); 15447 } 15448 15449 /* 15450 * Whenever we form or delete ill groups, we need to nominate one set of 15451 * BROADCAST ires for receiving in the group. 15452 * 15453 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15454 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15455 * for ill_ipif_up_count to be non-zero. This is the only case where 15456 * ill_ipif_up_count is zero and we would still find the ires. 15457 * 15458 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15459 * ipif is UP and we just have to do the nomination. 15460 * 15461 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15462 * from the group. So, we have to do the nomination. 15463 * 15464 * Because of (3), there could be just one ill in the group. But we have 15465 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15466 * Thus, this function does not optimize when there is only one ill as 15467 * it is not correct for (3). 15468 */ 15469 static void 15470 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15471 { 15472 ill_t *ill; 15473 ipif_t *ipif; 15474 ipaddr_t subnet_addr; 15475 ipaddr_t prev_subnet_addr = 0; 15476 ipaddr_t net_addr; 15477 ipaddr_t prev_net_addr = 0; 15478 ipaddr_t net_mask = 0; 15479 ipaddr_t subnet_netmask; 15480 ipaddr_t addr; 15481 15482 /* 15483 * When the last memeber is leaving, there is nothing to 15484 * nominate. 15485 */ 15486 if (illgrp->illgrp_ill_count == 0) { 15487 ASSERT(illgrp->illgrp_ill == NULL); 15488 return; 15489 } 15490 15491 ill = illgrp->illgrp_ill; 15492 ASSERT(!ill->ill_isv6); 15493 /* 15494 * We assume that ires with same address and belonging to the 15495 * same group, has been grouped together. Nominating a *single* 15496 * ill in the group for sending and receiving broadcast is done 15497 * by making sure that the first BROADCAST ire (which will be 15498 * the one returned by ire_ctable_lookup for ip_rput and the 15499 * one that will be used in ip_wput_ire) will be the one that 15500 * will not have IRE_MARK_NORECV set. 15501 * 15502 * 1) ip_rput checks and discards packets received on ires marked 15503 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15504 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15505 * first ire in the group for every broadcast address in the group. 15506 * ip_rput will accept packets only on the first ire i.e only 15507 * one copy of the ill. 15508 * 15509 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15510 * packet for the whole group. It needs to send out on the ill 15511 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15512 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15513 * the copy echoed back on other port where the ire is not marked 15514 * with IRE_MARK_NORECV. 15515 * 15516 * Note that we just need to have the first IRE either loopback or 15517 * non-loopback (either of them may not exist if ire_create failed 15518 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15519 * always hit the first one and hence will always accept one copy. 15520 * 15521 * We have a broadcast ire per ill for all the unique prefixes 15522 * hosted on that ill. As we don't have a way of knowing the 15523 * unique prefixes on a given ill and hence in the whole group, 15524 * we just call ill_mark_bcast on all the prefixes that exist 15525 * in the group. For the common case of one prefix, the code 15526 * below optimizes by remebering the last address used for 15527 * markng. In the case of multiple prefixes, this will still 15528 * optimize depending the order of prefixes. 15529 * 15530 * The only unique address across the whole group is 0.0.0.0 and 15531 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15532 * the first ire in the bucket for receiving and disables the 15533 * others. 15534 */ 15535 ill_mark_bcast(illgrp, 0); 15536 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15537 for (; ill != NULL; ill = ill->ill_group_next) { 15538 15539 for (ipif = ill->ill_ipif; ipif != NULL; 15540 ipif = ipif->ipif_next) { 15541 15542 if (!(ipif->ipif_flags & IPIF_UP) || 15543 ipif->ipif_subnet == 0) { 15544 continue; 15545 } 15546 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15547 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15548 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15549 } else { 15550 net_mask = htonl(IN_CLASSA_NET); 15551 } 15552 addr = net_mask & ipif->ipif_subnet; 15553 if (prev_net_addr == 0 || prev_net_addr != addr) { 15554 ill_mark_bcast(illgrp, addr); 15555 net_addr = ~net_mask | addr; 15556 ill_mark_bcast(illgrp, net_addr); 15557 } 15558 prev_net_addr = addr; 15559 15560 subnet_netmask = ipif->ipif_net_mask; 15561 addr = ipif->ipif_subnet; 15562 if (prev_subnet_addr == 0 || 15563 prev_subnet_addr != addr) { 15564 ill_mark_bcast(illgrp, addr); 15565 subnet_addr = ~subnet_netmask | addr; 15566 ill_mark_bcast(illgrp, subnet_addr); 15567 } 15568 prev_subnet_addr = addr; 15569 } 15570 } 15571 } 15572 15573 /* 15574 * This function is called while forming ill groups. 15575 * 15576 * Currently, we handle only allmulti groups. We want to join 15577 * allmulti on only one of the ills in the groups. In future, 15578 * when we have link aggregation, we may have to join normal 15579 * multicast groups on multiple ills as switch does inbound load 15580 * balancing. Following are the functions that calls this 15581 * function : 15582 * 15583 * 1) ill_recover_multicast : Interface is coming back UP. 15584 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15585 * will call ill_recover_multicast to recover all the multicast 15586 * groups. We need to make sure that only one member is joined 15587 * in the ill group. 15588 * 15589 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15590 * Somebody is joining allmulti. We need to make sure that only one 15591 * member is joined in the group. 15592 * 15593 * 3) illgrp_insert : If allmulti has already joined, we need to make 15594 * sure that only one member is joined in the group. 15595 * 15596 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15597 * allmulti who we have nominated. We need to pick someother ill. 15598 * 15599 * 5) illgrp_delete : The ill we nominated is leaving the group, 15600 * we need to pick a new ill to join the group. 15601 * 15602 * For (1), (2), (5) - we just have to check whether there is 15603 * a good ill joined in the group. If we could not find any ills 15604 * joined the group, we should join. 15605 * 15606 * For (4), the one that was nominated to receive, left the group. 15607 * There could be nobody joined in the group when this function is 15608 * called. 15609 * 15610 * For (3) - we need to explicitly check whether there are multiple 15611 * ills joined in the group. 15612 * 15613 * For simplicity, we don't differentiate any of the above cases. We 15614 * just leave the group if it is joined on any of them and join on 15615 * the first good ill. 15616 */ 15617 int 15618 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15619 { 15620 ilm_t *ilm; 15621 ill_t *ill; 15622 ill_t *fallback_inactive_ill = NULL; 15623 ill_t *fallback_failed_ill = NULL; 15624 int ret = 0; 15625 15626 /* 15627 * Leave the allmulti on all the ills and start fresh. 15628 */ 15629 for (ill = illgrp->illgrp_ill; ill != NULL; 15630 ill = ill->ill_group_next) { 15631 if (ill->ill_join_allmulti) 15632 (void) ip_leave_allmulti(ill->ill_ipif); 15633 } 15634 15635 /* 15636 * Choose a good ill. Fallback to inactive or failed if 15637 * none available. We need to fallback to FAILED in the 15638 * case where we have 2 interfaces in a group - where 15639 * one of them is failed and another is a good one and 15640 * the good one (not marked inactive) is leaving the group. 15641 */ 15642 ret = 0; 15643 for (ill = illgrp->illgrp_ill; ill != NULL; 15644 ill = ill->ill_group_next) { 15645 /* Never pick an offline interface */ 15646 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15647 continue; 15648 15649 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15650 fallback_failed_ill = ill; 15651 continue; 15652 } 15653 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15654 fallback_inactive_ill = ill; 15655 continue; 15656 } 15657 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15658 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15659 ret = ip_join_allmulti(ill->ill_ipif); 15660 /* 15661 * ip_join_allmulti can fail because of memory 15662 * failures. So, make sure we join at least 15663 * on one ill. 15664 */ 15665 if (ill->ill_join_allmulti) 15666 return (0); 15667 } 15668 } 15669 } 15670 if (ret != 0) { 15671 /* 15672 * If we tried nominating above and failed to do so, 15673 * return error. We might have tried multiple times. 15674 * But, return the latest error. 15675 */ 15676 return (ret); 15677 } 15678 if ((ill = fallback_inactive_ill) != NULL) { 15679 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15680 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15681 ret = ip_join_allmulti(ill->ill_ipif); 15682 return (ret); 15683 } 15684 } 15685 } else if ((ill = fallback_failed_ill) != NULL) { 15686 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15687 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15688 ret = ip_join_allmulti(ill->ill_ipif); 15689 return (ret); 15690 } 15691 } 15692 } 15693 return (0); 15694 } 15695 15696 /* 15697 * This function is called from illgrp_delete after it is 15698 * deleted from the group to reschedule responsibilities 15699 * to a different ill. 15700 */ 15701 static void 15702 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15703 { 15704 ilm_t *ilm; 15705 ipif_t *ipif; 15706 ipaddr_t subnet_addr; 15707 ipaddr_t net_addr; 15708 ipaddr_t net_mask = 0; 15709 ipaddr_t subnet_netmask; 15710 ipaddr_t addr; 15711 15712 ASSERT(ill->ill_group == NULL); 15713 /* 15714 * Broadcast Responsibility: 15715 * 15716 * 1. If this ill has been nominated for receiving broadcast 15717 * packets, we need to find a new one. Before we find a new 15718 * one, we need to re-group the ires that are part of this new 15719 * group (assumed by ill_nominate_bcast_rcv). We do this by 15720 * calling ill_group_bcast_for_xmit(ill) which will do the right 15721 * thing for us. 15722 * 15723 * 2. If this ill was not nominated for receiving broadcast 15724 * packets, we need to clear the IRE_MARK_NORECV flag 15725 * so that we continue to send up broadcast packets. 15726 */ 15727 if (!ill->ill_isv6) { 15728 /* 15729 * Case 1 above : No optimization here. Just redo the 15730 * nomination. 15731 */ 15732 ill_group_bcast_for_xmit(ill); 15733 ill_nominate_bcast_rcv(illgrp); 15734 15735 /* 15736 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15737 */ 15738 ill_clear_bcast_mark(ill, 0); 15739 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15740 15741 for (ipif = ill->ill_ipif; ipif != NULL; 15742 ipif = ipif->ipif_next) { 15743 15744 if (!(ipif->ipif_flags & IPIF_UP) || 15745 ipif->ipif_subnet == 0) { 15746 continue; 15747 } 15748 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15749 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15750 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15751 } else { 15752 net_mask = htonl(IN_CLASSA_NET); 15753 } 15754 addr = net_mask & ipif->ipif_subnet; 15755 ill_clear_bcast_mark(ill, addr); 15756 15757 net_addr = ~net_mask | addr; 15758 ill_clear_bcast_mark(ill, net_addr); 15759 15760 subnet_netmask = ipif->ipif_net_mask; 15761 addr = ipif->ipif_subnet; 15762 ill_clear_bcast_mark(ill, addr); 15763 15764 subnet_addr = ~subnet_netmask | addr; 15765 ill_clear_bcast_mark(ill, subnet_addr); 15766 } 15767 } 15768 15769 /* 15770 * Multicast Responsibility. 15771 * 15772 * If we have joined allmulti on this one, find a new member 15773 * in the group to join allmulti. As this ill is already part 15774 * of allmulti, we don't have to join on this one. 15775 * 15776 * If we have not joined allmulti on this one, there is no 15777 * responsibility to handoff. But we need to take new 15778 * responsibility i.e, join allmulti on this one if we need 15779 * to. 15780 */ 15781 if (ill->ill_join_allmulti) { 15782 (void) ill_nominate_mcast_rcv(illgrp); 15783 } else { 15784 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15785 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15786 (void) ip_join_allmulti(ill->ill_ipif); 15787 break; 15788 } 15789 } 15790 } 15791 15792 /* 15793 * We intentionally do the flushing of IRE_CACHES only matching 15794 * on the ill and not on groups. Note that we are already deleted 15795 * from the group. 15796 * 15797 * This will make sure that all IRE_CACHES whose stq is pointing 15798 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15799 * deleted and IRE_CACHES that are not pointing at this ill will 15800 * be left alone. 15801 */ 15802 if (ill->ill_isv6) { 15803 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15804 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15805 } else { 15806 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15807 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15808 } 15809 15810 /* 15811 * Some conn may have cached one of the IREs deleted above. By removing 15812 * the ire reference, we clean up the extra reference to the ill held in 15813 * ire->ire_stq. 15814 */ 15815 ipcl_walk(conn_cleanup_stale_ire, NULL); 15816 15817 /* 15818 * Re-do source address selection for all the members in the 15819 * group, if they borrowed source address from one of the ipifs 15820 * in this ill. 15821 */ 15822 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15823 if (ill->ill_isv6) { 15824 ipif_update_other_ipifs_v6(ipif, illgrp); 15825 } else { 15826 ipif_update_other_ipifs(ipif, illgrp); 15827 } 15828 } 15829 } 15830 15831 /* 15832 * Delete the ill from the group. The caller makes sure that it is 15833 * in a group and it okay to delete from the group. So, we always 15834 * delete here. 15835 */ 15836 static void 15837 illgrp_delete(ill_t *ill) 15838 { 15839 ill_group_t *illgrp; 15840 ill_group_t *tmpg; 15841 ill_t *tmp_ill; 15842 15843 /* 15844 * Reset illgrp_ill_schednext if it was pointing at us. 15845 * We need to do this before we set ill_group to NULL. 15846 */ 15847 rw_enter(&ill_g_lock, RW_WRITER); 15848 mutex_enter(&ill->ill_lock); 15849 15850 illgrp_reset_schednext(ill); 15851 15852 illgrp = ill->ill_group; 15853 15854 /* Delete the ill from illgrp. */ 15855 if (illgrp->illgrp_ill == ill) { 15856 illgrp->illgrp_ill = ill->ill_group_next; 15857 } else { 15858 tmp_ill = illgrp->illgrp_ill; 15859 while (tmp_ill->ill_group_next != ill) { 15860 tmp_ill = tmp_ill->ill_group_next; 15861 ASSERT(tmp_ill != NULL); 15862 } 15863 tmp_ill->ill_group_next = ill->ill_group_next; 15864 } 15865 ill->ill_group = NULL; 15866 ill->ill_group_next = NULL; 15867 15868 illgrp->illgrp_ill_count--; 15869 mutex_exit(&ill->ill_lock); 15870 rw_exit(&ill_g_lock); 15871 15872 /* 15873 * As this ill is leaving the group, we need to hand off 15874 * the responsibilities to the other ills in the group, if 15875 * this ill had some responsibilities. 15876 */ 15877 15878 ill_handoff_responsibility(ill, illgrp); 15879 15880 rw_enter(&ill_g_lock, RW_WRITER); 15881 15882 if (illgrp->illgrp_ill_count == 0) { 15883 15884 ASSERT(illgrp->illgrp_ill == NULL); 15885 if (ill->ill_isv6) { 15886 if (illgrp == illgrp_head_v6) { 15887 illgrp_head_v6 = illgrp->illgrp_next; 15888 } else { 15889 tmpg = illgrp_head_v6; 15890 while (tmpg->illgrp_next != illgrp) { 15891 tmpg = tmpg->illgrp_next; 15892 ASSERT(tmpg != NULL); 15893 } 15894 tmpg->illgrp_next = illgrp->illgrp_next; 15895 } 15896 } else { 15897 if (illgrp == illgrp_head_v4) { 15898 illgrp_head_v4 = illgrp->illgrp_next; 15899 } else { 15900 tmpg = illgrp_head_v4; 15901 while (tmpg->illgrp_next != illgrp) { 15902 tmpg = tmpg->illgrp_next; 15903 ASSERT(tmpg != NULL); 15904 } 15905 tmpg->illgrp_next = illgrp->illgrp_next; 15906 } 15907 } 15908 mutex_destroy(&illgrp->illgrp_lock); 15909 mi_free(illgrp); 15910 } 15911 rw_exit(&ill_g_lock); 15912 15913 /* 15914 * Even though the ill is out of the group its not necessary 15915 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15916 * We will split the ipsq when phyint_groupname is set to NULL. 15917 */ 15918 15919 /* 15920 * Send a routing sockets message if we are deleting from 15921 * groups with names. 15922 */ 15923 if (ill->ill_phyint->phyint_groupname_len != 0) 15924 ip_rts_ifmsg(ill->ill_ipif); 15925 } 15926 15927 /* 15928 * Re-do source address selection. This is normally called when 15929 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15930 * ipif comes up. 15931 */ 15932 void 15933 ill_update_source_selection(ill_t *ill) 15934 { 15935 ipif_t *ipif; 15936 15937 ASSERT(IAM_WRITER_ILL(ill)); 15938 15939 if (ill->ill_group != NULL) 15940 ill = ill->ill_group->illgrp_ill; 15941 15942 for (; ill != NULL; ill = ill->ill_group_next) { 15943 for (ipif = ill->ill_ipif; ipif != NULL; 15944 ipif = ipif->ipif_next) { 15945 if (ill->ill_isv6) 15946 ipif_recreate_interface_routes_v6(NULL, ipif); 15947 else 15948 ipif_recreate_interface_routes(NULL, ipif); 15949 } 15950 } 15951 } 15952 15953 /* 15954 * Insert ill in a group headed by illgrp_head. The caller can either 15955 * pass a groupname in which case we search for a group with the 15956 * same name to insert in or pass a group to insert in. This function 15957 * would only search groups with names. 15958 * 15959 * NOTE : The caller should make sure that there is at least one ipif 15960 * UP on this ill so that illgrp_scheduler can pick this ill 15961 * for outbound packets. If ill_ipif_up_count is zero, we have 15962 * already sent a DL_UNBIND to the driver and we don't want to 15963 * send anymore packets. We don't assert for ipif_up_count 15964 * to be greater than zero, because ipif_up_done wants to call 15965 * this function before bumping up the ipif_up_count. See 15966 * ipif_up_done() for details. 15967 */ 15968 int 15969 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15970 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15971 { 15972 ill_group_t *illgrp; 15973 ill_t *prev_ill; 15974 phyint_t *phyi; 15975 15976 ASSERT(ill->ill_group == NULL); 15977 15978 rw_enter(&ill_g_lock, RW_WRITER); 15979 mutex_enter(&ill->ill_lock); 15980 15981 if (groupname != NULL) { 15982 /* 15983 * Look for a group with a matching groupname to insert. 15984 */ 15985 for (illgrp = *illgrp_head; illgrp != NULL; 15986 illgrp = illgrp->illgrp_next) { 15987 15988 ill_t *tmp_ill; 15989 15990 /* 15991 * If we have an ill_group_t in the list which has 15992 * no ill_t assigned then we must be in the process of 15993 * removing this group. We skip this as illgrp_delete() 15994 * will remove it from the list. 15995 */ 15996 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15997 ASSERT(illgrp->illgrp_ill_count == 0); 15998 continue; 15999 } 16000 16001 ASSERT(tmp_ill->ill_phyint != NULL); 16002 phyi = tmp_ill->ill_phyint; 16003 /* 16004 * Look at groups which has names only. 16005 */ 16006 if (phyi->phyint_groupname_len == 0) 16007 continue; 16008 /* 16009 * Names are stored in the phyint common to both 16010 * IPv4 and IPv6. 16011 */ 16012 if (mi_strcmp(phyi->phyint_groupname, 16013 groupname) == 0) { 16014 break; 16015 } 16016 } 16017 } else { 16018 /* 16019 * If the caller passes in a NULL "grp_to_insert", we 16020 * allocate one below and insert this singleton. 16021 */ 16022 illgrp = grp_to_insert; 16023 } 16024 16025 ill->ill_group_next = NULL; 16026 16027 if (illgrp == NULL) { 16028 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16029 if (illgrp == NULL) { 16030 return (ENOMEM); 16031 } 16032 illgrp->illgrp_next = *illgrp_head; 16033 *illgrp_head = illgrp; 16034 illgrp->illgrp_ill = ill; 16035 illgrp->illgrp_ill_count = 1; 16036 ill->ill_group = illgrp; 16037 /* 16038 * Used in illgrp_scheduler to protect multiple threads 16039 * from traversing the list. 16040 */ 16041 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16042 } else { 16043 ASSERT(ill->ill_net_type == 16044 illgrp->illgrp_ill->ill_net_type); 16045 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16046 16047 /* Insert ill at tail of this group */ 16048 prev_ill = illgrp->illgrp_ill; 16049 while (prev_ill->ill_group_next != NULL) 16050 prev_ill = prev_ill->ill_group_next; 16051 prev_ill->ill_group_next = ill; 16052 ill->ill_group = illgrp; 16053 illgrp->illgrp_ill_count++; 16054 /* 16055 * Inherit group properties. Currently only forwarding 16056 * is the property we try to keep the same with all the 16057 * ills. When there are more, we will abstract this into 16058 * a function. 16059 */ 16060 ill->ill_flags &= ~ILLF_ROUTER; 16061 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16062 } 16063 mutex_exit(&ill->ill_lock); 16064 rw_exit(&ill_g_lock); 16065 16066 /* 16067 * 1) When ipif_up_done() calls this function, ipif_up_count 16068 * may be zero as it has not yet been bumped. But the ires 16069 * have already been added. So, we do the nomination here 16070 * itself. But, when ip_sioctl_groupname calls this, it checks 16071 * for ill_ipif_up_count != 0. Thus we don't check for 16072 * ill_ipif_up_count here while nominating broadcast ires for 16073 * receive. 16074 * 16075 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16076 * to group them properly as ire_add() has already happened 16077 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16078 * case, we need to do it here anyway. 16079 */ 16080 if (!ill->ill_isv6) { 16081 ill_group_bcast_for_xmit(ill); 16082 ill_nominate_bcast_rcv(illgrp); 16083 } 16084 16085 if (!ipif_is_coming_up) { 16086 /* 16087 * When ipif_up_done() calls this function, the multicast 16088 * groups have not been joined yet. So, there is no point in 16089 * nomination. ip_join_allmulti will handle groups when 16090 * ill_recover_multicast is called from ipif_up_done() later. 16091 */ 16092 (void) ill_nominate_mcast_rcv(illgrp); 16093 /* 16094 * ipif_up_done calls ill_update_source_selection 16095 * anyway. Moreover, we don't want to re-create 16096 * interface routes while ipif_up_done() still has reference 16097 * to them. Refer to ipif_up_done() for more details. 16098 */ 16099 ill_update_source_selection(ill); 16100 } 16101 16102 /* 16103 * Send a routing sockets message if we are inserting into 16104 * groups with names. 16105 */ 16106 if (groupname != NULL) 16107 ip_rts_ifmsg(ill->ill_ipif); 16108 return (0); 16109 } 16110 16111 /* 16112 * Return the first phyint matching the groupname. There could 16113 * be more than one when there are ill groups. 16114 * 16115 * Needs work: called only from ip_sioctl_groupname 16116 */ 16117 static phyint_t * 16118 phyint_lookup_group(char *groupname) 16119 { 16120 phyint_t *phyi; 16121 16122 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 16123 /* 16124 * Group names are stored in the phyint - a common structure 16125 * to both IPv4 and IPv6. 16126 */ 16127 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 16128 for (; phyi != NULL; 16129 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 16130 phyi, AVL_AFTER)) { 16131 if (phyi->phyint_groupname_len == 0) 16132 continue; 16133 ASSERT(phyi->phyint_groupname != NULL); 16134 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16135 return (phyi); 16136 } 16137 return (NULL); 16138 } 16139 16140 16141 16142 /* 16143 * MT notes on creation and deletion of IPMP groups 16144 * 16145 * Creation and deletion of IPMP groups introduce the need to merge or 16146 * split the associated serialization objects i.e the ipsq's. Normally all 16147 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16148 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16149 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16150 * is a need to change the <ill-ipsq> association and we have to operate on both 16151 * the source and destination IPMP groups. For eg. attempting to set the 16152 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16153 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16154 * source or destination IPMP group are mapped to a single ipsq for executing 16155 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16156 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16157 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16158 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16159 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16160 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16161 * 16162 * In the above example the ioctl handling code locates the current ipsq of hme0 16163 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16164 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16165 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16166 * the destination ipsq. If the destination ipsq is not busy, it also enters 16167 * the destination ipsq exclusively. Now the actual groupname setting operation 16168 * can proceed. If the destination ipsq is busy, the operation is enqueued 16169 * on the destination (merged) ipsq and will be handled in the unwind from 16170 * ipsq_exit. 16171 * 16172 * To prevent other threads accessing the ill while the group name change is 16173 * in progres, we bring down the ipifs which also removes the ill from the 16174 * group. The group is changed in phyint and when the first ipif on the ill 16175 * is brought up, the ill is inserted into the right IPMP group by 16176 * illgrp_insert. 16177 */ 16178 /* ARGSUSED */ 16179 int 16180 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16181 ip_ioctl_cmd_t *ipip, void *ifreq) 16182 { 16183 int i; 16184 char *tmp; 16185 int namelen; 16186 ill_t *ill = ipif->ipif_ill; 16187 ill_t *ill_v4, *ill_v6; 16188 int err = 0; 16189 phyint_t *phyi; 16190 phyint_t *phyi_tmp; 16191 struct lifreq *lifr; 16192 mblk_t *mp1; 16193 char *groupname; 16194 ipsq_t *ipsq; 16195 16196 ASSERT(IAM_WRITER_IPIF(ipif)); 16197 16198 /* Existance verified in ip_wput_nondata */ 16199 mp1 = mp->b_cont->b_cont; 16200 lifr = (struct lifreq *)mp1->b_rptr; 16201 groupname = lifr->lifr_groupname; 16202 16203 if (ipif->ipif_id != 0) 16204 return (EINVAL); 16205 16206 phyi = ill->ill_phyint; 16207 ASSERT(phyi != NULL); 16208 16209 if (phyi->phyint_flags & PHYI_VIRTUAL) 16210 return (EINVAL); 16211 16212 tmp = groupname; 16213 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16214 ; 16215 16216 if (i == LIFNAMSIZ) { 16217 /* no null termination */ 16218 return (EINVAL); 16219 } 16220 16221 /* 16222 * Calculate the namelen exclusive of the null 16223 * termination character. 16224 */ 16225 namelen = tmp - groupname; 16226 16227 ill_v4 = phyi->phyint_illv4; 16228 ill_v6 = phyi->phyint_illv6; 16229 16230 /* 16231 * ILL cannot be part of a usesrc group and and IPMP group at the 16232 * same time. No need to grab the ill_g_usesrc_lock here, see 16233 * synchronization notes in ip.c 16234 */ 16235 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16236 return (EINVAL); 16237 } 16238 16239 /* 16240 * mark the ill as changing. 16241 * this should queue all new requests on the syncq. 16242 */ 16243 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16244 16245 if (ill_v4 != NULL) 16246 ill_v4->ill_state_flags |= ILL_CHANGING; 16247 if (ill_v6 != NULL) 16248 ill_v6->ill_state_flags |= ILL_CHANGING; 16249 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16250 16251 if (namelen == 0) { 16252 /* 16253 * Null string means remove this interface from the 16254 * existing group. 16255 */ 16256 if (phyi->phyint_groupname_len == 0) { 16257 /* 16258 * Never was in a group. 16259 */ 16260 err = 0; 16261 goto done; 16262 } 16263 16264 /* 16265 * IPv4 or IPv6 may be temporarily out of the group when all 16266 * the ipifs are down. Thus, we need to check for ill_group to 16267 * be non-NULL. 16268 */ 16269 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16270 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16271 mutex_enter(&ill_v4->ill_lock); 16272 if (!ill_is_quiescent(ill_v4)) { 16273 /* 16274 * ipsq_pending_mp_add will not fail since 16275 * connp is NULL 16276 */ 16277 (void) ipsq_pending_mp_add(NULL, 16278 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16279 mutex_exit(&ill_v4->ill_lock); 16280 err = EINPROGRESS; 16281 goto done; 16282 } 16283 mutex_exit(&ill_v4->ill_lock); 16284 } 16285 16286 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16287 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16288 mutex_enter(&ill_v6->ill_lock); 16289 if (!ill_is_quiescent(ill_v6)) { 16290 (void) ipsq_pending_mp_add(NULL, 16291 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16292 mutex_exit(&ill_v6->ill_lock); 16293 err = EINPROGRESS; 16294 goto done; 16295 } 16296 mutex_exit(&ill_v6->ill_lock); 16297 } 16298 16299 rw_enter(&ill_g_lock, RW_WRITER); 16300 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16301 mutex_enter(&phyi->phyint_lock); 16302 ASSERT(phyi->phyint_groupname != NULL); 16303 mi_free(phyi->phyint_groupname); 16304 phyi->phyint_groupname = NULL; 16305 phyi->phyint_groupname_len = 0; 16306 mutex_exit(&phyi->phyint_lock); 16307 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16308 rw_exit(&ill_g_lock); 16309 err = ill_up_ipifs(ill, q, mp); 16310 16311 /* 16312 * set the split flag so that the ipsq can be split 16313 */ 16314 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16315 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16316 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16317 16318 } else { 16319 if (phyi->phyint_groupname_len != 0) { 16320 ASSERT(phyi->phyint_groupname != NULL); 16321 /* Are we inserting in the same group ? */ 16322 if (mi_strcmp(groupname, 16323 phyi->phyint_groupname) == 0) { 16324 err = 0; 16325 goto done; 16326 } 16327 } 16328 16329 rw_enter(&ill_g_lock, RW_READER); 16330 /* 16331 * Merge ipsq for the group's. 16332 * This check is here as multiple groups/ills might be 16333 * sharing the same ipsq. 16334 * If we have to merege than the operation is restarted 16335 * on the new ipsq. 16336 */ 16337 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 16338 if (phyi->phyint_ipsq != ipsq) { 16339 rw_exit(&ill_g_lock); 16340 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16341 goto done; 16342 } 16343 /* 16344 * Running exclusive on new ipsq. 16345 */ 16346 16347 ASSERT(ipsq != NULL); 16348 ASSERT(ipsq->ipsq_writer == curthread); 16349 16350 /* 16351 * Check whether the ill_type and ill_net_type matches before 16352 * we allocate any memory so that the cleanup is easier. 16353 * 16354 * We can't group dissimilar ones as we can't load spread 16355 * packets across the group because of potential link-level 16356 * header differences. 16357 */ 16358 phyi_tmp = phyint_lookup_group(groupname); 16359 if (phyi_tmp != NULL) { 16360 if ((ill_v4 != NULL && 16361 phyi_tmp->phyint_illv4 != NULL) && 16362 ((ill_v4->ill_net_type != 16363 phyi_tmp->phyint_illv4->ill_net_type) || 16364 (ill_v4->ill_type != 16365 phyi_tmp->phyint_illv4->ill_type))) { 16366 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16367 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16368 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16369 rw_exit(&ill_g_lock); 16370 return (EINVAL); 16371 } 16372 if ((ill_v6 != NULL && 16373 phyi_tmp->phyint_illv6 != NULL) && 16374 ((ill_v6->ill_net_type != 16375 phyi_tmp->phyint_illv6->ill_net_type) || 16376 (ill_v6->ill_type != 16377 phyi_tmp->phyint_illv6->ill_type))) { 16378 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16379 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16380 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16381 rw_exit(&ill_g_lock); 16382 return (EINVAL); 16383 } 16384 } 16385 16386 rw_exit(&ill_g_lock); 16387 16388 /* 16389 * bring down all v4 ipifs. 16390 */ 16391 if (ill_v4 != NULL) { 16392 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16393 } 16394 16395 /* 16396 * bring down all v6 ipifs. 16397 */ 16398 if (ill_v6 != NULL) { 16399 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16400 } 16401 16402 /* 16403 * make sure all ipifs are down and there are no active 16404 * references. Call to ipsq_pending_mp_add will not fail 16405 * since connp is NULL. 16406 */ 16407 if (ill_v4 != NULL) { 16408 mutex_enter(&ill_v4->ill_lock); 16409 if (!ill_is_quiescent(ill_v4)) { 16410 (void) ipsq_pending_mp_add(NULL, 16411 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16412 mutex_exit(&ill_v4->ill_lock); 16413 err = EINPROGRESS; 16414 goto done; 16415 } 16416 mutex_exit(&ill_v4->ill_lock); 16417 } 16418 16419 if (ill_v6 != NULL) { 16420 mutex_enter(&ill_v6->ill_lock); 16421 if (!ill_is_quiescent(ill_v6)) { 16422 (void) ipsq_pending_mp_add(NULL, 16423 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16424 mutex_exit(&ill_v6->ill_lock); 16425 err = EINPROGRESS; 16426 goto done; 16427 } 16428 mutex_exit(&ill_v6->ill_lock); 16429 } 16430 16431 /* 16432 * allocate including space for null terminator 16433 * before we insert. 16434 */ 16435 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16436 if (tmp == NULL) 16437 return (ENOMEM); 16438 16439 rw_enter(&ill_g_lock, RW_WRITER); 16440 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16441 mutex_enter(&phyi->phyint_lock); 16442 if (phyi->phyint_groupname_len != 0) { 16443 ASSERT(phyi->phyint_groupname != NULL); 16444 mi_free(phyi->phyint_groupname); 16445 } 16446 16447 /* 16448 * setup the new group name. 16449 */ 16450 phyi->phyint_groupname = tmp; 16451 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16452 phyi->phyint_groupname_len = namelen + 1; 16453 mutex_exit(&phyi->phyint_lock); 16454 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16455 rw_exit(&ill_g_lock); 16456 16457 err = ill_up_ipifs(ill, q, mp); 16458 } 16459 16460 done: 16461 /* 16462 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16463 */ 16464 if (err != EINPROGRESS) { 16465 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16466 if (ill_v4 != NULL) 16467 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16468 if (ill_v6 != NULL) 16469 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16470 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16471 } 16472 return (err); 16473 } 16474 16475 /* ARGSUSED */ 16476 int 16477 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16478 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16479 { 16480 ill_t *ill; 16481 phyint_t *phyi; 16482 struct lifreq *lifr; 16483 mblk_t *mp1; 16484 16485 /* Existence verified in ip_wput_nondata */ 16486 mp1 = mp->b_cont->b_cont; 16487 lifr = (struct lifreq *)mp1->b_rptr; 16488 ill = ipif->ipif_ill; 16489 phyi = ill->ill_phyint; 16490 16491 lifr->lifr_groupname[0] = '\0'; 16492 /* 16493 * ill_group may be null if all the interfaces 16494 * are down. But still, the phyint should always 16495 * hold the name. 16496 */ 16497 if (phyi->phyint_groupname_len != 0) { 16498 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16499 phyi->phyint_groupname_len); 16500 } 16501 16502 return (0); 16503 } 16504 16505 16506 typedef struct conn_move_s { 16507 ill_t *cm_from_ill; 16508 ill_t *cm_to_ill; 16509 int cm_ifindex; 16510 } conn_move_t; 16511 16512 /* 16513 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16514 */ 16515 static void 16516 conn_move(conn_t *connp, caddr_t arg) 16517 { 16518 conn_move_t *connm; 16519 int ifindex; 16520 int i; 16521 ill_t *from_ill; 16522 ill_t *to_ill; 16523 ilg_t *ilg; 16524 ilm_t *ret_ilm; 16525 16526 connm = (conn_move_t *)arg; 16527 ifindex = connm->cm_ifindex; 16528 from_ill = connm->cm_from_ill; 16529 to_ill = connm->cm_to_ill; 16530 16531 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16532 16533 /* All multicast fields protected by conn_lock */ 16534 mutex_enter(&connp->conn_lock); 16535 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16536 if ((connp->conn_outgoing_ill == from_ill) && 16537 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16538 connp->conn_outgoing_ill = to_ill; 16539 connp->conn_incoming_ill = to_ill; 16540 } 16541 16542 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16543 16544 if ((connp->conn_multicast_ill == from_ill) && 16545 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16546 connp->conn_multicast_ill = connm->cm_to_ill; 16547 } 16548 16549 /* Change IP_XMIT_IF associations */ 16550 if ((connp->conn_xmit_if_ill == from_ill) && 16551 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16552 connp->conn_xmit_if_ill = to_ill; 16553 } 16554 /* 16555 * Change the ilg_ill to point to the new one. This assumes 16556 * ilm_move_v6 has moved the ilms to new_ill and the driver 16557 * has been told to receive packets on this interface. 16558 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16559 * But when doing a FAILOVER, it might fail with ENOMEM and so 16560 * some ilms may not have moved. We check to see whether 16561 * the ilms have moved to to_ill. We can't check on from_ill 16562 * as in the process of moving, we could have split an ilm 16563 * in to two - which has the same orig_ifindex and v6group. 16564 * 16565 * For IPv4, ilg_ipif moves implicitly. The code below really 16566 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16567 */ 16568 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16569 ilg = &connp->conn_ilg[i]; 16570 if ((ilg->ilg_ill == from_ill) && 16571 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16572 /* ifindex != 0 indicates failback */ 16573 if (ifindex != 0) { 16574 connp->conn_ilg[i].ilg_ill = to_ill; 16575 continue; 16576 } 16577 16578 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16579 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16580 connp->conn_zoneid); 16581 16582 if (ret_ilm != NULL) 16583 connp->conn_ilg[i].ilg_ill = to_ill; 16584 } 16585 } 16586 mutex_exit(&connp->conn_lock); 16587 } 16588 16589 static void 16590 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16591 { 16592 conn_move_t connm; 16593 16594 connm.cm_from_ill = from_ill; 16595 connm.cm_to_ill = to_ill; 16596 connm.cm_ifindex = ifindex; 16597 16598 ipcl_walk(conn_move, (caddr_t)&connm); 16599 } 16600 16601 /* 16602 * ilm has been moved from from_ill to to_ill. 16603 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16604 * appropriately. 16605 * 16606 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16607 * the code there de-references ipif_ill to get the ill to 16608 * send multicast requests. It does not work as ipif is on its 16609 * move and already moved when this function is called. 16610 * Thus, we need to use from_ill and to_ill send down multicast 16611 * requests. 16612 */ 16613 static void 16614 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16615 { 16616 ipif_t *ipif; 16617 ilm_t *ilm; 16618 16619 /* 16620 * See whether we need to send down DL_ENABMULTI_REQ on 16621 * to_ill as ilm has just been added. 16622 */ 16623 ASSERT(IAM_WRITER_ILL(to_ill)); 16624 ASSERT(IAM_WRITER_ILL(from_ill)); 16625 16626 ILM_WALKER_HOLD(to_ill); 16627 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16628 16629 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16630 continue; 16631 /* 16632 * no locks held, ill/ipif cannot dissappear as long 16633 * as we are writer. 16634 */ 16635 ipif = to_ill->ill_ipif; 16636 /* 16637 * No need to hold any lock as we are the writer and this 16638 * can only be changed by a writer. 16639 */ 16640 ilm->ilm_is_new = B_FALSE; 16641 16642 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16643 ipif->ipif_flags & IPIF_POINTOPOINT) { 16644 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16645 "resolver\n")); 16646 continue; /* Must be IRE_IF_NORESOLVER */ 16647 } 16648 16649 16650 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16651 ip1dbg(("ilm_send_multicast_reqs: " 16652 "to_ill MULTI_BCAST\n")); 16653 goto from; 16654 } 16655 16656 if (to_ill->ill_isv6) 16657 mld_joingroup(ilm); 16658 else 16659 igmp_joingroup(ilm); 16660 16661 if (to_ill->ill_ipif_up_count == 0) { 16662 /* 16663 * Nobody there. All multicast addresses will be 16664 * re-joined when we get the DL_BIND_ACK bringing the 16665 * interface up. 16666 */ 16667 ilm->ilm_notify_driver = B_FALSE; 16668 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16669 goto from; 16670 } 16671 16672 /* 16673 * For allmulti address, we want to join on only one interface. 16674 * Checking for ilm_numentries_v6 is not correct as you may 16675 * find an ilm with zero address on to_ill, but we may not 16676 * have nominated to_ill for receiving. Thus, if we have 16677 * nominated from_ill (ill_join_allmulti is set), nominate 16678 * only if to_ill is not already nominated (to_ill normally 16679 * should not have been nominated if "from_ill" has already 16680 * been nominated. As we don't prevent failovers from happening 16681 * across groups, we don't assert). 16682 */ 16683 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16684 /* 16685 * There is no need to hold ill locks as we are 16686 * writer on both ills and when ill_join_allmulti 16687 * is changed the thread is always a writer. 16688 */ 16689 if (from_ill->ill_join_allmulti && 16690 !to_ill->ill_join_allmulti) { 16691 (void) ip_join_allmulti(to_ill->ill_ipif); 16692 } 16693 } else if (ilm->ilm_notify_driver) { 16694 16695 /* 16696 * This is a newly moved ilm so we need to tell the 16697 * driver about the new group. There can be more than 16698 * one ilm's for the same group in the list each with a 16699 * different orig_ifindex. We have to inform the driver 16700 * once. In ilm_move_v[4,6] we only set the flag 16701 * ilm_notify_driver for the first ilm. 16702 */ 16703 16704 (void) ip_ll_send_enabmulti_req(to_ill, 16705 &ilm->ilm_v6addr); 16706 } 16707 16708 ilm->ilm_notify_driver = B_FALSE; 16709 16710 /* 16711 * See whether we need to send down DL_DISABMULTI_REQ on 16712 * from_ill as ilm has just been removed. 16713 */ 16714 from: 16715 ipif = from_ill->ill_ipif; 16716 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16717 ipif->ipif_flags & IPIF_POINTOPOINT) { 16718 ip1dbg(("ilm_send_multicast_reqs: " 16719 "from_ill not resolver\n")); 16720 continue; /* Must be IRE_IF_NORESOLVER */ 16721 } 16722 16723 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16724 ip1dbg(("ilm_send_multicast_reqs: " 16725 "from_ill MULTI_BCAST\n")); 16726 continue; 16727 } 16728 16729 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16730 if (from_ill->ill_join_allmulti) 16731 (void) ip_leave_allmulti(from_ill->ill_ipif); 16732 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16733 (void) ip_ll_send_disabmulti_req(from_ill, 16734 &ilm->ilm_v6addr); 16735 } 16736 } 16737 ILM_WALKER_RELE(to_ill); 16738 } 16739 16740 /* 16741 * This function is called when all multicast memberships needs 16742 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16743 * called only once unlike the IPv4 counterpart where it is called after 16744 * every logical interface is moved. The reason is due to multicast 16745 * memberships are joined using an interface address in IPv4 while in 16746 * IPv6, interface index is used. 16747 */ 16748 static void 16749 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16750 { 16751 ilm_t *ilm; 16752 ilm_t *ilm_next; 16753 ilm_t *new_ilm; 16754 ilm_t **ilmp; 16755 int count; 16756 char buf[INET6_ADDRSTRLEN]; 16757 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16758 16759 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16760 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16761 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16762 16763 if (ifindex == 0) { 16764 /* 16765 * Form the solicited node mcast address which is used later. 16766 */ 16767 ipif_t *ipif; 16768 16769 ipif = from_ill->ill_ipif; 16770 ASSERT(ipif->ipif_id == 0); 16771 16772 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16773 } 16774 16775 ilmp = &from_ill->ill_ilm; 16776 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16777 ilm_next = ilm->ilm_next; 16778 16779 if (ilm->ilm_flags & ILM_DELETED) { 16780 ilmp = &ilm->ilm_next; 16781 continue; 16782 } 16783 16784 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16785 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16786 ASSERT(ilm->ilm_orig_ifindex != 0); 16787 if (ilm->ilm_orig_ifindex == ifindex) { 16788 /* 16789 * We are failing back multicast memberships. 16790 * If the same ilm exists in to_ill, it means somebody 16791 * has joined the same group there e.g. ff02::1 16792 * is joined within the kernel when the interfaces 16793 * came UP. 16794 */ 16795 ASSERT(ilm->ilm_ipif == NULL); 16796 if (new_ilm != NULL) { 16797 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16798 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16799 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16800 new_ilm->ilm_is_new = B_TRUE; 16801 } 16802 } else { 16803 /* 16804 * check if we can just move the ilm 16805 */ 16806 if (from_ill->ill_ilm_walker_cnt != 0) { 16807 /* 16808 * We have walkers we cannot move 16809 * the ilm, so allocate a new ilm, 16810 * this (old) ilm will be marked 16811 * ILM_DELETED at the end of the loop 16812 * and will be freed when the 16813 * last walker exits. 16814 */ 16815 new_ilm = (ilm_t *)mi_zalloc 16816 (sizeof (ilm_t)); 16817 if (new_ilm == NULL) { 16818 ip0dbg(("ilm_move_v6: " 16819 "FAILBACK of IPv6" 16820 " multicast address %s : " 16821 "from %s to" 16822 " %s failed : ENOMEM \n", 16823 inet_ntop(AF_INET6, 16824 &ilm->ilm_v6addr, buf, 16825 sizeof (buf)), 16826 from_ill->ill_name, 16827 to_ill->ill_name)); 16828 16829 ilmp = &ilm->ilm_next; 16830 continue; 16831 } 16832 *new_ilm = *ilm; 16833 /* 16834 * we don't want new_ilm linked to 16835 * ilm's filter list. 16836 */ 16837 new_ilm->ilm_filter = NULL; 16838 } else { 16839 /* 16840 * No walkers we can move the ilm. 16841 * lets take it out of the list. 16842 */ 16843 *ilmp = ilm->ilm_next; 16844 ilm->ilm_next = NULL; 16845 new_ilm = ilm; 16846 } 16847 16848 /* 16849 * if this is the first ilm for the group 16850 * set ilm_notify_driver so that we notify the 16851 * driver in ilm_send_multicast_reqs. 16852 */ 16853 if (ilm_lookup_ill_v6(to_ill, 16854 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16855 new_ilm->ilm_notify_driver = B_TRUE; 16856 16857 new_ilm->ilm_ill = to_ill; 16858 /* Add to the to_ill's list */ 16859 new_ilm->ilm_next = to_ill->ill_ilm; 16860 to_ill->ill_ilm = new_ilm; 16861 /* 16862 * set the flag so that mld_joingroup is 16863 * called in ilm_send_multicast_reqs(). 16864 */ 16865 new_ilm->ilm_is_new = B_TRUE; 16866 } 16867 goto bottom; 16868 } else if (ifindex != 0) { 16869 /* 16870 * If this is FAILBACK (ifindex != 0) and the ifindex 16871 * has not matched above, look at the next ilm. 16872 */ 16873 ilmp = &ilm->ilm_next; 16874 continue; 16875 } 16876 /* 16877 * If we are here, it means ifindex is 0. Failover 16878 * everything. 16879 * 16880 * We need to handle solicited node mcast address 16881 * and all_nodes mcast address differently as they 16882 * are joined witin the kenrel (ipif_multicast_up) 16883 * and potentially from the userland. We are called 16884 * after the ipifs of from_ill has been moved. 16885 * If we still find ilms on ill with solicited node 16886 * mcast address or all_nodes mcast address, it must 16887 * belong to the UP interface that has not moved e.g. 16888 * ipif_id 0 with the link local prefix does not move. 16889 * We join this on the new ill accounting for all the 16890 * userland memberships so that applications don't 16891 * see any failure. 16892 * 16893 * We need to make sure that we account only for the 16894 * solicited node and all node multicast addresses 16895 * that was brought UP on these. In the case of 16896 * a failover from A to B, we might have ilms belonging 16897 * to A (ilm_orig_ifindex pointing at A) on B accounting 16898 * for the membership from the userland. If we are failing 16899 * over from B to C now, we will find the ones belonging 16900 * to A on B. These don't account for the ill_ipif_up_count. 16901 * They just move from B to C. The check below on 16902 * ilm_orig_ifindex ensures that. 16903 */ 16904 if ((ilm->ilm_orig_ifindex == 16905 from_ill->ill_phyint->phyint_ifindex) && 16906 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16907 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16908 &ilm->ilm_v6addr))) { 16909 ASSERT(ilm->ilm_refcnt > 0); 16910 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16911 /* 16912 * For indentation reasons, we are not using a 16913 * "else" here. 16914 */ 16915 if (count == 0) { 16916 ilmp = &ilm->ilm_next; 16917 continue; 16918 } 16919 ilm->ilm_refcnt -= count; 16920 if (new_ilm != NULL) { 16921 /* 16922 * Can find one with the same 16923 * ilm_orig_ifindex, if we are failing 16924 * over to a STANDBY. This happens 16925 * when somebody wants to join a group 16926 * on a STANDBY interface and we 16927 * internally join on a different one. 16928 * If we had joined on from_ill then, a 16929 * failover now will find a new ilm 16930 * with this index. 16931 */ 16932 ip1dbg(("ilm_move_v6: FAILOVER, found" 16933 " new ilm on %s, group address %s\n", 16934 to_ill->ill_name, 16935 inet_ntop(AF_INET6, 16936 &ilm->ilm_v6addr, buf, 16937 sizeof (buf)))); 16938 new_ilm->ilm_refcnt += count; 16939 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16940 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16941 new_ilm->ilm_is_new = B_TRUE; 16942 } 16943 } else { 16944 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16945 if (new_ilm == NULL) { 16946 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16947 " multicast address %s : from %s to" 16948 " %s failed : ENOMEM \n", 16949 inet_ntop(AF_INET6, 16950 &ilm->ilm_v6addr, buf, 16951 sizeof (buf)), from_ill->ill_name, 16952 to_ill->ill_name)); 16953 ilmp = &ilm->ilm_next; 16954 continue; 16955 } 16956 *new_ilm = *ilm; 16957 new_ilm->ilm_filter = NULL; 16958 new_ilm->ilm_refcnt = count; 16959 new_ilm->ilm_timer = INFINITY; 16960 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16961 new_ilm->ilm_is_new = B_TRUE; 16962 /* 16963 * If the to_ill has not joined this 16964 * group we need to tell the driver in 16965 * ill_send_multicast_reqs. 16966 */ 16967 if (ilm_lookup_ill_v6(to_ill, 16968 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16969 new_ilm->ilm_notify_driver = B_TRUE; 16970 16971 new_ilm->ilm_ill = to_ill; 16972 /* Add to the to_ill's list */ 16973 new_ilm->ilm_next = to_ill->ill_ilm; 16974 to_ill->ill_ilm = new_ilm; 16975 ASSERT(new_ilm->ilm_ipif == NULL); 16976 } 16977 if (ilm->ilm_refcnt == 0) { 16978 goto bottom; 16979 } else { 16980 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16981 CLEAR_SLIST(new_ilm->ilm_filter); 16982 ilmp = &ilm->ilm_next; 16983 } 16984 continue; 16985 } else { 16986 /* 16987 * ifindex = 0 means, move everything pointing at 16988 * from_ill. We are doing this becuase ill has 16989 * either FAILED or became INACTIVE. 16990 * 16991 * As we would like to move things later back to 16992 * from_ill, we want to retain the identity of this 16993 * ilm. Thus, we don't blindly increment the reference 16994 * count on the ilms matching the address alone. We 16995 * need to match on the ilm_orig_index also. new_ilm 16996 * was obtained by matching ilm_orig_index also. 16997 */ 16998 if (new_ilm != NULL) { 16999 /* 17000 * This is possible only if a previous restore 17001 * was incomplete i.e restore to 17002 * ilm_orig_ifindex left some ilms because 17003 * of some failures. Thus when we are failing 17004 * again, we might find our old friends there. 17005 */ 17006 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17007 " on %s, group address %s\n", 17008 to_ill->ill_name, 17009 inet_ntop(AF_INET6, 17010 &ilm->ilm_v6addr, buf, 17011 sizeof (buf)))); 17012 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17013 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17014 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17015 new_ilm->ilm_is_new = B_TRUE; 17016 } 17017 } else { 17018 if (from_ill->ill_ilm_walker_cnt != 0) { 17019 new_ilm = (ilm_t *) 17020 mi_zalloc(sizeof (ilm_t)); 17021 if (new_ilm == NULL) { 17022 ip0dbg(("ilm_move_v6: " 17023 "FAILOVER of IPv6" 17024 " multicast address %s : " 17025 "from %s to" 17026 " %s failed : ENOMEM \n", 17027 inet_ntop(AF_INET6, 17028 &ilm->ilm_v6addr, buf, 17029 sizeof (buf)), 17030 from_ill->ill_name, 17031 to_ill->ill_name)); 17032 17033 ilmp = &ilm->ilm_next; 17034 continue; 17035 } 17036 *new_ilm = *ilm; 17037 new_ilm->ilm_filter = NULL; 17038 } else { 17039 *ilmp = ilm->ilm_next; 17040 new_ilm = ilm; 17041 } 17042 /* 17043 * If the to_ill has not joined this 17044 * group we need to tell the driver in 17045 * ill_send_multicast_reqs. 17046 */ 17047 if (ilm_lookup_ill_v6(to_ill, 17048 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17049 new_ilm->ilm_notify_driver = B_TRUE; 17050 17051 /* Add to the to_ill's list */ 17052 new_ilm->ilm_next = to_ill->ill_ilm; 17053 to_ill->ill_ilm = new_ilm; 17054 ASSERT(ilm->ilm_ipif == NULL); 17055 new_ilm->ilm_ill = to_ill; 17056 new_ilm->ilm_is_new = B_TRUE; 17057 } 17058 17059 } 17060 17061 bottom: 17062 /* 17063 * Revert multicast filter state to (EXCLUDE, NULL). 17064 * new_ilm->ilm_is_new should already be set if needed. 17065 */ 17066 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17067 CLEAR_SLIST(new_ilm->ilm_filter); 17068 /* 17069 * We allocated/got a new ilm, free the old one. 17070 */ 17071 if (new_ilm != ilm) { 17072 if (from_ill->ill_ilm_walker_cnt == 0) { 17073 *ilmp = ilm->ilm_next; 17074 ilm->ilm_next = NULL; 17075 FREE_SLIST(ilm->ilm_filter); 17076 FREE_SLIST(ilm->ilm_pendsrcs); 17077 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17078 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17079 mi_free((char *)ilm); 17080 } else { 17081 ilm->ilm_flags |= ILM_DELETED; 17082 from_ill->ill_ilm_cleanup_reqd = 1; 17083 ilmp = &ilm->ilm_next; 17084 } 17085 } 17086 } 17087 } 17088 17089 /* 17090 * Move all the multicast memberships to to_ill. Called when 17091 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17092 * different from IPv6 counterpart as multicast memberships are associated 17093 * with ills in IPv6. This function is called after every ipif is moved 17094 * unlike IPv6, where it is moved only once. 17095 */ 17096 static void 17097 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17098 { 17099 ilm_t *ilm; 17100 ilm_t *ilm_next; 17101 ilm_t *new_ilm; 17102 ilm_t **ilmp; 17103 17104 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17105 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17106 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17107 17108 ilmp = &from_ill->ill_ilm; 17109 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17110 ilm_next = ilm->ilm_next; 17111 17112 if (ilm->ilm_flags & ILM_DELETED) { 17113 ilmp = &ilm->ilm_next; 17114 continue; 17115 } 17116 17117 ASSERT(ilm->ilm_ipif != NULL); 17118 17119 if (ilm->ilm_ipif != ipif) { 17120 ilmp = &ilm->ilm_next; 17121 continue; 17122 } 17123 17124 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17125 htonl(INADDR_ALLHOSTS_GROUP)) { 17126 /* 17127 * We joined this in ipif_multicast_up 17128 * and we never did an ipif_multicast_down 17129 * for IPv4. If nobody else from the userland 17130 * has reference, we free the ilm, and later 17131 * when this ipif comes up on the new ill, 17132 * we will join this again. 17133 */ 17134 if (--ilm->ilm_refcnt == 0) 17135 goto delete_ilm; 17136 17137 new_ilm = ilm_lookup_ipif(ipif, 17138 V4_PART_OF_V6(ilm->ilm_v6addr)); 17139 if (new_ilm != NULL) { 17140 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17141 /* 17142 * We still need to deal with the from_ill. 17143 */ 17144 new_ilm->ilm_is_new = B_TRUE; 17145 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17146 CLEAR_SLIST(new_ilm->ilm_filter); 17147 goto delete_ilm; 17148 } 17149 /* 17150 * If we could not find one e.g. ipif is 17151 * still down on to_ill, we add this ilm 17152 * on ill_new to preserve the reference 17153 * count. 17154 */ 17155 } 17156 /* 17157 * When ipifs move, ilms always move with it 17158 * to the NEW ill. Thus we should never be 17159 * able to find ilm till we really move it here. 17160 */ 17161 ASSERT(ilm_lookup_ipif(ipif, 17162 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17163 17164 if (from_ill->ill_ilm_walker_cnt != 0) { 17165 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17166 if (new_ilm == NULL) { 17167 char buf[INET6_ADDRSTRLEN]; 17168 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17169 " multicast address %s : " 17170 "from %s to" 17171 " %s failed : ENOMEM \n", 17172 inet_ntop(AF_INET, 17173 &ilm->ilm_v6addr, buf, 17174 sizeof (buf)), 17175 from_ill->ill_name, 17176 to_ill->ill_name)); 17177 17178 ilmp = &ilm->ilm_next; 17179 continue; 17180 } 17181 *new_ilm = *ilm; 17182 /* We don't want new_ilm linked to ilm's filter list */ 17183 new_ilm->ilm_filter = NULL; 17184 } else { 17185 /* Remove from the list */ 17186 *ilmp = ilm->ilm_next; 17187 new_ilm = ilm; 17188 } 17189 17190 /* 17191 * If we have never joined this group on the to_ill 17192 * make sure we tell the driver. 17193 */ 17194 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17195 ALL_ZONES) == NULL) 17196 new_ilm->ilm_notify_driver = B_TRUE; 17197 17198 /* Add to the to_ill's list */ 17199 new_ilm->ilm_next = to_ill->ill_ilm; 17200 to_ill->ill_ilm = new_ilm; 17201 new_ilm->ilm_is_new = B_TRUE; 17202 17203 /* 17204 * Revert multicast filter state to (EXCLUDE, NULL) 17205 */ 17206 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17207 CLEAR_SLIST(new_ilm->ilm_filter); 17208 17209 /* 17210 * Delete only if we have allocated a new ilm. 17211 */ 17212 if (new_ilm != ilm) { 17213 delete_ilm: 17214 if (from_ill->ill_ilm_walker_cnt == 0) { 17215 /* Remove from the list */ 17216 *ilmp = ilm->ilm_next; 17217 ilm->ilm_next = NULL; 17218 FREE_SLIST(ilm->ilm_filter); 17219 FREE_SLIST(ilm->ilm_pendsrcs); 17220 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17221 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17222 mi_free((char *)ilm); 17223 } else { 17224 ilm->ilm_flags |= ILM_DELETED; 17225 from_ill->ill_ilm_cleanup_reqd = 1; 17226 ilmp = &ilm->ilm_next; 17227 } 17228 } 17229 } 17230 } 17231 17232 static uint_t 17233 ipif_get_id(ill_t *ill, uint_t id) 17234 { 17235 uint_t unit; 17236 ipif_t *tipif; 17237 boolean_t found = B_FALSE; 17238 17239 /* 17240 * During failback, we want to go back to the same id 17241 * instead of the smallest id so that the original 17242 * configuration is maintained. id is non-zero in that 17243 * case. 17244 */ 17245 if (id != 0) { 17246 /* 17247 * While failing back, if we still have an ipif with 17248 * MAX_ADDRS_PER_IF, it means this will be replaced 17249 * as soon as we return from this function. It was 17250 * to set to MAX_ADDRS_PER_IF by the caller so that 17251 * we can choose the smallest id. Thus we return zero 17252 * in that case ignoring the hint. 17253 */ 17254 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17255 return (0); 17256 for (tipif = ill->ill_ipif; tipif != NULL; 17257 tipif = tipif->ipif_next) { 17258 if (tipif->ipif_id == id) { 17259 found = B_TRUE; 17260 break; 17261 } 17262 } 17263 /* 17264 * If somebody already plumbed another logical 17265 * with the same id, we won't be able to find it. 17266 */ 17267 if (!found) 17268 return (id); 17269 } 17270 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 17271 found = B_FALSE; 17272 for (tipif = ill->ill_ipif; tipif != NULL; 17273 tipif = tipif->ipif_next) { 17274 if (tipif->ipif_id == unit) { 17275 found = B_TRUE; 17276 break; 17277 } 17278 } 17279 if (!found) 17280 break; 17281 } 17282 return (unit); 17283 } 17284 17285 /* ARGSUSED */ 17286 static int 17287 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17288 ipif_t **rep_ipif_ptr) 17289 { 17290 ill_t *from_ill; 17291 ipif_t *rep_ipif; 17292 ipif_t **ipifp; 17293 uint_t unit; 17294 int err = 0; 17295 ipif_t *to_ipif; 17296 struct iocblk *iocp; 17297 boolean_t failback_cmd; 17298 boolean_t remove_ipif; 17299 int rc; 17300 17301 ASSERT(IAM_WRITER_ILL(to_ill)); 17302 ASSERT(IAM_WRITER_IPIF(ipif)); 17303 17304 iocp = (struct iocblk *)mp->b_rptr; 17305 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17306 remove_ipif = B_FALSE; 17307 17308 from_ill = ipif->ipif_ill; 17309 17310 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17311 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17312 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17313 17314 /* 17315 * Don't move LINK LOCAL addresses as they are tied to 17316 * physical interface. 17317 */ 17318 if (from_ill->ill_isv6 && 17319 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17320 ipif->ipif_was_up = B_FALSE; 17321 IPIF_UNMARK_MOVING(ipif); 17322 return (0); 17323 } 17324 17325 /* 17326 * We set the ipif_id to maximum so that the search for 17327 * ipif_id will pick the lowest number i.e 0 in the 17328 * following 2 cases : 17329 * 17330 * 1) We have a replacement ipif at the head of to_ill. 17331 * We can't remove it yet as we can exceed ip_addrs_per_if 17332 * on to_ill and hence the MOVE might fail. We want to 17333 * remove it only if we could move the ipif. Thus, by 17334 * setting it to the MAX value, we make the search in 17335 * ipif_get_id return the zeroth id. 17336 * 17337 * 2) When DR pulls out the NIC and re-plumbs the interface, 17338 * we might just have a zero address plumbed on the ipif 17339 * with zero id in the case of IPv4. We remove that while 17340 * doing the failback. We want to remove it only if we 17341 * could move the ipif. Thus, by setting it to the MAX 17342 * value, we make the search in ipif_get_id return the 17343 * zeroth id. 17344 * 17345 * Both (1) and (2) are done only when when we are moving 17346 * an ipif (either due to failover/failback) which originally 17347 * belonged to this interface i.e the ipif_orig_ifindex is 17348 * the same as to_ill's ifindex. This is needed so that 17349 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17350 * from B -> A (B is being removed from the group) and 17351 * FAILBACK from A -> B restores the original configuration. 17352 * Without the check for orig_ifindex, the second FAILOVER 17353 * could make the ipif belonging to B replace the A's zeroth 17354 * ipif and the subsequent failback re-creating the replacement 17355 * ipif again. 17356 * 17357 * NOTE : We created the replacement ipif when we did a 17358 * FAILOVER (See below). We could check for FAILBACK and 17359 * then look for replacement ipif to be removed. But we don't 17360 * want to do that because we wan't to allow the possibility 17361 * of a FAILOVER from A -> B (which creates the replacement ipif), 17362 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17363 * from B -> A. 17364 */ 17365 to_ipif = to_ill->ill_ipif; 17366 if ((to_ill->ill_phyint->phyint_ifindex == 17367 ipif->ipif_orig_ifindex) && 17368 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17369 ASSERT(to_ipif->ipif_id == 0); 17370 remove_ipif = B_TRUE; 17371 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17372 } 17373 /* 17374 * Find the lowest logical unit number on the to_ill. 17375 * If we are failing back, try to get the original id 17376 * rather than the lowest one so that the original 17377 * configuration is maintained. 17378 * 17379 * XXX need a better scheme for this. 17380 */ 17381 if (failback_cmd) { 17382 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17383 } else { 17384 unit = ipif_get_id(to_ill, 0); 17385 } 17386 17387 /* Reset back to zero in case we fail below */ 17388 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17389 to_ipif->ipif_id = 0; 17390 17391 if (unit == ip_addrs_per_if) { 17392 ipif->ipif_was_up = B_FALSE; 17393 IPIF_UNMARK_MOVING(ipif); 17394 return (EINVAL); 17395 } 17396 17397 /* 17398 * ipif is ready to move from "from_ill" to "to_ill". 17399 * 17400 * 1) If we are moving ipif with id zero, create a 17401 * replacement ipif for this ipif on from_ill. If this fails 17402 * fail the MOVE operation. 17403 * 17404 * 2) Remove the replacement ipif on to_ill if any. 17405 * We could remove the replacement ipif when we are moving 17406 * the ipif with id zero. But what if somebody already 17407 * unplumbed it ? Thus we always remove it if it is present. 17408 * We want to do it only if we are sure we are going to 17409 * move the ipif to to_ill which is why there are no 17410 * returns due to error till ipif is linked to to_ill. 17411 * Note that the first ipif that we failback will always 17412 * be zero if it is present. 17413 */ 17414 if (ipif->ipif_id == 0) { 17415 ipaddr_t inaddr_any = INADDR_ANY; 17416 17417 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17418 if (rep_ipif == NULL) { 17419 ipif->ipif_was_up = B_FALSE; 17420 IPIF_UNMARK_MOVING(ipif); 17421 return (ENOMEM); 17422 } 17423 *rep_ipif = ipif_zero; 17424 /* 17425 * Before we put the ipif on the list, store the addresses 17426 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17427 * assumes so. This logic is not any different from what 17428 * ipif_allocate does. 17429 */ 17430 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17431 &rep_ipif->ipif_v6lcl_addr); 17432 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17433 &rep_ipif->ipif_v6src_addr); 17434 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17435 &rep_ipif->ipif_v6subnet); 17436 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17437 &rep_ipif->ipif_v6net_mask); 17438 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17439 &rep_ipif->ipif_v6brd_addr); 17440 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17441 &rep_ipif->ipif_v6pp_dst_addr); 17442 /* 17443 * We mark IPIF_NOFAILOVER so that this can never 17444 * move. 17445 */ 17446 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17447 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17448 rep_ipif->ipif_replace_zero = B_TRUE; 17449 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17450 MUTEX_DEFAULT, NULL); 17451 rep_ipif->ipif_id = 0; 17452 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17453 rep_ipif->ipif_ill = from_ill; 17454 rep_ipif->ipif_orig_ifindex = 17455 from_ill->ill_phyint->phyint_ifindex; 17456 /* Insert at head */ 17457 rep_ipif->ipif_next = from_ill->ill_ipif; 17458 from_ill->ill_ipif = rep_ipif; 17459 /* 17460 * We don't really care to let apps know about 17461 * this interface. 17462 */ 17463 } 17464 17465 if (remove_ipif) { 17466 /* 17467 * We set to a max value above for this case to get 17468 * id zero. ASSERT that we did get one. 17469 */ 17470 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17471 rep_ipif = to_ipif; 17472 to_ill->ill_ipif = rep_ipif->ipif_next; 17473 rep_ipif->ipif_next = NULL; 17474 /* 17475 * If some apps scanned and find this interface, 17476 * it is time to let them know, so that they can 17477 * delete it. 17478 */ 17479 17480 *rep_ipif_ptr = rep_ipif; 17481 } 17482 17483 /* Get it out of the ILL interface list. */ 17484 ipifp = &ipif->ipif_ill->ill_ipif; 17485 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17486 if (*ipifp == ipif) { 17487 *ipifp = ipif->ipif_next; 17488 break; 17489 } 17490 } 17491 17492 /* Assign the new ill */ 17493 ipif->ipif_ill = to_ill; 17494 ipif->ipif_id = unit; 17495 /* id has already been checked */ 17496 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17497 ASSERT(rc == 0); 17498 /* Let SCTP update its list */ 17499 sctp_move_ipif(ipif, from_ill, to_ill); 17500 /* 17501 * Handle the failover and failback of ipif_t between 17502 * ill_t that have differing maximum mtu values. 17503 */ 17504 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17505 if (ipif->ipif_saved_mtu == 0) { 17506 /* 17507 * As this ipif_t is moving to an ill_t 17508 * that has a lower ill_max_mtu, its 17509 * ipif_mtu needs to be saved so it can 17510 * be restored during failback or during 17511 * failover to an ill_t which has a 17512 * higher ill_max_mtu. 17513 */ 17514 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17515 ipif->ipif_mtu = to_ill->ill_max_mtu; 17516 } else { 17517 /* 17518 * The ipif_t is, once again, moving to 17519 * an ill_t that has a lower maximum mtu 17520 * value. 17521 */ 17522 ipif->ipif_mtu = to_ill->ill_max_mtu; 17523 } 17524 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17525 ipif->ipif_saved_mtu != 0) { 17526 /* 17527 * The mtu of this ipif_t had to be reduced 17528 * during an earlier failover; this is an 17529 * opportunity for it to be increased (either as 17530 * part of another failover or a failback). 17531 */ 17532 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17533 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17534 ipif->ipif_saved_mtu = 0; 17535 } else { 17536 ipif->ipif_mtu = to_ill->ill_max_mtu; 17537 } 17538 } 17539 17540 /* 17541 * We preserve all the other fields of the ipif including 17542 * ipif_saved_ire_mp. The routes that are saved here will 17543 * be recreated on the new interface and back on the old 17544 * interface when we move back. 17545 */ 17546 ASSERT(ipif->ipif_arp_del_mp == NULL); 17547 17548 return (err); 17549 } 17550 17551 static int 17552 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17553 int ifindex, ipif_t **rep_ipif_ptr) 17554 { 17555 ipif_t *mipif; 17556 ipif_t *ipif_next; 17557 int err; 17558 17559 /* 17560 * We don't really try to MOVE back things if some of the 17561 * operations fail. The daemon will take care of moving again 17562 * later on. 17563 */ 17564 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17565 ipif_next = mipif->ipif_next; 17566 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17567 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17568 17569 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17570 17571 /* 17572 * When the MOVE fails, it is the job of the 17573 * application to take care of this properly 17574 * i.e try again if it is ENOMEM. 17575 */ 17576 if (mipif->ipif_ill != from_ill) { 17577 /* 17578 * ipif has moved. 17579 * 17580 * Move the multicast memberships associated 17581 * with this ipif to the new ill. For IPv6, we 17582 * do it once after all the ipifs are moved 17583 * (in ill_move) as they are not associated 17584 * with ipifs. 17585 * 17586 * We need to move the ilms as the ipif has 17587 * already been moved to a new ill even 17588 * in the case of errors. Neither 17589 * ilm_free(ipif) will find the ilm 17590 * when somebody unplumbs this ipif nor 17591 * ilm_delete(ilm) will be able to find the 17592 * ilm, if we don't move now. 17593 */ 17594 if (!from_ill->ill_isv6) 17595 ilm_move_v4(from_ill, to_ill, mipif); 17596 } 17597 17598 if (err != 0) 17599 return (err); 17600 } 17601 } 17602 return (0); 17603 } 17604 17605 static int 17606 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17607 { 17608 int ifindex; 17609 int err; 17610 struct iocblk *iocp; 17611 ipif_t *ipif; 17612 ipif_t *rep_ipif_ptr = NULL; 17613 ipif_t *from_ipif = NULL; 17614 boolean_t check_rep_if = B_FALSE; 17615 17616 iocp = (struct iocblk *)mp->b_rptr; 17617 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17618 /* 17619 * Move everything pointing at from_ill to to_ill. 17620 * We acheive this by passing in 0 as ifindex. 17621 */ 17622 ifindex = 0; 17623 } else { 17624 /* 17625 * Move everything pointing at from_ill whose original 17626 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17627 * We acheive this by passing in ifindex rather than 0. 17628 * Multicast vifs, ilgs move implicitly because ipifs move. 17629 */ 17630 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17631 ifindex = to_ill->ill_phyint->phyint_ifindex; 17632 } 17633 17634 /* 17635 * Determine if there is at least one ipif that would move from 17636 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17637 * ipif (if it exists) on the to_ill would be consumed as a result of 17638 * the move, in which case we need to quiesce the replacement ipif also. 17639 */ 17640 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17641 from_ipif = from_ipif->ipif_next) { 17642 if (((ifindex == 0) || 17643 (ifindex == from_ipif->ipif_orig_ifindex)) && 17644 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17645 check_rep_if = B_TRUE; 17646 break; 17647 } 17648 } 17649 17650 17651 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17652 17653 GRAB_ILL_LOCKS(from_ill, to_ill); 17654 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17655 (void) ipsq_pending_mp_add(NULL, ipif, q, 17656 mp, ILL_MOVE_OK); 17657 RELEASE_ILL_LOCKS(from_ill, to_ill); 17658 return (EINPROGRESS); 17659 } 17660 17661 /* Check if the replacement ipif is quiescent to delete */ 17662 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17663 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17664 to_ill->ill_ipif->ipif_state_flags |= 17665 IPIF_MOVING | IPIF_CHANGING; 17666 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17667 (void) ipsq_pending_mp_add(NULL, ipif, q, 17668 mp, ILL_MOVE_OK); 17669 RELEASE_ILL_LOCKS(from_ill, to_ill); 17670 return (EINPROGRESS); 17671 } 17672 } 17673 RELEASE_ILL_LOCKS(from_ill, to_ill); 17674 17675 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17676 rw_enter(&ill_g_lock, RW_WRITER); 17677 GRAB_ILL_LOCKS(from_ill, to_ill); 17678 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17679 17680 /* ilm_move is done inside ipif_move for IPv4 */ 17681 if (err == 0 && from_ill->ill_isv6) 17682 ilm_move_v6(from_ill, to_ill, ifindex); 17683 17684 RELEASE_ILL_LOCKS(from_ill, to_ill); 17685 rw_exit(&ill_g_lock); 17686 17687 /* 17688 * send rts messages and multicast messages. 17689 */ 17690 if (rep_ipif_ptr != NULL) { 17691 ip_rts_ifmsg(rep_ipif_ptr); 17692 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17693 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17694 mi_free(rep_ipif_ptr); 17695 } 17696 17697 conn_move_ill(from_ill, to_ill, ifindex); 17698 17699 return (err); 17700 } 17701 17702 /* 17703 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17704 * Also checks for the validity of the arguments. 17705 * Note: We are already exclusive inside the from group. 17706 * It is upto the caller to release refcnt on the to_ill's. 17707 */ 17708 static int 17709 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17710 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17711 { 17712 int dst_index; 17713 ipif_t *ipif_v4, *ipif_v6; 17714 struct lifreq *lifr; 17715 mblk_t *mp1; 17716 boolean_t exists; 17717 sin_t *sin; 17718 int err = 0; 17719 17720 if ((mp1 = mp->b_cont) == NULL) 17721 return (EPROTO); 17722 17723 if ((mp1 = mp1->b_cont) == NULL) 17724 return (EPROTO); 17725 17726 lifr = (struct lifreq *)mp1->b_rptr; 17727 sin = (sin_t *)&lifr->lifr_addr; 17728 17729 /* 17730 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17731 * specific operations. 17732 */ 17733 if (sin->sin_family != AF_UNSPEC) 17734 return (EINVAL); 17735 17736 /* 17737 * Get ipif with id 0. We are writer on the from ill. So we can pass 17738 * NULLs for the last 4 args and we know the lookup won't fail 17739 * with EINPROGRESS. 17740 */ 17741 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17742 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17743 ALL_ZONES, NULL, NULL, NULL, NULL); 17744 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17745 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17746 ALL_ZONES, NULL, NULL, NULL, NULL); 17747 17748 if (ipif_v4 == NULL && ipif_v6 == NULL) 17749 return (ENXIO); 17750 17751 if (ipif_v4 != NULL) { 17752 ASSERT(ipif_v4->ipif_refcnt != 0); 17753 if (ipif_v4->ipif_id != 0) { 17754 err = EINVAL; 17755 goto done; 17756 } 17757 17758 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17759 *ill_from_v4 = ipif_v4->ipif_ill; 17760 } 17761 17762 if (ipif_v6 != NULL) { 17763 ASSERT(ipif_v6->ipif_refcnt != 0); 17764 if (ipif_v6->ipif_id != 0) { 17765 err = EINVAL; 17766 goto done; 17767 } 17768 17769 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17770 *ill_from_v6 = ipif_v6->ipif_ill; 17771 } 17772 17773 err = 0; 17774 dst_index = lifr->lifr_movetoindex; 17775 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17776 q, mp, ip_process_ioctl, &err); 17777 if (err != 0) { 17778 /* 17779 * There could be only v6. 17780 */ 17781 if (err != ENXIO) 17782 goto done; 17783 err = 0; 17784 } 17785 17786 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17787 q, mp, ip_process_ioctl, &err); 17788 if (err != 0) { 17789 if (err != ENXIO) 17790 goto done; 17791 if (*ill_to_v4 == NULL) { 17792 err = ENXIO; 17793 goto done; 17794 } 17795 err = 0; 17796 } 17797 17798 /* 17799 * If we have something to MOVE i.e "from" not NULL, 17800 * "to" should be non-NULL. 17801 */ 17802 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17803 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17804 err = EINVAL; 17805 } 17806 17807 done: 17808 if (ipif_v4 != NULL) 17809 ipif_refrele(ipif_v4); 17810 if (ipif_v6 != NULL) 17811 ipif_refrele(ipif_v6); 17812 return (err); 17813 } 17814 17815 /* 17816 * FAILOVER and FAILBACK are modelled as MOVE operations. 17817 * 17818 * We don't check whether the MOVE is within the same group or 17819 * not, because this ioctl can be used as a generic mechanism 17820 * to failover from interface A to B, though things will function 17821 * only if they are really part of the same group. Moreover, 17822 * all ipifs may be down and hence temporarily out of the group. 17823 * 17824 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17825 * down first and then V6. For each we wait for the ipif's to become quiescent. 17826 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17827 * have been deleted and there are no active references. Once quiescent the 17828 * ipif's are moved and brought up on the new ill. 17829 * 17830 * Normally the source ill and destination ill belong to the same IPMP group 17831 * and hence the same ipsq_t. In the event they don't belong to the same 17832 * same group the two ipsq's are first merged into one ipsq - that of the 17833 * to_ill. The multicast memberships on the source and destination ill cannot 17834 * change during the move operation since multicast joins/leaves also have to 17835 * execute on the same ipsq and are hence serialized. 17836 */ 17837 /* ARGSUSED */ 17838 int 17839 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17840 ip_ioctl_cmd_t *ipip, void *ifreq) 17841 { 17842 ill_t *ill_to_v4 = NULL; 17843 ill_t *ill_to_v6 = NULL; 17844 ill_t *ill_from_v4 = NULL; 17845 ill_t *ill_from_v6 = NULL; 17846 int err = 0; 17847 17848 /* 17849 * setup from and to ill's, we can get EINPROGRESS only for 17850 * to_ill's. 17851 */ 17852 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17853 &ill_to_v4, &ill_to_v6); 17854 17855 if (err != 0) { 17856 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17857 goto done; 17858 } 17859 17860 /* 17861 * nothing to do. 17862 */ 17863 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17864 goto done; 17865 } 17866 17867 /* 17868 * nothing to do. 17869 */ 17870 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17871 goto done; 17872 } 17873 17874 /* 17875 * Mark the ill as changing. 17876 * ILL_CHANGING flag is cleared when the ipif's are brought up 17877 * in ill_up_ipifs in case of error they are cleared below. 17878 */ 17879 17880 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17881 if (ill_from_v4 != NULL) 17882 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17883 if (ill_from_v6 != NULL) 17884 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17885 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17886 17887 /* 17888 * Make sure that both src and dst are 17889 * in the same syncq group. If not make it happen. 17890 * We are not holding any locks because we are the writer 17891 * on the from_ipsq and we will hold locks in ill_merge_groups 17892 * to protect to_ipsq against changing. 17893 */ 17894 if (ill_from_v4 != NULL) { 17895 if (ill_from_v4->ill_phyint->phyint_ipsq != 17896 ill_to_v4->ill_phyint->phyint_ipsq) { 17897 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17898 NULL, mp, q); 17899 goto err_ret; 17900 17901 } 17902 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17903 } else { 17904 17905 if (ill_from_v6->ill_phyint->phyint_ipsq != 17906 ill_to_v6->ill_phyint->phyint_ipsq) { 17907 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17908 NULL, mp, q); 17909 goto err_ret; 17910 17911 } 17912 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17913 } 17914 17915 /* 17916 * Now that the ipsq's have been merged and we are the writer 17917 * lets mark to_ill as changing as well. 17918 */ 17919 17920 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17921 if (ill_to_v4 != NULL) 17922 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17923 if (ill_to_v6 != NULL) 17924 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17925 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17926 17927 /* 17928 * Its ok for us to proceed with the move even if 17929 * ill_pending_mp is non null on one of the from ill's as the reply 17930 * should not be looking at the ipif, it should only care about the 17931 * ill itself. 17932 */ 17933 17934 /* 17935 * lets move ipv4 first. 17936 */ 17937 if (ill_from_v4 != NULL) { 17938 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17939 ill_from_v4->ill_move_in_progress = B_TRUE; 17940 ill_to_v4->ill_move_in_progress = B_TRUE; 17941 ill_to_v4->ill_move_peer = ill_from_v4; 17942 ill_from_v4->ill_move_peer = ill_to_v4; 17943 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17944 } 17945 17946 /* 17947 * Now lets move ipv6. 17948 */ 17949 if (err == 0 && ill_from_v6 != NULL) { 17950 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17951 ill_from_v6->ill_move_in_progress = B_TRUE; 17952 ill_to_v6->ill_move_in_progress = B_TRUE; 17953 ill_to_v6->ill_move_peer = ill_from_v6; 17954 ill_from_v6->ill_move_peer = ill_to_v6; 17955 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17956 } 17957 17958 err_ret: 17959 /* 17960 * EINPROGRESS means we are waiting for the ipif's that need to be 17961 * moved to become quiescent. 17962 */ 17963 if (err == EINPROGRESS) { 17964 goto done; 17965 } 17966 17967 /* 17968 * if err is set ill_up_ipifs will not be called 17969 * lets clear the flags. 17970 */ 17971 17972 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17973 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17974 /* 17975 * Some of the clearing may be redundant. But it is simple 17976 * not making any extra checks. 17977 */ 17978 if (ill_from_v6 != NULL) { 17979 ill_from_v6->ill_move_in_progress = B_FALSE; 17980 ill_from_v6->ill_move_peer = NULL; 17981 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17982 } 17983 if (ill_from_v4 != NULL) { 17984 ill_from_v4->ill_move_in_progress = B_FALSE; 17985 ill_from_v4->ill_move_peer = NULL; 17986 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17987 } 17988 if (ill_to_v6 != NULL) { 17989 ill_to_v6->ill_move_in_progress = B_FALSE; 17990 ill_to_v6->ill_move_peer = NULL; 17991 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17992 } 17993 if (ill_to_v4 != NULL) { 17994 ill_to_v4->ill_move_in_progress = B_FALSE; 17995 ill_to_v4->ill_move_peer = NULL; 17996 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17997 } 17998 17999 /* 18000 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18001 * Do this always to maintain proper state i.e even in case of errors. 18002 * As phyint_inactive looks at both v4 and v6 interfaces, 18003 * we need not call on both v4 and v6 interfaces. 18004 */ 18005 if (ill_from_v4 != NULL) { 18006 if ((ill_from_v4->ill_phyint->phyint_flags & 18007 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18008 phyint_inactive(ill_from_v4->ill_phyint); 18009 } 18010 } else if (ill_from_v6 != NULL) { 18011 if ((ill_from_v6->ill_phyint->phyint_flags & 18012 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18013 phyint_inactive(ill_from_v6->ill_phyint); 18014 } 18015 } 18016 18017 if (ill_to_v4 != NULL) { 18018 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18019 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18020 } 18021 } else if (ill_to_v6 != NULL) { 18022 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18023 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18024 } 18025 } 18026 18027 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18028 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18029 18030 no_err: 18031 /* 18032 * lets bring the interfaces up on the to_ill. 18033 */ 18034 if (err == 0) { 18035 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18036 q, mp); 18037 } 18038 18039 if (err == 0) { 18040 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18041 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18042 18043 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18044 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18045 } 18046 done: 18047 18048 if (ill_to_v4 != NULL) { 18049 ill_refrele(ill_to_v4); 18050 } 18051 if (ill_to_v6 != NULL) { 18052 ill_refrele(ill_to_v6); 18053 } 18054 18055 return (err); 18056 } 18057 18058 static void 18059 ill_dl_down(ill_t *ill) 18060 { 18061 /* 18062 * The ill is down; unbind but stay attached since we're still 18063 * associated with a PPA. If we have negotiated DLPI capabilites 18064 * with the data link service provider (IDS_OK) then reset them. 18065 * The interval between unbinding and rebinding is potentially 18066 * unbounded hence we cannot assume things will be the same. 18067 * The DLPI capabilities will be probed again when the data link 18068 * is brought up. 18069 */ 18070 mblk_t *mp = ill->ill_unbind_mp; 18071 hook_nic_event_t *info; 18072 18073 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18074 18075 ill->ill_unbind_mp = NULL; 18076 if (mp != NULL) { 18077 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18078 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18079 ill->ill_name)); 18080 mutex_enter(&ill->ill_lock); 18081 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18082 mutex_exit(&ill->ill_lock); 18083 if (ill->ill_dlpi_capab_state == IDS_OK) 18084 ill_capability_reset(ill); 18085 ill_dlpi_send(ill, mp); 18086 } 18087 18088 /* 18089 * Toss all of our multicast memberships. We could keep them, but 18090 * then we'd have to do bookkeeping of any joins and leaves performed 18091 * by the application while the the interface is down (we can't just 18092 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18093 * on a downed interface). 18094 */ 18095 ill_leave_multicast(ill); 18096 18097 mutex_enter(&ill->ill_lock); 18098 18099 ill->ill_dl_up = 0; 18100 18101 if ((info = ill->ill_nic_event_info) != NULL) { 18102 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18103 info->hne_event, ill->ill_name)); 18104 if (info->hne_data != NULL) 18105 kmem_free(info->hne_data, info->hne_datalen); 18106 kmem_free(info, sizeof (hook_nic_event_t)); 18107 } 18108 18109 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18110 if (info != NULL) { 18111 info->hne_nic = ill->ill_phyint->phyint_ifindex; 18112 info->hne_lif = 0; 18113 info->hne_event = NE_DOWN; 18114 info->hne_data = NULL; 18115 info->hne_datalen = 0; 18116 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 18117 } else 18118 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18119 "information for %s (ENOMEM)\n", ill->ill_name)); 18120 18121 ill->ill_nic_event_info = info; 18122 18123 mutex_exit(&ill->ill_lock); 18124 } 18125 18126 void 18127 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18128 { 18129 union DL_primitives *dlp; 18130 t_uscalar_t prim; 18131 18132 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18133 18134 dlp = (union DL_primitives *)mp->b_rptr; 18135 prim = dlp->dl_primitive; 18136 18137 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18138 dlpi_prim_str(prim), prim, ill->ill_name)); 18139 18140 switch (prim) { 18141 case DL_PHYS_ADDR_REQ: 18142 { 18143 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18144 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18145 break; 18146 } 18147 case DL_BIND_REQ: 18148 mutex_enter(&ill->ill_lock); 18149 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18150 mutex_exit(&ill->ill_lock); 18151 break; 18152 } 18153 18154 /* 18155 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18156 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18157 * we only wait for the ACK of the DL_UNBIND_REQ. 18158 */ 18159 mutex_enter(&ill->ill_lock); 18160 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18161 (prim == DL_UNBIND_REQ)) { 18162 ill->ill_dlpi_pending = prim; 18163 } 18164 mutex_exit(&ill->ill_lock); 18165 18166 /* 18167 * Some drivers send M_FLUSH up to IP as part of unbind 18168 * request. When this M_FLUSH is sent back to the driver, 18169 * this can go after we send the detach request if the 18170 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18171 * to the M_FLUSH in ip_rput and locally generate another 18172 * M_FLUSH for the correctness. This will get freed in 18173 * ip_wput_nondata. 18174 */ 18175 if (prim == DL_UNBIND_REQ) 18176 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18177 18178 putnext(ill->ill_wq, mp); 18179 } 18180 18181 /* 18182 * Send a DLPI control message to the driver but make sure there 18183 * is only one outstanding message. Uses ill_dlpi_pending to tell 18184 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18185 * when an ACK or a NAK is received to process the next queued message. 18186 * 18187 * We don't protect ill_dlpi_pending with any lock. This is okay as 18188 * every place where its accessed, ip is exclusive while accessing 18189 * ill_dlpi_pending except when this function is called from ill_init() 18190 */ 18191 void 18192 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18193 { 18194 mblk_t **mpp; 18195 18196 ASSERT(IAM_WRITER_ILL(ill)); 18197 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18198 18199 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18200 /* Must queue message. Tail insertion */ 18201 mpp = &ill->ill_dlpi_deferred; 18202 while (*mpp != NULL) 18203 mpp = &((*mpp)->b_next); 18204 18205 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18206 ill->ill_name)); 18207 18208 *mpp = mp; 18209 return; 18210 } 18211 18212 ill_dlpi_dispatch(ill, mp); 18213 } 18214 18215 /* 18216 * Called when an DLPI control message has been acked or nacked to 18217 * send down the next queued message (if any). 18218 */ 18219 void 18220 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18221 { 18222 mblk_t *mp; 18223 18224 ASSERT(IAM_WRITER_ILL(ill)); 18225 18226 ASSERT(prim != DL_PRIM_INVAL); 18227 if (ill->ill_dlpi_pending != prim) { 18228 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18229 (void) mi_strlog(ill->ill_rq, 1, 18230 SL_CONSOLE|SL_ERROR|SL_TRACE, 18231 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18232 dlpi_prim_str(prim), ill->ill_name); 18233 } else { 18234 (void) mi_strlog(ill->ill_rq, 1, 18235 SL_CONSOLE|SL_ERROR|SL_TRACE, 18236 "ill_dlpi_done: unexpected ack for %s from %s " 18237 "(expecting ack for %s)\n", 18238 dlpi_prim_str(prim), ill->ill_name, 18239 dlpi_prim_str(ill->ill_dlpi_pending)); 18240 } 18241 return; 18242 } 18243 18244 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18245 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18246 18247 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18248 mutex_enter(&ill->ill_lock); 18249 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18250 cv_signal(&ill->ill_cv); 18251 mutex_exit(&ill->ill_lock); 18252 return; 18253 } 18254 18255 ill->ill_dlpi_deferred = mp->b_next; 18256 mp->b_next = NULL; 18257 18258 ill_dlpi_dispatch(ill, mp); 18259 } 18260 18261 void 18262 conn_delete_ire(conn_t *connp, caddr_t arg) 18263 { 18264 ipif_t *ipif = (ipif_t *)arg; 18265 ire_t *ire; 18266 18267 /* 18268 * Look at the cached ires on conns which has pointers to ipifs. 18269 * We just call ire_refrele which clears up the reference 18270 * to ire. Called when a conn closes. Also called from ipif_free 18271 * to cleanup indirect references to the stale ipif via the cached ire. 18272 */ 18273 mutex_enter(&connp->conn_lock); 18274 ire = connp->conn_ire_cache; 18275 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18276 connp->conn_ire_cache = NULL; 18277 mutex_exit(&connp->conn_lock); 18278 IRE_REFRELE_NOTR(ire); 18279 return; 18280 } 18281 mutex_exit(&connp->conn_lock); 18282 18283 } 18284 18285 /* 18286 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18287 * of IREs. Those IREs may have been previously cached in the conn structure. 18288 * This ipcl_walk() walker function releases all references to such IREs based 18289 * on the condemned flag. 18290 */ 18291 /* ARGSUSED */ 18292 void 18293 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18294 { 18295 ire_t *ire; 18296 18297 mutex_enter(&connp->conn_lock); 18298 ire = connp->conn_ire_cache; 18299 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18300 connp->conn_ire_cache = NULL; 18301 mutex_exit(&connp->conn_lock); 18302 IRE_REFRELE_NOTR(ire); 18303 return; 18304 } 18305 mutex_exit(&connp->conn_lock); 18306 } 18307 18308 /* 18309 * Take down a specific interface, but don't lose any information about it. 18310 * Also delete interface from its interface group (ifgrp). 18311 * (Always called as writer.) 18312 * This function goes through the down sequence even if the interface is 18313 * already down. There are 2 reasons. 18314 * a. Currently we permit interface routes that depend on down interfaces 18315 * to be added. This behaviour itself is questionable. However it appears 18316 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18317 * time. We go thru the cleanup in order to remove these routes. 18318 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18319 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18320 * down, but we need to cleanup i.e. do ill_dl_down and 18321 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18322 * 18323 * IP-MT notes: 18324 * 18325 * Model of reference to interfaces. 18326 * 18327 * The following members in ipif_t track references to the ipif. 18328 * int ipif_refcnt; Active reference count 18329 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18330 * The following members in ill_t track references to the ill. 18331 * int ill_refcnt; active refcnt 18332 * uint_t ill_ire_cnt; Number of ires referencing ill 18333 * uint_t ill_nce_cnt; Number of nces referencing ill 18334 * 18335 * Reference to an ipif or ill can be obtained in any of the following ways. 18336 * 18337 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18338 * Pointers to ipif / ill from other data structures viz ire and conn. 18339 * Implicit reference to the ipif / ill by holding a reference to the ire. 18340 * 18341 * The ipif/ill lookup functions return a reference held ipif / ill. 18342 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18343 * This is a purely dynamic reference count associated with threads holding 18344 * references to the ipif / ill. Pointers from other structures do not 18345 * count towards this reference count. 18346 * 18347 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18348 * ipif/ill. This is incremented whenever a new ire is created referencing the 18349 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18350 * actually added to the ire hash table. The count is decremented in 18351 * ire_inactive where the ire is destroyed. 18352 * 18353 * nce's reference ill's thru nce_ill and the count of nce's associated with 18354 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18355 * ndp_add() where the nce is actually added to the table. Similarly it is 18356 * decremented in ndp_inactive where the nce is destroyed. 18357 * 18358 * Flow of ioctls involving interface down/up 18359 * 18360 * The following is the sequence of an attempt to set some critical flags on an 18361 * up interface. 18362 * ip_sioctl_flags 18363 * ipif_down 18364 * wait for ipif to be quiescent 18365 * ipif_down_tail 18366 * ip_sioctl_flags_tail 18367 * 18368 * All set ioctls that involve down/up sequence would have a skeleton similar 18369 * to the above. All the *tail functions are called after the refcounts have 18370 * dropped to the appropriate values. 18371 * 18372 * The mechanism to quiesce an ipif is as follows. 18373 * 18374 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18375 * on the ipif. Callers either pass a flag requesting wait or the lookup 18376 * functions will return NULL. 18377 * 18378 * Delete all ires referencing this ipif 18379 * 18380 * Any thread attempting to do an ipif_refhold on an ipif that has been 18381 * obtained thru a cached pointer will first make sure that 18382 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18383 * increment the refcount. 18384 * 18385 * The above guarantees that the ipif refcount will eventually come down to 18386 * zero and the ipif will quiesce, once all threads that currently hold a 18387 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18388 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18389 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18390 * drop to zero. 18391 * 18392 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18393 * 18394 * Threads trying to lookup an ipif or ill can pass a flag requesting 18395 * wait and restart if the ipif / ill cannot be looked up currently. 18396 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18397 * failure if the ipif is currently undergoing an exclusive operation, and 18398 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18399 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18400 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18401 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18402 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18403 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18404 * until we release the ipsq_lock, even though the the ill/ipif state flags 18405 * can change after we drop the ill_lock. 18406 * 18407 * An attempt to send out a packet using an ipif that is currently 18408 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18409 * operation and restart it later when the exclusive condition on the ipif ends. 18410 * This is an example of not passing the wait flag to the lookup functions. For 18411 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18412 * out a multicast packet on that ipif will fail while the ipif is 18413 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18414 * currently IPIF_CHANGING will also fail. 18415 */ 18416 int 18417 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18418 { 18419 ill_t *ill = ipif->ipif_ill; 18420 phyint_t *phyi; 18421 conn_t *connp; 18422 boolean_t success; 18423 boolean_t ipif_was_up = B_FALSE; 18424 18425 ASSERT(IAM_WRITER_IPIF(ipif)); 18426 18427 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18428 18429 if (ipif->ipif_flags & IPIF_UP) { 18430 mutex_enter(&ill->ill_lock); 18431 ipif->ipif_flags &= ~IPIF_UP; 18432 ASSERT(ill->ill_ipif_up_count > 0); 18433 --ill->ill_ipif_up_count; 18434 mutex_exit(&ill->ill_lock); 18435 ipif_was_up = B_TRUE; 18436 /* Update status in SCTP's list */ 18437 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18438 } 18439 18440 /* 18441 * Blow away v6 memberships we established in ipif_multicast_up(); the 18442 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18443 * know not to rejoin when the interface is brought back up). 18444 */ 18445 if (ipif->ipif_isv6) 18446 ipif_multicast_down(ipif); 18447 /* 18448 * Remove from the mapping for __sin6_src_id. We insert only 18449 * when the address is not INADDR_ANY. As IPv4 addresses are 18450 * stored as mapped addresses, we need to check for mapped 18451 * INADDR_ANY also. 18452 */ 18453 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18454 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18455 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18456 int err; 18457 18458 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18459 ipif->ipif_zoneid); 18460 if (err != 0) { 18461 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18462 } 18463 } 18464 18465 /* 18466 * Before we delete the ill from the group (if any), we need 18467 * to make sure that we delete all the routes dependent on 18468 * this and also any ipifs dependent on this ipif for 18469 * source address. We need to do before we delete from 18470 * the group because 18471 * 18472 * 1) ipif_down_delete_ire de-references ill->ill_group. 18473 * 18474 * 2) ipif_update_other_ipifs needs to walk the whole group 18475 * for re-doing source address selection. Note that 18476 * ipif_select_source[_v6] called from 18477 * ipif_update_other_ipifs[_v6] will not pick this ipif 18478 * because we have already marked down here i.e cleared 18479 * IPIF_UP. 18480 */ 18481 if (ipif->ipif_isv6) 18482 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18483 else 18484 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18485 18486 /* 18487 * Need to add these also to be saved and restored when the 18488 * ipif is brought down and up 18489 */ 18490 mutex_enter(&ire_mrtun_lock); 18491 if (ire_mrtun_count != 0) { 18492 mutex_exit(&ire_mrtun_lock); 18493 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18494 (char *)ipif, NULL); 18495 } else { 18496 mutex_exit(&ire_mrtun_lock); 18497 } 18498 18499 mutex_enter(&ire_srcif_table_lock); 18500 if (ire_srcif_table_count > 0) { 18501 mutex_exit(&ire_srcif_table_lock); 18502 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 18503 } else { 18504 mutex_exit(&ire_srcif_table_lock); 18505 } 18506 18507 /* 18508 * Cleaning up the conn_ire_cache or conns must be done only after the 18509 * ires have been deleted above. Otherwise a thread could end up 18510 * caching an ire in a conn after we have finished the cleanup of the 18511 * conn. The caching is done after making sure that the ire is not yet 18512 * condemned. Also documented in the block comment above ip_output 18513 */ 18514 ipcl_walk(conn_cleanup_stale_ire, NULL); 18515 /* Also, delete the ires cached in SCTP */ 18516 sctp_ire_cache_flush(ipif); 18517 18518 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18519 nattymod_clean_ipif(ipif); 18520 18521 /* 18522 * Update any other ipifs which have used "our" local address as 18523 * a source address. This entails removing and recreating IRE_INTERFACE 18524 * entries for such ipifs. 18525 */ 18526 if (ipif->ipif_isv6) 18527 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18528 else 18529 ipif_update_other_ipifs(ipif, ill->ill_group); 18530 18531 if (ipif_was_up) { 18532 /* 18533 * Check whether it is last ipif to leave this group. 18534 * If this is the last ipif to leave, we should remove 18535 * this ill from the group as ipif_select_source will not 18536 * be able to find any useful ipifs if this ill is selected 18537 * for load balancing. 18538 * 18539 * For nameless groups, we should call ifgrp_delete if this 18540 * belongs to some group. As this ipif is going down, we may 18541 * need to reconstruct groups. 18542 */ 18543 phyi = ill->ill_phyint; 18544 /* 18545 * If the phyint_groupname_len is 0, it may or may not 18546 * be in the nameless group. If the phyint_groupname_len is 18547 * not 0, then this ill should be part of some group. 18548 * As we always insert this ill in the group if 18549 * phyint_groupname_len is not zero when the first ipif 18550 * comes up (in ipif_up_done), it should be in a group 18551 * when the namelen is not 0. 18552 * 18553 * NOTE : When we delete the ill from the group,it will 18554 * blow away all the IRE_CACHES pointing either at this ipif or 18555 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18556 * should be pointing at this ill. 18557 */ 18558 ASSERT(phyi->phyint_groupname_len == 0 || 18559 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18560 18561 if (phyi->phyint_groupname_len != 0) { 18562 if (ill->ill_ipif_up_count == 0) 18563 illgrp_delete(ill); 18564 } 18565 18566 /* 18567 * If we have deleted some of the broadcast ires associated 18568 * with this ipif, we need to re-nominate somebody else if 18569 * the ires that we deleted were the nominated ones. 18570 */ 18571 if (ill->ill_group != NULL && !ill->ill_isv6) 18572 ipif_renominate_bcast(ipif); 18573 } 18574 18575 /* 18576 * neighbor-discovery or arp entries for this interface. 18577 */ 18578 ipif_ndp_down(ipif); 18579 18580 /* 18581 * If mp is NULL the caller will wait for the appropriate refcnt. 18582 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18583 * and ill_delete -> ipif_free -> ipif_down 18584 */ 18585 if (mp == NULL) { 18586 ASSERT(q == NULL); 18587 return (0); 18588 } 18589 18590 if (CONN_Q(q)) { 18591 connp = Q_TO_CONN(q); 18592 mutex_enter(&connp->conn_lock); 18593 } else { 18594 connp = NULL; 18595 } 18596 mutex_enter(&ill->ill_lock); 18597 /* 18598 * Are there any ire's pointing to this ipif that are still active ? 18599 * If this is the last ipif going down, are there any ire's pointing 18600 * to this ill that are still active ? 18601 */ 18602 if (ipif_is_quiescent(ipif)) { 18603 mutex_exit(&ill->ill_lock); 18604 if (connp != NULL) 18605 mutex_exit(&connp->conn_lock); 18606 return (0); 18607 } 18608 18609 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18610 ill->ill_name, (void *)ill)); 18611 /* 18612 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18613 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18614 * which in turn is called by the last refrele on the ipif/ill/ire. 18615 */ 18616 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18617 if (!success) { 18618 /* The conn is closing. So just return */ 18619 ASSERT(connp != NULL); 18620 mutex_exit(&ill->ill_lock); 18621 mutex_exit(&connp->conn_lock); 18622 return (EINTR); 18623 } 18624 18625 mutex_exit(&ill->ill_lock); 18626 if (connp != NULL) 18627 mutex_exit(&connp->conn_lock); 18628 return (EINPROGRESS); 18629 } 18630 18631 void 18632 ipif_down_tail(ipif_t *ipif) 18633 { 18634 ill_t *ill = ipif->ipif_ill; 18635 18636 /* 18637 * Skip any loopback interface (null wq). 18638 * If this is the last logical interface on the ill 18639 * have ill_dl_down tell the driver we are gone (unbind) 18640 * Note that lun 0 can ipif_down even though 18641 * there are other logical units that are up. 18642 * This occurs e.g. when we change a "significant" IFF_ flag. 18643 */ 18644 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18645 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18646 ill->ill_dl_up) { 18647 ill_dl_down(ill); 18648 } 18649 ill->ill_logical_down = 0; 18650 18651 /* 18652 * Have to be after removing the routes in ipif_down_delete_ire. 18653 */ 18654 if (ipif->ipif_isv6) { 18655 if (ill->ill_flags & ILLF_XRESOLV) 18656 ipif_arp_down(ipif); 18657 } else { 18658 ipif_arp_down(ipif); 18659 } 18660 18661 ip_rts_ifmsg(ipif); 18662 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18663 } 18664 18665 /* 18666 * Bring interface logically down without bringing the physical interface 18667 * down e.g. when the netmask is changed. This avoids long lasting link 18668 * negotiations between an ethernet interface and a certain switches. 18669 */ 18670 static int 18671 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18672 { 18673 /* 18674 * The ill_logical_down flag is a transient flag. It is set here 18675 * and is cleared once the down has completed in ipif_down_tail. 18676 * This flag does not indicate whether the ill stream is in the 18677 * DL_BOUND state with the driver. Instead this flag is used by 18678 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18679 * the driver. The state of the ill stream i.e. whether it is 18680 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18681 */ 18682 ipif->ipif_ill->ill_logical_down = 1; 18683 return (ipif_down(ipif, q, mp)); 18684 } 18685 18686 /* 18687 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18688 * If the usesrc client ILL is already part of a usesrc group or not, 18689 * in either case a ire_stq with the matching usesrc client ILL will 18690 * locate the IRE's that need to be deleted. We want IREs to be created 18691 * with the new source address. 18692 */ 18693 static void 18694 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18695 { 18696 ill_t *ucill = (ill_t *)ill_arg; 18697 18698 ASSERT(IAM_WRITER_ILL(ucill)); 18699 18700 if (ire->ire_stq == NULL) 18701 return; 18702 18703 if ((ire->ire_type == IRE_CACHE) && 18704 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18705 ire_delete(ire); 18706 } 18707 18708 /* 18709 * ire_walk routine to delete every IRE dependent on the interface 18710 * address that is going down. (Always called as writer.) 18711 * Works for both v4 and v6. 18712 * In addition for checking for ire_ipif matches it also checks for 18713 * IRE_CACHE entries which have the same source address as the 18714 * disappearing ipif since ipif_select_source might have picked 18715 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18716 * care of any IRE_INTERFACE with the disappearing source address. 18717 */ 18718 static void 18719 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18720 { 18721 ipif_t *ipif = (ipif_t *)ipif_arg; 18722 ill_t *ire_ill; 18723 ill_t *ipif_ill; 18724 18725 ASSERT(IAM_WRITER_IPIF(ipif)); 18726 if (ire->ire_ipif == NULL) 18727 return; 18728 18729 /* 18730 * For IPv4, we derive source addresses for an IRE from ipif's 18731 * belonging to the same IPMP group as the IRE's outgoing 18732 * interface. If an IRE's outgoing interface isn't in the 18733 * same IPMP group as a particular ipif, then that ipif 18734 * couldn't have been used as a source address for this IRE. 18735 * 18736 * For IPv6, source addresses are only restricted to the IPMP group 18737 * if the IRE is for a link-local address or a multicast address. 18738 * Otherwise, source addresses for an IRE can be chosen from 18739 * interfaces other than the the outgoing interface for that IRE. 18740 * 18741 * For source address selection details, see ipif_select_source() 18742 * and ipif_select_source_v6(). 18743 */ 18744 if (ire->ire_ipversion == IPV4_VERSION || 18745 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18746 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18747 ire_ill = ire->ire_ipif->ipif_ill; 18748 ipif_ill = ipif->ipif_ill; 18749 18750 if (ire_ill->ill_group != ipif_ill->ill_group) { 18751 return; 18752 } 18753 } 18754 18755 18756 if (ire->ire_ipif != ipif) { 18757 /* 18758 * Look for a matching source address. 18759 */ 18760 if (ire->ire_type != IRE_CACHE) 18761 return; 18762 if (ipif->ipif_flags & IPIF_NOLOCAL) 18763 return; 18764 18765 if (ire->ire_ipversion == IPV4_VERSION) { 18766 if (ire->ire_src_addr != ipif->ipif_src_addr) 18767 return; 18768 } else { 18769 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18770 &ipif->ipif_v6lcl_addr)) 18771 return; 18772 } 18773 ire_delete(ire); 18774 return; 18775 } 18776 /* 18777 * ire_delete() will do an ire_flush_cache which will delete 18778 * all ire_ipif matches 18779 */ 18780 ire_delete(ire); 18781 } 18782 18783 /* 18784 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18785 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18786 * 2) when an interface is brought up or down (on that ill). 18787 * This ensures that the IRE_CACHE entries don't retain stale source 18788 * address selection results. 18789 */ 18790 void 18791 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18792 { 18793 ill_t *ill = (ill_t *)ill_arg; 18794 ill_t *ipif_ill; 18795 18796 ASSERT(IAM_WRITER_ILL(ill)); 18797 /* 18798 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18799 * Hence this should be IRE_CACHE. 18800 */ 18801 ASSERT(ire->ire_type == IRE_CACHE); 18802 18803 /* 18804 * We are called for IRE_CACHES whose ire_ipif matches ill. 18805 * We are only interested in IRE_CACHES that has borrowed 18806 * the source address from ill_arg e.g. ipif_up_done[_v6] 18807 * for which we need to look at ire_ipif->ipif_ill match 18808 * with ill. 18809 */ 18810 ASSERT(ire->ire_ipif != NULL); 18811 ipif_ill = ire->ire_ipif->ipif_ill; 18812 if (ipif_ill == ill || (ill->ill_group != NULL && 18813 ipif_ill->ill_group == ill->ill_group)) { 18814 ire_delete(ire); 18815 } 18816 } 18817 18818 /* 18819 * Delete all the ire whose stq references ill_arg. 18820 */ 18821 static void 18822 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18823 { 18824 ill_t *ill = (ill_t *)ill_arg; 18825 ill_t *ire_ill; 18826 18827 ASSERT(IAM_WRITER_ILL(ill)); 18828 /* 18829 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18830 * Hence this should be IRE_CACHE. 18831 */ 18832 ASSERT(ire->ire_type == IRE_CACHE); 18833 18834 /* 18835 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18836 * matches ill. We are only interested in IRE_CACHES that 18837 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18838 * filtering here. 18839 */ 18840 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18841 18842 if (ire_ill == ill) 18843 ire_delete(ire); 18844 } 18845 18846 /* 18847 * This is called when an ill leaves the group. We want to delete 18848 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18849 * pointing at ill. 18850 */ 18851 static void 18852 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18853 { 18854 ill_t *ill = (ill_t *)ill_arg; 18855 18856 ASSERT(IAM_WRITER_ILL(ill)); 18857 ASSERT(ill->ill_group == NULL); 18858 /* 18859 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18860 * Hence this should be IRE_CACHE. 18861 */ 18862 ASSERT(ire->ire_type == IRE_CACHE); 18863 /* 18864 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18865 * matches ill. We are interested in both. 18866 */ 18867 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18868 (ire->ire_ipif->ipif_ill == ill)); 18869 18870 ire_delete(ire); 18871 } 18872 18873 /* 18874 * Initiate deallocate of an IPIF. Always called as writer. Called by 18875 * ill_delete or ip_sioctl_removeif. 18876 */ 18877 static void 18878 ipif_free(ipif_t *ipif) 18879 { 18880 ASSERT(IAM_WRITER_IPIF(ipif)); 18881 18882 if (ipif->ipif_recovery_id != 0) 18883 (void) untimeout(ipif->ipif_recovery_id); 18884 ipif->ipif_recovery_id = 0; 18885 18886 /* Remove conn references */ 18887 reset_conn_ipif(ipif); 18888 18889 /* 18890 * Make sure we have valid net and subnet broadcast ire's for the 18891 * other ipif's which share them with this ipif. 18892 */ 18893 if (!ipif->ipif_isv6) 18894 ipif_check_bcast_ires(ipif); 18895 18896 /* 18897 * Take down the interface. We can be called either from ill_delete 18898 * or from ip_sioctl_removeif. 18899 */ 18900 (void) ipif_down(ipif, NULL, NULL); 18901 18902 rw_enter(&ill_g_lock, RW_WRITER); 18903 /* Remove pointers to this ill in the multicast routing tables */ 18904 reset_mrt_vif_ipif(ipif); 18905 rw_exit(&ill_g_lock); 18906 } 18907 18908 static void 18909 ipif_free_tail(ipif_t *ipif) 18910 { 18911 mblk_t *mp; 18912 ipif_t **ipifp; 18913 18914 /* 18915 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18916 */ 18917 mutex_enter(&ipif->ipif_saved_ire_lock); 18918 mp = ipif->ipif_saved_ire_mp; 18919 ipif->ipif_saved_ire_mp = NULL; 18920 mutex_exit(&ipif->ipif_saved_ire_lock); 18921 freemsg(mp); 18922 18923 /* 18924 * Need to hold both ill_g_lock and ill_lock while 18925 * inserting or removing an ipif from the linked list 18926 * of ipifs hanging off the ill. 18927 */ 18928 rw_enter(&ill_g_lock, RW_WRITER); 18929 /* 18930 * Remove all multicast memberships on the interface now. 18931 * This removes IPv4 multicast memberships joined within 18932 * the kernel as ipif_down does not do ipif_multicast_down 18933 * for IPv4. IPv6 is not handled here as the multicast memberships 18934 * are based on ill and not on ipif. 18935 */ 18936 ilm_free(ipif); 18937 18938 /* 18939 * Since we held the ill_g_lock while doing the ilm_free above, 18940 * we can assert the ilms were really deleted and not just marked 18941 * ILM_DELETED. 18942 */ 18943 ASSERT(ilm_walk_ipif(ipif) == 0); 18944 18945 18946 IPIF_TRACE_CLEANUP(ipif); 18947 18948 /* Ask SCTP to take it out of it list */ 18949 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18950 18951 mutex_enter(&ipif->ipif_ill->ill_lock); 18952 /* Get it out of the ILL interface list. */ 18953 ipifp = &ipif->ipif_ill->ill_ipif; 18954 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18955 if (*ipifp == ipif) { 18956 *ipifp = ipif->ipif_next; 18957 break; 18958 } 18959 } 18960 18961 mutex_exit(&ipif->ipif_ill->ill_lock); 18962 rw_exit(&ill_g_lock); 18963 18964 mutex_destroy(&ipif->ipif_saved_ire_lock); 18965 18966 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18967 18968 /* Free the memory. */ 18969 mi_free((char *)ipif); 18970 } 18971 18972 /* 18973 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18974 * "ill_name" otherwise. 18975 */ 18976 char * 18977 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18978 { 18979 char lbuf[32]; 18980 char *name; 18981 size_t name_len; 18982 18983 buf[0] = '\0'; 18984 if (!ipif) 18985 return (buf); 18986 name = ipif->ipif_ill->ill_name; 18987 name_len = ipif->ipif_ill->ill_name_length; 18988 if (ipif->ipif_id != 0) { 18989 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18990 ipif->ipif_id); 18991 name = lbuf; 18992 name_len = mi_strlen(name) + 1; 18993 } 18994 len -= 1; 18995 buf[len] = '\0'; 18996 len = MIN(len, name_len); 18997 bcopy(name, buf, len); 18998 return (buf); 18999 } 19000 19001 /* 19002 * Find an IPIF based on the name passed in. Names can be of the 19003 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19004 * The <phys> string can have forms like <dev><#> (e.g., le0), 19005 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19006 * When there is no colon, the implied unit id is zero. <phys> must 19007 * correspond to the name of an ILL. (May be called as writer.) 19008 */ 19009 static ipif_t * 19010 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19011 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19012 mblk_t *mp, ipsq_func_t func, int *error) 19013 { 19014 char *cp; 19015 char *endp; 19016 long id; 19017 ill_t *ill; 19018 ipif_t *ipif; 19019 uint_t ire_type; 19020 boolean_t did_alloc = B_FALSE; 19021 ipsq_t *ipsq; 19022 19023 if (error != NULL) 19024 *error = 0; 19025 19026 /* 19027 * If the caller wants to us to create the ipif, make sure we have a 19028 * valid zoneid 19029 */ 19030 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19031 19032 if (namelen == 0) { 19033 if (error != NULL) 19034 *error = ENXIO; 19035 return (NULL); 19036 } 19037 19038 *exists = B_FALSE; 19039 /* Look for a colon in the name. */ 19040 endp = &name[namelen]; 19041 for (cp = endp; --cp > name; ) { 19042 if (*cp == IPIF_SEPARATOR_CHAR) 19043 break; 19044 } 19045 19046 if (*cp == IPIF_SEPARATOR_CHAR) { 19047 /* 19048 * Reject any non-decimal aliases for logical 19049 * interfaces. Aliases with leading zeroes 19050 * are also rejected as they introduce ambiguity 19051 * in the naming of the interfaces. 19052 * In order to confirm with existing semantics, 19053 * and to not break any programs/script relying 19054 * on that behaviour, if<0>:0 is considered to be 19055 * a valid interface. 19056 * 19057 * If alias has two or more digits and the first 19058 * is zero, fail. 19059 */ 19060 if (&cp[2] < endp && cp[1] == '0') 19061 return (NULL); 19062 } 19063 19064 if (cp <= name) { 19065 cp = endp; 19066 } else { 19067 *cp = '\0'; 19068 } 19069 19070 /* 19071 * Look up the ILL, based on the portion of the name 19072 * before the slash. ill_lookup_on_name returns a held ill. 19073 * Temporary to check whether ill exists already. If so 19074 * ill_lookup_on_name will clear it. 19075 */ 19076 ill = ill_lookup_on_name(name, do_alloc, isv6, 19077 q, mp, func, error, &did_alloc); 19078 if (cp != endp) 19079 *cp = IPIF_SEPARATOR_CHAR; 19080 if (ill == NULL) 19081 return (NULL); 19082 19083 /* Establish the unit number in the name. */ 19084 id = 0; 19085 if (cp < endp && *endp == '\0') { 19086 /* If there was a colon, the unit number follows. */ 19087 cp++; 19088 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19089 ill_refrele(ill); 19090 if (error != NULL) 19091 *error = ENXIO; 19092 return (NULL); 19093 } 19094 } 19095 19096 GRAB_CONN_LOCK(q); 19097 mutex_enter(&ill->ill_lock); 19098 /* Now see if there is an IPIF with this unit number. */ 19099 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19100 if (ipif->ipif_id == id) { 19101 if (zoneid != ALL_ZONES && 19102 zoneid != ipif->ipif_zoneid && 19103 ipif->ipif_zoneid != ALL_ZONES) { 19104 mutex_exit(&ill->ill_lock); 19105 RELEASE_CONN_LOCK(q); 19106 ill_refrele(ill); 19107 if (error != NULL) 19108 *error = ENXIO; 19109 return (NULL); 19110 } 19111 /* 19112 * The block comment at the start of ipif_down 19113 * explains the use of the macros used below 19114 */ 19115 if (IPIF_CAN_LOOKUP(ipif)) { 19116 ipif_refhold_locked(ipif); 19117 mutex_exit(&ill->ill_lock); 19118 if (!did_alloc) 19119 *exists = B_TRUE; 19120 /* 19121 * Drop locks before calling ill_refrele 19122 * since it can potentially call into 19123 * ipif_ill_refrele_tail which can end up 19124 * in trying to acquire any lock. 19125 */ 19126 RELEASE_CONN_LOCK(q); 19127 ill_refrele(ill); 19128 return (ipif); 19129 } else if (IPIF_CAN_WAIT(ipif, q)) { 19130 ipsq = ill->ill_phyint->phyint_ipsq; 19131 mutex_enter(&ipsq->ipsq_lock); 19132 mutex_exit(&ill->ill_lock); 19133 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19134 mutex_exit(&ipsq->ipsq_lock); 19135 RELEASE_CONN_LOCK(q); 19136 ill_refrele(ill); 19137 *error = EINPROGRESS; 19138 return (NULL); 19139 } 19140 } 19141 } 19142 RELEASE_CONN_LOCK(q); 19143 19144 if (!do_alloc) { 19145 mutex_exit(&ill->ill_lock); 19146 ill_refrele(ill); 19147 if (error != NULL) 19148 *error = ENXIO; 19149 return (NULL); 19150 } 19151 19152 /* 19153 * If none found, atomically allocate and return a new one. 19154 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19155 * to support "receive only" use of lo0:1 etc. as is still done 19156 * below as an initial guess. 19157 * However, this is now likely to be overriden later in ipif_up_done() 19158 * when we know for sure what address has been configured on the 19159 * interface, since we might have more than one loopback interface 19160 * with a loopback address, e.g. in the case of zones, and all the 19161 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19162 */ 19163 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19164 ire_type = IRE_LOOPBACK; 19165 else 19166 ire_type = IRE_LOCAL; 19167 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19168 if (ipif != NULL) 19169 ipif_refhold_locked(ipif); 19170 else if (error != NULL) 19171 *error = ENOMEM; 19172 mutex_exit(&ill->ill_lock); 19173 ill_refrele(ill); 19174 return (ipif); 19175 } 19176 19177 /* 19178 * This routine is called whenever a new address comes up on an ipif. If 19179 * we are configured to respond to address mask requests, then we are supposed 19180 * to broadcast an address mask reply at this time. This routine is also 19181 * called if we are already up, but a netmask change is made. This is legal 19182 * but might not make the system manager very popular. (May be called 19183 * as writer.) 19184 */ 19185 void 19186 ipif_mask_reply(ipif_t *ipif) 19187 { 19188 icmph_t *icmph; 19189 ipha_t *ipha; 19190 mblk_t *mp; 19191 19192 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19193 19194 if (!ip_respond_to_address_mask_broadcast) 19195 return; 19196 19197 /* ICMP mask reply is IPv4 only */ 19198 ASSERT(!ipif->ipif_isv6); 19199 /* ICMP mask reply is not for a loopback interface */ 19200 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19201 19202 mp = allocb(REPLY_LEN, BPRI_HI); 19203 if (mp == NULL) 19204 return; 19205 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19206 19207 ipha = (ipha_t *)mp->b_rptr; 19208 bzero(ipha, REPLY_LEN); 19209 *ipha = icmp_ipha; 19210 ipha->ipha_ttl = ip_broadcast_ttl; 19211 ipha->ipha_src = ipif->ipif_src_addr; 19212 ipha->ipha_dst = ipif->ipif_brd_addr; 19213 ipha->ipha_length = htons(REPLY_LEN); 19214 ipha->ipha_ident = 0; 19215 19216 icmph = (icmph_t *)&ipha[1]; 19217 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19218 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19219 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19220 if (icmph->icmph_checksum == 0) 19221 icmph->icmph_checksum = 0xffff; 19222 19223 put(ipif->ipif_wq, mp); 19224 19225 #undef REPLY_LEN 19226 } 19227 19228 /* 19229 * When the mtu in the ipif changes, we call this routine through ire_walk 19230 * to update all the relevant IREs. 19231 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19232 */ 19233 static void 19234 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19235 { 19236 ipif_t *ipif = (ipif_t *)ipif_arg; 19237 19238 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19239 return; 19240 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19241 } 19242 19243 /* 19244 * When the mtu in the ill changes, we call this routine through ire_walk 19245 * to update all the relevant IREs. 19246 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19247 */ 19248 void 19249 ill_mtu_change(ire_t *ire, char *ill_arg) 19250 { 19251 ill_t *ill = (ill_t *)ill_arg; 19252 19253 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19254 return; 19255 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19256 } 19257 19258 /* 19259 * Join the ipif specific multicast groups. 19260 * Must be called after a mapping has been set up in the resolver. (Always 19261 * called as writer.) 19262 */ 19263 void 19264 ipif_multicast_up(ipif_t *ipif) 19265 { 19266 int err, index; 19267 ill_t *ill; 19268 19269 ASSERT(IAM_WRITER_IPIF(ipif)); 19270 19271 ill = ipif->ipif_ill; 19272 index = ill->ill_phyint->phyint_ifindex; 19273 19274 ip1dbg(("ipif_multicast_up\n")); 19275 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19276 return; 19277 19278 if (ipif->ipif_isv6) { 19279 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19280 return; 19281 19282 /* Join the all hosts multicast address */ 19283 ip1dbg(("ipif_multicast_up - addmulti\n")); 19284 /* 19285 * Passing B_TRUE means we have to join the multicast 19286 * membership on this interface even though this is 19287 * FAILED. If we join on a different one in the group, 19288 * we will not be able to delete the membership later 19289 * as we currently don't track where we join when we 19290 * join within the kernel unlike applications where 19291 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19292 * for more on this. 19293 */ 19294 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19295 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19296 if (err != 0) { 19297 ip0dbg(("ipif_multicast_up: " 19298 "all_hosts_mcast failed %d\n", 19299 err)); 19300 return; 19301 } 19302 /* 19303 * Enable multicast for the solicited node multicast address 19304 */ 19305 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19306 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19307 19308 ipv6_multi.s6_addr32[3] |= 19309 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19310 19311 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19312 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19313 NULL); 19314 if (err != 0) { 19315 ip0dbg(("ipif_multicast_up: solicited MC" 19316 " failed %d\n", err)); 19317 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19318 ill, ill->ill_phyint->phyint_ifindex, 19319 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19320 return; 19321 } 19322 } 19323 } else { 19324 if (ipif->ipif_lcl_addr == INADDR_ANY) 19325 return; 19326 19327 /* Join the all hosts multicast address */ 19328 ip1dbg(("ipif_multicast_up - addmulti\n")); 19329 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19330 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19331 if (err) { 19332 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19333 return; 19334 } 19335 } 19336 ipif->ipif_multicast_up = 1; 19337 } 19338 19339 /* 19340 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19341 * any explicit memberships are blown away in ill_leave_multicast() when the 19342 * ill is brought down. 19343 */ 19344 static void 19345 ipif_multicast_down(ipif_t *ipif) 19346 { 19347 int err; 19348 19349 ASSERT(IAM_WRITER_IPIF(ipif)); 19350 19351 ip1dbg(("ipif_multicast_down\n")); 19352 if (!ipif->ipif_multicast_up) 19353 return; 19354 19355 ASSERT(ipif->ipif_isv6); 19356 19357 ip1dbg(("ipif_multicast_down - delmulti\n")); 19358 19359 /* 19360 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19361 * we should look for ilms on this ill rather than the ones that have 19362 * been failed over here. They are here temporarily. As 19363 * ipif_multicast_up has joined on this ill, we should delete only 19364 * from this ill. 19365 */ 19366 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19367 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19368 B_TRUE, B_TRUE); 19369 if (err != 0) { 19370 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19371 err)); 19372 } 19373 /* 19374 * Disable multicast for the solicited node multicast address 19375 */ 19376 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19377 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19378 19379 ipv6_multi.s6_addr32[3] |= 19380 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19381 19382 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19383 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19384 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19385 19386 if (err != 0) { 19387 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19388 err)); 19389 } 19390 } 19391 19392 ipif->ipif_multicast_up = 0; 19393 } 19394 19395 /* 19396 * Used when an interface comes up to recreate any extra routes on this 19397 * interface. 19398 */ 19399 static ire_t ** 19400 ipif_recover_ire(ipif_t *ipif) 19401 { 19402 mblk_t *mp; 19403 ire_t **ipif_saved_irep; 19404 ire_t **irep; 19405 19406 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19407 ipif->ipif_id)); 19408 19409 mutex_enter(&ipif->ipif_saved_ire_lock); 19410 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19411 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19412 if (ipif_saved_irep == NULL) { 19413 mutex_exit(&ipif->ipif_saved_ire_lock); 19414 return (NULL); 19415 } 19416 19417 irep = ipif_saved_irep; 19418 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19419 ire_t *ire; 19420 queue_t *rfq; 19421 queue_t *stq; 19422 ifrt_t *ifrt; 19423 uchar_t *src_addr; 19424 uchar_t *gateway_addr; 19425 mblk_t *resolver_mp; 19426 ushort_t type; 19427 19428 /* 19429 * When the ire was initially created and then added in 19430 * ip_rt_add(), it was created either using ipif->ipif_net_type 19431 * in the case of a traditional interface route, or as one of 19432 * the IRE_OFFSUBNET types (with the exception of 19433 * IRE_HOST types ire which is created by icmp_redirect() and 19434 * which we don't need to save or recover). In the case where 19435 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19436 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19437 * to satisfy software like GateD and Sun Cluster which creates 19438 * routes using the the loopback interface's address as a 19439 * gateway. 19440 * 19441 * As ifrt->ifrt_type reflects the already updated ire_type and 19442 * since ire_create() expects that IRE_IF_NORESOLVER will have 19443 * a valid nce_res_mp field (which doesn't make sense for a 19444 * IRE_LOOPBACK), ire_create() will be called in the same way 19445 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19446 * the route looks like a traditional interface route (where 19447 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19448 * the saved ifrt->ifrt_type. This means that in the case where 19449 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19450 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19451 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19452 */ 19453 ifrt = (ifrt_t *)mp->b_rptr; 19454 if (ifrt->ifrt_type & IRE_INTERFACE) { 19455 rfq = NULL; 19456 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19457 ? ipif->ipif_rq : ipif->ipif_wq; 19458 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19459 ? (uint8_t *)&ifrt->ifrt_src_addr 19460 : (uint8_t *)&ipif->ipif_src_addr; 19461 gateway_addr = NULL; 19462 resolver_mp = ipif->ipif_resolver_mp; 19463 type = ipif->ipif_net_type; 19464 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19465 /* Recover multiroute broadcast IRE. */ 19466 rfq = ipif->ipif_rq; 19467 stq = ipif->ipif_wq; 19468 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19469 ? (uint8_t *)&ifrt->ifrt_src_addr 19470 : (uint8_t *)&ipif->ipif_src_addr; 19471 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19472 resolver_mp = ipif->ipif_bcast_mp; 19473 type = ifrt->ifrt_type; 19474 } else { 19475 rfq = NULL; 19476 stq = NULL; 19477 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19478 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19479 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19480 resolver_mp = NULL; 19481 type = ifrt->ifrt_type; 19482 } 19483 19484 /* 19485 * Create a copy of the IRE with the saved address and netmask. 19486 */ 19487 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19488 "0x%x/0x%x\n", 19489 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19490 ntohl(ifrt->ifrt_addr), 19491 ntohl(ifrt->ifrt_mask))); 19492 ire = ire_create( 19493 (uint8_t *)&ifrt->ifrt_addr, 19494 (uint8_t *)&ifrt->ifrt_mask, 19495 src_addr, 19496 gateway_addr, 19497 NULL, 19498 &ifrt->ifrt_max_frag, 19499 NULL, 19500 rfq, 19501 stq, 19502 type, 19503 resolver_mp, 19504 ipif, 19505 NULL, 19506 0, 19507 0, 19508 0, 19509 ifrt->ifrt_flags, 19510 &ifrt->ifrt_iulp_info, 19511 NULL, 19512 NULL); 19513 19514 if (ire == NULL) { 19515 mutex_exit(&ipif->ipif_saved_ire_lock); 19516 kmem_free(ipif_saved_irep, 19517 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19518 return (NULL); 19519 } 19520 19521 /* 19522 * Some software (for example, GateD and Sun Cluster) attempts 19523 * to create (what amount to) IRE_PREFIX routes with the 19524 * loopback address as the gateway. This is primarily done to 19525 * set up prefixes with the RTF_REJECT flag set (for example, 19526 * when generating aggregate routes.) 19527 * 19528 * If the IRE type (as defined by ipif->ipif_net_type) is 19529 * IRE_LOOPBACK, then we map the request into a 19530 * IRE_IF_NORESOLVER. 19531 */ 19532 if (ipif->ipif_net_type == IRE_LOOPBACK) 19533 ire->ire_type = IRE_IF_NORESOLVER; 19534 /* 19535 * ire held by ire_add, will be refreled' towards the 19536 * the end of ipif_up_done 19537 */ 19538 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19539 *irep = ire; 19540 irep++; 19541 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19542 } 19543 mutex_exit(&ipif->ipif_saved_ire_lock); 19544 return (ipif_saved_irep); 19545 } 19546 19547 /* 19548 * Used to set the netmask and broadcast address to default values when the 19549 * interface is brought up. (Always called as writer.) 19550 */ 19551 static void 19552 ipif_set_default(ipif_t *ipif) 19553 { 19554 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19555 19556 if (!ipif->ipif_isv6) { 19557 /* 19558 * Interface holds an IPv4 address. Default 19559 * mask is the natural netmask. 19560 */ 19561 if (!ipif->ipif_net_mask) { 19562 ipaddr_t v4mask; 19563 19564 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19565 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19566 } 19567 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19568 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19569 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19570 } else { 19571 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19572 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19573 } 19574 /* 19575 * NOTE: SunOS 4.X does this even if the broadcast address 19576 * has been already set thus we do the same here. 19577 */ 19578 if (ipif->ipif_flags & IPIF_BROADCAST) { 19579 ipaddr_t v4addr; 19580 19581 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19582 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19583 } 19584 } else { 19585 /* 19586 * Interface holds an IPv6-only address. Default 19587 * mask is all-ones. 19588 */ 19589 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19590 ipif->ipif_v6net_mask = ipv6_all_ones; 19591 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19592 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19593 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19594 } else { 19595 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19596 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19597 } 19598 } 19599 } 19600 19601 /* 19602 * Return 0 if this address can be used as local address without causing 19603 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19604 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19605 * Special checks are needed to allow the same IPv6 link-local address 19606 * on different ills. 19607 * TODO: allowing the same site-local address on different ill's. 19608 */ 19609 int 19610 ip_addr_availability_check(ipif_t *new_ipif) 19611 { 19612 in6_addr_t our_v6addr; 19613 ill_t *ill; 19614 ipif_t *ipif; 19615 ill_walk_context_t ctx; 19616 19617 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19618 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19619 ASSERT(RW_READ_HELD(&ill_g_lock)); 19620 19621 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19622 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19623 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19624 return (0); 19625 19626 our_v6addr = new_ipif->ipif_v6lcl_addr; 19627 19628 if (new_ipif->ipif_isv6) 19629 ill = ILL_START_WALK_V6(&ctx); 19630 else 19631 ill = ILL_START_WALK_V4(&ctx); 19632 19633 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19634 for (ipif = ill->ill_ipif; ipif != NULL; 19635 ipif = ipif->ipif_next) { 19636 if ((ipif == new_ipif) || 19637 !(ipif->ipif_flags & IPIF_UP) || 19638 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19639 continue; 19640 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19641 &our_v6addr)) { 19642 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19643 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19644 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19645 ipif->ipif_flags |= IPIF_UNNUMBERED; 19646 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19647 new_ipif->ipif_ill != ill) 19648 continue; 19649 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19650 new_ipif->ipif_ill != ill) 19651 continue; 19652 else if (new_ipif->ipif_zoneid != 19653 ipif->ipif_zoneid && 19654 ipif->ipif_zoneid != ALL_ZONES && 19655 (ill->ill_phyint->phyint_flags & 19656 PHYI_LOOPBACK)) 19657 continue; 19658 else if (new_ipif->ipif_ill == ill) 19659 return (EADDRINUSE); 19660 else 19661 return (EADDRNOTAVAIL); 19662 } 19663 } 19664 } 19665 19666 return (0); 19667 } 19668 19669 /* 19670 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19671 * IREs for the ipif. 19672 * When the routine returns EINPROGRESS then mp has been consumed and 19673 * the ioctl will be acked from ip_rput_dlpi. 19674 */ 19675 static int 19676 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19677 { 19678 ill_t *ill = ipif->ipif_ill; 19679 boolean_t isv6 = ipif->ipif_isv6; 19680 int err = 0; 19681 boolean_t success; 19682 19683 ASSERT(IAM_WRITER_IPIF(ipif)); 19684 19685 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19686 19687 /* Shouldn't get here if it is already up. */ 19688 if (ipif->ipif_flags & IPIF_UP) 19689 return (EALREADY); 19690 19691 /* Skip arp/ndp for any loopback interface. */ 19692 if (ill->ill_wq != NULL) { 19693 conn_t *connp = Q_TO_CONN(q); 19694 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19695 19696 if (!ill->ill_dl_up) { 19697 /* 19698 * ill_dl_up is not yet set. i.e. we are yet to 19699 * DL_BIND with the driver and this is the first 19700 * logical interface on the ill to become "up". 19701 * Tell the driver to get going (via DL_BIND_REQ). 19702 * Note that changing "significant" IFF_ flags 19703 * address/netmask etc cause a down/up dance, but 19704 * does not cause an unbind (DL_UNBIND) with the driver 19705 */ 19706 return (ill_dl_up(ill, ipif, mp, q)); 19707 } 19708 19709 /* 19710 * ipif_resolver_up may end up sending an 19711 * AR_INTERFACE_UP message to ARP, which would, in 19712 * turn send a DLPI message to the driver. ioctls are 19713 * serialized and so we cannot send more than one 19714 * interface up message at a time. If ipif_resolver_up 19715 * does send an interface up message to ARP, we get 19716 * EINPROGRESS and we will complete in ip_arp_done. 19717 */ 19718 19719 ASSERT(connp != NULL); 19720 ASSERT(ipsq->ipsq_pending_mp == NULL); 19721 mutex_enter(&connp->conn_lock); 19722 mutex_enter(&ill->ill_lock); 19723 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19724 mutex_exit(&ill->ill_lock); 19725 mutex_exit(&connp->conn_lock); 19726 if (!success) 19727 return (EINTR); 19728 19729 /* 19730 * Crank up IPv6 neighbor discovery 19731 * Unlike ARP, this should complete when 19732 * ipif_ndp_up returns. However, for 19733 * ILLF_XRESOLV interfaces we also send a 19734 * AR_INTERFACE_UP to the external resolver. 19735 * That ioctl will complete in ip_rput. 19736 */ 19737 if (isv6) { 19738 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 19739 B_FALSE); 19740 if (err != 0) { 19741 if (err != EINPROGRESS) 19742 mp = ipsq_pending_mp_get(ipsq, &connp); 19743 return (err); 19744 } 19745 } 19746 /* Now, ARP */ 19747 err = ipif_resolver_up(ipif, Res_act_initial); 19748 if (err == EINPROGRESS) { 19749 /* We will complete it in ip_arp_done */ 19750 return (err); 19751 } 19752 mp = ipsq_pending_mp_get(ipsq, &connp); 19753 ASSERT(mp != NULL); 19754 if (err != 0) 19755 return (err); 19756 } else { 19757 /* 19758 * Interfaces without underlying hardware don't do duplicate 19759 * address detection. 19760 */ 19761 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19762 ipif->ipif_addr_ready = 1; 19763 } 19764 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19765 } 19766 19767 /* 19768 * Perform a bind for the physical device. 19769 * When the routine returns EINPROGRESS then mp has been consumed and 19770 * the ioctl will be acked from ip_rput_dlpi. 19771 * Allocate an unbind message and save it until ipif_down. 19772 */ 19773 static int 19774 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19775 { 19776 mblk_t *areq_mp = NULL; 19777 mblk_t *bind_mp = NULL; 19778 mblk_t *unbind_mp = NULL; 19779 conn_t *connp; 19780 boolean_t success; 19781 19782 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19783 ASSERT(IAM_WRITER_ILL(ill)); 19784 19785 ASSERT(mp != NULL); 19786 19787 /* Create a resolver cookie for ARP */ 19788 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19789 areq_t *areq; 19790 uint16_t sap_addr; 19791 19792 areq_mp = ill_arp_alloc(ill, 19793 (uchar_t *)&ip_areq_template, 0); 19794 if (areq_mp == NULL) { 19795 return (ENOMEM); 19796 } 19797 freemsg(ill->ill_resolver_mp); 19798 ill->ill_resolver_mp = areq_mp; 19799 areq = (areq_t *)areq_mp->b_rptr; 19800 sap_addr = ill->ill_sap; 19801 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19802 /* 19803 * Wait till we call ill_pending_mp_add to determine 19804 * the success before we free the ill_resolver_mp and 19805 * attach areq_mp in it's place. 19806 */ 19807 } 19808 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19809 DL_BIND_REQ); 19810 if (bind_mp == NULL) 19811 goto bad; 19812 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19813 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19814 19815 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19816 if (unbind_mp == NULL) 19817 goto bad; 19818 19819 /* 19820 * Record state needed to complete this operation when the 19821 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19822 */ 19823 if (WR(q)->q_next == NULL) { 19824 connp = Q_TO_CONN(q); 19825 mutex_enter(&connp->conn_lock); 19826 } else { 19827 connp = NULL; 19828 } 19829 mutex_enter(&ipif->ipif_ill->ill_lock); 19830 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19831 mutex_exit(&ipif->ipif_ill->ill_lock); 19832 if (connp != NULL) 19833 mutex_exit(&connp->conn_lock); 19834 if (!success) 19835 goto bad; 19836 19837 /* 19838 * Save the unbind message for ill_dl_down(); it will be consumed when 19839 * the interface goes down. 19840 */ 19841 ASSERT(ill->ill_unbind_mp == NULL); 19842 ill->ill_unbind_mp = unbind_mp; 19843 19844 ill_dlpi_send(ill, bind_mp); 19845 /* Send down link-layer capabilities probe if not already done. */ 19846 ill_capability_probe(ill); 19847 19848 /* 19849 * Sysid used to rely on the fact that netboots set domainname 19850 * and the like. Now that miniroot boots aren't strictly netboots 19851 * and miniroot network configuration is driven from userland 19852 * these things still need to be set. This situation can be detected 19853 * by comparing the interface being configured here to the one 19854 * dhcack was set to reference by the boot loader. Once sysid is 19855 * converted to use dhcp_ipc_getinfo() this call can go away. 19856 */ 19857 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19858 (strcmp(ill->ill_name, dhcack) == 0) && 19859 (strlen(srpc_domain) == 0)) { 19860 if (dhcpinit() != 0) 19861 cmn_err(CE_WARN, "no cached dhcp response"); 19862 } 19863 19864 /* 19865 * This operation will complete in ip_rput_dlpi with either 19866 * a DL_BIND_ACK or DL_ERROR_ACK. 19867 */ 19868 return (EINPROGRESS); 19869 bad: 19870 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19871 /* 19872 * We don't have to check for possible removal from illgrp 19873 * as we have not yet inserted in illgrp. For groups 19874 * without names, this ipif is still not UP and hence 19875 * this could not have possibly had any influence in forming 19876 * groups. 19877 */ 19878 19879 if (bind_mp != NULL) 19880 freemsg(bind_mp); 19881 if (unbind_mp != NULL) 19882 freemsg(unbind_mp); 19883 return (ENOMEM); 19884 } 19885 19886 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19887 19888 /* 19889 * DLPI and ARP is up. 19890 * Create all the IREs associated with an interface bring up multicast. 19891 * Set the interface flag and finish other initialization 19892 * that potentially had to be differed to after DL_BIND_ACK. 19893 */ 19894 int 19895 ipif_up_done(ipif_t *ipif) 19896 { 19897 ire_t *ire_array[20]; 19898 ire_t **irep = ire_array; 19899 ire_t **irep1; 19900 ipaddr_t net_mask = 0; 19901 ipaddr_t subnet_mask, route_mask; 19902 ill_t *ill = ipif->ipif_ill; 19903 queue_t *stq; 19904 ipif_t *src_ipif; 19905 ipif_t *tmp_ipif; 19906 boolean_t flush_ire_cache = B_TRUE; 19907 int err = 0; 19908 phyint_t *phyi; 19909 ire_t **ipif_saved_irep = NULL; 19910 int ipif_saved_ire_cnt; 19911 int cnt; 19912 boolean_t src_ipif_held = B_FALSE; 19913 boolean_t ire_added = B_FALSE; 19914 boolean_t loopback = B_FALSE; 19915 19916 ip1dbg(("ipif_up_done(%s:%u)\n", 19917 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19918 /* Check if this is a loopback interface */ 19919 if (ipif->ipif_ill->ill_wq == NULL) 19920 loopback = B_TRUE; 19921 19922 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19923 /* 19924 * If all other interfaces for this ill are down or DEPRECATED, 19925 * or otherwise unsuitable for source address selection, remove 19926 * any IRE_CACHE entries for this ill to make sure source 19927 * address selection gets to take this new ipif into account. 19928 * No need to hold ill_lock while traversing the ipif list since 19929 * we are writer 19930 */ 19931 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19932 tmp_ipif = tmp_ipif->ipif_next) { 19933 if (((tmp_ipif->ipif_flags & 19934 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19935 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19936 (tmp_ipif == ipif)) 19937 continue; 19938 /* first useable pre-existing interface */ 19939 flush_ire_cache = B_FALSE; 19940 break; 19941 } 19942 if (flush_ire_cache) 19943 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19944 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19945 19946 /* 19947 * Figure out which way the send-to queue should go. Only 19948 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19949 * should show up here. 19950 */ 19951 switch (ill->ill_net_type) { 19952 case IRE_IF_RESOLVER: 19953 stq = ill->ill_rq; 19954 break; 19955 case IRE_IF_NORESOLVER: 19956 case IRE_LOOPBACK: 19957 stq = ill->ill_wq; 19958 break; 19959 default: 19960 return (EINVAL); 19961 } 19962 19963 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19964 /* 19965 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19966 * ipif_lookup_on_name(), but in the case of zones we can have 19967 * several loopback addresses on lo0. So all the interfaces with 19968 * loopback addresses need to be marked IRE_LOOPBACK. 19969 */ 19970 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19971 htonl(INADDR_LOOPBACK)) 19972 ipif->ipif_ire_type = IRE_LOOPBACK; 19973 else 19974 ipif->ipif_ire_type = IRE_LOCAL; 19975 } 19976 19977 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19978 /* 19979 * Can't use our source address. Select a different 19980 * source address for the IRE_INTERFACE and IRE_LOCAL 19981 */ 19982 src_ipif = ipif_select_source(ipif->ipif_ill, 19983 ipif->ipif_subnet, ipif->ipif_zoneid); 19984 if (src_ipif == NULL) 19985 src_ipif = ipif; /* Last resort */ 19986 else 19987 src_ipif_held = B_TRUE; 19988 } else { 19989 src_ipif = ipif; 19990 } 19991 19992 /* Create all the IREs associated with this interface */ 19993 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19994 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19995 19996 /* 19997 * If we're on a labeled system then make sure that zone- 19998 * private addresses have proper remote host database entries. 19999 */ 20000 if (is_system_labeled() && 20001 ipif->ipif_ire_type != IRE_LOOPBACK && 20002 !tsol_check_interface_address(ipif)) 20003 return (EINVAL); 20004 20005 /* Register the source address for __sin6_src_id */ 20006 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20007 ipif->ipif_zoneid); 20008 if (err != 0) { 20009 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20010 return (err); 20011 } 20012 20013 /* If the interface address is set, create the local IRE. */ 20014 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20015 (void *)ipif, 20016 ipif->ipif_ire_type, 20017 ntohl(ipif->ipif_lcl_addr))); 20018 *irep++ = ire_create( 20019 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20020 (uchar_t *)&ip_g_all_ones, /* mask */ 20021 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20022 NULL, /* no gateway */ 20023 NULL, 20024 &ip_loopback_mtuplus, /* max frag size */ 20025 NULL, 20026 ipif->ipif_rq, /* recv-from queue */ 20027 NULL, /* no send-to queue */ 20028 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20029 NULL, 20030 ipif, 20031 NULL, 20032 0, 20033 0, 20034 0, 20035 (ipif->ipif_flags & IPIF_PRIVATE) ? 20036 RTF_PRIVATE : 0, 20037 &ire_uinfo_null, 20038 NULL, 20039 NULL); 20040 } else { 20041 ip1dbg(( 20042 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20043 ipif->ipif_ire_type, 20044 ntohl(ipif->ipif_lcl_addr), 20045 (uint_t)ipif->ipif_flags)); 20046 } 20047 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20048 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20049 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20050 } else { 20051 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20052 } 20053 20054 subnet_mask = ipif->ipif_net_mask; 20055 20056 /* 20057 * If mask was not specified, use natural netmask of 20058 * interface address. Also, store this mask back into the 20059 * ipif struct. 20060 */ 20061 if (subnet_mask == 0) { 20062 subnet_mask = net_mask; 20063 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20064 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20065 ipif->ipif_v6subnet); 20066 } 20067 20068 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20069 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20070 ipif->ipif_subnet != INADDR_ANY) { 20071 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20072 20073 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20074 route_mask = IP_HOST_MASK; 20075 } else { 20076 route_mask = subnet_mask; 20077 } 20078 20079 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20080 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20081 (void *)ipif, (void *)ill, 20082 ill->ill_net_type, 20083 ntohl(ipif->ipif_subnet))); 20084 *irep++ = ire_create( 20085 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20086 (uchar_t *)&route_mask, /* mask */ 20087 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20088 NULL, /* no gateway */ 20089 NULL, 20090 &ipif->ipif_mtu, /* max frag */ 20091 NULL, 20092 NULL, /* no recv queue */ 20093 stq, /* send-to queue */ 20094 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20095 ill->ill_resolver_mp, /* xmit header */ 20096 ipif, 20097 NULL, 20098 0, 20099 0, 20100 0, 20101 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20102 &ire_uinfo_null, 20103 NULL, 20104 NULL); 20105 } 20106 20107 /* 20108 * If the interface address is set, create the broadcast IREs. 20109 * 20110 * ire_create_bcast checks if the proposed new IRE matches 20111 * any existing IRE's with the same physical interface (ILL). 20112 * This should get rid of duplicates. 20113 * ire_create_bcast also check IPIF_NOXMIT and does not create 20114 * any broadcast ires. 20115 */ 20116 if ((ipif->ipif_subnet != INADDR_ANY) && 20117 (ipif->ipif_flags & IPIF_BROADCAST)) { 20118 ipaddr_t addr; 20119 20120 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20121 irep = ire_check_and_create_bcast(ipif, 0, irep, 20122 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20123 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20124 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20125 20126 /* 20127 * For backward compatibility, we need to create net 20128 * broadcast ire's based on the old "IP address class 20129 * system." The reason is that some old machines only 20130 * respond to these class derived net broadcast. 20131 * 20132 * But we should not create these net broadcast ire's if 20133 * the subnet_mask is shorter than the IP address class based 20134 * derived netmask. Otherwise, we may create a net 20135 * broadcast address which is the same as an IP address 20136 * on the subnet. Then TCP will refuse to talk to that 20137 * address. 20138 * 20139 * Nor do we need IRE_BROADCAST ire's for the interface 20140 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20141 * interface is already created. Creating these broadcast 20142 * ire's will only create confusion as the "addr" is going 20143 * to be same as that of the IP address of the interface. 20144 */ 20145 if (net_mask < subnet_mask) { 20146 addr = net_mask & ipif->ipif_subnet; 20147 irep = ire_check_and_create_bcast(ipif, addr, irep, 20148 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20149 irep = ire_check_and_create_bcast(ipif, 20150 ~net_mask | addr, irep, 20151 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20152 } 20153 20154 if (subnet_mask != 0xFFFFFFFF) { 20155 addr = ipif->ipif_subnet; 20156 irep = ire_check_and_create_bcast(ipif, addr, irep, 20157 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20158 irep = ire_check_and_create_bcast(ipif, 20159 ~subnet_mask|addr, irep, 20160 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20161 } 20162 } 20163 20164 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20165 20166 /* If an earlier ire_create failed, get out now */ 20167 for (irep1 = irep; irep1 > ire_array; ) { 20168 irep1--; 20169 if (*irep1 == NULL) { 20170 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20171 err = ENOMEM; 20172 goto bad; 20173 } 20174 } 20175 20176 /* 20177 * Need to atomically check for ip_addr_availablity_check 20178 * under ip_addr_avail_lock, and if it fails got bad, and remove 20179 * from group also.The ill_g_lock is grabbed as reader 20180 * just to make sure no new ills or new ipifs are being added 20181 * to the system while we are checking the uniqueness of addresses. 20182 */ 20183 rw_enter(&ill_g_lock, RW_READER); 20184 mutex_enter(&ip_addr_avail_lock); 20185 /* Mark it up, and increment counters. */ 20186 ipif->ipif_flags |= IPIF_UP; 20187 ill->ill_ipif_up_count++; 20188 err = ip_addr_availability_check(ipif); 20189 mutex_exit(&ip_addr_avail_lock); 20190 rw_exit(&ill_g_lock); 20191 20192 if (err != 0) { 20193 /* 20194 * Our address may already be up on the same ill. In this case, 20195 * the ARP entry for our ipif replaced the one for the other 20196 * ipif. So we don't want to delete it (otherwise the other ipif 20197 * would be unable to send packets). 20198 * ip_addr_availability_check() identifies this case for us and 20199 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20200 * which is the expected error code. 20201 */ 20202 if (err == EADDRINUSE) { 20203 freemsg(ipif->ipif_arp_del_mp); 20204 ipif->ipif_arp_del_mp = NULL; 20205 err = EADDRNOTAVAIL; 20206 } 20207 ill->ill_ipif_up_count--; 20208 ipif->ipif_flags &= ~IPIF_UP; 20209 goto bad; 20210 } 20211 20212 /* 20213 * Add in all newly created IREs. ire_create_bcast() has 20214 * already checked for duplicates of the IRE_BROADCAST type. 20215 * We want to add before we call ifgrp_insert which wants 20216 * to know whether IRE_IF_RESOLVER exists or not. 20217 * 20218 * NOTE : We refrele the ire though we may branch to "bad" 20219 * later on where we do ire_delete. This is okay 20220 * because nobody can delete it as we are running 20221 * exclusively. 20222 */ 20223 for (irep1 = irep; irep1 > ire_array; ) { 20224 irep1--; 20225 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20226 /* 20227 * refheld by ire_add. refele towards the end of the func 20228 */ 20229 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20230 } 20231 ire_added = B_TRUE; 20232 /* 20233 * Form groups if possible. 20234 * 20235 * If we are supposed to be in a ill_group with a name, insert it 20236 * now as we know that at least one ipif is UP. Otherwise form 20237 * nameless groups. 20238 * 20239 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20240 * this ipif into the appropriate interface group, or create a 20241 * new one. If this is already in a nameless group, we try to form 20242 * a bigger group looking at other ills potentially sharing this 20243 * ipif's prefix. 20244 */ 20245 phyi = ill->ill_phyint; 20246 if (phyi->phyint_groupname_len != 0) { 20247 ASSERT(phyi->phyint_groupname != NULL); 20248 if (ill->ill_ipif_up_count == 1) { 20249 ASSERT(ill->ill_group == NULL); 20250 err = illgrp_insert(&illgrp_head_v4, ill, 20251 phyi->phyint_groupname, NULL, B_TRUE); 20252 if (err != 0) { 20253 ip1dbg(("ipif_up_done: illgrp allocation " 20254 "failed, error %d\n", err)); 20255 goto bad; 20256 } 20257 } 20258 ASSERT(ill->ill_group != NULL); 20259 } 20260 20261 /* 20262 * When this is part of group, we need to make sure that 20263 * any broadcast ires created because of this ipif coming 20264 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20265 * so that we don't receive duplicate broadcast packets. 20266 */ 20267 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20268 ipif_renominate_bcast(ipif); 20269 20270 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20271 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20272 ipif_saved_irep = ipif_recover_ire(ipif); 20273 20274 if (!loopback) { 20275 /* 20276 * If the broadcast address has been set, make sure it makes 20277 * sense based on the interface address. 20278 * Only match on ill since we are sharing broadcast addresses. 20279 */ 20280 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20281 (ipif->ipif_flags & IPIF_BROADCAST)) { 20282 ire_t *ire; 20283 20284 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20285 IRE_BROADCAST, ipif, ALL_ZONES, 20286 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20287 20288 if (ire == NULL) { 20289 /* 20290 * If there isn't a matching broadcast IRE, 20291 * revert to the default for this netmask. 20292 */ 20293 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20294 mutex_enter(&ipif->ipif_ill->ill_lock); 20295 ipif_set_default(ipif); 20296 mutex_exit(&ipif->ipif_ill->ill_lock); 20297 } else { 20298 ire_refrele(ire); 20299 } 20300 } 20301 20302 } 20303 20304 /* This is the first interface on this ill */ 20305 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20306 /* 20307 * Need to recover all multicast memberships in the driver. 20308 * This had to be deferred until we had attached. 20309 */ 20310 ill_recover_multicast(ill); 20311 } 20312 /* Join the allhosts multicast address */ 20313 ipif_multicast_up(ipif); 20314 20315 if (!loopback) { 20316 /* 20317 * See whether anybody else would benefit from the 20318 * new ipif that we added. We call this always rather 20319 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20320 * ipif is for the benefit of illgrp_insert (done above) 20321 * which does not do source address selection as it does 20322 * not want to re-create interface routes that we are 20323 * having reference to it here. 20324 */ 20325 ill_update_source_selection(ill); 20326 } 20327 20328 for (irep1 = irep; irep1 > ire_array; ) { 20329 irep1--; 20330 if (*irep1 != NULL) { 20331 /* was held in ire_add */ 20332 ire_refrele(*irep1); 20333 } 20334 } 20335 20336 cnt = ipif_saved_ire_cnt; 20337 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20338 if (*irep1 != NULL) { 20339 /* was held in ire_add */ 20340 ire_refrele(*irep1); 20341 } 20342 } 20343 20344 if (!loopback && ipif->ipif_addr_ready) { 20345 /* Broadcast an address mask reply. */ 20346 ipif_mask_reply(ipif); 20347 } 20348 if (ipif_saved_irep != NULL) { 20349 kmem_free(ipif_saved_irep, 20350 ipif_saved_ire_cnt * sizeof (ire_t *)); 20351 } 20352 if (src_ipif_held) 20353 ipif_refrele(src_ipif); 20354 20355 /* 20356 * This had to be deferred until we had bound. Tell routing sockets and 20357 * others that this interface is up if it looks like the address has 20358 * been validated. Otherwise, if it isn't ready yet, wait for 20359 * duplicate address detection to do its thing. 20360 */ 20361 if (ipif->ipif_addr_ready) { 20362 ip_rts_ifmsg(ipif); 20363 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20364 /* Let SCTP update the status for this ipif */ 20365 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20366 } 20367 return (0); 20368 20369 bad: 20370 ip1dbg(("ipif_up_done: FAILED \n")); 20371 /* 20372 * We don't have to bother removing from ill groups because 20373 * 20374 * 1) For groups with names, we insert only when the first ipif 20375 * comes up. In that case if it fails, it will not be in any 20376 * group. So, we need not try to remove for that case. 20377 * 20378 * 2) For groups without names, either we tried to insert ipif_ill 20379 * in a group as singleton or found some other group to become 20380 * a bigger group. For the former, if it fails we don't have 20381 * anything to do as ipif_ill is not in the group and for the 20382 * latter, there are no failures in illgrp_insert/illgrp_delete 20383 * (ENOMEM can't occur for this. Check ifgrp_insert). 20384 */ 20385 while (irep > ire_array) { 20386 irep--; 20387 if (*irep != NULL) { 20388 ire_delete(*irep); 20389 if (ire_added) 20390 ire_refrele(*irep); 20391 } 20392 } 20393 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 20394 20395 if (ipif_saved_irep != NULL) { 20396 kmem_free(ipif_saved_irep, 20397 ipif_saved_ire_cnt * sizeof (ire_t *)); 20398 } 20399 if (src_ipif_held) 20400 ipif_refrele(src_ipif); 20401 20402 ipif_arp_down(ipif); 20403 return (err); 20404 } 20405 20406 /* 20407 * Turn off the ARP with the ILLF_NOARP flag. 20408 */ 20409 static int 20410 ill_arp_off(ill_t *ill) 20411 { 20412 mblk_t *arp_off_mp = NULL; 20413 mblk_t *arp_on_mp = NULL; 20414 20415 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20416 20417 ASSERT(IAM_WRITER_ILL(ill)); 20418 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20419 20420 /* 20421 * If the on message is still around we've already done 20422 * an arp_off without doing an arp_on thus there is no 20423 * work needed. 20424 */ 20425 if (ill->ill_arp_on_mp != NULL) 20426 return (0); 20427 20428 /* 20429 * Allocate an ARP on message (to be saved) and an ARP off message 20430 */ 20431 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20432 if (!arp_off_mp) 20433 return (ENOMEM); 20434 20435 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20436 if (!arp_on_mp) 20437 goto failed; 20438 20439 ASSERT(ill->ill_arp_on_mp == NULL); 20440 ill->ill_arp_on_mp = arp_on_mp; 20441 20442 /* Send an AR_INTERFACE_OFF request */ 20443 putnext(ill->ill_rq, arp_off_mp); 20444 return (0); 20445 failed: 20446 20447 if (arp_off_mp) 20448 freemsg(arp_off_mp); 20449 return (ENOMEM); 20450 } 20451 20452 /* 20453 * Turn on ARP by turning off the ILLF_NOARP flag. 20454 */ 20455 static int 20456 ill_arp_on(ill_t *ill) 20457 { 20458 mblk_t *mp; 20459 20460 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20461 20462 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20463 20464 ASSERT(IAM_WRITER_ILL(ill)); 20465 /* 20466 * Send an AR_INTERFACE_ON request if we have already done 20467 * an arp_off (which allocated the message). 20468 */ 20469 if (ill->ill_arp_on_mp != NULL) { 20470 mp = ill->ill_arp_on_mp; 20471 ill->ill_arp_on_mp = NULL; 20472 putnext(ill->ill_rq, mp); 20473 } 20474 return (0); 20475 } 20476 20477 /* 20478 * Called after either deleting ill from the group or when setting 20479 * FAILED or STANDBY on the interface. 20480 */ 20481 static void 20482 illgrp_reset_schednext(ill_t *ill) 20483 { 20484 ill_group_t *illgrp; 20485 ill_t *save_ill; 20486 20487 ASSERT(IAM_WRITER_ILL(ill)); 20488 /* 20489 * When called from illgrp_delete, ill_group will be non-NULL. 20490 * But when called from ip_sioctl_flags, it could be NULL if 20491 * somebody is setting FAILED/INACTIVE on some interface which 20492 * is not part of a group. 20493 */ 20494 illgrp = ill->ill_group; 20495 if (illgrp == NULL) 20496 return; 20497 if (illgrp->illgrp_ill_schednext != ill) 20498 return; 20499 20500 illgrp->illgrp_ill_schednext = NULL; 20501 save_ill = ill; 20502 /* 20503 * Choose a good ill to be the next one for 20504 * outbound traffic. As the flags FAILED/STANDBY is 20505 * not yet marked when called from ip_sioctl_flags, 20506 * we check for ill separately. 20507 */ 20508 for (ill = illgrp->illgrp_ill; ill != NULL; 20509 ill = ill->ill_group_next) { 20510 if ((ill != save_ill) && 20511 !(ill->ill_phyint->phyint_flags & 20512 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20513 illgrp->illgrp_ill_schednext = ill; 20514 return; 20515 } 20516 } 20517 } 20518 20519 /* 20520 * Given an ill, find the next ill in the group to be scheduled. 20521 * (This should be called by ip_newroute() before ire_create().) 20522 * The passed in ill may be pulled out of the group, after we have picked 20523 * up a different outgoing ill from the same group. However ire add will 20524 * atomically check this. 20525 */ 20526 ill_t * 20527 illgrp_scheduler(ill_t *ill) 20528 { 20529 ill_t *retill; 20530 ill_group_t *illgrp; 20531 int illcnt; 20532 int i; 20533 uint64_t flags; 20534 20535 /* 20536 * We don't use a lock to check for the ill_group. If this ill 20537 * is currently being inserted we may end up just returning this 20538 * ill itself. That is ok. 20539 */ 20540 if (ill->ill_group == NULL) { 20541 ill_refhold(ill); 20542 return (ill); 20543 } 20544 20545 /* 20546 * Grab the ill_g_lock as reader to make sure we are dealing with 20547 * a set of stable ills. No ill can be added or deleted or change 20548 * group while we hold the reader lock. 20549 */ 20550 rw_enter(&ill_g_lock, RW_READER); 20551 if ((illgrp = ill->ill_group) == NULL) { 20552 rw_exit(&ill_g_lock); 20553 ill_refhold(ill); 20554 return (ill); 20555 } 20556 20557 illcnt = illgrp->illgrp_ill_count; 20558 mutex_enter(&illgrp->illgrp_lock); 20559 retill = illgrp->illgrp_ill_schednext; 20560 20561 if (retill == NULL) 20562 retill = illgrp->illgrp_ill; 20563 20564 /* 20565 * We do a circular search beginning at illgrp_ill_schednext 20566 * or illgrp_ill. We don't check the flags against the ill lock 20567 * since it can change anytime. The ire creation will be atomic 20568 * and will fail if the ill is FAILED or OFFLINE. 20569 */ 20570 for (i = 0; i < illcnt; i++) { 20571 flags = retill->ill_phyint->phyint_flags; 20572 20573 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20574 ILL_CAN_LOOKUP(retill)) { 20575 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20576 ill_refhold(retill); 20577 break; 20578 } 20579 retill = retill->ill_group_next; 20580 if (retill == NULL) 20581 retill = illgrp->illgrp_ill; 20582 } 20583 mutex_exit(&illgrp->illgrp_lock); 20584 rw_exit(&ill_g_lock); 20585 20586 return (i == illcnt ? NULL : retill); 20587 } 20588 20589 /* 20590 * Checks for availbility of a usable source address (if there is one) when the 20591 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20592 * this selection is done regardless of the destination. 20593 */ 20594 boolean_t 20595 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20596 { 20597 uint_t ifindex; 20598 ipif_t *ipif = NULL; 20599 ill_t *uill; 20600 boolean_t isv6; 20601 20602 ASSERT(ill != NULL); 20603 20604 isv6 = ill->ill_isv6; 20605 ifindex = ill->ill_usesrc_ifindex; 20606 if (ifindex != 0) { 20607 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20608 NULL); 20609 if (uill == NULL) 20610 return (NULL); 20611 mutex_enter(&uill->ill_lock); 20612 for (ipif = uill->ill_ipif; ipif != NULL; 20613 ipif = ipif->ipif_next) { 20614 if (!IPIF_CAN_LOOKUP(ipif)) 20615 continue; 20616 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20617 continue; 20618 if (!(ipif->ipif_flags & IPIF_UP)) 20619 continue; 20620 if (ipif->ipif_zoneid != zoneid) 20621 continue; 20622 if ((isv6 && 20623 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20624 (ipif->ipif_lcl_addr == INADDR_ANY)) 20625 continue; 20626 mutex_exit(&uill->ill_lock); 20627 ill_refrele(uill); 20628 return (B_TRUE); 20629 } 20630 mutex_exit(&uill->ill_lock); 20631 ill_refrele(uill); 20632 } 20633 return (B_FALSE); 20634 } 20635 20636 /* 20637 * Determine the best source address given a destination address and an ill. 20638 * Prefers non-deprecated over deprecated but will return a deprecated 20639 * address if there is no other choice. If there is a usable source address 20640 * on the interface pointed to by ill_usesrc_ifindex then that is given 20641 * first preference. 20642 * 20643 * Returns NULL if there is no suitable source address for the ill. 20644 * This only occurs when there is no valid source address for the ill. 20645 */ 20646 ipif_t * 20647 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20648 { 20649 ipif_t *ipif; 20650 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20651 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20652 int index = 0; 20653 boolean_t wrapped = B_FALSE; 20654 boolean_t same_subnet_only = B_FALSE; 20655 boolean_t ipif_same_found, ipif_other_found; 20656 boolean_t specific_found; 20657 ill_t *till, *usill = NULL; 20658 tsol_tpc_t *src_rhtp, *dst_rhtp; 20659 20660 if (ill->ill_usesrc_ifindex != 0) { 20661 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20662 NULL, NULL, NULL, NULL); 20663 if (usill != NULL) 20664 ill = usill; /* Select source from usesrc ILL */ 20665 else 20666 return (NULL); 20667 } 20668 20669 /* 20670 * If we're dealing with an unlabeled destination on a labeled system, 20671 * make sure that we ignore source addresses that are incompatible with 20672 * the destination's default label. That destination's default label 20673 * must dominate the minimum label on the source address. 20674 */ 20675 dst_rhtp = NULL; 20676 if (is_system_labeled()) { 20677 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20678 if (dst_rhtp == NULL) 20679 return (NULL); 20680 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20681 TPC_RELE(dst_rhtp); 20682 dst_rhtp = NULL; 20683 } 20684 } 20685 20686 /* 20687 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20688 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20689 * After selecting the right ipif, under ill_lock make sure ipif is 20690 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20691 * we retry. Inside the loop we still need to check for CONDEMNED, 20692 * but not under a lock. 20693 */ 20694 rw_enter(&ill_g_lock, RW_READER); 20695 20696 retry: 20697 till = ill; 20698 ipif_arr[0] = NULL; 20699 20700 if (till->ill_group != NULL) 20701 till = till->ill_group->illgrp_ill; 20702 20703 /* 20704 * Choose one good source address from each ill across the group. 20705 * If possible choose a source address in the same subnet as 20706 * the destination address. 20707 * 20708 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20709 * This is okay because of the following. 20710 * 20711 * If PHYI_FAILED is set and we still have non-deprecated 20712 * addresses, it means the addresses have not yet been 20713 * failed over to a different interface. We potentially 20714 * select them to create IRE_CACHES, which will be later 20715 * flushed when the addresses move over. 20716 * 20717 * If PHYI_INACTIVE is set and we still have non-deprecated 20718 * addresses, it means either the user has configured them 20719 * or PHYI_INACTIVE has not been cleared after the addresses 20720 * been moved over. For the former, in.mpathd does a failover 20721 * when the interface becomes INACTIVE and hence we should 20722 * not find them. Once INACTIVE is set, we don't allow them 20723 * to create logical interfaces anymore. For the latter, a 20724 * flush will happen when INACTIVE is cleared which will 20725 * flush the IRE_CACHES. 20726 * 20727 * If PHYI_OFFLINE is set, all the addresses will be failed 20728 * over soon. We potentially select them to create IRE_CACHEs, 20729 * which will be later flushed when the addresses move over. 20730 * 20731 * NOTE : As ipif_select_source is called to borrow source address 20732 * for an ipif that is part of a group, source address selection 20733 * will be re-done whenever the group changes i.e either an 20734 * insertion/deletion in the group. 20735 * 20736 * Fill ipif_arr[] with source addresses, using these rules: 20737 * 20738 * 1. At most one source address from a given ill ends up 20739 * in ipif_arr[] -- that is, at most one of the ipif's 20740 * associated with a given ill ends up in ipif_arr[]. 20741 * 20742 * 2. If there is at least one non-deprecated ipif in the 20743 * IPMP group with a source address on the same subnet as 20744 * our destination, then fill ipif_arr[] only with 20745 * source addresses on the same subnet as our destination. 20746 * Note that because of (1), only the first 20747 * non-deprecated ipif found with a source address 20748 * matching the destination ends up in ipif_arr[]. 20749 * 20750 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20751 * addresses not in the same subnet as our destination. 20752 * Again, because of (1), only the first off-subnet source 20753 * address will be chosen. 20754 * 20755 * 4. If there are no non-deprecated ipifs, then just use 20756 * the source address associated with the last deprecated 20757 * one we find that happens to be on the same subnet, 20758 * otherwise the first one not in the same subnet. 20759 */ 20760 specific_found = B_FALSE; 20761 for (; till != NULL; till = till->ill_group_next) { 20762 ipif_same_found = B_FALSE; 20763 ipif_other_found = B_FALSE; 20764 for (ipif = till->ill_ipif; ipif != NULL; 20765 ipif = ipif->ipif_next) { 20766 if (!IPIF_CAN_LOOKUP(ipif)) 20767 continue; 20768 /* Always skip NOLOCAL and ANYCAST interfaces */ 20769 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20770 continue; 20771 if (!(ipif->ipif_flags & IPIF_UP) || 20772 !ipif->ipif_addr_ready) 20773 continue; 20774 if (ipif->ipif_zoneid != zoneid && 20775 ipif->ipif_zoneid != ALL_ZONES) 20776 continue; 20777 /* 20778 * Interfaces with 0.0.0.0 address are allowed to be UP, 20779 * but are not valid as source addresses. 20780 */ 20781 if (ipif->ipif_lcl_addr == INADDR_ANY) 20782 continue; 20783 20784 /* 20785 * Check compatibility of local address for 20786 * destination's default label if we're on a labeled 20787 * system. Incompatible addresses can't be used at 20788 * all. 20789 */ 20790 if (dst_rhtp != NULL) { 20791 boolean_t incompat; 20792 20793 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20794 IPV4_VERSION, B_FALSE); 20795 if (src_rhtp == NULL) 20796 continue; 20797 incompat = 20798 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20799 src_rhtp->tpc_tp.tp_doi != 20800 dst_rhtp->tpc_tp.tp_doi || 20801 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20802 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20803 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20804 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20805 TPC_RELE(src_rhtp); 20806 if (incompat) 20807 continue; 20808 } 20809 20810 /* 20811 * We prefer not to use all all-zones addresses, if we 20812 * can avoid it, as they pose problems with unlabeled 20813 * destinations. 20814 */ 20815 if (ipif->ipif_zoneid != ALL_ZONES) { 20816 if (!specific_found && 20817 (!same_subnet_only || 20818 (ipif->ipif_net_mask & dst) == 20819 ipif->ipif_subnet)) { 20820 index = 0; 20821 specific_found = B_TRUE; 20822 ipif_other_found = B_FALSE; 20823 } 20824 } else { 20825 if (specific_found) 20826 continue; 20827 } 20828 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20829 if (ipif_dep == NULL || 20830 (ipif->ipif_net_mask & dst) == 20831 ipif->ipif_subnet) 20832 ipif_dep = ipif; 20833 continue; 20834 } 20835 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20836 /* found a source address in the same subnet */ 20837 if (!same_subnet_only) { 20838 same_subnet_only = B_TRUE; 20839 index = 0; 20840 } 20841 ipif_same_found = B_TRUE; 20842 } else { 20843 if (same_subnet_only || ipif_other_found) 20844 continue; 20845 ipif_other_found = B_TRUE; 20846 } 20847 ipif_arr[index++] = ipif; 20848 if (index == MAX_IPIF_SELECT_SOURCE) { 20849 wrapped = B_TRUE; 20850 index = 0; 20851 } 20852 if (ipif_same_found) 20853 break; 20854 } 20855 } 20856 20857 if (ipif_arr[0] == NULL) { 20858 ipif = ipif_dep; 20859 } else { 20860 if (wrapped) 20861 index = MAX_IPIF_SELECT_SOURCE; 20862 ipif = ipif_arr[ipif_rand() % index]; 20863 ASSERT(ipif != NULL); 20864 } 20865 20866 if (ipif != NULL) { 20867 mutex_enter(&ipif->ipif_ill->ill_lock); 20868 if (!IPIF_CAN_LOOKUP(ipif)) { 20869 mutex_exit(&ipif->ipif_ill->ill_lock); 20870 goto retry; 20871 } 20872 ipif_refhold_locked(ipif); 20873 mutex_exit(&ipif->ipif_ill->ill_lock); 20874 } 20875 20876 rw_exit(&ill_g_lock); 20877 if (usill != NULL) 20878 ill_refrele(usill); 20879 if (dst_rhtp != NULL) 20880 TPC_RELE(dst_rhtp); 20881 20882 #ifdef DEBUG 20883 if (ipif == NULL) { 20884 char buf1[INET6_ADDRSTRLEN]; 20885 20886 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20887 ill->ill_name, 20888 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20889 } else { 20890 char buf1[INET6_ADDRSTRLEN]; 20891 char buf2[INET6_ADDRSTRLEN]; 20892 20893 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20894 ipif->ipif_ill->ill_name, 20895 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20896 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20897 buf2, sizeof (buf2)))); 20898 } 20899 #endif /* DEBUG */ 20900 return (ipif); 20901 } 20902 20903 20904 /* 20905 * If old_ipif is not NULL, see if ipif was derived from old 20906 * ipif and if so, recreate the interface route by re-doing 20907 * source address selection. This happens when ipif_down -> 20908 * ipif_update_other_ipifs calls us. 20909 * 20910 * If old_ipif is NULL, just redo the source address selection 20911 * if needed. This happens when illgrp_insert or ipif_up_done 20912 * calls us. 20913 */ 20914 static void 20915 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20916 { 20917 ire_t *ire; 20918 ire_t *ipif_ire; 20919 queue_t *stq; 20920 ipif_t *nipif; 20921 ill_t *ill; 20922 boolean_t need_rele = B_FALSE; 20923 20924 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20925 ASSERT(IAM_WRITER_IPIF(ipif)); 20926 20927 ill = ipif->ipif_ill; 20928 if (!(ipif->ipif_flags & 20929 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20930 /* 20931 * Can't possibly have borrowed the source 20932 * from old_ipif. 20933 */ 20934 return; 20935 } 20936 20937 /* 20938 * Is there any work to be done? No work if the address 20939 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20940 * ipif_select_source() does not borrow addresses from 20941 * NOLOCAL and ANYCAST interfaces). 20942 */ 20943 if ((old_ipif != NULL) && 20944 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20945 (old_ipif->ipif_ill->ill_wq == NULL) || 20946 (old_ipif->ipif_flags & 20947 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20948 return; 20949 } 20950 20951 /* 20952 * Perform the same checks as when creating the 20953 * IRE_INTERFACE in ipif_up_done. 20954 */ 20955 if (!(ipif->ipif_flags & IPIF_UP)) 20956 return; 20957 20958 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20959 (ipif->ipif_subnet == INADDR_ANY)) 20960 return; 20961 20962 ipif_ire = ipif_to_ire(ipif); 20963 if (ipif_ire == NULL) 20964 return; 20965 20966 /* 20967 * We know that ipif uses some other source for its 20968 * IRE_INTERFACE. Is it using the source of this 20969 * old_ipif? 20970 */ 20971 if (old_ipif != NULL && 20972 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20973 ire_refrele(ipif_ire); 20974 return; 20975 } 20976 if (ip_debug > 2) { 20977 /* ip1dbg */ 20978 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20979 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20980 } 20981 20982 stq = ipif_ire->ire_stq; 20983 20984 /* 20985 * Can't use our source address. Select a different 20986 * source address for the IRE_INTERFACE. 20987 */ 20988 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20989 if (nipif == NULL) { 20990 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20991 nipif = ipif; 20992 } else { 20993 need_rele = B_TRUE; 20994 } 20995 20996 ire = ire_create( 20997 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20998 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20999 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21000 NULL, /* no gateway */ 21001 NULL, 21002 &ipif->ipif_mtu, /* max frag */ 21003 NULL, /* fast path header */ 21004 NULL, /* no recv from queue */ 21005 stq, /* send-to queue */ 21006 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21007 ill->ill_resolver_mp, /* xmit header */ 21008 ipif, 21009 NULL, 21010 0, 21011 0, 21012 0, 21013 0, 21014 &ire_uinfo_null, 21015 NULL, 21016 NULL); 21017 21018 if (ire != NULL) { 21019 ire_t *ret_ire; 21020 int error; 21021 21022 /* 21023 * We don't need ipif_ire anymore. We need to delete 21024 * before we add so that ire_add does not detect 21025 * duplicates. 21026 */ 21027 ire_delete(ipif_ire); 21028 ret_ire = ire; 21029 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21030 ASSERT(error == 0); 21031 ASSERT(ire == ret_ire); 21032 /* Held in ire_add */ 21033 ire_refrele(ret_ire); 21034 } 21035 /* 21036 * Either we are falling through from above or could not 21037 * allocate a replacement. 21038 */ 21039 ire_refrele(ipif_ire); 21040 if (need_rele) 21041 ipif_refrele(nipif); 21042 } 21043 21044 /* 21045 * This old_ipif is going away. 21046 * 21047 * Determine if any other ipif's is using our address as 21048 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21049 * IPIF_DEPRECATED). 21050 * Find the IRE_INTERFACE for such ipifs and recreate them 21051 * to use an different source address following the rules in 21052 * ipif_up_done. 21053 * 21054 * This function takes an illgrp as an argument so that illgrp_delete 21055 * can call this to update source address even after deleting the 21056 * old_ipif->ipif_ill from the ill group. 21057 */ 21058 static void 21059 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21060 { 21061 ipif_t *ipif; 21062 ill_t *ill; 21063 char buf[INET6_ADDRSTRLEN]; 21064 21065 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21066 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21067 21068 ill = old_ipif->ipif_ill; 21069 21070 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21071 ill->ill_name, 21072 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21073 buf, sizeof (buf)))); 21074 /* 21075 * If this part of a group, look at all ills as ipif_select_source 21076 * borrows source address across all the ills in the group. 21077 */ 21078 if (illgrp != NULL) 21079 ill = illgrp->illgrp_ill; 21080 21081 for (; ill != NULL; ill = ill->ill_group_next) { 21082 for (ipif = ill->ill_ipif; ipif != NULL; 21083 ipif = ipif->ipif_next) { 21084 21085 if (ipif == old_ipif) 21086 continue; 21087 21088 ipif_recreate_interface_routes(old_ipif, ipif); 21089 } 21090 } 21091 } 21092 21093 /* ARGSUSED */ 21094 int 21095 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21096 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21097 { 21098 /* 21099 * ill_phyint_reinit merged the v4 and v6 into a single 21100 * ipsq. Could also have become part of a ipmp group in the 21101 * process, and we might not have been able to complete the 21102 * operation in ipif_set_values, if we could not become 21103 * exclusive. If so restart it here. 21104 */ 21105 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21106 } 21107 21108 21109 /* ARGSUSED */ 21110 int 21111 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21112 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21113 { 21114 queue_t *q1 = q; 21115 char *cp; 21116 char interf_name[LIFNAMSIZ]; 21117 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21118 21119 if (!q->q_next) { 21120 ip1dbg(( 21121 "if_unitsel: IF_UNITSEL: no q_next\n")); 21122 return (EINVAL); 21123 } 21124 21125 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21126 return (EALREADY); 21127 21128 do { 21129 q1 = q1->q_next; 21130 } while (q1->q_next); 21131 cp = q1->q_qinfo->qi_minfo->mi_idname; 21132 (void) sprintf(interf_name, "%s%d", cp, ppa); 21133 21134 /* 21135 * Here we are not going to delay the ioack until after 21136 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21137 * original ioctl message before sending the requests. 21138 */ 21139 return (ipif_set_values(q, mp, interf_name, &ppa)); 21140 } 21141 21142 /* ARGSUSED */ 21143 int 21144 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21145 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21146 { 21147 return (ENXIO); 21148 } 21149 21150 /* 21151 * Net and subnet broadcast ire's are now specific to the particular 21152 * physical interface (ill) and not to any one locigal interface (ipif). 21153 * However, if a particular logical interface is being taken down, it's 21154 * associated ire's will be taken down as well. Hence, when we go to 21155 * take down or change the local address, broadcast address or netmask 21156 * of a specific logical interface, we must check to make sure that we 21157 * have valid net and subnet broadcast ire's for the other logical 21158 * interfaces which may have been shared with the logical interface 21159 * being brought down or changed. 21160 * 21161 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21162 * is tied to the first interface coming UP. If that ipif is going down, 21163 * we need to recreate them on the next valid ipif. 21164 * 21165 * Note: assume that the ipif passed in is still up so that it's IRE 21166 * entries are still valid. 21167 */ 21168 static void 21169 ipif_check_bcast_ires(ipif_t *test_ipif) 21170 { 21171 ipif_t *ipif; 21172 ire_t *test_subnet_ire, *test_net_ire; 21173 ire_t *test_allzero_ire, *test_allone_ire; 21174 ire_t *ire_array[12]; 21175 ire_t **irep = &ire_array[0]; 21176 ire_t **irep1; 21177 21178 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21179 ipaddr_t test_net_addr, test_subnet_addr; 21180 ipaddr_t test_net_mask, test_subnet_mask; 21181 boolean_t need_net_bcast_ire = B_FALSE; 21182 boolean_t need_subnet_bcast_ire = B_FALSE; 21183 boolean_t allzero_bcast_ire_created = B_FALSE; 21184 boolean_t allone_bcast_ire_created = B_FALSE; 21185 boolean_t net_bcast_ire_created = B_FALSE; 21186 boolean_t subnet_bcast_ire_created = B_FALSE; 21187 21188 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21189 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21190 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21191 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21192 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21193 21194 ASSERT(!test_ipif->ipif_isv6); 21195 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21196 21197 /* 21198 * No broadcast IREs for the LOOPBACK interface 21199 * or others such as point to point and IPIF_NOXMIT. 21200 */ 21201 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21202 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21203 return; 21204 21205 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21206 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21207 21208 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21209 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21210 21211 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21212 test_subnet_mask = test_ipif->ipif_net_mask; 21213 21214 /* 21215 * If no net mask set, assume the default based on net class. 21216 */ 21217 if (test_subnet_mask == 0) 21218 test_subnet_mask = test_net_mask; 21219 21220 /* 21221 * Check if there is a network broadcast ire associated with this ipif 21222 */ 21223 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21224 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21225 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21226 21227 /* 21228 * Check if there is a subnet broadcast IRE associated with this ipif 21229 */ 21230 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21231 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21232 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21233 21234 /* 21235 * No broadcast ire's associated with this ipif. 21236 */ 21237 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21238 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21239 return; 21240 } 21241 21242 /* 21243 * We have established which bcast ires have to be replaced. 21244 * Next we try to locate ipifs that match there ires. 21245 * The rules are simple: If we find an ipif that matches on the subnet 21246 * address it will also match on the net address, the allzeros and 21247 * allones address. Any ipif that matches only on the net address will 21248 * also match the allzeros and allones addresses. 21249 * The other criterion is the ipif_flags. We look for non-deprecated 21250 * (and non-anycast and non-nolocal) ipifs as the best choice. 21251 * ipifs with check_flags matching (deprecated, etc) are used only 21252 * if good ipifs are not available. While looping, we save existing 21253 * deprecated ipifs as backup_ipif. 21254 * We loop through all the ipifs for this ill looking for ipifs 21255 * whose broadcast addr match the ipif passed in, but do not have 21256 * their own broadcast ires. For creating 0.0.0.0 and 21257 * 255.255.255.255 we just need an ipif on this ill to create. 21258 */ 21259 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21260 ipif = ipif->ipif_next) { 21261 21262 ASSERT(!ipif->ipif_isv6); 21263 /* 21264 * Already checked the ipif passed in. 21265 */ 21266 if (ipif == test_ipif) { 21267 continue; 21268 } 21269 21270 /* 21271 * We only need to recreate broadcast ires if another ipif in 21272 * the same zone uses them. The new ires must be created in the 21273 * same zone. 21274 */ 21275 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21276 continue; 21277 } 21278 21279 /* 21280 * Only interested in logical interfaces with valid local 21281 * addresses or with the ability to broadcast. 21282 */ 21283 if ((ipif->ipif_subnet == 0) || 21284 !(ipif->ipif_flags & IPIF_BROADCAST) || 21285 (ipif->ipif_flags & IPIF_NOXMIT) || 21286 !(ipif->ipif_flags & IPIF_UP)) { 21287 continue; 21288 } 21289 /* 21290 * Check if there is a net broadcast ire for this 21291 * net address. If it turns out that the ipif we are 21292 * about to take down owns this ire, we must make a 21293 * new one because it is potentially going away. 21294 */ 21295 if (test_net_ire && (!net_bcast_ire_created)) { 21296 net_mask = ip_net_mask(ipif->ipif_subnet); 21297 net_addr = net_mask & ipif->ipif_subnet; 21298 if (net_addr == test_net_addr) { 21299 need_net_bcast_ire = B_TRUE; 21300 /* 21301 * Use DEPRECATED ipif only if no good 21302 * ires are available. subnet_addr is 21303 * a better match than net_addr. 21304 */ 21305 if ((ipif->ipif_flags & check_flags) && 21306 (backup_ipif_net == NULL)) { 21307 backup_ipif_net = ipif; 21308 } 21309 } 21310 } 21311 /* 21312 * Check if there is a subnet broadcast ire for this 21313 * net address. If it turns out that the ipif we are 21314 * about to take down owns this ire, we must make a 21315 * new one because it is potentially going away. 21316 */ 21317 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21318 subnet_mask = ipif->ipif_net_mask; 21319 subnet_addr = ipif->ipif_subnet; 21320 if (subnet_addr == test_subnet_addr) { 21321 need_subnet_bcast_ire = B_TRUE; 21322 if ((ipif->ipif_flags & check_flags) && 21323 (backup_ipif_subnet == NULL)) { 21324 backup_ipif_subnet = ipif; 21325 } 21326 } 21327 } 21328 21329 21330 /* Short circuit here if this ipif is deprecated */ 21331 if (ipif->ipif_flags & check_flags) { 21332 if ((test_allzero_ire != NULL) && 21333 (!allzero_bcast_ire_created) && 21334 (backup_ipif_allzeros == NULL)) { 21335 backup_ipif_allzeros = ipif; 21336 } 21337 if ((test_allone_ire != NULL) && 21338 (!allone_bcast_ire_created) && 21339 (backup_ipif_allones == NULL)) { 21340 backup_ipif_allones = ipif; 21341 } 21342 continue; 21343 } 21344 21345 /* 21346 * Found an ipif which has the same broadcast ire as the 21347 * ipif passed in and the ipif passed in "owns" the ire. 21348 * Create new broadcast ire's for this broadcast addr. 21349 */ 21350 if (need_net_bcast_ire && !net_bcast_ire_created) { 21351 irep = ire_create_bcast(ipif, net_addr, irep); 21352 irep = ire_create_bcast(ipif, 21353 ~net_mask | net_addr, irep); 21354 net_bcast_ire_created = B_TRUE; 21355 } 21356 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21357 irep = ire_create_bcast(ipif, subnet_addr, irep); 21358 irep = ire_create_bcast(ipif, 21359 ~subnet_mask | subnet_addr, irep); 21360 subnet_bcast_ire_created = B_TRUE; 21361 } 21362 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21363 irep = ire_create_bcast(ipif, 0, irep); 21364 allzero_bcast_ire_created = B_TRUE; 21365 } 21366 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21367 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21368 allone_bcast_ire_created = B_TRUE; 21369 } 21370 /* 21371 * Once we have created all the appropriate ires, we 21372 * just break out of this loop to add what we have created. 21373 * This has been indented similar to ire_match_args for 21374 * readability. 21375 */ 21376 if (((test_net_ire == NULL) || 21377 (net_bcast_ire_created)) && 21378 ((test_subnet_ire == NULL) || 21379 (subnet_bcast_ire_created)) && 21380 ((test_allzero_ire == NULL) || 21381 (allzero_bcast_ire_created)) && 21382 ((test_allone_ire == NULL) || 21383 (allone_bcast_ire_created))) { 21384 break; 21385 } 21386 } 21387 21388 /* 21389 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21390 * exist. 6 pairs of bcast ires are needed. 21391 * Note - the old ires are deleted in ipif_down. 21392 */ 21393 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21394 ipif = backup_ipif_net; 21395 irep = ire_create_bcast(ipif, net_addr, irep); 21396 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21397 net_bcast_ire_created = B_TRUE; 21398 } 21399 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21400 backup_ipif_subnet) { 21401 ipif = backup_ipif_subnet; 21402 irep = ire_create_bcast(ipif, subnet_addr, irep); 21403 irep = ire_create_bcast(ipif, 21404 ~subnet_mask | subnet_addr, irep); 21405 subnet_bcast_ire_created = B_TRUE; 21406 } 21407 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21408 backup_ipif_allzeros) { 21409 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21410 allzero_bcast_ire_created = B_TRUE; 21411 } 21412 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21413 backup_ipif_allones) { 21414 irep = ire_create_bcast(backup_ipif_allones, 21415 INADDR_BROADCAST, irep); 21416 allone_bcast_ire_created = B_TRUE; 21417 } 21418 21419 /* 21420 * If we can't create all of them, don't add any of them. 21421 * Code in ip_wput_ire and ire_to_ill assumes that we 21422 * always have a non-loopback copy and loopback copy 21423 * for a given address. 21424 */ 21425 for (irep1 = irep; irep1 > ire_array; ) { 21426 irep1--; 21427 if (*irep1 == NULL) { 21428 ip0dbg(("ipif_check_bcast_ires: can't create " 21429 "IRE_BROADCAST, memory allocation failure\n")); 21430 while (irep > ire_array) { 21431 irep--; 21432 if (*irep != NULL) 21433 ire_delete(*irep); 21434 } 21435 goto bad; 21436 } 21437 } 21438 for (irep1 = irep; irep1 > ire_array; ) { 21439 int error; 21440 21441 irep1--; 21442 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21443 if (error == 0) { 21444 ire_refrele(*irep1); /* Held in ire_add */ 21445 } 21446 } 21447 bad: 21448 if (test_allzero_ire != NULL) 21449 ire_refrele(test_allzero_ire); 21450 if (test_allone_ire != NULL) 21451 ire_refrele(test_allone_ire); 21452 if (test_net_ire != NULL) 21453 ire_refrele(test_net_ire); 21454 if (test_subnet_ire != NULL) 21455 ire_refrele(test_subnet_ire); 21456 } 21457 21458 /* 21459 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21460 * from lifr_flags and the name from lifr_name. 21461 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21462 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21463 * Returns EINPROGRESS when mp has been consumed by queueing it on 21464 * ill_pending_mp and the ioctl will complete in ip_rput. 21465 */ 21466 /* ARGSUSED */ 21467 int 21468 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21469 ip_ioctl_cmd_t *ipip, void *if_req) 21470 { 21471 int err; 21472 ill_t *ill; 21473 struct lifreq *lifr = (struct lifreq *)if_req; 21474 21475 ASSERT(ipif != NULL); 21476 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21477 ASSERT(q->q_next != NULL); 21478 21479 ill = (ill_t *)q->q_ptr; 21480 /* 21481 * If we are not writer on 'q' then this interface exists already 21482 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21483 * So return EALREADY 21484 */ 21485 if (ill != ipif->ipif_ill) 21486 return (EALREADY); 21487 21488 if (ill->ill_name[0] != '\0') 21489 return (EALREADY); 21490 21491 /* 21492 * Set all the flags. Allows all kinds of override. Provide some 21493 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21494 * unless there is either multicast/broadcast support in the driver 21495 * or it is a pt-pt link. 21496 */ 21497 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21498 /* Meaningless to IP thus don't allow them to be set. */ 21499 ip1dbg(("ip_setname: EINVAL 1\n")); 21500 return (EINVAL); 21501 } 21502 /* 21503 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21504 * ill_bcast_addr_length info. 21505 */ 21506 if (!ill->ill_needs_attach && 21507 ((lifr->lifr_flags & IFF_MULTICAST) && 21508 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21509 ill->ill_bcast_addr_length == 0)) { 21510 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21511 ip1dbg(("ip_setname: EINVAL 2\n")); 21512 return (EINVAL); 21513 } 21514 if ((lifr->lifr_flags & IFF_BROADCAST) && 21515 ((lifr->lifr_flags & IFF_IPV6) || 21516 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21517 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21518 ip1dbg(("ip_setname: EINVAL 3\n")); 21519 return (EINVAL); 21520 } 21521 if (lifr->lifr_flags & IFF_UP) { 21522 /* Can only be set with SIOCSLIFFLAGS */ 21523 ip1dbg(("ip_setname: EINVAL 4\n")); 21524 return (EINVAL); 21525 } 21526 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21527 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21528 ip1dbg(("ip_setname: EINVAL 5\n")); 21529 return (EINVAL); 21530 } 21531 /* 21532 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21533 */ 21534 if ((lifr->lifr_flags & IFF_XRESOLV) && 21535 !(lifr->lifr_flags & IFF_IPV6) && 21536 !(ipif->ipif_isv6)) { 21537 ip1dbg(("ip_setname: EINVAL 6\n")); 21538 return (EINVAL); 21539 } 21540 21541 /* 21542 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21543 * we have all the flags here. So, we assign rather than we OR. 21544 * We can't OR the flags here because we don't want to set 21545 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21546 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21547 * on lifr_flags value here. 21548 */ 21549 /* 21550 * This ill has not been inserted into the global list. 21551 * So we are still single threaded and don't need any lock 21552 */ 21553 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21554 ~IFF_DUPLICATE; 21555 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21556 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21557 21558 /* We started off as V4. */ 21559 if (ill->ill_flags & ILLF_IPV6) { 21560 ill->ill_phyint->phyint_illv6 = ill; 21561 ill->ill_phyint->phyint_illv4 = NULL; 21562 } 21563 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21564 return (err); 21565 } 21566 21567 /* ARGSUSED */ 21568 int 21569 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21570 ip_ioctl_cmd_t *ipip, void *if_req) 21571 { 21572 /* 21573 * ill_phyint_reinit merged the v4 and v6 into a single 21574 * ipsq. Could also have become part of a ipmp group in the 21575 * process, and we might not have been able to complete the 21576 * slifname in ipif_set_values, if we could not become 21577 * exclusive. If so restart it here 21578 */ 21579 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21580 } 21581 21582 /* 21583 * Return a pointer to the ipif which matches the index, IP version type and 21584 * zoneid. 21585 */ 21586 ipif_t * 21587 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21588 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21589 { 21590 ill_t *ill; 21591 ipsq_t *ipsq; 21592 phyint_t *phyi; 21593 ipif_t *ipif; 21594 21595 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21596 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21597 21598 if (err != NULL) 21599 *err = 0; 21600 21601 /* 21602 * Indexes are stored in the phyint - a common structure 21603 * to both IPv4 and IPv6. 21604 */ 21605 21606 rw_enter(&ill_g_lock, RW_READER); 21607 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21608 (void *) &index, NULL); 21609 if (phyi != NULL) { 21610 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21611 if (ill == NULL) { 21612 rw_exit(&ill_g_lock); 21613 if (err != NULL) 21614 *err = ENXIO; 21615 return (NULL); 21616 } 21617 GRAB_CONN_LOCK(q); 21618 mutex_enter(&ill->ill_lock); 21619 if (ILL_CAN_LOOKUP(ill)) { 21620 for (ipif = ill->ill_ipif; ipif != NULL; 21621 ipif = ipif->ipif_next) { 21622 if (IPIF_CAN_LOOKUP(ipif) && 21623 (zoneid == ALL_ZONES || 21624 zoneid == ipif->ipif_zoneid || 21625 ipif->ipif_zoneid == ALL_ZONES)) { 21626 ipif_refhold_locked(ipif); 21627 mutex_exit(&ill->ill_lock); 21628 RELEASE_CONN_LOCK(q); 21629 rw_exit(&ill_g_lock); 21630 return (ipif); 21631 } 21632 } 21633 } else if (ILL_CAN_WAIT(ill, q)) { 21634 ipsq = ill->ill_phyint->phyint_ipsq; 21635 mutex_enter(&ipsq->ipsq_lock); 21636 rw_exit(&ill_g_lock); 21637 mutex_exit(&ill->ill_lock); 21638 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21639 mutex_exit(&ipsq->ipsq_lock); 21640 RELEASE_CONN_LOCK(q); 21641 *err = EINPROGRESS; 21642 return (NULL); 21643 } 21644 mutex_exit(&ill->ill_lock); 21645 RELEASE_CONN_LOCK(q); 21646 } 21647 rw_exit(&ill_g_lock); 21648 if (err != NULL) 21649 *err = ENXIO; 21650 return (NULL); 21651 } 21652 21653 typedef struct conn_change_s { 21654 uint_t cc_old_ifindex; 21655 uint_t cc_new_ifindex; 21656 } conn_change_t; 21657 21658 /* 21659 * ipcl_walk function for changing interface index. 21660 */ 21661 static void 21662 conn_change_ifindex(conn_t *connp, caddr_t arg) 21663 { 21664 conn_change_t *connc; 21665 uint_t old_ifindex; 21666 uint_t new_ifindex; 21667 int i; 21668 ilg_t *ilg; 21669 21670 connc = (conn_change_t *)arg; 21671 old_ifindex = connc->cc_old_ifindex; 21672 new_ifindex = connc->cc_new_ifindex; 21673 21674 if (connp->conn_orig_bound_ifindex == old_ifindex) 21675 connp->conn_orig_bound_ifindex = new_ifindex; 21676 21677 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21678 connp->conn_orig_multicast_ifindex = new_ifindex; 21679 21680 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21681 connp->conn_orig_xmit_ifindex = new_ifindex; 21682 21683 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21684 ilg = &connp->conn_ilg[i]; 21685 if (ilg->ilg_orig_ifindex == old_ifindex) 21686 ilg->ilg_orig_ifindex = new_ifindex; 21687 } 21688 } 21689 21690 /* 21691 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21692 * to new_index if it matches the old_index. 21693 * 21694 * Failovers typically happen within a group of ills. But somebody 21695 * can remove an ill from the group after a failover happened. If 21696 * we are setting the ifindex after this, we potentially need to 21697 * look at all the ills rather than just the ones in the group. 21698 * We cut down the work by looking at matching ill_net_types 21699 * and ill_types as we could not possibly grouped them together. 21700 */ 21701 static void 21702 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21703 { 21704 ill_t *ill; 21705 ipif_t *ipif; 21706 uint_t old_ifindex; 21707 uint_t new_ifindex; 21708 ilm_t *ilm; 21709 ill_walk_context_t ctx; 21710 21711 old_ifindex = connc->cc_old_ifindex; 21712 new_ifindex = connc->cc_new_ifindex; 21713 21714 rw_enter(&ill_g_lock, RW_READER); 21715 ill = ILL_START_WALK_ALL(&ctx); 21716 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21717 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21718 (ill_orig->ill_type != ill->ill_type)) { 21719 continue; 21720 } 21721 for (ipif = ill->ill_ipif; ipif != NULL; 21722 ipif = ipif->ipif_next) { 21723 if (ipif->ipif_orig_ifindex == old_ifindex) 21724 ipif->ipif_orig_ifindex = new_ifindex; 21725 } 21726 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21727 if (ilm->ilm_orig_ifindex == old_ifindex) 21728 ilm->ilm_orig_ifindex = new_ifindex; 21729 } 21730 } 21731 rw_exit(&ill_g_lock); 21732 } 21733 21734 /* 21735 * We first need to ensure that the new index is unique, and 21736 * then carry the change across both v4 and v6 ill representation 21737 * of the physical interface. 21738 */ 21739 /* ARGSUSED */ 21740 int 21741 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21742 ip_ioctl_cmd_t *ipip, void *ifreq) 21743 { 21744 ill_t *ill; 21745 ill_t *ill_other; 21746 phyint_t *phyi; 21747 int old_index; 21748 conn_change_t connc; 21749 struct ifreq *ifr = (struct ifreq *)ifreq; 21750 struct lifreq *lifr = (struct lifreq *)ifreq; 21751 uint_t index; 21752 ill_t *ill_v4; 21753 ill_t *ill_v6; 21754 21755 if (ipip->ipi_cmd_type == IF_CMD) 21756 index = ifr->ifr_index; 21757 else 21758 index = lifr->lifr_index; 21759 21760 /* 21761 * Only allow on physical interface. Also, index zero is illegal. 21762 * 21763 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21764 * 21765 * 1) If PHYI_FAILED is set, a failover could have happened which 21766 * implies a possible failback might have to happen. As failback 21767 * depends on the old index, we should fail setting the index. 21768 * 21769 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21770 * any addresses or multicast memberships are failed over to 21771 * a non-STANDBY interface. As failback depends on the old 21772 * index, we should fail setting the index for this case also. 21773 * 21774 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21775 * Be consistent with PHYI_FAILED and fail the ioctl. 21776 */ 21777 ill = ipif->ipif_ill; 21778 phyi = ill->ill_phyint; 21779 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21780 ipif->ipif_id != 0 || index == 0) { 21781 return (EINVAL); 21782 } 21783 old_index = phyi->phyint_ifindex; 21784 21785 /* If the index is not changing, no work to do */ 21786 if (old_index == index) 21787 return (0); 21788 21789 /* 21790 * Use ill_lookup_on_ifindex to determine if the 21791 * new index is unused and if so allow the change. 21792 */ 21793 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21794 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21795 if (ill_v6 != NULL || ill_v4 != NULL) { 21796 if (ill_v4 != NULL) 21797 ill_refrele(ill_v4); 21798 if (ill_v6 != NULL) 21799 ill_refrele(ill_v6); 21800 return (EBUSY); 21801 } 21802 21803 /* 21804 * The new index is unused. Set it in the phyint. 21805 * Locate the other ill so that we can send a routing 21806 * sockets message. 21807 */ 21808 if (ill->ill_isv6) { 21809 ill_other = phyi->phyint_illv4; 21810 } else { 21811 ill_other = phyi->phyint_illv6; 21812 } 21813 21814 phyi->phyint_ifindex = index; 21815 21816 connc.cc_old_ifindex = old_index; 21817 connc.cc_new_ifindex = index; 21818 ip_change_ifindex(ill, &connc); 21819 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21820 21821 /* Send the routing sockets message */ 21822 ip_rts_ifmsg(ipif); 21823 if (ill_other != NULL) 21824 ip_rts_ifmsg(ill_other->ill_ipif); 21825 21826 return (0); 21827 } 21828 21829 /* ARGSUSED */ 21830 int 21831 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21832 ip_ioctl_cmd_t *ipip, void *ifreq) 21833 { 21834 struct ifreq *ifr = (struct ifreq *)ifreq; 21835 struct lifreq *lifr = (struct lifreq *)ifreq; 21836 21837 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21838 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21839 /* Get the interface index */ 21840 if (ipip->ipi_cmd_type == IF_CMD) { 21841 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21842 } else { 21843 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21844 } 21845 return (0); 21846 } 21847 21848 /* ARGSUSED */ 21849 int 21850 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21851 ip_ioctl_cmd_t *ipip, void *ifreq) 21852 { 21853 struct lifreq *lifr = (struct lifreq *)ifreq; 21854 21855 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21856 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21857 /* Get the interface zone */ 21858 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21859 lifr->lifr_zoneid = ipif->ipif_zoneid; 21860 return (0); 21861 } 21862 21863 /* 21864 * Set the zoneid of an interface. 21865 */ 21866 /* ARGSUSED */ 21867 int 21868 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21869 ip_ioctl_cmd_t *ipip, void *ifreq) 21870 { 21871 struct lifreq *lifr = (struct lifreq *)ifreq; 21872 int err = 0; 21873 boolean_t need_up = B_FALSE; 21874 zone_t *zptr; 21875 zone_status_t status; 21876 zoneid_t zoneid; 21877 21878 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21879 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21880 if (!is_system_labeled()) 21881 return (ENOTSUP); 21882 zoneid = GLOBAL_ZONEID; 21883 } 21884 21885 /* cannot assign instance zero to a non-global zone */ 21886 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21887 return (ENOTSUP); 21888 21889 /* 21890 * Cannot assign to a zone that doesn't exist or is shutting down. In 21891 * the event of a race with the zone shutdown processing, since IP 21892 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21893 * interface will be cleaned up even if the zone is shut down 21894 * immediately after the status check. If the interface can't be brought 21895 * down right away, and the zone is shut down before the restart 21896 * function is called, we resolve the possible races by rechecking the 21897 * zone status in the restart function. 21898 */ 21899 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21900 return (EINVAL); 21901 status = zone_status_get(zptr); 21902 zone_rele(zptr); 21903 21904 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21905 return (EINVAL); 21906 21907 if (ipif->ipif_flags & IPIF_UP) { 21908 /* 21909 * If the interface is already marked up, 21910 * we call ipif_down which will take care 21911 * of ditching any IREs that have been set 21912 * up based on the old interface address. 21913 */ 21914 err = ipif_logical_down(ipif, q, mp); 21915 if (err == EINPROGRESS) 21916 return (err); 21917 ipif_down_tail(ipif); 21918 need_up = B_TRUE; 21919 } 21920 21921 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21922 return (err); 21923 } 21924 21925 static int 21926 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21927 queue_t *q, mblk_t *mp, boolean_t need_up) 21928 { 21929 int err = 0; 21930 21931 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21932 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21933 21934 /* Set the new zone id. */ 21935 ipif->ipif_zoneid = zoneid; 21936 21937 /* Update sctp list */ 21938 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21939 21940 if (need_up) { 21941 /* 21942 * Now bring the interface back up. If this 21943 * is the only IPIF for the ILL, ipif_up 21944 * will have to re-bind to the device, so 21945 * we may get back EINPROGRESS, in which 21946 * case, this IOCTL will get completed in 21947 * ip_rput_dlpi when we see the DL_BIND_ACK. 21948 */ 21949 err = ipif_up(ipif, q, mp); 21950 } 21951 return (err); 21952 } 21953 21954 /* ARGSUSED */ 21955 int 21956 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21957 ip_ioctl_cmd_t *ipip, void *if_req) 21958 { 21959 struct lifreq *lifr = (struct lifreq *)if_req; 21960 zoneid_t zoneid; 21961 zone_t *zptr; 21962 zone_status_t status; 21963 21964 ASSERT(ipif->ipif_id != 0); 21965 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21966 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21967 zoneid = GLOBAL_ZONEID; 21968 21969 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21970 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21971 21972 /* 21973 * We recheck the zone status to resolve the following race condition: 21974 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21975 * 2) hme0:1 is up and can't be brought down right away; 21976 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21977 * 3) zone "myzone" is halted; the zone status switches to 21978 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21979 * the interfaces to remove - hme0:1 is not returned because it's not 21980 * yet in "myzone", so it won't be removed; 21981 * 4) the restart function for SIOCSLIFZONE is called; without the 21982 * status check here, we would have hme0:1 in "myzone" after it's been 21983 * destroyed. 21984 * Note that if the status check fails, we need to bring the interface 21985 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21986 * ipif_up_done[_v6](). 21987 */ 21988 status = ZONE_IS_UNINITIALIZED; 21989 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21990 status = zone_status_get(zptr); 21991 zone_rele(zptr); 21992 } 21993 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21994 if (ipif->ipif_isv6) { 21995 (void) ipif_up_done_v6(ipif); 21996 } else { 21997 (void) ipif_up_done(ipif); 21998 } 21999 return (EINVAL); 22000 } 22001 22002 ipif_down_tail(ipif); 22003 22004 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22005 B_TRUE)); 22006 } 22007 22008 /* ARGSUSED */ 22009 int 22010 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22011 ip_ioctl_cmd_t *ipip, void *ifreq) 22012 { 22013 struct lifreq *lifr = ifreq; 22014 22015 ASSERT(q->q_next == NULL); 22016 ASSERT(CONN_Q(q)); 22017 22018 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22019 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22020 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22021 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22022 22023 return (0); 22024 } 22025 22026 22027 /* Find the previous ILL in this usesrc group */ 22028 static ill_t * 22029 ill_prev_usesrc(ill_t *uill) 22030 { 22031 ill_t *ill; 22032 22033 for (ill = uill->ill_usesrc_grp_next; 22034 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22035 ill = ill->ill_usesrc_grp_next) 22036 /* do nothing */; 22037 return (ill); 22038 } 22039 22040 /* 22041 * Release all members of the usesrc group. This routine is called 22042 * from ill_delete when the interface being unplumbed is the 22043 * group head. 22044 */ 22045 static void 22046 ill_disband_usesrc_group(ill_t *uill) 22047 { 22048 ill_t *next_ill, *tmp_ill; 22049 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 22050 next_ill = uill->ill_usesrc_grp_next; 22051 22052 do { 22053 ASSERT(next_ill != NULL); 22054 tmp_ill = next_ill->ill_usesrc_grp_next; 22055 ASSERT(tmp_ill != NULL); 22056 next_ill->ill_usesrc_grp_next = NULL; 22057 next_ill->ill_usesrc_ifindex = 0; 22058 next_ill = tmp_ill; 22059 } while (next_ill->ill_usesrc_ifindex != 0); 22060 uill->ill_usesrc_grp_next = NULL; 22061 } 22062 22063 /* 22064 * Remove the client usesrc ILL from the list and relink to a new list 22065 */ 22066 int 22067 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22068 { 22069 ill_t *ill, *tmp_ill; 22070 22071 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22072 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 22073 22074 /* 22075 * Check if the usesrc client ILL passed in is not already 22076 * in use as a usesrc ILL i.e one whose source address is 22077 * in use OR a usesrc ILL is not already in use as a usesrc 22078 * client ILL 22079 */ 22080 if ((ucill->ill_usesrc_ifindex == 0) || 22081 (uill->ill_usesrc_ifindex != 0)) { 22082 return (-1); 22083 } 22084 22085 ill = ill_prev_usesrc(ucill); 22086 ASSERT(ill->ill_usesrc_grp_next != NULL); 22087 22088 /* Remove from the current list */ 22089 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22090 /* Only two elements in the list */ 22091 ASSERT(ill->ill_usesrc_ifindex == 0); 22092 ill->ill_usesrc_grp_next = NULL; 22093 } else { 22094 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22095 } 22096 22097 if (ifindex == 0) { 22098 ucill->ill_usesrc_ifindex = 0; 22099 ucill->ill_usesrc_grp_next = NULL; 22100 return (0); 22101 } 22102 22103 ucill->ill_usesrc_ifindex = ifindex; 22104 tmp_ill = uill->ill_usesrc_grp_next; 22105 uill->ill_usesrc_grp_next = ucill; 22106 ucill->ill_usesrc_grp_next = 22107 (tmp_ill != NULL) ? tmp_ill : uill; 22108 return (0); 22109 } 22110 22111 /* 22112 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22113 * ip.c for locking details. 22114 */ 22115 /* ARGSUSED */ 22116 int 22117 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22118 ip_ioctl_cmd_t *ipip, void *ifreq) 22119 { 22120 struct lifreq *lifr = (struct lifreq *)ifreq; 22121 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22122 ill_flag_changed = B_FALSE; 22123 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22124 int err = 0, ret; 22125 uint_t ifindex; 22126 phyint_t *us_phyint, *us_cli_phyint; 22127 ipsq_t *ipsq = NULL; 22128 22129 ASSERT(IAM_WRITER_IPIF(ipif)); 22130 ASSERT(q->q_next == NULL); 22131 ASSERT(CONN_Q(q)); 22132 22133 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22134 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22135 22136 ASSERT(us_cli_phyint != NULL); 22137 22138 /* 22139 * If the client ILL is being used for IPMP, abort. 22140 * Note, this can be done before ipsq_try_enter since we are already 22141 * exclusive on this ILL 22142 */ 22143 if ((us_cli_phyint->phyint_groupname != NULL) || 22144 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22145 return (EINVAL); 22146 } 22147 22148 ifindex = lifr->lifr_index; 22149 if (ifindex == 0) { 22150 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22151 /* non usesrc group interface, nothing to reset */ 22152 return (0); 22153 } 22154 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22155 /* valid reset request */ 22156 reset_flg = B_TRUE; 22157 } 22158 22159 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22160 ip_process_ioctl, &err); 22161 22162 if (usesrc_ill == NULL) { 22163 return (err); 22164 } 22165 22166 /* 22167 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22168 * group nor can either of the interfaces be used for standy. So 22169 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22170 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22171 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22172 * We are already exlusive on this ipsq i.e ipsq corresponding to 22173 * the usesrc_cli_ill 22174 */ 22175 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22176 NEW_OP, B_TRUE); 22177 if (ipsq == NULL) { 22178 err = EINPROGRESS; 22179 /* Operation enqueued on the ipsq of the usesrc ILL */ 22180 goto done; 22181 } 22182 22183 /* Check if the usesrc_ill is used for IPMP */ 22184 us_phyint = usesrc_ill->ill_phyint; 22185 if ((us_phyint->phyint_groupname != NULL) || 22186 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22187 err = EINVAL; 22188 goto done; 22189 } 22190 22191 /* 22192 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22193 * already a client then return EINVAL 22194 */ 22195 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22196 err = EINVAL; 22197 goto done; 22198 } 22199 22200 /* 22201 * If the ill_usesrc_ifindex field is already set to what it needs to 22202 * be then this is a duplicate operation. 22203 */ 22204 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22205 err = 0; 22206 goto done; 22207 } 22208 22209 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22210 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22211 usesrc_ill->ill_isv6)); 22212 22213 /* 22214 * The next step ensures that no new ires will be created referencing 22215 * the client ill, until the ILL_CHANGING flag is cleared. Then 22216 * we go through an ire walk deleting all ire caches that reference 22217 * the client ill. New ires referencing the client ill that are added 22218 * to the ire table before the ILL_CHANGING flag is set, will be 22219 * cleaned up by the ire walk below. Attempt to add new ires referencing 22220 * the client ill while the ILL_CHANGING flag is set will be failed 22221 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22222 * checks (under the ill_g_usesrc_lock) that the ire being added 22223 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22224 * belong to the same usesrc group. 22225 */ 22226 mutex_enter(&usesrc_cli_ill->ill_lock); 22227 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22228 mutex_exit(&usesrc_cli_ill->ill_lock); 22229 ill_flag_changed = B_TRUE; 22230 22231 if (ipif->ipif_isv6) 22232 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22233 ALL_ZONES); 22234 else 22235 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22236 ALL_ZONES); 22237 22238 /* 22239 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22240 * and the ill_usesrc_ifindex fields 22241 */ 22242 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 22243 22244 if (reset_flg) { 22245 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22246 if (ret != 0) { 22247 err = EINVAL; 22248 } 22249 rw_exit(&ill_g_usesrc_lock); 22250 goto done; 22251 } 22252 22253 /* 22254 * Four possibilities to consider: 22255 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22256 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22257 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22258 * 4. Both are part of their respective usesrc groups 22259 */ 22260 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22261 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22262 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22263 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22264 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22265 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22266 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22267 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22268 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22269 /* Insert at head of list */ 22270 usesrc_cli_ill->ill_usesrc_grp_next = 22271 usesrc_ill->ill_usesrc_grp_next; 22272 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22273 } else { 22274 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22275 ifindex); 22276 if (ret != 0) 22277 err = EINVAL; 22278 } 22279 rw_exit(&ill_g_usesrc_lock); 22280 22281 done: 22282 if (ill_flag_changed) { 22283 mutex_enter(&usesrc_cli_ill->ill_lock); 22284 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22285 mutex_exit(&usesrc_cli_ill->ill_lock); 22286 } 22287 if (ipsq != NULL) 22288 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22289 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22290 ill_refrele(usesrc_ill); 22291 return (err); 22292 } 22293 22294 /* 22295 * comparison function used by avl. 22296 */ 22297 static int 22298 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22299 { 22300 22301 uint_t index; 22302 22303 ASSERT(phyip != NULL && index_ptr != NULL); 22304 22305 index = *((uint_t *)index_ptr); 22306 /* 22307 * let the phyint with the lowest index be on top. 22308 */ 22309 if (((phyint_t *)phyip)->phyint_ifindex < index) 22310 return (1); 22311 if (((phyint_t *)phyip)->phyint_ifindex > index) 22312 return (-1); 22313 return (0); 22314 } 22315 22316 /* 22317 * comparison function used by avl. 22318 */ 22319 static int 22320 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22321 { 22322 ill_t *ill; 22323 int res = 0; 22324 22325 ASSERT(phyip != NULL && name_ptr != NULL); 22326 22327 if (((phyint_t *)phyip)->phyint_illv4) 22328 ill = ((phyint_t *)phyip)->phyint_illv4; 22329 else 22330 ill = ((phyint_t *)phyip)->phyint_illv6; 22331 ASSERT(ill != NULL); 22332 22333 res = strcmp(ill->ill_name, (char *)name_ptr); 22334 if (res > 0) 22335 return (1); 22336 else if (res < 0) 22337 return (-1); 22338 return (0); 22339 } 22340 /* 22341 * This function is called from ill_delete when the ill is being 22342 * unplumbed. We remove the reference from the phyint and we also 22343 * free the phyint when there are no more references to it. 22344 */ 22345 static void 22346 ill_phyint_free(ill_t *ill) 22347 { 22348 phyint_t *phyi; 22349 phyint_t *next_phyint; 22350 ipsq_t *cur_ipsq; 22351 22352 ASSERT(ill->ill_phyint != NULL); 22353 22354 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22355 phyi = ill->ill_phyint; 22356 ill->ill_phyint = NULL; 22357 /* 22358 * ill_init allocates a phyint always to store the copy 22359 * of flags relevant to phyint. At that point in time, we could 22360 * not assign the name and hence phyint_illv4/v6 could not be 22361 * initialized. Later in ipif_set_values, we assign the name to 22362 * the ill, at which point in time we assign phyint_illv4/v6. 22363 * Thus we don't rely on phyint_illv6 to be initialized always. 22364 */ 22365 if (ill->ill_flags & ILLF_IPV6) { 22366 phyi->phyint_illv6 = NULL; 22367 } else { 22368 phyi->phyint_illv4 = NULL; 22369 } 22370 /* 22371 * ipif_down removes it from the group when the last ipif goes 22372 * down. 22373 */ 22374 ASSERT(ill->ill_group == NULL); 22375 22376 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22377 return; 22378 22379 /* 22380 * Make sure this phyint was put in the list. 22381 */ 22382 if (phyi->phyint_ifindex > 0) { 22383 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 22384 phyi); 22385 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 22386 phyi); 22387 } 22388 /* 22389 * remove phyint from the ipsq list. 22390 */ 22391 cur_ipsq = phyi->phyint_ipsq; 22392 if (phyi == cur_ipsq->ipsq_phyint_list) { 22393 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22394 } else { 22395 next_phyint = cur_ipsq->ipsq_phyint_list; 22396 while (next_phyint != NULL) { 22397 if (next_phyint->phyint_ipsq_next == phyi) { 22398 next_phyint->phyint_ipsq_next = 22399 phyi->phyint_ipsq_next; 22400 break; 22401 } 22402 next_phyint = next_phyint->phyint_ipsq_next; 22403 } 22404 ASSERT(next_phyint != NULL); 22405 } 22406 IPSQ_DEC_REF(cur_ipsq); 22407 22408 if (phyi->phyint_groupname_len != 0) { 22409 ASSERT(phyi->phyint_groupname != NULL); 22410 mi_free(phyi->phyint_groupname); 22411 } 22412 mi_free(phyi); 22413 } 22414 22415 /* 22416 * Attach the ill to the phyint structure which can be shared by both 22417 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22418 * function is called from ipif_set_values and ill_lookup_on_name (for 22419 * loopback) where we know the name of the ill. We lookup the ill and if 22420 * there is one present already with the name use that phyint. Otherwise 22421 * reuse the one allocated by ill_init. 22422 */ 22423 static void 22424 ill_phyint_reinit(ill_t *ill) 22425 { 22426 boolean_t isv6 = ill->ill_isv6; 22427 phyint_t *phyi_old; 22428 phyint_t *phyi; 22429 avl_index_t where = 0; 22430 ill_t *ill_other = NULL; 22431 ipsq_t *ipsq; 22432 22433 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22434 22435 phyi_old = ill->ill_phyint; 22436 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22437 phyi_old->phyint_illv6 == NULL)); 22438 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22439 phyi_old->phyint_illv4 == NULL)); 22440 ASSERT(phyi_old->phyint_ifindex == 0); 22441 22442 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 22443 ill->ill_name, &where); 22444 22445 /* 22446 * 1. We grabbed the ill_g_lock before inserting this ill into 22447 * the global list of ills. So no other thread could have located 22448 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22449 * 2. Now locate the other protocol instance of this ill. 22450 * 3. Now grab both ill locks in the right order, and the phyint lock of 22451 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22452 * of neither ill can change. 22453 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22454 * other ill. 22455 * 5. Release all locks. 22456 */ 22457 22458 /* 22459 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22460 * we are initializing IPv4. 22461 */ 22462 if (phyi != NULL) { 22463 ill_other = (isv6) ? phyi->phyint_illv4 : 22464 phyi->phyint_illv6; 22465 ASSERT(ill_other->ill_phyint != NULL); 22466 ASSERT((isv6 && !ill_other->ill_isv6) || 22467 (!isv6 && ill_other->ill_isv6)); 22468 GRAB_ILL_LOCKS(ill, ill_other); 22469 /* 22470 * We are potentially throwing away phyint_flags which 22471 * could be different from the one that we obtain from 22472 * ill_other->ill_phyint. But it is okay as we are assuming 22473 * that the state maintained within IP is correct. 22474 */ 22475 mutex_enter(&phyi->phyint_lock); 22476 if (isv6) { 22477 ASSERT(phyi->phyint_illv6 == NULL); 22478 phyi->phyint_illv6 = ill; 22479 } else { 22480 ASSERT(phyi->phyint_illv4 == NULL); 22481 phyi->phyint_illv4 = ill; 22482 } 22483 /* 22484 * This is a new ill, currently undergoing SLIFNAME 22485 * So we could not have joined an IPMP group until now. 22486 */ 22487 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22488 phyi_old->phyint_groupname == NULL); 22489 22490 /* 22491 * This phyi_old is going away. Decref ipsq_refs and 22492 * assert it is zero. The ipsq itself will be freed in 22493 * ipsq_exit 22494 */ 22495 ipsq = phyi_old->phyint_ipsq; 22496 IPSQ_DEC_REF(ipsq); 22497 ASSERT(ipsq->ipsq_refs == 0); 22498 /* Get the singleton phyint out of the ipsq list */ 22499 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22500 ipsq->ipsq_phyint_list = NULL; 22501 phyi_old->phyint_illv4 = NULL; 22502 phyi_old->phyint_illv6 = NULL; 22503 mi_free(phyi_old); 22504 } else { 22505 mutex_enter(&ill->ill_lock); 22506 /* 22507 * We don't need to acquire any lock, since 22508 * the ill is not yet visible globally and we 22509 * have not yet released the ill_g_lock. 22510 */ 22511 phyi = phyi_old; 22512 mutex_enter(&phyi->phyint_lock); 22513 /* XXX We need a recovery strategy here. */ 22514 if (!phyint_assign_ifindex(phyi)) 22515 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22516 22517 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 22518 (void *)phyi, where); 22519 22520 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 22521 &phyi->phyint_ifindex, &where); 22522 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 22523 (void *)phyi, where); 22524 } 22525 22526 /* 22527 * Reassigning ill_phyint automatically reassigns the ipsq also. 22528 * pending mp is not affected because that is per ill basis. 22529 */ 22530 ill->ill_phyint = phyi; 22531 22532 /* 22533 * Keep the index on ipif_orig_index to be used by FAILOVER. 22534 * We do this here as when the first ipif was allocated, 22535 * ipif_allocate does not know the right interface index. 22536 */ 22537 22538 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22539 /* 22540 * Now that the phyint's ifindex has been assigned, complete the 22541 * remaining 22542 */ 22543 if (ill->ill_isv6) { 22544 ill->ill_ip6_mib->ipv6IfIndex = 22545 ill->ill_phyint->phyint_ifindex; 22546 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22547 ill->ill_phyint->phyint_ifindex; 22548 } 22549 22550 /* 22551 * Generate an event within the hooks framework to indicate that 22552 * a new interface has just been added to IP. For this event to 22553 * be generated, the network interface must, at least, have an 22554 * ifindex assigned to it. 22555 * 22556 * This needs to be run inside the ill_g_lock perimeter to ensure 22557 * that the ordering of delivered events to listeners matches the 22558 * order of them in the kernel. 22559 * 22560 * This function could be called from ill_lookup_on_name. In that case 22561 * the interface is loopback "lo", which will not generate a NIC event. 22562 */ 22563 if (ill->ill_name_length <= 2 || 22564 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22565 hook_nic_event_t *info; 22566 if ((info = ill->ill_nic_event_info) != NULL) { 22567 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22568 "attached for %s\n", info->hne_event, 22569 ill->ill_name)); 22570 if (info->hne_data != NULL) 22571 kmem_free(info->hne_data, info->hne_datalen); 22572 kmem_free(info, sizeof (hook_nic_event_t)); 22573 } 22574 22575 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22576 if (info != NULL) { 22577 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22578 info->hne_lif = 0; 22579 info->hne_event = NE_PLUMB; 22580 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 22581 info->hne_data = kmem_alloc(ill->ill_name_length, 22582 KM_NOSLEEP); 22583 if (info->hne_data != NULL) { 22584 info->hne_datalen = ill->ill_name_length; 22585 bcopy(ill->ill_name, info->hne_data, 22586 info->hne_datalen); 22587 } else { 22588 ip2dbg(("ill_phyint_reinit: could not attach " 22589 "ill_name information for PLUMB nic event " 22590 "of %s (ENOMEM)\n", ill->ill_name)); 22591 kmem_free(info, sizeof (hook_nic_event_t)); 22592 } 22593 } else 22594 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22595 "event information for %s (ENOMEM)\n", 22596 ill->ill_name)); 22597 22598 ill->ill_nic_event_info = info; 22599 } 22600 22601 RELEASE_ILL_LOCKS(ill, ill_other); 22602 mutex_exit(&phyi->phyint_lock); 22603 } 22604 22605 /* 22606 * Notify any downstream modules of the name of this interface. 22607 * An M_IOCTL is used even though we don't expect a successful reply. 22608 * Any reply message from the driver (presumably an M_IOCNAK) will 22609 * eventually get discarded somewhere upstream. The message format is 22610 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22611 * to IP. 22612 */ 22613 static void 22614 ip_ifname_notify(ill_t *ill, queue_t *q) 22615 { 22616 mblk_t *mp1, *mp2; 22617 struct iocblk *iocp; 22618 struct lifreq *lifr; 22619 22620 mp1 = mkiocb(SIOCSLIFNAME); 22621 if (mp1 == NULL) 22622 return; 22623 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22624 if (mp2 == NULL) { 22625 freeb(mp1); 22626 return; 22627 } 22628 22629 mp1->b_cont = mp2; 22630 iocp = (struct iocblk *)mp1->b_rptr; 22631 iocp->ioc_count = sizeof (struct lifreq); 22632 22633 lifr = (struct lifreq *)mp2->b_rptr; 22634 mp2->b_wptr += sizeof (struct lifreq); 22635 bzero(lifr, sizeof (struct lifreq)); 22636 22637 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22638 lifr->lifr_ppa = ill->ill_ppa; 22639 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22640 22641 putnext(q, mp1); 22642 } 22643 22644 static boolean_t ip_trash_timer_started = B_FALSE; 22645 22646 static int 22647 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22648 { 22649 int err; 22650 22651 /* Set the obsolete NDD per-interface forwarding name. */ 22652 err = ill_set_ndd_name(ill); 22653 if (err != 0) { 22654 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22655 err); 22656 } 22657 22658 /* Tell downstream modules where they are. */ 22659 ip_ifname_notify(ill, q); 22660 22661 /* 22662 * ill_dl_phys returns EINPROGRESS in the usual case. 22663 * Error cases are ENOMEM ... 22664 */ 22665 err = ill_dl_phys(ill, ipif, mp, q); 22666 22667 /* 22668 * If there is no IRE expiration timer running, get one started. 22669 * igmp and mld timers will be triggered by the first multicast 22670 */ 22671 if (!ip_trash_timer_started) { 22672 /* 22673 * acquire the lock and check again. 22674 */ 22675 mutex_enter(&ip_trash_timer_lock); 22676 if (!ip_trash_timer_started) { 22677 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22678 MSEC_TO_TICK(ip_timer_interval)); 22679 ip_trash_timer_started = B_TRUE; 22680 } 22681 mutex_exit(&ip_trash_timer_lock); 22682 } 22683 22684 if (ill->ill_isv6) { 22685 mutex_enter(&mld_slowtimeout_lock); 22686 if (mld_slowtimeout_id == 0) { 22687 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22688 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22689 } 22690 mutex_exit(&mld_slowtimeout_lock); 22691 } else { 22692 mutex_enter(&igmp_slowtimeout_lock); 22693 if (igmp_slowtimeout_id == 0) { 22694 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22695 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22696 } 22697 mutex_exit(&igmp_slowtimeout_lock); 22698 } 22699 22700 return (err); 22701 } 22702 22703 /* 22704 * Common routine for ppa and ifname setting. Should be called exclusive. 22705 * 22706 * Returns EINPROGRESS when mp has been consumed by queueing it on 22707 * ill_pending_mp and the ioctl will complete in ip_rput. 22708 * 22709 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22710 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22711 * For SLIFNAME, we pass these values back to the userland. 22712 */ 22713 static int 22714 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22715 { 22716 ill_t *ill; 22717 ipif_t *ipif; 22718 ipsq_t *ipsq; 22719 char *ppa_ptr; 22720 char *old_ptr; 22721 char old_char; 22722 int error; 22723 22724 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22725 ASSERT(q->q_next != NULL); 22726 ASSERT(interf_name != NULL); 22727 22728 ill = (ill_t *)q->q_ptr; 22729 22730 ASSERT(ill->ill_name[0] == '\0'); 22731 ASSERT(IAM_WRITER_ILL(ill)); 22732 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22733 ASSERT(ill->ill_ppa == UINT_MAX); 22734 22735 /* The ppa is sent down by ifconfig or is chosen */ 22736 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22737 return (EINVAL); 22738 } 22739 22740 /* 22741 * make sure ppa passed in is same as ppa in the name. 22742 * This check is not made when ppa == UINT_MAX in that case ppa 22743 * in the name could be anything. System will choose a ppa and 22744 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22745 */ 22746 if (*new_ppa_ptr != UINT_MAX) { 22747 /* stoi changes the pointer */ 22748 old_ptr = ppa_ptr; 22749 /* 22750 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22751 * (they don't have an externally visible ppa). We assign one 22752 * here so that we can manage the interface. Note that in 22753 * the past this value was always 0 for DLPI 1 drivers. 22754 */ 22755 if (*new_ppa_ptr == 0) 22756 *new_ppa_ptr = stoi(&old_ptr); 22757 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22758 return (EINVAL); 22759 } 22760 /* 22761 * terminate string before ppa 22762 * save char at that location. 22763 */ 22764 old_char = ppa_ptr[0]; 22765 ppa_ptr[0] = '\0'; 22766 22767 ill->ill_ppa = *new_ppa_ptr; 22768 /* 22769 * Finish as much work now as possible before calling ill_glist_insert 22770 * which makes the ill globally visible and also merges it with the 22771 * other protocol instance of this phyint. The remaining work is 22772 * done after entering the ipsq which may happen sometime later. 22773 * ill_set_ndd_name occurs after the ill has been made globally visible. 22774 */ 22775 ipif = ill->ill_ipif; 22776 22777 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22778 ipif_assign_seqid(ipif); 22779 22780 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22781 ill->ill_flags |= ILLF_IPV4; 22782 22783 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22784 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22785 22786 if (ill->ill_flags & ILLF_IPV6) { 22787 22788 ill->ill_isv6 = B_TRUE; 22789 if (ill->ill_rq != NULL) { 22790 ill->ill_rq->q_qinfo = &rinit_ipv6; 22791 ill->ill_wq->q_qinfo = &winit_ipv6; 22792 } 22793 22794 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22795 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22796 ipif->ipif_v6src_addr = ipv6_all_zeros; 22797 ipif->ipif_v6subnet = ipv6_all_zeros; 22798 ipif->ipif_v6net_mask = ipv6_all_zeros; 22799 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22800 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22801 /* 22802 * point-to-point or Non-mulicast capable 22803 * interfaces won't do NUD unless explicitly 22804 * configured to do so. 22805 */ 22806 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22807 !(ill->ill_flags & ILLF_MULTICAST)) { 22808 ill->ill_flags |= ILLF_NONUD; 22809 } 22810 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22811 if (ill->ill_flags & ILLF_NOARP) { 22812 /* 22813 * Note: xresolv interfaces will eventually need 22814 * NOARP set here as well, but that will require 22815 * those external resolvers to have some 22816 * knowledge of that flag and act appropriately. 22817 * Not to be changed at present. 22818 */ 22819 ill->ill_flags &= ~ILLF_NOARP; 22820 } 22821 /* 22822 * Set the ILLF_ROUTER flag according to the global 22823 * IPv6 forwarding policy. 22824 */ 22825 if (ipv6_forward != 0) 22826 ill->ill_flags |= ILLF_ROUTER; 22827 } else if (ill->ill_flags & ILLF_IPV4) { 22828 ill->ill_isv6 = B_FALSE; 22829 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22830 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22831 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22832 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22833 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22834 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22835 /* 22836 * Set the ILLF_ROUTER flag according to the global 22837 * IPv4 forwarding policy. 22838 */ 22839 if (ip_g_forward != 0) 22840 ill->ill_flags |= ILLF_ROUTER; 22841 } 22842 22843 ASSERT(ill->ill_phyint != NULL); 22844 22845 /* 22846 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 22847 * be completed in ill_glist_insert -> ill_phyint_reinit 22848 */ 22849 if (ill->ill_isv6) { 22850 /* allocate v6 mib */ 22851 if (!ill_allocate_mibs(ill)) 22852 return (ENOMEM); 22853 } 22854 22855 /* 22856 * Pick a default sap until we get the DL_INFO_ACK back from 22857 * the driver. 22858 */ 22859 if (ill->ill_sap == 0) { 22860 if (ill->ill_isv6) 22861 ill->ill_sap = IP6_DL_SAP; 22862 else 22863 ill->ill_sap = IP_DL_SAP; 22864 } 22865 22866 ill->ill_ifname_pending = 1; 22867 ill->ill_ifname_pending_err = 0; 22868 22869 ill_refhold(ill); 22870 rw_enter(&ill_g_lock, RW_WRITER); 22871 if ((error = ill_glist_insert(ill, interf_name, 22872 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22873 ill->ill_ppa = UINT_MAX; 22874 ill->ill_name[0] = '\0'; 22875 /* 22876 * undo null termination done above. 22877 */ 22878 ppa_ptr[0] = old_char; 22879 rw_exit(&ill_g_lock); 22880 ill_refrele(ill); 22881 return (error); 22882 } 22883 22884 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22885 22886 /* 22887 * When we return the buffer pointed to by interf_name should contain 22888 * the same name as in ill_name. 22889 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22890 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22891 * so copy full name and update the ppa ptr. 22892 * When ppa passed in != UINT_MAX all values are correct just undo 22893 * null termination, this saves a bcopy. 22894 */ 22895 if (*new_ppa_ptr == UINT_MAX) { 22896 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22897 *new_ppa_ptr = ill->ill_ppa; 22898 } else { 22899 /* 22900 * undo null termination done above. 22901 */ 22902 ppa_ptr[0] = old_char; 22903 } 22904 22905 /* Let SCTP know about this ILL */ 22906 sctp_update_ill(ill, SCTP_ILL_INSERT); 22907 22908 /* and also about the first ipif */ 22909 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 22910 22911 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22912 B_TRUE); 22913 22914 rw_exit(&ill_g_lock); 22915 ill_refrele(ill); 22916 if (ipsq == NULL) 22917 return (EINPROGRESS); 22918 22919 /* 22920 * Need to set the ipsq_current_ipif now, if we have changed ipsq 22921 * due to the phyint merge in ill_phyint_reinit. 22922 */ 22923 ASSERT(ipsq->ipsq_current_ipif == NULL || 22924 ipsq->ipsq_current_ipif == ipif); 22925 ipsq->ipsq_current_ipif = ipif; 22926 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 22927 error = ipif_set_values_tail(ill, ipif, mp, q); 22928 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22929 if (error != 0 && error != EINPROGRESS) { 22930 /* 22931 * restore previous values 22932 */ 22933 ill->ill_isv6 = B_FALSE; 22934 } 22935 return (error); 22936 } 22937 22938 22939 extern void (*ip_cleanup_func)(void); 22940 22941 void 22942 ipif_init(void) 22943 { 22944 hrtime_t hrt; 22945 int i; 22946 22947 /* 22948 * Can't call drv_getparm here as it is too early in the boot. 22949 * As we use ipif_src_random just for picking a different 22950 * source address everytime, this need not be really random. 22951 */ 22952 hrt = gethrtime(); 22953 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22954 22955 for (i = 0; i < MAX_G_HEADS; i++) { 22956 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 22957 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 22958 } 22959 22960 avl_create(&phyint_g_list.phyint_list_avl_by_index, 22961 ill_phyint_compare_index, 22962 sizeof (phyint_t), 22963 offsetof(struct phyint, phyint_avl_by_index)); 22964 avl_create(&phyint_g_list.phyint_list_avl_by_name, 22965 ill_phyint_compare_name, 22966 sizeof (phyint_t), 22967 offsetof(struct phyint, phyint_avl_by_name)); 22968 22969 ip_cleanup_func = ip_thread_exit; 22970 } 22971 22972 /* 22973 * This is called by ip_rt_add when src_addr value is other than zero. 22974 * src_addr signifies the source address of the incoming packet. For 22975 * reverse tunnel route we need to create a source addr based routing 22976 * table. This routine creates ip_mrtun_table if it's empty and then 22977 * it adds the route entry hashed by source address. It verifies that 22978 * the outgoing interface is always a non-resolver interface (tunnel). 22979 */ 22980 int 22981 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 22982 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 22983 { 22984 ire_t *ire; 22985 ire_t *save_ire; 22986 ipif_t *ipif; 22987 ill_t *in_ill = NULL; 22988 ill_t *out_ill; 22989 queue_t *stq; 22990 mblk_t *dlureq_mp; 22991 int error; 22992 22993 if (ire_arg != NULL) 22994 *ire_arg = NULL; 22995 ASSERT(in_src_addr != INADDR_ANY); 22996 22997 ipif = ipif_arg; 22998 if (ipif != NULL) { 22999 out_ill = ipif->ipif_ill; 23000 } else { 23001 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23002 return (EINVAL); 23003 } 23004 23005 if (src_ipif == NULL) { 23006 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23007 return (EINVAL); 23008 } 23009 in_ill = src_ipif->ipif_ill; 23010 23011 /* 23012 * Check for duplicates. We don't need to 23013 * match out_ill, because the uniqueness of 23014 * a route is only dependent on src_addr and 23015 * in_ill. 23016 */ 23017 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23018 if (ire != NULL) { 23019 ire_refrele(ire); 23020 return (EEXIST); 23021 } 23022 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23023 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23024 ipif->ipif_net_type)); 23025 return (EINVAL); 23026 } 23027 23028 stq = ipif->ipif_wq; 23029 ASSERT(stq != NULL); 23030 23031 /* 23032 * The outgoing interface must be non-resolver 23033 * interface. 23034 */ 23035 dlureq_mp = ill_dlur_gen(NULL, 23036 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23037 out_ill->ill_sap_length); 23038 23039 if (dlureq_mp == NULL) { 23040 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23041 return (ENOMEM); 23042 } 23043 23044 /* Create the IRE. */ 23045 23046 ire = ire_create( 23047 NULL, /* Zero dst addr */ 23048 NULL, /* Zero mask */ 23049 NULL, /* Zero gateway addr */ 23050 NULL, /* Zero ipif_src addr */ 23051 (uint8_t *)&in_src_addr, /* in_src-addr */ 23052 &ipif->ipif_mtu, 23053 NULL, 23054 NULL, /* rfq */ 23055 stq, 23056 IRE_MIPRTUN, 23057 dlureq_mp, 23058 ipif, 23059 in_ill, 23060 0, 23061 0, 23062 0, 23063 flags, 23064 &ire_uinfo_null, 23065 NULL, 23066 NULL); 23067 23068 if (ire == NULL) { 23069 freeb(dlureq_mp); 23070 return (ENOMEM); 23071 } 23072 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23073 ire->ire_type)); 23074 save_ire = ire; 23075 ASSERT(save_ire != NULL); 23076 error = ire_add_mrtun(&ire, q, mp, func); 23077 /* 23078 * If ire_add_mrtun() failed, the ire passed in was freed 23079 * so there is no need to do so here. 23080 */ 23081 if (error != 0) { 23082 return (error); 23083 } 23084 23085 /* Duplicate check */ 23086 if (ire != save_ire) { 23087 /* route already exists by now */ 23088 ire_refrele(ire); 23089 return (EEXIST); 23090 } 23091 23092 if (ire_arg != NULL) { 23093 /* 23094 * Store the ire that was just added. the caller 23095 * ip_rts_request responsible for doing ire_refrele() 23096 * on it. 23097 */ 23098 *ire_arg = ire; 23099 } else { 23100 ire_refrele(ire); /* held in ire_add_mrtun */ 23101 } 23102 23103 return (0); 23104 } 23105 23106 /* 23107 * It is called by ip_rt_delete() only when mipagent requests to delete 23108 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23109 */ 23110 23111 int 23112 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23113 { 23114 ire_t *ire = NULL; 23115 23116 if (in_src_addr == INADDR_ANY) 23117 return (EINVAL); 23118 if (src_ipif == NULL) 23119 return (EINVAL); 23120 23121 /* search if this route exists in the ip_mrtun_table */ 23122 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23123 if (ire == NULL) { 23124 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23125 return (ESRCH); 23126 } 23127 ire_delete(ire); 23128 ire_refrele(ire); 23129 return (0); 23130 } 23131 23132 /* 23133 * Lookup the ipif corresponding to the onlink destination address. For 23134 * point-to-point interfaces, it matches with remote endpoint destination 23135 * address. For point-to-multipoint interfaces it only tries to match the 23136 * destination with the interface's subnet address. The longest, most specific 23137 * match is found to take care of such rare network configurations like - 23138 * le0: 129.146.1.1/16 23139 * le1: 129.146.2.2/24 23140 * It is used only by SO_DONTROUTE at the moment. 23141 */ 23142 ipif_t * 23143 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 23144 { 23145 ipif_t *ipif, *best_ipif; 23146 ill_t *ill; 23147 ill_walk_context_t ctx; 23148 23149 ASSERT(zoneid != ALL_ZONES); 23150 best_ipif = NULL; 23151 23152 rw_enter(&ill_g_lock, RW_READER); 23153 ill = ILL_START_WALK_V4(&ctx); 23154 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23155 mutex_enter(&ill->ill_lock); 23156 for (ipif = ill->ill_ipif; ipif != NULL; 23157 ipif = ipif->ipif_next) { 23158 if (!IPIF_CAN_LOOKUP(ipif)) 23159 continue; 23160 if (ipif->ipif_zoneid != zoneid && 23161 ipif->ipif_zoneid != ALL_ZONES) 23162 continue; 23163 /* 23164 * Point-to-point case. Look for exact match with 23165 * destination address. 23166 */ 23167 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23168 if (ipif->ipif_pp_dst_addr == addr) { 23169 ipif_refhold_locked(ipif); 23170 mutex_exit(&ill->ill_lock); 23171 rw_exit(&ill_g_lock); 23172 if (best_ipif != NULL) 23173 ipif_refrele(best_ipif); 23174 return (ipif); 23175 } 23176 } else if (ipif->ipif_subnet == (addr & 23177 ipif->ipif_net_mask)) { 23178 /* 23179 * Point-to-multipoint case. Looping through to 23180 * find the most specific match. If there are 23181 * multiple best match ipif's then prefer ipif's 23182 * that are UP. If there is only one best match 23183 * ipif and it is DOWN we must still return it. 23184 */ 23185 if ((best_ipif == NULL) || 23186 (ipif->ipif_net_mask > 23187 best_ipif->ipif_net_mask) || 23188 ((ipif->ipif_net_mask == 23189 best_ipif->ipif_net_mask) && 23190 ((ipif->ipif_flags & IPIF_UP) && 23191 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23192 ipif_refhold_locked(ipif); 23193 mutex_exit(&ill->ill_lock); 23194 rw_exit(&ill_g_lock); 23195 if (best_ipif != NULL) 23196 ipif_refrele(best_ipif); 23197 best_ipif = ipif; 23198 rw_enter(&ill_g_lock, RW_READER); 23199 mutex_enter(&ill->ill_lock); 23200 } 23201 } 23202 } 23203 mutex_exit(&ill->ill_lock); 23204 } 23205 rw_exit(&ill_g_lock); 23206 return (best_ipif); 23207 } 23208 23209 23210 /* 23211 * Save enough information so that we can recreate the IRE if 23212 * the interface goes down and then up. 23213 */ 23214 static void 23215 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23216 { 23217 mblk_t *save_mp; 23218 23219 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23220 if (save_mp != NULL) { 23221 ifrt_t *ifrt; 23222 23223 save_mp->b_wptr += sizeof (ifrt_t); 23224 ifrt = (ifrt_t *)save_mp->b_rptr; 23225 bzero(ifrt, sizeof (ifrt_t)); 23226 ifrt->ifrt_type = ire->ire_type; 23227 ifrt->ifrt_addr = ire->ire_addr; 23228 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23229 ifrt->ifrt_src_addr = ire->ire_src_addr; 23230 ifrt->ifrt_mask = ire->ire_mask; 23231 ifrt->ifrt_flags = ire->ire_flags; 23232 ifrt->ifrt_max_frag = ire->ire_max_frag; 23233 mutex_enter(&ipif->ipif_saved_ire_lock); 23234 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23235 ipif->ipif_saved_ire_mp = save_mp; 23236 ipif->ipif_saved_ire_cnt++; 23237 mutex_exit(&ipif->ipif_saved_ire_lock); 23238 } 23239 } 23240 23241 23242 static void 23243 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23244 { 23245 mblk_t **mpp; 23246 mblk_t *mp; 23247 ifrt_t *ifrt; 23248 23249 /* Remove from ipif_saved_ire_mp list if it is there */ 23250 mutex_enter(&ipif->ipif_saved_ire_lock); 23251 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23252 mpp = &(*mpp)->b_cont) { 23253 /* 23254 * On a given ipif, the triple of address, gateway and 23255 * mask is unique for each saved IRE (in the case of 23256 * ordinary interface routes, the gateway address is 23257 * all-zeroes). 23258 */ 23259 mp = *mpp; 23260 ifrt = (ifrt_t *)mp->b_rptr; 23261 if (ifrt->ifrt_addr == ire->ire_addr && 23262 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23263 ifrt->ifrt_mask == ire->ire_mask) { 23264 *mpp = mp->b_cont; 23265 ipif->ipif_saved_ire_cnt--; 23266 freeb(mp); 23267 break; 23268 } 23269 } 23270 mutex_exit(&ipif->ipif_saved_ire_lock); 23271 } 23272 23273 23274 /* 23275 * IP multirouting broadcast routes handling 23276 * Append CGTP broadcast IREs to regular ones created 23277 * at ifconfig time. 23278 */ 23279 static void 23280 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 23281 { 23282 ire_t *ire_prim; 23283 23284 ASSERT(ire != NULL); 23285 ASSERT(ire_dst != NULL); 23286 23287 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23288 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23289 if (ire_prim != NULL) { 23290 /* 23291 * We are in the special case of broadcasts for 23292 * CGTP. We add an IRE_BROADCAST that holds 23293 * the RTF_MULTIRT flag, the destination 23294 * address of ire_dst and the low level 23295 * info of ire_prim. In other words, CGTP 23296 * broadcast is added to the redundant ipif. 23297 */ 23298 ipif_t *ipif_prim; 23299 ire_t *bcast_ire; 23300 23301 ipif_prim = ire_prim->ire_ipif; 23302 23303 ip2dbg(("ip_cgtp_filter_bcast_add: " 23304 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23305 (void *)ire_dst, (void *)ire_prim, 23306 (void *)ipif_prim)); 23307 23308 bcast_ire = ire_create( 23309 (uchar_t *)&ire->ire_addr, 23310 (uchar_t *)&ip_g_all_ones, 23311 (uchar_t *)&ire_dst->ire_src_addr, 23312 (uchar_t *)&ire->ire_gateway_addr, 23313 NULL, 23314 &ipif_prim->ipif_mtu, 23315 NULL, 23316 ipif_prim->ipif_rq, 23317 ipif_prim->ipif_wq, 23318 IRE_BROADCAST, 23319 ipif_prim->ipif_bcast_mp, 23320 ipif_prim, 23321 NULL, 23322 0, 23323 0, 23324 0, 23325 ire->ire_flags, 23326 &ire_uinfo_null, 23327 NULL, 23328 NULL); 23329 23330 if (bcast_ire != NULL) { 23331 23332 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23333 B_FALSE) == 0) { 23334 ip2dbg(("ip_cgtp_filter_bcast_add: " 23335 "added bcast_ire %p\n", 23336 (void *)bcast_ire)); 23337 23338 ipif_save_ire(bcast_ire->ire_ipif, 23339 bcast_ire); 23340 ire_refrele(bcast_ire); 23341 } 23342 } 23343 ire_refrele(ire_prim); 23344 } 23345 } 23346 23347 23348 /* 23349 * IP multirouting broadcast routes handling 23350 * Remove the broadcast ire 23351 */ 23352 static void 23353 ip_cgtp_bcast_delete(ire_t *ire) 23354 { 23355 ire_t *ire_dst; 23356 23357 ASSERT(ire != NULL); 23358 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23359 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23360 if (ire_dst != NULL) { 23361 ire_t *ire_prim; 23362 23363 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23364 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23365 if (ire_prim != NULL) { 23366 ipif_t *ipif_prim; 23367 ire_t *bcast_ire; 23368 23369 ipif_prim = ire_prim->ire_ipif; 23370 23371 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23372 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23373 (void *)ire_dst, (void *)ire_prim, 23374 (void *)ipif_prim)); 23375 23376 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23377 ire->ire_gateway_addr, 23378 IRE_BROADCAST, 23379 ipif_prim, ALL_ZONES, 23380 NULL, 23381 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23382 MATCH_IRE_MASK); 23383 23384 if (bcast_ire != NULL) { 23385 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23386 "looked up bcast_ire %p\n", 23387 (void *)bcast_ire)); 23388 ipif_remove_ire(bcast_ire->ire_ipif, 23389 bcast_ire); 23390 ire_delete(bcast_ire); 23391 } 23392 ire_refrele(ire_prim); 23393 } 23394 ire_refrele(ire_dst); 23395 } 23396 } 23397 23398 /* 23399 * IPsec hardware acceleration capabilities related functions. 23400 */ 23401 23402 /* 23403 * Free a per-ill IPsec capabilities structure. 23404 */ 23405 static void 23406 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23407 { 23408 if (capab->auth_hw_algs != NULL) 23409 kmem_free(capab->auth_hw_algs, capab->algs_size); 23410 if (capab->encr_hw_algs != NULL) 23411 kmem_free(capab->encr_hw_algs, capab->algs_size); 23412 if (capab->encr_algparm != NULL) 23413 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23414 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23415 } 23416 23417 /* 23418 * Allocate a new per-ill IPsec capabilities structure. This structure 23419 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23420 * an array which specifies, for each algorithm, whether this algorithm 23421 * is supported by the ill or not. 23422 */ 23423 static ill_ipsec_capab_t * 23424 ill_ipsec_capab_alloc(void) 23425 { 23426 ill_ipsec_capab_t *capab; 23427 uint_t nelems; 23428 23429 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23430 if (capab == NULL) 23431 return (NULL); 23432 23433 /* we need one bit per algorithm */ 23434 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23435 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23436 23437 /* allocate memory to store algorithm flags */ 23438 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23439 if (capab->encr_hw_algs == NULL) 23440 goto nomem; 23441 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23442 if (capab->auth_hw_algs == NULL) 23443 goto nomem; 23444 /* 23445 * Leave encr_algparm NULL for now since we won't need it half 23446 * the time 23447 */ 23448 return (capab); 23449 23450 nomem: 23451 ill_ipsec_capab_free(capab); 23452 return (NULL); 23453 } 23454 23455 /* 23456 * Resize capability array. Since we're exclusive, this is OK. 23457 */ 23458 static boolean_t 23459 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23460 { 23461 ipsec_capab_algparm_t *nalp, *oalp; 23462 uint32_t olen, nlen; 23463 23464 oalp = capab->encr_algparm; 23465 olen = capab->encr_algparm_size; 23466 23467 if (oalp != NULL) { 23468 if (algid < capab->encr_algparm_end) 23469 return (B_TRUE); 23470 } 23471 23472 nlen = (algid + 1) * sizeof (*nalp); 23473 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23474 if (nalp == NULL) 23475 return (B_FALSE); 23476 23477 if (oalp != NULL) { 23478 bcopy(oalp, nalp, olen); 23479 kmem_free(oalp, olen); 23480 } 23481 capab->encr_algparm = nalp; 23482 capab->encr_algparm_size = nlen; 23483 capab->encr_algparm_end = algid + 1; 23484 23485 return (B_TRUE); 23486 } 23487 23488 /* 23489 * Compare the capabilities of the specified ill with the protocol 23490 * and algorithms specified by the SA passed as argument. 23491 * If they match, returns B_TRUE, B_FALSE if they do not match. 23492 * 23493 * The ill can be passed as a pointer to it, or by specifying its index 23494 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23495 * 23496 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23497 * packet is eligible for hardware acceleration, and by 23498 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23499 * to a particular ill. 23500 */ 23501 boolean_t 23502 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23503 ipsa_t *sa) 23504 { 23505 boolean_t sa_isv6; 23506 uint_t algid; 23507 struct ill_ipsec_capab_s *cpp; 23508 boolean_t need_refrele = B_FALSE; 23509 23510 if (ill == NULL) { 23511 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23512 NULL, NULL, NULL); 23513 if (ill == NULL) { 23514 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23515 return (B_FALSE); 23516 } 23517 need_refrele = B_TRUE; 23518 } 23519 23520 /* 23521 * Use the address length specified by the SA to determine 23522 * if it corresponds to a IPv6 address, and fail the matching 23523 * if the isv6 flag passed as argument does not match. 23524 * Note: this check is used for SADB capability checking before 23525 * sending SA information to an ill. 23526 */ 23527 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23528 if (sa_isv6 != ill_isv6) 23529 /* protocol mismatch */ 23530 goto done; 23531 23532 /* 23533 * Check if the ill supports the protocol, algorithm(s) and 23534 * key size(s) specified by the SA, and get the pointers to 23535 * the algorithms supported by the ill. 23536 */ 23537 switch (sa->ipsa_type) { 23538 23539 case SADB_SATYPE_ESP: 23540 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23541 /* ill does not support ESP acceleration */ 23542 goto done; 23543 cpp = ill->ill_ipsec_capab_esp; 23544 algid = sa->ipsa_auth_alg; 23545 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23546 goto done; 23547 algid = sa->ipsa_encr_alg; 23548 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23549 goto done; 23550 if (algid < cpp->encr_algparm_end) { 23551 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23552 if (sa->ipsa_encrkeybits < alp->minkeylen) 23553 goto done; 23554 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23555 goto done; 23556 } 23557 break; 23558 23559 case SADB_SATYPE_AH: 23560 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23561 /* ill does not support AH acceleration */ 23562 goto done; 23563 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23564 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23565 goto done; 23566 break; 23567 } 23568 23569 if (need_refrele) 23570 ill_refrele(ill); 23571 return (B_TRUE); 23572 done: 23573 if (need_refrele) 23574 ill_refrele(ill); 23575 return (B_FALSE); 23576 } 23577 23578 23579 /* 23580 * Add a new ill to the list of IPsec capable ills. 23581 * Called from ill_capability_ipsec_ack() when an ACK was received 23582 * indicating that IPsec hardware processing was enabled for an ill. 23583 * 23584 * ill must point to the ill for which acceleration was enabled. 23585 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23586 */ 23587 static void 23588 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23589 { 23590 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23591 uint_t sa_type; 23592 uint_t ipproto; 23593 23594 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23595 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23596 23597 switch (dl_cap) { 23598 case DL_CAPAB_IPSEC_AH: 23599 sa_type = SADB_SATYPE_AH; 23600 ills = &ipsec_capab_ills_ah; 23601 ipproto = IPPROTO_AH; 23602 break; 23603 case DL_CAPAB_IPSEC_ESP: 23604 sa_type = SADB_SATYPE_ESP; 23605 ills = &ipsec_capab_ills_esp; 23606 ipproto = IPPROTO_ESP; 23607 break; 23608 } 23609 23610 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23611 23612 /* 23613 * Add ill index to list of hardware accelerators. If 23614 * already in list, do nothing. 23615 */ 23616 for (cur_ill = *ills; cur_ill != NULL && 23617 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23618 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23619 ; 23620 23621 if (cur_ill == NULL) { 23622 /* if this is a new entry for this ill */ 23623 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23624 if (new_ill == NULL) { 23625 rw_exit(&ipsec_capab_ills_lock); 23626 return; 23627 } 23628 23629 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23630 new_ill->ill_isv6 = ill->ill_isv6; 23631 new_ill->next = *ills; 23632 *ills = new_ill; 23633 } else if (!sadb_resync) { 23634 /* not resync'ing SADB and an entry exists for this ill */ 23635 rw_exit(&ipsec_capab_ills_lock); 23636 return; 23637 } 23638 23639 rw_exit(&ipsec_capab_ills_lock); 23640 23641 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23642 /* 23643 * IPsec module for protocol loaded, initiate dump 23644 * of the SADB to this ill. 23645 */ 23646 sadb_ill_download(ill, sa_type); 23647 } 23648 23649 /* 23650 * Remove an ill from the list of IPsec capable ills. 23651 */ 23652 static void 23653 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23654 { 23655 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23656 23657 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23658 dl_cap == DL_CAPAB_IPSEC_ESP); 23659 23660 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23661 &ipsec_capab_ills_esp; 23662 23663 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23664 23665 prev_ill = NULL; 23666 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23667 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23668 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23669 ; 23670 if (cur_ill == NULL) { 23671 /* entry not found */ 23672 rw_exit(&ipsec_capab_ills_lock); 23673 return; 23674 } 23675 if (prev_ill == NULL) { 23676 /* entry at front of list */ 23677 *ills = NULL; 23678 } else { 23679 prev_ill->next = cur_ill->next; 23680 } 23681 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23682 rw_exit(&ipsec_capab_ills_lock); 23683 } 23684 23685 23686 /* 23687 * Handling of DL_CONTROL_REQ messages that must be sent down to 23688 * an ill while having exclusive access. 23689 */ 23690 /* ARGSUSED */ 23691 static void 23692 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23693 { 23694 ill_t *ill = (ill_t *)q->q_ptr; 23695 23696 ill_dlpi_send(ill, mp); 23697 } 23698 23699 23700 /* 23701 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23702 * supporting the specified IPsec protocol acceleration. 23703 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23704 * We free the mblk and, if sa is non-null, release the held referece. 23705 */ 23706 void 23707 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23708 { 23709 ipsec_capab_ill_t *ici, *cur_ici; 23710 ill_t *ill; 23711 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23712 23713 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23714 ipsec_capab_ills_esp; 23715 23716 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23717 23718 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23719 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23720 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23721 23722 /* 23723 * Handle the case where the ill goes away while the SADB is 23724 * attempting to send messages. If it's going away, it's 23725 * nuking its shadow SADB, so we don't care.. 23726 */ 23727 23728 if (ill == NULL) 23729 continue; 23730 23731 if (sa != NULL) { 23732 /* 23733 * Make sure capabilities match before 23734 * sending SA to ill. 23735 */ 23736 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23737 cur_ici->ill_isv6, sa)) { 23738 ill_refrele(ill); 23739 continue; 23740 } 23741 23742 mutex_enter(&sa->ipsa_lock); 23743 sa->ipsa_flags |= IPSA_F_HW; 23744 mutex_exit(&sa->ipsa_lock); 23745 } 23746 23747 /* 23748 * Copy template message, and add it to the front 23749 * of the mblk ship list. We want to avoid holding 23750 * the ipsec_capab_ills_lock while sending the 23751 * message to the ills. 23752 * 23753 * The b_next and b_prev are temporarily used 23754 * to build a list of mblks to be sent down, and to 23755 * save the ill to which they must be sent. 23756 */ 23757 nmp = copymsg(mp); 23758 if (nmp == NULL) { 23759 ill_refrele(ill); 23760 continue; 23761 } 23762 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23763 nmp->b_next = mp_ship_list; 23764 mp_ship_list = nmp; 23765 nmp->b_prev = (mblk_t *)ill; 23766 } 23767 23768 rw_exit(&ipsec_capab_ills_lock); 23769 23770 nmp = mp_ship_list; 23771 while (nmp != NULL) { 23772 /* restore the mblk to a sane state */ 23773 next_mp = nmp->b_next; 23774 nmp->b_next = NULL; 23775 ill = (ill_t *)nmp->b_prev; 23776 nmp->b_prev = NULL; 23777 23778 /* 23779 * Ship the mblk to the ill, must be exclusive. Keep the 23780 * reference to the ill as qwriter_ip() does a ill_referele(). 23781 */ 23782 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23783 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23784 23785 nmp = next_mp; 23786 } 23787 23788 if (sa != NULL) 23789 IPSA_REFRELE(sa); 23790 freemsg(mp); 23791 } 23792 23793 23794 /* 23795 * Derive an interface id from the link layer address. 23796 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23797 */ 23798 static boolean_t 23799 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23800 { 23801 char *addr; 23802 23803 if (phys_length != ETHERADDRL) 23804 return (B_FALSE); 23805 23806 /* Form EUI-64 like address */ 23807 addr = (char *)&v6addr->s6_addr32[2]; 23808 bcopy((char *)phys_addr, addr, 3); 23809 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23810 addr[3] = (char)0xff; 23811 addr[4] = (char)0xfe; 23812 bcopy((char *)phys_addr + 3, addr + 5, 3); 23813 return (B_TRUE); 23814 } 23815 23816 /* ARGSUSED */ 23817 static boolean_t 23818 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23819 { 23820 return (B_FALSE); 23821 } 23822 23823 /* ARGSUSED */ 23824 static boolean_t 23825 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23826 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23827 { 23828 /* 23829 * Multicast address mappings used over Ethernet/802.X. 23830 * This address is used as a base for mappings. 23831 */ 23832 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23833 0x00, 0x00, 0x00}; 23834 23835 /* 23836 * Extract low order 32 bits from IPv6 multicast address. 23837 * Or that into the link layer address, starting from the 23838 * second byte. 23839 */ 23840 *hw_start = 2; 23841 v6_extract_mask->s6_addr32[0] = 0; 23842 v6_extract_mask->s6_addr32[1] = 0; 23843 v6_extract_mask->s6_addr32[2] = 0; 23844 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23845 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23846 return (B_TRUE); 23847 } 23848 23849 /* 23850 * Indicate by return value whether multicast is supported. If not, 23851 * this code should not touch/change any parameters. 23852 */ 23853 /* ARGSUSED */ 23854 static boolean_t 23855 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23856 uint32_t *hw_start, ipaddr_t *extract_mask) 23857 { 23858 /* 23859 * Multicast address mappings used over Ethernet/802.X. 23860 * This address is used as a base for mappings. 23861 */ 23862 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23863 0x00, 0x00, 0x00 }; 23864 23865 if (phys_length != ETHERADDRL) 23866 return (B_FALSE); 23867 23868 *extract_mask = htonl(0x007fffff); 23869 *hw_start = 2; 23870 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23871 return (B_TRUE); 23872 } 23873 23874 /* 23875 * Derive IPoIB interface id from the link layer address. 23876 */ 23877 static boolean_t 23878 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23879 { 23880 char *addr; 23881 23882 if (phys_length != 20) 23883 return (B_FALSE); 23884 addr = (char *)&v6addr->s6_addr32[2]; 23885 bcopy(phys_addr + 12, addr, 8); 23886 /* 23887 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23888 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23889 * rules. In these cases, the IBA considers these GUIDs to be in 23890 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23891 * required; vendors are required not to assign global EUI-64's 23892 * that differ only in u/l bit values, thus guaranteeing uniqueness 23893 * of the interface identifier. Whether the GUID is in modified 23894 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23895 * bit set to 1. 23896 */ 23897 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23898 return (B_TRUE); 23899 } 23900 23901 /* 23902 * Note on mapping from multicast IP addresses to IPoIB multicast link 23903 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23904 * The format of an IPoIB multicast address is: 23905 * 23906 * 4 byte QPN Scope Sign. Pkey 23907 * +--------------------------------------------+ 23908 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23909 * +--------------------------------------------+ 23910 * 23911 * The Scope and Pkey components are properties of the IBA port and 23912 * network interface. They can be ascertained from the broadcast address. 23913 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23914 */ 23915 23916 static boolean_t 23917 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23918 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23919 { 23920 /* 23921 * Base IPoIB IPv6 multicast address used for mappings. 23922 * Does not contain the IBA scope/Pkey values. 23923 */ 23924 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23925 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23926 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23927 23928 /* 23929 * Extract low order 80 bits from IPv6 multicast address. 23930 * Or that into the link layer address, starting from the 23931 * sixth byte. 23932 */ 23933 *hw_start = 6; 23934 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23935 23936 /* 23937 * Now fill in the IBA scope/Pkey values from the broadcast address. 23938 */ 23939 *(maddr + 5) = *(bphys_addr + 5); 23940 *(maddr + 8) = *(bphys_addr + 8); 23941 *(maddr + 9) = *(bphys_addr + 9); 23942 23943 v6_extract_mask->s6_addr32[0] = 0; 23944 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23945 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23946 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23947 return (B_TRUE); 23948 } 23949 23950 static boolean_t 23951 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23952 uint32_t *hw_start, ipaddr_t *extract_mask) 23953 { 23954 /* 23955 * Base IPoIB IPv4 multicast address used for mappings. 23956 * Does not contain the IBA scope/Pkey values. 23957 */ 23958 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23959 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23960 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23961 23962 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23963 return (B_FALSE); 23964 23965 /* 23966 * Extract low order 28 bits from IPv4 multicast address. 23967 * Or that into the link layer address, starting from the 23968 * sixteenth byte. 23969 */ 23970 *extract_mask = htonl(0x0fffffff); 23971 *hw_start = 16; 23972 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23973 23974 /* 23975 * Now fill in the IBA scope/Pkey values from the broadcast address. 23976 */ 23977 *(maddr + 5) = *(bphys_addr + 5); 23978 *(maddr + 8) = *(bphys_addr + 8); 23979 *(maddr + 9) = *(bphys_addr + 9); 23980 return (B_TRUE); 23981 } 23982 23983 /* 23984 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23985 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23986 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23987 * the link-local address is preferred. 23988 */ 23989 boolean_t 23990 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23991 { 23992 ipif_t *ipif; 23993 ipif_t *maybe_ipif = NULL; 23994 23995 mutex_enter(&ill->ill_lock); 23996 if (ill->ill_state_flags & ILL_CONDEMNED) { 23997 mutex_exit(&ill->ill_lock); 23998 if (ipifp != NULL) 23999 *ipifp = NULL; 24000 return (B_FALSE); 24001 } 24002 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24003 if (!IPIF_CAN_LOOKUP(ipif)) 24004 continue; 24005 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24006 ipif->ipif_zoneid != ALL_ZONES) 24007 continue; 24008 if ((ipif->ipif_flags & flags) != flags) 24009 continue; 24010 24011 if (ipifp == NULL) { 24012 mutex_exit(&ill->ill_lock); 24013 ASSERT(maybe_ipif == NULL); 24014 return (B_TRUE); 24015 } 24016 if (!ill->ill_isv6 || 24017 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24018 ipif_refhold_locked(ipif); 24019 mutex_exit(&ill->ill_lock); 24020 *ipifp = ipif; 24021 return (B_TRUE); 24022 } 24023 if (maybe_ipif == NULL) 24024 maybe_ipif = ipif; 24025 } 24026 if (ipifp != NULL) { 24027 if (maybe_ipif != NULL) 24028 ipif_refhold_locked(maybe_ipif); 24029 *ipifp = maybe_ipif; 24030 } 24031 mutex_exit(&ill->ill_lock); 24032 return (maybe_ipif != NULL); 24033 } 24034 24035 /* 24036 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24037 */ 24038 boolean_t 24039 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24040 { 24041 ill_t *illg; 24042 24043 /* 24044 * We look at the passed-in ill first without grabbing ill_g_lock. 24045 */ 24046 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24047 return (B_TRUE); 24048 } 24049 rw_enter(&ill_g_lock, RW_READER); 24050 if (ill->ill_group == NULL) { 24051 /* ill not in a group */ 24052 rw_exit(&ill_g_lock); 24053 return (B_FALSE); 24054 } 24055 24056 /* 24057 * There's no ipif in the zone on ill, however ill is part of an IPMP 24058 * group. We need to look for an ipif in the zone on all the ills in the 24059 * group. 24060 */ 24061 illg = ill->ill_group->illgrp_ill; 24062 do { 24063 /* 24064 * We don't call ipif_lookup_zoneid() on ill as we already know 24065 * that it's not there. 24066 */ 24067 if (illg != ill && 24068 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24069 break; 24070 } 24071 } while ((illg = illg->ill_group_next) != NULL); 24072 rw_exit(&ill_g_lock); 24073 return (illg != NULL); 24074 } 24075 24076 /* 24077 * Check if this ill is only being used to send ICMP probes for IPMP 24078 */ 24079 boolean_t 24080 ill_is_probeonly(ill_t *ill) 24081 { 24082 /* 24083 * Check if the interface is FAILED, or INACTIVE 24084 */ 24085 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24086 return (B_TRUE); 24087 24088 return (B_FALSE); 24089 } 24090 24091 /* 24092 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24093 * If a pointer to an ipif_t is returned then the caller will need to do 24094 * an ill_refrele(). 24095 */ 24096 ipif_t * 24097 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6) 24098 { 24099 ipif_t *ipif; 24100 ill_t *ill; 24101 24102 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 24103 24104 if (ill == NULL) 24105 return (NULL); 24106 24107 mutex_enter(&ill->ill_lock); 24108 if (ill->ill_state_flags & ILL_CONDEMNED) { 24109 mutex_exit(&ill->ill_lock); 24110 ill_refrele(ill); 24111 return (NULL); 24112 } 24113 24114 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24115 if (!IPIF_CAN_LOOKUP(ipif)) 24116 continue; 24117 if (lifidx == ipif->ipif_id) { 24118 ipif_refhold_locked(ipif); 24119 break; 24120 } 24121 } 24122 24123 mutex_exit(&ill->ill_lock); 24124 ill_refrele(ill); 24125 return (ipif); 24126 } 24127