1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains the interface control functions for IP. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/tunables.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 105 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 121 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 122 char *value, caddr_t cp, cred_t *ioc_cr); 123 124 static boolean_t ill_is_quiescent(ill_t *); 125 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 126 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 127 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 128 mblk_t *mp, boolean_t need_up); 129 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 130 mblk_t *mp, boolean_t need_up); 131 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 132 queue_t *q, mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 134 mblk_t *mp); 135 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp); 137 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 138 queue_t *q, mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 140 int ioccmd, struct linkblk *li); 141 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 142 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 143 static void ipsq_flush(ill_t *ill); 144 145 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static void ipsq_delete(ipsq_t *); 148 149 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 150 boolean_t initialize, boolean_t insert, int *errorp); 151 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 152 static void ipif_delete_bcast_ires(ipif_t *ipif); 153 static int ipif_add_ires_v4(ipif_t *, boolean_t); 154 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 155 boolean_t isv6); 156 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 157 static void ipif_free(ipif_t *ipif); 158 static void ipif_free_tail(ipif_t *ipif); 159 static void ipif_set_default(ipif_t *ipif); 160 static int ipif_set_values(queue_t *q, mblk_t *mp, 161 char *interf_name, uint_t *ppa); 162 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 163 queue_t *q); 164 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 165 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 166 ip_stack_t *); 167 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 168 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 169 int *error, ip_stack_t *); 170 171 static int ill_alloc_ppa(ill_if_t *, ill_t *); 172 static void ill_delete_interface_type(ill_if_t *); 173 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 174 static void ill_dl_down(ill_t *ill); 175 static void ill_down(ill_t *ill); 176 static void ill_down_ipifs(ill_t *, boolean_t); 177 static void ill_free_mib(ill_t *ill); 178 static void ill_glist_delete(ill_t *); 179 static void ill_phyint_reinit(ill_t *ill); 180 static void ill_set_nce_router_flags(ill_t *, boolean_t); 181 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 182 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 183 184 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 185 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 186 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 187 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 188 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 189 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 190 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 191 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 192 static ip_v4mapinfo_func_t ip_mbcast_mapping; 193 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 194 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 195 static void phyint_free(phyint_t *); 196 197 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 198 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 199 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 200 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 201 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 202 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 203 dl_capability_sub_t *); 204 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 205 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_dld_ack(ill_t *, mblk_t *, 207 dl_capability_sub_t *); 208 static void ill_capability_dld_enable(ill_t *); 209 static void ill_capability_ack_thr(void *); 210 static void ill_capability_lso_enable(ill_t *); 211 212 static ill_t *ill_prev_usesrc(ill_t *); 213 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 214 static void ill_disband_usesrc_group(ill_t *); 215 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 216 217 #ifdef DEBUG 218 static void ill_trace_cleanup(const ill_t *); 219 static void ipif_trace_cleanup(const ipif_t *); 220 #endif 221 222 static void ill_dlpi_clear_deferred(ill_t *ill); 223 224 /* 225 * if we go over the memory footprint limit more than once in this msec 226 * interval, we'll start pruning aggressively. 227 */ 228 int ip_min_frag_prune_time = 0; 229 230 static ipft_t ip_ioctl_ftbl[] = { 231 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 232 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 233 IPFT_F_NO_REPLY }, 234 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 235 { 0 } 236 }; 237 238 /* Simple ICMP IP Header Template */ 239 static ipha_t icmp_ipha = { 240 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 241 }; 242 243 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 244 245 static ip_m_t ip_m_tbl[] = { 246 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 266 ip_ipv4_v6destintfid }, 267 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 268 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 269 ip_ipv6_v6destintfid }, 270 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 272 ip_nodef_v6intfid }, 273 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 274 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 275 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 276 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 277 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 278 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 279 ip_nodef_v6intfid } 280 }; 281 282 static ill_t ill_null; /* Empty ILL for init. */ 283 char ipif_loopback_name[] = "lo0"; 284 285 /* These are used by all IP network modules. */ 286 sin6_t sin6_null; /* Zero address for quick clears */ 287 sin_t sin_null; /* Zero address for quick clears */ 288 289 /* When set search for unused ipif_seqid */ 290 static ipif_t ipif_zero; 291 292 /* 293 * ppa arena is created after these many 294 * interfaces have been plumbed. 295 */ 296 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 297 298 /* 299 * Allocate per-interface mibs. 300 * Returns true if ok. False otherwise. 301 * ipsq may not yet be allocated (loopback case ). 302 */ 303 static boolean_t 304 ill_allocate_mibs(ill_t *ill) 305 { 306 /* Already allocated? */ 307 if (ill->ill_ip_mib != NULL) { 308 if (ill->ill_isv6) 309 ASSERT(ill->ill_icmp6_mib != NULL); 310 return (B_TRUE); 311 } 312 313 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 314 KM_NOSLEEP); 315 if (ill->ill_ip_mib == NULL) { 316 return (B_FALSE); 317 } 318 319 /* Setup static information */ 320 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 321 sizeof (mib2_ipIfStatsEntry_t)); 322 if (ill->ill_isv6) { 323 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 324 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 325 sizeof (mib2_ipv6AddrEntry_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 327 sizeof (mib2_ipv6RouteEntry_t)); 328 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 329 sizeof (mib2_ipv6NetToMediaEntry_t)); 330 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 331 sizeof (ipv6_member_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 333 sizeof (ipv6_grpsrc_t)); 334 } else { 335 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 336 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 337 sizeof (mib2_ipAddrEntry_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 339 sizeof (mib2_ipRouteEntry_t)); 340 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 341 sizeof (mib2_ipNetToMediaEntry_t)); 342 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 343 sizeof (ip_member_t)); 344 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 345 sizeof (ip_grpsrc_t)); 346 347 /* 348 * For a v4 ill, we are done at this point, because per ill 349 * icmp mibs are only used for v6. 350 */ 351 return (B_TRUE); 352 } 353 354 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 355 KM_NOSLEEP); 356 if (ill->ill_icmp6_mib == NULL) { 357 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 358 ill->ill_ip_mib = NULL; 359 return (B_FALSE); 360 } 361 /* static icmp info */ 362 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 363 sizeof (mib2_ipv6IfIcmpEntry_t); 364 /* 365 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 366 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 367 * -> ill_phyint_reinit 368 */ 369 return (B_TRUE); 370 } 371 372 /* 373 * Completely vaporize a lower level tap and all associated interfaces. 374 * ill_delete is called only out of ip_close when the device control 375 * stream is being closed. 376 */ 377 void 378 ill_delete(ill_t *ill) 379 { 380 ipif_t *ipif; 381 ill_t *prev_ill; 382 ip_stack_t *ipst = ill->ill_ipst; 383 384 /* 385 * ill_delete may be forcibly entering the ipsq. The previous 386 * ioctl may not have completed and may need to be aborted. 387 * ipsq_flush takes care of it. If we don't need to enter the 388 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 389 * ill_delete_tail is sufficient. 390 */ 391 ipsq_flush(ill); 392 393 /* 394 * Nuke all interfaces. ipif_free will take down the interface, 395 * remove it from the list, and free the data structure. 396 * Walk down the ipif list and remove the logical interfaces 397 * first before removing the main ipif. We can't unplumb 398 * zeroth interface first in the case of IPv6 as update_conn_ill 399 * -> ip_ll_multireq de-references ill_ipif for checking 400 * POINTOPOINT. 401 * 402 * If ill_ipif was not properly initialized (i.e low on memory), 403 * then no interfaces to clean up. In this case just clean up the 404 * ill. 405 */ 406 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 407 ipif_free(ipif); 408 409 /* 410 * clean out all the nce_t entries that depend on this 411 * ill for the ill_phys_addr. 412 */ 413 nce_flush(ill, B_TRUE); 414 415 /* Clean up msgs on pending upcalls for mrouted */ 416 reset_mrt_ill(ill); 417 418 update_conn_ill(ill, ipst); 419 420 /* 421 * Remove multicast references added as a result of calls to 422 * ip_join_allmulti(). 423 */ 424 ip_purge_allmulti(ill); 425 426 /* 427 * If the ill being deleted is under IPMP, boot it out of the illgrp. 428 */ 429 if (IS_UNDER_IPMP(ill)) 430 ipmp_ill_leave_illgrp(ill); 431 432 /* 433 * ill_down will arrange to blow off any IRE's dependent on this 434 * ILL, and shut down fragmentation reassembly. 435 */ 436 ill_down(ill); 437 438 /* Let SCTP know, so that it can remove this from its list. */ 439 sctp_update_ill(ill, SCTP_ILL_REMOVE); 440 441 /* 442 * Walk all CONNs that can have a reference on an ire or nce for this 443 * ill (we actually walk all that now have stale references). 444 */ 445 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 446 447 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 448 if (ill->ill_isv6) 449 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 450 451 /* 452 * If an address on this ILL is being used as a source address then 453 * clear out the pointers in other ILLs that point to this ILL. 454 */ 455 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 456 if (ill->ill_usesrc_grp_next != NULL) { 457 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 458 ill_disband_usesrc_group(ill); 459 } else { /* consumer of the usesrc ILL */ 460 prev_ill = ill_prev_usesrc(ill); 461 prev_ill->ill_usesrc_grp_next = 462 ill->ill_usesrc_grp_next; 463 } 464 } 465 rw_exit(&ipst->ips_ill_g_usesrc_lock); 466 } 467 468 static void 469 ipif_non_duplicate(ipif_t *ipif) 470 { 471 ill_t *ill = ipif->ipif_ill; 472 mutex_enter(&ill->ill_lock); 473 if (ipif->ipif_flags & IPIF_DUPLICATE) { 474 ipif->ipif_flags &= ~IPIF_DUPLICATE; 475 ASSERT(ill->ill_ipif_dup_count > 0); 476 ill->ill_ipif_dup_count--; 477 } 478 mutex_exit(&ill->ill_lock); 479 } 480 481 /* 482 * ill_delete_tail is called from ip_modclose after all references 483 * to the closing ill are gone. The wait is done in ip_modclose 484 */ 485 void 486 ill_delete_tail(ill_t *ill) 487 { 488 mblk_t **mpp; 489 ipif_t *ipif; 490 ip_stack_t *ipst = ill->ill_ipst; 491 492 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 493 ipif_non_duplicate(ipif); 494 (void) ipif_down_tail(ipif); 495 } 496 497 ASSERT(ill->ill_ipif_dup_count == 0); 498 499 /* 500 * If polling capability is enabled (which signifies direct 501 * upcall into IP and driver has ill saved as a handle), 502 * we need to make sure that unbind has completed before we 503 * let the ill disappear and driver no longer has any reference 504 * to this ill. 505 */ 506 mutex_enter(&ill->ill_lock); 507 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 508 cv_wait(&ill->ill_cv, &ill->ill_lock); 509 mutex_exit(&ill->ill_lock); 510 ASSERT(!(ill->ill_capabilities & 511 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 512 513 if (ill->ill_net_type != IRE_LOOPBACK) 514 qprocsoff(ill->ill_rq); 515 516 /* 517 * We do an ipsq_flush once again now. New messages could have 518 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 519 * could also have landed up if an ioctl thread had looked up 520 * the ill before we set the ILL_CONDEMNED flag, but not yet 521 * enqueued the ioctl when we did the ipsq_flush last time. 522 */ 523 ipsq_flush(ill); 524 525 /* 526 * Free capabilities. 527 */ 528 if (ill->ill_hcksum_capab != NULL) { 529 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 530 ill->ill_hcksum_capab = NULL; 531 } 532 533 if (ill->ill_zerocopy_capab != NULL) { 534 kmem_free(ill->ill_zerocopy_capab, 535 sizeof (ill_zerocopy_capab_t)); 536 ill->ill_zerocopy_capab = NULL; 537 } 538 539 if (ill->ill_lso_capab != NULL) { 540 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 541 ill->ill_lso_capab = NULL; 542 } 543 544 if (ill->ill_dld_capab != NULL) { 545 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 546 ill->ill_dld_capab = NULL; 547 } 548 549 while (ill->ill_ipif != NULL) 550 ipif_free_tail(ill->ill_ipif); 551 552 /* 553 * We have removed all references to ilm from conn and the ones joined 554 * within the kernel. 555 * 556 * We don't walk conns, mrts and ires because 557 * 558 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 559 * 2) ill_down ->ill_downi walks all the ires and cleans up 560 * ill references. 561 */ 562 563 /* 564 * If this ill is an IPMP meta-interface, blow away the illgrp. This 565 * is safe to do because the illgrp has already been unlinked from the 566 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 567 */ 568 if (IS_IPMP(ill)) { 569 ipmp_illgrp_destroy(ill->ill_grp); 570 ill->ill_grp = NULL; 571 } 572 573 /* 574 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 575 * could free the phyint. No more reference to the phyint after this 576 * point. 577 */ 578 (void) ill_glist_delete(ill); 579 580 if (ill->ill_frag_ptr != NULL) { 581 uint_t count; 582 583 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 584 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 585 } 586 mi_free(ill->ill_frag_ptr); 587 ill->ill_frag_ptr = NULL; 588 ill->ill_frag_hash_tbl = NULL; 589 } 590 591 freemsg(ill->ill_nd_lla_mp); 592 /* Free all retained control messages. */ 593 mpp = &ill->ill_first_mp_to_free; 594 do { 595 while (mpp[0]) { 596 mblk_t *mp; 597 mblk_t *mp1; 598 599 mp = mpp[0]; 600 mpp[0] = mp->b_next; 601 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 602 mp1->b_next = NULL; 603 mp1->b_prev = NULL; 604 } 605 freemsg(mp); 606 } 607 } while (mpp++ != &ill->ill_last_mp_to_free); 608 609 ill_free_mib(ill); 610 611 #ifdef DEBUG 612 ill_trace_cleanup(ill); 613 #endif 614 615 /* The default multicast interface might have changed */ 616 ire_increment_multicast_generation(ipst, ill->ill_isv6); 617 618 /* Drop refcnt here */ 619 netstack_rele(ill->ill_ipst->ips_netstack); 620 ill->ill_ipst = NULL; 621 } 622 623 static void 624 ill_free_mib(ill_t *ill) 625 { 626 ip_stack_t *ipst = ill->ill_ipst; 627 628 /* 629 * MIB statistics must not be lost, so when an interface 630 * goes away the counter values will be added to the global 631 * MIBs. 632 */ 633 if (ill->ill_ip_mib != NULL) { 634 if (ill->ill_isv6) { 635 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 636 ill->ill_ip_mib); 637 } else { 638 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 639 ill->ill_ip_mib); 640 } 641 642 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 643 ill->ill_ip_mib = NULL; 644 } 645 if (ill->ill_icmp6_mib != NULL) { 646 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 647 ill->ill_icmp6_mib); 648 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 649 ill->ill_icmp6_mib = NULL; 650 } 651 } 652 653 /* 654 * Concatenate together a physical address and a sap. 655 * 656 * Sap_lengths are interpreted as follows: 657 * sap_length == 0 ==> no sap 658 * sap_length > 0 ==> sap is at the head of the dlpi address 659 * sap_length < 0 ==> sap is at the tail of the dlpi address 660 */ 661 static void 662 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 663 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 664 { 665 uint16_t sap_addr = (uint16_t)sap_src; 666 667 if (sap_length == 0) { 668 if (phys_src == NULL) 669 bzero(dst, phys_length); 670 else 671 bcopy(phys_src, dst, phys_length); 672 } else if (sap_length < 0) { 673 if (phys_src == NULL) 674 bzero(dst, phys_length); 675 else 676 bcopy(phys_src, dst, phys_length); 677 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 678 } else { 679 bcopy(&sap_addr, dst, sizeof (sap_addr)); 680 if (phys_src == NULL) 681 bzero((char *)dst + sap_length, phys_length); 682 else 683 bcopy(phys_src, (char *)dst + sap_length, phys_length); 684 } 685 } 686 687 /* 688 * Generate a dl_unitdata_req mblk for the device and address given. 689 * addr_length is the length of the physical portion of the address. 690 * If addr is NULL include an all zero address of the specified length. 691 * TRUE? In any case, addr_length is taken to be the entire length of the 692 * dlpi address, including the absolute value of sap_length. 693 */ 694 mblk_t * 695 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 696 t_scalar_t sap_length) 697 { 698 dl_unitdata_req_t *dlur; 699 mblk_t *mp; 700 t_scalar_t abs_sap_length; /* absolute value */ 701 702 abs_sap_length = ABS(sap_length); 703 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 704 DL_UNITDATA_REQ); 705 if (mp == NULL) 706 return (NULL); 707 dlur = (dl_unitdata_req_t *)mp->b_rptr; 708 /* HACK: accomodate incompatible DLPI drivers */ 709 if (addr_length == 8) 710 addr_length = 6; 711 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 712 dlur->dl_dest_addr_offset = sizeof (*dlur); 713 dlur->dl_priority.dl_min = 0; 714 dlur->dl_priority.dl_max = 0; 715 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 716 (uchar_t *)&dlur[1]); 717 return (mp); 718 } 719 720 /* 721 * Add the pending mp to the list. There can be only 1 pending mp 722 * in the list. Any exclusive ioctl that needs to wait for a response 723 * from another module or driver needs to use this function to set 724 * the ipx_pending_mp to the ioctl mblk and wait for the response from 725 * the other module/driver. This is also used while waiting for the 726 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 727 */ 728 boolean_t 729 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 730 int waitfor) 731 { 732 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 733 734 ASSERT(IAM_WRITER_IPIF(ipif)); 735 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 736 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 737 ASSERT(ipx->ipx_pending_mp == NULL); 738 /* 739 * The caller may be using a different ipif than the one passed into 740 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 741 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 742 * that `ipx_current_ipif == ipif'. 743 */ 744 ASSERT(ipx->ipx_current_ipif != NULL); 745 746 /* 747 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 748 * driver. 749 */ 750 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 751 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 752 (DB_TYPE(add_mp) == M_PCPROTO)); 753 754 if (connp != NULL) { 755 ASSERT(MUTEX_HELD(&connp->conn_lock)); 756 /* 757 * Return error if the conn has started closing. The conn 758 * could have finished cleaning up the pending mp list, 759 * If so we should not add another mp to the list negating 760 * the cleanup. 761 */ 762 if (connp->conn_state_flags & CONN_CLOSING) 763 return (B_FALSE); 764 } 765 mutex_enter(&ipx->ipx_lock); 766 ipx->ipx_pending_ipif = ipif; 767 /* 768 * Note down the queue in b_queue. This will be returned by 769 * ipsq_pending_mp_get. Caller will then use these values to restart 770 * the processing 771 */ 772 add_mp->b_next = NULL; 773 add_mp->b_queue = q; 774 ipx->ipx_pending_mp = add_mp; 775 ipx->ipx_waitfor = waitfor; 776 mutex_exit(&ipx->ipx_lock); 777 778 if (connp != NULL) 779 connp->conn_oper_pending_ill = ipif->ipif_ill; 780 781 return (B_TRUE); 782 } 783 784 /* 785 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 786 * queued in the list. 787 */ 788 mblk_t * 789 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 790 { 791 mblk_t *curr = NULL; 792 ipxop_t *ipx = ipsq->ipsq_xop; 793 794 *connpp = NULL; 795 mutex_enter(&ipx->ipx_lock); 796 if (ipx->ipx_pending_mp == NULL) { 797 mutex_exit(&ipx->ipx_lock); 798 return (NULL); 799 } 800 801 /* There can be only 1 such excl message */ 802 curr = ipx->ipx_pending_mp; 803 ASSERT(curr->b_next == NULL); 804 ipx->ipx_pending_ipif = NULL; 805 ipx->ipx_pending_mp = NULL; 806 ipx->ipx_waitfor = 0; 807 mutex_exit(&ipx->ipx_lock); 808 809 if (CONN_Q(curr->b_queue)) { 810 /* 811 * This mp did a refhold on the conn, at the start of the ioctl. 812 * So we can safely return a pointer to the conn to the caller. 813 */ 814 *connpp = Q_TO_CONN(curr->b_queue); 815 } else { 816 *connpp = NULL; 817 } 818 curr->b_next = NULL; 819 curr->b_prev = NULL; 820 return (curr); 821 } 822 823 /* 824 * Cleanup the ioctl mp queued in ipx_pending_mp 825 * - Called in the ill_delete path 826 * - Called in the M_ERROR or M_HANGUP path on the ill. 827 * - Called in the conn close path. 828 * 829 * Returns success on finding the pending mblk associated with the ioctl or 830 * exclusive operation in progress, failure otherwise. 831 */ 832 boolean_t 833 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 834 { 835 mblk_t *mp; 836 ipxop_t *ipx; 837 queue_t *q; 838 ipif_t *ipif; 839 int cmd; 840 841 ASSERT(IAM_WRITER_ILL(ill)); 842 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 843 844 mutex_enter(&ipx->ipx_lock); 845 mp = ipx->ipx_pending_mp; 846 if (connp != NULL) { 847 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 848 /* 849 * Nothing to clean since the conn that is closing 850 * does not have a matching pending mblk in 851 * ipx_pending_mp. 852 */ 853 mutex_exit(&ipx->ipx_lock); 854 return (B_FALSE); 855 } 856 } else { 857 /* 858 * A non-zero ill_error signifies we are called in the 859 * M_ERROR or M_HANGUP path and we need to unconditionally 860 * abort any current ioctl and do the corresponding cleanup. 861 * A zero ill_error means we are in the ill_delete path and 862 * we do the cleanup only if there is a pending mp. 863 */ 864 if (mp == NULL && ill->ill_error == 0) { 865 mutex_exit(&ipx->ipx_lock); 866 return (B_FALSE); 867 } 868 } 869 870 /* Now remove from the ipx_pending_mp */ 871 ipx->ipx_pending_mp = NULL; 872 ipif = ipx->ipx_pending_ipif; 873 ipx->ipx_pending_ipif = NULL; 874 ipx->ipx_waitfor = 0; 875 ipx->ipx_current_ipif = NULL; 876 cmd = ipx->ipx_current_ioctl; 877 ipx->ipx_current_ioctl = 0; 878 ipx->ipx_current_done = B_TRUE; 879 mutex_exit(&ipx->ipx_lock); 880 881 if (mp == NULL) 882 return (B_FALSE); 883 884 q = mp->b_queue; 885 mp->b_next = NULL; 886 mp->b_prev = NULL; 887 mp->b_queue = NULL; 888 889 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 890 DTRACE_PROBE4(ipif__ioctl, 891 char *, "ipsq_pending_mp_cleanup", 892 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 893 ipif_t *, ipif); 894 if (connp == NULL) { 895 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 896 } else { 897 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 898 mutex_enter(&ipif->ipif_ill->ill_lock); 899 ipif->ipif_state_flags &= ~IPIF_CHANGING; 900 mutex_exit(&ipif->ipif_ill->ill_lock); 901 } 902 } else { 903 inet_freemsg(mp); 904 } 905 return (B_TRUE); 906 } 907 908 /* 909 * Called in the conn close path and ill delete path 910 */ 911 static void 912 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 913 { 914 ipsq_t *ipsq; 915 mblk_t *prev; 916 mblk_t *curr; 917 mblk_t *next; 918 queue_t *wq, *rq = NULL; 919 mblk_t *tmp_list = NULL; 920 921 ASSERT(IAM_WRITER_ILL(ill)); 922 if (connp != NULL) 923 wq = CONNP_TO_WQ(connp); 924 else 925 wq = ill->ill_wq; 926 927 /* 928 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 929 * against this here. 930 */ 931 if (wq != NULL) 932 rq = RD(wq); 933 934 ipsq = ill->ill_phyint->phyint_ipsq; 935 /* 936 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 937 * In the case of ioctl from a conn, there can be only 1 mp 938 * queued on the ipsq. If an ill is being unplumbed flush all 939 * the messages. 940 */ 941 mutex_enter(&ipsq->ipsq_lock); 942 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 943 curr = next) { 944 next = curr->b_next; 945 if (connp == NULL || 946 (curr->b_queue == wq || curr->b_queue == rq)) { 947 /* Unlink the mblk from the pending mp list */ 948 if (prev != NULL) { 949 prev->b_next = curr->b_next; 950 } else { 951 ASSERT(ipsq->ipsq_xopq_mphead == curr); 952 ipsq->ipsq_xopq_mphead = curr->b_next; 953 } 954 if (ipsq->ipsq_xopq_mptail == curr) 955 ipsq->ipsq_xopq_mptail = prev; 956 /* 957 * Create a temporary list and release the ipsq lock 958 * New elements are added to the head of the tmp_list 959 */ 960 curr->b_next = tmp_list; 961 tmp_list = curr; 962 } else { 963 prev = curr; 964 } 965 } 966 mutex_exit(&ipsq->ipsq_lock); 967 968 while (tmp_list != NULL) { 969 curr = tmp_list; 970 tmp_list = curr->b_next; 971 curr->b_next = NULL; 972 curr->b_prev = NULL; 973 wq = curr->b_queue; 974 curr->b_queue = NULL; 975 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 976 DTRACE_PROBE4(ipif__ioctl, 977 char *, "ipsq_xopq_mp_cleanup", 978 int, 0, ill_t *, NULL, ipif_t *, NULL); 979 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 980 CONN_CLOSE : NO_COPYOUT, NULL); 981 } else { 982 /* 983 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 984 * this can't be just inet_freemsg. we have to 985 * restart it otherwise the thread will be stuck. 986 */ 987 inet_freemsg(curr); 988 } 989 } 990 } 991 992 /* 993 * This conn has started closing. Cleanup any pending ioctl from this conn. 994 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 995 */ 996 void 997 conn_ioctl_cleanup(conn_t *connp) 998 { 999 ipsq_t *ipsq; 1000 ill_t *ill; 1001 boolean_t refheld; 1002 1003 /* 1004 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1005 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1006 * started the mp could be present in ipx_pending_mp. Note that if 1007 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1008 * not yet queued anywhere. In this case, the conn close code will wait 1009 * until the conn_ref is dropped. If the stream was a tcp stream, then 1010 * tcp_close will wait first until all ioctls have completed for this 1011 * conn. 1012 */ 1013 mutex_enter(&connp->conn_lock); 1014 ill = connp->conn_oper_pending_ill; 1015 if (ill == NULL) { 1016 mutex_exit(&connp->conn_lock); 1017 return; 1018 } 1019 1020 /* 1021 * We may not be able to refhold the ill if the ill/ipif 1022 * is changing. But we need to make sure that the ill will 1023 * not vanish. So we just bump up the ill_waiter count. 1024 */ 1025 refheld = ill_waiter_inc(ill); 1026 mutex_exit(&connp->conn_lock); 1027 if (refheld) { 1028 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1029 ill_waiter_dcr(ill); 1030 /* 1031 * Check whether this ioctl has started and is 1032 * pending. If it is not found there then check 1033 * whether this ioctl has not even started and is in 1034 * the ipsq_xopq list. 1035 */ 1036 if (!ipsq_pending_mp_cleanup(ill, connp)) 1037 ipsq_xopq_mp_cleanup(ill, connp); 1038 ipsq = ill->ill_phyint->phyint_ipsq; 1039 ipsq_exit(ipsq); 1040 return; 1041 } 1042 } 1043 1044 /* 1045 * The ill is also closing and we could not bump up the 1046 * ill_waiter_count or we could not enter the ipsq. Leave 1047 * the cleanup to ill_delete 1048 */ 1049 mutex_enter(&connp->conn_lock); 1050 while (connp->conn_oper_pending_ill != NULL) 1051 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1052 mutex_exit(&connp->conn_lock); 1053 if (refheld) 1054 ill_waiter_dcr(ill); 1055 } 1056 1057 /* 1058 * ipcl_walk function for cleaning up conn_*_ill fields. 1059 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1060 * conn_bound_if in place. We prefer dropping 1061 * packets instead of sending them out the wrong interface, or accepting 1062 * packets from the wrong ifindex. 1063 */ 1064 static void 1065 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1066 { 1067 ill_t *ill = (ill_t *)arg; 1068 1069 mutex_enter(&connp->conn_lock); 1070 if (connp->conn_dhcpinit_ill == ill) { 1071 connp->conn_dhcpinit_ill = NULL; 1072 ASSERT(ill->ill_dhcpinit != 0); 1073 atomic_dec_32(&ill->ill_dhcpinit); 1074 ill_set_inputfn(ill); 1075 } 1076 mutex_exit(&connp->conn_lock); 1077 } 1078 1079 static int 1080 ill_down_ipifs_tail(ill_t *ill) 1081 { 1082 ipif_t *ipif; 1083 int err; 1084 1085 ASSERT(IAM_WRITER_ILL(ill)); 1086 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1087 ipif_non_duplicate(ipif); 1088 /* 1089 * ipif_down_tail will call arp_ll_down on the last ipif 1090 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1091 */ 1092 if ((err = ipif_down_tail(ipif)) != 0) 1093 return (err); 1094 } 1095 return (0); 1096 } 1097 1098 /* ARGSUSED */ 1099 void 1100 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1101 { 1102 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1103 (void) ill_down_ipifs_tail(q->q_ptr); 1104 freemsg(mp); 1105 ipsq_current_finish(ipsq); 1106 } 1107 1108 /* 1109 * ill_down_start is called when we want to down this ill and bring it up again 1110 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1111 * all interfaces, but don't tear down any plumbing. 1112 */ 1113 boolean_t 1114 ill_down_start(queue_t *q, mblk_t *mp) 1115 { 1116 ill_t *ill = q->q_ptr; 1117 ipif_t *ipif; 1118 1119 ASSERT(IAM_WRITER_ILL(ill)); 1120 /* 1121 * It is possible that some ioctl is already in progress while we 1122 * received the M_ERROR / M_HANGUP in which case, we need to abort 1123 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1124 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1125 * the in progress ioctl from ever completing. 1126 * 1127 * The thread that started the ioctl (if any) must have returned, 1128 * since we are now executing as writer. After the 2 calls below, 1129 * the state of the ipsq and the ill would reflect no trace of any 1130 * pending operation. Subsequently if there is any response to the 1131 * original ioctl from the driver, it would be discarded as an 1132 * unsolicited message from the driver. 1133 */ 1134 (void) ipsq_pending_mp_cleanup(ill, NULL); 1135 ill_dlpi_clear_deferred(ill); 1136 1137 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1138 (void) ipif_down(ipif, NULL, NULL); 1139 1140 ill_down(ill); 1141 1142 /* 1143 * Walk all CONNs that can have a reference on an ire or nce for this 1144 * ill (we actually walk all that now have stale references). 1145 */ 1146 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1147 1148 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1149 if (ill->ill_isv6) 1150 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1151 1152 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1153 1154 /* 1155 * Atomically test and add the pending mp if references are active. 1156 */ 1157 mutex_enter(&ill->ill_lock); 1158 if (!ill_is_quiescent(ill)) { 1159 /* call cannot fail since `conn_t *' argument is NULL */ 1160 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1161 mp, ILL_DOWN); 1162 mutex_exit(&ill->ill_lock); 1163 return (B_FALSE); 1164 } 1165 mutex_exit(&ill->ill_lock); 1166 return (B_TRUE); 1167 } 1168 1169 static void 1170 ill_down(ill_t *ill) 1171 { 1172 mblk_t *mp; 1173 ip_stack_t *ipst = ill->ill_ipst; 1174 1175 /* 1176 * Blow off any IREs dependent on this ILL. 1177 * The caller needs to handle conn_ixa_cleanup 1178 */ 1179 ill_delete_ires(ill); 1180 1181 ire_walk_ill(0, 0, ill_downi, ill, ill); 1182 1183 /* Remove any conn_*_ill depending on this ill */ 1184 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1185 1186 /* 1187 * Free state for additional IREs. 1188 */ 1189 mutex_enter(&ill->ill_saved_ire_lock); 1190 mp = ill->ill_saved_ire_mp; 1191 ill->ill_saved_ire_mp = NULL; 1192 ill->ill_saved_ire_cnt = 0; 1193 mutex_exit(&ill->ill_saved_ire_lock); 1194 freemsg(mp); 1195 } 1196 1197 /* 1198 * ire_walk routine used to delete every IRE that depends on 1199 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1200 * 1201 * Note: since the routes added by the kernel are deleted separately, 1202 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1203 * 1204 * We also remove references on ire_nce_cache entries that refer to the ill. 1205 */ 1206 void 1207 ill_downi(ire_t *ire, char *ill_arg) 1208 { 1209 ill_t *ill = (ill_t *)ill_arg; 1210 nce_t *nce; 1211 1212 mutex_enter(&ire->ire_lock); 1213 nce = ire->ire_nce_cache; 1214 if (nce != NULL && nce->nce_ill == ill) 1215 ire->ire_nce_cache = NULL; 1216 else 1217 nce = NULL; 1218 mutex_exit(&ire->ire_lock); 1219 if (nce != NULL) 1220 nce_refrele(nce); 1221 if (ire->ire_ill == ill) { 1222 /* 1223 * The existing interface binding for ire must be 1224 * deleted before trying to bind the route to another 1225 * interface. However, since we are using the contents of the 1226 * ire after ire_delete, the caller has to ensure that 1227 * CONDEMNED (deleted) ire's are not removed from the list 1228 * when ire_delete() returns. Currently ill_downi() is 1229 * only called as part of ire_walk*() routines, so that 1230 * the irb_refhold() done by ire_walk*() will ensure that 1231 * ire_delete() does not lead to ire_inactive(). 1232 */ 1233 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1234 ire_delete(ire); 1235 if (ire->ire_unbound) 1236 ire_rebind(ire); 1237 } 1238 } 1239 1240 /* Remove IRE_IF_CLONE on this ill */ 1241 void 1242 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1243 { 1244 ill_t *ill = (ill_t *)ill_arg; 1245 1246 ASSERT(ire->ire_type & IRE_IF_CLONE); 1247 if (ire->ire_ill == ill) 1248 ire_delete(ire); 1249 } 1250 1251 /* Consume an M_IOCACK of the fastpath probe. */ 1252 void 1253 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1254 { 1255 mblk_t *mp1 = mp; 1256 1257 /* 1258 * If this was the first attempt turn on the fastpath probing. 1259 */ 1260 mutex_enter(&ill->ill_lock); 1261 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1262 ill->ill_dlpi_fastpath_state = IDS_OK; 1263 mutex_exit(&ill->ill_lock); 1264 1265 /* Free the M_IOCACK mblk, hold on to the data */ 1266 mp = mp->b_cont; 1267 freeb(mp1); 1268 if (mp == NULL) 1269 return; 1270 if (mp->b_cont != NULL) 1271 nce_fastpath_update(ill, mp); 1272 else 1273 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1274 freemsg(mp); 1275 } 1276 1277 /* 1278 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1279 * The data portion of the request is a dl_unitdata_req_t template for 1280 * what we would send downstream in the absence of a fastpath confirmation. 1281 */ 1282 int 1283 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1284 { 1285 struct iocblk *ioc; 1286 mblk_t *mp; 1287 1288 if (dlur_mp == NULL) 1289 return (EINVAL); 1290 1291 mutex_enter(&ill->ill_lock); 1292 switch (ill->ill_dlpi_fastpath_state) { 1293 case IDS_FAILED: 1294 /* 1295 * Driver NAKed the first fastpath ioctl - assume it doesn't 1296 * support it. 1297 */ 1298 mutex_exit(&ill->ill_lock); 1299 return (ENOTSUP); 1300 case IDS_UNKNOWN: 1301 /* This is the first probe */ 1302 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1303 break; 1304 default: 1305 break; 1306 } 1307 mutex_exit(&ill->ill_lock); 1308 1309 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1310 return (EAGAIN); 1311 1312 mp->b_cont = copyb(dlur_mp); 1313 if (mp->b_cont == NULL) { 1314 freeb(mp); 1315 return (EAGAIN); 1316 } 1317 1318 ioc = (struct iocblk *)mp->b_rptr; 1319 ioc->ioc_count = msgdsize(mp->b_cont); 1320 1321 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1322 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1323 putnext(ill->ill_wq, mp); 1324 return (0); 1325 } 1326 1327 void 1328 ill_capability_probe(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 1332 ASSERT(IAM_WRITER_ILL(ill)); 1333 1334 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1335 ill->ill_dlpi_capab_state != IDCS_FAILED) 1336 return; 1337 1338 /* 1339 * We are starting a new cycle of capability negotiation. 1340 * Free up the capab reset messages of any previous incarnation. 1341 * We will do a fresh allocation when we get the response to our probe 1342 */ 1343 if (ill->ill_capab_reset_mp != NULL) { 1344 freemsg(ill->ill_capab_reset_mp); 1345 ill->ill_capab_reset_mp = NULL; 1346 } 1347 1348 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1349 1350 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1351 if (mp == NULL) 1352 return; 1353 1354 ill_capability_send(ill, mp); 1355 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1356 } 1357 1358 void 1359 ill_capability_reset(ill_t *ill, boolean_t reneg) 1360 { 1361 ASSERT(IAM_WRITER_ILL(ill)); 1362 1363 if (ill->ill_dlpi_capab_state != IDCS_OK) 1364 return; 1365 1366 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1367 1368 ill_capability_send(ill, ill->ill_capab_reset_mp); 1369 ill->ill_capab_reset_mp = NULL; 1370 /* 1371 * We turn off all capabilities except those pertaining to 1372 * direct function call capabilities viz. ILL_CAPAB_DLD* 1373 * which will be turned off by the corresponding reset functions. 1374 */ 1375 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1376 } 1377 1378 static void 1379 ill_capability_reset_alloc(ill_t *ill) 1380 { 1381 mblk_t *mp; 1382 size_t size = 0; 1383 int err; 1384 dl_capability_req_t *capb; 1385 1386 ASSERT(IAM_WRITER_ILL(ill)); 1387 ASSERT(ill->ill_capab_reset_mp == NULL); 1388 1389 if (ILL_HCKSUM_CAPABLE(ill)) { 1390 size += sizeof (dl_capability_sub_t) + 1391 sizeof (dl_capab_hcksum_t); 1392 } 1393 1394 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1395 size += sizeof (dl_capability_sub_t) + 1396 sizeof (dl_capab_zerocopy_t); 1397 } 1398 1399 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1400 size += sizeof (dl_capability_sub_t) + 1401 sizeof (dl_capab_dld_t); 1402 } 1403 1404 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1405 STR_NOSIG, &err); 1406 1407 mp->b_datap->db_type = M_PROTO; 1408 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1409 1410 capb = (dl_capability_req_t *)mp->b_rptr; 1411 capb->dl_primitive = DL_CAPABILITY_REQ; 1412 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1413 capb->dl_sub_length = size; 1414 1415 mp->b_wptr += sizeof (dl_capability_req_t); 1416 1417 /* 1418 * Each handler fills in the corresponding dl_capability_sub_t 1419 * inside the mblk, 1420 */ 1421 ill_capability_hcksum_reset_fill(ill, mp); 1422 ill_capability_zerocopy_reset_fill(ill, mp); 1423 ill_capability_dld_reset_fill(ill, mp); 1424 1425 ill->ill_capab_reset_mp = mp; 1426 } 1427 1428 static void 1429 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1430 { 1431 dl_capab_id_t *id_ic; 1432 uint_t sub_dl_cap = outers->dl_cap; 1433 dl_capability_sub_t *inners; 1434 uint8_t *capend; 1435 1436 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1437 1438 /* 1439 * Note: range checks here are not absolutely sufficient to 1440 * make us robust against malformed messages sent by drivers; 1441 * this is in keeping with the rest of IP's dlpi handling. 1442 * (Remember, it's coming from something else in the kernel 1443 * address space) 1444 */ 1445 1446 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1447 if (capend > mp->b_wptr) { 1448 cmn_err(CE_WARN, "ill_capability_id_ack: " 1449 "malformed sub-capability too long for mblk"); 1450 return; 1451 } 1452 1453 id_ic = (dl_capab_id_t *)(outers + 1); 1454 1455 if (outers->dl_length < sizeof (*id_ic) || 1456 (inners = &id_ic->id_subcap, 1457 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1458 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1459 "encapsulated capab type %d too long for mblk", 1460 inners->dl_cap); 1461 return; 1462 } 1463 1464 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1465 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1466 "isn't as expected; pass-thru module(s) detected, " 1467 "discarding capability\n", inners->dl_cap)); 1468 return; 1469 } 1470 1471 /* Process the encapsulated sub-capability */ 1472 ill_capability_dispatch(ill, mp, inners); 1473 } 1474 1475 static void 1476 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1477 { 1478 dl_capability_sub_t *dl_subcap; 1479 1480 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1481 return; 1482 1483 /* 1484 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1485 * initialized below since it is not used by DLD. 1486 */ 1487 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1488 dl_subcap->dl_cap = DL_CAPAB_DLD; 1489 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1490 1491 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1492 } 1493 1494 static void 1495 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1496 { 1497 /* 1498 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1499 * is only to get the VRRP capability. 1500 * 1501 * Note that we cannot check ill_ipif_up_count here since 1502 * ill_ipif_up_count is only incremented when the resolver is setup. 1503 * That is done asynchronously, and can race with this function. 1504 */ 1505 if (!ill->ill_dl_up) { 1506 if (subp->dl_cap == DL_CAPAB_VRRP) 1507 ill_capability_vrrp_ack(ill, mp, subp); 1508 return; 1509 } 1510 1511 switch (subp->dl_cap) { 1512 case DL_CAPAB_HCKSUM: 1513 ill_capability_hcksum_ack(ill, mp, subp); 1514 break; 1515 case DL_CAPAB_ZEROCOPY: 1516 ill_capability_zerocopy_ack(ill, mp, subp); 1517 break; 1518 case DL_CAPAB_DLD: 1519 ill_capability_dld_ack(ill, mp, subp); 1520 break; 1521 case DL_CAPAB_VRRP: 1522 break; 1523 default: 1524 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1525 subp->dl_cap)); 1526 } 1527 } 1528 1529 /* 1530 * Process the vrrp capability received from a DLS Provider. isub must point 1531 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1532 */ 1533 static void 1534 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1535 { 1536 dl_capab_vrrp_t *vrrp; 1537 uint_t sub_dl_cap = isub->dl_cap; 1538 uint8_t *capend; 1539 1540 ASSERT(IAM_WRITER_ILL(ill)); 1541 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1542 1543 /* 1544 * Note: range checks here are not absolutely sufficient to 1545 * make us robust against malformed messages sent by drivers; 1546 * this is in keeping with the rest of IP's dlpi handling. 1547 * (Remember, it's coming from something else in the kernel 1548 * address space) 1549 */ 1550 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1551 if (capend > mp->b_wptr) { 1552 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1553 "malformed sub-capability too long for mblk"); 1554 return; 1555 } 1556 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1557 1558 /* 1559 * Compare the IP address family and set ILLF_VRRP for the right ill. 1560 */ 1561 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1562 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1563 ill->ill_flags |= ILLF_VRRP; 1564 } 1565 } 1566 1567 /* 1568 * Process a hardware checksum offload capability negotiation ack received 1569 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1570 * of a DL_CAPABILITY_ACK message. 1571 */ 1572 static void 1573 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1574 { 1575 dl_capability_req_t *ocap; 1576 dl_capab_hcksum_t *ihck, *ohck; 1577 ill_hcksum_capab_t **ill_hcksum; 1578 mblk_t *nmp = NULL; 1579 uint_t sub_dl_cap = isub->dl_cap; 1580 uint8_t *capend; 1581 1582 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1583 1584 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1585 1586 /* 1587 * Note: range checks here are not absolutely sufficient to 1588 * make us robust against malformed messages sent by drivers; 1589 * this is in keeping with the rest of IP's dlpi handling. 1590 * (Remember, it's coming from something else in the kernel 1591 * address space) 1592 */ 1593 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1594 if (capend > mp->b_wptr) { 1595 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1596 "malformed sub-capability too long for mblk"); 1597 return; 1598 } 1599 1600 /* 1601 * There are two types of acks we process here: 1602 * 1. acks in reply to a (first form) generic capability req 1603 * (no ENABLE flag set) 1604 * 2. acks in reply to a ENABLE capability req. 1605 * (ENABLE flag set) 1606 */ 1607 ihck = (dl_capab_hcksum_t *)(isub + 1); 1608 1609 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1610 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1611 "unsupported hardware checksum " 1612 "sub-capability (version %d, expected %d)", 1613 ihck->hcksum_version, HCKSUM_VERSION_1); 1614 return; 1615 } 1616 1617 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1618 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1619 "checksum capability isn't as expected; pass-thru " 1620 "module(s) detected, discarding capability\n")); 1621 return; 1622 } 1623 1624 #define CURR_HCKSUM_CAPAB \ 1625 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1626 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1627 1628 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1629 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1630 /* do ENABLE processing */ 1631 if (*ill_hcksum == NULL) { 1632 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1633 KM_NOSLEEP); 1634 1635 if (*ill_hcksum == NULL) { 1636 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1637 "could not enable hcksum version %d " 1638 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1639 ill->ill_name); 1640 return; 1641 } 1642 } 1643 1644 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1645 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1646 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1647 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1648 "has enabled hardware checksumming\n ", 1649 ill->ill_name)); 1650 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1651 /* 1652 * Enabling hardware checksum offload 1653 * Currently IP supports {TCP,UDP}/IPv4 1654 * partial and full cksum offload and 1655 * IPv4 header checksum offload. 1656 * Allocate new mblk which will 1657 * contain a new capability request 1658 * to enable hardware checksum offload. 1659 */ 1660 uint_t size; 1661 uchar_t *rptr; 1662 1663 size = sizeof (dl_capability_req_t) + 1664 sizeof (dl_capability_sub_t) + isub->dl_length; 1665 1666 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1667 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1668 "could not enable hardware cksum for %s (ENOMEM)\n", 1669 ill->ill_name); 1670 return; 1671 } 1672 1673 rptr = nmp->b_rptr; 1674 /* initialize dl_capability_req_t */ 1675 ocap = (dl_capability_req_t *)nmp->b_rptr; 1676 ocap->dl_sub_offset = 1677 sizeof (dl_capability_req_t); 1678 ocap->dl_sub_length = 1679 sizeof (dl_capability_sub_t) + 1680 isub->dl_length; 1681 nmp->b_rptr += sizeof (dl_capability_req_t); 1682 1683 /* initialize dl_capability_sub_t */ 1684 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1685 nmp->b_rptr += sizeof (*isub); 1686 1687 /* initialize dl_capab_hcksum_t */ 1688 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1689 bcopy(ihck, ohck, sizeof (*ihck)); 1690 1691 nmp->b_rptr = rptr; 1692 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1693 1694 /* Set ENABLE flag */ 1695 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1696 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1697 1698 /* 1699 * nmp points to a DL_CAPABILITY_REQ message to enable 1700 * hardware checksum acceleration. 1701 */ 1702 ill_capability_send(ill, nmp); 1703 } else { 1704 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1705 "advertised %x hardware checksum capability flags\n", 1706 ill->ill_name, ihck->hcksum_txflags)); 1707 } 1708 } 1709 1710 static void 1711 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1712 { 1713 dl_capab_hcksum_t *hck_subcap; 1714 dl_capability_sub_t *dl_subcap; 1715 1716 if (!ILL_HCKSUM_CAPABLE(ill)) 1717 return; 1718 1719 ASSERT(ill->ill_hcksum_capab != NULL); 1720 1721 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1722 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1723 dl_subcap->dl_length = sizeof (*hck_subcap); 1724 1725 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1726 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1727 hck_subcap->hcksum_txflags = 0; 1728 1729 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1730 } 1731 1732 static void 1733 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1734 { 1735 mblk_t *nmp = NULL; 1736 dl_capability_req_t *oc; 1737 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1738 ill_zerocopy_capab_t **ill_zerocopy_capab; 1739 uint_t sub_dl_cap = isub->dl_cap; 1740 uint8_t *capend; 1741 1742 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1743 1744 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1745 1746 /* 1747 * Note: range checks here are not absolutely sufficient to 1748 * make us robust against malformed messages sent by drivers; 1749 * this is in keeping with the rest of IP's dlpi handling. 1750 * (Remember, it's coming from something else in the kernel 1751 * address space) 1752 */ 1753 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1754 if (capend > mp->b_wptr) { 1755 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1756 "malformed sub-capability too long for mblk"); 1757 return; 1758 } 1759 1760 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1761 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1762 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1763 "unsupported ZEROCOPY sub-capability (version %d, " 1764 "expected %d)", zc_ic->zerocopy_version, 1765 ZEROCOPY_VERSION_1); 1766 return; 1767 } 1768 1769 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1770 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1771 "capability isn't as expected; pass-thru module(s) " 1772 "detected, discarding capability\n")); 1773 return; 1774 } 1775 1776 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1777 if (*ill_zerocopy_capab == NULL) { 1778 *ill_zerocopy_capab = 1779 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1780 KM_NOSLEEP); 1781 1782 if (*ill_zerocopy_capab == NULL) { 1783 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1784 "could not enable Zero-copy version %d " 1785 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1786 ill->ill_name); 1787 return; 1788 } 1789 } 1790 1791 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1792 "supports Zero-copy version %d\n", ill->ill_name, 1793 ZEROCOPY_VERSION_1)); 1794 1795 (*ill_zerocopy_capab)->ill_zerocopy_version = 1796 zc_ic->zerocopy_version; 1797 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1798 zc_ic->zerocopy_flags; 1799 1800 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1801 } else { 1802 uint_t size; 1803 uchar_t *rptr; 1804 1805 size = sizeof (dl_capability_req_t) + 1806 sizeof (dl_capability_sub_t) + 1807 sizeof (dl_capab_zerocopy_t); 1808 1809 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1810 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1811 "could not enable zerocopy for %s (ENOMEM)\n", 1812 ill->ill_name); 1813 return; 1814 } 1815 1816 rptr = nmp->b_rptr; 1817 /* initialize dl_capability_req_t */ 1818 oc = (dl_capability_req_t *)rptr; 1819 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1820 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1821 sizeof (dl_capab_zerocopy_t); 1822 rptr += sizeof (dl_capability_req_t); 1823 1824 /* initialize dl_capability_sub_t */ 1825 bcopy(isub, rptr, sizeof (*isub)); 1826 rptr += sizeof (*isub); 1827 1828 /* initialize dl_capab_zerocopy_t */ 1829 zc_oc = (dl_capab_zerocopy_t *)rptr; 1830 *zc_oc = *zc_ic; 1831 1832 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1833 "to enable zero-copy version %d\n", ill->ill_name, 1834 ZEROCOPY_VERSION_1)); 1835 1836 /* set VMSAFE_MEM flag */ 1837 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1838 1839 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1840 ill_capability_send(ill, nmp); 1841 } 1842 } 1843 1844 static void 1845 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1846 { 1847 dl_capab_zerocopy_t *zerocopy_subcap; 1848 dl_capability_sub_t *dl_subcap; 1849 1850 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1851 return; 1852 1853 ASSERT(ill->ill_zerocopy_capab != NULL); 1854 1855 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1856 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1857 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1858 1859 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1860 zerocopy_subcap->zerocopy_version = 1861 ill->ill_zerocopy_capab->ill_zerocopy_version; 1862 zerocopy_subcap->zerocopy_flags = 0; 1863 1864 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1865 } 1866 1867 /* 1868 * DLD capability 1869 * Refer to dld.h for more information regarding the purpose and usage 1870 * of this capability. 1871 */ 1872 static void 1873 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1874 { 1875 dl_capab_dld_t *dld_ic, dld; 1876 uint_t sub_dl_cap = isub->dl_cap; 1877 uint8_t *capend; 1878 ill_dld_capab_t *idc; 1879 1880 ASSERT(IAM_WRITER_ILL(ill)); 1881 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1882 1883 /* 1884 * Note: range checks here are not absolutely sufficient to 1885 * make us robust against malformed messages sent by drivers; 1886 * this is in keeping with the rest of IP's dlpi handling. 1887 * (Remember, it's coming from something else in the kernel 1888 * address space) 1889 */ 1890 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1891 if (capend > mp->b_wptr) { 1892 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1893 "malformed sub-capability too long for mblk"); 1894 return; 1895 } 1896 dld_ic = (dl_capab_dld_t *)(isub + 1); 1897 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1898 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1899 "unsupported DLD sub-capability (version %d, " 1900 "expected %d)", dld_ic->dld_version, 1901 DLD_CURRENT_VERSION); 1902 return; 1903 } 1904 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1905 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1906 "capability isn't as expected; pass-thru module(s) " 1907 "detected, discarding capability\n")); 1908 return; 1909 } 1910 1911 /* 1912 * Copy locally to ensure alignment. 1913 */ 1914 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1915 1916 if ((idc = ill->ill_dld_capab) == NULL) { 1917 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1918 if (idc == NULL) { 1919 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1920 "could not enable DLD version %d " 1921 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1922 ill->ill_name); 1923 return; 1924 } 1925 ill->ill_dld_capab = idc; 1926 } 1927 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1928 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1929 ip1dbg(("ill_capability_dld_ack: interface %s " 1930 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1931 1932 ill_capability_dld_enable(ill); 1933 } 1934 1935 /* 1936 * Typically capability negotiation between IP and the driver happens via 1937 * DLPI message exchange. However GLD also offers a direct function call 1938 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1939 * But arbitrary function calls into IP or GLD are not permitted, since both 1940 * of them are protected by their own perimeter mechanism. The perimeter can 1941 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1942 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1943 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1944 * to enter the mac perimeter and then do the direct function calls into 1945 * GLD to enable squeue polling. The ring related callbacks from the mac into 1946 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1947 * protected by the mac perimeter. 1948 */ 1949 static void 1950 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1951 { 1952 ill_dld_capab_t *idc = ill->ill_dld_capab; 1953 int err; 1954 1955 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1956 DLD_ENABLE); 1957 ASSERT(err == 0); 1958 } 1959 1960 static void 1961 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1962 { 1963 ill_dld_capab_t *idc = ill->ill_dld_capab; 1964 int err; 1965 1966 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1967 DLD_DISABLE); 1968 ASSERT(err == 0); 1969 } 1970 1971 boolean_t 1972 ill_mac_perim_held(ill_t *ill) 1973 { 1974 ill_dld_capab_t *idc = ill->ill_dld_capab; 1975 1976 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1977 DLD_QUERY)); 1978 } 1979 1980 static void 1981 ill_capability_direct_enable(ill_t *ill) 1982 { 1983 ill_dld_capab_t *idc = ill->ill_dld_capab; 1984 ill_dld_direct_t *idd = &idc->idc_direct; 1985 dld_capab_direct_t direct; 1986 int rc; 1987 1988 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1989 1990 bzero(&direct, sizeof (direct)); 1991 direct.di_rx_cf = (uintptr_t)ip_input; 1992 direct.di_rx_ch = ill; 1993 1994 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1995 DLD_ENABLE); 1996 if (rc == 0) { 1997 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 1998 idd->idd_tx_dh = direct.di_tx_dh; 1999 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2000 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2001 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2002 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2003 ASSERT(idd->idd_tx_cb_df != NULL); 2004 ASSERT(idd->idd_tx_fctl_df != NULL); 2005 ASSERT(idd->idd_tx_df != NULL); 2006 /* 2007 * One time registration of flow enable callback function 2008 */ 2009 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2010 ill_flow_enable, ill); 2011 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2012 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2013 } else { 2014 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2015 "capability, rc = %d\n", rc); 2016 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2017 } 2018 } 2019 2020 static void 2021 ill_capability_poll_enable(ill_t *ill) 2022 { 2023 ill_dld_capab_t *idc = ill->ill_dld_capab; 2024 dld_capab_poll_t poll; 2025 int rc; 2026 2027 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2028 2029 bzero(&poll, sizeof (poll)); 2030 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2031 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2032 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2033 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2034 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2035 poll.poll_ring_ch = ill; 2036 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2037 DLD_ENABLE); 2038 if (rc == 0) { 2039 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2040 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2041 } else { 2042 ip1dbg(("warning: could not enable POLL " 2043 "capability, rc = %d\n", rc)); 2044 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2045 } 2046 } 2047 2048 /* 2049 * Enable the LSO capability. 2050 */ 2051 static void 2052 ill_capability_lso_enable(ill_t *ill) 2053 { 2054 ill_dld_capab_t *idc = ill->ill_dld_capab; 2055 dld_capab_lso_t lso; 2056 int rc; 2057 2058 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2059 2060 if (ill->ill_lso_capab == NULL) { 2061 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2062 KM_NOSLEEP); 2063 if (ill->ill_lso_capab == NULL) { 2064 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2065 "could not enable LSO for %s (ENOMEM)\n", 2066 ill->ill_name); 2067 return; 2068 } 2069 } 2070 2071 bzero(&lso, sizeof (lso)); 2072 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2073 DLD_ENABLE)) == 0) { 2074 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2075 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2076 ill->ill_capabilities |= ILL_CAPAB_LSO; 2077 ip1dbg(("ill_capability_lso_enable: interface %s " 2078 "has enabled LSO\n ", ill->ill_name)); 2079 } else { 2080 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2081 ill->ill_lso_capab = NULL; 2082 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2083 } 2084 } 2085 2086 static void 2087 ill_capability_dld_enable(ill_t *ill) 2088 { 2089 mac_perim_handle_t mph; 2090 2091 ASSERT(IAM_WRITER_ILL(ill)); 2092 2093 if (ill->ill_isv6) 2094 return; 2095 2096 ill_mac_perim_enter(ill, &mph); 2097 if (!ill->ill_isv6) { 2098 ill_capability_direct_enable(ill); 2099 ill_capability_poll_enable(ill); 2100 ill_capability_lso_enable(ill); 2101 } 2102 ill->ill_capabilities |= ILL_CAPAB_DLD; 2103 ill_mac_perim_exit(ill, mph); 2104 } 2105 2106 static void 2107 ill_capability_dld_disable(ill_t *ill) 2108 { 2109 ill_dld_capab_t *idc; 2110 ill_dld_direct_t *idd; 2111 mac_perim_handle_t mph; 2112 2113 ASSERT(IAM_WRITER_ILL(ill)); 2114 2115 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2116 return; 2117 2118 ill_mac_perim_enter(ill, &mph); 2119 2120 idc = ill->ill_dld_capab; 2121 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2122 /* 2123 * For performance we avoid locks in the transmit data path 2124 * and don't maintain a count of the number of threads using 2125 * direct calls. Thus some threads could be using direct 2126 * transmit calls to GLD, even after the capability mechanism 2127 * turns it off. This is still safe since the handles used in 2128 * the direct calls continue to be valid until the unplumb is 2129 * completed. Remove the callback that was added (1-time) at 2130 * capab enable time. 2131 */ 2132 mutex_enter(&ill->ill_lock); 2133 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2134 mutex_exit(&ill->ill_lock); 2135 if (ill->ill_flownotify_mh != NULL) { 2136 idd = &idc->idc_direct; 2137 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2138 ill->ill_flownotify_mh); 2139 ill->ill_flownotify_mh = NULL; 2140 } 2141 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2142 NULL, DLD_DISABLE); 2143 } 2144 2145 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2146 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2147 ip_squeue_clean_all(ill); 2148 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2149 NULL, DLD_DISABLE); 2150 } 2151 2152 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2153 ASSERT(ill->ill_lso_capab != NULL); 2154 /* 2155 * Clear the capability flag for LSO but retain the 2156 * ill_lso_capab structure since it's possible that another 2157 * thread is still referring to it. The structure only gets 2158 * deallocated when we destroy the ill. 2159 */ 2160 2161 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2162 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2163 NULL, DLD_DISABLE); 2164 } 2165 2166 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2167 ill_mac_perim_exit(ill, mph); 2168 } 2169 2170 /* 2171 * Capability Negotiation protocol 2172 * 2173 * We don't wait for DLPI capability operations to finish during interface 2174 * bringup or teardown. Doing so would introduce more asynchrony and the 2175 * interface up/down operations will need multiple return and restarts. 2176 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2177 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2178 * exclusive operation won't start until the DLPI operations of the previous 2179 * exclusive operation complete. 2180 * 2181 * The capability state machine is shown below. 2182 * 2183 * state next state event, action 2184 * 2185 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2186 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2187 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2188 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2189 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2190 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2191 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2192 * ill_capability_probe. 2193 */ 2194 2195 /* 2196 * Dedicated thread started from ip_stack_init that handles capability 2197 * disable. This thread ensures the taskq dispatch does not fail by waiting 2198 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2199 * that direct calls to DLD are done in a cv_waitable context. 2200 */ 2201 void 2202 ill_taskq_dispatch(ip_stack_t *ipst) 2203 { 2204 callb_cpr_t cprinfo; 2205 char name[64]; 2206 mblk_t *mp; 2207 2208 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2209 ipst->ips_netstack->netstack_stackid); 2210 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2211 name); 2212 mutex_enter(&ipst->ips_capab_taskq_lock); 2213 2214 for (;;) { 2215 mp = ipst->ips_capab_taskq_head; 2216 while (mp != NULL) { 2217 ipst->ips_capab_taskq_head = mp->b_next; 2218 if (ipst->ips_capab_taskq_head == NULL) 2219 ipst->ips_capab_taskq_tail = NULL; 2220 mutex_exit(&ipst->ips_capab_taskq_lock); 2221 mp->b_next = NULL; 2222 2223 VERIFY(taskq_dispatch(system_taskq, 2224 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2225 mutex_enter(&ipst->ips_capab_taskq_lock); 2226 mp = ipst->ips_capab_taskq_head; 2227 } 2228 2229 if (ipst->ips_capab_taskq_quit) 2230 break; 2231 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2232 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2233 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2234 } 2235 VERIFY(ipst->ips_capab_taskq_head == NULL); 2236 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2237 CALLB_CPR_EXIT(&cprinfo); 2238 thread_exit(); 2239 } 2240 2241 /* 2242 * Consume a new-style hardware capabilities negotiation ack. 2243 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2244 */ 2245 static void 2246 ill_capability_ack_thr(void *arg) 2247 { 2248 mblk_t *mp = arg; 2249 dl_capability_ack_t *capp; 2250 dl_capability_sub_t *subp, *endp; 2251 ill_t *ill; 2252 boolean_t reneg; 2253 2254 ill = (ill_t *)mp->b_prev; 2255 mp->b_prev = NULL; 2256 2257 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2258 2259 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2260 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2261 /* 2262 * We have received the ack for our DL_CAPAB reset request. 2263 * There isnt' anything in the message that needs processing. 2264 * All message based capabilities have been disabled, now 2265 * do the function call based capability disable. 2266 */ 2267 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2268 ill_capability_dld_disable(ill); 2269 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2270 if (reneg) 2271 ill_capability_probe(ill); 2272 goto done; 2273 } 2274 2275 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2276 ill->ill_dlpi_capab_state = IDCS_OK; 2277 2278 capp = (dl_capability_ack_t *)mp->b_rptr; 2279 2280 if (capp->dl_sub_length == 0) { 2281 /* no new-style capabilities */ 2282 goto done; 2283 } 2284 2285 /* make sure the driver supplied correct dl_sub_length */ 2286 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2287 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2288 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2289 goto done; 2290 } 2291 2292 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2293 /* 2294 * There are sub-capabilities. Process the ones we know about. 2295 * Loop until we don't have room for another sub-cap header.. 2296 */ 2297 for (subp = SC(capp, capp->dl_sub_offset), 2298 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2299 subp <= endp; 2300 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2301 2302 switch (subp->dl_cap) { 2303 case DL_CAPAB_ID_WRAPPER: 2304 ill_capability_id_ack(ill, mp, subp); 2305 break; 2306 default: 2307 ill_capability_dispatch(ill, mp, subp); 2308 break; 2309 } 2310 } 2311 #undef SC 2312 done: 2313 inet_freemsg(mp); 2314 ill_capability_done(ill); 2315 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2316 } 2317 2318 /* 2319 * This needs to be started in a taskq thread to provide a cv_waitable 2320 * context. 2321 */ 2322 void 2323 ill_capability_ack(ill_t *ill, mblk_t *mp) 2324 { 2325 ip_stack_t *ipst = ill->ill_ipst; 2326 2327 mp->b_prev = (mblk_t *)ill; 2328 ASSERT(mp->b_next == NULL); 2329 2330 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2331 TQ_NOSLEEP) != 0) 2332 return; 2333 2334 /* 2335 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2336 * which will do the dispatch using TQ_SLEEP to guarantee success. 2337 */ 2338 mutex_enter(&ipst->ips_capab_taskq_lock); 2339 if (ipst->ips_capab_taskq_head == NULL) { 2340 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2341 ipst->ips_capab_taskq_head = mp; 2342 } else { 2343 ipst->ips_capab_taskq_tail->b_next = mp; 2344 } 2345 ipst->ips_capab_taskq_tail = mp; 2346 2347 cv_signal(&ipst->ips_capab_taskq_cv); 2348 mutex_exit(&ipst->ips_capab_taskq_lock); 2349 } 2350 2351 /* 2352 * This routine is called to scan the fragmentation reassembly table for 2353 * the specified ILL for any packets that are starting to smell. 2354 * dead_interval is the maximum time in seconds that will be tolerated. It 2355 * will either be the value specified in ip_g_frag_timeout, or zero if the 2356 * ILL is shutting down and it is time to blow everything off. 2357 * 2358 * It returns the number of seconds (as a time_t) that the next frag timer 2359 * should be scheduled for, 0 meaning that the timer doesn't need to be 2360 * re-started. Note that the method of calculating next_timeout isn't 2361 * entirely accurate since time will flow between the time we grab 2362 * current_time and the time we schedule the next timeout. This isn't a 2363 * big problem since this is the timer for sending an ICMP reassembly time 2364 * exceeded messages, and it doesn't have to be exactly accurate. 2365 * 2366 * This function is 2367 * sometimes called as writer, although this is not required. 2368 */ 2369 time_t 2370 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2371 { 2372 ipfb_t *ipfb; 2373 ipfb_t *endp; 2374 ipf_t *ipf; 2375 ipf_t *ipfnext; 2376 mblk_t *mp; 2377 time_t current_time = gethrestime_sec(); 2378 time_t next_timeout = 0; 2379 uint32_t hdr_length; 2380 mblk_t *send_icmp_head; 2381 mblk_t *send_icmp_head_v6; 2382 ip_stack_t *ipst = ill->ill_ipst; 2383 ip_recv_attr_t iras; 2384 2385 bzero(&iras, sizeof (iras)); 2386 iras.ira_flags = 0; 2387 iras.ira_ill = iras.ira_rill = ill; 2388 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2389 iras.ira_rifindex = iras.ira_ruifindex; 2390 2391 ipfb = ill->ill_frag_hash_tbl; 2392 if (ipfb == NULL) 2393 return (B_FALSE); 2394 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2395 /* Walk the frag hash table. */ 2396 for (; ipfb < endp; ipfb++) { 2397 send_icmp_head = NULL; 2398 send_icmp_head_v6 = NULL; 2399 mutex_enter(&ipfb->ipfb_lock); 2400 while ((ipf = ipfb->ipfb_ipf) != 0) { 2401 time_t frag_time = current_time - ipf->ipf_timestamp; 2402 time_t frag_timeout; 2403 2404 if (frag_time < dead_interval) { 2405 /* 2406 * There are some outstanding fragments 2407 * that will timeout later. Make note of 2408 * the time so that we can reschedule the 2409 * next timeout appropriately. 2410 */ 2411 frag_timeout = dead_interval - frag_time; 2412 if (next_timeout == 0 || 2413 frag_timeout < next_timeout) { 2414 next_timeout = frag_timeout; 2415 } 2416 break; 2417 } 2418 /* Time's up. Get it out of here. */ 2419 hdr_length = ipf->ipf_nf_hdr_len; 2420 ipfnext = ipf->ipf_hash_next; 2421 if (ipfnext) 2422 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2423 *ipf->ipf_ptphn = ipfnext; 2424 mp = ipf->ipf_mp->b_cont; 2425 for (; mp; mp = mp->b_cont) { 2426 /* Extra points for neatness. */ 2427 IP_REASS_SET_START(mp, 0); 2428 IP_REASS_SET_END(mp, 0); 2429 } 2430 mp = ipf->ipf_mp->b_cont; 2431 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2432 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2433 ipfb->ipfb_count -= ipf->ipf_count; 2434 ASSERT(ipfb->ipfb_frag_pkts > 0); 2435 ipfb->ipfb_frag_pkts--; 2436 /* 2437 * We do not send any icmp message from here because 2438 * we currently are holding the ipfb_lock for this 2439 * hash chain. If we try and send any icmp messages 2440 * from here we may end up via a put back into ip 2441 * trying to get the same lock, causing a recursive 2442 * mutex panic. Instead we build a list and send all 2443 * the icmp messages after we have dropped the lock. 2444 */ 2445 if (ill->ill_isv6) { 2446 if (hdr_length != 0) { 2447 mp->b_next = send_icmp_head_v6; 2448 send_icmp_head_v6 = mp; 2449 } else { 2450 freemsg(mp); 2451 } 2452 } else { 2453 if (hdr_length != 0) { 2454 mp->b_next = send_icmp_head; 2455 send_icmp_head = mp; 2456 } else { 2457 freemsg(mp); 2458 } 2459 } 2460 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2461 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2462 freeb(ipf->ipf_mp); 2463 } 2464 mutex_exit(&ipfb->ipfb_lock); 2465 /* 2466 * Now need to send any icmp messages that we delayed from 2467 * above. 2468 */ 2469 while (send_icmp_head_v6 != NULL) { 2470 ip6_t *ip6h; 2471 2472 mp = send_icmp_head_v6; 2473 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2474 mp->b_next = NULL; 2475 ip6h = (ip6_t *)mp->b_rptr; 2476 iras.ira_flags = 0; 2477 /* 2478 * This will result in an incorrect ALL_ZONES zoneid 2479 * for multicast packets, but we 2480 * don't send ICMP errors for those in any case. 2481 */ 2482 iras.ira_zoneid = 2483 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2484 ill, ipst); 2485 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2486 icmp_time_exceeded_v6(mp, 2487 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2488 &iras); 2489 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2490 } 2491 while (send_icmp_head != NULL) { 2492 ipaddr_t dst; 2493 2494 mp = send_icmp_head; 2495 send_icmp_head = send_icmp_head->b_next; 2496 mp->b_next = NULL; 2497 2498 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2499 2500 iras.ira_flags = IRAF_IS_IPV4; 2501 /* 2502 * This will result in an incorrect ALL_ZONES zoneid 2503 * for broadcast and multicast packets, but we 2504 * don't send ICMP errors for those in any case. 2505 */ 2506 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2507 ill, ipst); 2508 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2509 icmp_time_exceeded(mp, 2510 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2511 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2512 } 2513 } 2514 /* 2515 * A non-dying ILL will use the return value to decide whether to 2516 * restart the frag timer, and for how long. 2517 */ 2518 return (next_timeout); 2519 } 2520 2521 /* 2522 * This routine is called when the approximate count of mblk memory used 2523 * for the specified ILL has exceeded max_count. 2524 */ 2525 void 2526 ill_frag_prune(ill_t *ill, uint_t max_count) 2527 { 2528 ipfb_t *ipfb; 2529 ipf_t *ipf; 2530 size_t count; 2531 clock_t now; 2532 2533 /* 2534 * If we are here within ip_min_frag_prune_time msecs remove 2535 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2536 * ill_frag_free_num_pkts. 2537 */ 2538 mutex_enter(&ill->ill_lock); 2539 now = ddi_get_lbolt(); 2540 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2541 (ip_min_frag_prune_time != 0 ? 2542 ip_min_frag_prune_time : msec_per_tick)) { 2543 2544 ill->ill_frag_free_num_pkts++; 2545 2546 } else { 2547 ill->ill_frag_free_num_pkts = 0; 2548 } 2549 ill->ill_last_frag_clean_time = now; 2550 mutex_exit(&ill->ill_lock); 2551 2552 /* 2553 * free ill_frag_free_num_pkts oldest packets from each bucket. 2554 */ 2555 if (ill->ill_frag_free_num_pkts != 0) { 2556 int ix; 2557 2558 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2559 ipfb = &ill->ill_frag_hash_tbl[ix]; 2560 mutex_enter(&ipfb->ipfb_lock); 2561 if (ipfb->ipfb_ipf != NULL) { 2562 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2563 ill->ill_frag_free_num_pkts); 2564 } 2565 mutex_exit(&ipfb->ipfb_lock); 2566 } 2567 } 2568 /* 2569 * While the reassembly list for this ILL is too big, prune a fragment 2570 * queue by age, oldest first. 2571 */ 2572 while (ill->ill_frag_count > max_count) { 2573 int ix; 2574 ipfb_t *oipfb = NULL; 2575 uint_t oldest = UINT_MAX; 2576 2577 count = 0; 2578 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2579 ipfb = &ill->ill_frag_hash_tbl[ix]; 2580 mutex_enter(&ipfb->ipfb_lock); 2581 ipf = ipfb->ipfb_ipf; 2582 if (ipf != NULL && ipf->ipf_gen < oldest) { 2583 oldest = ipf->ipf_gen; 2584 oipfb = ipfb; 2585 } 2586 count += ipfb->ipfb_count; 2587 mutex_exit(&ipfb->ipfb_lock); 2588 } 2589 if (oipfb == NULL) 2590 break; 2591 2592 if (count <= max_count) 2593 return; /* Somebody beat us to it, nothing to do */ 2594 mutex_enter(&oipfb->ipfb_lock); 2595 ipf = oipfb->ipfb_ipf; 2596 if (ipf != NULL) { 2597 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2598 } 2599 mutex_exit(&oipfb->ipfb_lock); 2600 } 2601 } 2602 2603 /* 2604 * free 'free_cnt' fragmented packets starting at ipf. 2605 */ 2606 void 2607 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2608 { 2609 size_t count; 2610 mblk_t *mp; 2611 mblk_t *tmp; 2612 ipf_t **ipfp = ipf->ipf_ptphn; 2613 2614 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2615 ASSERT(ipfp != NULL); 2616 ASSERT(ipf != NULL); 2617 2618 while (ipf != NULL && free_cnt-- > 0) { 2619 count = ipf->ipf_count; 2620 mp = ipf->ipf_mp; 2621 ipf = ipf->ipf_hash_next; 2622 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2623 IP_REASS_SET_START(tmp, 0); 2624 IP_REASS_SET_END(tmp, 0); 2625 } 2626 atomic_add_32(&ill->ill_frag_count, -count); 2627 ASSERT(ipfb->ipfb_count >= count); 2628 ipfb->ipfb_count -= count; 2629 ASSERT(ipfb->ipfb_frag_pkts > 0); 2630 ipfb->ipfb_frag_pkts--; 2631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2632 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2633 freemsg(mp); 2634 } 2635 2636 if (ipf) 2637 ipf->ipf_ptphn = ipfp; 2638 ipfp[0] = ipf; 2639 } 2640 2641 /* 2642 * Helper function for ill_forward_set(). 2643 */ 2644 static void 2645 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2646 { 2647 ip_stack_t *ipst = ill->ill_ipst; 2648 2649 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2650 2651 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2652 (enable ? "Enabling" : "Disabling"), 2653 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2654 mutex_enter(&ill->ill_lock); 2655 if (enable) 2656 ill->ill_flags |= ILLF_ROUTER; 2657 else 2658 ill->ill_flags &= ~ILLF_ROUTER; 2659 mutex_exit(&ill->ill_lock); 2660 if (ill->ill_isv6) 2661 ill_set_nce_router_flags(ill, enable); 2662 /* Notify routing socket listeners of this change. */ 2663 if (ill->ill_ipif != NULL) 2664 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2665 } 2666 2667 /* 2668 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2669 * socket messages for each interface whose flags we change. 2670 */ 2671 int 2672 ill_forward_set(ill_t *ill, boolean_t enable) 2673 { 2674 ipmp_illgrp_t *illg; 2675 ip_stack_t *ipst = ill->ill_ipst; 2676 2677 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2678 2679 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2680 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2681 return (0); 2682 2683 if (IS_LOOPBACK(ill)) 2684 return (EINVAL); 2685 2686 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2687 /* 2688 * Update all of the interfaces in the group. 2689 */ 2690 illg = ill->ill_grp; 2691 ill = list_head(&illg->ig_if); 2692 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2693 ill_forward_set_on_ill(ill, enable); 2694 2695 /* 2696 * Update the IPMP meta-interface. 2697 */ 2698 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2699 return (0); 2700 } 2701 2702 ill_forward_set_on_ill(ill, enable); 2703 return (0); 2704 } 2705 2706 /* 2707 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2708 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2709 * set or clear. 2710 */ 2711 static void 2712 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2713 { 2714 ipif_t *ipif; 2715 ncec_t *ncec; 2716 nce_t *nce; 2717 2718 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2719 /* 2720 * NOTE: we match across the illgrp because nce's for 2721 * addresses on IPMP interfaces have an nce_ill that points to 2722 * the bound underlying ill. 2723 */ 2724 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2725 if (nce != NULL) { 2726 ncec = nce->nce_common; 2727 mutex_enter(&ncec->ncec_lock); 2728 if (enable) 2729 ncec->ncec_flags |= NCE_F_ISROUTER; 2730 else 2731 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2732 mutex_exit(&ncec->ncec_lock); 2733 nce_refrele(nce); 2734 } 2735 } 2736 } 2737 2738 /* 2739 * Intializes the context structure and returns the first ill in the list 2740 * cuurently start_list and end_list can have values: 2741 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2742 * IP_V4_G_HEAD Traverse IPV4 list only. 2743 * IP_V6_G_HEAD Traverse IPV6 list only. 2744 */ 2745 2746 /* 2747 * We don't check for CONDEMNED ills here. Caller must do that if 2748 * necessary under the ill lock. 2749 */ 2750 ill_t * 2751 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2752 ip_stack_t *ipst) 2753 { 2754 ill_if_t *ifp; 2755 ill_t *ill; 2756 avl_tree_t *avl_tree; 2757 2758 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2759 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2760 2761 /* 2762 * setup the lists to search 2763 */ 2764 if (end_list != MAX_G_HEADS) { 2765 ctx->ctx_current_list = start_list; 2766 ctx->ctx_last_list = end_list; 2767 } else { 2768 ctx->ctx_last_list = MAX_G_HEADS - 1; 2769 ctx->ctx_current_list = 0; 2770 } 2771 2772 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2773 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2774 if (ifp != (ill_if_t *) 2775 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2776 avl_tree = &ifp->illif_avl_by_ppa; 2777 ill = avl_first(avl_tree); 2778 /* 2779 * ill is guaranteed to be non NULL or ifp should have 2780 * not existed. 2781 */ 2782 ASSERT(ill != NULL); 2783 return (ill); 2784 } 2785 ctx->ctx_current_list++; 2786 } 2787 2788 return (NULL); 2789 } 2790 2791 /* 2792 * returns the next ill in the list. ill_first() must have been called 2793 * before calling ill_next() or bad things will happen. 2794 */ 2795 2796 /* 2797 * We don't check for CONDEMNED ills here. Caller must do that if 2798 * necessary under the ill lock. 2799 */ 2800 ill_t * 2801 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2802 { 2803 ill_if_t *ifp; 2804 ill_t *ill; 2805 ip_stack_t *ipst = lastill->ill_ipst; 2806 2807 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2808 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2809 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2810 AVL_AFTER)) != NULL) { 2811 return (ill); 2812 } 2813 2814 /* goto next ill_ifp in the list. */ 2815 ifp = lastill->ill_ifptr->illif_next; 2816 2817 /* make sure not at end of circular list */ 2818 while (ifp == 2819 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2820 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2821 return (NULL); 2822 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2823 } 2824 2825 return (avl_first(&ifp->illif_avl_by_ppa)); 2826 } 2827 2828 /* 2829 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2830 * The final number (PPA) must not have any leading zeros. Upon success, a 2831 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2832 */ 2833 static char * 2834 ill_get_ppa_ptr(char *name) 2835 { 2836 int namelen = strlen(name); 2837 int end_ndx = namelen - 1; 2838 int ppa_ndx, i; 2839 2840 /* 2841 * Check that the first character is [a-zA-Z], and that the last 2842 * character is [0-9]. 2843 */ 2844 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2845 return (NULL); 2846 2847 /* 2848 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2849 */ 2850 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2851 if (!isdigit(name[ppa_ndx - 1])) 2852 break; 2853 2854 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2855 return (NULL); 2856 2857 /* 2858 * Check that the intermediate characters are [a-z0-9.] 2859 */ 2860 for (i = 1; i < ppa_ndx; i++) { 2861 if (!isalpha(name[i]) && !isdigit(name[i]) && 2862 name[i] != '.' && name[i] != '_') { 2863 return (NULL); 2864 } 2865 } 2866 2867 return (name + ppa_ndx); 2868 } 2869 2870 /* 2871 * use avl tree to locate the ill. 2872 */ 2873 static ill_t * 2874 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2875 { 2876 char *ppa_ptr = NULL; 2877 int len; 2878 uint_t ppa; 2879 ill_t *ill = NULL; 2880 ill_if_t *ifp; 2881 int list; 2882 2883 /* 2884 * get ppa ptr 2885 */ 2886 if (isv6) 2887 list = IP_V6_G_HEAD; 2888 else 2889 list = IP_V4_G_HEAD; 2890 2891 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2892 return (NULL); 2893 } 2894 2895 len = ppa_ptr - name + 1; 2896 2897 ppa = stoi(&ppa_ptr); 2898 2899 ifp = IP_VX_ILL_G_LIST(list, ipst); 2900 2901 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2902 /* 2903 * match is done on len - 1 as the name is not null 2904 * terminated it contains ppa in addition to the interface 2905 * name. 2906 */ 2907 if ((ifp->illif_name_len == len) && 2908 bcmp(ifp->illif_name, name, len - 1) == 0) { 2909 break; 2910 } else { 2911 ifp = ifp->illif_next; 2912 } 2913 } 2914 2915 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2916 /* 2917 * Even the interface type does not exist. 2918 */ 2919 return (NULL); 2920 } 2921 2922 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2923 if (ill != NULL) { 2924 mutex_enter(&ill->ill_lock); 2925 if (ILL_CAN_LOOKUP(ill)) { 2926 ill_refhold_locked(ill); 2927 mutex_exit(&ill->ill_lock); 2928 return (ill); 2929 } 2930 mutex_exit(&ill->ill_lock); 2931 } 2932 return (NULL); 2933 } 2934 2935 /* 2936 * comparison function for use with avl. 2937 */ 2938 static int 2939 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2940 { 2941 uint_t ppa; 2942 uint_t ill_ppa; 2943 2944 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2945 2946 ppa = *((uint_t *)ppa_ptr); 2947 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2948 /* 2949 * We want the ill with the lowest ppa to be on the 2950 * top. 2951 */ 2952 if (ill_ppa < ppa) 2953 return (1); 2954 if (ill_ppa > ppa) 2955 return (-1); 2956 return (0); 2957 } 2958 2959 /* 2960 * remove an interface type from the global list. 2961 */ 2962 static void 2963 ill_delete_interface_type(ill_if_t *interface) 2964 { 2965 ASSERT(interface != NULL); 2966 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2967 2968 avl_destroy(&interface->illif_avl_by_ppa); 2969 if (interface->illif_ppa_arena != NULL) 2970 vmem_destroy(interface->illif_ppa_arena); 2971 2972 remque(interface); 2973 2974 mi_free(interface); 2975 } 2976 2977 /* 2978 * remove ill from the global list. 2979 */ 2980 static void 2981 ill_glist_delete(ill_t *ill) 2982 { 2983 ip_stack_t *ipst; 2984 phyint_t *phyi; 2985 2986 if (ill == NULL) 2987 return; 2988 ipst = ill->ill_ipst; 2989 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2990 2991 /* 2992 * If the ill was never inserted into the AVL tree 2993 * we skip the if branch. 2994 */ 2995 if (ill->ill_ifptr != NULL) { 2996 /* 2997 * remove from AVL tree and free ppa number 2998 */ 2999 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3000 3001 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3002 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3003 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3004 } 3005 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3006 ill_delete_interface_type(ill->ill_ifptr); 3007 } 3008 3009 /* 3010 * Indicate ill is no longer in the list. 3011 */ 3012 ill->ill_ifptr = NULL; 3013 ill->ill_name_length = 0; 3014 ill->ill_name[0] = '\0'; 3015 ill->ill_ppa = UINT_MAX; 3016 } 3017 3018 /* Generate one last event for this ill. */ 3019 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3020 ill->ill_name_length); 3021 3022 ASSERT(ill->ill_phyint != NULL); 3023 phyi = ill->ill_phyint; 3024 ill->ill_phyint = NULL; 3025 3026 /* 3027 * ill_init allocates a phyint always to store the copy 3028 * of flags relevant to phyint. At that point in time, we could 3029 * not assign the name and hence phyint_illv4/v6 could not be 3030 * initialized. Later in ipif_set_values, we assign the name to 3031 * the ill, at which point in time we assign phyint_illv4/v6. 3032 * Thus we don't rely on phyint_illv6 to be initialized always. 3033 */ 3034 if (ill->ill_flags & ILLF_IPV6) 3035 phyi->phyint_illv6 = NULL; 3036 else 3037 phyi->phyint_illv4 = NULL; 3038 3039 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3040 rw_exit(&ipst->ips_ill_g_lock); 3041 return; 3042 } 3043 3044 /* 3045 * There are no ills left on this phyint; pull it out of the phyint 3046 * avl trees, and free it. 3047 */ 3048 if (phyi->phyint_ifindex > 0) { 3049 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3050 phyi); 3051 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3052 phyi); 3053 } 3054 rw_exit(&ipst->ips_ill_g_lock); 3055 3056 phyint_free(phyi); 3057 } 3058 3059 /* 3060 * allocate a ppa, if the number of plumbed interfaces of this type are 3061 * less than ill_no_arena do a linear search to find a unused ppa. 3062 * When the number goes beyond ill_no_arena switch to using an arena. 3063 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3064 * is the return value for an error condition, so allocation starts at one 3065 * and is decremented by one. 3066 */ 3067 static int 3068 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3069 { 3070 ill_t *tmp_ill; 3071 uint_t start, end; 3072 int ppa; 3073 3074 if (ifp->illif_ppa_arena == NULL && 3075 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3076 /* 3077 * Create an arena. 3078 */ 3079 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3080 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3081 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3082 /* allocate what has already been assigned */ 3083 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3084 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3085 tmp_ill, AVL_AFTER)) { 3086 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3087 1, /* size */ 3088 1, /* align/quantum */ 3089 0, /* phase */ 3090 0, /* nocross */ 3091 /* minaddr */ 3092 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3093 /* maxaddr */ 3094 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3095 VM_NOSLEEP|VM_FIRSTFIT); 3096 if (ppa == 0) { 3097 ip1dbg(("ill_alloc_ppa: ppa allocation" 3098 " failed while switching")); 3099 vmem_destroy(ifp->illif_ppa_arena); 3100 ifp->illif_ppa_arena = NULL; 3101 break; 3102 } 3103 } 3104 } 3105 3106 if (ifp->illif_ppa_arena != NULL) { 3107 if (ill->ill_ppa == UINT_MAX) { 3108 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3109 1, VM_NOSLEEP|VM_FIRSTFIT); 3110 if (ppa == 0) 3111 return (EAGAIN); 3112 ill->ill_ppa = --ppa; 3113 } else { 3114 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3115 1, /* size */ 3116 1, /* align/quantum */ 3117 0, /* phase */ 3118 0, /* nocross */ 3119 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3120 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3121 VM_NOSLEEP|VM_FIRSTFIT); 3122 /* 3123 * Most likely the allocation failed because 3124 * the requested ppa was in use. 3125 */ 3126 if (ppa == 0) 3127 return (EEXIST); 3128 } 3129 return (0); 3130 } 3131 3132 /* 3133 * No arena is in use and not enough (>ill_no_arena) interfaces have 3134 * been plumbed to create one. Do a linear search to get a unused ppa. 3135 */ 3136 if (ill->ill_ppa == UINT_MAX) { 3137 end = UINT_MAX - 1; 3138 start = 0; 3139 } else { 3140 end = start = ill->ill_ppa; 3141 } 3142 3143 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3144 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3145 if (start++ >= end) { 3146 if (ill->ill_ppa == UINT_MAX) 3147 return (EAGAIN); 3148 else 3149 return (EEXIST); 3150 } 3151 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3152 } 3153 ill->ill_ppa = start; 3154 return (0); 3155 } 3156 3157 /* 3158 * Insert ill into the list of configured ill's. Once this function completes, 3159 * the ill is globally visible and is available through lookups. More precisely 3160 * this happens after the caller drops the ill_g_lock. 3161 */ 3162 static int 3163 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3164 { 3165 ill_if_t *ill_interface; 3166 avl_index_t where = 0; 3167 int error; 3168 int name_length; 3169 int index; 3170 boolean_t check_length = B_FALSE; 3171 ip_stack_t *ipst = ill->ill_ipst; 3172 3173 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3174 3175 name_length = mi_strlen(name) + 1; 3176 3177 if (isv6) 3178 index = IP_V6_G_HEAD; 3179 else 3180 index = IP_V4_G_HEAD; 3181 3182 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3183 /* 3184 * Search for interface type based on name 3185 */ 3186 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3187 if ((ill_interface->illif_name_len == name_length) && 3188 (strcmp(ill_interface->illif_name, name) == 0)) { 3189 break; 3190 } 3191 ill_interface = ill_interface->illif_next; 3192 } 3193 3194 /* 3195 * Interface type not found, create one. 3196 */ 3197 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3198 ill_g_head_t ghead; 3199 3200 /* 3201 * allocate ill_if_t structure 3202 */ 3203 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3204 if (ill_interface == NULL) { 3205 return (ENOMEM); 3206 } 3207 3208 (void) strcpy(ill_interface->illif_name, name); 3209 ill_interface->illif_name_len = name_length; 3210 3211 avl_create(&ill_interface->illif_avl_by_ppa, 3212 ill_compare_ppa, sizeof (ill_t), 3213 offsetof(struct ill_s, ill_avl_byppa)); 3214 3215 /* 3216 * link the structure in the back to maintain order 3217 * of configuration for ifconfig output. 3218 */ 3219 ghead = ipst->ips_ill_g_heads[index]; 3220 insque(ill_interface, ghead.ill_g_list_tail); 3221 } 3222 3223 if (ill->ill_ppa == UINT_MAX) 3224 check_length = B_TRUE; 3225 3226 error = ill_alloc_ppa(ill_interface, ill); 3227 if (error != 0) { 3228 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3229 ill_delete_interface_type(ill->ill_ifptr); 3230 return (error); 3231 } 3232 3233 /* 3234 * When the ppa is choosen by the system, check that there is 3235 * enough space to insert ppa. if a specific ppa was passed in this 3236 * check is not required as the interface name passed in will have 3237 * the right ppa in it. 3238 */ 3239 if (check_length) { 3240 /* 3241 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3242 */ 3243 char buf[sizeof (uint_t) * 3]; 3244 3245 /* 3246 * convert ppa to string to calculate the amount of space 3247 * required for it in the name. 3248 */ 3249 numtos(ill->ill_ppa, buf); 3250 3251 /* Do we have enough space to insert ppa ? */ 3252 3253 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3254 /* Free ppa and interface type struct */ 3255 if (ill_interface->illif_ppa_arena != NULL) { 3256 vmem_free(ill_interface->illif_ppa_arena, 3257 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3258 } 3259 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3260 ill_delete_interface_type(ill->ill_ifptr); 3261 3262 return (EINVAL); 3263 } 3264 } 3265 3266 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3267 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3268 3269 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3270 &where); 3271 ill->ill_ifptr = ill_interface; 3272 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3273 3274 ill_phyint_reinit(ill); 3275 return (0); 3276 } 3277 3278 /* Initialize the per phyint ipsq used for serialization */ 3279 static boolean_t 3280 ipsq_init(ill_t *ill, boolean_t enter) 3281 { 3282 ipsq_t *ipsq; 3283 ipxop_t *ipx; 3284 3285 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3286 return (B_FALSE); 3287 3288 ill->ill_phyint->phyint_ipsq = ipsq; 3289 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3290 ipx->ipx_ipsq = ipsq; 3291 ipsq->ipsq_next = ipsq; 3292 ipsq->ipsq_phyint = ill->ill_phyint; 3293 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3294 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3295 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3296 if (enter) { 3297 ipx->ipx_writer = curthread; 3298 ipx->ipx_forced = B_FALSE; 3299 ipx->ipx_reentry_cnt = 1; 3300 #ifdef DEBUG 3301 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3302 #endif 3303 } 3304 return (B_TRUE); 3305 } 3306 3307 /* 3308 * ill_init is called by ip_open when a device control stream is opened. 3309 * It does a few initializations, and shoots a DL_INFO_REQ message down 3310 * to the driver. The response is later picked up in ip_rput_dlpi and 3311 * used to set up default mechanisms for talking to the driver. (Always 3312 * called as writer.) 3313 * 3314 * If this function returns error, ip_open will call ip_close which in 3315 * turn will call ill_delete to clean up any memory allocated here that 3316 * is not yet freed. 3317 */ 3318 int 3319 ill_init(queue_t *q, ill_t *ill) 3320 { 3321 int count; 3322 dl_info_req_t *dlir; 3323 mblk_t *info_mp; 3324 uchar_t *frag_ptr; 3325 3326 /* 3327 * The ill is initialized to zero by mi_alloc*(). In addition 3328 * some fields already contain valid values, initialized in 3329 * ip_open(), before we reach here. 3330 */ 3331 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3332 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3333 ill->ill_saved_ire_cnt = 0; 3334 3335 ill->ill_rq = q; 3336 ill->ill_wq = WR(q); 3337 3338 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3339 BPRI_HI); 3340 if (info_mp == NULL) 3341 return (ENOMEM); 3342 3343 /* 3344 * Allocate sufficient space to contain our fragment hash table and 3345 * the device name. 3346 */ 3347 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3348 if (frag_ptr == NULL) { 3349 freemsg(info_mp); 3350 return (ENOMEM); 3351 } 3352 ill->ill_frag_ptr = frag_ptr; 3353 ill->ill_frag_free_num_pkts = 0; 3354 ill->ill_last_frag_clean_time = 0; 3355 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3356 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3357 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3358 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3359 NULL, MUTEX_DEFAULT, NULL); 3360 } 3361 3362 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3363 if (ill->ill_phyint == NULL) { 3364 freemsg(info_mp); 3365 mi_free(frag_ptr); 3366 return (ENOMEM); 3367 } 3368 3369 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3370 /* 3371 * For now pretend this is a v4 ill. We need to set phyint_ill* 3372 * at this point because of the following reason. If we can't 3373 * enter the ipsq at some point and cv_wait, the writer that 3374 * wakes us up tries to locate us using the list of all phyints 3375 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3376 * If we don't set it now, we risk a missed wakeup. 3377 */ 3378 ill->ill_phyint->phyint_illv4 = ill; 3379 ill->ill_ppa = UINT_MAX; 3380 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3381 3382 ill_set_inputfn(ill); 3383 3384 if (!ipsq_init(ill, B_TRUE)) { 3385 freemsg(info_mp); 3386 mi_free(frag_ptr); 3387 mi_free(ill->ill_phyint); 3388 return (ENOMEM); 3389 } 3390 3391 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3392 3393 /* Frag queue limit stuff */ 3394 ill->ill_frag_count = 0; 3395 ill->ill_ipf_gen = 0; 3396 3397 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3398 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3399 ill->ill_global_timer = INFINITY; 3400 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3401 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3402 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3403 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3404 3405 /* 3406 * Initialize IPv6 configuration variables. The IP module is always 3407 * opened as an IPv4 module. Instead tracking down the cases where 3408 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3409 * here for convenience, this has no effect until the ill is set to do 3410 * IPv6. 3411 */ 3412 ill->ill_reachable_time = ND_REACHABLE_TIME; 3413 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3414 ill->ill_max_buf = ND_MAX_Q; 3415 ill->ill_refcnt = 0; 3416 3417 /* Send down the Info Request to the driver. */ 3418 info_mp->b_datap->db_type = M_PCPROTO; 3419 dlir = (dl_info_req_t *)info_mp->b_rptr; 3420 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3421 dlir->dl_primitive = DL_INFO_REQ; 3422 3423 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3424 3425 qprocson(q); 3426 ill_dlpi_send(ill, info_mp); 3427 3428 return (0); 3429 } 3430 3431 /* 3432 * ill_dls_info 3433 * creates datalink socket info from the device. 3434 */ 3435 int 3436 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3437 { 3438 size_t len; 3439 3440 sdl->sdl_family = AF_LINK; 3441 sdl->sdl_index = ill_get_upper_ifindex(ill); 3442 sdl->sdl_type = ill->ill_type; 3443 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3444 len = strlen(sdl->sdl_data); 3445 ASSERT(len < 256); 3446 sdl->sdl_nlen = (uchar_t)len; 3447 sdl->sdl_alen = ill->ill_phys_addr_length; 3448 sdl->sdl_slen = 0; 3449 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3450 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3451 3452 return (sizeof (struct sockaddr_dl)); 3453 } 3454 3455 /* 3456 * ill_xarp_info 3457 * creates xarp info from the device. 3458 */ 3459 static int 3460 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3461 { 3462 sdl->sdl_family = AF_LINK; 3463 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3464 sdl->sdl_type = ill->ill_type; 3465 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3466 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3467 sdl->sdl_alen = ill->ill_phys_addr_length; 3468 sdl->sdl_slen = 0; 3469 return (sdl->sdl_nlen); 3470 } 3471 3472 static int 3473 loopback_kstat_update(kstat_t *ksp, int rw) 3474 { 3475 kstat_named_t *kn; 3476 netstackid_t stackid; 3477 netstack_t *ns; 3478 ip_stack_t *ipst; 3479 3480 if (ksp == NULL || ksp->ks_data == NULL) 3481 return (EIO); 3482 3483 if (rw == KSTAT_WRITE) 3484 return (EACCES); 3485 3486 kn = KSTAT_NAMED_PTR(ksp); 3487 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3488 3489 ns = netstack_find_by_stackid(stackid); 3490 if (ns == NULL) 3491 return (-1); 3492 3493 ipst = ns->netstack_ip; 3494 if (ipst == NULL) { 3495 netstack_rele(ns); 3496 return (-1); 3497 } 3498 kn[0].value.ui32 = ipst->ips_loopback_packets; 3499 kn[1].value.ui32 = ipst->ips_loopback_packets; 3500 netstack_rele(ns); 3501 return (0); 3502 } 3503 3504 /* 3505 * Has ifindex been plumbed already? 3506 */ 3507 static boolean_t 3508 phyint_exists(uint_t index, ip_stack_t *ipst) 3509 { 3510 ASSERT(index != 0); 3511 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3512 3513 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3514 &index, NULL) != NULL); 3515 } 3516 3517 /* Pick a unique ifindex */ 3518 boolean_t 3519 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3520 { 3521 uint_t starting_index; 3522 3523 if (!ipst->ips_ill_index_wrap) { 3524 *indexp = ipst->ips_ill_index++; 3525 if (ipst->ips_ill_index == 0) { 3526 /* Reached the uint_t limit Next time wrap */ 3527 ipst->ips_ill_index_wrap = B_TRUE; 3528 } 3529 return (B_TRUE); 3530 } 3531 3532 /* 3533 * Start reusing unused indexes. Note that we hold the ill_g_lock 3534 * at this point and don't want to call any function that attempts 3535 * to get the lock again. 3536 */ 3537 starting_index = ipst->ips_ill_index++; 3538 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3539 if (ipst->ips_ill_index != 0 && 3540 !phyint_exists(ipst->ips_ill_index, ipst)) { 3541 /* found unused index - use it */ 3542 *indexp = ipst->ips_ill_index; 3543 return (B_TRUE); 3544 } 3545 } 3546 3547 /* 3548 * all interface indicies are inuse. 3549 */ 3550 return (B_FALSE); 3551 } 3552 3553 /* 3554 * Assign a unique interface index for the phyint. 3555 */ 3556 static boolean_t 3557 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3558 { 3559 ASSERT(phyi->phyint_ifindex == 0); 3560 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3561 } 3562 3563 /* 3564 * Initialize the flags on `phyi' as per the provided mactype. 3565 */ 3566 static void 3567 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3568 { 3569 uint64_t flags = 0; 3570 3571 /* 3572 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3573 * we always presume the underlying hardware is working and set 3574 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3575 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3576 * there are no active interfaces in the group so we set PHYI_FAILED. 3577 */ 3578 if (mactype == SUNW_DL_IPMP) 3579 flags |= PHYI_FAILED; 3580 else 3581 flags |= PHYI_RUNNING; 3582 3583 switch (mactype) { 3584 case SUNW_DL_VNI: 3585 flags |= PHYI_VIRTUAL; 3586 break; 3587 case SUNW_DL_IPMP: 3588 flags |= PHYI_IPMP; 3589 break; 3590 case DL_LOOP: 3591 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3592 break; 3593 } 3594 3595 mutex_enter(&phyi->phyint_lock); 3596 phyi->phyint_flags |= flags; 3597 mutex_exit(&phyi->phyint_lock); 3598 } 3599 3600 /* 3601 * Return a pointer to the ill which matches the supplied name. Note that 3602 * the ill name length includes the null termination character. (May be 3603 * called as writer.) 3604 * If do_alloc and the interface is "lo0" it will be automatically created. 3605 * Cannot bump up reference on condemned ills. So dup detect can't be done 3606 * using this func. 3607 */ 3608 ill_t * 3609 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3610 boolean_t *did_alloc, ip_stack_t *ipst) 3611 { 3612 ill_t *ill; 3613 ipif_t *ipif; 3614 ipsq_t *ipsq; 3615 kstat_named_t *kn; 3616 boolean_t isloopback; 3617 in6_addr_t ov6addr; 3618 3619 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3620 3621 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3622 ill = ill_find_by_name(name, isv6, ipst); 3623 rw_exit(&ipst->ips_ill_g_lock); 3624 if (ill != NULL) 3625 return (ill); 3626 3627 /* 3628 * Couldn't find it. Does this happen to be a lookup for the 3629 * loopback device and are we allowed to allocate it? 3630 */ 3631 if (!isloopback || !do_alloc) 3632 return (NULL); 3633 3634 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3635 ill = ill_find_by_name(name, isv6, ipst); 3636 if (ill != NULL) { 3637 rw_exit(&ipst->ips_ill_g_lock); 3638 return (ill); 3639 } 3640 3641 /* Create the loopback device on demand */ 3642 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3643 sizeof (ipif_loopback_name), BPRI_MED)); 3644 if (ill == NULL) 3645 goto done; 3646 3647 *ill = ill_null; 3648 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3649 ill->ill_ipst = ipst; 3650 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3651 netstack_hold(ipst->ips_netstack); 3652 /* 3653 * For exclusive stacks we set the zoneid to zero 3654 * to make IP operate as if in the global zone. 3655 */ 3656 ill->ill_zoneid = GLOBAL_ZONEID; 3657 3658 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3659 if (ill->ill_phyint == NULL) 3660 goto done; 3661 3662 if (isv6) 3663 ill->ill_phyint->phyint_illv6 = ill; 3664 else 3665 ill->ill_phyint->phyint_illv4 = ill; 3666 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3667 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3668 3669 if (isv6) { 3670 ill->ill_isv6 = B_TRUE; 3671 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3672 } else { 3673 ill->ill_max_frag = ip_loopback_mtuplus; 3674 } 3675 if (!ill_allocate_mibs(ill)) 3676 goto done; 3677 ill->ill_current_frag = ill->ill_max_frag; 3678 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3679 /* 3680 * ipif_loopback_name can't be pointed at directly because its used 3681 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3682 * from the glist, ill_glist_delete() sets the first character of 3683 * ill_name to '\0'. 3684 */ 3685 ill->ill_name = (char *)ill + sizeof (*ill); 3686 (void) strcpy(ill->ill_name, ipif_loopback_name); 3687 ill->ill_name_length = sizeof (ipif_loopback_name); 3688 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3689 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3690 3691 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3692 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3693 ill->ill_global_timer = INFINITY; 3694 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3695 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3696 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3697 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3698 3699 /* No resolver here. */ 3700 ill->ill_net_type = IRE_LOOPBACK; 3701 3702 /* Initialize the ipsq */ 3703 if (!ipsq_init(ill, B_FALSE)) 3704 goto done; 3705 3706 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3707 if (ipif == NULL) 3708 goto done; 3709 3710 ill->ill_flags = ILLF_MULTICAST; 3711 3712 ov6addr = ipif->ipif_v6lcl_addr; 3713 /* Set up default loopback address and mask. */ 3714 if (!isv6) { 3715 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3716 3717 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3718 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3719 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3720 ipif->ipif_v6subnet); 3721 ill->ill_flags |= ILLF_IPV4; 3722 } else { 3723 ipif->ipif_v6lcl_addr = ipv6_loopback; 3724 ipif->ipif_v6net_mask = ipv6_all_ones; 3725 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3726 ipif->ipif_v6subnet); 3727 ill->ill_flags |= ILLF_IPV6; 3728 } 3729 3730 /* 3731 * Chain us in at the end of the ill list. hold the ill 3732 * before we make it globally visible. 1 for the lookup. 3733 */ 3734 ill->ill_refcnt = 0; 3735 ill_refhold(ill); 3736 3737 ill->ill_frag_count = 0; 3738 ill->ill_frag_free_num_pkts = 0; 3739 ill->ill_last_frag_clean_time = 0; 3740 3741 ipsq = ill->ill_phyint->phyint_ipsq; 3742 3743 ill_set_inputfn(ill); 3744 3745 if (ill_glist_insert(ill, "lo", isv6) != 0) 3746 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3747 3748 /* Let SCTP know so that it can add this to its list */ 3749 sctp_update_ill(ill, SCTP_ILL_INSERT); 3750 3751 /* 3752 * We have already assigned ipif_v6lcl_addr above, but we need to 3753 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3754 * requires to be after ill_glist_insert() since we need the 3755 * ill_index set. Pass on ipv6_loopback as the old address. 3756 */ 3757 sctp_update_ipif_addr(ipif, ov6addr); 3758 3759 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3760 3761 /* 3762 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3763 * If so, free our original one. 3764 */ 3765 if (ipsq != ill->ill_phyint->phyint_ipsq) 3766 ipsq_delete(ipsq); 3767 3768 if (ipst->ips_loopback_ksp == NULL) { 3769 /* Export loopback interface statistics */ 3770 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3771 ipif_loopback_name, "net", 3772 KSTAT_TYPE_NAMED, 2, 0, 3773 ipst->ips_netstack->netstack_stackid); 3774 if (ipst->ips_loopback_ksp != NULL) { 3775 ipst->ips_loopback_ksp->ks_update = 3776 loopback_kstat_update; 3777 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3778 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3779 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3780 ipst->ips_loopback_ksp->ks_private = 3781 (void *)(uintptr_t)ipst->ips_netstack-> 3782 netstack_stackid; 3783 kstat_install(ipst->ips_loopback_ksp); 3784 } 3785 } 3786 3787 *did_alloc = B_TRUE; 3788 rw_exit(&ipst->ips_ill_g_lock); 3789 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3790 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3791 return (ill); 3792 done: 3793 if (ill != NULL) { 3794 if (ill->ill_phyint != NULL) { 3795 ipsq = ill->ill_phyint->phyint_ipsq; 3796 if (ipsq != NULL) { 3797 ipsq->ipsq_phyint = NULL; 3798 ipsq_delete(ipsq); 3799 } 3800 mi_free(ill->ill_phyint); 3801 } 3802 ill_free_mib(ill); 3803 if (ill->ill_ipst != NULL) 3804 netstack_rele(ill->ill_ipst->ips_netstack); 3805 mi_free(ill); 3806 } 3807 rw_exit(&ipst->ips_ill_g_lock); 3808 return (NULL); 3809 } 3810 3811 /* 3812 * For IPP calls - use the ip_stack_t for global stack. 3813 */ 3814 ill_t * 3815 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3816 { 3817 ip_stack_t *ipst; 3818 ill_t *ill; 3819 3820 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3821 if (ipst == NULL) { 3822 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3823 return (NULL); 3824 } 3825 3826 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3827 netstack_rele(ipst->ips_netstack); 3828 return (ill); 3829 } 3830 3831 /* 3832 * Return a pointer to the ill which matches the index and IP version type. 3833 */ 3834 ill_t * 3835 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3836 { 3837 ill_t *ill; 3838 phyint_t *phyi; 3839 3840 /* 3841 * Indexes are stored in the phyint - a common structure 3842 * to both IPv4 and IPv6. 3843 */ 3844 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3845 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3846 (void *) &index, NULL); 3847 if (phyi != NULL) { 3848 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3849 if (ill != NULL) { 3850 mutex_enter(&ill->ill_lock); 3851 if (!ILL_IS_CONDEMNED(ill)) { 3852 ill_refhold_locked(ill); 3853 mutex_exit(&ill->ill_lock); 3854 rw_exit(&ipst->ips_ill_g_lock); 3855 return (ill); 3856 } 3857 mutex_exit(&ill->ill_lock); 3858 } 3859 } 3860 rw_exit(&ipst->ips_ill_g_lock); 3861 return (NULL); 3862 } 3863 3864 /* 3865 * Verify whether or not an interface index is valid for the specified zoneid 3866 * to transmit packets. 3867 * It can be zero (meaning "reset") or an interface index assigned 3868 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3869 */ 3870 boolean_t 3871 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3872 ip_stack_t *ipst) 3873 { 3874 ill_t *ill; 3875 3876 if (ifindex == 0) 3877 return (B_TRUE); 3878 3879 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3880 if (ill == NULL) 3881 return (B_FALSE); 3882 if (IS_VNI(ill)) { 3883 ill_refrele(ill); 3884 return (B_FALSE); 3885 } 3886 ill_refrele(ill); 3887 return (B_TRUE); 3888 } 3889 3890 /* 3891 * Return the ifindex next in sequence after the passed in ifindex. 3892 * If there is no next ifindex for the given protocol, return 0. 3893 */ 3894 uint_t 3895 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3896 { 3897 phyint_t *phyi; 3898 phyint_t *phyi_initial; 3899 uint_t ifindex; 3900 3901 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3902 3903 if (index == 0) { 3904 phyi = avl_first( 3905 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3906 } else { 3907 phyi = phyi_initial = avl_find( 3908 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3909 (void *) &index, NULL); 3910 } 3911 3912 for (; phyi != NULL; 3913 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3914 phyi, AVL_AFTER)) { 3915 /* 3916 * If we're not returning the first interface in the tree 3917 * and we still haven't moved past the phyint_t that 3918 * corresponds to index, avl_walk needs to be called again 3919 */ 3920 if (!((index != 0) && (phyi == phyi_initial))) { 3921 if (isv6) { 3922 if ((phyi->phyint_illv6) && 3923 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3924 (phyi->phyint_illv6->ill_isv6 == 1)) 3925 break; 3926 } else { 3927 if ((phyi->phyint_illv4) && 3928 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3929 (phyi->phyint_illv4->ill_isv6 == 0)) 3930 break; 3931 } 3932 } 3933 } 3934 3935 rw_exit(&ipst->ips_ill_g_lock); 3936 3937 if (phyi != NULL) 3938 ifindex = phyi->phyint_ifindex; 3939 else 3940 ifindex = 0; 3941 3942 return (ifindex); 3943 } 3944 3945 /* 3946 * Return the ifindex for the named interface. 3947 * If there is no next ifindex for the interface, return 0. 3948 */ 3949 uint_t 3950 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3951 { 3952 phyint_t *phyi; 3953 avl_index_t where = 0; 3954 uint_t ifindex; 3955 3956 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3957 3958 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3959 name, &where)) == NULL) { 3960 rw_exit(&ipst->ips_ill_g_lock); 3961 return (0); 3962 } 3963 3964 ifindex = phyi->phyint_ifindex; 3965 3966 rw_exit(&ipst->ips_ill_g_lock); 3967 3968 return (ifindex); 3969 } 3970 3971 /* 3972 * Return the ifindex to be used by upper layer protocols for instance 3973 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 3974 */ 3975 uint_t 3976 ill_get_upper_ifindex(const ill_t *ill) 3977 { 3978 if (IS_UNDER_IPMP(ill)) 3979 return (ipmp_ill_get_ipmp_ifindex(ill)); 3980 else 3981 return (ill->ill_phyint->phyint_ifindex); 3982 } 3983 3984 3985 /* 3986 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 3987 * that gives a running thread a reference to the ill. This reference must be 3988 * released by the thread when it is done accessing the ill and related 3989 * objects. ill_refcnt can not be used to account for static references 3990 * such as other structures pointing to an ill. Callers must generally 3991 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 3992 * or be sure that the ill is not being deleted or changing state before 3993 * calling the refhold functions. A non-zero ill_refcnt ensures that the 3994 * ill won't change any of its critical state such as address, netmask etc. 3995 */ 3996 void 3997 ill_refhold(ill_t *ill) 3998 { 3999 mutex_enter(&ill->ill_lock); 4000 ill->ill_refcnt++; 4001 ILL_TRACE_REF(ill); 4002 mutex_exit(&ill->ill_lock); 4003 } 4004 4005 void 4006 ill_refhold_locked(ill_t *ill) 4007 { 4008 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4009 ill->ill_refcnt++; 4010 ILL_TRACE_REF(ill); 4011 } 4012 4013 /* Returns true if we managed to get a refhold */ 4014 boolean_t 4015 ill_check_and_refhold(ill_t *ill) 4016 { 4017 mutex_enter(&ill->ill_lock); 4018 if (!ILL_IS_CONDEMNED(ill)) { 4019 ill_refhold_locked(ill); 4020 mutex_exit(&ill->ill_lock); 4021 return (B_TRUE); 4022 } 4023 mutex_exit(&ill->ill_lock); 4024 return (B_FALSE); 4025 } 4026 4027 /* 4028 * Must not be called while holding any locks. Otherwise if this is 4029 * the last reference to be released, there is a chance of recursive mutex 4030 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4031 * to restart an ioctl. 4032 */ 4033 void 4034 ill_refrele(ill_t *ill) 4035 { 4036 mutex_enter(&ill->ill_lock); 4037 ASSERT(ill->ill_refcnt != 0); 4038 ill->ill_refcnt--; 4039 ILL_UNTRACE_REF(ill); 4040 if (ill->ill_refcnt != 0) { 4041 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4042 mutex_exit(&ill->ill_lock); 4043 return; 4044 } 4045 4046 /* Drops the ill_lock */ 4047 ipif_ill_refrele_tail(ill); 4048 } 4049 4050 /* 4051 * Obtain a weak reference count on the ill. This reference ensures the 4052 * ill won't be freed, but the ill may change any of its critical state 4053 * such as netmask, address etc. Returns an error if the ill has started 4054 * closing. 4055 */ 4056 boolean_t 4057 ill_waiter_inc(ill_t *ill) 4058 { 4059 mutex_enter(&ill->ill_lock); 4060 if (ill->ill_state_flags & ILL_CONDEMNED) { 4061 mutex_exit(&ill->ill_lock); 4062 return (B_FALSE); 4063 } 4064 ill->ill_waiters++; 4065 mutex_exit(&ill->ill_lock); 4066 return (B_TRUE); 4067 } 4068 4069 void 4070 ill_waiter_dcr(ill_t *ill) 4071 { 4072 mutex_enter(&ill->ill_lock); 4073 ill->ill_waiters--; 4074 if (ill->ill_waiters == 0) 4075 cv_broadcast(&ill->ill_cv); 4076 mutex_exit(&ill->ill_lock); 4077 } 4078 4079 /* 4080 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4081 * driver. We construct best guess defaults for lower level information that 4082 * we need. If an interface is brought up without injection of any overriding 4083 * information from outside, we have to be ready to go with these defaults. 4084 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4085 * we primarely want the dl_provider_style. 4086 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4087 * at which point we assume the other part of the information is valid. 4088 */ 4089 void 4090 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4091 { 4092 uchar_t *brdcst_addr; 4093 uint_t brdcst_addr_length, phys_addr_length; 4094 t_scalar_t sap_length; 4095 dl_info_ack_t *dlia; 4096 ip_m_t *ipm; 4097 dl_qos_cl_sel1_t *sel1; 4098 int min_mtu; 4099 4100 ASSERT(IAM_WRITER_ILL(ill)); 4101 4102 /* 4103 * Till the ill is fully up the ill is not globally visible. 4104 * So no need for a lock. 4105 */ 4106 dlia = (dl_info_ack_t *)mp->b_rptr; 4107 ill->ill_mactype = dlia->dl_mac_type; 4108 4109 ipm = ip_m_lookup(dlia->dl_mac_type); 4110 if (ipm == NULL) { 4111 ipm = ip_m_lookup(DL_OTHER); 4112 ASSERT(ipm != NULL); 4113 } 4114 ill->ill_media = ipm; 4115 4116 /* 4117 * When the new DLPI stuff is ready we'll pull lengths 4118 * from dlia. 4119 */ 4120 if (dlia->dl_version == DL_VERSION_2) { 4121 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4122 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4123 brdcst_addr_length); 4124 if (brdcst_addr == NULL) { 4125 brdcst_addr_length = 0; 4126 } 4127 sap_length = dlia->dl_sap_length; 4128 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4129 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4130 brdcst_addr_length, sap_length, phys_addr_length)); 4131 } else { 4132 brdcst_addr_length = 6; 4133 brdcst_addr = ip_six_byte_all_ones; 4134 sap_length = -2; 4135 phys_addr_length = brdcst_addr_length; 4136 } 4137 4138 ill->ill_bcast_addr_length = brdcst_addr_length; 4139 ill->ill_phys_addr_length = phys_addr_length; 4140 ill->ill_sap_length = sap_length; 4141 4142 /* 4143 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4144 * but we must ensure a minimum IP MTU is used since other bits of 4145 * IP will fly apart otherwise. 4146 */ 4147 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4148 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4149 ill->ill_current_frag = ill->ill_max_frag; 4150 ill->ill_mtu = ill->ill_max_frag; 4151 4152 ill->ill_type = ipm->ip_m_type; 4153 4154 if (!ill->ill_dlpi_style_set) { 4155 if (dlia->dl_provider_style == DL_STYLE2) 4156 ill->ill_needs_attach = 1; 4157 4158 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4159 4160 /* 4161 * Allocate the first ipif on this ill. We don't delay it 4162 * further as ioctl handling assumes at least one ipif exists. 4163 * 4164 * At this point we don't know whether the ill is v4 or v6. 4165 * We will know this whan the SIOCSLIFNAME happens and 4166 * the correct value for ill_isv6 will be assigned in 4167 * ipif_set_values(). We need to hold the ill lock and 4168 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4169 * the wakeup. 4170 */ 4171 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4172 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4173 mutex_enter(&ill->ill_lock); 4174 ASSERT(ill->ill_dlpi_style_set == 0); 4175 ill->ill_dlpi_style_set = 1; 4176 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4177 cv_broadcast(&ill->ill_cv); 4178 mutex_exit(&ill->ill_lock); 4179 freemsg(mp); 4180 return; 4181 } 4182 ASSERT(ill->ill_ipif != NULL); 4183 /* 4184 * We know whether it is IPv4 or IPv6 now, as this is the 4185 * second DL_INFO_ACK we are recieving in response to the 4186 * DL_INFO_REQ sent in ipif_set_values. 4187 */ 4188 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4189 /* 4190 * Clear all the flags that were set based on ill_bcast_addr_length 4191 * and ill_phys_addr_length (in ipif_set_values) as these could have 4192 * changed now and we need to re-evaluate. 4193 */ 4194 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4195 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4196 4197 /* 4198 * Free ill_bcast_mp as things could have changed now. 4199 * 4200 * NOTE: The IPMP meta-interface is special-cased because it starts 4201 * with no underlying interfaces (and thus an unknown broadcast 4202 * address length), but we enforce that an interface is broadcast- 4203 * capable as part of allowing it to join a group. 4204 */ 4205 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4206 if (ill->ill_bcast_mp != NULL) 4207 freemsg(ill->ill_bcast_mp); 4208 ill->ill_net_type = IRE_IF_NORESOLVER; 4209 4210 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4211 ill->ill_phys_addr_length, 4212 ill->ill_sap, 4213 ill->ill_sap_length); 4214 4215 if (ill->ill_isv6) 4216 /* 4217 * Note: xresolv interfaces will eventually need NOARP 4218 * set here as well, but that will require those 4219 * external resolvers to have some knowledge of 4220 * that flag and act appropriately. Not to be changed 4221 * at present. 4222 */ 4223 ill->ill_flags |= ILLF_NONUD; 4224 else 4225 ill->ill_flags |= ILLF_NOARP; 4226 4227 if (ill->ill_mactype == SUNW_DL_VNI) { 4228 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4229 } else if (ill->ill_phys_addr_length == 0 || 4230 ill->ill_mactype == DL_IPV4 || 4231 ill->ill_mactype == DL_IPV6) { 4232 /* 4233 * The underying link is point-to-point, so mark the 4234 * interface as such. We can do IP multicast over 4235 * such a link since it transmits all network-layer 4236 * packets to the remote side the same way. 4237 */ 4238 ill->ill_flags |= ILLF_MULTICAST; 4239 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4240 } 4241 } else { 4242 ill->ill_net_type = IRE_IF_RESOLVER; 4243 if (ill->ill_bcast_mp != NULL) 4244 freemsg(ill->ill_bcast_mp); 4245 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4246 ill->ill_bcast_addr_length, ill->ill_sap, 4247 ill->ill_sap_length); 4248 /* 4249 * Later detect lack of DLPI driver multicast 4250 * capability by catching DL_ENABMULTI errors in 4251 * ip_rput_dlpi. 4252 */ 4253 ill->ill_flags |= ILLF_MULTICAST; 4254 if (!ill->ill_isv6) 4255 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4256 } 4257 4258 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4259 if (ill->ill_mactype == SUNW_DL_IPMP) 4260 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4261 4262 /* By default an interface does not support any CoS marking */ 4263 ill->ill_flags &= ~ILLF_COS_ENABLED; 4264 4265 /* 4266 * If we get QoS information in DL_INFO_ACK, the device supports 4267 * some form of CoS marking, set ILLF_COS_ENABLED. 4268 */ 4269 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4270 dlia->dl_qos_length); 4271 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4272 ill->ill_flags |= ILLF_COS_ENABLED; 4273 } 4274 4275 /* Clear any previous error indication. */ 4276 ill->ill_error = 0; 4277 freemsg(mp); 4278 } 4279 4280 /* 4281 * Perform various checks to verify that an address would make sense as a 4282 * local, remote, or subnet interface address. 4283 */ 4284 static boolean_t 4285 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4286 { 4287 ipaddr_t net_mask; 4288 4289 /* 4290 * Don't allow all zeroes, or all ones, but allow 4291 * all ones netmask. 4292 */ 4293 if ((net_mask = ip_net_mask(addr)) == 0) 4294 return (B_FALSE); 4295 /* A given netmask overrides the "guess" netmask */ 4296 if (subnet_mask != 0) 4297 net_mask = subnet_mask; 4298 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4299 (addr == (addr | ~net_mask)))) { 4300 return (B_FALSE); 4301 } 4302 4303 /* 4304 * Even if the netmask is all ones, we do not allow address to be 4305 * 255.255.255.255 4306 */ 4307 if (addr == INADDR_BROADCAST) 4308 return (B_FALSE); 4309 4310 if (CLASSD(addr)) 4311 return (B_FALSE); 4312 4313 return (B_TRUE); 4314 } 4315 4316 #define V6_IPIF_LINKLOCAL(p) \ 4317 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4318 4319 /* 4320 * Compare two given ipifs and check if the second one is better than 4321 * the first one using the order of preference (not taking deprecated 4322 * into acount) specified in ipif_lookup_multicast(). 4323 */ 4324 static boolean_t 4325 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4326 { 4327 /* Check the least preferred first. */ 4328 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4329 /* If both ipifs are the same, use the first one. */ 4330 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4331 return (B_FALSE); 4332 else 4333 return (B_TRUE); 4334 } 4335 4336 /* For IPv6, check for link local address. */ 4337 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4338 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4339 V6_IPIF_LINKLOCAL(new_ipif)) { 4340 /* The second one is equal or less preferred. */ 4341 return (B_FALSE); 4342 } else { 4343 return (B_TRUE); 4344 } 4345 } 4346 4347 /* Then check for point to point interface. */ 4348 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4349 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4350 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4351 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4352 return (B_FALSE); 4353 } else { 4354 return (B_TRUE); 4355 } 4356 } 4357 4358 /* old_ipif is a normal interface, so no need to use the new one. */ 4359 return (B_FALSE); 4360 } 4361 4362 /* 4363 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4364 * The ipif must be up, and its ill must multicast-capable, not 4365 * condemned, not an underlying interface in an IPMP group, and 4366 * not a VNI interface. Order of preference: 4367 * 4368 * 1a. normal 4369 * 1b. normal, but deprecated 4370 * 2a. point to point 4371 * 2b. point to point, but deprecated 4372 * 3a. link local 4373 * 3b. link local, but deprecated 4374 * 4. loopback. 4375 */ 4376 static ipif_t * 4377 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4378 { 4379 ill_t *ill; 4380 ill_walk_context_t ctx; 4381 ipif_t *ipif; 4382 ipif_t *saved_ipif = NULL; 4383 ipif_t *dep_ipif = NULL; 4384 4385 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4386 if (isv6) 4387 ill = ILL_START_WALK_V6(&ctx, ipst); 4388 else 4389 ill = ILL_START_WALK_V4(&ctx, ipst); 4390 4391 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4392 mutex_enter(&ill->ill_lock); 4393 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4394 ILL_IS_CONDEMNED(ill) || 4395 !(ill->ill_flags & ILLF_MULTICAST)) { 4396 mutex_exit(&ill->ill_lock); 4397 continue; 4398 } 4399 for (ipif = ill->ill_ipif; ipif != NULL; 4400 ipif = ipif->ipif_next) { 4401 if (zoneid != ipif->ipif_zoneid && 4402 zoneid != ALL_ZONES && 4403 ipif->ipif_zoneid != ALL_ZONES) { 4404 continue; 4405 } 4406 if (!(ipif->ipif_flags & IPIF_UP) || 4407 IPIF_IS_CONDEMNED(ipif)) { 4408 continue; 4409 } 4410 4411 /* 4412 * Found one candidate. If it is deprecated, 4413 * remember it in dep_ipif. If it is not deprecated, 4414 * remember it in saved_ipif. 4415 */ 4416 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4417 if (dep_ipif == NULL) { 4418 dep_ipif = ipif; 4419 } else if (ipif_comp_multi(dep_ipif, ipif, 4420 isv6)) { 4421 /* 4422 * If the previous dep_ipif does not 4423 * belong to the same ill, we've done 4424 * a ipif_refhold() on it. So we need 4425 * to release it. 4426 */ 4427 if (dep_ipif->ipif_ill != ill) 4428 ipif_refrele(dep_ipif); 4429 dep_ipif = ipif; 4430 } 4431 continue; 4432 } 4433 if (saved_ipif == NULL) { 4434 saved_ipif = ipif; 4435 } else { 4436 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4437 if (saved_ipif->ipif_ill != ill) 4438 ipif_refrele(saved_ipif); 4439 saved_ipif = ipif; 4440 } 4441 } 4442 } 4443 /* 4444 * Before going to the next ill, do a ipif_refhold() on the 4445 * saved ones. 4446 */ 4447 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4448 ipif_refhold_locked(saved_ipif); 4449 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4450 ipif_refhold_locked(dep_ipif); 4451 mutex_exit(&ill->ill_lock); 4452 } 4453 rw_exit(&ipst->ips_ill_g_lock); 4454 4455 /* 4456 * If we have only the saved_ipif, return it. But if we have both 4457 * saved_ipif and dep_ipif, check to see which one is better. 4458 */ 4459 if (saved_ipif != NULL) { 4460 if (dep_ipif != NULL) { 4461 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4462 ipif_refrele(saved_ipif); 4463 return (dep_ipif); 4464 } else { 4465 ipif_refrele(dep_ipif); 4466 return (saved_ipif); 4467 } 4468 } 4469 return (saved_ipif); 4470 } else { 4471 return (dep_ipif); 4472 } 4473 } 4474 4475 ill_t * 4476 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4477 { 4478 ipif_t *ipif; 4479 ill_t *ill; 4480 4481 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4482 if (ipif == NULL) 4483 return (NULL); 4484 4485 ill = ipif->ipif_ill; 4486 ill_refhold(ill); 4487 ipif_refrele(ipif); 4488 return (ill); 4489 } 4490 4491 /* 4492 * This function is called when an application does not specify an interface 4493 * to be used for multicast traffic (joining a group/sending data). It 4494 * calls ire_lookup_multi() to look for an interface route for the 4495 * specified multicast group. Doing this allows the administrator to add 4496 * prefix routes for multicast to indicate which interface to be used for 4497 * multicast traffic in the above scenario. The route could be for all 4498 * multicast (224.0/4), for a single multicast group (a /32 route) or 4499 * anything in between. If there is no such multicast route, we just find 4500 * any multicast capable interface and return it. The returned ipif 4501 * is refhold'ed. 4502 * 4503 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4504 * unicast table. This is used by CGTP. 4505 */ 4506 ill_t * 4507 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4508 boolean_t *multirtp, ipaddr_t *setsrcp) 4509 { 4510 ill_t *ill; 4511 4512 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4513 if (ill != NULL) 4514 return (ill); 4515 4516 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4517 } 4518 4519 /* 4520 * Look for an ipif with the specified interface address and destination. 4521 * The destination address is used only for matching point-to-point interfaces. 4522 */ 4523 ipif_t * 4524 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4525 { 4526 ipif_t *ipif; 4527 ill_t *ill; 4528 ill_walk_context_t ctx; 4529 4530 /* 4531 * First match all the point-to-point interfaces 4532 * before looking at non-point-to-point interfaces. 4533 * This is done to avoid returning non-point-to-point 4534 * ipif instead of unnumbered point-to-point ipif. 4535 */ 4536 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4537 ill = ILL_START_WALK_V4(&ctx, ipst); 4538 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4539 mutex_enter(&ill->ill_lock); 4540 for (ipif = ill->ill_ipif; ipif != NULL; 4541 ipif = ipif->ipif_next) { 4542 /* Allow the ipif to be down */ 4543 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4544 (ipif->ipif_lcl_addr == if_addr) && 4545 (ipif->ipif_pp_dst_addr == dst)) { 4546 if (!IPIF_IS_CONDEMNED(ipif)) { 4547 ipif_refhold_locked(ipif); 4548 mutex_exit(&ill->ill_lock); 4549 rw_exit(&ipst->ips_ill_g_lock); 4550 return (ipif); 4551 } 4552 } 4553 } 4554 mutex_exit(&ill->ill_lock); 4555 } 4556 rw_exit(&ipst->ips_ill_g_lock); 4557 4558 /* lookup the ipif based on interface address */ 4559 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4560 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4561 return (ipif); 4562 } 4563 4564 /* 4565 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4566 */ 4567 static ipif_t * 4568 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4569 zoneid_t zoneid, ip_stack_t *ipst) 4570 { 4571 ipif_t *ipif; 4572 ill_t *ill; 4573 boolean_t ptp = B_FALSE; 4574 ill_walk_context_t ctx; 4575 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4576 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4577 4578 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4579 /* 4580 * Repeat twice, first based on local addresses and 4581 * next time for pointopoint. 4582 */ 4583 repeat: 4584 ill = ILL_START_WALK_V4(&ctx, ipst); 4585 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4586 if (match_ill != NULL && ill != match_ill && 4587 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4588 continue; 4589 } 4590 mutex_enter(&ill->ill_lock); 4591 for (ipif = ill->ill_ipif; ipif != NULL; 4592 ipif = ipif->ipif_next) { 4593 if (zoneid != ALL_ZONES && 4594 zoneid != ipif->ipif_zoneid && 4595 ipif->ipif_zoneid != ALL_ZONES) 4596 continue; 4597 4598 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4599 continue; 4600 4601 /* Allow the ipif to be down */ 4602 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4603 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4604 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4605 (ipif->ipif_pp_dst_addr == addr))) { 4606 if (!IPIF_IS_CONDEMNED(ipif)) { 4607 ipif_refhold_locked(ipif); 4608 mutex_exit(&ill->ill_lock); 4609 rw_exit(&ipst->ips_ill_g_lock); 4610 return (ipif); 4611 } 4612 } 4613 } 4614 mutex_exit(&ill->ill_lock); 4615 } 4616 4617 /* If we already did the ptp case, then we are done */ 4618 if (ptp) { 4619 rw_exit(&ipst->ips_ill_g_lock); 4620 return (NULL); 4621 } 4622 ptp = B_TRUE; 4623 goto repeat; 4624 } 4625 4626 /* 4627 * Lookup an ipif with the specified address. For point-to-point links we 4628 * look for matches on either the destination address or the local address, 4629 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4630 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4631 * (or illgrp if `match_ill' is in an IPMP group). 4632 */ 4633 ipif_t * 4634 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4635 ip_stack_t *ipst) 4636 { 4637 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4638 zoneid, ipst)); 4639 } 4640 4641 /* 4642 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4643 * except that we will only return an address if it is not marked as 4644 * IPIF_DUPLICATE 4645 */ 4646 ipif_t * 4647 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4648 ip_stack_t *ipst) 4649 { 4650 return (ipif_lookup_addr_common(addr, match_ill, 4651 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4652 zoneid, ipst)); 4653 } 4654 4655 /* 4656 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4657 * `match_ill' across the IPMP group. This function is only needed in some 4658 * corner-cases; almost everything should use ipif_lookup_addr(). 4659 */ 4660 ipif_t * 4661 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4662 { 4663 ASSERT(match_ill != NULL); 4664 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4665 ipst)); 4666 } 4667 4668 /* 4669 * Look for an ipif with the specified address. For point-point links 4670 * we look for matches on either the destination address and the local 4671 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4672 * is set. 4673 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4674 * ill (or illgrp if `match_ill' is in an IPMP group). 4675 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4676 */ 4677 zoneid_t 4678 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4679 { 4680 zoneid_t zoneid; 4681 ipif_t *ipif; 4682 ill_t *ill; 4683 boolean_t ptp = B_FALSE; 4684 ill_walk_context_t ctx; 4685 4686 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4687 /* 4688 * Repeat twice, first based on local addresses and 4689 * next time for pointopoint. 4690 */ 4691 repeat: 4692 ill = ILL_START_WALK_V4(&ctx, ipst); 4693 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4694 if (match_ill != NULL && ill != match_ill && 4695 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4696 continue; 4697 } 4698 mutex_enter(&ill->ill_lock); 4699 for (ipif = ill->ill_ipif; ipif != NULL; 4700 ipif = ipif->ipif_next) { 4701 /* Allow the ipif to be down */ 4702 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4703 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4704 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4705 (ipif->ipif_pp_dst_addr == addr)) && 4706 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4707 zoneid = ipif->ipif_zoneid; 4708 mutex_exit(&ill->ill_lock); 4709 rw_exit(&ipst->ips_ill_g_lock); 4710 /* 4711 * If ipif_zoneid was ALL_ZONES then we have 4712 * a trusted extensions shared IP address. 4713 * In that case GLOBAL_ZONEID works to send. 4714 */ 4715 if (zoneid == ALL_ZONES) 4716 zoneid = GLOBAL_ZONEID; 4717 return (zoneid); 4718 } 4719 } 4720 mutex_exit(&ill->ill_lock); 4721 } 4722 4723 /* If we already did the ptp case, then we are done */ 4724 if (ptp) { 4725 rw_exit(&ipst->ips_ill_g_lock); 4726 return (ALL_ZONES); 4727 } 4728 ptp = B_TRUE; 4729 goto repeat; 4730 } 4731 4732 /* 4733 * Look for an ipif that matches the specified remote address i.e. the 4734 * ipif that would receive the specified packet. 4735 * First look for directly connected interfaces and then do a recursive 4736 * IRE lookup and pick the first ipif corresponding to the source address in the 4737 * ire. 4738 * Returns: held ipif 4739 * 4740 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4741 */ 4742 ipif_t * 4743 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4744 { 4745 ipif_t *ipif; 4746 4747 ASSERT(!ill->ill_isv6); 4748 4749 /* 4750 * Someone could be changing this ipif currently or change it 4751 * after we return this. Thus a few packets could use the old 4752 * old values. However structure updates/creates (ire, ilg, ilm etc) 4753 * will atomically be updated or cleaned up with the new value 4754 * Thus we don't need a lock to check the flags or other attrs below. 4755 */ 4756 mutex_enter(&ill->ill_lock); 4757 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4758 if (IPIF_IS_CONDEMNED(ipif)) 4759 continue; 4760 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4761 ipif->ipif_zoneid != ALL_ZONES) 4762 continue; 4763 /* Allow the ipif to be down */ 4764 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4765 if ((ipif->ipif_pp_dst_addr == addr) || 4766 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4767 ipif->ipif_lcl_addr == addr)) { 4768 ipif_refhold_locked(ipif); 4769 mutex_exit(&ill->ill_lock); 4770 return (ipif); 4771 } 4772 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4773 ipif_refhold_locked(ipif); 4774 mutex_exit(&ill->ill_lock); 4775 return (ipif); 4776 } 4777 } 4778 mutex_exit(&ill->ill_lock); 4779 /* 4780 * For a remote destination it isn't possible to nail down a particular 4781 * ipif. 4782 */ 4783 4784 /* Pick the first interface */ 4785 ipif = ipif_get_next_ipif(NULL, ill); 4786 return (ipif); 4787 } 4788 4789 /* 4790 * This func does not prevent refcnt from increasing. But if 4791 * the caller has taken steps to that effect, then this func 4792 * can be used to determine whether the ill has become quiescent 4793 */ 4794 static boolean_t 4795 ill_is_quiescent(ill_t *ill) 4796 { 4797 ipif_t *ipif; 4798 4799 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4800 4801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4802 if (ipif->ipif_refcnt != 0) 4803 return (B_FALSE); 4804 } 4805 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4806 return (B_FALSE); 4807 } 4808 return (B_TRUE); 4809 } 4810 4811 boolean_t 4812 ill_is_freeable(ill_t *ill) 4813 { 4814 ipif_t *ipif; 4815 4816 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4817 4818 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4819 if (ipif->ipif_refcnt != 0) { 4820 return (B_FALSE); 4821 } 4822 } 4823 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4824 return (B_FALSE); 4825 } 4826 return (B_TRUE); 4827 } 4828 4829 /* 4830 * This func does not prevent refcnt from increasing. But if 4831 * the caller has taken steps to that effect, then this func 4832 * can be used to determine whether the ipif has become quiescent 4833 */ 4834 static boolean_t 4835 ipif_is_quiescent(ipif_t *ipif) 4836 { 4837 ill_t *ill; 4838 4839 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4840 4841 if (ipif->ipif_refcnt != 0) 4842 return (B_FALSE); 4843 4844 ill = ipif->ipif_ill; 4845 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4846 ill->ill_logical_down) { 4847 return (B_TRUE); 4848 } 4849 4850 /* This is the last ipif going down or being deleted on this ill */ 4851 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4852 return (B_FALSE); 4853 } 4854 4855 return (B_TRUE); 4856 } 4857 4858 /* 4859 * return true if the ipif can be destroyed: the ipif has to be quiescent 4860 * with zero references from ire/ilm to it. 4861 */ 4862 static boolean_t 4863 ipif_is_freeable(ipif_t *ipif) 4864 { 4865 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4866 ASSERT(ipif->ipif_id != 0); 4867 return (ipif->ipif_refcnt == 0); 4868 } 4869 4870 /* 4871 * The ipif/ill/ire has been refreled. Do the tail processing. 4872 * Determine if the ipif or ill in question has become quiescent and if so 4873 * wakeup close and/or restart any queued pending ioctl that is waiting 4874 * for the ipif_down (or ill_down) 4875 */ 4876 void 4877 ipif_ill_refrele_tail(ill_t *ill) 4878 { 4879 mblk_t *mp; 4880 conn_t *connp; 4881 ipsq_t *ipsq; 4882 ipxop_t *ipx; 4883 ipif_t *ipif; 4884 dl_notify_ind_t *dlindp; 4885 4886 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4887 4888 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4889 /* ip_modclose() may be waiting */ 4890 cv_broadcast(&ill->ill_cv); 4891 } 4892 4893 ipsq = ill->ill_phyint->phyint_ipsq; 4894 mutex_enter(&ipsq->ipsq_lock); 4895 ipx = ipsq->ipsq_xop; 4896 mutex_enter(&ipx->ipx_lock); 4897 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4898 goto unlock; 4899 4900 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4901 4902 ipif = ipx->ipx_pending_ipif; 4903 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4904 goto unlock; 4905 4906 switch (ipx->ipx_waitfor) { 4907 case IPIF_DOWN: 4908 if (!ipif_is_quiescent(ipif)) 4909 goto unlock; 4910 break; 4911 case IPIF_FREE: 4912 if (!ipif_is_freeable(ipif)) 4913 goto unlock; 4914 break; 4915 case ILL_DOWN: 4916 if (!ill_is_quiescent(ill)) 4917 goto unlock; 4918 break; 4919 case ILL_FREE: 4920 /* 4921 * ILL_FREE is only for loopback; normal ill teardown waits 4922 * synchronously in ip_modclose() without using ipx_waitfor, 4923 * handled by the cv_broadcast() at the top of this function. 4924 */ 4925 if (!ill_is_freeable(ill)) 4926 goto unlock; 4927 break; 4928 default: 4929 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4930 (void *)ipsq, ipx->ipx_waitfor); 4931 } 4932 4933 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4934 mutex_exit(&ipx->ipx_lock); 4935 mp = ipsq_pending_mp_get(ipsq, &connp); 4936 mutex_exit(&ipsq->ipsq_lock); 4937 mutex_exit(&ill->ill_lock); 4938 4939 ASSERT(mp != NULL); 4940 /* 4941 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4942 * we can only get here when the current operation decides it 4943 * it needs to quiesce via ipsq_pending_mp_add(). 4944 */ 4945 switch (mp->b_datap->db_type) { 4946 case M_PCPROTO: 4947 case M_PROTO: 4948 /* 4949 * For now, only DL_NOTIFY_IND messages can use this facility. 4950 */ 4951 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4952 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4953 4954 switch (dlindp->dl_notification) { 4955 case DL_NOTE_PHYS_ADDR: 4956 qwriter_ip(ill, ill->ill_rq, mp, 4957 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4958 return; 4959 case DL_NOTE_REPLUMB: 4960 qwriter_ip(ill, ill->ill_rq, mp, 4961 ill_replumb_tail, CUR_OP, B_TRUE); 4962 return; 4963 default: 4964 ASSERT(0); 4965 ill_refrele(ill); 4966 } 4967 break; 4968 4969 case M_ERROR: 4970 case M_HANGUP: 4971 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 4972 B_TRUE); 4973 return; 4974 4975 case M_IOCTL: 4976 case M_IOCDATA: 4977 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 4978 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 4979 return; 4980 4981 default: 4982 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 4983 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 4984 } 4985 return; 4986 unlock: 4987 mutex_exit(&ipsq->ipsq_lock); 4988 mutex_exit(&ipx->ipx_lock); 4989 mutex_exit(&ill->ill_lock); 4990 } 4991 4992 #ifdef DEBUG 4993 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 4994 static void 4995 th_trace_rrecord(th_trace_t *th_trace) 4996 { 4997 tr_buf_t *tr_buf; 4998 uint_t lastref; 4999 5000 lastref = th_trace->th_trace_lastref; 5001 lastref++; 5002 if (lastref == TR_BUF_MAX) 5003 lastref = 0; 5004 th_trace->th_trace_lastref = lastref; 5005 tr_buf = &th_trace->th_trbuf[lastref]; 5006 tr_buf->tr_time = ddi_get_lbolt(); 5007 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5008 } 5009 5010 static void 5011 th_trace_free(void *value) 5012 { 5013 th_trace_t *th_trace = value; 5014 5015 ASSERT(th_trace->th_refcnt == 0); 5016 kmem_free(th_trace, sizeof (*th_trace)); 5017 } 5018 5019 /* 5020 * Find or create the per-thread hash table used to track object references. 5021 * The ipst argument is NULL if we shouldn't allocate. 5022 * 5023 * Accesses per-thread data, so there's no need to lock here. 5024 */ 5025 static mod_hash_t * 5026 th_trace_gethash(ip_stack_t *ipst) 5027 { 5028 th_hash_t *thh; 5029 5030 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5031 mod_hash_t *mh; 5032 char name[256]; 5033 size_t objsize, rshift; 5034 int retv; 5035 5036 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5037 return (NULL); 5038 (void) snprintf(name, sizeof (name), "th_trace_%p", 5039 (void *)curthread); 5040 5041 /* 5042 * We use mod_hash_create_extended here rather than the more 5043 * obvious mod_hash_create_ptrhash because the latter has a 5044 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5045 * block. 5046 */ 5047 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5048 MAX(sizeof (ire_t), sizeof (ncec_t))); 5049 rshift = highbit(objsize); 5050 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5051 th_trace_free, mod_hash_byptr, (void *)rshift, 5052 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5053 if (mh == NULL) { 5054 kmem_free(thh, sizeof (*thh)); 5055 return (NULL); 5056 } 5057 thh->thh_hash = mh; 5058 thh->thh_ipst = ipst; 5059 /* 5060 * We trace ills, ipifs, ires, and nces. All of these are 5061 * per-IP-stack, so the lock on the thread list is as well. 5062 */ 5063 rw_enter(&ip_thread_rwlock, RW_WRITER); 5064 list_insert_tail(&ip_thread_list, thh); 5065 rw_exit(&ip_thread_rwlock); 5066 retv = tsd_set(ip_thread_data, thh); 5067 ASSERT(retv == 0); 5068 } 5069 return (thh != NULL ? thh->thh_hash : NULL); 5070 } 5071 5072 boolean_t 5073 th_trace_ref(const void *obj, ip_stack_t *ipst) 5074 { 5075 th_trace_t *th_trace; 5076 mod_hash_t *mh; 5077 mod_hash_val_t val; 5078 5079 if ((mh = th_trace_gethash(ipst)) == NULL) 5080 return (B_FALSE); 5081 5082 /* 5083 * Attempt to locate the trace buffer for this obj and thread. 5084 * If it does not exist, then allocate a new trace buffer and 5085 * insert into the hash. 5086 */ 5087 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5088 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5089 if (th_trace == NULL) 5090 return (B_FALSE); 5091 5092 th_trace->th_id = curthread; 5093 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5094 (mod_hash_val_t)th_trace) != 0) { 5095 kmem_free(th_trace, sizeof (th_trace_t)); 5096 return (B_FALSE); 5097 } 5098 } else { 5099 th_trace = (th_trace_t *)val; 5100 } 5101 5102 ASSERT(th_trace->th_refcnt >= 0 && 5103 th_trace->th_refcnt < TR_BUF_MAX - 1); 5104 5105 th_trace->th_refcnt++; 5106 th_trace_rrecord(th_trace); 5107 return (B_TRUE); 5108 } 5109 5110 /* 5111 * For the purpose of tracing a reference release, we assume that global 5112 * tracing is always on and that the same thread initiated the reference hold 5113 * is releasing. 5114 */ 5115 void 5116 th_trace_unref(const void *obj) 5117 { 5118 int retv; 5119 mod_hash_t *mh; 5120 th_trace_t *th_trace; 5121 mod_hash_val_t val; 5122 5123 mh = th_trace_gethash(NULL); 5124 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5125 ASSERT(retv == 0); 5126 th_trace = (th_trace_t *)val; 5127 5128 ASSERT(th_trace->th_refcnt > 0); 5129 th_trace->th_refcnt--; 5130 th_trace_rrecord(th_trace); 5131 } 5132 5133 /* 5134 * If tracing has been disabled, then we assume that the reference counts are 5135 * now useless, and we clear them out before destroying the entries. 5136 */ 5137 void 5138 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5139 { 5140 th_hash_t *thh; 5141 mod_hash_t *mh; 5142 mod_hash_val_t val; 5143 th_trace_t *th_trace; 5144 int retv; 5145 5146 rw_enter(&ip_thread_rwlock, RW_READER); 5147 for (thh = list_head(&ip_thread_list); thh != NULL; 5148 thh = list_next(&ip_thread_list, thh)) { 5149 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5150 &val) == 0) { 5151 th_trace = (th_trace_t *)val; 5152 if (trace_disable) 5153 th_trace->th_refcnt = 0; 5154 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5155 ASSERT(retv == 0); 5156 } 5157 } 5158 rw_exit(&ip_thread_rwlock); 5159 } 5160 5161 void 5162 ipif_trace_ref(ipif_t *ipif) 5163 { 5164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5165 5166 if (ipif->ipif_trace_disable) 5167 return; 5168 5169 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5170 ipif->ipif_trace_disable = B_TRUE; 5171 ipif_trace_cleanup(ipif); 5172 } 5173 } 5174 5175 void 5176 ipif_untrace_ref(ipif_t *ipif) 5177 { 5178 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5179 5180 if (!ipif->ipif_trace_disable) 5181 th_trace_unref(ipif); 5182 } 5183 5184 void 5185 ill_trace_ref(ill_t *ill) 5186 { 5187 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5188 5189 if (ill->ill_trace_disable) 5190 return; 5191 5192 if (!th_trace_ref(ill, ill->ill_ipst)) { 5193 ill->ill_trace_disable = B_TRUE; 5194 ill_trace_cleanup(ill); 5195 } 5196 } 5197 5198 void 5199 ill_untrace_ref(ill_t *ill) 5200 { 5201 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5202 5203 if (!ill->ill_trace_disable) 5204 th_trace_unref(ill); 5205 } 5206 5207 /* 5208 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5209 * failure, ipif_trace_disable is set. 5210 */ 5211 static void 5212 ipif_trace_cleanup(const ipif_t *ipif) 5213 { 5214 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5215 } 5216 5217 /* 5218 * Called when ill is unplumbed or when memory alloc fails. Note that on 5219 * failure, ill_trace_disable is set. 5220 */ 5221 static void 5222 ill_trace_cleanup(const ill_t *ill) 5223 { 5224 th_trace_cleanup(ill, ill->ill_trace_disable); 5225 } 5226 #endif /* DEBUG */ 5227 5228 void 5229 ipif_refhold_locked(ipif_t *ipif) 5230 { 5231 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5232 ipif->ipif_refcnt++; 5233 IPIF_TRACE_REF(ipif); 5234 } 5235 5236 void 5237 ipif_refhold(ipif_t *ipif) 5238 { 5239 ill_t *ill; 5240 5241 ill = ipif->ipif_ill; 5242 mutex_enter(&ill->ill_lock); 5243 ipif->ipif_refcnt++; 5244 IPIF_TRACE_REF(ipif); 5245 mutex_exit(&ill->ill_lock); 5246 } 5247 5248 /* 5249 * Must not be called while holding any locks. Otherwise if this is 5250 * the last reference to be released there is a chance of recursive mutex 5251 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5252 * to restart an ioctl. 5253 */ 5254 void 5255 ipif_refrele(ipif_t *ipif) 5256 { 5257 ill_t *ill; 5258 5259 ill = ipif->ipif_ill; 5260 5261 mutex_enter(&ill->ill_lock); 5262 ASSERT(ipif->ipif_refcnt != 0); 5263 ipif->ipif_refcnt--; 5264 IPIF_UNTRACE_REF(ipif); 5265 if (ipif->ipif_refcnt != 0) { 5266 mutex_exit(&ill->ill_lock); 5267 return; 5268 } 5269 5270 /* Drops the ill_lock */ 5271 ipif_ill_refrele_tail(ill); 5272 } 5273 5274 ipif_t * 5275 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5276 { 5277 ipif_t *ipif; 5278 5279 mutex_enter(&ill->ill_lock); 5280 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5281 ipif != NULL; ipif = ipif->ipif_next) { 5282 if (IPIF_IS_CONDEMNED(ipif)) 5283 continue; 5284 ipif_refhold_locked(ipif); 5285 mutex_exit(&ill->ill_lock); 5286 return (ipif); 5287 } 5288 mutex_exit(&ill->ill_lock); 5289 return (NULL); 5290 } 5291 5292 /* 5293 * TODO: make this table extendible at run time 5294 * Return a pointer to the mac type info for 'mac_type' 5295 */ 5296 static ip_m_t * 5297 ip_m_lookup(t_uscalar_t mac_type) 5298 { 5299 ip_m_t *ipm; 5300 5301 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5302 if (ipm->ip_m_mac_type == mac_type) 5303 return (ipm); 5304 return (NULL); 5305 } 5306 5307 /* 5308 * Make a link layer address from the multicast IP address *addr. 5309 * To form the link layer address, invoke the ip_m_v*mapping function 5310 * associated with the link-layer type. 5311 */ 5312 void 5313 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5314 { 5315 ip_m_t *ipm; 5316 5317 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5318 return; 5319 5320 ASSERT(addr != NULL); 5321 5322 ipm = ip_m_lookup(ill->ill_mactype); 5323 if (ipm == NULL || 5324 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5325 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5326 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5327 ill->ill_name, ill->ill_mactype)); 5328 return; 5329 } 5330 if (ill->ill_isv6) 5331 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5332 else 5333 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5334 } 5335 5336 /* 5337 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5338 * Otherwise returns B_TRUE. 5339 * 5340 * The netmask can be verified to be contiguous with 32 shifts and or 5341 * operations. Take the contiguous mask (in host byte order) and compute 5342 * mask | mask << 1 | mask << 2 | ... | mask << 31 5343 * the result will be the same as the 'mask' for contiguous mask. 5344 */ 5345 static boolean_t 5346 ip_contiguous_mask(uint32_t mask) 5347 { 5348 uint32_t m = mask; 5349 int i; 5350 5351 for (i = 1; i < 32; i++) 5352 m |= (mask << i); 5353 5354 return (m == mask); 5355 } 5356 5357 /* 5358 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5359 * ill is passed in to associate it with the correct interface. 5360 * If ire_arg is set, then we return the held IRE in that location. 5361 */ 5362 int 5363 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5364 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5365 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5366 { 5367 ire_t *ire, *nire; 5368 ire_t *gw_ire = NULL; 5369 ipif_t *ipif = NULL; 5370 uint_t type; 5371 int match_flags = MATCH_IRE_TYPE; 5372 tsol_gc_t *gc = NULL; 5373 tsol_gcgrp_t *gcgrp = NULL; 5374 boolean_t gcgrp_xtraref = B_FALSE; 5375 boolean_t cgtp_broadcast; 5376 boolean_t unbound = B_FALSE; 5377 5378 ip1dbg(("ip_rt_add:")); 5379 5380 if (ire_arg != NULL) 5381 *ire_arg = NULL; 5382 5383 /* disallow non-contiguous netmasks */ 5384 if (!ip_contiguous_mask(ntohl(mask))) 5385 return (ENOTSUP); 5386 5387 /* 5388 * If this is the case of RTF_HOST being set, then we set the netmask 5389 * to all ones (regardless if one was supplied). 5390 */ 5391 if (flags & RTF_HOST) 5392 mask = IP_HOST_MASK; 5393 5394 /* 5395 * Prevent routes with a zero gateway from being created (since 5396 * interfaces can currently be plumbed and brought up no assigned 5397 * address). 5398 */ 5399 if (gw_addr == 0) 5400 return (ENETUNREACH); 5401 /* 5402 * Get the ipif, if any, corresponding to the gw_addr 5403 * If -ifp was specified we restrict ourselves to the ill, otherwise 5404 * we match on the gatway and destination to handle unnumbered pt-pt 5405 * interfaces. 5406 */ 5407 if (ill != NULL) 5408 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5409 else 5410 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5411 if (ipif != NULL) { 5412 if (IS_VNI(ipif->ipif_ill)) { 5413 ipif_refrele(ipif); 5414 return (EINVAL); 5415 } 5416 } 5417 5418 /* 5419 * GateD will attempt to create routes with a loopback interface 5420 * address as the gateway and with RTF_GATEWAY set. We allow 5421 * these routes to be added, but create them as interface routes 5422 * since the gateway is an interface address. 5423 */ 5424 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5425 flags &= ~RTF_GATEWAY; 5426 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5427 mask == IP_HOST_MASK) { 5428 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5429 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5430 NULL); 5431 if (ire != NULL) { 5432 ire_refrele(ire); 5433 ipif_refrele(ipif); 5434 return (EEXIST); 5435 } 5436 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5437 "for 0x%x\n", (void *)ipif, 5438 ipif->ipif_ire_type, 5439 ntohl(ipif->ipif_lcl_addr))); 5440 ire = ire_create( 5441 (uchar_t *)&dst_addr, /* dest address */ 5442 (uchar_t *)&mask, /* mask */ 5443 NULL, /* no gateway */ 5444 ipif->ipif_ire_type, /* LOOPBACK */ 5445 ipif->ipif_ill, 5446 zoneid, 5447 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5448 NULL, 5449 ipst); 5450 5451 if (ire == NULL) { 5452 ipif_refrele(ipif); 5453 return (ENOMEM); 5454 } 5455 /* src address assigned by the caller? */ 5456 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5457 ire->ire_setsrc_addr = src_addr; 5458 5459 nire = ire_add(ire); 5460 if (nire == NULL) { 5461 /* 5462 * In the result of failure, ire_add() will have 5463 * already deleted the ire in question, so there 5464 * is no need to do that here. 5465 */ 5466 ipif_refrele(ipif); 5467 return (ENOMEM); 5468 } 5469 /* 5470 * Check if it was a duplicate entry. This handles 5471 * the case of two racing route adds for the same route 5472 */ 5473 if (nire != ire) { 5474 ASSERT(nire->ire_identical_ref > 1); 5475 ire_delete(nire); 5476 ire_refrele(nire); 5477 ipif_refrele(ipif); 5478 return (EEXIST); 5479 } 5480 ire = nire; 5481 goto save_ire; 5482 } 5483 } 5484 5485 /* 5486 * The routes for multicast with CGTP are quite special in that 5487 * the gateway is the local interface address, yet RTF_GATEWAY 5488 * is set. We turn off RTF_GATEWAY to provide compatibility with 5489 * this undocumented and unusual use of multicast routes. 5490 */ 5491 if ((flags & RTF_MULTIRT) && ipif != NULL) 5492 flags &= ~RTF_GATEWAY; 5493 5494 /* 5495 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5496 * and the gateway address provided is one of the system's interface 5497 * addresses. By using the routing socket interface and supplying an 5498 * RTA_IFP sockaddr with an interface index, an alternate method of 5499 * specifying an interface route to be created is available which uses 5500 * the interface index that specifies the outgoing interface rather than 5501 * the address of an outgoing interface (which may not be able to 5502 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5503 * flag, routes can be specified which not only specify the next-hop to 5504 * be used when routing to a certain prefix, but also which outgoing 5505 * interface should be used. 5506 * 5507 * Previously, interfaces would have unique addresses assigned to them 5508 * and so the address assigned to a particular interface could be used 5509 * to identify a particular interface. One exception to this was the 5510 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5511 * 5512 * With the advent of IPv6 and its link-local addresses, this 5513 * restriction was relaxed and interfaces could share addresses between 5514 * themselves. In fact, typically all of the link-local interfaces on 5515 * an IPv6 node or router will have the same link-local address. In 5516 * order to differentiate between these interfaces, the use of an 5517 * interface index is necessary and this index can be carried inside a 5518 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5519 * of using the interface index, however, is that all of the ipif's that 5520 * are part of an ill have the same index and so the RTA_IFP sockaddr 5521 * cannot be used to differentiate between ipif's (or logical 5522 * interfaces) that belong to the same ill (physical interface). 5523 * 5524 * For example, in the following case involving IPv4 interfaces and 5525 * logical interfaces 5526 * 5527 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5528 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5529 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5530 * 5531 * the ipif's corresponding to each of these interface routes can be 5532 * uniquely identified by the "gateway" (actually interface address). 5533 * 5534 * In this case involving multiple IPv6 default routes to a particular 5535 * link-local gateway, the use of RTA_IFP is necessary to specify which 5536 * default route is of interest: 5537 * 5538 * default fe80::123:4567:89ab:cdef U if0 5539 * default fe80::123:4567:89ab:cdef U if1 5540 */ 5541 5542 /* RTF_GATEWAY not set */ 5543 if (!(flags & RTF_GATEWAY)) { 5544 if (sp != NULL) { 5545 ip2dbg(("ip_rt_add: gateway security attributes " 5546 "cannot be set with interface route\n")); 5547 if (ipif != NULL) 5548 ipif_refrele(ipif); 5549 return (EINVAL); 5550 } 5551 5552 /* 5553 * Whether or not ill (RTA_IFP) is set, we require that 5554 * the gateway is one of our local addresses. 5555 */ 5556 if (ipif == NULL) 5557 return (ENETUNREACH); 5558 5559 /* 5560 * We use MATCH_IRE_ILL here. If the caller specified an 5561 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5562 * we use the ill derived from the gateway address. 5563 * We can always match the gateway address since we record it 5564 * in ire_gateway_addr. 5565 * We don't allow RTA_IFP to specify a different ill than the 5566 * one matching the ipif to make sure we can delete the route. 5567 */ 5568 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5569 if (ill == NULL) { 5570 ill = ipif->ipif_ill; 5571 } else if (ill != ipif->ipif_ill) { 5572 ipif_refrele(ipif); 5573 return (EINVAL); 5574 } 5575 5576 /* 5577 * We check for an existing entry at this point. 5578 * 5579 * Since a netmask isn't passed in via the ioctl interface 5580 * (SIOCADDRT), we don't check for a matching netmask in that 5581 * case. 5582 */ 5583 if (!ioctl_msg) 5584 match_flags |= MATCH_IRE_MASK; 5585 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5586 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5587 NULL); 5588 if (ire != NULL) { 5589 ire_refrele(ire); 5590 ipif_refrele(ipif); 5591 return (EEXIST); 5592 } 5593 5594 /* 5595 * Some software (for example, GateD and Sun Cluster) attempts 5596 * to create (what amount to) IRE_PREFIX routes with the 5597 * loopback address as the gateway. This is primarily done to 5598 * set up prefixes with the RTF_REJECT flag set (for example, 5599 * when generating aggregate routes.) 5600 * 5601 * If the IRE type (as defined by ill->ill_net_type) would be 5602 * IRE_LOOPBACK, then we map the request into a 5603 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5604 * these interface routes, by definition, can only be that. 5605 * 5606 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5607 * routine, but rather using ire_create() directly. 5608 * 5609 */ 5610 type = ill->ill_net_type; 5611 if (type == IRE_LOOPBACK) { 5612 type = IRE_IF_NORESOLVER; 5613 flags |= RTF_BLACKHOLE; 5614 } 5615 5616 /* 5617 * Create a copy of the IRE_IF_NORESOLVER or 5618 * IRE_IF_RESOLVER with the modified address, netmask, and 5619 * gateway. 5620 */ 5621 ire = ire_create( 5622 (uchar_t *)&dst_addr, 5623 (uint8_t *)&mask, 5624 (uint8_t *)&gw_addr, 5625 type, 5626 ill, 5627 zoneid, 5628 flags, 5629 NULL, 5630 ipst); 5631 if (ire == NULL) { 5632 ipif_refrele(ipif); 5633 return (ENOMEM); 5634 } 5635 5636 /* src address assigned by the caller? */ 5637 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5638 ire->ire_setsrc_addr = src_addr; 5639 5640 nire = ire_add(ire); 5641 if (nire == NULL) { 5642 /* 5643 * In the result of failure, ire_add() will have 5644 * already deleted the ire in question, so there 5645 * is no need to do that here. 5646 */ 5647 ipif_refrele(ipif); 5648 return (ENOMEM); 5649 } 5650 /* 5651 * Check if it was a duplicate entry. This handles 5652 * the case of two racing route adds for the same route 5653 */ 5654 if (nire != ire) { 5655 ire_delete(nire); 5656 ire_refrele(nire); 5657 ipif_refrele(ipif); 5658 return (EEXIST); 5659 } 5660 ire = nire; 5661 goto save_ire; 5662 } 5663 5664 /* 5665 * Get an interface IRE for the specified gateway. 5666 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5667 * gateway, it is currently unreachable and we fail the request 5668 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5669 * is an IRE_LOCAL or IRE_LOOPBACK. 5670 * If RTA_IFP was specified we look on that particular ill. 5671 */ 5672 if (ill != NULL) 5673 match_flags |= MATCH_IRE_ILL; 5674 5675 /* Check whether the gateway is reachable. */ 5676 again: 5677 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5678 if (flags & RTF_INDIRECT) 5679 type |= IRE_OFFLINK; 5680 5681 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5682 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5683 if (gw_ire == NULL) { 5684 /* 5685 * With IPMP, we allow host routes to influence in.mpathd's 5686 * target selection. However, if the test addresses are on 5687 * their own network, the above lookup will fail since the 5688 * underlying IRE_INTERFACEs are marked hidden. So allow 5689 * hidden test IREs to be found and try again. 5690 */ 5691 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5692 match_flags |= MATCH_IRE_TESTHIDDEN; 5693 goto again; 5694 } 5695 if (ipif != NULL) 5696 ipif_refrele(ipif); 5697 return (ENETUNREACH); 5698 } 5699 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5700 ire_refrele(gw_ire); 5701 if (ipif != NULL) 5702 ipif_refrele(ipif); 5703 return (ENETUNREACH); 5704 } 5705 5706 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5707 unbound = B_TRUE; 5708 if (ipst->ips_ip_strict_src_multihoming > 0) 5709 ill = gw_ire->ire_ill; 5710 } 5711 5712 /* 5713 * We create one of three types of IREs as a result of this request 5714 * based on the netmask. A netmask of all ones (which is automatically 5715 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5716 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5717 * created. Otherwise, an IRE_PREFIX route is created for the 5718 * destination prefix. 5719 */ 5720 if (mask == IP_HOST_MASK) 5721 type = IRE_HOST; 5722 else if (mask == 0) 5723 type = IRE_DEFAULT; 5724 else 5725 type = IRE_PREFIX; 5726 5727 /* check for a duplicate entry */ 5728 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5729 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5730 0, ipst, NULL); 5731 if (ire != NULL) { 5732 if (ipif != NULL) 5733 ipif_refrele(ipif); 5734 ire_refrele(gw_ire); 5735 ire_refrele(ire); 5736 return (EEXIST); 5737 } 5738 5739 /* Security attribute exists */ 5740 if (sp != NULL) { 5741 tsol_gcgrp_addr_t ga; 5742 5743 /* find or create the gateway credentials group */ 5744 ga.ga_af = AF_INET; 5745 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5746 5747 /* we hold reference to it upon success */ 5748 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5749 if (gcgrp == NULL) { 5750 if (ipif != NULL) 5751 ipif_refrele(ipif); 5752 ire_refrele(gw_ire); 5753 return (ENOMEM); 5754 } 5755 5756 /* 5757 * Create and add the security attribute to the group; a 5758 * reference to the group is made upon allocating a new 5759 * entry successfully. If it finds an already-existing 5760 * entry for the security attribute in the group, it simply 5761 * returns it and no new reference is made to the group. 5762 */ 5763 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5764 if (gc == NULL) { 5765 if (ipif != NULL) 5766 ipif_refrele(ipif); 5767 /* release reference held by gcgrp_lookup */ 5768 GCGRP_REFRELE(gcgrp); 5769 ire_refrele(gw_ire); 5770 return (ENOMEM); 5771 } 5772 } 5773 5774 /* Create the IRE. */ 5775 ire = ire_create( 5776 (uchar_t *)&dst_addr, /* dest address */ 5777 (uchar_t *)&mask, /* mask */ 5778 (uchar_t *)&gw_addr, /* gateway address */ 5779 (ushort_t)type, /* IRE type */ 5780 ill, 5781 zoneid, 5782 flags, 5783 gc, /* security attribute */ 5784 ipst); 5785 5786 /* 5787 * The ire holds a reference to the 'gc' and the 'gc' holds a 5788 * reference to the 'gcgrp'. We can now release the extra reference 5789 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5790 */ 5791 if (gcgrp_xtraref) 5792 GCGRP_REFRELE(gcgrp); 5793 if (ire == NULL) { 5794 if (gc != NULL) 5795 GC_REFRELE(gc); 5796 if (ipif != NULL) 5797 ipif_refrele(ipif); 5798 ire_refrele(gw_ire); 5799 return (ENOMEM); 5800 } 5801 5802 /* Before we add, check if an extra CGTP broadcast is needed */ 5803 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5804 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5805 5806 /* src address assigned by the caller? */ 5807 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5808 ire->ire_setsrc_addr = src_addr; 5809 5810 ire->ire_unbound = unbound; 5811 5812 /* 5813 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5814 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5815 */ 5816 5817 /* Add the new IRE. */ 5818 nire = ire_add(ire); 5819 if (nire == NULL) { 5820 /* 5821 * In the result of failure, ire_add() will have 5822 * already deleted the ire in question, so there 5823 * is no need to do that here. 5824 */ 5825 if (ipif != NULL) 5826 ipif_refrele(ipif); 5827 ire_refrele(gw_ire); 5828 return (ENOMEM); 5829 } 5830 /* 5831 * Check if it was a duplicate entry. This handles 5832 * the case of two racing route adds for the same route 5833 */ 5834 if (nire != ire) { 5835 ire_delete(nire); 5836 ire_refrele(nire); 5837 if (ipif != NULL) 5838 ipif_refrele(ipif); 5839 ire_refrele(gw_ire); 5840 return (EEXIST); 5841 } 5842 ire = nire; 5843 5844 if (flags & RTF_MULTIRT) { 5845 /* 5846 * Invoke the CGTP (multirouting) filtering module 5847 * to add the dst address in the filtering database. 5848 * Replicated inbound packets coming from that address 5849 * will be filtered to discard the duplicates. 5850 * It is not necessary to call the CGTP filter hook 5851 * when the dst address is a broadcast or multicast, 5852 * because an IP source address cannot be a broadcast 5853 * or a multicast. 5854 */ 5855 if (cgtp_broadcast) { 5856 ip_cgtp_bcast_add(ire, ipst); 5857 goto save_ire; 5858 } 5859 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5860 !CLASSD(ire->ire_addr)) { 5861 int res; 5862 ipif_t *src_ipif; 5863 5864 /* Find the source address corresponding to gw_ire */ 5865 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5866 NULL, zoneid, ipst); 5867 if (src_ipif != NULL) { 5868 res = ipst->ips_ip_cgtp_filter_ops-> 5869 cfo_add_dest_v4( 5870 ipst->ips_netstack->netstack_stackid, 5871 ire->ire_addr, 5872 ire->ire_gateway_addr, 5873 ire->ire_setsrc_addr, 5874 src_ipif->ipif_lcl_addr); 5875 ipif_refrele(src_ipif); 5876 } else { 5877 res = EADDRNOTAVAIL; 5878 } 5879 if (res != 0) { 5880 if (ipif != NULL) 5881 ipif_refrele(ipif); 5882 ire_refrele(gw_ire); 5883 ire_delete(ire); 5884 ire_refrele(ire); /* Held in ire_add */ 5885 return (res); 5886 } 5887 } 5888 } 5889 5890 save_ire: 5891 if (gw_ire != NULL) { 5892 ire_refrele(gw_ire); 5893 gw_ire = NULL; 5894 } 5895 if (ill != NULL) { 5896 /* 5897 * Save enough information so that we can recreate the IRE if 5898 * the interface goes down and then up. The metrics associated 5899 * with the route will be saved as well when rts_setmetrics() is 5900 * called after the IRE has been created. In the case where 5901 * memory cannot be allocated, none of this information will be 5902 * saved. 5903 */ 5904 ill_save_ire(ill, ire); 5905 } 5906 if (ioctl_msg) 5907 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5908 if (ire_arg != NULL) { 5909 /* 5910 * Store the ire that was successfully added into where ire_arg 5911 * points to so that callers don't have to look it up 5912 * themselves (but they are responsible for ire_refrele()ing 5913 * the ire when they are finished with it). 5914 */ 5915 *ire_arg = ire; 5916 } else { 5917 ire_refrele(ire); /* Held in ire_add */ 5918 } 5919 if (ipif != NULL) 5920 ipif_refrele(ipif); 5921 return (0); 5922 } 5923 5924 /* 5925 * ip_rt_delete is called to delete an IPv4 route. 5926 * ill is passed in to associate it with the correct interface. 5927 */ 5928 /* ARGSUSED4 */ 5929 int 5930 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5931 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5932 ip_stack_t *ipst, zoneid_t zoneid) 5933 { 5934 ire_t *ire = NULL; 5935 ipif_t *ipif; 5936 uint_t type; 5937 uint_t match_flags = MATCH_IRE_TYPE; 5938 int err = 0; 5939 5940 ip1dbg(("ip_rt_delete:")); 5941 /* 5942 * If this is the case of RTF_HOST being set, then we set the netmask 5943 * to all ones. Otherwise, we use the netmask if one was supplied. 5944 */ 5945 if (flags & RTF_HOST) { 5946 mask = IP_HOST_MASK; 5947 match_flags |= MATCH_IRE_MASK; 5948 } else if (rtm_addrs & RTA_NETMASK) { 5949 match_flags |= MATCH_IRE_MASK; 5950 } 5951 5952 /* 5953 * Note that RTF_GATEWAY is never set on a delete, therefore 5954 * we check if the gateway address is one of our interfaces first, 5955 * and fall back on RTF_GATEWAY routes. 5956 * 5957 * This makes it possible to delete an original 5958 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5959 * However, we have RTF_KERNEL set on the ones created by ipif_up 5960 * and those can not be deleted here. 5961 * 5962 * We use MATCH_IRE_ILL if we know the interface. If the caller 5963 * specified an interface (from the RTA_IFP sockaddr) we use it, 5964 * otherwise we use the ill derived from the gateway address. 5965 * We can always match the gateway address since we record it 5966 * in ire_gateway_addr. 5967 * 5968 * For more detail on specifying routes by gateway address and by 5969 * interface index, see the comments in ip_rt_add(). 5970 */ 5971 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5972 if (ipif != NULL) { 5973 ill_t *ill_match; 5974 5975 if (ill != NULL) 5976 ill_match = ill; 5977 else 5978 ill_match = ipif->ipif_ill; 5979 5980 match_flags |= MATCH_IRE_ILL; 5981 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5982 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 5983 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 5984 match_flags, 0, ipst, NULL); 5985 } 5986 if (ire == NULL) { 5987 match_flags |= MATCH_IRE_GW; 5988 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5989 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 5990 match_flags, 0, ipst, NULL); 5991 } 5992 /* Avoid deleting routes created by kernel from an ipif */ 5993 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 5994 ire_refrele(ire); 5995 ire = NULL; 5996 } 5997 5998 /* Restore in case we didn't find a match */ 5999 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6000 } 6001 6002 if (ire == NULL) { 6003 /* 6004 * At this point, the gateway address is not one of our own 6005 * addresses or a matching interface route was not found. We 6006 * set the IRE type to lookup based on whether 6007 * this is a host route, a default route or just a prefix. 6008 * 6009 * If an ill was passed in, then the lookup is based on an 6010 * interface index so MATCH_IRE_ILL is added to match_flags. 6011 */ 6012 match_flags |= MATCH_IRE_GW; 6013 if (ill != NULL) 6014 match_flags |= MATCH_IRE_ILL; 6015 if (mask == IP_HOST_MASK) 6016 type = IRE_HOST; 6017 else if (mask == 0) 6018 type = IRE_DEFAULT; 6019 else 6020 type = IRE_PREFIX; 6021 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6022 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6023 } 6024 6025 if (ipif != NULL) { 6026 ipif_refrele(ipif); 6027 ipif = NULL; 6028 } 6029 6030 if (ire == NULL) 6031 return (ESRCH); 6032 6033 if (ire->ire_flags & RTF_MULTIRT) { 6034 /* 6035 * Invoke the CGTP (multirouting) filtering module 6036 * to remove the dst address from the filtering database. 6037 * Packets coming from that address will no longer be 6038 * filtered to remove duplicates. 6039 */ 6040 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6041 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6042 ipst->ips_netstack->netstack_stackid, 6043 ire->ire_addr, ire->ire_gateway_addr); 6044 } 6045 ip_cgtp_bcast_delete(ire, ipst); 6046 } 6047 6048 ill = ire->ire_ill; 6049 if (ill != NULL) 6050 ill_remove_saved_ire(ill, ire); 6051 if (ioctl_msg) 6052 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6053 ire_delete(ire); 6054 ire_refrele(ire); 6055 return (err); 6056 } 6057 6058 /* 6059 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6060 */ 6061 /* ARGSUSED */ 6062 int 6063 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6064 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6065 { 6066 ipaddr_t dst_addr; 6067 ipaddr_t gw_addr; 6068 ipaddr_t mask; 6069 int error = 0; 6070 mblk_t *mp1; 6071 struct rtentry *rt; 6072 ipif_t *ipif = NULL; 6073 ip_stack_t *ipst; 6074 6075 ASSERT(q->q_next == NULL); 6076 ipst = CONNQ_TO_IPST(q); 6077 6078 ip1dbg(("ip_siocaddrt:")); 6079 /* Existence of mp1 verified in ip_wput_nondata */ 6080 mp1 = mp->b_cont->b_cont; 6081 rt = (struct rtentry *)mp1->b_rptr; 6082 6083 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6084 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6085 6086 /* 6087 * If the RTF_HOST flag is on, this is a request to assign a gateway 6088 * to a particular host address. In this case, we set the netmask to 6089 * all ones for the particular destination address. Otherwise, 6090 * determine the netmask to be used based on dst_addr and the interfaces 6091 * in use. 6092 */ 6093 if (rt->rt_flags & RTF_HOST) { 6094 mask = IP_HOST_MASK; 6095 } else { 6096 /* 6097 * Note that ip_subnet_mask returns a zero mask in the case of 6098 * default (an all-zeroes address). 6099 */ 6100 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6101 } 6102 6103 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6104 B_TRUE, NULL, ipst, ALL_ZONES); 6105 if (ipif != NULL) 6106 ipif_refrele(ipif); 6107 return (error); 6108 } 6109 6110 /* 6111 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6112 */ 6113 /* ARGSUSED */ 6114 int 6115 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6116 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6117 { 6118 ipaddr_t dst_addr; 6119 ipaddr_t gw_addr; 6120 ipaddr_t mask; 6121 int error; 6122 mblk_t *mp1; 6123 struct rtentry *rt; 6124 ipif_t *ipif = NULL; 6125 ip_stack_t *ipst; 6126 6127 ASSERT(q->q_next == NULL); 6128 ipst = CONNQ_TO_IPST(q); 6129 6130 ip1dbg(("ip_siocdelrt:")); 6131 /* Existence of mp1 verified in ip_wput_nondata */ 6132 mp1 = mp->b_cont->b_cont; 6133 rt = (struct rtentry *)mp1->b_rptr; 6134 6135 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6136 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6137 6138 /* 6139 * If the RTF_HOST flag is on, this is a request to delete a gateway 6140 * to a particular host address. In this case, we set the netmask to 6141 * all ones for the particular destination address. Otherwise, 6142 * determine the netmask to be used based on dst_addr and the interfaces 6143 * in use. 6144 */ 6145 if (rt->rt_flags & RTF_HOST) { 6146 mask = IP_HOST_MASK; 6147 } else { 6148 /* 6149 * Note that ip_subnet_mask returns a zero mask in the case of 6150 * default (an all-zeroes address). 6151 */ 6152 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6153 } 6154 6155 error = ip_rt_delete(dst_addr, mask, gw_addr, 6156 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6157 ipst, ALL_ZONES); 6158 if (ipif != NULL) 6159 ipif_refrele(ipif); 6160 return (error); 6161 } 6162 6163 /* 6164 * Enqueue the mp onto the ipsq, chained by b_next. 6165 * b_prev stores the function to be executed later, and b_queue the queue 6166 * where this mp originated. 6167 */ 6168 void 6169 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6170 ill_t *pending_ill) 6171 { 6172 conn_t *connp; 6173 ipxop_t *ipx = ipsq->ipsq_xop; 6174 6175 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6176 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6177 ASSERT(func != NULL); 6178 6179 mp->b_queue = q; 6180 mp->b_prev = (void *)func; 6181 mp->b_next = NULL; 6182 6183 switch (type) { 6184 case CUR_OP: 6185 if (ipx->ipx_mptail != NULL) { 6186 ASSERT(ipx->ipx_mphead != NULL); 6187 ipx->ipx_mptail->b_next = mp; 6188 } else { 6189 ASSERT(ipx->ipx_mphead == NULL); 6190 ipx->ipx_mphead = mp; 6191 } 6192 ipx->ipx_mptail = mp; 6193 break; 6194 6195 case NEW_OP: 6196 if (ipsq->ipsq_xopq_mptail != NULL) { 6197 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6198 ipsq->ipsq_xopq_mptail->b_next = mp; 6199 } else { 6200 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6201 ipsq->ipsq_xopq_mphead = mp; 6202 } 6203 ipsq->ipsq_xopq_mptail = mp; 6204 ipx->ipx_ipsq_queued = B_TRUE; 6205 break; 6206 6207 case SWITCH_OP: 6208 ASSERT(ipsq->ipsq_swxop != NULL); 6209 /* only one switch operation is currently allowed */ 6210 ASSERT(ipsq->ipsq_switch_mp == NULL); 6211 ipsq->ipsq_switch_mp = mp; 6212 ipx->ipx_ipsq_queued = B_TRUE; 6213 break; 6214 default: 6215 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6216 } 6217 6218 if (CONN_Q(q) && pending_ill != NULL) { 6219 connp = Q_TO_CONN(q); 6220 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6221 connp->conn_oper_pending_ill = pending_ill; 6222 } 6223 } 6224 6225 /* 6226 * Dequeue the next message that requested exclusive access to this IPSQ's 6227 * xop. Specifically: 6228 * 6229 * 1. If we're still processing the current operation on `ipsq', then 6230 * dequeue the next message for the operation (from ipx_mphead), or 6231 * return NULL if there are no queued messages for the operation. 6232 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6233 * 6234 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6235 * not set) see if the ipsq has requested an xop switch. If so, switch 6236 * `ipsq' to a different xop. Xop switches only happen when joining or 6237 * leaving IPMP groups and require a careful dance -- see the comments 6238 * in-line below for details. If we're leaving a group xop or if we're 6239 * joining a group xop and become writer on it, then we proceed to (3). 6240 * Otherwise, we return NULL and exit the xop. 6241 * 6242 * 3. For each IPSQ in the xop, return any switch operation stored on 6243 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6244 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6245 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6246 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6247 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6248 * each phyint in the group, including the IPMP meta-interface phyint. 6249 */ 6250 static mblk_t * 6251 ipsq_dq(ipsq_t *ipsq) 6252 { 6253 ill_t *illv4, *illv6; 6254 mblk_t *mp; 6255 ipsq_t *xopipsq; 6256 ipsq_t *leftipsq = NULL; 6257 ipxop_t *ipx; 6258 phyint_t *phyi = ipsq->ipsq_phyint; 6259 ip_stack_t *ipst = ipsq->ipsq_ipst; 6260 boolean_t emptied = B_FALSE; 6261 6262 /* 6263 * Grab all the locks we need in the defined order (ill_g_lock -> 6264 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6265 */ 6266 rw_enter(&ipst->ips_ill_g_lock, 6267 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6268 mutex_enter(&ipsq->ipsq_lock); 6269 ipx = ipsq->ipsq_xop; 6270 mutex_enter(&ipx->ipx_lock); 6271 6272 /* 6273 * Dequeue the next message associated with the current exclusive 6274 * operation, if any. 6275 */ 6276 if ((mp = ipx->ipx_mphead) != NULL) { 6277 ipx->ipx_mphead = mp->b_next; 6278 if (ipx->ipx_mphead == NULL) 6279 ipx->ipx_mptail = NULL; 6280 mp->b_next = (void *)ipsq; 6281 goto out; 6282 } 6283 6284 if (ipx->ipx_current_ipif != NULL) 6285 goto empty; 6286 6287 if (ipsq->ipsq_swxop != NULL) { 6288 /* 6289 * The exclusive operation that is now being completed has 6290 * requested a switch to a different xop. This happens 6291 * when an interface joins or leaves an IPMP group. Joins 6292 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6293 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6294 * (phyint_free()), or interface plumb for an ill type 6295 * not in the IPMP group (ip_rput_dlpi_writer()). 6296 * 6297 * Xop switches are not allowed on the IPMP meta-interface. 6298 */ 6299 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6300 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6301 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6302 6303 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6304 /* 6305 * We're switching back to our own xop, so we have two 6306 * xop's to drain/exit: our own, and the group xop 6307 * that we are leaving. 6308 * 6309 * First, pull ourselves out of the group ipsq list. 6310 * This is safe since we're writer on ill_g_lock. 6311 */ 6312 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6313 6314 xopipsq = ipx->ipx_ipsq; 6315 while (xopipsq->ipsq_next != ipsq) 6316 xopipsq = xopipsq->ipsq_next; 6317 6318 xopipsq->ipsq_next = ipsq->ipsq_next; 6319 ipsq->ipsq_next = ipsq; 6320 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6321 ipsq->ipsq_swxop = NULL; 6322 6323 /* 6324 * Second, prepare to exit the group xop. The actual 6325 * ipsq_exit() is done at the end of this function 6326 * since we cannot hold any locks across ipsq_exit(). 6327 * Note that although we drop the group's ipx_lock, no 6328 * threads can proceed since we're still ipx_writer. 6329 */ 6330 leftipsq = xopipsq; 6331 mutex_exit(&ipx->ipx_lock); 6332 6333 /* 6334 * Third, set ipx to point to our own xop (which was 6335 * inactive and therefore can be entered). 6336 */ 6337 ipx = ipsq->ipsq_xop; 6338 mutex_enter(&ipx->ipx_lock); 6339 ASSERT(ipx->ipx_writer == NULL); 6340 ASSERT(ipx->ipx_current_ipif == NULL); 6341 } else { 6342 /* 6343 * We're switching from our own xop to a group xop. 6344 * The requestor of the switch must ensure that the 6345 * group xop cannot go away (e.g. by ensuring the 6346 * phyint associated with the xop cannot go away). 6347 * 6348 * If we can become writer on our new xop, then we'll 6349 * do the drain. Otherwise, the current writer of our 6350 * new xop will do the drain when it exits. 6351 * 6352 * First, splice ourselves into the group IPSQ list. 6353 * This is safe since we're writer on ill_g_lock. 6354 */ 6355 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6356 6357 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6358 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6359 xopipsq = xopipsq->ipsq_next; 6360 6361 xopipsq->ipsq_next = ipsq; 6362 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6363 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6364 ipsq->ipsq_swxop = NULL; 6365 6366 /* 6367 * Second, exit our own xop, since it's now unused. 6368 * This is safe since we've got the only reference. 6369 */ 6370 ASSERT(ipx->ipx_writer == curthread); 6371 ipx->ipx_writer = NULL; 6372 VERIFY(--ipx->ipx_reentry_cnt == 0); 6373 ipx->ipx_ipsq_queued = B_FALSE; 6374 mutex_exit(&ipx->ipx_lock); 6375 6376 /* 6377 * Third, set ipx to point to our new xop, and check 6378 * if we can become writer on it. If we cannot, then 6379 * the current writer will drain the IPSQ group when 6380 * it exits. Our ipsq_xop is guaranteed to be stable 6381 * because we're still holding ipsq_lock. 6382 */ 6383 ipx = ipsq->ipsq_xop; 6384 mutex_enter(&ipx->ipx_lock); 6385 if (ipx->ipx_writer != NULL || 6386 ipx->ipx_current_ipif != NULL) { 6387 goto out; 6388 } 6389 } 6390 6391 /* 6392 * Fourth, become writer on our new ipx before we continue 6393 * with the drain. Note that we never dropped ipsq_lock 6394 * above, so no other thread could've raced with us to 6395 * become writer first. Also, we're holding ipx_lock, so 6396 * no other thread can examine the ipx right now. 6397 */ 6398 ASSERT(ipx->ipx_current_ipif == NULL); 6399 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6400 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6401 ipx->ipx_writer = curthread; 6402 ipx->ipx_forced = B_FALSE; 6403 #ifdef DEBUG 6404 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6405 #endif 6406 } 6407 6408 xopipsq = ipsq; 6409 do { 6410 /* 6411 * So that other operations operate on a consistent and 6412 * complete phyint, a switch message on an IPSQ must be 6413 * handled prior to any other operations on that IPSQ. 6414 */ 6415 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6416 xopipsq->ipsq_switch_mp = NULL; 6417 ASSERT(mp->b_next == NULL); 6418 mp->b_next = (void *)xopipsq; 6419 goto out; 6420 } 6421 6422 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6423 xopipsq->ipsq_xopq_mphead = mp->b_next; 6424 if (xopipsq->ipsq_xopq_mphead == NULL) 6425 xopipsq->ipsq_xopq_mptail = NULL; 6426 mp->b_next = (void *)xopipsq; 6427 goto out; 6428 } 6429 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6430 empty: 6431 /* 6432 * There are no messages. Further, we are holding ipx_lock, hence no 6433 * new messages can end up on any IPSQ in the xop. 6434 */ 6435 ipx->ipx_writer = NULL; 6436 ipx->ipx_forced = B_FALSE; 6437 VERIFY(--ipx->ipx_reentry_cnt == 0); 6438 ipx->ipx_ipsq_queued = B_FALSE; 6439 emptied = B_TRUE; 6440 #ifdef DEBUG 6441 ipx->ipx_depth = 0; 6442 #endif 6443 out: 6444 mutex_exit(&ipx->ipx_lock); 6445 mutex_exit(&ipsq->ipsq_lock); 6446 6447 /* 6448 * If we completely emptied the xop, then wake up any threads waiting 6449 * to enter any of the IPSQ's associated with it. 6450 */ 6451 if (emptied) { 6452 xopipsq = ipsq; 6453 do { 6454 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6455 continue; 6456 6457 illv4 = phyi->phyint_illv4; 6458 illv6 = phyi->phyint_illv6; 6459 6460 GRAB_ILL_LOCKS(illv4, illv6); 6461 if (illv4 != NULL) 6462 cv_broadcast(&illv4->ill_cv); 6463 if (illv6 != NULL) 6464 cv_broadcast(&illv6->ill_cv); 6465 RELEASE_ILL_LOCKS(illv4, illv6); 6466 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6467 } 6468 rw_exit(&ipst->ips_ill_g_lock); 6469 6470 /* 6471 * Now that all locks are dropped, exit the IPSQ we left. 6472 */ 6473 if (leftipsq != NULL) 6474 ipsq_exit(leftipsq); 6475 6476 return (mp); 6477 } 6478 6479 /* 6480 * Return completion status of previously initiated DLPI operations on 6481 * ills in the purview of an ipsq. 6482 */ 6483 static boolean_t 6484 ipsq_dlpi_done(ipsq_t *ipsq) 6485 { 6486 ipsq_t *ipsq_start; 6487 phyint_t *phyi; 6488 ill_t *ill; 6489 6490 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6491 ipsq_start = ipsq; 6492 6493 do { 6494 /* 6495 * The only current users of this function are ipsq_try_enter 6496 * and ipsq_enter which have made sure that ipsq_writer is 6497 * NULL before we reach here. ill_dlpi_pending is modified 6498 * only by an ipsq writer 6499 */ 6500 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6501 phyi = ipsq->ipsq_phyint; 6502 /* 6503 * phyi could be NULL if a phyint that is part of an 6504 * IPMP group is being unplumbed. A more detailed 6505 * comment is in ipmp_grp_update_kstats() 6506 */ 6507 if (phyi != NULL) { 6508 ill = phyi->phyint_illv4; 6509 if (ill != NULL && 6510 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6511 ill->ill_arl_dlpi_pending)) 6512 return (B_FALSE); 6513 6514 ill = phyi->phyint_illv6; 6515 if (ill != NULL && 6516 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6517 return (B_FALSE); 6518 } 6519 6520 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6521 6522 return (B_TRUE); 6523 } 6524 6525 /* 6526 * Enter the ipsq corresponding to ill, by waiting synchronously till 6527 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6528 * will have to drain completely before ipsq_enter returns success. 6529 * ipx_current_ipif will be set if some exclusive op is in progress, 6530 * and the ipsq_exit logic will start the next enqueued op after 6531 * completion of the current op. If 'force' is used, we don't wait 6532 * for the enqueued ops. This is needed when a conn_close wants to 6533 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6534 * of an ill can also use this option. But we dont' use it currently. 6535 */ 6536 #define ENTER_SQ_WAIT_TICKS 100 6537 boolean_t 6538 ipsq_enter(ill_t *ill, boolean_t force, int type) 6539 { 6540 ipsq_t *ipsq; 6541 ipxop_t *ipx; 6542 boolean_t waited_enough = B_FALSE; 6543 ip_stack_t *ipst = ill->ill_ipst; 6544 6545 /* 6546 * Note that the relationship between ill and ipsq is fixed as long as 6547 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6548 * relationship between the IPSQ and xop cannot change. However, 6549 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6550 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6551 * waking up all ills in the xop when it becomes available. 6552 */ 6553 for (;;) { 6554 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6555 mutex_enter(&ill->ill_lock); 6556 if (ill->ill_state_flags & ILL_CONDEMNED) { 6557 mutex_exit(&ill->ill_lock); 6558 rw_exit(&ipst->ips_ill_g_lock); 6559 return (B_FALSE); 6560 } 6561 6562 ipsq = ill->ill_phyint->phyint_ipsq; 6563 mutex_enter(&ipsq->ipsq_lock); 6564 ipx = ipsq->ipsq_xop; 6565 mutex_enter(&ipx->ipx_lock); 6566 6567 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6568 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6569 waited_enough)) 6570 break; 6571 6572 rw_exit(&ipst->ips_ill_g_lock); 6573 6574 if (!force || ipx->ipx_writer != NULL) { 6575 mutex_exit(&ipx->ipx_lock); 6576 mutex_exit(&ipsq->ipsq_lock); 6577 cv_wait(&ill->ill_cv, &ill->ill_lock); 6578 } else { 6579 mutex_exit(&ipx->ipx_lock); 6580 mutex_exit(&ipsq->ipsq_lock); 6581 (void) cv_reltimedwait(&ill->ill_cv, 6582 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6583 waited_enough = B_TRUE; 6584 } 6585 mutex_exit(&ill->ill_lock); 6586 } 6587 6588 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6589 ASSERT(ipx->ipx_reentry_cnt == 0); 6590 ipx->ipx_writer = curthread; 6591 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6592 ipx->ipx_reentry_cnt++; 6593 #ifdef DEBUG 6594 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6595 #endif 6596 mutex_exit(&ipx->ipx_lock); 6597 mutex_exit(&ipsq->ipsq_lock); 6598 mutex_exit(&ill->ill_lock); 6599 rw_exit(&ipst->ips_ill_g_lock); 6600 6601 return (B_TRUE); 6602 } 6603 6604 /* 6605 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6606 * across the call to the core interface ipsq_try_enter() and hence calls this 6607 * function directly. This is explained more fully in ipif_set_values(). 6608 * In order to support the above constraint, ipsq_try_enter is implemented as 6609 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6610 */ 6611 static ipsq_t * 6612 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6613 int type, boolean_t reentry_ok) 6614 { 6615 ipsq_t *ipsq; 6616 ipxop_t *ipx; 6617 ip_stack_t *ipst = ill->ill_ipst; 6618 6619 /* 6620 * lock ordering: 6621 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6622 * 6623 * ipx of an ipsq can't change when ipsq_lock is held. 6624 */ 6625 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6626 GRAB_CONN_LOCK(q); 6627 mutex_enter(&ill->ill_lock); 6628 ipsq = ill->ill_phyint->phyint_ipsq; 6629 mutex_enter(&ipsq->ipsq_lock); 6630 ipx = ipsq->ipsq_xop; 6631 mutex_enter(&ipx->ipx_lock); 6632 6633 /* 6634 * 1. Enter the ipsq if we are already writer and reentry is ok. 6635 * (Note: If the caller does not specify reentry_ok then neither 6636 * 'func' nor any of its callees must ever attempt to enter the ipsq 6637 * again. Otherwise it can lead to an infinite loop 6638 * 2. Enter the ipsq if there is no current writer and this attempted 6639 * entry is part of the current operation 6640 * 3. Enter the ipsq if there is no current writer and this is a new 6641 * operation and the operation queue is empty and there is no 6642 * operation currently in progress and if all previously initiated 6643 * DLPI operations have completed. 6644 */ 6645 if ((ipx->ipx_writer == curthread && reentry_ok) || 6646 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6647 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6648 ipsq_dlpi_done(ipsq))))) { 6649 /* Success. */ 6650 ipx->ipx_reentry_cnt++; 6651 ipx->ipx_writer = curthread; 6652 ipx->ipx_forced = B_FALSE; 6653 mutex_exit(&ipx->ipx_lock); 6654 mutex_exit(&ipsq->ipsq_lock); 6655 mutex_exit(&ill->ill_lock); 6656 RELEASE_CONN_LOCK(q); 6657 #ifdef DEBUG 6658 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6659 #endif 6660 return (ipsq); 6661 } 6662 6663 if (func != NULL) 6664 ipsq_enq(ipsq, q, mp, func, type, ill); 6665 6666 mutex_exit(&ipx->ipx_lock); 6667 mutex_exit(&ipsq->ipsq_lock); 6668 mutex_exit(&ill->ill_lock); 6669 RELEASE_CONN_LOCK(q); 6670 return (NULL); 6671 } 6672 6673 /* 6674 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6675 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6676 * There is one ipsq per phyint. The ipsq 6677 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6678 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6679 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6680 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6681 * up the interface) and are enqueued in ipx_mphead. 6682 * 6683 * If a thread does not want to reenter the ipsq when it is already writer, 6684 * it must make sure that the specified reentry point to be called later 6685 * when the ipsq is empty, nor any code path starting from the specified reentry 6686 * point must never ever try to enter the ipsq again. Otherwise it can lead 6687 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6688 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6689 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6690 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6691 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6692 * ioctl if the current ioctl has completed. If the current ioctl is still 6693 * in progress it simply returns. The current ioctl could be waiting for 6694 * a response from another module (the driver or could be waiting for 6695 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6696 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6697 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6698 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6699 * all associated DLPI operations have completed. 6700 */ 6701 6702 /* 6703 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6704 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6705 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6706 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6707 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6708 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6709 */ 6710 ipsq_t * 6711 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6712 ipsq_func_t func, int type, boolean_t reentry_ok) 6713 { 6714 ip_stack_t *ipst; 6715 ipsq_t *ipsq; 6716 6717 /* Only 1 of ipif or ill can be specified */ 6718 ASSERT((ipif != NULL) ^ (ill != NULL)); 6719 6720 if (ipif != NULL) 6721 ill = ipif->ipif_ill; 6722 ipst = ill->ill_ipst; 6723 6724 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6725 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6726 rw_exit(&ipst->ips_ill_g_lock); 6727 6728 return (ipsq); 6729 } 6730 6731 /* 6732 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6733 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6734 * cannot be entered, the mp is queued for completion. 6735 */ 6736 void 6737 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6738 boolean_t reentry_ok) 6739 { 6740 ipsq_t *ipsq; 6741 6742 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6743 6744 /* 6745 * Drop the caller's refhold on the ill. This is safe since we either 6746 * entered the IPSQ (and thus are exclusive), or failed to enter the 6747 * IPSQ, in which case we return without accessing ill anymore. This 6748 * is needed because func needs to see the correct refcount. 6749 * e.g. removeif can work only then. 6750 */ 6751 ill_refrele(ill); 6752 if (ipsq != NULL) { 6753 (*func)(ipsq, q, mp, NULL); 6754 ipsq_exit(ipsq); 6755 } 6756 } 6757 6758 /* 6759 * Exit the specified IPSQ. If this is the final exit on it then drain it 6760 * prior to exiting. Caller must be writer on the specified IPSQ. 6761 */ 6762 void 6763 ipsq_exit(ipsq_t *ipsq) 6764 { 6765 mblk_t *mp; 6766 ipsq_t *mp_ipsq; 6767 queue_t *q; 6768 phyint_t *phyi; 6769 ipsq_func_t func; 6770 6771 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6772 6773 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6774 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6775 ipsq->ipsq_xop->ipx_reentry_cnt--; 6776 return; 6777 } 6778 6779 for (;;) { 6780 phyi = ipsq->ipsq_phyint; 6781 mp = ipsq_dq(ipsq); 6782 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6783 6784 /* 6785 * If we've changed to a new IPSQ, and the phyint associated 6786 * with the old one has gone away, free the old IPSQ. Note 6787 * that this cannot happen while the IPSQ is in a group. 6788 */ 6789 if (mp_ipsq != ipsq && phyi == NULL) { 6790 ASSERT(ipsq->ipsq_next == ipsq); 6791 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6792 ipsq_delete(ipsq); 6793 } 6794 6795 if (mp == NULL) 6796 break; 6797 6798 q = mp->b_queue; 6799 func = (ipsq_func_t)mp->b_prev; 6800 ipsq = mp_ipsq; 6801 mp->b_next = mp->b_prev = NULL; 6802 mp->b_queue = NULL; 6803 6804 /* 6805 * If 'q' is an conn queue, it is valid, since we did a 6806 * a refhold on the conn at the start of the ioctl. 6807 * If 'q' is an ill queue, it is valid, since close of an 6808 * ill will clean up its IPSQ. 6809 */ 6810 (*func)(ipsq, q, mp, NULL); 6811 } 6812 } 6813 6814 /* 6815 * Used to start any igmp or mld timers that could not be started 6816 * while holding ill_mcast_lock. The timers can't be started while holding 6817 * the lock, since mld/igmp_start_timers may need to call untimeout() 6818 * which can't be done while holding the lock which the timeout handler 6819 * acquires. Otherwise 6820 * there could be a deadlock since the timeout handlers 6821 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6822 * ill_mcast_lock. 6823 */ 6824 void 6825 ill_mcast_timer_start(ip_stack_t *ipst) 6826 { 6827 int next; 6828 6829 mutex_enter(&ipst->ips_igmp_timer_lock); 6830 next = ipst->ips_igmp_deferred_next; 6831 ipst->ips_igmp_deferred_next = INFINITY; 6832 mutex_exit(&ipst->ips_igmp_timer_lock); 6833 6834 if (next != INFINITY) 6835 igmp_start_timers(next, ipst); 6836 6837 mutex_enter(&ipst->ips_mld_timer_lock); 6838 next = ipst->ips_mld_deferred_next; 6839 ipst->ips_mld_deferred_next = INFINITY; 6840 mutex_exit(&ipst->ips_mld_timer_lock); 6841 6842 if (next != INFINITY) 6843 mld_start_timers(next, ipst); 6844 } 6845 6846 /* 6847 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6848 * and `ioccmd'. 6849 */ 6850 void 6851 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6852 { 6853 ill_t *ill = ipif->ipif_ill; 6854 ipxop_t *ipx = ipsq->ipsq_xop; 6855 6856 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6857 ASSERT(ipx->ipx_current_ipif == NULL); 6858 ASSERT(ipx->ipx_current_ioctl == 0); 6859 6860 ipx->ipx_current_done = B_FALSE; 6861 ipx->ipx_current_ioctl = ioccmd; 6862 mutex_enter(&ipx->ipx_lock); 6863 ipx->ipx_current_ipif = ipif; 6864 mutex_exit(&ipx->ipx_lock); 6865 6866 /* 6867 * Set IPIF_CHANGING on one or more ipifs associated with the 6868 * current exclusive operation. IPIF_CHANGING prevents any new 6869 * references to the ipif (so that the references will eventually 6870 * drop to zero) and also prevents any "get" operations (e.g., 6871 * SIOCGLIFFLAGS) from being able to access the ipif until the 6872 * operation has completed and the ipif is again in a stable state. 6873 * 6874 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6875 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6876 * on the ill are marked with IPIF_CHANGING since it's unclear which 6877 * ipifs will be affected. 6878 * 6879 * Note that SIOCLIFREMOVEIF is a special case as it sets 6880 * IPIF_CONDEMNED internally after identifying the right ipif to 6881 * operate on. 6882 */ 6883 switch (ioccmd) { 6884 case SIOCLIFREMOVEIF: 6885 break; 6886 case 0: 6887 mutex_enter(&ill->ill_lock); 6888 ipif = ipif->ipif_ill->ill_ipif; 6889 for (; ipif != NULL; ipif = ipif->ipif_next) 6890 ipif->ipif_state_flags |= IPIF_CHANGING; 6891 mutex_exit(&ill->ill_lock); 6892 break; 6893 default: 6894 mutex_enter(&ill->ill_lock); 6895 ipif->ipif_state_flags |= IPIF_CHANGING; 6896 mutex_exit(&ill->ill_lock); 6897 } 6898 } 6899 6900 /* 6901 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6902 * the next exclusive operation to begin once we ipsq_exit(). However, if 6903 * pending DLPI operations remain, then we will wait for the queue to drain 6904 * before allowing the next exclusive operation to begin. This ensures that 6905 * DLPI operations from one exclusive operation are never improperly processed 6906 * as part of a subsequent exclusive operation. 6907 */ 6908 void 6909 ipsq_current_finish(ipsq_t *ipsq) 6910 { 6911 ipxop_t *ipx = ipsq->ipsq_xop; 6912 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6913 ipif_t *ipif = ipx->ipx_current_ipif; 6914 6915 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6916 6917 /* 6918 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6919 * (but in that case, IPIF_CHANGING will already be clear and no 6920 * pending DLPI messages can remain). 6921 */ 6922 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6923 ill_t *ill = ipif->ipif_ill; 6924 6925 mutex_enter(&ill->ill_lock); 6926 dlpi_pending = ill->ill_dlpi_pending; 6927 if (ipx->ipx_current_ioctl == 0) { 6928 ipif = ill->ill_ipif; 6929 for (; ipif != NULL; ipif = ipif->ipif_next) 6930 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6931 } else { 6932 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6933 } 6934 mutex_exit(&ill->ill_lock); 6935 } 6936 6937 ASSERT(!ipx->ipx_current_done); 6938 ipx->ipx_current_done = B_TRUE; 6939 ipx->ipx_current_ioctl = 0; 6940 if (dlpi_pending == DL_PRIM_INVAL) { 6941 mutex_enter(&ipx->ipx_lock); 6942 ipx->ipx_current_ipif = NULL; 6943 mutex_exit(&ipx->ipx_lock); 6944 } 6945 } 6946 6947 /* 6948 * The ill is closing. Flush all messages on the ipsq that originated 6949 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6950 * for this ill since ipsq_enter could not have entered until then. 6951 * New messages can't be queued since the CONDEMNED flag is set. 6952 */ 6953 static void 6954 ipsq_flush(ill_t *ill) 6955 { 6956 queue_t *q; 6957 mblk_t *prev; 6958 mblk_t *mp; 6959 mblk_t *mp_next; 6960 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6961 6962 ASSERT(IAM_WRITER_ILL(ill)); 6963 6964 /* 6965 * Flush any messages sent up by the driver. 6966 */ 6967 mutex_enter(&ipx->ipx_lock); 6968 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6969 mp_next = mp->b_next; 6970 q = mp->b_queue; 6971 if (q == ill->ill_rq || q == ill->ill_wq) { 6972 /* dequeue mp */ 6973 if (prev == NULL) 6974 ipx->ipx_mphead = mp->b_next; 6975 else 6976 prev->b_next = mp->b_next; 6977 if (ipx->ipx_mptail == mp) { 6978 ASSERT(mp_next == NULL); 6979 ipx->ipx_mptail = prev; 6980 } 6981 inet_freemsg(mp); 6982 } else { 6983 prev = mp; 6984 } 6985 } 6986 mutex_exit(&ipx->ipx_lock); 6987 (void) ipsq_pending_mp_cleanup(ill, NULL); 6988 ipsq_xopq_mp_cleanup(ill, NULL); 6989 } 6990 6991 /* 6992 * Parse an ifreq or lifreq struct coming down ioctls and refhold 6993 * and return the associated ipif. 6994 * Return value: 6995 * Non zero: An error has occurred. ci may not be filled out. 6996 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 6997 * a held ipif in ci.ci_ipif. 6998 */ 6999 int 7000 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7001 cmd_info_t *ci) 7002 { 7003 char *name; 7004 struct ifreq *ifr; 7005 struct lifreq *lifr; 7006 ipif_t *ipif = NULL; 7007 ill_t *ill; 7008 conn_t *connp; 7009 boolean_t isv6; 7010 int err; 7011 mblk_t *mp1; 7012 zoneid_t zoneid; 7013 ip_stack_t *ipst; 7014 7015 if (q->q_next != NULL) { 7016 ill = (ill_t *)q->q_ptr; 7017 isv6 = ill->ill_isv6; 7018 connp = NULL; 7019 zoneid = ALL_ZONES; 7020 ipst = ill->ill_ipst; 7021 } else { 7022 ill = NULL; 7023 connp = Q_TO_CONN(q); 7024 isv6 = (connp->conn_family == AF_INET6); 7025 zoneid = connp->conn_zoneid; 7026 if (zoneid == GLOBAL_ZONEID) { 7027 /* global zone can access ipifs in all zones */ 7028 zoneid = ALL_ZONES; 7029 } 7030 ipst = connp->conn_netstack->netstack_ip; 7031 } 7032 7033 /* Has been checked in ip_wput_nondata */ 7034 mp1 = mp->b_cont->b_cont; 7035 7036 if (ipip->ipi_cmd_type == IF_CMD) { 7037 /* This a old style SIOC[GS]IF* command */ 7038 ifr = (struct ifreq *)mp1->b_rptr; 7039 /* 7040 * Null terminate the string to protect against buffer 7041 * overrun. String was generated by user code and may not 7042 * be trusted. 7043 */ 7044 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7045 name = ifr->ifr_name; 7046 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7047 ci->ci_sin6 = NULL; 7048 ci->ci_lifr = (struct lifreq *)ifr; 7049 } else { 7050 /* This a new style SIOC[GS]LIF* command */ 7051 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7052 lifr = (struct lifreq *)mp1->b_rptr; 7053 /* 7054 * Null terminate the string to protect against buffer 7055 * overrun. String was generated by user code and may not 7056 * be trusted. 7057 */ 7058 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7059 name = lifr->lifr_name; 7060 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7061 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7062 ci->ci_lifr = lifr; 7063 } 7064 7065 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7066 /* 7067 * The ioctl will be failed if the ioctl comes down 7068 * an conn stream 7069 */ 7070 if (ill == NULL) { 7071 /* 7072 * Not an ill queue, return EINVAL same as the 7073 * old error code. 7074 */ 7075 return (ENXIO); 7076 } 7077 ipif = ill->ill_ipif; 7078 ipif_refhold(ipif); 7079 } else { 7080 /* 7081 * Ensure that ioctls don't see any internal state changes 7082 * caused by set ioctls by deferring them if IPIF_CHANGING is 7083 * set. 7084 */ 7085 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7086 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7087 if (ipif == NULL) { 7088 if (err == EINPROGRESS) 7089 return (err); 7090 err = 0; /* Ensure we don't use it below */ 7091 } 7092 } 7093 7094 /* 7095 * Old style [GS]IFCMD does not admit IPv6 ipif 7096 */ 7097 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7098 ipif_refrele(ipif); 7099 return (ENXIO); 7100 } 7101 7102 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7103 name[0] == '\0') { 7104 /* 7105 * Handle a or a SIOC?IF* with a null name 7106 * during plumb (on the ill queue before the I_PLINK). 7107 */ 7108 ipif = ill->ill_ipif; 7109 ipif_refhold(ipif); 7110 } 7111 7112 if (ipif == NULL) 7113 return (ENXIO); 7114 7115 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7116 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7117 7118 ci->ci_ipif = ipif; 7119 return (0); 7120 } 7121 7122 /* 7123 * Return the total number of ipifs. 7124 */ 7125 static uint_t 7126 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7127 { 7128 uint_t numifs = 0; 7129 ill_t *ill; 7130 ill_walk_context_t ctx; 7131 ipif_t *ipif; 7132 7133 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7134 ill = ILL_START_WALK_V4(&ctx, ipst); 7135 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7136 if (IS_UNDER_IPMP(ill)) 7137 continue; 7138 for (ipif = ill->ill_ipif; ipif != NULL; 7139 ipif = ipif->ipif_next) { 7140 if (ipif->ipif_zoneid == zoneid || 7141 ipif->ipif_zoneid == ALL_ZONES) 7142 numifs++; 7143 } 7144 } 7145 rw_exit(&ipst->ips_ill_g_lock); 7146 return (numifs); 7147 } 7148 7149 /* 7150 * Return the total number of ipifs. 7151 */ 7152 static uint_t 7153 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7154 { 7155 uint_t numifs = 0; 7156 ill_t *ill; 7157 ipif_t *ipif; 7158 ill_walk_context_t ctx; 7159 7160 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7161 7162 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7163 if (family == AF_INET) 7164 ill = ILL_START_WALK_V4(&ctx, ipst); 7165 else if (family == AF_INET6) 7166 ill = ILL_START_WALK_V6(&ctx, ipst); 7167 else 7168 ill = ILL_START_WALK_ALL(&ctx, ipst); 7169 7170 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7171 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7172 continue; 7173 7174 for (ipif = ill->ill_ipif; ipif != NULL; 7175 ipif = ipif->ipif_next) { 7176 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7177 !(lifn_flags & LIFC_NOXMIT)) 7178 continue; 7179 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7180 !(lifn_flags & LIFC_TEMPORARY)) 7181 continue; 7182 if (((ipif->ipif_flags & 7183 (IPIF_NOXMIT|IPIF_NOLOCAL| 7184 IPIF_DEPRECATED)) || 7185 IS_LOOPBACK(ill) || 7186 !(ipif->ipif_flags & IPIF_UP)) && 7187 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7188 continue; 7189 7190 if (zoneid != ipif->ipif_zoneid && 7191 ipif->ipif_zoneid != ALL_ZONES && 7192 (zoneid != GLOBAL_ZONEID || 7193 !(lifn_flags & LIFC_ALLZONES))) 7194 continue; 7195 7196 numifs++; 7197 } 7198 } 7199 rw_exit(&ipst->ips_ill_g_lock); 7200 return (numifs); 7201 } 7202 7203 uint_t 7204 ip_get_lifsrcofnum(ill_t *ill) 7205 { 7206 uint_t numifs = 0; 7207 ill_t *ill_head = ill; 7208 ip_stack_t *ipst = ill->ill_ipst; 7209 7210 /* 7211 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7212 * other thread may be trying to relink the ILLs in this usesrc group 7213 * and adjusting the ill_usesrc_grp_next pointers 7214 */ 7215 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7216 if ((ill->ill_usesrc_ifindex == 0) && 7217 (ill->ill_usesrc_grp_next != NULL)) { 7218 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7219 ill = ill->ill_usesrc_grp_next) 7220 numifs++; 7221 } 7222 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7223 7224 return (numifs); 7225 } 7226 7227 /* Null values are passed in for ipif, sin, and ifreq */ 7228 /* ARGSUSED */ 7229 int 7230 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7231 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7232 { 7233 int *nump; 7234 conn_t *connp = Q_TO_CONN(q); 7235 7236 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7237 7238 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7239 nump = (int *)mp->b_cont->b_cont->b_rptr; 7240 7241 *nump = ip_get_numifs(connp->conn_zoneid, 7242 connp->conn_netstack->netstack_ip); 7243 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7244 return (0); 7245 } 7246 7247 /* Null values are passed in for ipif, sin, and ifreq */ 7248 /* ARGSUSED */ 7249 int 7250 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7251 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7252 { 7253 struct lifnum *lifn; 7254 mblk_t *mp1; 7255 conn_t *connp = Q_TO_CONN(q); 7256 7257 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7258 7259 /* Existence checked in ip_wput_nondata */ 7260 mp1 = mp->b_cont->b_cont; 7261 7262 lifn = (struct lifnum *)mp1->b_rptr; 7263 switch (lifn->lifn_family) { 7264 case AF_UNSPEC: 7265 case AF_INET: 7266 case AF_INET6: 7267 break; 7268 default: 7269 return (EAFNOSUPPORT); 7270 } 7271 7272 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7273 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7274 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7275 return (0); 7276 } 7277 7278 /* ARGSUSED */ 7279 int 7280 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7281 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7282 { 7283 STRUCT_HANDLE(ifconf, ifc); 7284 mblk_t *mp1; 7285 struct iocblk *iocp; 7286 struct ifreq *ifr; 7287 ill_walk_context_t ctx; 7288 ill_t *ill; 7289 ipif_t *ipif; 7290 struct sockaddr_in *sin; 7291 int32_t ifclen; 7292 zoneid_t zoneid; 7293 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7294 7295 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7296 7297 ip1dbg(("ip_sioctl_get_ifconf")); 7298 /* Existence verified in ip_wput_nondata */ 7299 mp1 = mp->b_cont->b_cont; 7300 iocp = (struct iocblk *)mp->b_rptr; 7301 zoneid = Q_TO_CONN(q)->conn_zoneid; 7302 7303 /* 7304 * The original SIOCGIFCONF passed in a struct ifconf which specified 7305 * the user buffer address and length into which the list of struct 7306 * ifreqs was to be copied. Since AT&T Streams does not seem to 7307 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7308 * the SIOCGIFCONF operation was redefined to simply provide 7309 * a large output buffer into which we are supposed to jam the ifreq 7310 * array. The same ioctl command code was used, despite the fact that 7311 * both the applications and the kernel code had to change, thus making 7312 * it impossible to support both interfaces. 7313 * 7314 * For reasons not good enough to try to explain, the following 7315 * algorithm is used for deciding what to do with one of these: 7316 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7317 * form with the output buffer coming down as the continuation message. 7318 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7319 * and we have to copy in the ifconf structure to find out how big the 7320 * output buffer is and where to copy out to. Sure no problem... 7321 * 7322 */ 7323 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7324 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7325 int numifs = 0; 7326 size_t ifc_bufsize; 7327 7328 /* 7329 * Must be (better be!) continuation of a TRANSPARENT 7330 * IOCTL. We just copied in the ifconf structure. 7331 */ 7332 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7333 (struct ifconf *)mp1->b_rptr); 7334 7335 /* 7336 * Allocate a buffer to hold requested information. 7337 * 7338 * If ifc_len is larger than what is needed, we only 7339 * allocate what we will use. 7340 * 7341 * If ifc_len is smaller than what is needed, return 7342 * EINVAL. 7343 * 7344 * XXX: the ill_t structure can hava 2 counters, for 7345 * v4 and v6 (not just ill_ipif_up_count) to store the 7346 * number of interfaces for a device, so we don't need 7347 * to count them here... 7348 */ 7349 numifs = ip_get_numifs(zoneid, ipst); 7350 7351 ifclen = STRUCT_FGET(ifc, ifc_len); 7352 ifc_bufsize = numifs * sizeof (struct ifreq); 7353 if (ifc_bufsize > ifclen) { 7354 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7355 /* old behaviour */ 7356 return (EINVAL); 7357 } else { 7358 ifc_bufsize = ifclen; 7359 } 7360 } 7361 7362 mp1 = mi_copyout_alloc(q, mp, 7363 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7364 if (mp1 == NULL) 7365 return (ENOMEM); 7366 7367 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7368 } 7369 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7370 /* 7371 * the SIOCGIFCONF ioctl only knows about 7372 * IPv4 addresses, so don't try to tell 7373 * it about interfaces with IPv6-only 7374 * addresses. (Last parm 'isv6' is B_FALSE) 7375 */ 7376 7377 ifr = (struct ifreq *)mp1->b_rptr; 7378 7379 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7380 ill = ILL_START_WALK_V4(&ctx, ipst); 7381 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7382 if (IS_UNDER_IPMP(ill)) 7383 continue; 7384 for (ipif = ill->ill_ipif; ipif != NULL; 7385 ipif = ipif->ipif_next) { 7386 if (zoneid != ipif->ipif_zoneid && 7387 ipif->ipif_zoneid != ALL_ZONES) 7388 continue; 7389 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7390 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7391 /* old behaviour */ 7392 rw_exit(&ipst->ips_ill_g_lock); 7393 return (EINVAL); 7394 } else { 7395 goto if_copydone; 7396 } 7397 } 7398 ipif_get_name(ipif, ifr->ifr_name, 7399 sizeof (ifr->ifr_name)); 7400 sin = (sin_t *)&ifr->ifr_addr; 7401 *sin = sin_null; 7402 sin->sin_family = AF_INET; 7403 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7404 ifr++; 7405 } 7406 } 7407 if_copydone: 7408 rw_exit(&ipst->ips_ill_g_lock); 7409 mp1->b_wptr = (uchar_t *)ifr; 7410 7411 if (STRUCT_BUF(ifc) != NULL) { 7412 STRUCT_FSET(ifc, ifc_len, 7413 (int)((uchar_t *)ifr - mp1->b_rptr)); 7414 } 7415 return (0); 7416 } 7417 7418 /* 7419 * Get the interfaces using the address hosted on the interface passed in, 7420 * as a source adddress 7421 */ 7422 /* ARGSUSED */ 7423 int 7424 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7425 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7426 { 7427 mblk_t *mp1; 7428 ill_t *ill, *ill_head; 7429 ipif_t *ipif, *orig_ipif; 7430 int numlifs = 0; 7431 size_t lifs_bufsize, lifsmaxlen; 7432 struct lifreq *lifr; 7433 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7434 uint_t ifindex; 7435 zoneid_t zoneid; 7436 boolean_t isv6 = B_FALSE; 7437 struct sockaddr_in *sin; 7438 struct sockaddr_in6 *sin6; 7439 STRUCT_HANDLE(lifsrcof, lifs); 7440 ip_stack_t *ipst; 7441 7442 ipst = CONNQ_TO_IPST(q); 7443 7444 ASSERT(q->q_next == NULL); 7445 7446 zoneid = Q_TO_CONN(q)->conn_zoneid; 7447 7448 /* Existence verified in ip_wput_nondata */ 7449 mp1 = mp->b_cont->b_cont; 7450 7451 /* 7452 * Must be (better be!) continuation of a TRANSPARENT 7453 * IOCTL. We just copied in the lifsrcof structure. 7454 */ 7455 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7456 (struct lifsrcof *)mp1->b_rptr); 7457 7458 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7459 return (EINVAL); 7460 7461 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7462 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7463 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7464 if (ipif == NULL) { 7465 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7466 ifindex)); 7467 return (ENXIO); 7468 } 7469 7470 /* Allocate a buffer to hold requested information */ 7471 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7472 lifs_bufsize = numlifs * sizeof (struct lifreq); 7473 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7474 /* The actual size needed is always returned in lifs_len */ 7475 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7476 7477 /* If the amount we need is more than what is passed in, abort */ 7478 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7479 ipif_refrele(ipif); 7480 return (0); 7481 } 7482 7483 mp1 = mi_copyout_alloc(q, mp, 7484 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7485 if (mp1 == NULL) { 7486 ipif_refrele(ipif); 7487 return (ENOMEM); 7488 } 7489 7490 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7491 bzero(mp1->b_rptr, lifs_bufsize); 7492 7493 lifr = (struct lifreq *)mp1->b_rptr; 7494 7495 ill = ill_head = ipif->ipif_ill; 7496 orig_ipif = ipif; 7497 7498 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7499 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7500 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7501 7502 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7503 for (; (ill != NULL) && (ill != ill_head); 7504 ill = ill->ill_usesrc_grp_next) { 7505 7506 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7507 break; 7508 7509 ipif = ill->ill_ipif; 7510 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7511 if (ipif->ipif_isv6) { 7512 sin6 = (sin6_t *)&lifr->lifr_addr; 7513 *sin6 = sin6_null; 7514 sin6->sin6_family = AF_INET6; 7515 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7516 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7517 &ipif->ipif_v6net_mask); 7518 } else { 7519 sin = (sin_t *)&lifr->lifr_addr; 7520 *sin = sin_null; 7521 sin->sin_family = AF_INET; 7522 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7523 lifr->lifr_addrlen = ip_mask_to_plen( 7524 ipif->ipif_net_mask); 7525 } 7526 lifr++; 7527 } 7528 rw_exit(&ipst->ips_ill_g_lock); 7529 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7530 ipif_refrele(orig_ipif); 7531 mp1->b_wptr = (uchar_t *)lifr; 7532 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7533 7534 return (0); 7535 } 7536 7537 /* ARGSUSED */ 7538 int 7539 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7540 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7541 { 7542 mblk_t *mp1; 7543 int list; 7544 ill_t *ill; 7545 ipif_t *ipif; 7546 int flags; 7547 int numlifs = 0; 7548 size_t lifc_bufsize; 7549 struct lifreq *lifr; 7550 sa_family_t family; 7551 struct sockaddr_in *sin; 7552 struct sockaddr_in6 *sin6; 7553 ill_walk_context_t ctx; 7554 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7555 int32_t lifclen; 7556 zoneid_t zoneid; 7557 STRUCT_HANDLE(lifconf, lifc); 7558 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7559 7560 ip1dbg(("ip_sioctl_get_lifconf")); 7561 7562 ASSERT(q->q_next == NULL); 7563 7564 zoneid = Q_TO_CONN(q)->conn_zoneid; 7565 7566 /* Existence verified in ip_wput_nondata */ 7567 mp1 = mp->b_cont->b_cont; 7568 7569 /* 7570 * An extended version of SIOCGIFCONF that takes an 7571 * additional address family and flags field. 7572 * AF_UNSPEC retrieve both IPv4 and IPv6. 7573 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7574 * interfaces are omitted. 7575 * Similarly, IPIF_TEMPORARY interfaces are omitted 7576 * unless LIFC_TEMPORARY is specified. 7577 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7578 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7579 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7580 * has priority over LIFC_NOXMIT. 7581 */ 7582 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7583 7584 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7585 return (EINVAL); 7586 7587 /* 7588 * Must be (better be!) continuation of a TRANSPARENT 7589 * IOCTL. We just copied in the lifconf structure. 7590 */ 7591 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7592 7593 family = STRUCT_FGET(lifc, lifc_family); 7594 flags = STRUCT_FGET(lifc, lifc_flags); 7595 7596 switch (family) { 7597 case AF_UNSPEC: 7598 /* 7599 * walk all ILL's. 7600 */ 7601 list = MAX_G_HEADS; 7602 break; 7603 case AF_INET: 7604 /* 7605 * walk only IPV4 ILL's. 7606 */ 7607 list = IP_V4_G_HEAD; 7608 break; 7609 case AF_INET6: 7610 /* 7611 * walk only IPV6 ILL's. 7612 */ 7613 list = IP_V6_G_HEAD; 7614 break; 7615 default: 7616 return (EAFNOSUPPORT); 7617 } 7618 7619 /* 7620 * Allocate a buffer to hold requested information. 7621 * 7622 * If lifc_len is larger than what is needed, we only 7623 * allocate what we will use. 7624 * 7625 * If lifc_len is smaller than what is needed, return 7626 * EINVAL. 7627 */ 7628 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7629 lifc_bufsize = numlifs * sizeof (struct lifreq); 7630 lifclen = STRUCT_FGET(lifc, lifc_len); 7631 if (lifc_bufsize > lifclen) { 7632 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7633 return (EINVAL); 7634 else 7635 lifc_bufsize = lifclen; 7636 } 7637 7638 mp1 = mi_copyout_alloc(q, mp, 7639 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7640 if (mp1 == NULL) 7641 return (ENOMEM); 7642 7643 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7644 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7645 7646 lifr = (struct lifreq *)mp1->b_rptr; 7647 7648 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7649 ill = ill_first(list, list, &ctx, ipst); 7650 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7651 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7652 continue; 7653 7654 for (ipif = ill->ill_ipif; ipif != NULL; 7655 ipif = ipif->ipif_next) { 7656 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7657 !(flags & LIFC_NOXMIT)) 7658 continue; 7659 7660 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7661 !(flags & LIFC_TEMPORARY)) 7662 continue; 7663 7664 if (((ipif->ipif_flags & 7665 (IPIF_NOXMIT|IPIF_NOLOCAL| 7666 IPIF_DEPRECATED)) || 7667 IS_LOOPBACK(ill) || 7668 !(ipif->ipif_flags & IPIF_UP)) && 7669 (flags & LIFC_EXTERNAL_SOURCE)) 7670 continue; 7671 7672 if (zoneid != ipif->ipif_zoneid && 7673 ipif->ipif_zoneid != ALL_ZONES && 7674 (zoneid != GLOBAL_ZONEID || 7675 !(flags & LIFC_ALLZONES))) 7676 continue; 7677 7678 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7679 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7680 rw_exit(&ipst->ips_ill_g_lock); 7681 return (EINVAL); 7682 } else { 7683 goto lif_copydone; 7684 } 7685 } 7686 7687 ipif_get_name(ipif, lifr->lifr_name, 7688 sizeof (lifr->lifr_name)); 7689 lifr->lifr_type = ill->ill_type; 7690 if (ipif->ipif_isv6) { 7691 sin6 = (sin6_t *)&lifr->lifr_addr; 7692 *sin6 = sin6_null; 7693 sin6->sin6_family = AF_INET6; 7694 sin6->sin6_addr = 7695 ipif->ipif_v6lcl_addr; 7696 lifr->lifr_addrlen = 7697 ip_mask_to_plen_v6( 7698 &ipif->ipif_v6net_mask); 7699 } else { 7700 sin = (sin_t *)&lifr->lifr_addr; 7701 *sin = sin_null; 7702 sin->sin_family = AF_INET; 7703 sin->sin_addr.s_addr = 7704 ipif->ipif_lcl_addr; 7705 lifr->lifr_addrlen = 7706 ip_mask_to_plen( 7707 ipif->ipif_net_mask); 7708 } 7709 lifr++; 7710 } 7711 } 7712 lif_copydone: 7713 rw_exit(&ipst->ips_ill_g_lock); 7714 7715 mp1->b_wptr = (uchar_t *)lifr; 7716 if (STRUCT_BUF(lifc) != NULL) { 7717 STRUCT_FSET(lifc, lifc_len, 7718 (int)((uchar_t *)lifr - mp1->b_rptr)); 7719 } 7720 return (0); 7721 } 7722 7723 static void 7724 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7725 { 7726 ip6_asp_t *table; 7727 size_t table_size; 7728 mblk_t *data_mp; 7729 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7730 ip_stack_t *ipst; 7731 7732 if (q->q_next == NULL) 7733 ipst = CONNQ_TO_IPST(q); 7734 else 7735 ipst = ILLQ_TO_IPST(q); 7736 7737 /* These two ioctls are I_STR only */ 7738 if (iocp->ioc_count == TRANSPARENT) { 7739 miocnak(q, mp, 0, EINVAL); 7740 return; 7741 } 7742 7743 data_mp = mp->b_cont; 7744 if (data_mp == NULL) { 7745 /* The user passed us a NULL argument */ 7746 table = NULL; 7747 table_size = iocp->ioc_count; 7748 } else { 7749 /* 7750 * The user provided a table. The stream head 7751 * may have copied in the user data in chunks, 7752 * so make sure everything is pulled up 7753 * properly. 7754 */ 7755 if (MBLKL(data_mp) < iocp->ioc_count) { 7756 mblk_t *new_data_mp; 7757 if ((new_data_mp = msgpullup(data_mp, -1)) == 7758 NULL) { 7759 miocnak(q, mp, 0, ENOMEM); 7760 return; 7761 } 7762 freemsg(data_mp); 7763 data_mp = new_data_mp; 7764 mp->b_cont = data_mp; 7765 } 7766 table = (ip6_asp_t *)data_mp->b_rptr; 7767 table_size = iocp->ioc_count; 7768 } 7769 7770 switch (iocp->ioc_cmd) { 7771 case SIOCGIP6ADDRPOLICY: 7772 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7773 if (iocp->ioc_rval == -1) 7774 iocp->ioc_error = EINVAL; 7775 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7776 else if (table != NULL && 7777 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7778 ip6_asp_t *src = table; 7779 ip6_asp32_t *dst = (void *)table; 7780 int count = table_size / sizeof (ip6_asp_t); 7781 int i; 7782 7783 /* 7784 * We need to do an in-place shrink of the array 7785 * to match the alignment attributes of the 7786 * 32-bit ABI looking at it. 7787 */ 7788 /* LINTED: logical expression always true: op "||" */ 7789 ASSERT(sizeof (*src) > sizeof (*dst)); 7790 for (i = 1; i < count; i++) 7791 bcopy(src + i, dst + i, sizeof (*dst)); 7792 } 7793 #endif 7794 break; 7795 7796 case SIOCSIP6ADDRPOLICY: 7797 ASSERT(mp->b_prev == NULL); 7798 mp->b_prev = (void *)q; 7799 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7800 /* 7801 * We pass in the datamodel here so that the ip6_asp_replace() 7802 * routine can handle converting from 32-bit to native formats 7803 * where necessary. 7804 * 7805 * A better way to handle this might be to convert the inbound 7806 * data structure here, and hang it off a new 'mp'; thus the 7807 * ip6_asp_replace() logic would always be dealing with native 7808 * format data structures.. 7809 * 7810 * (An even simpler way to handle these ioctls is to just 7811 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7812 * and just recompile everything that depends on it.) 7813 */ 7814 #endif 7815 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7816 iocp->ioc_flag & IOC_MODELS); 7817 return; 7818 } 7819 7820 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7821 qreply(q, mp); 7822 } 7823 7824 static void 7825 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7826 { 7827 mblk_t *data_mp; 7828 struct dstinforeq *dir; 7829 uint8_t *end, *cur; 7830 in6_addr_t *daddr, *saddr; 7831 ipaddr_t v4daddr; 7832 ire_t *ire; 7833 ipaddr_t v4setsrc; 7834 in6_addr_t v6setsrc; 7835 char *slabel, *dlabel; 7836 boolean_t isipv4; 7837 int match_ire; 7838 ill_t *dst_ill; 7839 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7840 conn_t *connp = Q_TO_CONN(q); 7841 zoneid_t zoneid = IPCL_ZONEID(connp); 7842 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7843 uint64_t ipif_flags; 7844 7845 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7846 7847 /* 7848 * This ioctl is I_STR only, and must have a 7849 * data mblk following the M_IOCTL mblk. 7850 */ 7851 data_mp = mp->b_cont; 7852 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7853 miocnak(q, mp, 0, EINVAL); 7854 return; 7855 } 7856 7857 if (MBLKL(data_mp) < iocp->ioc_count) { 7858 mblk_t *new_data_mp; 7859 7860 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7861 miocnak(q, mp, 0, ENOMEM); 7862 return; 7863 } 7864 freemsg(data_mp); 7865 data_mp = new_data_mp; 7866 mp->b_cont = data_mp; 7867 } 7868 match_ire = MATCH_IRE_DSTONLY; 7869 7870 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7871 end - cur >= sizeof (struct dstinforeq); 7872 cur += sizeof (struct dstinforeq)) { 7873 dir = (struct dstinforeq *)cur; 7874 daddr = &dir->dir_daddr; 7875 saddr = &dir->dir_saddr; 7876 7877 /* 7878 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7879 * v4 mapped addresses; ire_ftable_lookup_v6() 7880 * and ip_select_source_v6() do not. 7881 */ 7882 dir->dir_dscope = ip_addr_scope_v6(daddr); 7883 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7884 7885 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7886 if (isipv4) { 7887 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7888 v4setsrc = INADDR_ANY; 7889 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7890 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7891 NULL, NULL); 7892 } else { 7893 v6setsrc = ipv6_all_zeros; 7894 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7895 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7896 NULL, NULL); 7897 } 7898 ASSERT(ire != NULL); 7899 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7900 ire_refrele(ire); 7901 dir->dir_dreachable = 0; 7902 7903 /* move on to next dst addr */ 7904 continue; 7905 } 7906 dir->dir_dreachable = 1; 7907 7908 dst_ill = ire_nexthop_ill(ire); 7909 if (dst_ill == NULL) { 7910 ire_refrele(ire); 7911 continue; 7912 } 7913 7914 /* With ipmp we most likely look at the ipmp ill here */ 7915 dir->dir_dmactype = dst_ill->ill_mactype; 7916 7917 if (isipv4) { 7918 ipaddr_t v4saddr; 7919 7920 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7921 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7922 &v4saddr, NULL, &ipif_flags) != 0) { 7923 v4saddr = INADDR_ANY; 7924 ipif_flags = 0; 7925 } 7926 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7927 } else { 7928 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7929 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7930 saddr, NULL, &ipif_flags) != 0) { 7931 *saddr = ipv6_all_zeros; 7932 ipif_flags = 0; 7933 } 7934 } 7935 7936 dir->dir_sscope = ip_addr_scope_v6(saddr); 7937 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7938 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7939 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7940 ire_refrele(ire); 7941 ill_refrele(dst_ill); 7942 } 7943 miocack(q, mp, iocp->ioc_count, 0); 7944 } 7945 7946 /* 7947 * Check if this is an address assigned to this machine. 7948 * Skips interfaces that are down by using ire checks. 7949 * Translates mapped addresses to v4 addresses and then 7950 * treats them as such, returning true if the v4 address 7951 * associated with this mapped address is configured. 7952 * Note: Applications will have to be careful what they do 7953 * with the response; use of mapped addresses limits 7954 * what can be done with the socket, especially with 7955 * respect to socket options and ioctls - neither IPv4 7956 * options nor IPv6 sticky options/ancillary data options 7957 * may be used. 7958 */ 7959 /* ARGSUSED */ 7960 int 7961 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7962 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7963 { 7964 struct sioc_addrreq *sia; 7965 sin_t *sin; 7966 ire_t *ire; 7967 mblk_t *mp1; 7968 zoneid_t zoneid; 7969 ip_stack_t *ipst; 7970 7971 ip1dbg(("ip_sioctl_tmyaddr")); 7972 7973 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7974 zoneid = Q_TO_CONN(q)->conn_zoneid; 7975 ipst = CONNQ_TO_IPST(q); 7976 7977 /* Existence verified in ip_wput_nondata */ 7978 mp1 = mp->b_cont->b_cont; 7979 sia = (struct sioc_addrreq *)mp1->b_rptr; 7980 sin = (sin_t *)&sia->sa_addr; 7981 switch (sin->sin_family) { 7982 case AF_INET6: { 7983 sin6_t *sin6 = (sin6_t *)sin; 7984 7985 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 7986 ipaddr_t v4_addr; 7987 7988 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 7989 v4_addr); 7990 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 7991 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 7992 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7993 } else { 7994 in6_addr_t v6addr; 7995 7996 v6addr = sin6->sin6_addr; 7997 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 7998 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 7999 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8000 } 8001 break; 8002 } 8003 case AF_INET: { 8004 ipaddr_t v4addr; 8005 8006 v4addr = sin->sin_addr.s_addr; 8007 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8008 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8009 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8010 break; 8011 } 8012 default: 8013 return (EAFNOSUPPORT); 8014 } 8015 if (ire != NULL) { 8016 sia->sa_res = 1; 8017 ire_refrele(ire); 8018 } else { 8019 sia->sa_res = 0; 8020 } 8021 return (0); 8022 } 8023 8024 /* 8025 * Check if this is an address assigned on-link i.e. neighbor, 8026 * and makes sure it's reachable from the current zone. 8027 * Returns true for my addresses as well. 8028 * Translates mapped addresses to v4 addresses and then 8029 * treats them as such, returning true if the v4 address 8030 * associated with this mapped address is configured. 8031 * Note: Applications will have to be careful what they do 8032 * with the response; use of mapped addresses limits 8033 * what can be done with the socket, especially with 8034 * respect to socket options and ioctls - neither IPv4 8035 * options nor IPv6 sticky options/ancillary data options 8036 * may be used. 8037 */ 8038 /* ARGSUSED */ 8039 int 8040 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8041 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8042 { 8043 struct sioc_addrreq *sia; 8044 sin_t *sin; 8045 mblk_t *mp1; 8046 ire_t *ire = NULL; 8047 zoneid_t zoneid; 8048 ip_stack_t *ipst; 8049 8050 ip1dbg(("ip_sioctl_tonlink")); 8051 8052 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8053 zoneid = Q_TO_CONN(q)->conn_zoneid; 8054 ipst = CONNQ_TO_IPST(q); 8055 8056 /* Existence verified in ip_wput_nondata */ 8057 mp1 = mp->b_cont->b_cont; 8058 sia = (struct sioc_addrreq *)mp1->b_rptr; 8059 sin = (sin_t *)&sia->sa_addr; 8060 8061 /* 8062 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8063 * to make sure we only look at on-link unicast address. 8064 */ 8065 switch (sin->sin_family) { 8066 case AF_INET6: { 8067 sin6_t *sin6 = (sin6_t *)sin; 8068 8069 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8070 ipaddr_t v4_addr; 8071 8072 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8073 v4_addr); 8074 if (!CLASSD(v4_addr)) { 8075 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8076 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8077 0, ipst, NULL); 8078 } 8079 } else { 8080 in6_addr_t v6addr; 8081 8082 v6addr = sin6->sin6_addr; 8083 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8084 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8085 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8086 ipst, NULL); 8087 } 8088 } 8089 break; 8090 } 8091 case AF_INET: { 8092 ipaddr_t v4addr; 8093 8094 v4addr = sin->sin_addr.s_addr; 8095 if (!CLASSD(v4addr)) { 8096 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8097 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8098 } 8099 break; 8100 } 8101 default: 8102 return (EAFNOSUPPORT); 8103 } 8104 sia->sa_res = 0; 8105 if (ire != NULL) { 8106 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8107 8108 if ((ire->ire_type & IRE_ONLINK) && 8109 !(ire->ire_type & IRE_BROADCAST)) 8110 sia->sa_res = 1; 8111 ire_refrele(ire); 8112 } 8113 return (0); 8114 } 8115 8116 /* 8117 * TBD: implement when kernel maintaines a list of site prefixes. 8118 */ 8119 /* ARGSUSED */ 8120 int 8121 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8122 ip_ioctl_cmd_t *ipip, void *ifreq) 8123 { 8124 return (ENXIO); 8125 } 8126 8127 /* ARP IOCTLs. */ 8128 /* ARGSUSED */ 8129 int 8130 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8131 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8132 { 8133 int err; 8134 ipaddr_t ipaddr; 8135 struct iocblk *iocp; 8136 conn_t *connp; 8137 struct arpreq *ar; 8138 struct xarpreq *xar; 8139 int arp_flags, flags, alength; 8140 uchar_t *lladdr; 8141 ip_stack_t *ipst; 8142 ill_t *ill = ipif->ipif_ill; 8143 ill_t *proxy_ill = NULL; 8144 ipmp_arpent_t *entp = NULL; 8145 boolean_t proxyarp = B_FALSE; 8146 boolean_t if_arp_ioctl = B_FALSE; 8147 ncec_t *ncec = NULL; 8148 nce_t *nce; 8149 8150 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8151 connp = Q_TO_CONN(q); 8152 ipst = connp->conn_netstack->netstack_ip; 8153 iocp = (struct iocblk *)mp->b_rptr; 8154 8155 if (ipip->ipi_cmd_type == XARP_CMD) { 8156 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8157 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8158 ar = NULL; 8159 8160 arp_flags = xar->xarp_flags; 8161 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8162 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8163 /* 8164 * Validate against user's link layer address length 8165 * input and name and addr length limits. 8166 */ 8167 alength = ill->ill_phys_addr_length; 8168 if (ipip->ipi_cmd == SIOCSXARP) { 8169 if (alength != xar->xarp_ha.sdl_alen || 8170 (alength + xar->xarp_ha.sdl_nlen > 8171 sizeof (xar->xarp_ha.sdl_data))) 8172 return (EINVAL); 8173 } 8174 } else { 8175 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8176 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8177 xar = NULL; 8178 8179 arp_flags = ar->arp_flags; 8180 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8181 /* 8182 * Theoretically, the sa_family could tell us what link 8183 * layer type this operation is trying to deal with. By 8184 * common usage AF_UNSPEC means ethernet. We'll assume 8185 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8186 * for now. Our new SIOC*XARP ioctls can be used more 8187 * generally. 8188 * 8189 * If the underlying media happens to have a non 6 byte 8190 * address, arp module will fail set/get, but the del 8191 * operation will succeed. 8192 */ 8193 alength = 6; 8194 if ((ipip->ipi_cmd != SIOCDARP) && 8195 (alength != ill->ill_phys_addr_length)) { 8196 return (EINVAL); 8197 } 8198 } 8199 8200 /* Translate ATF* flags to NCE* flags */ 8201 flags = 0; 8202 if (arp_flags & ATF_AUTHORITY) 8203 flags |= NCE_F_AUTHORITY; 8204 if (arp_flags & ATF_PERM) 8205 flags |= NCE_F_NONUD; /* not subject to aging */ 8206 if (arp_flags & ATF_PUBL) 8207 flags |= NCE_F_PUBLISH; 8208 8209 /* 8210 * IPMP ARP special handling: 8211 * 8212 * 1. Since ARP mappings must appear consistent across the group, 8213 * prohibit changing ARP mappings on the underlying interfaces. 8214 * 8215 * 2. Since ARP mappings for IPMP data addresses are maintained by 8216 * IP itself, prohibit changing them. 8217 * 8218 * 3. For proxy ARP, use a functioning hardware address in the group, 8219 * provided one exists. If one doesn't, just add the entry as-is; 8220 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8221 */ 8222 if (IS_UNDER_IPMP(ill)) { 8223 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8224 return (EPERM); 8225 } 8226 if (IS_IPMP(ill)) { 8227 ipmp_illgrp_t *illg = ill->ill_grp; 8228 8229 switch (ipip->ipi_cmd) { 8230 case SIOCSARP: 8231 case SIOCSXARP: 8232 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8233 if (proxy_ill != NULL) { 8234 proxyarp = B_TRUE; 8235 if (!ipmp_ill_is_active(proxy_ill)) 8236 proxy_ill = ipmp_illgrp_next_ill(illg); 8237 if (proxy_ill != NULL) 8238 lladdr = proxy_ill->ill_phys_addr; 8239 } 8240 /* FALLTHRU */ 8241 } 8242 } 8243 8244 ipaddr = sin->sin_addr.s_addr; 8245 /* 8246 * don't match across illgrp per case (1) and (2). 8247 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8248 */ 8249 nce = nce_lookup_v4(ill, &ipaddr); 8250 if (nce != NULL) 8251 ncec = nce->nce_common; 8252 8253 switch (iocp->ioc_cmd) { 8254 case SIOCDARP: 8255 case SIOCDXARP: { 8256 /* 8257 * Delete the NCE if any. 8258 */ 8259 if (ncec == NULL) { 8260 iocp->ioc_error = ENXIO; 8261 break; 8262 } 8263 /* Don't allow changes to arp mappings of local addresses. */ 8264 if (NCE_MYADDR(ncec)) { 8265 nce_refrele(nce); 8266 return (ENOTSUP); 8267 } 8268 iocp->ioc_error = 0; 8269 8270 /* 8271 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8272 * This will delete all the nce entries on the under_ills. 8273 */ 8274 ncec_delete(ncec); 8275 /* 8276 * Once the NCE has been deleted, then the ire_dep* consistency 8277 * mechanism will find any IRE which depended on the now 8278 * condemned NCE (as part of sending packets). 8279 * That mechanism handles redirects by deleting redirects 8280 * that refer to UNREACHABLE nces. 8281 */ 8282 break; 8283 } 8284 case SIOCGARP: 8285 case SIOCGXARP: 8286 if (ncec != NULL) { 8287 lladdr = ncec->ncec_lladdr; 8288 flags = ncec->ncec_flags; 8289 iocp->ioc_error = 0; 8290 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8291 } else { 8292 iocp->ioc_error = ENXIO; 8293 } 8294 break; 8295 case SIOCSARP: 8296 case SIOCSXARP: 8297 /* Don't allow changes to arp mappings of local addresses. */ 8298 if (ncec != NULL && NCE_MYADDR(ncec)) { 8299 nce_refrele(nce); 8300 return (ENOTSUP); 8301 } 8302 8303 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8304 flags |= NCE_F_STATIC; 8305 if (!if_arp_ioctl) { 8306 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8307 lladdr, alength, flags); 8308 } else { 8309 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8310 if (ipif != NULL) { 8311 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8312 lladdr, alength, flags); 8313 ipif_refrele(ipif); 8314 } 8315 } 8316 if (nce != NULL) { 8317 nce_refrele(nce); 8318 nce = NULL; 8319 } 8320 /* 8321 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8322 * by nce_add_common() 8323 */ 8324 err = nce_lookup_then_add_v4(ill, lladdr, 8325 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8326 &nce); 8327 if (err == EEXIST) { 8328 ncec = nce->nce_common; 8329 mutex_enter(&ncec->ncec_lock); 8330 ncec->ncec_state = ND_REACHABLE; 8331 ncec->ncec_flags = flags; 8332 nce_update(ncec, ND_UNCHANGED, lladdr); 8333 mutex_exit(&ncec->ncec_lock); 8334 err = 0; 8335 } 8336 if (nce != NULL) { 8337 nce_refrele(nce); 8338 nce = NULL; 8339 } 8340 if (IS_IPMP(ill) && err == 0) { 8341 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8342 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8343 flags); 8344 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8345 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8346 break; 8347 } 8348 } 8349 iocp->ioc_error = err; 8350 } 8351 8352 if (nce != NULL) { 8353 nce_refrele(nce); 8354 } 8355 8356 /* 8357 * If we created an IPMP ARP entry, mark that we've notified ARP. 8358 */ 8359 if (entp != NULL) 8360 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8361 8362 return (iocp->ioc_error); 8363 } 8364 8365 /* 8366 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8367 * the associated sin and refhold and return the associated ipif via `ci'. 8368 */ 8369 int 8370 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8371 cmd_info_t *ci) 8372 { 8373 mblk_t *mp1; 8374 sin_t *sin; 8375 conn_t *connp; 8376 ipif_t *ipif; 8377 ire_t *ire = NULL; 8378 ill_t *ill = NULL; 8379 boolean_t exists; 8380 ip_stack_t *ipst; 8381 struct arpreq *ar; 8382 struct xarpreq *xar; 8383 struct sockaddr_dl *sdl; 8384 8385 /* ioctl comes down on a conn */ 8386 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8387 connp = Q_TO_CONN(q); 8388 if (connp->conn_family == AF_INET6) 8389 return (ENXIO); 8390 8391 ipst = connp->conn_netstack->netstack_ip; 8392 8393 /* Verified in ip_wput_nondata */ 8394 mp1 = mp->b_cont->b_cont; 8395 8396 if (ipip->ipi_cmd_type == XARP_CMD) { 8397 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8398 xar = (struct xarpreq *)mp1->b_rptr; 8399 sin = (sin_t *)&xar->xarp_pa; 8400 sdl = &xar->xarp_ha; 8401 8402 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8403 return (ENXIO); 8404 if (sdl->sdl_nlen >= LIFNAMSIZ) 8405 return (EINVAL); 8406 } else { 8407 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8408 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8409 ar = (struct arpreq *)mp1->b_rptr; 8410 sin = (sin_t *)&ar->arp_pa; 8411 } 8412 8413 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8414 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8415 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8416 if (ipif == NULL) 8417 return (ENXIO); 8418 if (ipif->ipif_id != 0) { 8419 ipif_refrele(ipif); 8420 return (ENXIO); 8421 } 8422 } else { 8423 /* 8424 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8425 * of 0: use the IP address to find the ipif. If the IP 8426 * address is an IPMP test address, ire_ftable_lookup() will 8427 * find the wrong ill, so we first do an ipif_lookup_addr(). 8428 */ 8429 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8430 ipst); 8431 if (ipif == NULL) { 8432 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8433 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8434 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8435 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8436 if (ire != NULL) 8437 ire_refrele(ire); 8438 return (ENXIO); 8439 } 8440 ASSERT(ire != NULL && ill != NULL); 8441 ipif = ill->ill_ipif; 8442 ipif_refhold(ipif); 8443 ire_refrele(ire); 8444 } 8445 } 8446 8447 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8448 ipif_refrele(ipif); 8449 return (ENXIO); 8450 } 8451 8452 ci->ci_sin = sin; 8453 ci->ci_ipif = ipif; 8454 return (0); 8455 } 8456 8457 /* 8458 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8459 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8460 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8461 * up and thus an ill can join that illgrp. 8462 * 8463 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8464 * open()/close() primarily because close() is not allowed to fail or block 8465 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8466 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8467 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8468 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8469 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8470 * state if I_UNLINK didn't occur. 8471 * 8472 * Note that for each plumb/unplumb operation, we may end up here more than 8473 * once because of the way ifconfig works. However, it's OK to link the same 8474 * illgrp more than once, or unlink an illgrp that's already unlinked. 8475 */ 8476 static int 8477 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8478 { 8479 int err; 8480 ip_stack_t *ipst = ill->ill_ipst; 8481 8482 ASSERT(IS_IPMP(ill)); 8483 ASSERT(IAM_WRITER_ILL(ill)); 8484 8485 switch (ioccmd) { 8486 case I_LINK: 8487 return (ENOTSUP); 8488 8489 case I_PLINK: 8490 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8491 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8492 rw_exit(&ipst->ips_ipmp_lock); 8493 break; 8494 8495 case I_PUNLINK: 8496 /* 8497 * Require all UP ipifs be brought down prior to unlinking the 8498 * illgrp so any associated IREs (and other state) is torched. 8499 */ 8500 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8501 return (EBUSY); 8502 8503 /* 8504 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8505 * with an SIOCSLIFGROUPNAME request from an ill trying to 8506 * join this group. Specifically: ills trying to join grab 8507 * ipmp_lock and bump a "pending join" counter checked by 8508 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8509 * joins can occur (since we have ipmp_lock). Once we drop 8510 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8511 * find the illgrp (since we unlinked it) and will return 8512 * EAFNOSUPPORT. This will then take them back through the 8513 * IPMP meta-interface plumbing logic in ifconfig, and thus 8514 * back through I_PLINK above. 8515 */ 8516 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8517 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8518 rw_exit(&ipst->ips_ipmp_lock); 8519 return (err); 8520 default: 8521 break; 8522 } 8523 return (0); 8524 } 8525 8526 /* 8527 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8528 * atomically set/clear the muxids. Also complete the ioctl by acking or 8529 * naking it. Note that the code is structured such that the link type, 8530 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8531 * its clones use the persistent link, while pppd(1M) and perhaps many 8532 * other daemons may use non-persistent link. When combined with some 8533 * ill_t states, linking and unlinking lower streams may be used as 8534 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8535 */ 8536 /* ARGSUSED */ 8537 void 8538 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8539 { 8540 mblk_t *mp1; 8541 struct linkblk *li; 8542 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8543 int err = 0; 8544 8545 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8546 ioccmd == I_LINK || ioccmd == I_UNLINK); 8547 8548 mp1 = mp->b_cont; /* This is the linkblk info */ 8549 li = (struct linkblk *)mp1->b_rptr; 8550 8551 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8552 if (err == EINPROGRESS) 8553 return; 8554 done: 8555 if (err == 0) 8556 miocack(q, mp, 0, 0); 8557 else 8558 miocnak(q, mp, 0, err); 8559 8560 /* Conn was refheld in ip_sioctl_copyin_setup */ 8561 if (CONN_Q(q)) 8562 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8563 } 8564 8565 /* 8566 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8567 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8568 * module stream). 8569 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8570 * an error code on failure. 8571 */ 8572 static int 8573 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8574 struct linkblk *li) 8575 { 8576 int err = 0; 8577 ill_t *ill; 8578 queue_t *ipwq, *dwq; 8579 const char *name; 8580 struct qinit *qinfo; 8581 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8582 boolean_t entered_ipsq = B_FALSE; 8583 boolean_t is_ip = B_FALSE; 8584 arl_t *arl; 8585 8586 /* 8587 * Walk the lower stream to verify it's the IP module stream. 8588 * The IP module is identified by its name, wput function, 8589 * and non-NULL q_next. STREAMS ensures that the lower stream 8590 * (li->l_qbot) will not vanish until this ioctl completes. 8591 */ 8592 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8593 qinfo = ipwq->q_qinfo; 8594 name = qinfo->qi_minfo->mi_idname; 8595 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8596 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8597 is_ip = B_TRUE; 8598 break; 8599 } 8600 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8601 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8602 break; 8603 } 8604 } 8605 8606 /* 8607 * If this isn't an IP module stream, bail. 8608 */ 8609 if (ipwq == NULL) 8610 return (0); 8611 8612 if (!is_ip) { 8613 arl = (arl_t *)ipwq->q_ptr; 8614 ill = arl_to_ill(arl); 8615 if (ill == NULL) 8616 return (0); 8617 } else { 8618 ill = ipwq->q_ptr; 8619 } 8620 ASSERT(ill != NULL); 8621 8622 if (ipsq == NULL) { 8623 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8624 NEW_OP, B_FALSE); 8625 if (ipsq == NULL) { 8626 if (!is_ip) 8627 ill_refrele(ill); 8628 return (EINPROGRESS); 8629 } 8630 entered_ipsq = B_TRUE; 8631 } 8632 ASSERT(IAM_WRITER_ILL(ill)); 8633 mutex_enter(&ill->ill_lock); 8634 if (!is_ip) { 8635 if (islink && ill->ill_muxid == 0) { 8636 /* 8637 * Plumbing has to be done with IP plumbed first, arp 8638 * second, but here we have arp being plumbed first. 8639 */ 8640 mutex_exit(&ill->ill_lock); 8641 if (entered_ipsq) 8642 ipsq_exit(ipsq); 8643 ill_refrele(ill); 8644 return (EINVAL); 8645 } 8646 } 8647 mutex_exit(&ill->ill_lock); 8648 if (!is_ip) { 8649 arl->arl_muxid = islink ? li->l_index : 0; 8650 ill_refrele(ill); 8651 goto done; 8652 } 8653 8654 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8655 goto done; 8656 8657 /* 8658 * As part of I_{P}LINKing, stash the number of downstream modules and 8659 * the read queue of the module immediately below IP in the ill. 8660 * These are used during the capability negotiation below. 8661 */ 8662 ill->ill_lmod_rq = NULL; 8663 ill->ill_lmod_cnt = 0; 8664 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8665 ill->ill_lmod_rq = RD(dwq); 8666 for (; dwq != NULL; dwq = dwq->q_next) 8667 ill->ill_lmod_cnt++; 8668 } 8669 8670 ill->ill_muxid = islink ? li->l_index : 0; 8671 8672 /* 8673 * Mark the ipsq busy until the capability operations initiated below 8674 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8675 * returns, but the capability operation may complete asynchronously 8676 * much later. 8677 */ 8678 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8679 /* 8680 * If there's at least one up ipif on this ill, then we're bound to 8681 * the underlying driver via DLPI. In that case, renegotiate 8682 * capabilities to account for any possible change in modules 8683 * interposed between IP and the driver. 8684 */ 8685 if (ill->ill_ipif_up_count > 0) { 8686 if (islink) 8687 ill_capability_probe(ill); 8688 else 8689 ill_capability_reset(ill, B_FALSE); 8690 } 8691 ipsq_current_finish(ipsq); 8692 done: 8693 if (entered_ipsq) 8694 ipsq_exit(ipsq); 8695 8696 return (err); 8697 } 8698 8699 /* 8700 * Search the ioctl command in the ioctl tables and return a pointer 8701 * to the ioctl command information. The ioctl command tables are 8702 * static and fully populated at compile time. 8703 */ 8704 ip_ioctl_cmd_t * 8705 ip_sioctl_lookup(int ioc_cmd) 8706 { 8707 int index; 8708 ip_ioctl_cmd_t *ipip; 8709 ip_ioctl_cmd_t *ipip_end; 8710 8711 if (ioc_cmd == IPI_DONTCARE) 8712 return (NULL); 8713 8714 /* 8715 * Do a 2 step search. First search the indexed table 8716 * based on the least significant byte of the ioctl cmd. 8717 * If we don't find a match, then search the misc table 8718 * serially. 8719 */ 8720 index = ioc_cmd & 0xFF; 8721 if (index < ip_ndx_ioctl_count) { 8722 ipip = &ip_ndx_ioctl_table[index]; 8723 if (ipip->ipi_cmd == ioc_cmd) { 8724 /* Found a match in the ndx table */ 8725 return (ipip); 8726 } 8727 } 8728 8729 /* Search the misc table */ 8730 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8731 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8732 if (ipip->ipi_cmd == ioc_cmd) 8733 /* Found a match in the misc table */ 8734 return (ipip); 8735 } 8736 8737 return (NULL); 8738 } 8739 8740 /* 8741 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8742 */ 8743 static boolean_t 8744 getset_ioctl_checks(mblk_t *mp) 8745 { 8746 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8747 mblk_t *mp1 = mp->b_cont; 8748 mod_ioc_prop_t *pioc; 8749 uint_t flags; 8750 uint_t pioc_size; 8751 8752 /* do sanity checks on various arguments */ 8753 if (mp1 == NULL || iocp->ioc_count == 0 || 8754 iocp->ioc_count == TRANSPARENT) { 8755 return (B_FALSE); 8756 } 8757 if (msgdsize(mp1) < iocp->ioc_count) { 8758 if (!pullupmsg(mp1, iocp->ioc_count)) 8759 return (B_FALSE); 8760 } 8761 8762 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8763 8764 /* sanity checks on mpr_valsize */ 8765 pioc_size = sizeof (mod_ioc_prop_t); 8766 if (pioc->mpr_valsize != 0) 8767 pioc_size += pioc->mpr_valsize - 1; 8768 8769 if (iocp->ioc_count != pioc_size) 8770 return (B_FALSE); 8771 8772 flags = pioc->mpr_flags; 8773 if (iocp->ioc_cmd == SIOCSETPROP) { 8774 /* 8775 * One can either reset the value to it's default value or 8776 * change the current value or append/remove the value from 8777 * a multi-valued properties. 8778 */ 8779 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8780 flags != MOD_PROP_ACTIVE && 8781 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8782 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8783 return (B_FALSE); 8784 } else { 8785 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8786 8787 /* 8788 * One can retrieve only one kind of property information 8789 * at a time. 8790 */ 8791 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8792 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8793 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8794 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8795 return (B_FALSE); 8796 } 8797 8798 return (B_TRUE); 8799 } 8800 8801 /* 8802 * process the SIOC{SET|GET}PROP ioctl's 8803 */ 8804 /* ARGSUSED */ 8805 static void 8806 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8807 { 8808 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8809 mblk_t *mp1 = mp->b_cont; 8810 mod_ioc_prop_t *pioc; 8811 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8812 ip_stack_t *ipst; 8813 icmp_stack_t *is; 8814 tcp_stack_t *tcps; 8815 sctp_stack_t *sctps; 8816 udp_stack_t *us; 8817 netstack_t *stack; 8818 void *cbarg; 8819 cred_t *cr; 8820 boolean_t set; 8821 int err; 8822 8823 ASSERT(q->q_next == NULL); 8824 ASSERT(CONN_Q(q)); 8825 8826 if (!getset_ioctl_checks(mp)) { 8827 miocnak(q, mp, 0, EINVAL); 8828 return; 8829 } 8830 ipst = CONNQ_TO_IPST(q); 8831 stack = ipst->ips_netstack; 8832 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8833 8834 switch (pioc->mpr_proto) { 8835 case MOD_PROTO_IP: 8836 case MOD_PROTO_IPV4: 8837 case MOD_PROTO_IPV6: 8838 ptbl = ipst->ips_propinfo_tbl; 8839 cbarg = ipst; 8840 break; 8841 case MOD_PROTO_RAWIP: 8842 is = stack->netstack_icmp; 8843 ptbl = is->is_propinfo_tbl; 8844 cbarg = is; 8845 break; 8846 case MOD_PROTO_TCP: 8847 tcps = stack->netstack_tcp; 8848 ptbl = tcps->tcps_propinfo_tbl; 8849 cbarg = tcps; 8850 break; 8851 case MOD_PROTO_UDP: 8852 us = stack->netstack_udp; 8853 ptbl = us->us_propinfo_tbl; 8854 cbarg = us; 8855 break; 8856 case MOD_PROTO_SCTP: 8857 sctps = stack->netstack_sctp; 8858 ptbl = sctps->sctps_propinfo_tbl; 8859 cbarg = sctps; 8860 break; 8861 default: 8862 miocnak(q, mp, 0, EINVAL); 8863 return; 8864 } 8865 8866 /* search for given property in respective protocol propinfo table */ 8867 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8868 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8869 pinfo->mpi_proto == pioc->mpr_proto) 8870 break; 8871 } 8872 if (pinfo->mpi_name == NULL) { 8873 miocnak(q, mp, 0, ENOENT); 8874 return; 8875 } 8876 8877 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8878 if (set && pinfo->mpi_setf != NULL) { 8879 cr = msg_getcred(mp, NULL); 8880 if (cr == NULL) 8881 cr = iocp->ioc_cr; 8882 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8883 pioc->mpr_val, pioc->mpr_flags); 8884 } else if (!set && pinfo->mpi_getf != NULL) { 8885 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8886 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8887 } else { 8888 err = EPERM; 8889 } 8890 8891 if (err != 0) { 8892 miocnak(q, mp, 0, err); 8893 } else { 8894 if (set) 8895 miocack(q, mp, 0, 0); 8896 else /* For get, we need to return back the data */ 8897 miocack(q, mp, iocp->ioc_count, 0); 8898 } 8899 } 8900 8901 /* 8902 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8903 * as several routing daemons have unfortunately used this 'unpublished' 8904 * but well-known ioctls. 8905 */ 8906 /* ARGSUSED */ 8907 static void 8908 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8909 { 8910 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8911 mblk_t *mp1 = mp->b_cont; 8912 char *pname, *pval, *buf; 8913 uint_t bufsize, proto; 8914 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8915 ip_stack_t *ipst; 8916 int err = 0; 8917 8918 ASSERT(CONN_Q(q)); 8919 ipst = CONNQ_TO_IPST(q); 8920 8921 if (iocp->ioc_count == 0 || mp1 == NULL) { 8922 miocnak(q, mp, 0, EINVAL); 8923 return; 8924 } 8925 8926 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8927 pval = buf = pname = (char *)mp1->b_rptr; 8928 bufsize = MBLKL(mp1); 8929 8930 if (strcmp(pname, "ip_forwarding") == 0) { 8931 pname = "forwarding"; 8932 proto = MOD_PROTO_IPV4; 8933 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8934 pname = "forwarding"; 8935 proto = MOD_PROTO_IPV6; 8936 } else { 8937 miocnak(q, mp, 0, EINVAL); 8938 return; 8939 } 8940 8941 ptbl = ipst->ips_propinfo_tbl; 8942 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8943 if (strcmp(pinfo->mpi_name, pname) == 0 && 8944 pinfo->mpi_proto == proto) 8945 break; 8946 } 8947 8948 ASSERT(pinfo->mpi_name != NULL); 8949 8950 switch (iocp->ioc_cmd) { 8951 case ND_GET: 8952 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 8953 0)) == 0) { 8954 miocack(q, mp, iocp->ioc_count, 0); 8955 return; 8956 } 8957 break; 8958 case ND_SET: 8959 /* 8960 * buffer will have property name and value in the following 8961 * format, 8962 * <property name>'\0'<property value>'\0', extract them; 8963 */ 8964 while (*pval++) 8965 noop; 8966 8967 if (!*pval || pval >= (char *)mp1->b_wptr) { 8968 err = EINVAL; 8969 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 8970 pval, 0)) == 0) { 8971 miocack(q, mp, 0, 0); 8972 return; 8973 } 8974 break; 8975 default: 8976 err = EINVAL; 8977 break; 8978 } 8979 miocnak(q, mp, 0, err); 8980 } 8981 8982 /* 8983 * Wrapper function for resuming deferred ioctl processing 8984 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8985 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8986 */ 8987 /* ARGSUSED */ 8988 void 8989 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8990 void *dummy_arg) 8991 { 8992 ip_sioctl_copyin_setup(q, mp); 8993 } 8994 8995 /* 8996 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8997 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8998 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8999 * We establish here the size of the block to be copied in. mi_copyin 9000 * arranges for this to happen, an processing continues in ip_wput_nondata with 9001 * an M_IOCDATA message. 9002 */ 9003 void 9004 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9005 { 9006 int copyin_size; 9007 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9008 ip_ioctl_cmd_t *ipip; 9009 cred_t *cr; 9010 ip_stack_t *ipst; 9011 9012 if (CONN_Q(q)) 9013 ipst = CONNQ_TO_IPST(q); 9014 else 9015 ipst = ILLQ_TO_IPST(q); 9016 9017 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9018 if (ipip == NULL) { 9019 /* 9020 * The ioctl is not one we understand or own. 9021 * Pass it along to be processed down stream, 9022 * if this is a module instance of IP, else nak 9023 * the ioctl. 9024 */ 9025 if (q->q_next == NULL) { 9026 goto nak; 9027 } else { 9028 putnext(q, mp); 9029 return; 9030 } 9031 } 9032 9033 /* 9034 * If this is deferred, then we will do all the checks when we 9035 * come back. 9036 */ 9037 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9038 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9039 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9040 return; 9041 } 9042 9043 /* 9044 * Only allow a very small subset of IP ioctls on this stream if 9045 * IP is a module and not a driver. Allowing ioctls to be processed 9046 * in this case may cause assert failures or data corruption. 9047 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9048 * ioctls allowed on an IP module stream, after which this stream 9049 * normally becomes a multiplexor (at which time the stream head 9050 * will fail all ioctls). 9051 */ 9052 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9053 goto nak; 9054 } 9055 9056 /* Make sure we have ioctl data to process. */ 9057 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9058 goto nak; 9059 9060 /* 9061 * Prefer dblk credential over ioctl credential; some synthesized 9062 * ioctls have kcred set because there's no way to crhold() 9063 * a credential in some contexts. (ioc_cr is not crfree() by 9064 * the framework; the caller of ioctl needs to hold the reference 9065 * for the duration of the call). 9066 */ 9067 cr = msg_getcred(mp, NULL); 9068 if (cr == NULL) 9069 cr = iocp->ioc_cr; 9070 9071 /* Make sure normal users don't send down privileged ioctls */ 9072 if ((ipip->ipi_flags & IPI_PRIV) && 9073 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9074 /* We checked the privilege earlier but log it here */ 9075 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9076 return; 9077 } 9078 9079 /* 9080 * The ioctl command tables can only encode fixed length 9081 * ioctl data. If the length is variable, the table will 9082 * encode the length as zero. Such special cases are handled 9083 * below in the switch. 9084 */ 9085 if (ipip->ipi_copyin_size != 0) { 9086 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9087 return; 9088 } 9089 9090 switch (iocp->ioc_cmd) { 9091 case O_SIOCGIFCONF: 9092 case SIOCGIFCONF: 9093 /* 9094 * This IOCTL is hilarious. See comments in 9095 * ip_sioctl_get_ifconf for the story. 9096 */ 9097 if (iocp->ioc_count == TRANSPARENT) 9098 copyin_size = SIZEOF_STRUCT(ifconf, 9099 iocp->ioc_flag); 9100 else 9101 copyin_size = iocp->ioc_count; 9102 mi_copyin(q, mp, NULL, copyin_size); 9103 return; 9104 9105 case O_SIOCGLIFCONF: 9106 case SIOCGLIFCONF: 9107 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9108 mi_copyin(q, mp, NULL, copyin_size); 9109 return; 9110 9111 case SIOCGLIFSRCOF: 9112 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9113 mi_copyin(q, mp, NULL, copyin_size); 9114 return; 9115 9116 case SIOCGIP6ADDRPOLICY: 9117 ip_sioctl_ip6addrpolicy(q, mp); 9118 ip6_asp_table_refrele(ipst); 9119 return; 9120 9121 case SIOCSIP6ADDRPOLICY: 9122 ip_sioctl_ip6addrpolicy(q, mp); 9123 return; 9124 9125 case SIOCGDSTINFO: 9126 ip_sioctl_dstinfo(q, mp); 9127 ip6_asp_table_refrele(ipst); 9128 return; 9129 9130 case ND_SET: 9131 case ND_GET: 9132 ip_process_legacy_nddprop(q, mp); 9133 return; 9134 9135 case SIOCSETPROP: 9136 case SIOCGETPROP: 9137 ip_sioctl_getsetprop(q, mp); 9138 return; 9139 9140 case I_PLINK: 9141 case I_PUNLINK: 9142 case I_LINK: 9143 case I_UNLINK: 9144 /* 9145 * We treat non-persistent link similarly as the persistent 9146 * link case, in terms of plumbing/unplumbing, as well as 9147 * dynamic re-plumbing events indicator. See comments 9148 * in ip_sioctl_plink() for more. 9149 * 9150 * Request can be enqueued in the 'ipsq' while waiting 9151 * to become exclusive. So bump up the conn ref. 9152 */ 9153 if (CONN_Q(q)) 9154 CONN_INC_REF(Q_TO_CONN(q)); 9155 ip_sioctl_plink(NULL, q, mp, NULL); 9156 return; 9157 9158 case IP_IOCTL: 9159 ip_wput_ioctl(q, mp); 9160 return; 9161 9162 case SIOCILB: 9163 /* The ioctl length varies depending on the ILB command. */ 9164 copyin_size = iocp->ioc_count; 9165 if (copyin_size < sizeof (ilb_cmd_t)) 9166 goto nak; 9167 mi_copyin(q, mp, NULL, copyin_size); 9168 return; 9169 9170 default: 9171 cmn_err(CE_PANIC, "should not happen "); 9172 } 9173 nak: 9174 if (mp->b_cont != NULL) { 9175 freemsg(mp->b_cont); 9176 mp->b_cont = NULL; 9177 } 9178 iocp->ioc_error = EINVAL; 9179 mp->b_datap->db_type = M_IOCNAK; 9180 iocp->ioc_count = 0; 9181 qreply(q, mp); 9182 } 9183 9184 static void 9185 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9186 { 9187 struct arpreq *ar; 9188 struct xarpreq *xar; 9189 mblk_t *tmp; 9190 struct iocblk *iocp; 9191 int x_arp_ioctl = B_FALSE; 9192 int *flagsp; 9193 char *storage = NULL; 9194 9195 ASSERT(ill != NULL); 9196 9197 iocp = (struct iocblk *)mp->b_rptr; 9198 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9199 9200 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9201 if ((iocp->ioc_cmd == SIOCGXARP) || 9202 (iocp->ioc_cmd == SIOCSXARP)) { 9203 x_arp_ioctl = B_TRUE; 9204 xar = (struct xarpreq *)tmp->b_rptr; 9205 flagsp = &xar->xarp_flags; 9206 storage = xar->xarp_ha.sdl_data; 9207 } else { 9208 ar = (struct arpreq *)tmp->b_rptr; 9209 flagsp = &ar->arp_flags; 9210 storage = ar->arp_ha.sa_data; 9211 } 9212 9213 /* 9214 * We're done if this is not an SIOCG{X}ARP 9215 */ 9216 if (x_arp_ioctl) { 9217 storage += ill_xarp_info(&xar->xarp_ha, ill); 9218 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9219 sizeof (xar->xarp_ha.sdl_data)) { 9220 iocp->ioc_error = EINVAL; 9221 return; 9222 } 9223 } 9224 *flagsp = ATF_INUSE; 9225 /* 9226 * If /sbin/arp told us we are the authority using the "permanent" 9227 * flag, or if this is one of my addresses print "permanent" 9228 * in the /sbin/arp output. 9229 */ 9230 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9231 *flagsp |= ATF_AUTHORITY; 9232 if (flags & NCE_F_NONUD) 9233 *flagsp |= ATF_PERM; /* not subject to aging */ 9234 if (flags & NCE_F_PUBLISH) 9235 *flagsp |= ATF_PUBL; 9236 if (hwaddr != NULL) { 9237 *flagsp |= ATF_COM; 9238 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9239 } 9240 } 9241 9242 /* 9243 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9244 * interface) create the next available logical interface for this 9245 * physical interface. 9246 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9247 * ipif with the specified name. 9248 * 9249 * If the address family is not AF_UNSPEC then set the address as well. 9250 * 9251 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9252 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9253 * 9254 * Executed as a writer on the ill. 9255 * So no lock is needed to traverse the ipif chain, or examine the 9256 * phyint flags. 9257 */ 9258 /* ARGSUSED */ 9259 int 9260 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9261 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9262 { 9263 mblk_t *mp1; 9264 struct lifreq *lifr; 9265 boolean_t isv6; 9266 boolean_t exists; 9267 char *name; 9268 char *endp; 9269 char *cp; 9270 int namelen; 9271 ipif_t *ipif; 9272 long id; 9273 ipsq_t *ipsq; 9274 ill_t *ill; 9275 sin_t *sin; 9276 int err = 0; 9277 boolean_t found_sep = B_FALSE; 9278 conn_t *connp; 9279 zoneid_t zoneid; 9280 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9281 9282 ASSERT(q->q_next == NULL); 9283 ip1dbg(("ip_sioctl_addif\n")); 9284 /* Existence of mp1 has been checked in ip_wput_nondata */ 9285 mp1 = mp->b_cont->b_cont; 9286 /* 9287 * Null terminate the string to protect against buffer 9288 * overrun. String was generated by user code and may not 9289 * be trusted. 9290 */ 9291 lifr = (struct lifreq *)mp1->b_rptr; 9292 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9293 name = lifr->lifr_name; 9294 ASSERT(CONN_Q(q)); 9295 connp = Q_TO_CONN(q); 9296 isv6 = (connp->conn_family == AF_INET6); 9297 zoneid = connp->conn_zoneid; 9298 namelen = mi_strlen(name); 9299 if (namelen == 0) 9300 return (EINVAL); 9301 9302 exists = B_FALSE; 9303 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9304 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9305 /* 9306 * Allow creating lo0 using SIOCLIFADDIF. 9307 * can't be any other writer thread. So can pass null below 9308 * for the last 4 args to ipif_lookup_name. 9309 */ 9310 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9311 &exists, isv6, zoneid, ipst); 9312 /* Prevent any further action */ 9313 if (ipif == NULL) { 9314 return (ENOBUFS); 9315 } else if (!exists) { 9316 /* We created the ipif now and as writer */ 9317 ipif_refrele(ipif); 9318 return (0); 9319 } else { 9320 ill = ipif->ipif_ill; 9321 ill_refhold(ill); 9322 ipif_refrele(ipif); 9323 } 9324 } else { 9325 /* Look for a colon in the name. */ 9326 endp = &name[namelen]; 9327 for (cp = endp; --cp > name; ) { 9328 if (*cp == IPIF_SEPARATOR_CHAR) { 9329 found_sep = B_TRUE; 9330 /* 9331 * Reject any non-decimal aliases for plumbing 9332 * of logical interfaces. Aliases with leading 9333 * zeroes are also rejected as they introduce 9334 * ambiguity in the naming of the interfaces. 9335 * Comparing with "0" takes care of all such 9336 * cases. 9337 */ 9338 if ((strncmp("0", cp+1, 1)) == 0) 9339 return (EINVAL); 9340 9341 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9342 id <= 0 || *endp != '\0') { 9343 return (EINVAL); 9344 } 9345 *cp = '\0'; 9346 break; 9347 } 9348 } 9349 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9350 if (found_sep) 9351 *cp = IPIF_SEPARATOR_CHAR; 9352 if (ill == NULL) 9353 return (ENXIO); 9354 } 9355 9356 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9357 B_TRUE); 9358 9359 /* 9360 * Release the refhold due to the lookup, now that we are excl 9361 * or we are just returning 9362 */ 9363 ill_refrele(ill); 9364 9365 if (ipsq == NULL) 9366 return (EINPROGRESS); 9367 9368 /* We are now exclusive on the IPSQ */ 9369 ASSERT(IAM_WRITER_ILL(ill)); 9370 9371 if (found_sep) { 9372 /* Now see if there is an IPIF with this unit number. */ 9373 for (ipif = ill->ill_ipif; ipif != NULL; 9374 ipif = ipif->ipif_next) { 9375 if (ipif->ipif_id == id) { 9376 err = EEXIST; 9377 goto done; 9378 } 9379 } 9380 } 9381 9382 /* 9383 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9384 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9385 * instead. 9386 */ 9387 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9388 B_TRUE, B_TRUE, &err)) == NULL) { 9389 goto done; 9390 } 9391 9392 /* Return created name with ioctl */ 9393 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9394 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9395 ip1dbg(("created %s\n", lifr->lifr_name)); 9396 9397 /* Set address */ 9398 sin = (sin_t *)&lifr->lifr_addr; 9399 if (sin->sin_family != AF_UNSPEC) { 9400 err = ip_sioctl_addr(ipif, sin, q, mp, 9401 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9402 } 9403 9404 done: 9405 ipsq_exit(ipsq); 9406 return (err); 9407 } 9408 9409 /* 9410 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9411 * interface) delete it based on the IP address (on this physical interface). 9412 * Otherwise delete it based on the ipif_id. 9413 * Also, special handling to allow a removeif of lo0. 9414 */ 9415 /* ARGSUSED */ 9416 int 9417 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9418 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9419 { 9420 conn_t *connp; 9421 ill_t *ill = ipif->ipif_ill; 9422 boolean_t success; 9423 ip_stack_t *ipst; 9424 9425 ipst = CONNQ_TO_IPST(q); 9426 9427 ASSERT(q->q_next == NULL); 9428 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9429 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9430 ASSERT(IAM_WRITER_IPIF(ipif)); 9431 9432 connp = Q_TO_CONN(q); 9433 /* 9434 * Special case for unplumbing lo0 (the loopback physical interface). 9435 * If unplumbing lo0, the incoming address structure has been 9436 * initialized to all zeros. When unplumbing lo0, all its logical 9437 * interfaces must be removed too. 9438 * 9439 * Note that this interface may be called to remove a specific 9440 * loopback logical interface (eg, lo0:1). But in that case 9441 * ipif->ipif_id != 0 so that the code path for that case is the 9442 * same as any other interface (meaning it skips the code directly 9443 * below). 9444 */ 9445 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9446 if (sin->sin_family == AF_UNSPEC && 9447 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9448 /* 9449 * Mark it condemned. No new ref. will be made to ill. 9450 */ 9451 mutex_enter(&ill->ill_lock); 9452 ill->ill_state_flags |= ILL_CONDEMNED; 9453 for (ipif = ill->ill_ipif; ipif != NULL; 9454 ipif = ipif->ipif_next) { 9455 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9456 } 9457 mutex_exit(&ill->ill_lock); 9458 9459 ipif = ill->ill_ipif; 9460 /* unplumb the loopback interface */ 9461 ill_delete(ill); 9462 mutex_enter(&connp->conn_lock); 9463 mutex_enter(&ill->ill_lock); 9464 9465 /* Are any references to this ill active */ 9466 if (ill_is_freeable(ill)) { 9467 mutex_exit(&ill->ill_lock); 9468 mutex_exit(&connp->conn_lock); 9469 ill_delete_tail(ill); 9470 mi_free(ill); 9471 return (0); 9472 } 9473 success = ipsq_pending_mp_add(connp, ipif, 9474 CONNP_TO_WQ(connp), mp, ILL_FREE); 9475 mutex_exit(&connp->conn_lock); 9476 mutex_exit(&ill->ill_lock); 9477 if (success) 9478 return (EINPROGRESS); 9479 else 9480 return (EINTR); 9481 } 9482 } 9483 9484 if (ipif->ipif_id == 0) { 9485 ipsq_t *ipsq; 9486 9487 /* Find based on address */ 9488 if (ipif->ipif_isv6) { 9489 sin6_t *sin6; 9490 9491 if (sin->sin_family != AF_INET6) 9492 return (EAFNOSUPPORT); 9493 9494 sin6 = (sin6_t *)sin; 9495 /* We are a writer, so we should be able to lookup */ 9496 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9497 ipst); 9498 } else { 9499 if (sin->sin_family != AF_INET) 9500 return (EAFNOSUPPORT); 9501 9502 /* We are a writer, so we should be able to lookup */ 9503 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9504 ipst); 9505 } 9506 if (ipif == NULL) { 9507 return (EADDRNOTAVAIL); 9508 } 9509 9510 /* 9511 * It is possible for a user to send an SIOCLIFREMOVEIF with 9512 * lifr_name of the physical interface but with an ip address 9513 * lifr_addr of a logical interface plumbed over it. 9514 * So update ipx_current_ipif now that ipif points to the 9515 * correct one. 9516 */ 9517 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9518 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9519 9520 /* This is a writer */ 9521 ipif_refrele(ipif); 9522 } 9523 9524 /* 9525 * Can not delete instance zero since it is tied to the ill. 9526 */ 9527 if (ipif->ipif_id == 0) 9528 return (EBUSY); 9529 9530 mutex_enter(&ill->ill_lock); 9531 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9532 mutex_exit(&ill->ill_lock); 9533 9534 ipif_free(ipif); 9535 9536 mutex_enter(&connp->conn_lock); 9537 mutex_enter(&ill->ill_lock); 9538 9539 /* Are any references to this ipif active */ 9540 if (ipif_is_freeable(ipif)) { 9541 mutex_exit(&ill->ill_lock); 9542 mutex_exit(&connp->conn_lock); 9543 ipif_non_duplicate(ipif); 9544 (void) ipif_down_tail(ipif); 9545 ipif_free_tail(ipif); /* frees ipif */ 9546 return (0); 9547 } 9548 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9549 IPIF_FREE); 9550 mutex_exit(&ill->ill_lock); 9551 mutex_exit(&connp->conn_lock); 9552 if (success) 9553 return (EINPROGRESS); 9554 else 9555 return (EINTR); 9556 } 9557 9558 /* 9559 * Restart the removeif ioctl. The refcnt has gone down to 0. 9560 * The ipif is already condemned. So can't find it thru lookups. 9561 */ 9562 /* ARGSUSED */ 9563 int 9564 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9565 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9566 { 9567 ill_t *ill = ipif->ipif_ill; 9568 9569 ASSERT(IAM_WRITER_IPIF(ipif)); 9570 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9571 9572 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9573 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9574 9575 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9576 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9577 ill_delete_tail(ill); 9578 mi_free(ill); 9579 return (0); 9580 } 9581 9582 ipif_non_duplicate(ipif); 9583 (void) ipif_down_tail(ipif); 9584 ipif_free_tail(ipif); 9585 9586 return (0); 9587 } 9588 9589 /* 9590 * Set the local interface address using the given prefix and ill_token. 9591 */ 9592 /* ARGSUSED */ 9593 int 9594 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9595 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9596 { 9597 int err; 9598 in6_addr_t v6addr; 9599 sin6_t *sin6; 9600 ill_t *ill; 9601 int i; 9602 9603 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9604 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9605 9606 ASSERT(IAM_WRITER_IPIF(ipif)); 9607 9608 if (!ipif->ipif_isv6) 9609 return (EINVAL); 9610 9611 if (sin->sin_family != AF_INET6) 9612 return (EAFNOSUPPORT); 9613 9614 sin6 = (sin6_t *)sin; 9615 v6addr = sin6->sin6_addr; 9616 ill = ipif->ipif_ill; 9617 9618 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9619 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9620 return (EADDRNOTAVAIL); 9621 9622 for (i = 0; i < 4; i++) 9623 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9624 9625 err = ip_sioctl_addr(ipif, sin, q, mp, 9626 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9627 return (err); 9628 } 9629 9630 /* 9631 * Restart entry point to restart the address set operation after the 9632 * refcounts have dropped to zero. 9633 */ 9634 /* ARGSUSED */ 9635 int 9636 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9637 ip_ioctl_cmd_t *ipip, void *ifreq) 9638 { 9639 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9640 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9641 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9642 } 9643 9644 /* 9645 * Set the local interface address. 9646 * Allow an address of all zero when the interface is down. 9647 */ 9648 /* ARGSUSED */ 9649 int 9650 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9651 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9652 { 9653 int err = 0; 9654 in6_addr_t v6addr; 9655 boolean_t need_up = B_FALSE; 9656 9657 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9658 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9659 9660 ASSERT(IAM_WRITER_IPIF(ipif)); 9661 9662 if (ipif->ipif_isv6) { 9663 sin6_t *sin6; 9664 ill_t *ill; 9665 phyint_t *phyi; 9666 9667 if (sin->sin_family != AF_INET6) 9668 return (EAFNOSUPPORT); 9669 9670 sin6 = (sin6_t *)sin; 9671 v6addr = sin6->sin6_addr; 9672 ill = ipif->ipif_ill; 9673 phyi = ill->ill_phyint; 9674 9675 /* 9676 * Enforce that true multicast interfaces have a link-local 9677 * address for logical unit 0. 9678 * 9679 * However for those ipif's for which link-local address was 9680 * not created by default, also allow setting :: as the address. 9681 * This scenario would arise, when we delete an address on ipif 9682 * with logical unit 0, we would want to set :: as the address. 9683 */ 9684 if (ipif->ipif_id == 0 && 9685 (ill->ill_flags & ILLF_MULTICAST) && 9686 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9687 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9688 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9689 9690 /* 9691 * if default link-local was not created by kernel for 9692 * this ill, allow setting :: as the address on ipif:0. 9693 */ 9694 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9695 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9696 return (EADDRNOTAVAIL); 9697 } else { 9698 return (EADDRNOTAVAIL); 9699 } 9700 } 9701 9702 /* 9703 * up interfaces shouldn't have the unspecified address 9704 * unless they also have the IPIF_NOLOCAL flags set and 9705 * have a subnet assigned. 9706 */ 9707 if ((ipif->ipif_flags & IPIF_UP) && 9708 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9709 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9710 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9711 return (EADDRNOTAVAIL); 9712 } 9713 9714 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9715 return (EADDRNOTAVAIL); 9716 } else { 9717 ipaddr_t addr; 9718 9719 if (sin->sin_family != AF_INET) 9720 return (EAFNOSUPPORT); 9721 9722 addr = sin->sin_addr.s_addr; 9723 9724 /* Allow INADDR_ANY as the local address. */ 9725 if (addr != INADDR_ANY && 9726 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9727 return (EADDRNOTAVAIL); 9728 9729 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9730 } 9731 9732 /* 9733 * Even if there is no change we redo things just to rerun 9734 * ipif_set_default. 9735 */ 9736 if (ipif->ipif_flags & IPIF_UP) { 9737 /* 9738 * Setting a new local address, make sure 9739 * we have net and subnet bcast ire's for 9740 * the old address if we need them. 9741 */ 9742 /* 9743 * If the interface is already marked up, 9744 * we call ipif_down which will take care 9745 * of ditching any IREs that have been set 9746 * up based on the old interface address. 9747 */ 9748 err = ipif_logical_down(ipif, q, mp); 9749 if (err == EINPROGRESS) 9750 return (err); 9751 (void) ipif_down_tail(ipif); 9752 need_up = 1; 9753 } 9754 9755 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9756 return (err); 9757 } 9758 9759 int 9760 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9761 boolean_t need_up) 9762 { 9763 in6_addr_t v6addr; 9764 in6_addr_t ov6addr; 9765 ipaddr_t addr; 9766 sin6_t *sin6; 9767 int sinlen; 9768 int err = 0; 9769 ill_t *ill = ipif->ipif_ill; 9770 boolean_t need_dl_down; 9771 boolean_t need_arp_down; 9772 struct iocblk *iocp; 9773 9774 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9775 9776 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9777 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9778 ASSERT(IAM_WRITER_IPIF(ipif)); 9779 9780 /* Must cancel any pending timer before taking the ill_lock */ 9781 if (ipif->ipif_recovery_id != 0) 9782 (void) untimeout(ipif->ipif_recovery_id); 9783 ipif->ipif_recovery_id = 0; 9784 9785 if (ipif->ipif_isv6) { 9786 sin6 = (sin6_t *)sin; 9787 v6addr = sin6->sin6_addr; 9788 sinlen = sizeof (struct sockaddr_in6); 9789 } else { 9790 addr = sin->sin_addr.s_addr; 9791 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9792 sinlen = sizeof (struct sockaddr_in); 9793 } 9794 mutex_enter(&ill->ill_lock); 9795 ov6addr = ipif->ipif_v6lcl_addr; 9796 ipif->ipif_v6lcl_addr = v6addr; 9797 sctp_update_ipif_addr(ipif, ov6addr); 9798 ipif->ipif_addr_ready = 0; 9799 9800 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9801 9802 /* 9803 * If the interface was previously marked as a duplicate, then since 9804 * we've now got a "new" address, it should no longer be considered a 9805 * duplicate -- even if the "new" address is the same as the old one. 9806 * Note that if all ipifs are down, we may have a pending ARP down 9807 * event to handle. This is because we want to recover from duplicates 9808 * and thus delay tearing down ARP until the duplicates have been 9809 * removed or disabled. 9810 */ 9811 need_dl_down = need_arp_down = B_FALSE; 9812 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9813 need_arp_down = !need_up; 9814 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9815 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9816 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9817 need_dl_down = B_TRUE; 9818 } 9819 } 9820 9821 ipif_set_default(ipif); 9822 9823 /* 9824 * If we've just manually set the IPv6 link-local address (0th ipif), 9825 * tag the ill so that future updates to the interface ID don't result 9826 * in this address getting automatically reconfigured from under the 9827 * administrator. 9828 */ 9829 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9830 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9831 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9832 ill->ill_manual_linklocal = 1; 9833 } 9834 9835 /* 9836 * When publishing an interface address change event, we only notify 9837 * the event listeners of the new address. It is assumed that if they 9838 * actively care about the addresses assigned that they will have 9839 * already discovered the previous address assigned (if there was one.) 9840 * 9841 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9842 */ 9843 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9844 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9845 NE_ADDRESS_CHANGE, sin, sinlen); 9846 } 9847 9848 mutex_exit(&ill->ill_lock); 9849 9850 if (need_up) { 9851 /* 9852 * Now bring the interface back up. If this 9853 * is the only IPIF for the ILL, ipif_up 9854 * will have to re-bind to the device, so 9855 * we may get back EINPROGRESS, in which 9856 * case, this IOCTL will get completed in 9857 * ip_rput_dlpi when we see the DL_BIND_ACK. 9858 */ 9859 err = ipif_up(ipif, q, mp); 9860 } else { 9861 /* Perhaps ilgs should use this ill */ 9862 update_conn_ill(NULL, ill->ill_ipst); 9863 } 9864 9865 if (need_dl_down) 9866 ill_dl_down(ill); 9867 9868 if (need_arp_down && !ill->ill_isv6) 9869 (void) ipif_arp_down(ipif); 9870 9871 /* 9872 * The default multicast interface might have changed (for 9873 * instance if the IPv6 scope of the address changed) 9874 */ 9875 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9876 9877 return (err); 9878 } 9879 9880 /* 9881 * Restart entry point to restart the address set operation after the 9882 * refcounts have dropped to zero. 9883 */ 9884 /* ARGSUSED */ 9885 int 9886 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9887 ip_ioctl_cmd_t *ipip, void *ifreq) 9888 { 9889 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9890 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9891 ASSERT(IAM_WRITER_IPIF(ipif)); 9892 (void) ipif_down_tail(ipif); 9893 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9894 } 9895 9896 /* ARGSUSED */ 9897 int 9898 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9899 ip_ioctl_cmd_t *ipip, void *if_req) 9900 { 9901 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9902 struct lifreq *lifr = (struct lifreq *)if_req; 9903 9904 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9905 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9906 /* 9907 * The net mask and address can't change since we have a 9908 * reference to the ipif. So no lock is necessary. 9909 */ 9910 if (ipif->ipif_isv6) { 9911 *sin6 = sin6_null; 9912 sin6->sin6_family = AF_INET6; 9913 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9914 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9915 lifr->lifr_addrlen = 9916 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9917 } else { 9918 *sin = sin_null; 9919 sin->sin_family = AF_INET; 9920 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9921 if (ipip->ipi_cmd_type == LIF_CMD) { 9922 lifr->lifr_addrlen = 9923 ip_mask_to_plen(ipif->ipif_net_mask); 9924 } 9925 } 9926 return (0); 9927 } 9928 9929 /* 9930 * Set the destination address for a pt-pt interface. 9931 */ 9932 /* ARGSUSED */ 9933 int 9934 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9935 ip_ioctl_cmd_t *ipip, void *if_req) 9936 { 9937 int err = 0; 9938 in6_addr_t v6addr; 9939 boolean_t need_up = B_FALSE; 9940 9941 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9942 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9943 ASSERT(IAM_WRITER_IPIF(ipif)); 9944 9945 if (ipif->ipif_isv6) { 9946 sin6_t *sin6; 9947 9948 if (sin->sin_family != AF_INET6) 9949 return (EAFNOSUPPORT); 9950 9951 sin6 = (sin6_t *)sin; 9952 v6addr = sin6->sin6_addr; 9953 9954 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9955 return (EADDRNOTAVAIL); 9956 } else { 9957 ipaddr_t addr; 9958 9959 if (sin->sin_family != AF_INET) 9960 return (EAFNOSUPPORT); 9961 9962 addr = sin->sin_addr.s_addr; 9963 if (addr != INADDR_ANY && 9964 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 9965 return (EADDRNOTAVAIL); 9966 } 9967 9968 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9969 } 9970 9971 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9972 return (0); /* No change */ 9973 9974 if (ipif->ipif_flags & IPIF_UP) { 9975 /* 9976 * If the interface is already marked up, 9977 * we call ipif_down which will take care 9978 * of ditching any IREs that have been set 9979 * up based on the old pp dst address. 9980 */ 9981 err = ipif_logical_down(ipif, q, mp); 9982 if (err == EINPROGRESS) 9983 return (err); 9984 (void) ipif_down_tail(ipif); 9985 need_up = B_TRUE; 9986 } 9987 /* 9988 * could return EINPROGRESS. If so ioctl will complete in 9989 * ip_rput_dlpi_writer 9990 */ 9991 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9992 return (err); 9993 } 9994 9995 static int 9996 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9997 boolean_t need_up) 9998 { 9999 in6_addr_t v6addr; 10000 ill_t *ill = ipif->ipif_ill; 10001 int err = 0; 10002 boolean_t need_dl_down; 10003 boolean_t need_arp_down; 10004 10005 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10006 ipif->ipif_id, (void *)ipif)); 10007 10008 /* Must cancel any pending timer before taking the ill_lock */ 10009 if (ipif->ipif_recovery_id != 0) 10010 (void) untimeout(ipif->ipif_recovery_id); 10011 ipif->ipif_recovery_id = 0; 10012 10013 if (ipif->ipif_isv6) { 10014 sin6_t *sin6; 10015 10016 sin6 = (sin6_t *)sin; 10017 v6addr = sin6->sin6_addr; 10018 } else { 10019 ipaddr_t addr; 10020 10021 addr = sin->sin_addr.s_addr; 10022 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10023 } 10024 mutex_enter(&ill->ill_lock); 10025 /* Set point to point destination address. */ 10026 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10027 /* 10028 * Allow this as a means of creating logical 10029 * pt-pt interfaces on top of e.g. an Ethernet. 10030 * XXX Undocumented HACK for testing. 10031 * pt-pt interfaces are created with NUD disabled. 10032 */ 10033 ipif->ipif_flags |= IPIF_POINTOPOINT; 10034 ipif->ipif_flags &= ~IPIF_BROADCAST; 10035 if (ipif->ipif_isv6) 10036 ill->ill_flags |= ILLF_NONUD; 10037 } 10038 10039 /* 10040 * If the interface was previously marked as a duplicate, then since 10041 * we've now got a "new" address, it should no longer be considered a 10042 * duplicate -- even if the "new" address is the same as the old one. 10043 * Note that if all ipifs are down, we may have a pending ARP down 10044 * event to handle. 10045 */ 10046 need_dl_down = need_arp_down = B_FALSE; 10047 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10048 need_arp_down = !need_up; 10049 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10050 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10051 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10052 need_dl_down = B_TRUE; 10053 } 10054 } 10055 10056 /* 10057 * If we've just manually set the IPv6 destination link-local address 10058 * (0th ipif), tag the ill so that future updates to the destination 10059 * interface ID (as can happen with interfaces over IP tunnels) don't 10060 * result in this address getting automatically reconfigured from 10061 * under the administrator. 10062 */ 10063 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10064 ill->ill_manual_dst_linklocal = 1; 10065 10066 /* Set the new address. */ 10067 ipif->ipif_v6pp_dst_addr = v6addr; 10068 /* Make sure subnet tracks pp_dst */ 10069 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10070 mutex_exit(&ill->ill_lock); 10071 10072 if (need_up) { 10073 /* 10074 * Now bring the interface back up. If this 10075 * is the only IPIF for the ILL, ipif_up 10076 * will have to re-bind to the device, so 10077 * we may get back EINPROGRESS, in which 10078 * case, this IOCTL will get completed in 10079 * ip_rput_dlpi when we see the DL_BIND_ACK. 10080 */ 10081 err = ipif_up(ipif, q, mp); 10082 } 10083 10084 if (need_dl_down) 10085 ill_dl_down(ill); 10086 if (need_arp_down && !ipif->ipif_isv6) 10087 (void) ipif_arp_down(ipif); 10088 10089 return (err); 10090 } 10091 10092 /* 10093 * Restart entry point to restart the dstaddress set operation after the 10094 * refcounts have dropped to zero. 10095 */ 10096 /* ARGSUSED */ 10097 int 10098 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10099 ip_ioctl_cmd_t *ipip, void *ifreq) 10100 { 10101 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10102 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10103 (void) ipif_down_tail(ipif); 10104 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10105 } 10106 10107 /* ARGSUSED */ 10108 int 10109 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10110 ip_ioctl_cmd_t *ipip, void *if_req) 10111 { 10112 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10113 10114 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10116 /* 10117 * Get point to point destination address. The addresses can't 10118 * change since we hold a reference to the ipif. 10119 */ 10120 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10121 return (EADDRNOTAVAIL); 10122 10123 if (ipif->ipif_isv6) { 10124 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10125 *sin6 = sin6_null; 10126 sin6->sin6_family = AF_INET6; 10127 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10128 } else { 10129 *sin = sin_null; 10130 sin->sin_family = AF_INET; 10131 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10132 } 10133 return (0); 10134 } 10135 10136 /* 10137 * Check which flags will change by the given flags being set 10138 * silently ignore flags which userland is not allowed to control. 10139 * (Because these flags may change between SIOCGLIFFLAGS and 10140 * SIOCSLIFFLAGS, and that's outside of userland's control, 10141 * we need to silently ignore them rather than fail.) 10142 */ 10143 static void 10144 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10145 uint64_t *offp) 10146 { 10147 ill_t *ill = ipif->ipif_ill; 10148 phyint_t *phyi = ill->ill_phyint; 10149 uint64_t cantchange_flags, intf_flags; 10150 uint64_t turn_on, turn_off; 10151 10152 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10153 cantchange_flags = IFF_CANTCHANGE; 10154 if (IS_IPMP(ill)) 10155 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10156 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10157 turn_off = intf_flags & turn_on; 10158 turn_on ^= turn_off; 10159 *onp = turn_on; 10160 *offp = turn_off; 10161 } 10162 10163 /* 10164 * Set interface flags. Many flags require special handling (e.g., 10165 * bringing the interface down); see below for details. 10166 * 10167 * NOTE : We really don't enforce that ipif_id zero should be used 10168 * for setting any flags other than IFF_LOGINT_FLAGS. This 10169 * is because applications generally does SICGLIFFLAGS and 10170 * ORs in the new flags (that affects the logical) and does a 10171 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10172 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10173 * flags that will be turned on is correct with respect to 10174 * ipif_id 0. For backward compatibility reasons, it is not done. 10175 */ 10176 /* ARGSUSED */ 10177 int 10178 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10179 ip_ioctl_cmd_t *ipip, void *if_req) 10180 { 10181 uint64_t turn_on; 10182 uint64_t turn_off; 10183 int err = 0; 10184 phyint_t *phyi; 10185 ill_t *ill; 10186 conn_t *connp; 10187 uint64_t intf_flags; 10188 boolean_t phyint_flags_modified = B_FALSE; 10189 uint64_t flags; 10190 struct ifreq *ifr; 10191 struct lifreq *lifr; 10192 boolean_t set_linklocal = B_FALSE; 10193 10194 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10195 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10196 10197 ASSERT(IAM_WRITER_IPIF(ipif)); 10198 10199 ill = ipif->ipif_ill; 10200 phyi = ill->ill_phyint; 10201 10202 if (ipip->ipi_cmd_type == IF_CMD) { 10203 ifr = (struct ifreq *)if_req; 10204 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10205 } else { 10206 lifr = (struct lifreq *)if_req; 10207 flags = lifr->lifr_flags; 10208 } 10209 10210 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10211 10212 /* 10213 * Have the flags been set correctly until now? 10214 */ 10215 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10216 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10217 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10218 /* 10219 * Compare the new flags to the old, and partition 10220 * into those coming on and those going off. 10221 * For the 16 bit command keep the bits above bit 16 unchanged. 10222 */ 10223 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10224 flags |= intf_flags & ~0xFFFF; 10225 10226 /* 10227 * Explicitly fail attempts to change flags that are always invalid on 10228 * an IPMP meta-interface. 10229 */ 10230 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10231 return (EINVAL); 10232 10233 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10234 if ((turn_on|turn_off) == 0) 10235 return (0); /* No change */ 10236 10237 /* 10238 * All test addresses must be IFF_DEPRECATED (to ensure source address 10239 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10240 * allow it to be turned off. 10241 */ 10242 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10243 (turn_on|intf_flags) & IFF_NOFAILOVER) 10244 return (EINVAL); 10245 10246 if ((connp = Q_TO_CONN(q)) == NULL) 10247 return (EINVAL); 10248 10249 /* 10250 * Only vrrp control socket is allowed to change IFF_UP and 10251 * IFF_NOACCEPT flags when IFF_VRRP is set. 10252 */ 10253 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10254 if (!connp->conn_isvrrp) 10255 return (EINVAL); 10256 } 10257 10258 /* 10259 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10260 * VRRP control socket. 10261 */ 10262 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10263 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10264 return (EINVAL); 10265 } 10266 10267 if (turn_on & IFF_NOFAILOVER) { 10268 turn_on |= IFF_DEPRECATED; 10269 flags |= IFF_DEPRECATED; 10270 } 10271 10272 /* 10273 * On underlying interfaces, only allow applications to manage test 10274 * addresses -- otherwise, they may get confused when the address 10275 * moves as part of being brought up. Likewise, prevent an 10276 * application-managed test address from being converted to a data 10277 * address. To prevent migration of administratively up addresses in 10278 * the kernel, we don't allow them to be converted either. 10279 */ 10280 if (IS_UNDER_IPMP(ill)) { 10281 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10282 10283 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10284 return (EINVAL); 10285 10286 if ((turn_off & IFF_NOFAILOVER) && 10287 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10288 return (EINVAL); 10289 } 10290 10291 /* 10292 * Only allow IFF_TEMPORARY flag to be set on 10293 * IPv6 interfaces. 10294 */ 10295 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10296 return (EINVAL); 10297 10298 /* 10299 * cannot turn off IFF_NOXMIT on VNI interfaces. 10300 */ 10301 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10302 return (EINVAL); 10303 10304 /* 10305 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10306 * interfaces. It makes no sense in that context. 10307 */ 10308 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10309 return (EINVAL); 10310 10311 /* 10312 * For IPv6 ipif_id 0, don't allow the interface to be up without 10313 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10314 * If the link local address isn't set, and can be set, it will get 10315 * set later on in this function. 10316 */ 10317 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10318 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10319 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10320 if (ipif_cant_setlinklocal(ipif)) 10321 return (EINVAL); 10322 set_linklocal = B_TRUE; 10323 } 10324 10325 /* 10326 * If we modify physical interface flags, we'll potentially need to 10327 * send up two routing socket messages for the changes (one for the 10328 * IPv4 ill, and another for the IPv6 ill). Note that here. 10329 */ 10330 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10331 phyint_flags_modified = B_TRUE; 10332 10333 /* 10334 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10335 * (otherwise, we'd immediately use them, defeating standby). Also, 10336 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10337 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10338 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10339 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10340 * will not be honored. 10341 */ 10342 if (turn_on & PHYI_STANDBY) { 10343 /* 10344 * No need to grab ill_g_usesrc_lock here; see the 10345 * synchronization notes in ip.c. 10346 */ 10347 if (ill->ill_usesrc_grp_next != NULL || 10348 intf_flags & PHYI_INACTIVE) 10349 return (EINVAL); 10350 if (!(flags & PHYI_FAILED)) { 10351 flags |= PHYI_INACTIVE; 10352 turn_on |= PHYI_INACTIVE; 10353 } 10354 } 10355 10356 if (turn_off & PHYI_STANDBY) { 10357 flags &= ~PHYI_INACTIVE; 10358 turn_off |= PHYI_INACTIVE; 10359 } 10360 10361 /* 10362 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10363 * would end up on. 10364 */ 10365 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10366 (PHYI_FAILED | PHYI_INACTIVE)) 10367 return (EINVAL); 10368 10369 /* 10370 * If ILLF_ROUTER changes, we need to change the ip forwarding 10371 * status of the interface. 10372 */ 10373 if ((turn_on | turn_off) & ILLF_ROUTER) 10374 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10375 10376 /* 10377 * If the interface is not UP and we are not going to 10378 * bring it UP, record the flags and return. When the 10379 * interface comes UP later, the right actions will be 10380 * taken. 10381 */ 10382 if (!(ipif->ipif_flags & IPIF_UP) && 10383 !(turn_on & IPIF_UP)) { 10384 /* Record new flags in their respective places. */ 10385 mutex_enter(&ill->ill_lock); 10386 mutex_enter(&ill->ill_phyint->phyint_lock); 10387 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10388 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10389 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10390 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10391 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10392 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10393 mutex_exit(&ill->ill_lock); 10394 mutex_exit(&ill->ill_phyint->phyint_lock); 10395 10396 /* 10397 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10398 * same to the kernel: if any of them has been set by 10399 * userland, the interface cannot be used for data traffic. 10400 */ 10401 if ((turn_on|turn_off) & 10402 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10403 ASSERT(!IS_IPMP(ill)); 10404 /* 10405 * It's possible the ill is part of an "anonymous" 10406 * IPMP group rather than a real group. In that case, 10407 * there are no other interfaces in the group and thus 10408 * no need to call ipmp_phyint_refresh_active(). 10409 */ 10410 if (IS_UNDER_IPMP(ill)) 10411 ipmp_phyint_refresh_active(phyi); 10412 } 10413 10414 if (phyint_flags_modified) { 10415 if (phyi->phyint_illv4 != NULL) { 10416 ip_rts_ifmsg(phyi->phyint_illv4-> 10417 ill_ipif, RTSQ_DEFAULT); 10418 } 10419 if (phyi->phyint_illv6 != NULL) { 10420 ip_rts_ifmsg(phyi->phyint_illv6-> 10421 ill_ipif, RTSQ_DEFAULT); 10422 } 10423 } 10424 /* The default multicast interface might have changed */ 10425 ire_increment_multicast_generation(ill->ill_ipst, 10426 ill->ill_isv6); 10427 10428 return (0); 10429 } else if (set_linklocal) { 10430 mutex_enter(&ill->ill_lock); 10431 if (set_linklocal) 10432 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10433 mutex_exit(&ill->ill_lock); 10434 } 10435 10436 /* 10437 * Disallow IPv6 interfaces coming up that have the unspecified address, 10438 * or point-to-point interfaces with an unspecified destination. We do 10439 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10440 * have a subnet assigned, which is how in.ndpd currently manages its 10441 * onlink prefix list when no addresses are configured with those 10442 * prefixes. 10443 */ 10444 if (ipif->ipif_isv6 && 10445 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10446 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10447 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10448 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10449 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10450 return (EINVAL); 10451 } 10452 10453 /* 10454 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10455 * from being brought up. 10456 */ 10457 if (!ipif->ipif_isv6 && 10458 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10459 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10460 return (EINVAL); 10461 } 10462 10463 /* 10464 * If we are going to change one or more of the flags that are 10465 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10466 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10467 * IPIF_NOFAILOVER, we will take special action. This is 10468 * done by bring the ipif down, changing the flags and bringing 10469 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10470 * back up will trigger the address to be moved. 10471 * 10472 * If we are going to change IFF_NOACCEPT, we need to bring 10473 * all the ipifs down then bring them up again. The act of 10474 * bringing all the ipifs back up will trigger the local 10475 * ires being recreated with "no_accept" set/cleared. 10476 * 10477 * Note that ILLF_NOACCEPT is always set separately from the 10478 * other flags. 10479 */ 10480 if ((turn_on|turn_off) & 10481 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10482 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10483 IPIF_NOFAILOVER)) { 10484 /* 10485 * ipif_down() will ire_delete bcast ire's for the subnet, 10486 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10487 * entries shared between multiple ipifs on the same subnet. 10488 */ 10489 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10490 !(turn_off & IPIF_UP)) { 10491 if (ipif->ipif_flags & IPIF_UP) 10492 ill->ill_logical_down = 1; 10493 turn_on &= ~IPIF_UP; 10494 } 10495 err = ipif_down(ipif, q, mp); 10496 ip1dbg(("ipif_down returns %d err ", err)); 10497 if (err == EINPROGRESS) 10498 return (err); 10499 (void) ipif_down_tail(ipif); 10500 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10501 /* 10502 * If we can quiesce the ill, then continue. If not, then 10503 * ip_sioctl_flags_tail() will be called from 10504 * ipif_ill_refrele_tail(). 10505 */ 10506 ill_down_ipifs(ill, B_TRUE); 10507 10508 mutex_enter(&connp->conn_lock); 10509 mutex_enter(&ill->ill_lock); 10510 if (!ill_is_quiescent(ill)) { 10511 boolean_t success; 10512 10513 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10514 q, mp, ILL_DOWN); 10515 mutex_exit(&ill->ill_lock); 10516 mutex_exit(&connp->conn_lock); 10517 return (success ? EINPROGRESS : EINTR); 10518 } 10519 mutex_exit(&ill->ill_lock); 10520 mutex_exit(&connp->conn_lock); 10521 } 10522 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10523 } 10524 10525 static int 10526 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10527 { 10528 ill_t *ill; 10529 phyint_t *phyi; 10530 uint64_t turn_on, turn_off; 10531 boolean_t phyint_flags_modified = B_FALSE; 10532 int err = 0; 10533 boolean_t set_linklocal = B_FALSE; 10534 10535 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10536 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10537 10538 ASSERT(IAM_WRITER_IPIF(ipif)); 10539 10540 ill = ipif->ipif_ill; 10541 phyi = ill->ill_phyint; 10542 10543 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10544 10545 /* 10546 * IFF_UP is handled separately. 10547 */ 10548 turn_on &= ~IFF_UP; 10549 turn_off &= ~IFF_UP; 10550 10551 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10552 phyint_flags_modified = B_TRUE; 10553 10554 /* 10555 * Now we change the flags. Track current value of 10556 * other flags in their respective places. 10557 */ 10558 mutex_enter(&ill->ill_lock); 10559 mutex_enter(&phyi->phyint_lock); 10560 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10561 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10562 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10563 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10564 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10565 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10566 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10567 set_linklocal = B_TRUE; 10568 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10569 } 10570 10571 mutex_exit(&ill->ill_lock); 10572 mutex_exit(&phyi->phyint_lock); 10573 10574 if (set_linklocal) 10575 (void) ipif_setlinklocal(ipif); 10576 10577 /* 10578 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10579 * the kernel: if any of them has been set by userland, the interface 10580 * cannot be used for data traffic. 10581 */ 10582 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10583 ASSERT(!IS_IPMP(ill)); 10584 /* 10585 * It's possible the ill is part of an "anonymous" IPMP group 10586 * rather than a real group. In that case, there are no other 10587 * interfaces in the group and thus no need for us to call 10588 * ipmp_phyint_refresh_active(). 10589 */ 10590 if (IS_UNDER_IPMP(ill)) 10591 ipmp_phyint_refresh_active(phyi); 10592 } 10593 10594 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10595 /* 10596 * If the ILLF_NOACCEPT flag is changed, bring up all the 10597 * ipifs that were brought down. 10598 * 10599 * The routing sockets messages are sent as the result 10600 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10601 * as well. 10602 */ 10603 err = ill_up_ipifs(ill, q, mp); 10604 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10605 /* 10606 * XXX ipif_up really does not know whether a phyint flags 10607 * was modified or not. So, it sends up information on 10608 * only one routing sockets message. As we don't bring up 10609 * the interface and also set PHYI_ flags simultaneously 10610 * it should be okay. 10611 */ 10612 err = ipif_up(ipif, q, mp); 10613 } else { 10614 /* 10615 * Make sure routing socket sees all changes to the flags. 10616 * ipif_up_done* handles this when we use ipif_up. 10617 */ 10618 if (phyint_flags_modified) { 10619 if (phyi->phyint_illv4 != NULL) { 10620 ip_rts_ifmsg(phyi->phyint_illv4-> 10621 ill_ipif, RTSQ_DEFAULT); 10622 } 10623 if (phyi->phyint_illv6 != NULL) { 10624 ip_rts_ifmsg(phyi->phyint_illv6-> 10625 ill_ipif, RTSQ_DEFAULT); 10626 } 10627 } else { 10628 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10629 } 10630 /* 10631 * Update the flags in SCTP's IPIF list, ipif_up() will do 10632 * this in need_up case. 10633 */ 10634 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10635 } 10636 10637 /* The default multicast interface might have changed */ 10638 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10639 return (err); 10640 } 10641 10642 /* 10643 * Restart the flags operation now that the refcounts have dropped to zero. 10644 */ 10645 /* ARGSUSED */ 10646 int 10647 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10648 ip_ioctl_cmd_t *ipip, void *if_req) 10649 { 10650 uint64_t flags; 10651 struct ifreq *ifr = if_req; 10652 struct lifreq *lifr = if_req; 10653 uint64_t turn_on, turn_off; 10654 10655 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10656 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10657 10658 if (ipip->ipi_cmd_type == IF_CMD) { 10659 /* cast to uint16_t prevents unwanted sign extension */ 10660 flags = (uint16_t)ifr->ifr_flags; 10661 } else { 10662 flags = lifr->lifr_flags; 10663 } 10664 10665 /* 10666 * If this function call is a result of the ILLF_NOACCEPT flag 10667 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10668 */ 10669 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10670 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10671 (void) ipif_down_tail(ipif); 10672 10673 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10674 } 10675 10676 /* 10677 * Can operate on either a module or a driver queue. 10678 */ 10679 /* ARGSUSED */ 10680 int 10681 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10682 ip_ioctl_cmd_t *ipip, void *if_req) 10683 { 10684 /* 10685 * Has the flags been set correctly till now ? 10686 */ 10687 ill_t *ill = ipif->ipif_ill; 10688 phyint_t *phyi = ill->ill_phyint; 10689 10690 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10691 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10692 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10693 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10694 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10695 10696 /* 10697 * Need a lock since some flags can be set even when there are 10698 * references to the ipif. 10699 */ 10700 mutex_enter(&ill->ill_lock); 10701 if (ipip->ipi_cmd_type == IF_CMD) { 10702 struct ifreq *ifr = (struct ifreq *)if_req; 10703 10704 /* Get interface flags (low 16 only). */ 10705 ifr->ifr_flags = ((ipif->ipif_flags | 10706 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10707 } else { 10708 struct lifreq *lifr = (struct lifreq *)if_req; 10709 10710 /* Get interface flags. */ 10711 lifr->lifr_flags = ipif->ipif_flags | 10712 ill->ill_flags | phyi->phyint_flags; 10713 } 10714 mutex_exit(&ill->ill_lock); 10715 return (0); 10716 } 10717 10718 /* 10719 * We allow the MTU to be set on an ILL, but not have it be different 10720 * for different IPIFs since we don't actually send packets on IPIFs. 10721 */ 10722 /* ARGSUSED */ 10723 int 10724 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10725 ip_ioctl_cmd_t *ipip, void *if_req) 10726 { 10727 int mtu; 10728 int ip_min_mtu; 10729 struct ifreq *ifr; 10730 struct lifreq *lifr; 10731 ill_t *ill; 10732 10733 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10734 ipif->ipif_id, (void *)ipif)); 10735 if (ipip->ipi_cmd_type == IF_CMD) { 10736 ifr = (struct ifreq *)if_req; 10737 mtu = ifr->ifr_metric; 10738 } else { 10739 lifr = (struct lifreq *)if_req; 10740 mtu = lifr->lifr_mtu; 10741 } 10742 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10743 if (ipif->ipif_id != 0) 10744 return (EINVAL); 10745 10746 ill = ipif->ipif_ill; 10747 if (ipif->ipif_isv6) 10748 ip_min_mtu = IPV6_MIN_MTU; 10749 else 10750 ip_min_mtu = IP_MIN_MTU; 10751 10752 mutex_enter(&ill->ill_lock); 10753 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10754 mutex_exit(&ill->ill_lock); 10755 return (EINVAL); 10756 } 10757 /* 10758 * The dce and fragmentation code can handle changes to ill_mtu 10759 * concurrent with sending/fragmenting packets. 10760 */ 10761 ill->ill_mtu = mtu; 10762 ill->ill_flags |= ILLF_FIXEDMTU; 10763 mutex_exit(&ill->ill_lock); 10764 10765 /* 10766 * Make sure all dce_generation checks find out 10767 * that ill_mtu has changed. 10768 */ 10769 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10770 10771 /* 10772 * Refresh IPMP meta-interface MTU if necessary. 10773 */ 10774 if (IS_UNDER_IPMP(ill)) 10775 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10776 10777 /* Update the MTU in SCTP's list */ 10778 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10779 return (0); 10780 } 10781 10782 /* Get interface MTU. */ 10783 /* ARGSUSED */ 10784 int 10785 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10786 ip_ioctl_cmd_t *ipip, void *if_req) 10787 { 10788 struct ifreq *ifr; 10789 struct lifreq *lifr; 10790 10791 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10792 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10793 10794 /* 10795 * We allow a get on any logical interface even though the set 10796 * can only be done on logical unit 0. 10797 */ 10798 if (ipip->ipi_cmd_type == IF_CMD) { 10799 ifr = (struct ifreq *)if_req; 10800 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10801 } else { 10802 lifr = (struct lifreq *)if_req; 10803 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10804 } 10805 return (0); 10806 } 10807 10808 /* Set interface broadcast address. */ 10809 /* ARGSUSED2 */ 10810 int 10811 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10812 ip_ioctl_cmd_t *ipip, void *if_req) 10813 { 10814 ipaddr_t addr; 10815 ire_t *ire; 10816 ill_t *ill = ipif->ipif_ill; 10817 ip_stack_t *ipst = ill->ill_ipst; 10818 10819 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10820 ipif->ipif_id)); 10821 10822 ASSERT(IAM_WRITER_IPIF(ipif)); 10823 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10824 return (EADDRNOTAVAIL); 10825 10826 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10827 10828 if (sin->sin_family != AF_INET) 10829 return (EAFNOSUPPORT); 10830 10831 addr = sin->sin_addr.s_addr; 10832 10833 if (ipif->ipif_flags & IPIF_UP) { 10834 /* 10835 * If we are already up, make sure the new 10836 * broadcast address makes sense. If it does, 10837 * there should be an IRE for it already. 10838 */ 10839 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10840 ill, ipif->ipif_zoneid, NULL, 10841 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10842 if (ire == NULL) { 10843 return (EINVAL); 10844 } else { 10845 ire_refrele(ire); 10846 } 10847 } 10848 /* 10849 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10850 * needs to already exist we never need to change the set of 10851 * IRE_BROADCASTs when we are UP. 10852 */ 10853 if (addr != ipif->ipif_brd_addr) 10854 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10855 10856 return (0); 10857 } 10858 10859 /* Get interface broadcast address. */ 10860 /* ARGSUSED */ 10861 int 10862 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10863 ip_ioctl_cmd_t *ipip, void *if_req) 10864 { 10865 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10866 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10867 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10868 return (EADDRNOTAVAIL); 10869 10870 /* IPIF_BROADCAST not possible with IPv6 */ 10871 ASSERT(!ipif->ipif_isv6); 10872 *sin = sin_null; 10873 sin->sin_family = AF_INET; 10874 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10875 return (0); 10876 } 10877 10878 /* 10879 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10880 */ 10881 /* ARGSUSED */ 10882 int 10883 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10884 ip_ioctl_cmd_t *ipip, void *if_req) 10885 { 10886 int err = 0; 10887 in6_addr_t v6mask; 10888 10889 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10890 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10891 10892 ASSERT(IAM_WRITER_IPIF(ipif)); 10893 10894 if (ipif->ipif_isv6) { 10895 sin6_t *sin6; 10896 10897 if (sin->sin_family != AF_INET6) 10898 return (EAFNOSUPPORT); 10899 10900 sin6 = (sin6_t *)sin; 10901 v6mask = sin6->sin6_addr; 10902 } else { 10903 ipaddr_t mask; 10904 10905 if (sin->sin_family != AF_INET) 10906 return (EAFNOSUPPORT); 10907 10908 mask = sin->sin_addr.s_addr; 10909 if (!ip_contiguous_mask(ntohl(mask))) 10910 return (ENOTSUP); 10911 V4MASK_TO_V6(mask, v6mask); 10912 } 10913 10914 /* 10915 * No big deal if the interface isn't already up, or the mask 10916 * isn't really changing, or this is pt-pt. 10917 */ 10918 if (!(ipif->ipif_flags & IPIF_UP) || 10919 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10920 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10921 ipif->ipif_v6net_mask = v6mask; 10922 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10923 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10924 ipif->ipif_v6net_mask, 10925 ipif->ipif_v6subnet); 10926 } 10927 return (0); 10928 } 10929 /* 10930 * Make sure we have valid net and subnet broadcast ire's 10931 * for the old netmask, if needed by other logical interfaces. 10932 */ 10933 err = ipif_logical_down(ipif, q, mp); 10934 if (err == EINPROGRESS) 10935 return (err); 10936 (void) ipif_down_tail(ipif); 10937 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10938 return (err); 10939 } 10940 10941 static int 10942 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10943 { 10944 in6_addr_t v6mask; 10945 int err = 0; 10946 10947 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10948 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10949 10950 if (ipif->ipif_isv6) { 10951 sin6_t *sin6; 10952 10953 sin6 = (sin6_t *)sin; 10954 v6mask = sin6->sin6_addr; 10955 } else { 10956 ipaddr_t mask; 10957 10958 mask = sin->sin_addr.s_addr; 10959 V4MASK_TO_V6(mask, v6mask); 10960 } 10961 10962 ipif->ipif_v6net_mask = v6mask; 10963 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10964 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10965 ipif->ipif_v6subnet); 10966 } 10967 err = ipif_up(ipif, q, mp); 10968 10969 if (err == 0 || err == EINPROGRESS) { 10970 /* 10971 * The interface must be DL_BOUND if this packet has to 10972 * go out on the wire. Since we only go through a logical 10973 * down and are bound with the driver during an internal 10974 * down/up that is satisfied. 10975 */ 10976 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10977 /* Potentially broadcast an address mask reply. */ 10978 ipif_mask_reply(ipif); 10979 } 10980 } 10981 return (err); 10982 } 10983 10984 /* ARGSUSED */ 10985 int 10986 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10987 ip_ioctl_cmd_t *ipip, void *if_req) 10988 { 10989 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10990 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10991 (void) ipif_down_tail(ipif); 10992 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10993 } 10994 10995 /* Get interface net mask. */ 10996 /* ARGSUSED */ 10997 int 10998 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10999 ip_ioctl_cmd_t *ipip, void *if_req) 11000 { 11001 struct lifreq *lifr = (struct lifreq *)if_req; 11002 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11003 11004 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11005 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11006 11007 /* 11008 * net mask can't change since we have a reference to the ipif. 11009 */ 11010 if (ipif->ipif_isv6) { 11011 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11012 *sin6 = sin6_null; 11013 sin6->sin6_family = AF_INET6; 11014 sin6->sin6_addr = ipif->ipif_v6net_mask; 11015 lifr->lifr_addrlen = 11016 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11017 } else { 11018 *sin = sin_null; 11019 sin->sin_family = AF_INET; 11020 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11021 if (ipip->ipi_cmd_type == LIF_CMD) { 11022 lifr->lifr_addrlen = 11023 ip_mask_to_plen(ipif->ipif_net_mask); 11024 } 11025 } 11026 return (0); 11027 } 11028 11029 /* ARGSUSED */ 11030 int 11031 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11032 ip_ioctl_cmd_t *ipip, void *if_req) 11033 { 11034 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11035 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11036 11037 /* 11038 * Since no applications should ever be setting metrics on underlying 11039 * interfaces, we explicitly fail to smoke 'em out. 11040 */ 11041 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11042 return (EINVAL); 11043 11044 /* 11045 * Set interface metric. We don't use this for 11046 * anything but we keep track of it in case it is 11047 * important to routing applications or such. 11048 */ 11049 if (ipip->ipi_cmd_type == IF_CMD) { 11050 struct ifreq *ifr; 11051 11052 ifr = (struct ifreq *)if_req; 11053 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11054 } else { 11055 struct lifreq *lifr; 11056 11057 lifr = (struct lifreq *)if_req; 11058 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11059 } 11060 return (0); 11061 } 11062 11063 /* ARGSUSED */ 11064 int 11065 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11066 ip_ioctl_cmd_t *ipip, void *if_req) 11067 { 11068 /* Get interface metric. */ 11069 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11070 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11071 11072 if (ipip->ipi_cmd_type == IF_CMD) { 11073 struct ifreq *ifr; 11074 11075 ifr = (struct ifreq *)if_req; 11076 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11077 } else { 11078 struct lifreq *lifr; 11079 11080 lifr = (struct lifreq *)if_req; 11081 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11082 } 11083 11084 return (0); 11085 } 11086 11087 /* ARGSUSED */ 11088 int 11089 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11090 ip_ioctl_cmd_t *ipip, void *if_req) 11091 { 11092 int arp_muxid; 11093 11094 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11095 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11096 /* 11097 * Set the muxid returned from I_PLINK. 11098 */ 11099 if (ipip->ipi_cmd_type == IF_CMD) { 11100 struct ifreq *ifr = (struct ifreq *)if_req; 11101 11102 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11103 arp_muxid = ifr->ifr_arp_muxid; 11104 } else { 11105 struct lifreq *lifr = (struct lifreq *)if_req; 11106 11107 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11108 arp_muxid = lifr->lifr_arp_muxid; 11109 } 11110 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11111 return (0); 11112 } 11113 11114 /* ARGSUSED */ 11115 int 11116 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11117 ip_ioctl_cmd_t *ipip, void *if_req) 11118 { 11119 int arp_muxid = 0; 11120 11121 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11122 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11123 /* 11124 * Get the muxid saved in ill for I_PUNLINK. 11125 */ 11126 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11127 if (ipip->ipi_cmd_type == IF_CMD) { 11128 struct ifreq *ifr = (struct ifreq *)if_req; 11129 11130 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11131 ifr->ifr_arp_muxid = arp_muxid; 11132 } else { 11133 struct lifreq *lifr = (struct lifreq *)if_req; 11134 11135 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11136 lifr->lifr_arp_muxid = arp_muxid; 11137 } 11138 return (0); 11139 } 11140 11141 /* 11142 * Set the subnet prefix. Does not modify the broadcast address. 11143 */ 11144 /* ARGSUSED */ 11145 int 11146 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11147 ip_ioctl_cmd_t *ipip, void *if_req) 11148 { 11149 int err = 0; 11150 in6_addr_t v6addr; 11151 in6_addr_t v6mask; 11152 boolean_t need_up = B_FALSE; 11153 int addrlen; 11154 11155 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11156 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11157 11158 ASSERT(IAM_WRITER_IPIF(ipif)); 11159 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11160 11161 if (ipif->ipif_isv6) { 11162 sin6_t *sin6; 11163 11164 if (sin->sin_family != AF_INET6) 11165 return (EAFNOSUPPORT); 11166 11167 sin6 = (sin6_t *)sin; 11168 v6addr = sin6->sin6_addr; 11169 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11170 return (EADDRNOTAVAIL); 11171 } else { 11172 ipaddr_t addr; 11173 11174 if (sin->sin_family != AF_INET) 11175 return (EAFNOSUPPORT); 11176 11177 addr = sin->sin_addr.s_addr; 11178 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11179 return (EADDRNOTAVAIL); 11180 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11181 /* Add 96 bits */ 11182 addrlen += IPV6_ABITS - IP_ABITS; 11183 } 11184 11185 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11186 return (EINVAL); 11187 11188 /* Check if bits in the address is set past the mask */ 11189 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11190 return (EINVAL); 11191 11192 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11193 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11194 return (0); /* No change */ 11195 11196 if (ipif->ipif_flags & IPIF_UP) { 11197 /* 11198 * If the interface is already marked up, 11199 * we call ipif_down which will take care 11200 * of ditching any IREs that have been set 11201 * up based on the old interface address. 11202 */ 11203 err = ipif_logical_down(ipif, q, mp); 11204 if (err == EINPROGRESS) 11205 return (err); 11206 (void) ipif_down_tail(ipif); 11207 need_up = B_TRUE; 11208 } 11209 11210 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11211 return (err); 11212 } 11213 11214 static int 11215 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11216 queue_t *q, mblk_t *mp, boolean_t need_up) 11217 { 11218 ill_t *ill = ipif->ipif_ill; 11219 int err = 0; 11220 11221 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11222 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11223 11224 /* Set the new address. */ 11225 mutex_enter(&ill->ill_lock); 11226 ipif->ipif_v6net_mask = v6mask; 11227 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11228 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11229 ipif->ipif_v6subnet); 11230 } 11231 mutex_exit(&ill->ill_lock); 11232 11233 if (need_up) { 11234 /* 11235 * Now bring the interface back up. If this 11236 * is the only IPIF for the ILL, ipif_up 11237 * will have to re-bind to the device, so 11238 * we may get back EINPROGRESS, in which 11239 * case, this IOCTL will get completed in 11240 * ip_rput_dlpi when we see the DL_BIND_ACK. 11241 */ 11242 err = ipif_up(ipif, q, mp); 11243 if (err == EINPROGRESS) 11244 return (err); 11245 } 11246 return (err); 11247 } 11248 11249 /* ARGSUSED */ 11250 int 11251 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11252 ip_ioctl_cmd_t *ipip, void *if_req) 11253 { 11254 int addrlen; 11255 in6_addr_t v6addr; 11256 in6_addr_t v6mask; 11257 struct lifreq *lifr = (struct lifreq *)if_req; 11258 11259 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11261 (void) ipif_down_tail(ipif); 11262 11263 addrlen = lifr->lifr_addrlen; 11264 if (ipif->ipif_isv6) { 11265 sin6_t *sin6; 11266 11267 sin6 = (sin6_t *)sin; 11268 v6addr = sin6->sin6_addr; 11269 } else { 11270 ipaddr_t addr; 11271 11272 addr = sin->sin_addr.s_addr; 11273 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11274 addrlen += IPV6_ABITS - IP_ABITS; 11275 } 11276 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11277 11278 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11279 } 11280 11281 /* ARGSUSED */ 11282 int 11283 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11284 ip_ioctl_cmd_t *ipip, void *if_req) 11285 { 11286 struct lifreq *lifr = (struct lifreq *)if_req; 11287 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11288 11289 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11290 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11291 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11292 11293 if (ipif->ipif_isv6) { 11294 *sin6 = sin6_null; 11295 sin6->sin6_family = AF_INET6; 11296 sin6->sin6_addr = ipif->ipif_v6subnet; 11297 lifr->lifr_addrlen = 11298 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11299 } else { 11300 *sin = sin_null; 11301 sin->sin_family = AF_INET; 11302 sin->sin_addr.s_addr = ipif->ipif_subnet; 11303 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11304 } 11305 return (0); 11306 } 11307 11308 /* 11309 * Set the IPv6 address token. 11310 */ 11311 /* ARGSUSED */ 11312 int 11313 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11314 ip_ioctl_cmd_t *ipi, void *if_req) 11315 { 11316 ill_t *ill = ipif->ipif_ill; 11317 int err; 11318 in6_addr_t v6addr; 11319 in6_addr_t v6mask; 11320 boolean_t need_up = B_FALSE; 11321 int i; 11322 sin6_t *sin6 = (sin6_t *)sin; 11323 struct lifreq *lifr = (struct lifreq *)if_req; 11324 int addrlen; 11325 11326 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11327 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11328 ASSERT(IAM_WRITER_IPIF(ipif)); 11329 11330 addrlen = lifr->lifr_addrlen; 11331 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11332 if (ipif->ipif_id != 0) 11333 return (EINVAL); 11334 11335 if (!ipif->ipif_isv6) 11336 return (EINVAL); 11337 11338 if (addrlen > IPV6_ABITS) 11339 return (EINVAL); 11340 11341 v6addr = sin6->sin6_addr; 11342 11343 /* 11344 * The length of the token is the length from the end. To get 11345 * the proper mask for this, compute the mask of the bits not 11346 * in the token; ie. the prefix, and then xor to get the mask. 11347 */ 11348 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11349 return (EINVAL); 11350 for (i = 0; i < 4; i++) { 11351 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11352 } 11353 11354 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11355 ill->ill_token_length == addrlen) 11356 return (0); /* No change */ 11357 11358 if (ipif->ipif_flags & IPIF_UP) { 11359 err = ipif_logical_down(ipif, q, mp); 11360 if (err == EINPROGRESS) 11361 return (err); 11362 (void) ipif_down_tail(ipif); 11363 need_up = B_TRUE; 11364 } 11365 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11366 return (err); 11367 } 11368 11369 static int 11370 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11371 mblk_t *mp, boolean_t need_up) 11372 { 11373 in6_addr_t v6addr; 11374 in6_addr_t v6mask; 11375 ill_t *ill = ipif->ipif_ill; 11376 int i; 11377 int err = 0; 11378 11379 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11380 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11381 v6addr = sin6->sin6_addr; 11382 /* 11383 * The length of the token is the length from the end. To get 11384 * the proper mask for this, compute the mask of the bits not 11385 * in the token; ie. the prefix, and then xor to get the mask. 11386 */ 11387 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11388 for (i = 0; i < 4; i++) 11389 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11390 11391 mutex_enter(&ill->ill_lock); 11392 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11393 ill->ill_token_length = addrlen; 11394 ill->ill_manual_token = 1; 11395 11396 /* Reconfigure the link-local address based on this new token */ 11397 ipif_setlinklocal(ill->ill_ipif); 11398 11399 mutex_exit(&ill->ill_lock); 11400 11401 if (need_up) { 11402 /* 11403 * Now bring the interface back up. If this 11404 * is the only IPIF for the ILL, ipif_up 11405 * will have to re-bind to the device, so 11406 * we may get back EINPROGRESS, in which 11407 * case, this IOCTL will get completed in 11408 * ip_rput_dlpi when we see the DL_BIND_ACK. 11409 */ 11410 err = ipif_up(ipif, q, mp); 11411 if (err == EINPROGRESS) 11412 return (err); 11413 } 11414 return (err); 11415 } 11416 11417 /* ARGSUSED */ 11418 int 11419 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11420 ip_ioctl_cmd_t *ipi, void *if_req) 11421 { 11422 ill_t *ill; 11423 sin6_t *sin6 = (sin6_t *)sin; 11424 struct lifreq *lifr = (struct lifreq *)if_req; 11425 11426 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11427 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11428 if (ipif->ipif_id != 0) 11429 return (EINVAL); 11430 11431 ill = ipif->ipif_ill; 11432 if (!ill->ill_isv6) 11433 return (ENXIO); 11434 11435 *sin6 = sin6_null; 11436 sin6->sin6_family = AF_INET6; 11437 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11438 sin6->sin6_addr = ill->ill_token; 11439 lifr->lifr_addrlen = ill->ill_token_length; 11440 return (0); 11441 } 11442 11443 /* 11444 * Set (hardware) link specific information that might override 11445 * what was acquired through the DL_INFO_ACK. 11446 */ 11447 /* ARGSUSED */ 11448 int 11449 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11450 ip_ioctl_cmd_t *ipi, void *if_req) 11451 { 11452 ill_t *ill = ipif->ipif_ill; 11453 int ip_min_mtu; 11454 struct lifreq *lifr = (struct lifreq *)if_req; 11455 lif_ifinfo_req_t *lir; 11456 11457 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11458 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11459 lir = &lifr->lifr_ifinfo; 11460 ASSERT(IAM_WRITER_IPIF(ipif)); 11461 11462 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11463 if (ipif->ipif_id != 0) 11464 return (EINVAL); 11465 11466 /* Set interface MTU. */ 11467 if (ipif->ipif_isv6) 11468 ip_min_mtu = IPV6_MIN_MTU; 11469 else 11470 ip_min_mtu = IP_MIN_MTU; 11471 11472 /* 11473 * Verify values before we set anything. Allow zero to 11474 * mean unspecified. 11475 * 11476 * XXX We should be able to set the user-defined lir_mtu to some value 11477 * that is greater than ill_current_frag but less than ill_max_frag- the 11478 * ill_max_frag value tells us the max MTU that can be handled by the 11479 * datalink, whereas the ill_current_frag is dynamically computed for 11480 * some link-types like tunnels, based on the tunnel PMTU. However, 11481 * since there is currently no way of distinguishing between 11482 * administratively fixed link mtu values (e.g., those set via 11483 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11484 * for tunnels) we conservatively choose the ill_current_frag as the 11485 * upper-bound. 11486 */ 11487 if (lir->lir_maxmtu != 0 && 11488 (lir->lir_maxmtu > ill->ill_current_frag || 11489 lir->lir_maxmtu < ip_min_mtu)) 11490 return (EINVAL); 11491 if (lir->lir_reachtime != 0 && 11492 lir->lir_reachtime > ND_MAX_REACHTIME) 11493 return (EINVAL); 11494 if (lir->lir_reachretrans != 0 && 11495 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11496 return (EINVAL); 11497 11498 mutex_enter(&ill->ill_lock); 11499 /* 11500 * The dce and fragmentation code can handle changes to ill_mtu 11501 * concurrent with sending/fragmenting packets. 11502 */ 11503 if (lir->lir_maxmtu != 0) 11504 ill->ill_user_mtu = lir->lir_maxmtu; 11505 11506 if (lir->lir_reachtime != 0) 11507 ill->ill_reachable_time = lir->lir_reachtime; 11508 11509 if (lir->lir_reachretrans != 0) 11510 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11511 11512 ill->ill_max_hops = lir->lir_maxhops; 11513 ill->ill_max_buf = ND_MAX_Q; 11514 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11515 /* 11516 * ill_mtu is the actual interface MTU, obtained as the min 11517 * of user-configured mtu and the value announced by the 11518 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11519 * we have already made the choice of requiring 11520 * ill_user_mtu < ill_current_frag by the time we get here, 11521 * the ill_mtu effectively gets assigned to the ill_user_mtu 11522 * here. 11523 */ 11524 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11525 } 11526 mutex_exit(&ill->ill_lock); 11527 11528 /* 11529 * Make sure all dce_generation checks find out 11530 * that ill_mtu has changed. 11531 */ 11532 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11533 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11534 11535 /* 11536 * Refresh IPMP meta-interface MTU if necessary. 11537 */ 11538 if (IS_UNDER_IPMP(ill)) 11539 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11540 11541 return (0); 11542 } 11543 11544 /* ARGSUSED */ 11545 int 11546 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11547 ip_ioctl_cmd_t *ipi, void *if_req) 11548 { 11549 struct lif_ifinfo_req *lir; 11550 ill_t *ill = ipif->ipif_ill; 11551 11552 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11553 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11554 if (ipif->ipif_id != 0) 11555 return (EINVAL); 11556 11557 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11558 lir->lir_maxhops = ill->ill_max_hops; 11559 lir->lir_reachtime = ill->ill_reachable_time; 11560 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11561 lir->lir_maxmtu = ill->ill_mtu; 11562 11563 return (0); 11564 } 11565 11566 /* 11567 * Return best guess as to the subnet mask for the specified address. 11568 * Based on the subnet masks for all the configured interfaces. 11569 * 11570 * We end up returning a zero mask in the case of default, multicast or 11571 * experimental. 11572 */ 11573 static ipaddr_t 11574 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11575 { 11576 ipaddr_t net_mask; 11577 ill_t *ill; 11578 ipif_t *ipif; 11579 ill_walk_context_t ctx; 11580 ipif_t *fallback_ipif = NULL; 11581 11582 net_mask = ip_net_mask(addr); 11583 if (net_mask == 0) { 11584 *ipifp = NULL; 11585 return (0); 11586 } 11587 11588 /* Let's check to see if this is maybe a local subnet route. */ 11589 /* this function only applies to IPv4 interfaces */ 11590 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11591 ill = ILL_START_WALK_V4(&ctx, ipst); 11592 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11593 mutex_enter(&ill->ill_lock); 11594 for (ipif = ill->ill_ipif; ipif != NULL; 11595 ipif = ipif->ipif_next) { 11596 if (IPIF_IS_CONDEMNED(ipif)) 11597 continue; 11598 if (!(ipif->ipif_flags & IPIF_UP)) 11599 continue; 11600 if ((ipif->ipif_subnet & net_mask) == 11601 (addr & net_mask)) { 11602 /* 11603 * Don't trust pt-pt interfaces if there are 11604 * other interfaces. 11605 */ 11606 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11607 if (fallback_ipif == NULL) { 11608 ipif_refhold_locked(ipif); 11609 fallback_ipif = ipif; 11610 } 11611 continue; 11612 } 11613 11614 /* 11615 * Fine. Just assume the same net mask as the 11616 * directly attached subnet interface is using. 11617 */ 11618 ipif_refhold_locked(ipif); 11619 mutex_exit(&ill->ill_lock); 11620 rw_exit(&ipst->ips_ill_g_lock); 11621 if (fallback_ipif != NULL) 11622 ipif_refrele(fallback_ipif); 11623 *ipifp = ipif; 11624 return (ipif->ipif_net_mask); 11625 } 11626 } 11627 mutex_exit(&ill->ill_lock); 11628 } 11629 rw_exit(&ipst->ips_ill_g_lock); 11630 11631 *ipifp = fallback_ipif; 11632 return ((fallback_ipif != NULL) ? 11633 fallback_ipif->ipif_net_mask : net_mask); 11634 } 11635 11636 /* 11637 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11638 */ 11639 static void 11640 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11641 { 11642 IOCP iocp; 11643 ipft_t *ipft; 11644 ipllc_t *ipllc; 11645 mblk_t *mp1; 11646 cred_t *cr; 11647 int error = 0; 11648 conn_t *connp; 11649 11650 ip1dbg(("ip_wput_ioctl")); 11651 iocp = (IOCP)mp->b_rptr; 11652 mp1 = mp->b_cont; 11653 if (mp1 == NULL) { 11654 iocp->ioc_error = EINVAL; 11655 mp->b_datap->db_type = M_IOCNAK; 11656 iocp->ioc_count = 0; 11657 qreply(q, mp); 11658 return; 11659 } 11660 11661 /* 11662 * These IOCTLs provide various control capabilities to 11663 * upstream agents such as ULPs and processes. There 11664 * are currently two such IOCTLs implemented. They 11665 * are used by TCP to provide update information for 11666 * existing IREs and to forcibly delete an IRE for a 11667 * host that is not responding, thereby forcing an 11668 * attempt at a new route. 11669 */ 11670 iocp->ioc_error = EINVAL; 11671 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11672 goto done; 11673 11674 ipllc = (ipllc_t *)mp1->b_rptr; 11675 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11676 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11677 break; 11678 } 11679 /* 11680 * prefer credential from mblk over ioctl; 11681 * see ip_sioctl_copyin_setup 11682 */ 11683 cr = msg_getcred(mp, NULL); 11684 if (cr == NULL) 11685 cr = iocp->ioc_cr; 11686 11687 /* 11688 * Refhold the conn in case the request gets queued up in some lookup 11689 */ 11690 ASSERT(CONN_Q(q)); 11691 connp = Q_TO_CONN(q); 11692 CONN_INC_REF(connp); 11693 if (ipft->ipft_pfi && 11694 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11695 pullupmsg(mp1, ipft->ipft_min_size))) { 11696 error = (*ipft->ipft_pfi)(q, 11697 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11698 } 11699 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11700 /* 11701 * CONN_OPER_PENDING_DONE happens in the function called 11702 * through ipft_pfi above. 11703 */ 11704 return; 11705 } 11706 11707 CONN_OPER_PENDING_DONE(connp); 11708 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11709 freemsg(mp); 11710 return; 11711 } 11712 iocp->ioc_error = error; 11713 11714 done: 11715 mp->b_datap->db_type = M_IOCACK; 11716 if (iocp->ioc_error) 11717 iocp->ioc_count = 0; 11718 qreply(q, mp); 11719 } 11720 11721 /* 11722 * Assign a unique id for the ipif. This is used by sctp_addr.c 11723 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11724 */ 11725 static void 11726 ipif_assign_seqid(ipif_t *ipif) 11727 { 11728 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11729 11730 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11731 } 11732 11733 /* 11734 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11735 * administratively down (i.e., no DAD), of the same type, and locked. Note 11736 * that the clone is complete -- including the seqid -- and the expectation is 11737 * that the caller will either free or overwrite `sipif' before it's unlocked. 11738 */ 11739 static void 11740 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11741 { 11742 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11743 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11744 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11745 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11746 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11747 11748 dipif->ipif_flags = sipif->ipif_flags; 11749 dipif->ipif_zoneid = sipif->ipif_zoneid; 11750 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11751 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11752 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11753 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11754 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11755 11756 /* 11757 * As per the comment atop the function, we assume that these sipif 11758 * fields will be changed before sipif is unlocked. 11759 */ 11760 dipif->ipif_seqid = sipif->ipif_seqid; 11761 dipif->ipif_state_flags = sipif->ipif_state_flags; 11762 } 11763 11764 /* 11765 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11766 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11767 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11768 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11769 * down (i.e., no DAD), of the same type, and unlocked. 11770 */ 11771 static void 11772 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11773 { 11774 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11775 ipxop_t *ipx = ipsq->ipsq_xop; 11776 11777 ASSERT(sipif != dipif); 11778 ASSERT(sipif != virgipif); 11779 11780 /* 11781 * Grab all of the locks that protect the ipif in a defined order. 11782 */ 11783 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11784 11785 ipif_clone(sipif, dipif); 11786 if (virgipif != NULL) { 11787 ipif_clone(virgipif, sipif); 11788 mi_free(virgipif); 11789 } 11790 11791 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11792 11793 /* 11794 * Transfer ownership of the current xop, if necessary. 11795 */ 11796 if (ipx->ipx_current_ipif == sipif) { 11797 ASSERT(ipx->ipx_pending_ipif == NULL); 11798 mutex_enter(&ipx->ipx_lock); 11799 ipx->ipx_current_ipif = dipif; 11800 mutex_exit(&ipx->ipx_lock); 11801 } 11802 11803 if (virgipif == NULL) 11804 mi_free(sipif); 11805 } 11806 11807 /* 11808 * checks if: 11809 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11810 * - logical interface is within the allowed range 11811 */ 11812 static int 11813 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11814 { 11815 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11816 return (ENAMETOOLONG); 11817 11818 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11819 return (ERANGE); 11820 return (0); 11821 } 11822 11823 /* 11824 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11825 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11826 * be inserted into the first space available in the list. The value of 11827 * ipif_id will then be set to the appropriate value for its position. 11828 */ 11829 static int 11830 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11831 { 11832 ill_t *ill; 11833 ipif_t *tipif; 11834 ipif_t **tipifp; 11835 int id, err; 11836 ip_stack_t *ipst; 11837 11838 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11839 IAM_WRITER_IPIF(ipif)); 11840 11841 ill = ipif->ipif_ill; 11842 ASSERT(ill != NULL); 11843 ipst = ill->ill_ipst; 11844 11845 /* 11846 * In the case of lo0:0 we already hold the ill_g_lock. 11847 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11848 * ipif_insert. 11849 */ 11850 if (acquire_g_lock) 11851 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11852 mutex_enter(&ill->ill_lock); 11853 id = ipif->ipif_id; 11854 tipifp = &(ill->ill_ipif); 11855 if (id == -1) { /* need to find a real id */ 11856 id = 0; 11857 while ((tipif = *tipifp) != NULL) { 11858 ASSERT(tipif->ipif_id >= id); 11859 if (tipif->ipif_id != id) 11860 break; /* non-consecutive id */ 11861 id++; 11862 tipifp = &(tipif->ipif_next); 11863 } 11864 if ((err = is_lifname_valid(ill, id)) != 0) { 11865 mutex_exit(&ill->ill_lock); 11866 if (acquire_g_lock) 11867 rw_exit(&ipst->ips_ill_g_lock); 11868 return (err); 11869 } 11870 ipif->ipif_id = id; /* assign new id */ 11871 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11872 /* we have a real id; insert ipif in the right place */ 11873 while ((tipif = *tipifp) != NULL) { 11874 ASSERT(tipif->ipif_id != id); 11875 if (tipif->ipif_id > id) 11876 break; /* found correct location */ 11877 tipifp = &(tipif->ipif_next); 11878 } 11879 } else { 11880 mutex_exit(&ill->ill_lock); 11881 if (acquire_g_lock) 11882 rw_exit(&ipst->ips_ill_g_lock); 11883 return (err); 11884 } 11885 11886 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11887 11888 ipif->ipif_next = tipif; 11889 *tipifp = ipif; 11890 mutex_exit(&ill->ill_lock); 11891 if (acquire_g_lock) 11892 rw_exit(&ipst->ips_ill_g_lock); 11893 11894 return (0); 11895 } 11896 11897 static void 11898 ipif_remove(ipif_t *ipif) 11899 { 11900 ipif_t **ipifp; 11901 ill_t *ill = ipif->ipif_ill; 11902 11903 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11904 11905 mutex_enter(&ill->ill_lock); 11906 ipifp = &ill->ill_ipif; 11907 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11908 if (*ipifp == ipif) { 11909 *ipifp = ipif->ipif_next; 11910 break; 11911 } 11912 } 11913 mutex_exit(&ill->ill_lock); 11914 } 11915 11916 /* 11917 * Allocate and initialize a new interface control structure. (Always 11918 * called as writer.) 11919 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11920 * is not part of the global linked list of ills. ipif_seqid is unique 11921 * in the system and to preserve the uniqueness, it is assigned only 11922 * when ill becomes part of the global list. At that point ill will 11923 * have a name. If it doesn't get assigned here, it will get assigned 11924 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11925 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11926 * the interface flags or any other information from the DL_INFO_ACK for 11927 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11928 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11929 * second DL_INFO_ACK comes in from the driver. 11930 */ 11931 static ipif_t * 11932 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11933 boolean_t insert, int *errorp) 11934 { 11935 int err; 11936 ipif_t *ipif; 11937 ip_stack_t *ipst = ill->ill_ipst; 11938 11939 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11940 ill->ill_name, id, (void *)ill)); 11941 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11942 11943 if (errorp != NULL) 11944 *errorp = 0; 11945 11946 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11947 if (errorp != NULL) 11948 *errorp = ENOMEM; 11949 return (NULL); 11950 } 11951 *ipif = ipif_zero; /* start clean */ 11952 11953 ipif->ipif_ill = ill; 11954 ipif->ipif_id = id; /* could be -1 */ 11955 /* 11956 * Inherit the zoneid from the ill; for the shared stack instance 11957 * this is always the global zone 11958 */ 11959 ipif->ipif_zoneid = ill->ill_zoneid; 11960 11961 ipif->ipif_refcnt = 0; 11962 11963 if (insert) { 11964 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11965 mi_free(ipif); 11966 if (errorp != NULL) 11967 *errorp = err; 11968 return (NULL); 11969 } 11970 /* -1 id should have been replaced by real id */ 11971 id = ipif->ipif_id; 11972 ASSERT(id >= 0); 11973 } 11974 11975 if (ill->ill_name[0] != '\0') 11976 ipif_assign_seqid(ipif); 11977 11978 /* 11979 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11980 * (which must not exist yet because the zeroth ipif is created once 11981 * per ill). However, do not not link it to the ipmp_grp_t until 11982 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11983 */ 11984 if (id == 0 && IS_IPMP(ill)) { 11985 if (ipmp_illgrp_create(ill) == NULL) { 11986 if (insert) { 11987 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11988 ipif_remove(ipif); 11989 rw_exit(&ipst->ips_ill_g_lock); 11990 } 11991 mi_free(ipif); 11992 if (errorp != NULL) 11993 *errorp = ENOMEM; 11994 return (NULL); 11995 } 11996 } 11997 11998 /* 11999 * We grab ill_lock to protect the flag changes. The ipif is still 12000 * not up and can't be looked up until the ioctl completes and the 12001 * IPIF_CHANGING flag is cleared. 12002 */ 12003 mutex_enter(&ill->ill_lock); 12004 12005 ipif->ipif_ire_type = ire_type; 12006 12007 if (ipif->ipif_isv6) { 12008 ill->ill_flags |= ILLF_IPV6; 12009 } else { 12010 ipaddr_t inaddr_any = INADDR_ANY; 12011 12012 ill->ill_flags |= ILLF_IPV4; 12013 12014 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12015 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12016 &ipif->ipif_v6lcl_addr); 12017 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12018 &ipif->ipif_v6subnet); 12019 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12020 &ipif->ipif_v6net_mask); 12021 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12022 &ipif->ipif_v6brd_addr); 12023 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12024 &ipif->ipif_v6pp_dst_addr); 12025 } 12026 12027 /* 12028 * Don't set the interface flags etc. now, will do it in 12029 * ip_ll_subnet_defaults. 12030 */ 12031 if (!initialize) 12032 goto out; 12033 12034 /* 12035 * NOTE: The IPMP meta-interface is special-cased because it starts 12036 * with no underlying interfaces (and thus an unknown broadcast 12037 * address length), but all interfaces that can be placed into an IPMP 12038 * group are required to be broadcast-capable. 12039 */ 12040 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12041 /* 12042 * Later detect lack of DLPI driver multicast capability by 12043 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12044 */ 12045 ill->ill_flags |= ILLF_MULTICAST; 12046 if (!ipif->ipif_isv6) 12047 ipif->ipif_flags |= IPIF_BROADCAST; 12048 } else { 12049 if (ill->ill_net_type != IRE_LOOPBACK) { 12050 if (ipif->ipif_isv6) 12051 /* 12052 * Note: xresolv interfaces will eventually need 12053 * NOARP set here as well, but that will require 12054 * those external resolvers to have some 12055 * knowledge of that flag and act appropriately. 12056 * Not to be changed at present. 12057 */ 12058 ill->ill_flags |= ILLF_NONUD; 12059 else 12060 ill->ill_flags |= ILLF_NOARP; 12061 } 12062 if (ill->ill_phys_addr_length == 0) { 12063 if (IS_VNI(ill)) { 12064 ipif->ipif_flags |= IPIF_NOXMIT; 12065 } else { 12066 /* pt-pt supports multicast. */ 12067 ill->ill_flags |= ILLF_MULTICAST; 12068 if (ill->ill_net_type != IRE_LOOPBACK) 12069 ipif->ipif_flags |= IPIF_POINTOPOINT; 12070 } 12071 } 12072 } 12073 out: 12074 mutex_exit(&ill->ill_lock); 12075 return (ipif); 12076 } 12077 12078 /* 12079 * Remove the neighbor cache entries associated with this logical 12080 * interface. 12081 */ 12082 int 12083 ipif_arp_down(ipif_t *ipif) 12084 { 12085 ill_t *ill = ipif->ipif_ill; 12086 int err = 0; 12087 12088 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12089 ASSERT(IAM_WRITER_IPIF(ipif)); 12090 12091 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12092 ill_t *, ill, ipif_t *, ipif); 12093 ipif_nce_down(ipif); 12094 12095 /* 12096 * If this is the last ipif that is going down and there are no 12097 * duplicate addresses we may yet attempt to re-probe, then we need to 12098 * clean up ARP completely. 12099 */ 12100 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12101 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12102 /* 12103 * If this was the last ipif on an IPMP interface, purge any 12104 * static ARP entries associated with it. 12105 */ 12106 if (IS_IPMP(ill)) 12107 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12108 12109 /* UNBIND, DETACH */ 12110 err = arp_ll_down(ill); 12111 } 12112 12113 return (err); 12114 } 12115 12116 /* 12117 * Get the resolver set up for a new IP address. (Always called as writer.) 12118 * Called both for IPv4 and IPv6 interfaces, though it only does some 12119 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12120 * 12121 * The enumerated value res_act tunes the behavior: 12122 * * Res_act_initial: set up all the resolver structures for a new 12123 * IP address. 12124 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12125 * ARP message in defense of the address. 12126 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12127 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12128 * 12129 * Returns zero on success, or an errno upon failure. 12130 */ 12131 int 12132 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12133 { 12134 ill_t *ill = ipif->ipif_ill; 12135 int err; 12136 boolean_t was_dup; 12137 12138 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12139 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12140 ASSERT(IAM_WRITER_IPIF(ipif)); 12141 12142 was_dup = B_FALSE; 12143 if (res_act == Res_act_initial) { 12144 ipif->ipif_addr_ready = 0; 12145 /* 12146 * We're bringing an interface up here. There's no way that we 12147 * should need to shut down ARP now. 12148 */ 12149 mutex_enter(&ill->ill_lock); 12150 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12151 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12152 ill->ill_ipif_dup_count--; 12153 was_dup = B_TRUE; 12154 } 12155 mutex_exit(&ill->ill_lock); 12156 } 12157 if (ipif->ipif_recovery_id != 0) 12158 (void) untimeout(ipif->ipif_recovery_id); 12159 ipif->ipif_recovery_id = 0; 12160 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12161 ipif->ipif_addr_ready = 1; 12162 return (0); 12163 } 12164 /* NDP will set the ipif_addr_ready flag when it's ready */ 12165 if (ill->ill_isv6) 12166 return (0); 12167 12168 err = ipif_arp_up(ipif, res_act, was_dup); 12169 return (err); 12170 } 12171 12172 /* 12173 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12174 * when a link has just gone back up. 12175 */ 12176 static void 12177 ipif_nce_start_dad(ipif_t *ipif) 12178 { 12179 ncec_t *ncec; 12180 ill_t *ill = ipif->ipif_ill; 12181 boolean_t isv6 = ill->ill_isv6; 12182 12183 if (isv6) { 12184 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12185 &ipif->ipif_v6lcl_addr); 12186 } else { 12187 ipaddr_t v4addr; 12188 12189 if (ill->ill_net_type != IRE_IF_RESOLVER || 12190 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12191 ipif->ipif_lcl_addr == INADDR_ANY) { 12192 /* 12193 * If we can't contact ARP for some reason, 12194 * that's not really a problem. Just send 12195 * out the routing socket notification that 12196 * DAD completion would have done, and continue. 12197 */ 12198 ipif_mask_reply(ipif); 12199 ipif_up_notify(ipif); 12200 ipif->ipif_addr_ready = 1; 12201 return; 12202 } 12203 12204 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12205 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12206 } 12207 12208 if (ncec == NULL) { 12209 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12210 (void *)ipif)); 12211 return; 12212 } 12213 if (!nce_restart_dad(ncec)) { 12214 /* 12215 * If we can't restart DAD for some reason, that's not really a 12216 * problem. Just send out the routing socket notification that 12217 * DAD completion would have done, and continue. 12218 */ 12219 ipif_up_notify(ipif); 12220 ipif->ipif_addr_ready = 1; 12221 } 12222 ncec_refrele(ncec); 12223 } 12224 12225 /* 12226 * Restart duplicate address detection on all interfaces on the given ill. 12227 * 12228 * This is called when an interface transitions from down to up 12229 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12230 * 12231 * Note that since the underlying physical link has transitioned, we must cause 12232 * at least one routing socket message to be sent here, either via DAD 12233 * completion or just by default on the first ipif. (If we don't do this, then 12234 * in.mpathd will see long delays when doing link-based failure recovery.) 12235 */ 12236 void 12237 ill_restart_dad(ill_t *ill, boolean_t went_up) 12238 { 12239 ipif_t *ipif; 12240 12241 if (ill == NULL) 12242 return; 12243 12244 /* 12245 * If layer two doesn't support duplicate address detection, then just 12246 * send the routing socket message now and be done with it. 12247 */ 12248 if (!ill->ill_isv6 && arp_no_defense) { 12249 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12250 return; 12251 } 12252 12253 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12254 if (went_up) { 12255 12256 if (ipif->ipif_flags & IPIF_UP) { 12257 ipif_nce_start_dad(ipif); 12258 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12259 /* 12260 * kick off the bring-up process now. 12261 */ 12262 ipif_do_recovery(ipif); 12263 } else { 12264 /* 12265 * Unfortunately, the first ipif is "special" 12266 * and represents the underlying ill in the 12267 * routing socket messages. Thus, when this 12268 * one ipif is down, we must still notify so 12269 * that the user knows the IFF_RUNNING status 12270 * change. (If the first ipif is up, then 12271 * we'll handle eventual routing socket 12272 * notification via DAD completion.) 12273 */ 12274 if (ipif == ill->ill_ipif) { 12275 ip_rts_ifmsg(ill->ill_ipif, 12276 RTSQ_DEFAULT); 12277 } 12278 } 12279 } else { 12280 /* 12281 * After link down, we'll need to send a new routing 12282 * message when the link comes back, so clear 12283 * ipif_addr_ready. 12284 */ 12285 ipif->ipif_addr_ready = 0; 12286 } 12287 } 12288 12289 /* 12290 * If we've torn down links, then notify the user right away. 12291 */ 12292 if (!went_up) 12293 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12294 } 12295 12296 static void 12297 ipsq_delete(ipsq_t *ipsq) 12298 { 12299 ipxop_t *ipx = ipsq->ipsq_xop; 12300 12301 ipsq->ipsq_ipst = NULL; 12302 ASSERT(ipsq->ipsq_phyint == NULL); 12303 ASSERT(ipsq->ipsq_xop != NULL); 12304 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12305 ASSERT(ipx->ipx_pending_mp == NULL); 12306 kmem_free(ipsq, sizeof (ipsq_t)); 12307 } 12308 12309 static int 12310 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12311 { 12312 int err = 0; 12313 ipif_t *ipif; 12314 12315 if (ill == NULL) 12316 return (0); 12317 12318 ASSERT(IAM_WRITER_ILL(ill)); 12319 ill->ill_up_ipifs = B_TRUE; 12320 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12321 if (ipif->ipif_was_up) { 12322 if (!(ipif->ipif_flags & IPIF_UP)) 12323 err = ipif_up(ipif, q, mp); 12324 ipif->ipif_was_up = B_FALSE; 12325 if (err != 0) { 12326 ASSERT(err == EINPROGRESS); 12327 return (err); 12328 } 12329 } 12330 } 12331 ill->ill_up_ipifs = B_FALSE; 12332 return (0); 12333 } 12334 12335 /* 12336 * This function is called to bring up all the ipifs that were up before 12337 * bringing the ill down via ill_down_ipifs(). 12338 */ 12339 int 12340 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12341 { 12342 int err; 12343 12344 ASSERT(IAM_WRITER_ILL(ill)); 12345 12346 if (ill->ill_replumbing) { 12347 ill->ill_replumbing = 0; 12348 /* 12349 * Send down REPLUMB_DONE notification followed by the 12350 * BIND_REQ on the arp stream. 12351 */ 12352 if (!ill->ill_isv6) 12353 arp_send_replumb_conf(ill); 12354 } 12355 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12356 if (err != 0) 12357 return (err); 12358 12359 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12360 } 12361 12362 /* 12363 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12364 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12365 */ 12366 static void 12367 ill_down_ipifs(ill_t *ill, boolean_t logical) 12368 { 12369 ipif_t *ipif; 12370 12371 ASSERT(IAM_WRITER_ILL(ill)); 12372 12373 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12374 /* 12375 * We go through the ipif_down logic even if the ipif 12376 * is already down, since routes can be added based 12377 * on down ipifs. Going through ipif_down once again 12378 * will delete any IREs created based on these routes. 12379 */ 12380 if (ipif->ipif_flags & IPIF_UP) 12381 ipif->ipif_was_up = B_TRUE; 12382 12383 if (logical) { 12384 (void) ipif_logical_down(ipif, NULL, NULL); 12385 ipif_non_duplicate(ipif); 12386 (void) ipif_down_tail(ipif); 12387 } else { 12388 (void) ipif_down(ipif, NULL, NULL); 12389 } 12390 } 12391 } 12392 12393 /* 12394 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12395 * a look again at valid source addresses. 12396 * This should be called each time after the set of source addresses has been 12397 * changed. 12398 */ 12399 void 12400 ip_update_source_selection(ip_stack_t *ipst) 12401 { 12402 /* We skip past SRC_GENERATION_VERIFY */ 12403 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12404 SRC_GENERATION_VERIFY) 12405 atomic_add_32(&ipst->ips_src_generation, 1); 12406 } 12407 12408 /* 12409 * Finish the group join started in ip_sioctl_groupname(). 12410 */ 12411 /* ARGSUSED */ 12412 static void 12413 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12414 { 12415 ill_t *ill = q->q_ptr; 12416 phyint_t *phyi = ill->ill_phyint; 12417 ipmp_grp_t *grp = phyi->phyint_grp; 12418 ip_stack_t *ipst = ill->ill_ipst; 12419 12420 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12421 ASSERT(!IS_IPMP(ill) && grp != NULL); 12422 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12423 12424 if (phyi->phyint_illv4 != NULL) { 12425 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12426 VERIFY(grp->gr_pendv4-- > 0); 12427 rw_exit(&ipst->ips_ipmp_lock); 12428 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12429 } 12430 if (phyi->phyint_illv6 != NULL) { 12431 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12432 VERIFY(grp->gr_pendv6-- > 0); 12433 rw_exit(&ipst->ips_ipmp_lock); 12434 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12435 } 12436 freemsg(mp); 12437 } 12438 12439 /* 12440 * Process an SIOCSLIFGROUPNAME request. 12441 */ 12442 /* ARGSUSED */ 12443 int 12444 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12445 ip_ioctl_cmd_t *ipip, void *ifreq) 12446 { 12447 struct lifreq *lifr = ifreq; 12448 ill_t *ill = ipif->ipif_ill; 12449 ip_stack_t *ipst = ill->ill_ipst; 12450 phyint_t *phyi = ill->ill_phyint; 12451 ipmp_grp_t *grp = phyi->phyint_grp; 12452 mblk_t *ipsq_mp; 12453 int err = 0; 12454 12455 /* 12456 * Note that phyint_grp can only change here, where we're exclusive. 12457 */ 12458 ASSERT(IAM_WRITER_ILL(ill)); 12459 12460 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12461 (phyi->phyint_flags & PHYI_VIRTUAL)) 12462 return (EINVAL); 12463 12464 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12465 12466 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12467 12468 /* 12469 * If the name hasn't changed, there's nothing to do. 12470 */ 12471 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12472 goto unlock; 12473 12474 /* 12475 * Handle requests to rename an IPMP meta-interface. 12476 * 12477 * Note that creation of the IPMP meta-interface is handled in 12478 * userland through the standard plumbing sequence. As part of the 12479 * plumbing the IPMP meta-interface, its initial groupname is set to 12480 * the name of the interface (see ipif_set_values_tail()). 12481 */ 12482 if (IS_IPMP(ill)) { 12483 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12484 goto unlock; 12485 } 12486 12487 /* 12488 * Handle requests to add or remove an IP interface from a group. 12489 */ 12490 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12491 /* 12492 * Moves are handled by first removing the interface from 12493 * its existing group, and then adding it to another group. 12494 * So, fail if it's already in a group. 12495 */ 12496 if (IS_UNDER_IPMP(ill)) { 12497 err = EALREADY; 12498 goto unlock; 12499 } 12500 12501 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12502 if (grp == NULL) { 12503 err = ENOENT; 12504 goto unlock; 12505 } 12506 12507 /* 12508 * Check if the phyint and its ills are suitable for 12509 * inclusion into the group. 12510 */ 12511 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12512 goto unlock; 12513 12514 /* 12515 * Checks pass; join the group, and enqueue the remaining 12516 * illgrp joins for when we've become part of the group xop 12517 * and are exclusive across its IPSQs. Since qwriter_ip() 12518 * requires an mblk_t to scribble on, and since `mp' will be 12519 * freed as part of completing the ioctl, allocate another. 12520 */ 12521 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12522 err = ENOMEM; 12523 goto unlock; 12524 } 12525 12526 /* 12527 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12528 * IPMP meta-interface ills needed by `phyi' cannot go away 12529 * before ip_join_illgrps() is called back. See the comments 12530 * in ip_sioctl_plink_ipmp() for more. 12531 */ 12532 if (phyi->phyint_illv4 != NULL) 12533 grp->gr_pendv4++; 12534 if (phyi->phyint_illv6 != NULL) 12535 grp->gr_pendv6++; 12536 12537 rw_exit(&ipst->ips_ipmp_lock); 12538 12539 ipmp_phyint_join_grp(phyi, grp); 12540 ill_refhold(ill); 12541 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12542 SWITCH_OP, B_FALSE); 12543 return (0); 12544 } else { 12545 /* 12546 * Request to remove the interface from a group. If the 12547 * interface is not in a group, this trivially succeeds. 12548 */ 12549 rw_exit(&ipst->ips_ipmp_lock); 12550 if (IS_UNDER_IPMP(ill)) 12551 ipmp_phyint_leave_grp(phyi); 12552 return (0); 12553 } 12554 unlock: 12555 rw_exit(&ipst->ips_ipmp_lock); 12556 return (err); 12557 } 12558 12559 /* 12560 * Process an SIOCGLIFBINDING request. 12561 */ 12562 /* ARGSUSED */ 12563 int 12564 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12565 ip_ioctl_cmd_t *ipip, void *ifreq) 12566 { 12567 ill_t *ill; 12568 struct lifreq *lifr = ifreq; 12569 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12570 12571 if (!IS_IPMP(ipif->ipif_ill)) 12572 return (EINVAL); 12573 12574 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12575 if ((ill = ipif->ipif_bound_ill) == NULL) 12576 lifr->lifr_binding[0] = '\0'; 12577 else 12578 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12579 rw_exit(&ipst->ips_ipmp_lock); 12580 return (0); 12581 } 12582 12583 /* 12584 * Process an SIOCGLIFGROUPNAME request. 12585 */ 12586 /* ARGSUSED */ 12587 int 12588 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12589 ip_ioctl_cmd_t *ipip, void *ifreq) 12590 { 12591 ipmp_grp_t *grp; 12592 struct lifreq *lifr = ifreq; 12593 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12594 12595 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12596 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12597 lifr->lifr_groupname[0] = '\0'; 12598 else 12599 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12600 rw_exit(&ipst->ips_ipmp_lock); 12601 return (0); 12602 } 12603 12604 /* 12605 * Process an SIOCGLIFGROUPINFO request. 12606 */ 12607 /* ARGSUSED */ 12608 int 12609 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12610 ip_ioctl_cmd_t *ipip, void *dummy) 12611 { 12612 ipmp_grp_t *grp; 12613 lifgroupinfo_t *lifgr; 12614 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12615 12616 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12617 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12618 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12619 12620 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12621 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12622 rw_exit(&ipst->ips_ipmp_lock); 12623 return (ENOENT); 12624 } 12625 ipmp_grp_info(grp, lifgr); 12626 rw_exit(&ipst->ips_ipmp_lock); 12627 return (0); 12628 } 12629 12630 static void 12631 ill_dl_down(ill_t *ill) 12632 { 12633 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12634 12635 /* 12636 * The ill is down; unbind but stay attached since we're still 12637 * associated with a PPA. If we have negotiated DLPI capabilites 12638 * with the data link service provider (IDS_OK) then reset them. 12639 * The interval between unbinding and rebinding is potentially 12640 * unbounded hence we cannot assume things will be the same. 12641 * The DLPI capabilities will be probed again when the data link 12642 * is brought up. 12643 */ 12644 mblk_t *mp = ill->ill_unbind_mp; 12645 12646 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12647 12648 if (!ill->ill_replumbing) { 12649 /* Free all ilms for this ill */ 12650 update_conn_ill(ill, ill->ill_ipst); 12651 } else { 12652 ill_leave_multicast(ill); 12653 } 12654 12655 ill->ill_unbind_mp = NULL; 12656 if (mp != NULL) { 12657 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12658 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12659 ill->ill_name)); 12660 mutex_enter(&ill->ill_lock); 12661 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12662 mutex_exit(&ill->ill_lock); 12663 /* 12664 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12665 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12666 * ill_capability_dld_disable disable rightaway. If this is not 12667 * an unplumb operation then the disable happens on receipt of 12668 * the capab ack via ip_rput_dlpi_writer -> 12669 * ill_capability_ack_thr. In both cases the order of 12670 * the operations seen by DLD is capability disable followed 12671 * by DL_UNBIND. Also the DLD capability disable needs a 12672 * cv_wait'able context. 12673 */ 12674 if (ill->ill_state_flags & ILL_CONDEMNED) 12675 ill_capability_dld_disable(ill); 12676 ill_capability_reset(ill, B_FALSE); 12677 ill_dlpi_send(ill, mp); 12678 } 12679 mutex_enter(&ill->ill_lock); 12680 ill->ill_dl_up = 0; 12681 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12682 mutex_exit(&ill->ill_lock); 12683 } 12684 12685 void 12686 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12687 { 12688 union DL_primitives *dlp; 12689 t_uscalar_t prim; 12690 boolean_t waitack = B_FALSE; 12691 12692 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12693 12694 dlp = (union DL_primitives *)mp->b_rptr; 12695 prim = dlp->dl_primitive; 12696 12697 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12698 dl_primstr(prim), prim, ill->ill_name)); 12699 12700 switch (prim) { 12701 case DL_PHYS_ADDR_REQ: 12702 { 12703 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12704 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12705 break; 12706 } 12707 case DL_BIND_REQ: 12708 mutex_enter(&ill->ill_lock); 12709 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12710 mutex_exit(&ill->ill_lock); 12711 break; 12712 } 12713 12714 /* 12715 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12716 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12717 * we only wait for the ACK of the DL_UNBIND_REQ. 12718 */ 12719 mutex_enter(&ill->ill_lock); 12720 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12721 (prim == DL_UNBIND_REQ)) { 12722 ill->ill_dlpi_pending = prim; 12723 waitack = B_TRUE; 12724 } 12725 12726 mutex_exit(&ill->ill_lock); 12727 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12728 char *, dl_primstr(prim), ill_t *, ill); 12729 putnext(ill->ill_wq, mp); 12730 12731 /* 12732 * There is no ack for DL_NOTIFY_CONF messages 12733 */ 12734 if (waitack && prim == DL_NOTIFY_CONF) 12735 ill_dlpi_done(ill, prim); 12736 } 12737 12738 /* 12739 * Helper function for ill_dlpi_send(). 12740 */ 12741 /* ARGSUSED */ 12742 static void 12743 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12744 { 12745 ill_dlpi_send(q->q_ptr, mp); 12746 } 12747 12748 /* 12749 * Send a DLPI control message to the driver but make sure there 12750 * is only one outstanding message. Uses ill_dlpi_pending to tell 12751 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12752 * when an ACK or a NAK is received to process the next queued message. 12753 */ 12754 void 12755 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12756 { 12757 mblk_t **mpp; 12758 12759 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12760 12761 /* 12762 * To ensure that any DLPI requests for current exclusive operation 12763 * are always completely sent before any DLPI messages for other 12764 * operations, require writer access before enqueuing. 12765 */ 12766 if (!IAM_WRITER_ILL(ill)) { 12767 ill_refhold(ill); 12768 /* qwriter_ip() does the ill_refrele() */ 12769 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12770 NEW_OP, B_TRUE); 12771 return; 12772 } 12773 12774 mutex_enter(&ill->ill_lock); 12775 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12776 /* Must queue message. Tail insertion */ 12777 mpp = &ill->ill_dlpi_deferred; 12778 while (*mpp != NULL) 12779 mpp = &((*mpp)->b_next); 12780 12781 ip1dbg(("ill_dlpi_send: deferring request for %s " 12782 "while %s pending\n", ill->ill_name, 12783 dl_primstr(ill->ill_dlpi_pending))); 12784 12785 *mpp = mp; 12786 mutex_exit(&ill->ill_lock); 12787 return; 12788 } 12789 mutex_exit(&ill->ill_lock); 12790 ill_dlpi_dispatch(ill, mp); 12791 } 12792 12793 void 12794 ill_capability_send(ill_t *ill, mblk_t *mp) 12795 { 12796 ill->ill_capab_pending_cnt++; 12797 ill_dlpi_send(ill, mp); 12798 } 12799 12800 void 12801 ill_capability_done(ill_t *ill) 12802 { 12803 ASSERT(ill->ill_capab_pending_cnt != 0); 12804 12805 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12806 12807 ill->ill_capab_pending_cnt--; 12808 if (ill->ill_capab_pending_cnt == 0 && 12809 ill->ill_dlpi_capab_state == IDCS_OK) 12810 ill_capability_reset_alloc(ill); 12811 } 12812 12813 /* 12814 * Send all deferred DLPI messages without waiting for their ACKs. 12815 */ 12816 void 12817 ill_dlpi_send_deferred(ill_t *ill) 12818 { 12819 mblk_t *mp, *nextmp; 12820 12821 /* 12822 * Clear ill_dlpi_pending so that the message is not queued in 12823 * ill_dlpi_send(). 12824 */ 12825 mutex_enter(&ill->ill_lock); 12826 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12827 mp = ill->ill_dlpi_deferred; 12828 ill->ill_dlpi_deferred = NULL; 12829 mutex_exit(&ill->ill_lock); 12830 12831 for (; mp != NULL; mp = nextmp) { 12832 nextmp = mp->b_next; 12833 mp->b_next = NULL; 12834 ill_dlpi_send(ill, mp); 12835 } 12836 } 12837 12838 /* 12839 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12840 * or M_HANGUP 12841 */ 12842 static void 12843 ill_dlpi_clear_deferred(ill_t *ill) 12844 { 12845 mblk_t *mp, *nextmp; 12846 12847 mutex_enter(&ill->ill_lock); 12848 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12849 mp = ill->ill_dlpi_deferred; 12850 ill->ill_dlpi_deferred = NULL; 12851 mutex_exit(&ill->ill_lock); 12852 12853 for (; mp != NULL; mp = nextmp) { 12854 nextmp = mp->b_next; 12855 inet_freemsg(mp); 12856 } 12857 } 12858 12859 /* 12860 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12861 */ 12862 boolean_t 12863 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12864 { 12865 t_uscalar_t pending; 12866 12867 mutex_enter(&ill->ill_lock); 12868 if (ill->ill_dlpi_pending == prim) { 12869 mutex_exit(&ill->ill_lock); 12870 return (B_TRUE); 12871 } 12872 12873 /* 12874 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12875 * without waiting, so don't print any warnings in that case. 12876 */ 12877 if (ill->ill_state_flags & ILL_CONDEMNED) { 12878 mutex_exit(&ill->ill_lock); 12879 return (B_FALSE); 12880 } 12881 pending = ill->ill_dlpi_pending; 12882 mutex_exit(&ill->ill_lock); 12883 12884 if (pending == DL_PRIM_INVAL) { 12885 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12886 "received unsolicited ack for %s on %s\n", 12887 dl_primstr(prim), ill->ill_name); 12888 } else { 12889 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12890 "received unexpected ack for %s on %s (expecting %s)\n", 12891 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12892 } 12893 return (B_FALSE); 12894 } 12895 12896 /* 12897 * Complete the current DLPI operation associated with `prim' on `ill' and 12898 * start the next queued DLPI operation (if any). If there are no queued DLPI 12899 * operations and the ill's current exclusive IPSQ operation has finished 12900 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12901 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12902 * the comments above ipsq_current_finish() for details. 12903 */ 12904 void 12905 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12906 { 12907 mblk_t *mp; 12908 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12909 ipxop_t *ipx = ipsq->ipsq_xop; 12910 12911 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12912 mutex_enter(&ill->ill_lock); 12913 12914 ASSERT(prim != DL_PRIM_INVAL); 12915 ASSERT(ill->ill_dlpi_pending == prim); 12916 12917 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12918 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12919 12920 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12921 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12922 if (ipx->ipx_current_done) { 12923 mutex_enter(&ipx->ipx_lock); 12924 ipx->ipx_current_ipif = NULL; 12925 mutex_exit(&ipx->ipx_lock); 12926 } 12927 cv_signal(&ill->ill_cv); 12928 mutex_exit(&ill->ill_lock); 12929 return; 12930 } 12931 12932 ill->ill_dlpi_deferred = mp->b_next; 12933 mp->b_next = NULL; 12934 mutex_exit(&ill->ill_lock); 12935 12936 ill_dlpi_dispatch(ill, mp); 12937 } 12938 12939 /* 12940 * Queue a (multicast) DLPI control message to be sent to the driver by 12941 * later calling ill_dlpi_send_queued. 12942 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12943 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12944 * for the same group to race. 12945 * We send DLPI control messages in order using ill_lock. 12946 * For IPMP we should be called on the cast_ill. 12947 */ 12948 void 12949 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12950 { 12951 mblk_t **mpp; 12952 12953 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12954 12955 mutex_enter(&ill->ill_lock); 12956 /* Must queue message. Tail insertion */ 12957 mpp = &ill->ill_dlpi_deferred; 12958 while (*mpp != NULL) 12959 mpp = &((*mpp)->b_next); 12960 12961 *mpp = mp; 12962 mutex_exit(&ill->ill_lock); 12963 } 12964 12965 /* 12966 * Send the messages that were queued. Make sure there is only 12967 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12968 * when an ACK or a NAK is received to process the next queued message. 12969 * For IPMP we are called on the upper ill, but when send what is queued 12970 * on the cast_ill. 12971 */ 12972 void 12973 ill_dlpi_send_queued(ill_t *ill) 12974 { 12975 mblk_t *mp; 12976 union DL_primitives *dlp; 12977 t_uscalar_t prim; 12978 ill_t *release_ill = NULL; 12979 12980 if (IS_IPMP(ill)) { 12981 /* On the upper IPMP ill. */ 12982 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12983 if (release_ill == NULL) { 12984 /* Avoid ever sending anything down to the ipmpstub */ 12985 return; 12986 } 12987 ill = release_ill; 12988 } 12989 mutex_enter(&ill->ill_lock); 12990 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12991 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12992 /* Can't send. Somebody else will send it */ 12993 mutex_exit(&ill->ill_lock); 12994 goto done; 12995 } 12996 ill->ill_dlpi_deferred = mp->b_next; 12997 mp->b_next = NULL; 12998 if (!ill->ill_dl_up) { 12999 /* 13000 * Nobody there. All multicast addresses will be 13001 * re-joined when we get the DL_BIND_ACK bringing the 13002 * interface up. 13003 */ 13004 freemsg(mp); 13005 continue; 13006 } 13007 dlp = (union DL_primitives *)mp->b_rptr; 13008 prim = dlp->dl_primitive; 13009 13010 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13011 (prim == DL_UNBIND_REQ)) { 13012 ill->ill_dlpi_pending = prim; 13013 } 13014 mutex_exit(&ill->ill_lock); 13015 13016 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13017 char *, dl_primstr(prim), ill_t *, ill); 13018 putnext(ill->ill_wq, mp); 13019 mutex_enter(&ill->ill_lock); 13020 } 13021 mutex_exit(&ill->ill_lock); 13022 done: 13023 if (release_ill != NULL) 13024 ill_refrele(release_ill); 13025 } 13026 13027 /* 13028 * Queue an IP (IGMP/MLD) message to be sent by IP from 13029 * ill_mcast_send_queued 13030 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13031 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13032 * group to race. 13033 * We send them in order using ill_lock. 13034 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13035 */ 13036 void 13037 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13038 { 13039 mblk_t **mpp; 13040 ill_t *release_ill = NULL; 13041 13042 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13043 13044 if (IS_IPMP(ill)) { 13045 /* On the upper IPMP ill. */ 13046 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13047 if (release_ill == NULL) { 13048 /* Discard instead of queuing for the ipmp interface */ 13049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13050 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13051 mp, ill); 13052 freemsg(mp); 13053 return; 13054 } 13055 ill = release_ill; 13056 } 13057 13058 mutex_enter(&ill->ill_lock); 13059 /* Must queue message. Tail insertion */ 13060 mpp = &ill->ill_mcast_deferred; 13061 while (*mpp != NULL) 13062 mpp = &((*mpp)->b_next); 13063 13064 *mpp = mp; 13065 mutex_exit(&ill->ill_lock); 13066 if (release_ill != NULL) 13067 ill_refrele(release_ill); 13068 } 13069 13070 /* 13071 * Send the IP packets that were queued by ill_mcast_queue. 13072 * These are IGMP/MLD packets. 13073 * 13074 * For IPMP we are called on the upper ill, but when send what is queued 13075 * on the cast_ill. 13076 * 13077 * Request loopback of the report if we are acting as a multicast 13078 * router, so that the process-level routing demon can hear it. 13079 * This will run multiple times for the same group if there are members 13080 * on the same group for multiple ipif's on the same ill. The 13081 * igmp_input/mld_input code will suppress this due to the loopback thus we 13082 * always loopback membership report. 13083 * 13084 * We also need to make sure that this does not get load balanced 13085 * by IPMP. We do this by passing an ill to ip_output_simple. 13086 */ 13087 void 13088 ill_mcast_send_queued(ill_t *ill) 13089 { 13090 mblk_t *mp; 13091 ip_xmit_attr_t ixas; 13092 ill_t *release_ill = NULL; 13093 13094 if (IS_IPMP(ill)) { 13095 /* On the upper IPMP ill. */ 13096 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13097 if (release_ill == NULL) { 13098 /* 13099 * We should have no messages on the ipmp interface 13100 * but no point in trying to send them. 13101 */ 13102 return; 13103 } 13104 ill = release_ill; 13105 } 13106 bzero(&ixas, sizeof (ixas)); 13107 ixas.ixa_zoneid = ALL_ZONES; 13108 ixas.ixa_cred = kcred; 13109 ixas.ixa_cpid = NOPID; 13110 ixas.ixa_tsl = NULL; 13111 /* 13112 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13113 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13114 * That is necessary to handle IGMP/MLD snooping switches. 13115 */ 13116 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13117 ixas.ixa_ipst = ill->ill_ipst; 13118 13119 mutex_enter(&ill->ill_lock); 13120 while ((mp = ill->ill_mcast_deferred) != NULL) { 13121 ill->ill_mcast_deferred = mp->b_next; 13122 mp->b_next = NULL; 13123 if (!ill->ill_dl_up) { 13124 /* 13125 * Nobody there. Just drop the ip packets. 13126 * IGMP/MLD will resend later, if this is a replumb. 13127 */ 13128 freemsg(mp); 13129 continue; 13130 } 13131 mutex_enter(&ill->ill_phyint->phyint_lock); 13132 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13133 /* 13134 * When the ill is getting deactivated, we only want to 13135 * send the DLPI messages, so drop IGMP/MLD packets. 13136 * DLPI messages are handled by ill_dlpi_send_queued() 13137 */ 13138 mutex_exit(&ill->ill_phyint->phyint_lock); 13139 freemsg(mp); 13140 continue; 13141 } 13142 mutex_exit(&ill->ill_phyint->phyint_lock); 13143 mutex_exit(&ill->ill_lock); 13144 13145 /* Check whether we are sending IPv4 or IPv6. */ 13146 if (ill->ill_isv6) { 13147 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13148 13149 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13150 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13151 } else { 13152 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13153 13154 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13155 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13156 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13157 } 13158 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13159 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13160 (void) ip_output_simple(mp, &ixas); 13161 ixa_cleanup(&ixas); 13162 13163 mutex_enter(&ill->ill_lock); 13164 } 13165 mutex_exit(&ill->ill_lock); 13166 13167 done: 13168 if (release_ill != NULL) 13169 ill_refrele(release_ill); 13170 } 13171 13172 /* 13173 * Take down a specific interface, but don't lose any information about it. 13174 * (Always called as writer.) 13175 * This function goes through the down sequence even if the interface is 13176 * already down. There are 2 reasons. 13177 * a. Currently we permit interface routes that depend on down interfaces 13178 * to be added. This behaviour itself is questionable. However it appears 13179 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13180 * time. We go thru the cleanup in order to remove these routes. 13181 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13182 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13183 * down, but we need to cleanup i.e. do ill_dl_down and 13184 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13185 * 13186 * IP-MT notes: 13187 * 13188 * Model of reference to interfaces. 13189 * 13190 * The following members in ipif_t track references to the ipif. 13191 * int ipif_refcnt; Active reference count 13192 * 13193 * The following members in ill_t track references to the ill. 13194 * int ill_refcnt; active refcnt 13195 * uint_t ill_ire_cnt; Number of ires referencing ill 13196 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13197 * uint_t ill_nce_cnt; Number of nces referencing ill 13198 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13199 * 13200 * Reference to an ipif or ill can be obtained in any of the following ways. 13201 * 13202 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13203 * Pointers to ipif / ill from other data structures viz ire and conn. 13204 * Implicit reference to the ipif / ill by holding a reference to the ire. 13205 * 13206 * The ipif/ill lookup functions return a reference held ipif / ill. 13207 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13208 * This is a purely dynamic reference count associated with threads holding 13209 * references to the ipif / ill. Pointers from other structures do not 13210 * count towards this reference count. 13211 * 13212 * ill_ire_cnt is the number of ire's associated with the 13213 * ill. This is incremented whenever a new ire is created referencing the 13214 * ill. This is done atomically inside ire_add_v[46] where the ire is 13215 * actually added to the ire hash table. The count is decremented in 13216 * ire_inactive where the ire is destroyed. 13217 * 13218 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13219 * This is incremented atomically in 13220 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13221 * table. Similarly it is decremented in ncec_inactive() where the ncec 13222 * is destroyed. 13223 * 13224 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13225 * incremented atomically in nce_add() where the nce is actually added to the 13226 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13227 * is destroyed. 13228 * 13229 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13230 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13231 * 13232 * Flow of ioctls involving interface down/up 13233 * 13234 * The following is the sequence of an attempt to set some critical flags on an 13235 * up interface. 13236 * ip_sioctl_flags 13237 * ipif_down 13238 * wait for ipif to be quiescent 13239 * ipif_down_tail 13240 * ip_sioctl_flags_tail 13241 * 13242 * All set ioctls that involve down/up sequence would have a skeleton similar 13243 * to the above. All the *tail functions are called after the refcounts have 13244 * dropped to the appropriate values. 13245 * 13246 * SIOC ioctls during the IPIF_CHANGING interval. 13247 * 13248 * Threads handling SIOC set ioctls serialize on the squeue, but this 13249 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13250 * steps of internal changes to the state, some of which are visible in 13251 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13252 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13253 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13254 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13255 * the current exclusive operation completes. The IPIF_CHANGING check 13256 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13257 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13258 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13259 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13260 * until we release the ipsq_lock, even though the ill/ipif state flags 13261 * can change after we drop the ill_lock. 13262 */ 13263 int 13264 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13265 { 13266 ill_t *ill = ipif->ipif_ill; 13267 conn_t *connp; 13268 boolean_t success; 13269 boolean_t ipif_was_up = B_FALSE; 13270 ip_stack_t *ipst = ill->ill_ipst; 13271 13272 ASSERT(IAM_WRITER_IPIF(ipif)); 13273 13274 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13275 13276 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13277 ill_t *, ill, ipif_t *, ipif); 13278 13279 if (ipif->ipif_flags & IPIF_UP) { 13280 mutex_enter(&ill->ill_lock); 13281 ipif->ipif_flags &= ~IPIF_UP; 13282 ASSERT(ill->ill_ipif_up_count > 0); 13283 --ill->ill_ipif_up_count; 13284 mutex_exit(&ill->ill_lock); 13285 ipif_was_up = B_TRUE; 13286 /* Update status in SCTP's list */ 13287 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13288 ill_nic_event_dispatch(ipif->ipif_ill, 13289 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13290 } 13291 13292 /* 13293 * Removal of the last ipif from an ill may result in a DL_UNBIND 13294 * being sent to the driver, and we must not send any data packets to 13295 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13296 * ire and nce entries used in the data path will be cleaned 13297 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13298 * sure on new entries will be added until the ill is bound 13299 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13300 * receipt of a DL_BIND_ACK. 13301 */ 13302 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13303 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13304 ill->ill_dl_up) { 13305 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13306 } 13307 13308 /* 13309 * Blow away memberships we established in ipif_multicast_up(). 13310 */ 13311 ipif_multicast_down(ipif); 13312 13313 /* 13314 * Remove from the mapping for __sin6_src_id. We insert only 13315 * when the address is not INADDR_ANY. As IPv4 addresses are 13316 * stored as mapped addresses, we need to check for mapped 13317 * INADDR_ANY also. 13318 */ 13319 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13320 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13321 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13322 int err; 13323 13324 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13325 ipif->ipif_zoneid, ipst); 13326 if (err != 0) { 13327 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13328 } 13329 } 13330 13331 if (ipif_was_up) { 13332 /* only delete if we'd added ire's before */ 13333 if (ipif->ipif_isv6) 13334 ipif_delete_ires_v6(ipif); 13335 else 13336 ipif_delete_ires_v4(ipif); 13337 } 13338 13339 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13340 /* 13341 * Since the interface is now down, it may have just become 13342 * inactive. Note that this needs to be done even for a 13343 * lll_logical_down(), or ARP entries will not get correctly 13344 * restored when the interface comes back up. 13345 */ 13346 if (IS_UNDER_IPMP(ill)) 13347 ipmp_ill_refresh_active(ill); 13348 } 13349 13350 /* 13351 * neighbor-discovery or arp entries for this interface. The ipif 13352 * has to be quiesced, so we walk all the nce's and delete those 13353 * that point at the ipif->ipif_ill. At the same time, we also 13354 * update IPMP so that ipifs for data addresses are unbound. We dont 13355 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13356 * that for ipif_down_tail() 13357 */ 13358 ipif_nce_down(ipif); 13359 13360 /* 13361 * If this is the last ipif on the ill, we also need to remove 13362 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13363 * never succeed. 13364 */ 13365 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13366 ire_walk_ill(0, 0, ill_downi, ill, ill); 13367 13368 /* 13369 * Walk all CONNs that can have a reference on an ire for this 13370 * ipif (we actually walk all that now have stale references). 13371 */ 13372 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13373 13374 /* 13375 * If mp is NULL the caller will wait for the appropriate refcnt. 13376 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13377 * and ill_delete -> ipif_free -> ipif_down 13378 */ 13379 if (mp == NULL) { 13380 ASSERT(q == NULL); 13381 return (0); 13382 } 13383 13384 if (CONN_Q(q)) { 13385 connp = Q_TO_CONN(q); 13386 mutex_enter(&connp->conn_lock); 13387 } else { 13388 connp = NULL; 13389 } 13390 mutex_enter(&ill->ill_lock); 13391 /* 13392 * Are there any ire's pointing to this ipif that are still active ? 13393 * If this is the last ipif going down, are there any ire's pointing 13394 * to this ill that are still active ? 13395 */ 13396 if (ipif_is_quiescent(ipif)) { 13397 mutex_exit(&ill->ill_lock); 13398 if (connp != NULL) 13399 mutex_exit(&connp->conn_lock); 13400 return (0); 13401 } 13402 13403 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13404 ill->ill_name, (void *)ill)); 13405 /* 13406 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13407 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13408 * which in turn is called by the last refrele on the ipif/ill/ire. 13409 */ 13410 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13411 if (!success) { 13412 /* The conn is closing. So just return */ 13413 ASSERT(connp != NULL); 13414 mutex_exit(&ill->ill_lock); 13415 mutex_exit(&connp->conn_lock); 13416 return (EINTR); 13417 } 13418 13419 mutex_exit(&ill->ill_lock); 13420 if (connp != NULL) 13421 mutex_exit(&connp->conn_lock); 13422 return (EINPROGRESS); 13423 } 13424 13425 int 13426 ipif_down_tail(ipif_t *ipif) 13427 { 13428 ill_t *ill = ipif->ipif_ill; 13429 int err = 0; 13430 13431 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13432 ill_t *, ill, ipif_t *, ipif); 13433 13434 /* 13435 * Skip any loopback interface (null wq). 13436 * If this is the last logical interface on the ill 13437 * have ill_dl_down tell the driver we are gone (unbind) 13438 * Note that lun 0 can ipif_down even though 13439 * there are other logical units that are up. 13440 * This occurs e.g. when we change a "significant" IFF_ flag. 13441 */ 13442 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13443 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13444 ill->ill_dl_up) { 13445 ill_dl_down(ill); 13446 } 13447 if (!ipif->ipif_isv6) 13448 err = ipif_arp_down(ipif); 13449 13450 ill->ill_logical_down = 0; 13451 13452 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13453 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13454 return (err); 13455 } 13456 13457 /* 13458 * Bring interface logically down without bringing the physical interface 13459 * down e.g. when the netmask is changed. This avoids long lasting link 13460 * negotiations between an ethernet interface and a certain switches. 13461 */ 13462 static int 13463 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13464 { 13465 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13466 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13467 13468 /* 13469 * The ill_logical_down flag is a transient flag. It is set here 13470 * and is cleared once the down has completed in ipif_down_tail. 13471 * This flag does not indicate whether the ill stream is in the 13472 * DL_BOUND state with the driver. Instead this flag is used by 13473 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13474 * the driver. The state of the ill stream i.e. whether it is 13475 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13476 */ 13477 ipif->ipif_ill->ill_logical_down = 1; 13478 return (ipif_down(ipif, q, mp)); 13479 } 13480 13481 /* 13482 * Initiate deallocate of an IPIF. Always called as writer. Called by 13483 * ill_delete or ip_sioctl_removeif. 13484 */ 13485 static void 13486 ipif_free(ipif_t *ipif) 13487 { 13488 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13489 13490 ASSERT(IAM_WRITER_IPIF(ipif)); 13491 13492 if (ipif->ipif_recovery_id != 0) 13493 (void) untimeout(ipif->ipif_recovery_id); 13494 ipif->ipif_recovery_id = 0; 13495 13496 /* 13497 * Take down the interface. We can be called either from ill_delete 13498 * or from ip_sioctl_removeif. 13499 */ 13500 (void) ipif_down(ipif, NULL, NULL); 13501 13502 /* 13503 * Now that the interface is down, there's no chance it can still 13504 * become a duplicate. Cancel any timer that may have been set while 13505 * tearing down. 13506 */ 13507 if (ipif->ipif_recovery_id != 0) 13508 (void) untimeout(ipif->ipif_recovery_id); 13509 ipif->ipif_recovery_id = 0; 13510 13511 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13512 /* Remove pointers to this ill in the multicast routing tables */ 13513 reset_mrt_vif_ipif(ipif); 13514 /* If necessary, clear the cached source ipif rotor. */ 13515 if (ipif->ipif_ill->ill_src_ipif == ipif) 13516 ipif->ipif_ill->ill_src_ipif = NULL; 13517 rw_exit(&ipst->ips_ill_g_lock); 13518 } 13519 13520 static void 13521 ipif_free_tail(ipif_t *ipif) 13522 { 13523 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13524 13525 /* 13526 * Need to hold both ill_g_lock and ill_lock while 13527 * inserting or removing an ipif from the linked list 13528 * of ipifs hanging off the ill. 13529 */ 13530 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13531 13532 #ifdef DEBUG 13533 ipif_trace_cleanup(ipif); 13534 #endif 13535 13536 /* Ask SCTP to take it out of it list */ 13537 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13538 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13539 13540 /* Get it out of the ILL interface list. */ 13541 ipif_remove(ipif); 13542 rw_exit(&ipst->ips_ill_g_lock); 13543 13544 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13545 ASSERT(ipif->ipif_recovery_id == 0); 13546 ASSERT(ipif->ipif_ire_local == NULL); 13547 ASSERT(ipif->ipif_ire_if == NULL); 13548 13549 /* Free the memory. */ 13550 mi_free(ipif); 13551 } 13552 13553 /* 13554 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13555 * is zero. 13556 */ 13557 void 13558 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13559 { 13560 char lbuf[LIFNAMSIZ]; 13561 char *name; 13562 size_t name_len; 13563 13564 buf[0] = '\0'; 13565 name = ipif->ipif_ill->ill_name; 13566 name_len = ipif->ipif_ill->ill_name_length; 13567 if (ipif->ipif_id != 0) { 13568 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13569 ipif->ipif_id); 13570 name = lbuf; 13571 name_len = mi_strlen(name) + 1; 13572 } 13573 len -= 1; 13574 buf[len] = '\0'; 13575 len = MIN(len, name_len); 13576 bcopy(name, buf, len); 13577 } 13578 13579 /* 13580 * Sets `buf' to an ill name. 13581 */ 13582 void 13583 ill_get_name(const ill_t *ill, char *buf, int len) 13584 { 13585 char *name; 13586 size_t name_len; 13587 13588 name = ill->ill_name; 13589 name_len = ill->ill_name_length; 13590 len -= 1; 13591 buf[len] = '\0'; 13592 len = MIN(len, name_len); 13593 bcopy(name, buf, len); 13594 } 13595 13596 /* 13597 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13598 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13599 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13600 * (May be called as writer.) 13601 */ 13602 static ipif_t * 13603 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13604 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13605 { 13606 char *cp; 13607 char *endp; 13608 long id; 13609 ill_t *ill; 13610 ipif_t *ipif; 13611 uint_t ire_type; 13612 boolean_t did_alloc = B_FALSE; 13613 char last; 13614 13615 /* 13616 * If the caller wants to us to create the ipif, make sure we have a 13617 * valid zoneid 13618 */ 13619 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13620 13621 if (namelen == 0) { 13622 return (NULL); 13623 } 13624 13625 *exists = B_FALSE; 13626 /* Look for a colon in the name. */ 13627 endp = &name[namelen]; 13628 for (cp = endp; --cp > name; ) { 13629 if (*cp == IPIF_SEPARATOR_CHAR) 13630 break; 13631 } 13632 13633 if (*cp == IPIF_SEPARATOR_CHAR) { 13634 /* 13635 * Reject any non-decimal aliases for logical 13636 * interfaces. Aliases with leading zeroes 13637 * are also rejected as they introduce ambiguity 13638 * in the naming of the interfaces. 13639 * In order to confirm with existing semantics, 13640 * and to not break any programs/script relying 13641 * on that behaviour, if<0>:0 is considered to be 13642 * a valid interface. 13643 * 13644 * If alias has two or more digits and the first 13645 * is zero, fail. 13646 */ 13647 if (&cp[2] < endp && cp[1] == '0') { 13648 return (NULL); 13649 } 13650 } 13651 13652 if (cp <= name) { 13653 cp = endp; 13654 } 13655 last = *cp; 13656 *cp = '\0'; 13657 13658 /* 13659 * Look up the ILL, based on the portion of the name 13660 * before the slash. ill_lookup_on_name returns a held ill. 13661 * Temporary to check whether ill exists already. If so 13662 * ill_lookup_on_name will clear it. 13663 */ 13664 ill = ill_lookup_on_name(name, do_alloc, isv6, 13665 &did_alloc, ipst); 13666 *cp = last; 13667 if (ill == NULL) 13668 return (NULL); 13669 13670 /* Establish the unit number in the name. */ 13671 id = 0; 13672 if (cp < endp && *endp == '\0') { 13673 /* If there was a colon, the unit number follows. */ 13674 cp++; 13675 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13676 ill_refrele(ill); 13677 return (NULL); 13678 } 13679 } 13680 13681 mutex_enter(&ill->ill_lock); 13682 /* Now see if there is an IPIF with this unit number. */ 13683 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13684 if (ipif->ipif_id == id) { 13685 if (zoneid != ALL_ZONES && 13686 zoneid != ipif->ipif_zoneid && 13687 ipif->ipif_zoneid != ALL_ZONES) { 13688 mutex_exit(&ill->ill_lock); 13689 ill_refrele(ill); 13690 return (NULL); 13691 } 13692 if (IPIF_CAN_LOOKUP(ipif)) { 13693 ipif_refhold_locked(ipif); 13694 mutex_exit(&ill->ill_lock); 13695 if (!did_alloc) 13696 *exists = B_TRUE; 13697 /* 13698 * Drop locks before calling ill_refrele 13699 * since it can potentially call into 13700 * ipif_ill_refrele_tail which can end up 13701 * in trying to acquire any lock. 13702 */ 13703 ill_refrele(ill); 13704 return (ipif); 13705 } 13706 } 13707 } 13708 13709 if (!do_alloc) { 13710 mutex_exit(&ill->ill_lock); 13711 ill_refrele(ill); 13712 return (NULL); 13713 } 13714 13715 /* 13716 * If none found, atomically allocate and return a new one. 13717 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13718 * to support "receive only" use of lo0:1 etc. as is still done 13719 * below as an initial guess. 13720 * However, this is now likely to be overriden later in ipif_up_done() 13721 * when we know for sure what address has been configured on the 13722 * interface, since we might have more than one loopback interface 13723 * with a loopback address, e.g. in the case of zones, and all the 13724 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13725 */ 13726 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13727 ire_type = IRE_LOOPBACK; 13728 else 13729 ire_type = IRE_LOCAL; 13730 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13731 if (ipif != NULL) 13732 ipif_refhold_locked(ipif); 13733 mutex_exit(&ill->ill_lock); 13734 ill_refrele(ill); 13735 return (ipif); 13736 } 13737 13738 /* 13739 * Variant of the above that queues the request on the ipsq when 13740 * IPIF_CHANGING is set. 13741 */ 13742 static ipif_t * 13743 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13744 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13745 ip_stack_t *ipst) 13746 { 13747 char *cp; 13748 char *endp; 13749 long id; 13750 ill_t *ill; 13751 ipif_t *ipif; 13752 boolean_t did_alloc = B_FALSE; 13753 ipsq_t *ipsq; 13754 13755 if (error != NULL) 13756 *error = 0; 13757 13758 if (namelen == 0) { 13759 if (error != NULL) 13760 *error = ENXIO; 13761 return (NULL); 13762 } 13763 13764 /* Look for a colon in the name. */ 13765 endp = &name[namelen]; 13766 for (cp = endp; --cp > name; ) { 13767 if (*cp == IPIF_SEPARATOR_CHAR) 13768 break; 13769 } 13770 13771 if (*cp == IPIF_SEPARATOR_CHAR) { 13772 /* 13773 * Reject any non-decimal aliases for logical 13774 * interfaces. Aliases with leading zeroes 13775 * are also rejected as they introduce ambiguity 13776 * in the naming of the interfaces. 13777 * In order to confirm with existing semantics, 13778 * and to not break any programs/script relying 13779 * on that behaviour, if<0>:0 is considered to be 13780 * a valid interface. 13781 * 13782 * If alias has two or more digits and the first 13783 * is zero, fail. 13784 */ 13785 if (&cp[2] < endp && cp[1] == '0') { 13786 if (error != NULL) 13787 *error = EINVAL; 13788 return (NULL); 13789 } 13790 } 13791 13792 if (cp <= name) { 13793 cp = endp; 13794 } else { 13795 *cp = '\0'; 13796 } 13797 13798 /* 13799 * Look up the ILL, based on the portion of the name 13800 * before the slash. ill_lookup_on_name returns a held ill. 13801 * Temporary to check whether ill exists already. If so 13802 * ill_lookup_on_name will clear it. 13803 */ 13804 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13805 if (cp != endp) 13806 *cp = IPIF_SEPARATOR_CHAR; 13807 if (ill == NULL) 13808 return (NULL); 13809 13810 /* Establish the unit number in the name. */ 13811 id = 0; 13812 if (cp < endp && *endp == '\0') { 13813 /* If there was a colon, the unit number follows. */ 13814 cp++; 13815 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13816 ill_refrele(ill); 13817 if (error != NULL) 13818 *error = ENXIO; 13819 return (NULL); 13820 } 13821 } 13822 13823 GRAB_CONN_LOCK(q); 13824 mutex_enter(&ill->ill_lock); 13825 /* Now see if there is an IPIF with this unit number. */ 13826 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13827 if (ipif->ipif_id == id) { 13828 if (zoneid != ALL_ZONES && 13829 zoneid != ipif->ipif_zoneid && 13830 ipif->ipif_zoneid != ALL_ZONES) { 13831 mutex_exit(&ill->ill_lock); 13832 RELEASE_CONN_LOCK(q); 13833 ill_refrele(ill); 13834 if (error != NULL) 13835 *error = ENXIO; 13836 return (NULL); 13837 } 13838 13839 if (!(IPIF_IS_CHANGING(ipif) || 13840 IPIF_IS_CONDEMNED(ipif)) || 13841 IAM_WRITER_IPIF(ipif)) { 13842 ipif_refhold_locked(ipif); 13843 mutex_exit(&ill->ill_lock); 13844 /* 13845 * Drop locks before calling ill_refrele 13846 * since it can potentially call into 13847 * ipif_ill_refrele_tail which can end up 13848 * in trying to acquire any lock. 13849 */ 13850 RELEASE_CONN_LOCK(q); 13851 ill_refrele(ill); 13852 return (ipif); 13853 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13854 ipsq = ill->ill_phyint->phyint_ipsq; 13855 mutex_enter(&ipsq->ipsq_lock); 13856 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13857 mutex_exit(&ill->ill_lock); 13858 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13859 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13860 mutex_exit(&ipsq->ipsq_lock); 13861 RELEASE_CONN_LOCK(q); 13862 ill_refrele(ill); 13863 if (error != NULL) 13864 *error = EINPROGRESS; 13865 return (NULL); 13866 } 13867 } 13868 } 13869 RELEASE_CONN_LOCK(q); 13870 mutex_exit(&ill->ill_lock); 13871 ill_refrele(ill); 13872 if (error != NULL) 13873 *error = ENXIO; 13874 return (NULL); 13875 } 13876 13877 /* 13878 * This routine is called whenever a new address comes up on an ipif. If 13879 * we are configured to respond to address mask requests, then we are supposed 13880 * to broadcast an address mask reply at this time. This routine is also 13881 * called if we are already up, but a netmask change is made. This is legal 13882 * but might not make the system manager very popular. (May be called 13883 * as writer.) 13884 */ 13885 void 13886 ipif_mask_reply(ipif_t *ipif) 13887 { 13888 icmph_t *icmph; 13889 ipha_t *ipha; 13890 mblk_t *mp; 13891 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13892 ip_xmit_attr_t ixas; 13893 13894 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13895 13896 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13897 return; 13898 13899 /* ICMP mask reply is IPv4 only */ 13900 ASSERT(!ipif->ipif_isv6); 13901 /* ICMP mask reply is not for a loopback interface */ 13902 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13903 13904 if (ipif->ipif_lcl_addr == INADDR_ANY) 13905 return; 13906 13907 mp = allocb(REPLY_LEN, BPRI_HI); 13908 if (mp == NULL) 13909 return; 13910 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13911 13912 ipha = (ipha_t *)mp->b_rptr; 13913 bzero(ipha, REPLY_LEN); 13914 *ipha = icmp_ipha; 13915 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13916 ipha->ipha_src = ipif->ipif_lcl_addr; 13917 ipha->ipha_dst = ipif->ipif_brd_addr; 13918 ipha->ipha_length = htons(REPLY_LEN); 13919 ipha->ipha_ident = 0; 13920 13921 icmph = (icmph_t *)&ipha[1]; 13922 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13923 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13924 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13925 13926 bzero(&ixas, sizeof (ixas)); 13927 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13928 ixas.ixa_zoneid = ALL_ZONES; 13929 ixas.ixa_ifindex = 0; 13930 ixas.ixa_ipst = ipst; 13931 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13932 (void) ip_output_simple(mp, &ixas); 13933 ixa_cleanup(&ixas); 13934 #undef REPLY_LEN 13935 } 13936 13937 /* 13938 * Join the ipif specific multicast groups. 13939 * Must be called after a mapping has been set up in the resolver. (Always 13940 * called as writer.) 13941 */ 13942 void 13943 ipif_multicast_up(ipif_t *ipif) 13944 { 13945 int err; 13946 ill_t *ill; 13947 ilm_t *ilm; 13948 13949 ASSERT(IAM_WRITER_IPIF(ipif)); 13950 13951 ill = ipif->ipif_ill; 13952 13953 ip1dbg(("ipif_multicast_up\n")); 13954 if (!(ill->ill_flags & ILLF_MULTICAST) || 13955 ipif->ipif_allhosts_ilm != NULL) 13956 return; 13957 13958 if (ipif->ipif_isv6) { 13959 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13960 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13961 13962 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13963 13964 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13965 return; 13966 13967 ip1dbg(("ipif_multicast_up - addmulti\n")); 13968 13969 /* 13970 * Join the all hosts multicast address. We skip this for 13971 * underlying IPMP interfaces since they should be invisible. 13972 */ 13973 if (!IS_UNDER_IPMP(ill)) { 13974 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13975 &err); 13976 if (ilm == NULL) { 13977 ASSERT(err != 0); 13978 ip0dbg(("ipif_multicast_up: " 13979 "all_hosts_mcast failed %d\n", err)); 13980 return; 13981 } 13982 ipif->ipif_allhosts_ilm = ilm; 13983 } 13984 13985 /* 13986 * Enable multicast for the solicited node multicast address. 13987 * If IPMP we need to put the membership on the upper ill. 13988 */ 13989 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13990 ill_t *mcast_ill = NULL; 13991 boolean_t need_refrele; 13992 13993 if (IS_UNDER_IPMP(ill) && 13994 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13995 need_refrele = B_TRUE; 13996 } else { 13997 mcast_ill = ill; 13998 need_refrele = B_FALSE; 13999 } 14000 14001 ilm = ip_addmulti(&v6solmc, mcast_ill, 14002 ipif->ipif_zoneid, &err); 14003 if (need_refrele) 14004 ill_refrele(mcast_ill); 14005 14006 if (ilm == NULL) { 14007 ASSERT(err != 0); 14008 ip0dbg(("ipif_multicast_up: solicited MC" 14009 " failed %d\n", err)); 14010 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14011 ipif->ipif_allhosts_ilm = NULL; 14012 (void) ip_delmulti(ilm); 14013 } 14014 return; 14015 } 14016 ipif->ipif_solmulti_ilm = ilm; 14017 } 14018 } else { 14019 in6_addr_t v6group; 14020 14021 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14022 return; 14023 14024 /* Join the all hosts multicast address */ 14025 ip1dbg(("ipif_multicast_up - addmulti\n")); 14026 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14027 14028 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14029 if (ilm == NULL) { 14030 ASSERT(err != 0); 14031 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14032 return; 14033 } 14034 ipif->ipif_allhosts_ilm = ilm; 14035 } 14036 } 14037 14038 /* 14039 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14040 * (ilms from explicit memberships are handled in conn_update_ill.) 14041 */ 14042 void 14043 ipif_multicast_down(ipif_t *ipif) 14044 { 14045 ASSERT(IAM_WRITER_IPIF(ipif)); 14046 14047 ip1dbg(("ipif_multicast_down\n")); 14048 14049 if (ipif->ipif_allhosts_ilm != NULL) { 14050 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14051 ipif->ipif_allhosts_ilm = NULL; 14052 } 14053 if (ipif->ipif_solmulti_ilm != NULL) { 14054 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14055 ipif->ipif_solmulti_ilm = NULL; 14056 } 14057 } 14058 14059 /* 14060 * Used when an interface comes up to recreate any extra routes on this 14061 * interface. 14062 */ 14063 int 14064 ill_recover_saved_ire(ill_t *ill) 14065 { 14066 mblk_t *mp; 14067 ip_stack_t *ipst = ill->ill_ipst; 14068 14069 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14070 14071 mutex_enter(&ill->ill_saved_ire_lock); 14072 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14073 ire_t *ire, *nire; 14074 ifrt_t *ifrt; 14075 14076 ifrt = (ifrt_t *)mp->b_rptr; 14077 /* 14078 * Create a copy of the IRE with the saved address and netmask. 14079 */ 14080 if (ill->ill_isv6) { 14081 ire = ire_create_v6( 14082 &ifrt->ifrt_v6addr, 14083 &ifrt->ifrt_v6mask, 14084 &ifrt->ifrt_v6gateway_addr, 14085 ifrt->ifrt_type, 14086 ill, 14087 ifrt->ifrt_zoneid, 14088 ifrt->ifrt_flags, 14089 NULL, 14090 ipst); 14091 } else { 14092 ire = ire_create( 14093 (uint8_t *)&ifrt->ifrt_addr, 14094 (uint8_t *)&ifrt->ifrt_mask, 14095 (uint8_t *)&ifrt->ifrt_gateway_addr, 14096 ifrt->ifrt_type, 14097 ill, 14098 ifrt->ifrt_zoneid, 14099 ifrt->ifrt_flags, 14100 NULL, 14101 ipst); 14102 } 14103 if (ire == NULL) { 14104 mutex_exit(&ill->ill_saved_ire_lock); 14105 return (ENOMEM); 14106 } 14107 14108 if (ifrt->ifrt_flags & RTF_SETSRC) { 14109 if (ill->ill_isv6) { 14110 ire->ire_setsrc_addr_v6 = 14111 ifrt->ifrt_v6setsrc_addr; 14112 } else { 14113 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14114 } 14115 } 14116 14117 /* 14118 * Some software (for example, GateD and Sun Cluster) attempts 14119 * to create (what amount to) IRE_PREFIX routes with the 14120 * loopback address as the gateway. This is primarily done to 14121 * set up prefixes with the RTF_REJECT flag set (for example, 14122 * when generating aggregate routes.) 14123 * 14124 * If the IRE type (as defined by ill->ill_net_type) is 14125 * IRE_LOOPBACK, then we map the request into a 14126 * IRE_IF_NORESOLVER. 14127 */ 14128 if (ill->ill_net_type == IRE_LOOPBACK) 14129 ire->ire_type = IRE_IF_NORESOLVER; 14130 14131 /* 14132 * ire held by ire_add, will be refreled' towards the 14133 * the end of ipif_up_done 14134 */ 14135 nire = ire_add(ire); 14136 /* 14137 * Check if it was a duplicate entry. This handles 14138 * the case of two racing route adds for the same route 14139 */ 14140 if (nire == NULL) { 14141 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14142 } else if (nire != ire) { 14143 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14144 (void *)nire)); 14145 ire_delete(nire); 14146 } else { 14147 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14148 (void *)nire)); 14149 } 14150 if (nire != NULL) 14151 ire_refrele(nire); 14152 } 14153 mutex_exit(&ill->ill_saved_ire_lock); 14154 return (0); 14155 } 14156 14157 /* 14158 * Used to set the netmask and broadcast address to default values when the 14159 * interface is brought up. (Always called as writer.) 14160 */ 14161 static void 14162 ipif_set_default(ipif_t *ipif) 14163 { 14164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14165 14166 if (!ipif->ipif_isv6) { 14167 /* 14168 * Interface holds an IPv4 address. Default 14169 * mask is the natural netmask. 14170 */ 14171 if (!ipif->ipif_net_mask) { 14172 ipaddr_t v4mask; 14173 14174 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14175 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14176 } 14177 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14178 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14179 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14180 } else { 14181 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14182 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14183 } 14184 /* 14185 * NOTE: SunOS 4.X does this even if the broadcast address 14186 * has been already set thus we do the same here. 14187 */ 14188 if (ipif->ipif_flags & IPIF_BROADCAST) { 14189 ipaddr_t v4addr; 14190 14191 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14192 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14193 } 14194 } else { 14195 /* 14196 * Interface holds an IPv6-only address. Default 14197 * mask is all-ones. 14198 */ 14199 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14200 ipif->ipif_v6net_mask = ipv6_all_ones; 14201 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14202 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14203 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14204 } else { 14205 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14206 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14207 } 14208 } 14209 } 14210 14211 /* 14212 * Return 0 if this address can be used as local address without causing 14213 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14214 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14215 * Note that the same IPv6 link-local address is allowed as long as the ills 14216 * are not on the same link. 14217 */ 14218 int 14219 ip_addr_availability_check(ipif_t *new_ipif) 14220 { 14221 in6_addr_t our_v6addr; 14222 ill_t *ill; 14223 ipif_t *ipif; 14224 ill_walk_context_t ctx; 14225 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14226 14227 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14228 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14229 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14230 14231 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14232 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14233 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14234 return (0); 14235 14236 our_v6addr = new_ipif->ipif_v6lcl_addr; 14237 14238 if (new_ipif->ipif_isv6) 14239 ill = ILL_START_WALK_V6(&ctx, ipst); 14240 else 14241 ill = ILL_START_WALK_V4(&ctx, ipst); 14242 14243 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14244 for (ipif = ill->ill_ipif; ipif != NULL; 14245 ipif = ipif->ipif_next) { 14246 if ((ipif == new_ipif) || 14247 !(ipif->ipif_flags & IPIF_UP) || 14248 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14249 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14250 &our_v6addr)) 14251 continue; 14252 14253 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14254 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14255 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14256 ipif->ipif_flags |= IPIF_UNNUMBERED; 14257 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14258 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14259 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14260 continue; 14261 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14262 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14263 continue; 14264 else if (new_ipif->ipif_ill == ill) 14265 return (EADDRINUSE); 14266 else 14267 return (EADDRNOTAVAIL); 14268 } 14269 } 14270 14271 return (0); 14272 } 14273 14274 /* 14275 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14276 * IREs for the ipif. 14277 * When the routine returns EINPROGRESS then mp has been consumed and 14278 * the ioctl will be acked from ip_rput_dlpi. 14279 */ 14280 int 14281 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14282 { 14283 ill_t *ill = ipif->ipif_ill; 14284 boolean_t isv6 = ipif->ipif_isv6; 14285 int err = 0; 14286 boolean_t success; 14287 uint_t ipif_orig_id; 14288 ip_stack_t *ipst = ill->ill_ipst; 14289 14290 ASSERT(IAM_WRITER_IPIF(ipif)); 14291 14292 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14293 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14294 ill_t *, ill, ipif_t *, ipif); 14295 14296 /* Shouldn't get here if it is already up. */ 14297 if (ipif->ipif_flags & IPIF_UP) 14298 return (EALREADY); 14299 14300 /* 14301 * If this is a request to bring up a data address on an interface 14302 * under IPMP, then move the address to its IPMP meta-interface and 14303 * try to bring it up. One complication is that the zeroth ipif for 14304 * an ill is special, in that every ill always has one, and that code 14305 * throughout IP deferences ill->ill_ipif without holding any locks. 14306 */ 14307 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14308 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14309 ipif_t *stubipif = NULL, *moveipif = NULL; 14310 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14311 14312 /* 14313 * The ipif being brought up should be quiesced. If it's not, 14314 * something has gone amiss and we need to bail out. (If it's 14315 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14316 */ 14317 mutex_enter(&ill->ill_lock); 14318 if (!ipif_is_quiescent(ipif)) { 14319 mutex_exit(&ill->ill_lock); 14320 return (EINVAL); 14321 } 14322 mutex_exit(&ill->ill_lock); 14323 14324 /* 14325 * If we're going to need to allocate ipifs, do it prior 14326 * to starting the move (and grabbing locks). 14327 */ 14328 if (ipif->ipif_id == 0) { 14329 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14330 B_FALSE, &err)) == NULL) { 14331 return (err); 14332 } 14333 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14334 B_FALSE, &err)) == NULL) { 14335 mi_free(moveipif); 14336 return (err); 14337 } 14338 } 14339 14340 /* 14341 * Grab or transfer the ipif to move. During the move, keep 14342 * ill_g_lock held to prevent any ill walker threads from 14343 * seeing things in an inconsistent state. 14344 */ 14345 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14346 if (ipif->ipif_id != 0) { 14347 ipif_remove(ipif); 14348 } else { 14349 ipif_transfer(ipif, moveipif, stubipif); 14350 ipif = moveipif; 14351 } 14352 14353 /* 14354 * Place the ipif on the IPMP ill. If the zeroth ipif on 14355 * the IPMP ill is a stub (0.0.0.0 down address) then we 14356 * replace that one. Otherwise, pick the next available slot. 14357 */ 14358 ipif->ipif_ill = ipmp_ill; 14359 ipif_orig_id = ipif->ipif_id; 14360 14361 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14362 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14363 ipif = ipmp_ill->ill_ipif; 14364 } else { 14365 ipif->ipif_id = -1; 14366 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14367 /* 14368 * No more available ipif_id's -- put it back 14369 * on the original ill and fail the operation. 14370 * Since we're writer on the ill, we can be 14371 * sure our old slot is still available. 14372 */ 14373 ipif->ipif_id = ipif_orig_id; 14374 ipif->ipif_ill = ill; 14375 if (ipif_orig_id == 0) { 14376 ipif_transfer(ipif, ill->ill_ipif, 14377 NULL); 14378 } else { 14379 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14380 } 14381 rw_exit(&ipst->ips_ill_g_lock); 14382 return (err); 14383 } 14384 } 14385 rw_exit(&ipst->ips_ill_g_lock); 14386 14387 /* 14388 * Tell SCTP that the ipif has moved. Note that even if we 14389 * had to allocate a new ipif, the original sequence id was 14390 * preserved and therefore SCTP won't know. 14391 */ 14392 sctp_move_ipif(ipif, ill, ipmp_ill); 14393 14394 /* 14395 * If the ipif being brought up was on slot zero, then we 14396 * first need to bring up the placeholder we stuck there. In 14397 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14398 * call to ipif_up() itself, if we successfully bring up the 14399 * placeholder, we'll check ill_move_ipif and bring it up too. 14400 */ 14401 if (ipif_orig_id == 0) { 14402 ASSERT(ill->ill_move_ipif == NULL); 14403 ill->ill_move_ipif = ipif; 14404 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14405 ASSERT(ill->ill_move_ipif == NULL); 14406 if (err != EINPROGRESS) 14407 ill->ill_move_ipif = NULL; 14408 return (err); 14409 } 14410 14411 /* 14412 * Bring it up on the IPMP ill. 14413 */ 14414 return (ipif_up(ipif, q, mp)); 14415 } 14416 14417 /* Skip arp/ndp for any loopback interface. */ 14418 if (ill->ill_wq != NULL) { 14419 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14420 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14421 14422 if (!ill->ill_dl_up) { 14423 /* 14424 * ill_dl_up is not yet set. i.e. we are yet to 14425 * DL_BIND with the driver and this is the first 14426 * logical interface on the ill to become "up". 14427 * Tell the driver to get going (via DL_BIND_REQ). 14428 * Note that changing "significant" IFF_ flags 14429 * address/netmask etc cause a down/up dance, but 14430 * does not cause an unbind (DL_UNBIND) with the driver 14431 */ 14432 return (ill_dl_up(ill, ipif, mp, q)); 14433 } 14434 14435 /* 14436 * ipif_resolver_up may end up needeing to bind/attach 14437 * the ARP stream, which in turn necessitates a 14438 * DLPI message exchange with the driver. ioctls are 14439 * serialized and so we cannot send more than one 14440 * interface up message at a time. If ipif_resolver_up 14441 * does need to wait for the DLPI handshake for the ARP stream, 14442 * we get EINPROGRESS and we will complete in arp_bringup_done. 14443 */ 14444 14445 ASSERT(connp != NULL || !CONN_Q(q)); 14446 if (connp != NULL) 14447 mutex_enter(&connp->conn_lock); 14448 mutex_enter(&ill->ill_lock); 14449 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14450 mutex_exit(&ill->ill_lock); 14451 if (connp != NULL) 14452 mutex_exit(&connp->conn_lock); 14453 if (!success) 14454 return (EINTR); 14455 14456 /* 14457 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14458 * complete when ipif_ndp_up returns. 14459 */ 14460 err = ipif_resolver_up(ipif, Res_act_initial); 14461 if (err == EINPROGRESS) { 14462 /* We will complete it in arp_bringup_done() */ 14463 return (err); 14464 } 14465 14466 if (isv6 && err == 0) 14467 err = ipif_ndp_up(ipif, B_TRUE); 14468 14469 ASSERT(err != EINPROGRESS); 14470 mp = ipsq_pending_mp_get(ipsq, &connp); 14471 ASSERT(mp != NULL); 14472 if (err != 0) 14473 return (err); 14474 } else { 14475 /* 14476 * Interfaces without underlying hardware don't do duplicate 14477 * address detection. 14478 */ 14479 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14480 ipif->ipif_addr_ready = 1; 14481 err = ill_add_ires(ill); 14482 /* allocation failure? */ 14483 if (err != 0) 14484 return (err); 14485 } 14486 14487 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14488 if (err == 0 && ill->ill_move_ipif != NULL) { 14489 ipif = ill->ill_move_ipif; 14490 ill->ill_move_ipif = NULL; 14491 return (ipif_up(ipif, q, mp)); 14492 } 14493 return (err); 14494 } 14495 14496 /* 14497 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14498 * The identical set of IREs need to be removed in ill_delete_ires(). 14499 */ 14500 int 14501 ill_add_ires(ill_t *ill) 14502 { 14503 ire_t *ire; 14504 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14505 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14506 14507 if (ill->ill_ire_multicast != NULL) 14508 return (0); 14509 14510 /* 14511 * provide some dummy ire_addr for creating the ire. 14512 */ 14513 if (ill->ill_isv6) { 14514 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14515 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14516 } else { 14517 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14518 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14519 } 14520 if (ire == NULL) 14521 return (ENOMEM); 14522 14523 ill->ill_ire_multicast = ire; 14524 return (0); 14525 } 14526 14527 void 14528 ill_delete_ires(ill_t *ill) 14529 { 14530 if (ill->ill_ire_multicast != NULL) { 14531 /* 14532 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14533 * which was taken without any th_tracing enabled. 14534 * We also mark it as condemned (note that it was never added) 14535 * so that caching conn's can move off of it. 14536 */ 14537 ire_make_condemned(ill->ill_ire_multicast); 14538 ire_refrele_notr(ill->ill_ire_multicast); 14539 ill->ill_ire_multicast = NULL; 14540 } 14541 } 14542 14543 /* 14544 * Perform a bind for the physical device. 14545 * When the routine returns EINPROGRESS then mp has been consumed and 14546 * the ioctl will be acked from ip_rput_dlpi. 14547 * Allocate an unbind message and save it until ipif_down. 14548 */ 14549 static int 14550 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14551 { 14552 mblk_t *bind_mp = NULL; 14553 mblk_t *unbind_mp = NULL; 14554 conn_t *connp; 14555 boolean_t success; 14556 int err; 14557 14558 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14559 14560 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14561 ASSERT(IAM_WRITER_ILL(ill)); 14562 ASSERT(mp != NULL); 14563 14564 /* 14565 * Make sure we have an IRE_MULTICAST in case we immediately 14566 * start receiving packets. 14567 */ 14568 err = ill_add_ires(ill); 14569 if (err != 0) 14570 goto bad; 14571 14572 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14573 DL_BIND_REQ); 14574 if (bind_mp == NULL) 14575 goto bad; 14576 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14577 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14578 14579 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14580 if (unbind_mp == NULL) 14581 goto bad; 14582 14583 /* 14584 * Record state needed to complete this operation when the 14585 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14586 */ 14587 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14588 ASSERT(connp != NULL || !CONN_Q(q)); 14589 GRAB_CONN_LOCK(q); 14590 mutex_enter(&ipif->ipif_ill->ill_lock); 14591 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14592 mutex_exit(&ipif->ipif_ill->ill_lock); 14593 RELEASE_CONN_LOCK(q); 14594 if (!success) 14595 goto bad; 14596 14597 /* 14598 * Save the unbind message for ill_dl_down(); it will be consumed when 14599 * the interface goes down. 14600 */ 14601 ASSERT(ill->ill_unbind_mp == NULL); 14602 ill->ill_unbind_mp = unbind_mp; 14603 14604 ill_dlpi_send(ill, bind_mp); 14605 /* Send down link-layer capabilities probe if not already done. */ 14606 ill_capability_probe(ill); 14607 14608 /* 14609 * Sysid used to rely on the fact that netboots set domainname 14610 * and the like. Now that miniroot boots aren't strictly netboots 14611 * and miniroot network configuration is driven from userland 14612 * these things still need to be set. This situation can be detected 14613 * by comparing the interface being configured here to the one 14614 * dhcifname was set to reference by the boot loader. Once sysid is 14615 * converted to use dhcp_ipc_getinfo() this call can go away. 14616 */ 14617 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14618 (strcmp(ill->ill_name, dhcifname) == 0) && 14619 (strlen(srpc_domain) == 0)) { 14620 if (dhcpinit() != 0) 14621 cmn_err(CE_WARN, "no cached dhcp response"); 14622 } 14623 14624 /* 14625 * This operation will complete in ip_rput_dlpi with either 14626 * a DL_BIND_ACK or DL_ERROR_ACK. 14627 */ 14628 return (EINPROGRESS); 14629 bad: 14630 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14631 14632 freemsg(bind_mp); 14633 freemsg(unbind_mp); 14634 return (ENOMEM); 14635 } 14636 14637 /* Add room for tcp+ip headers */ 14638 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14639 14640 /* 14641 * DLPI and ARP is up. 14642 * Create all the IREs associated with an interface. Bring up multicast. 14643 * Set the interface flag and finish other initialization 14644 * that potentially had to be deferred to after DL_BIND_ACK. 14645 */ 14646 int 14647 ipif_up_done(ipif_t *ipif) 14648 { 14649 ill_t *ill = ipif->ipif_ill; 14650 int err = 0; 14651 boolean_t loopback = B_FALSE; 14652 boolean_t update_src_selection = B_TRUE; 14653 ipif_t *tmp_ipif; 14654 14655 ip1dbg(("ipif_up_done(%s:%u)\n", 14656 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14657 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14658 ill_t *, ill, ipif_t *, ipif); 14659 14660 /* Check if this is a loopback interface */ 14661 if (ipif->ipif_ill->ill_wq == NULL) 14662 loopback = B_TRUE; 14663 14664 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14665 14666 /* 14667 * If all other interfaces for this ill are down or DEPRECATED, 14668 * or otherwise unsuitable for source address selection, 14669 * reset the src generation numbers to make sure source 14670 * address selection gets to take this new ipif into account. 14671 * No need to hold ill_lock while traversing the ipif list since 14672 * we are writer 14673 */ 14674 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14675 tmp_ipif = tmp_ipif->ipif_next) { 14676 if (((tmp_ipif->ipif_flags & 14677 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14678 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14679 (tmp_ipif == ipif)) 14680 continue; 14681 /* first useable pre-existing interface */ 14682 update_src_selection = B_FALSE; 14683 break; 14684 } 14685 if (update_src_selection) 14686 ip_update_source_selection(ill->ill_ipst); 14687 14688 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14689 nce_t *loop_nce = NULL; 14690 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14691 14692 /* 14693 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14694 * ipif_lookup_on_name(), but in the case of zones we can have 14695 * several loopback addresses on lo0. So all the interfaces with 14696 * loopback addresses need to be marked IRE_LOOPBACK. 14697 */ 14698 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14699 htonl(INADDR_LOOPBACK)) 14700 ipif->ipif_ire_type = IRE_LOOPBACK; 14701 else 14702 ipif->ipif_ire_type = IRE_LOCAL; 14703 if (ill->ill_net_type != IRE_LOOPBACK) 14704 flags |= NCE_F_PUBLISH; 14705 14706 /* add unicast nce for the local addr */ 14707 err = nce_lookup_then_add_v4(ill, NULL, 14708 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14709 ND_REACHABLE, &loop_nce); 14710 /* A shared-IP zone sees EEXIST for lo0:N */ 14711 if (err == 0 || err == EEXIST) { 14712 ipif->ipif_added_nce = 1; 14713 loop_nce->nce_ipif_cnt++; 14714 nce_refrele(loop_nce); 14715 err = 0; 14716 } else { 14717 ASSERT(loop_nce == NULL); 14718 return (err); 14719 } 14720 } 14721 14722 /* Create all the IREs associated with this interface */ 14723 err = ipif_add_ires_v4(ipif, loopback); 14724 if (err != 0) { 14725 /* 14726 * see comments about return value from 14727 * ip_addr_availability_check() in ipif_add_ires_v4(). 14728 */ 14729 if (err != EADDRINUSE) { 14730 (void) ipif_arp_down(ipif); 14731 } else { 14732 /* 14733 * Make IPMP aware of the deleted ipif so that 14734 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14735 * can be completed. Note that we do not want to 14736 * destroy the nce that was created on the ipmp_ill 14737 * for the active copy of the duplicate address in 14738 * use. 14739 */ 14740 if (IS_IPMP(ill)) 14741 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14742 err = EADDRNOTAVAIL; 14743 } 14744 return (err); 14745 } 14746 14747 if (ill->ill_ipif_up_count == 1 && !loopback) { 14748 /* Recover any additional IREs entries for this ill */ 14749 (void) ill_recover_saved_ire(ill); 14750 } 14751 14752 if (ill->ill_need_recover_multicast) { 14753 /* 14754 * Need to recover all multicast memberships in the driver. 14755 * This had to be deferred until we had attached. The same 14756 * code exists in ipif_up_done_v6() to recover IPv6 14757 * memberships. 14758 * 14759 * Note that it would be preferable to unconditionally do the 14760 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14761 * that since ill_join_allmulti() depends on ill_dl_up being 14762 * set, and it is not set until we receive a DL_BIND_ACK after 14763 * having called ill_dl_up(). 14764 */ 14765 ill_recover_multicast(ill); 14766 } 14767 14768 if (ill->ill_ipif_up_count == 1) { 14769 /* 14770 * Since the interface is now up, it may now be active. 14771 */ 14772 if (IS_UNDER_IPMP(ill)) 14773 ipmp_ill_refresh_active(ill); 14774 14775 /* 14776 * If this is an IPMP interface, we may now be able to 14777 * establish ARP entries. 14778 */ 14779 if (IS_IPMP(ill)) 14780 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14781 } 14782 14783 /* Join the allhosts multicast address */ 14784 ipif_multicast_up(ipif); 14785 14786 if (!loopback && !update_src_selection && 14787 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14788 ip_update_source_selection(ill->ill_ipst); 14789 14790 if (!loopback && ipif->ipif_addr_ready) { 14791 /* Broadcast an address mask reply. */ 14792 ipif_mask_reply(ipif); 14793 } 14794 /* Perhaps ilgs should use this ill */ 14795 update_conn_ill(NULL, ill->ill_ipst); 14796 14797 /* 14798 * This had to be deferred until we had bound. Tell routing sockets and 14799 * others that this interface is up if it looks like the address has 14800 * been validated. Otherwise, if it isn't ready yet, wait for 14801 * duplicate address detection to do its thing. 14802 */ 14803 if (ipif->ipif_addr_ready) 14804 ipif_up_notify(ipif); 14805 return (0); 14806 } 14807 14808 /* 14809 * Add the IREs associated with the ipif. 14810 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14811 */ 14812 static int 14813 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14814 { 14815 ill_t *ill = ipif->ipif_ill; 14816 ip_stack_t *ipst = ill->ill_ipst; 14817 ire_t *ire_array[20]; 14818 ire_t **irep = ire_array; 14819 ire_t **irep1; 14820 ipaddr_t net_mask = 0; 14821 ipaddr_t subnet_mask, route_mask; 14822 int err; 14823 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14824 ire_t *ire_if = NULL; 14825 uchar_t *gw; 14826 14827 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14828 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14829 /* 14830 * If we're on a labeled system then make sure that zone- 14831 * private addresses have proper remote host database entries. 14832 */ 14833 if (is_system_labeled() && 14834 ipif->ipif_ire_type != IRE_LOOPBACK && 14835 !tsol_check_interface_address(ipif)) 14836 return (EINVAL); 14837 14838 /* Register the source address for __sin6_src_id */ 14839 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14840 ipif->ipif_zoneid, ipst); 14841 if (err != 0) { 14842 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14843 return (err); 14844 } 14845 14846 if (loopback) 14847 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14848 else 14849 gw = NULL; 14850 14851 /* If the interface address is set, create the local IRE. */ 14852 ire_local = ire_create( 14853 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14854 (uchar_t *)&ip_g_all_ones, /* mask */ 14855 gw, /* gateway */ 14856 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14857 ipif->ipif_ill, 14858 ipif->ipif_zoneid, 14859 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14860 RTF_PRIVATE : 0) | RTF_KERNEL, 14861 NULL, 14862 ipst); 14863 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14864 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14865 ipif->ipif_ire_type, 14866 ntohl(ipif->ipif_lcl_addr))); 14867 if (ire_local == NULL) { 14868 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14869 err = ENOMEM; 14870 goto bad; 14871 } 14872 } else { 14873 ip1dbg(( 14874 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14875 ipif->ipif_ire_type, 14876 ntohl(ipif->ipif_lcl_addr), 14877 (uint_t)ipif->ipif_flags)); 14878 } 14879 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14880 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14881 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14882 } else { 14883 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14884 } 14885 14886 subnet_mask = ipif->ipif_net_mask; 14887 14888 /* 14889 * If mask was not specified, use natural netmask of 14890 * interface address. Also, store this mask back into the 14891 * ipif struct. 14892 */ 14893 if (subnet_mask == 0) { 14894 subnet_mask = net_mask; 14895 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14896 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14897 ipif->ipif_v6subnet); 14898 } 14899 14900 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14901 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14902 ipif->ipif_subnet != INADDR_ANY) { 14903 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14904 14905 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14906 route_mask = IP_HOST_MASK; 14907 } else { 14908 route_mask = subnet_mask; 14909 } 14910 14911 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14912 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14913 (void *)ipif, (void *)ill, ill->ill_net_type, 14914 ntohl(ipif->ipif_subnet))); 14915 ire_if = ire_create( 14916 (uchar_t *)&ipif->ipif_subnet, 14917 (uchar_t *)&route_mask, 14918 (uchar_t *)&ipif->ipif_lcl_addr, 14919 ill->ill_net_type, 14920 ill, 14921 ipif->ipif_zoneid, 14922 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14923 RTF_PRIVATE: 0) | RTF_KERNEL, 14924 NULL, 14925 ipst); 14926 if (ire_if == NULL) { 14927 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14928 err = ENOMEM; 14929 goto bad; 14930 } 14931 } 14932 14933 /* 14934 * Create any necessary broadcast IREs. 14935 */ 14936 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14937 !(ipif->ipif_flags & IPIF_NOXMIT)) 14938 irep = ipif_create_bcast_ires(ipif, irep); 14939 14940 /* If an earlier ire_create failed, get out now */ 14941 for (irep1 = irep; irep1 > ire_array; ) { 14942 irep1--; 14943 if (*irep1 == NULL) { 14944 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14945 err = ENOMEM; 14946 goto bad; 14947 } 14948 } 14949 14950 /* 14951 * Need to atomically check for IP address availability under 14952 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14953 * ills or new ipifs can be added while we are checking availability. 14954 */ 14955 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14956 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14957 /* Mark it up, and increment counters. */ 14958 ipif->ipif_flags |= IPIF_UP; 14959 ill->ill_ipif_up_count++; 14960 err = ip_addr_availability_check(ipif); 14961 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14962 rw_exit(&ipst->ips_ill_g_lock); 14963 14964 if (err != 0) { 14965 /* 14966 * Our address may already be up on the same ill. In this case, 14967 * the ARP entry for our ipif replaced the one for the other 14968 * ipif. So we don't want to delete it (otherwise the other ipif 14969 * would be unable to send packets). 14970 * ip_addr_availability_check() identifies this case for us and 14971 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14972 * which is the expected error code. 14973 */ 14974 ill->ill_ipif_up_count--; 14975 ipif->ipif_flags &= ~IPIF_UP; 14976 goto bad; 14977 } 14978 14979 /* 14980 * Add in all newly created IREs. ire_create_bcast() has 14981 * already checked for duplicates of the IRE_BROADCAST type. 14982 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14983 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14984 * a /32 route. 14985 */ 14986 if (ire_if != NULL) { 14987 ire_if = ire_add(ire_if); 14988 if (ire_if == NULL) { 14989 err = ENOMEM; 14990 goto bad2; 14991 } 14992 #ifdef DEBUG 14993 ire_refhold_notr(ire_if); 14994 ire_refrele(ire_if); 14995 #endif 14996 } 14997 if (ire_local != NULL) { 14998 ire_local = ire_add(ire_local); 14999 if (ire_local == NULL) { 15000 err = ENOMEM; 15001 goto bad2; 15002 } 15003 #ifdef DEBUG 15004 ire_refhold_notr(ire_local); 15005 ire_refrele(ire_local); 15006 #endif 15007 } 15008 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15009 if (ire_local != NULL) 15010 ipif->ipif_ire_local = ire_local; 15011 if (ire_if != NULL) 15012 ipif->ipif_ire_if = ire_if; 15013 rw_exit(&ipst->ips_ill_g_lock); 15014 ire_local = NULL; 15015 ire_if = NULL; 15016 15017 /* 15018 * We first add all of them, and if that succeeds we refrele the 15019 * bunch. That enables us to delete all of them should any of the 15020 * ire_adds fail. 15021 */ 15022 for (irep1 = irep; irep1 > ire_array; ) { 15023 irep1--; 15024 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15025 *irep1 = ire_add(*irep1); 15026 if (*irep1 == NULL) { 15027 err = ENOMEM; 15028 goto bad2; 15029 } 15030 } 15031 15032 for (irep1 = irep; irep1 > ire_array; ) { 15033 irep1--; 15034 /* refheld by ire_add. */ 15035 if (*irep1 != NULL) { 15036 ire_refrele(*irep1); 15037 *irep1 = NULL; 15038 } 15039 } 15040 15041 if (!loopback) { 15042 /* 15043 * If the broadcast address has been set, make sure it makes 15044 * sense based on the interface address. 15045 * Only match on ill since we are sharing broadcast addresses. 15046 */ 15047 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15048 (ipif->ipif_flags & IPIF_BROADCAST)) { 15049 ire_t *ire; 15050 15051 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15052 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15053 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15054 15055 if (ire == NULL) { 15056 /* 15057 * If there isn't a matching broadcast IRE, 15058 * revert to the default for this netmask. 15059 */ 15060 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15061 mutex_enter(&ipif->ipif_ill->ill_lock); 15062 ipif_set_default(ipif); 15063 mutex_exit(&ipif->ipif_ill->ill_lock); 15064 } else { 15065 ire_refrele(ire); 15066 } 15067 } 15068 15069 } 15070 return (0); 15071 15072 bad2: 15073 ill->ill_ipif_up_count--; 15074 ipif->ipif_flags &= ~IPIF_UP; 15075 15076 bad: 15077 ip1dbg(("ipif_add_ires: FAILED \n")); 15078 if (ire_local != NULL) 15079 ire_delete(ire_local); 15080 if (ire_if != NULL) 15081 ire_delete(ire_if); 15082 15083 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15084 ire_local = ipif->ipif_ire_local; 15085 ipif->ipif_ire_local = NULL; 15086 ire_if = ipif->ipif_ire_if; 15087 ipif->ipif_ire_if = NULL; 15088 rw_exit(&ipst->ips_ill_g_lock); 15089 if (ire_local != NULL) { 15090 ire_delete(ire_local); 15091 ire_refrele_notr(ire_local); 15092 } 15093 if (ire_if != NULL) { 15094 ire_delete(ire_if); 15095 ire_refrele_notr(ire_if); 15096 } 15097 15098 while (irep > ire_array) { 15099 irep--; 15100 if (*irep != NULL) { 15101 ire_delete(*irep); 15102 } 15103 } 15104 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15105 15106 return (err); 15107 } 15108 15109 /* Remove all the IREs created by ipif_add_ires_v4 */ 15110 void 15111 ipif_delete_ires_v4(ipif_t *ipif) 15112 { 15113 ill_t *ill = ipif->ipif_ill; 15114 ip_stack_t *ipst = ill->ill_ipst; 15115 ire_t *ire; 15116 15117 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15118 ire = ipif->ipif_ire_local; 15119 ipif->ipif_ire_local = NULL; 15120 rw_exit(&ipst->ips_ill_g_lock); 15121 if (ire != NULL) { 15122 /* 15123 * Move count to ipif so we don't loose the count due to 15124 * a down/up dance. 15125 */ 15126 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15127 15128 ire_delete(ire); 15129 ire_refrele_notr(ire); 15130 } 15131 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15132 ire = ipif->ipif_ire_if; 15133 ipif->ipif_ire_if = NULL; 15134 rw_exit(&ipst->ips_ill_g_lock); 15135 if (ire != NULL) { 15136 ire_delete(ire); 15137 ire_refrele_notr(ire); 15138 } 15139 15140 /* 15141 * Delete the broadcast IREs. 15142 */ 15143 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15144 !(ipif->ipif_flags & IPIF_NOXMIT)) 15145 ipif_delete_bcast_ires(ipif); 15146 } 15147 15148 /* 15149 * Checks for availbility of a usable source address (if there is one) when the 15150 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15151 * this selection is done regardless of the destination. 15152 */ 15153 boolean_t 15154 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15155 ip_stack_t *ipst) 15156 { 15157 ipif_t *ipif = NULL; 15158 ill_t *uill; 15159 15160 ASSERT(ifindex != 0); 15161 15162 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15163 if (uill == NULL) 15164 return (B_FALSE); 15165 15166 mutex_enter(&uill->ill_lock); 15167 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15168 if (IPIF_IS_CONDEMNED(ipif)) 15169 continue; 15170 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15171 continue; 15172 if (!(ipif->ipif_flags & IPIF_UP)) 15173 continue; 15174 if (ipif->ipif_zoneid != zoneid) 15175 continue; 15176 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15177 ipif->ipif_lcl_addr == INADDR_ANY) 15178 continue; 15179 mutex_exit(&uill->ill_lock); 15180 ill_refrele(uill); 15181 return (B_TRUE); 15182 } 15183 mutex_exit(&uill->ill_lock); 15184 ill_refrele(uill); 15185 return (B_FALSE); 15186 } 15187 15188 /* 15189 * Find an ipif with a good local address on the ill+zoneid. 15190 */ 15191 ipif_t * 15192 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15193 { 15194 ipif_t *ipif; 15195 15196 mutex_enter(&ill->ill_lock); 15197 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15198 if (IPIF_IS_CONDEMNED(ipif)) 15199 continue; 15200 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15201 continue; 15202 if (!(ipif->ipif_flags & IPIF_UP)) 15203 continue; 15204 if (ipif->ipif_zoneid != zoneid && 15205 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15206 continue; 15207 if (ill->ill_isv6 ? 15208 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15209 ipif->ipif_lcl_addr == INADDR_ANY) 15210 continue; 15211 ipif_refhold_locked(ipif); 15212 mutex_exit(&ill->ill_lock); 15213 return (ipif); 15214 } 15215 mutex_exit(&ill->ill_lock); 15216 return (NULL); 15217 } 15218 15219 /* 15220 * IP source address type, sorted from worst to best. For a given type, 15221 * always prefer IP addresses on the same subnet. All-zones addresses are 15222 * suboptimal because they pose problems with unlabeled destinations. 15223 */ 15224 typedef enum { 15225 IPIF_NONE, 15226 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15227 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15228 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15229 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15230 IPIF_DIFFNET, /* normal and different subnet */ 15231 IPIF_SAMENET, /* normal and same subnet */ 15232 IPIF_LOCALADDR /* local loopback */ 15233 } ipif_type_t; 15234 15235 /* 15236 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15237 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15238 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15239 * the first one, unless IPMP is used in which case we round-robin among them; 15240 * see below for more. 15241 * 15242 * Returns NULL if there is no suitable source address for the ill. 15243 * This only occurs when there is no valid source address for the ill. 15244 */ 15245 ipif_t * 15246 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15247 boolean_t allow_usesrc, boolean_t *notreadyp) 15248 { 15249 ill_t *usill = NULL; 15250 ill_t *ipmp_ill = NULL; 15251 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15252 ipif_type_t type, best_type; 15253 tsol_tpc_t *src_rhtp, *dst_rhtp; 15254 ip_stack_t *ipst = ill->ill_ipst; 15255 boolean_t samenet; 15256 15257 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15258 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15259 B_FALSE, ipst); 15260 if (usill != NULL) 15261 ill = usill; /* Select source from usesrc ILL */ 15262 else 15263 return (NULL); 15264 } 15265 15266 /* 15267 * Test addresses should never be used for source address selection, 15268 * so if we were passed one, switch to the IPMP meta-interface. 15269 */ 15270 if (IS_UNDER_IPMP(ill)) { 15271 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15272 ill = ipmp_ill; /* Select source from IPMP ill */ 15273 else 15274 return (NULL); 15275 } 15276 15277 /* 15278 * If we're dealing with an unlabeled destination on a labeled system, 15279 * make sure that we ignore source addresses that are incompatible with 15280 * the destination's default label. That destination's default label 15281 * must dominate the minimum label on the source address. 15282 */ 15283 dst_rhtp = NULL; 15284 if (is_system_labeled()) { 15285 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15286 if (dst_rhtp == NULL) 15287 return (NULL); 15288 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15289 TPC_RELE(dst_rhtp); 15290 dst_rhtp = NULL; 15291 } 15292 } 15293 15294 /* 15295 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15296 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15297 * After selecting the right ipif, under ill_lock make sure ipif is 15298 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15299 * we retry. Inside the loop we still need to check for CONDEMNED, 15300 * but not under a lock. 15301 */ 15302 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15303 retry: 15304 /* 15305 * For source address selection, we treat the ipif list as circular 15306 * and continue until we get back to where we started. This allows 15307 * IPMP to vary source address selection (which improves inbound load 15308 * spreading) by caching its last ending point and starting from 15309 * there. NOTE: we don't have to worry about ill_src_ipif changing 15310 * ills since that can't happen on the IPMP ill. 15311 */ 15312 start_ipif = ill->ill_ipif; 15313 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15314 start_ipif = ill->ill_src_ipif; 15315 15316 ipif = start_ipif; 15317 best_ipif = NULL; 15318 best_type = IPIF_NONE; 15319 do { 15320 if ((next_ipif = ipif->ipif_next) == NULL) 15321 next_ipif = ill->ill_ipif; 15322 15323 if (IPIF_IS_CONDEMNED(ipif)) 15324 continue; 15325 /* Always skip NOLOCAL and ANYCAST interfaces */ 15326 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15327 continue; 15328 /* Always skip NOACCEPT interfaces */ 15329 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15330 continue; 15331 if (!(ipif->ipif_flags & IPIF_UP)) 15332 continue; 15333 15334 if (!ipif->ipif_addr_ready) { 15335 if (notreadyp != NULL) 15336 *notreadyp = B_TRUE; 15337 continue; 15338 } 15339 15340 if (zoneid != ALL_ZONES && 15341 ipif->ipif_zoneid != zoneid && 15342 ipif->ipif_zoneid != ALL_ZONES) 15343 continue; 15344 15345 /* 15346 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15347 * are not valid as source addresses. 15348 */ 15349 if (ipif->ipif_lcl_addr == INADDR_ANY) 15350 continue; 15351 15352 /* 15353 * Check compatibility of local address for destination's 15354 * default label if we're on a labeled system. Incompatible 15355 * addresses can't be used at all. 15356 */ 15357 if (dst_rhtp != NULL) { 15358 boolean_t incompat; 15359 15360 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15361 IPV4_VERSION, B_FALSE); 15362 if (src_rhtp == NULL) 15363 continue; 15364 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15365 src_rhtp->tpc_tp.tp_doi != 15366 dst_rhtp->tpc_tp.tp_doi || 15367 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15368 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15369 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15370 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15371 TPC_RELE(src_rhtp); 15372 if (incompat) 15373 continue; 15374 } 15375 15376 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15377 15378 if (ipif->ipif_lcl_addr == dst) { 15379 type = IPIF_LOCALADDR; 15380 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15381 type = samenet ? IPIF_SAMENET_DEPRECATED : 15382 IPIF_DIFFNET_DEPRECATED; 15383 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15384 type = samenet ? IPIF_SAMENET_ALLZONES : 15385 IPIF_DIFFNET_ALLZONES; 15386 } else { 15387 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15388 } 15389 15390 if (type > best_type) { 15391 best_type = type; 15392 best_ipif = ipif; 15393 if (best_type == IPIF_LOCALADDR) 15394 break; /* can't get better */ 15395 } 15396 } while ((ipif = next_ipif) != start_ipif); 15397 15398 if ((ipif = best_ipif) != NULL) { 15399 mutex_enter(&ipif->ipif_ill->ill_lock); 15400 if (IPIF_IS_CONDEMNED(ipif)) { 15401 mutex_exit(&ipif->ipif_ill->ill_lock); 15402 goto retry; 15403 } 15404 ipif_refhold_locked(ipif); 15405 15406 /* 15407 * For IPMP, update the source ipif rotor to the next ipif, 15408 * provided we can look it up. (We must not use it if it's 15409 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15410 * ipif_free() checked ill_src_ipif.) 15411 */ 15412 if (IS_IPMP(ill) && ipif != NULL) { 15413 next_ipif = ipif->ipif_next; 15414 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15415 ill->ill_src_ipif = next_ipif; 15416 else 15417 ill->ill_src_ipif = NULL; 15418 } 15419 mutex_exit(&ipif->ipif_ill->ill_lock); 15420 } 15421 15422 rw_exit(&ipst->ips_ill_g_lock); 15423 if (usill != NULL) 15424 ill_refrele(usill); 15425 if (ipmp_ill != NULL) 15426 ill_refrele(ipmp_ill); 15427 if (dst_rhtp != NULL) 15428 TPC_RELE(dst_rhtp); 15429 15430 #ifdef DEBUG 15431 if (ipif == NULL) { 15432 char buf1[INET6_ADDRSTRLEN]; 15433 15434 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15435 ill->ill_name, 15436 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15437 } else { 15438 char buf1[INET6_ADDRSTRLEN]; 15439 char buf2[INET6_ADDRSTRLEN]; 15440 15441 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15442 ipif->ipif_ill->ill_name, 15443 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15444 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15445 buf2, sizeof (buf2)))); 15446 } 15447 #endif /* DEBUG */ 15448 return (ipif); 15449 } 15450 15451 /* 15452 * Pick a source address based on the destination ill and an optional setsrc 15453 * address. 15454 * The result is stored in srcp. If generation is set, then put the source 15455 * generation number there before we look for the source address (to avoid 15456 * missing changes in the set of source addresses. 15457 * If flagsp is set, then us it to pass back ipif_flags. 15458 * 15459 * If the caller wants to cache the returned source address and detect when 15460 * that might be stale, the caller should pass in a generation argument, 15461 * which the caller can later compare against ips_src_generation 15462 * 15463 * The precedence order for selecting an IPv4 source address is: 15464 * - RTF_SETSRC on the offlink ire always wins. 15465 * - If usrsrc is set, swap the ill to be the usesrc one. 15466 * - If IPMP is used on the ill, select a random address from the most 15467 * preferred ones below: 15468 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15469 * 2. Not deprecated, not ALL_ZONES 15470 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15471 * 4. Not deprecated, ALL_ZONES 15472 * 5. If onlink destination, same subnet and deprecated 15473 * 6. Deprecated. 15474 * 15475 * We have lower preference for ALL_ZONES IP addresses, 15476 * as they pose problems with unlabeled destinations. 15477 * 15478 * Note that when multiple IP addresses match e.g., #1 we pick 15479 * the first one if IPMP is not in use. With IPMP we randomize. 15480 */ 15481 int 15482 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15483 ipaddr_t multicast_ifaddr, 15484 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15485 uint32_t *generation, uint64_t *flagsp) 15486 { 15487 ipif_t *ipif; 15488 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15489 15490 if (flagsp != NULL) 15491 *flagsp = 0; 15492 15493 /* 15494 * Need to grab the generation number before we check to 15495 * avoid a race with a change to the set of local addresses. 15496 * No lock needed since the thread which updates the set of local 15497 * addresses use ipif/ill locks and exit those (hence a store memory 15498 * barrier) before doing the atomic increase of ips_src_generation. 15499 */ 15500 if (generation != NULL) { 15501 *generation = ipst->ips_src_generation; 15502 } 15503 15504 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15505 *srcp = multicast_ifaddr; 15506 return (0); 15507 } 15508 15509 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15510 if (setsrc != INADDR_ANY) { 15511 *srcp = setsrc; 15512 return (0); 15513 } 15514 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15515 if (ipif == NULL) { 15516 if (notready) 15517 return (ENETDOWN); 15518 else 15519 return (EADDRNOTAVAIL); 15520 } 15521 *srcp = ipif->ipif_lcl_addr; 15522 if (flagsp != NULL) 15523 *flagsp = ipif->ipif_flags; 15524 ipif_refrele(ipif); 15525 return (0); 15526 } 15527 15528 /* ARGSUSED */ 15529 int 15530 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15531 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15532 { 15533 /* 15534 * ill_phyint_reinit merged the v4 and v6 into a single 15535 * ipsq. We might not have been able to complete the 15536 * operation in ipif_set_values, if we could not become 15537 * exclusive. If so restart it here. 15538 */ 15539 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15540 } 15541 15542 /* 15543 * Can operate on either a module or a driver queue. 15544 * Returns an error if not a module queue. 15545 */ 15546 /* ARGSUSED */ 15547 int 15548 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15549 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15550 { 15551 queue_t *q1 = q; 15552 char *cp; 15553 char interf_name[LIFNAMSIZ]; 15554 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15555 15556 if (q->q_next == NULL) { 15557 ip1dbg(( 15558 "if_unitsel: IF_UNITSEL: no q_next\n")); 15559 return (EINVAL); 15560 } 15561 15562 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15563 return (EALREADY); 15564 15565 do { 15566 q1 = q1->q_next; 15567 } while (q1->q_next); 15568 cp = q1->q_qinfo->qi_minfo->mi_idname; 15569 (void) sprintf(interf_name, "%s%d", cp, ppa); 15570 15571 /* 15572 * Here we are not going to delay the ioack until after 15573 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15574 * original ioctl message before sending the requests. 15575 */ 15576 return (ipif_set_values(q, mp, interf_name, &ppa)); 15577 } 15578 15579 /* ARGSUSED */ 15580 int 15581 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15582 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15583 { 15584 return (ENXIO); 15585 } 15586 15587 /* 15588 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15589 * `irep'. Returns a pointer to the next free `irep' entry 15590 * A mirror exists in ipif_delete_bcast_ires(). 15591 * 15592 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15593 * done in ire_add. 15594 */ 15595 static ire_t ** 15596 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15597 { 15598 ipaddr_t addr; 15599 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15600 ipaddr_t subnetmask = ipif->ipif_net_mask; 15601 ill_t *ill = ipif->ipif_ill; 15602 zoneid_t zoneid = ipif->ipif_zoneid; 15603 15604 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15605 15606 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15607 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15608 15609 if (ipif->ipif_lcl_addr == INADDR_ANY || 15610 (ipif->ipif_flags & IPIF_NOLOCAL)) 15611 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15612 15613 irep = ire_create_bcast(ill, 0, zoneid, irep); 15614 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15615 15616 /* 15617 * For backward compatibility, we create net broadcast IREs based on 15618 * the old "IP address class system", since some old machines only 15619 * respond to these class derived net broadcast. However, we must not 15620 * create these net broadcast IREs if the subnetmask is shorter than 15621 * the IP address class based derived netmask. Otherwise, we may 15622 * create a net broadcast address which is the same as an IP address 15623 * on the subnet -- and then TCP will refuse to talk to that address. 15624 */ 15625 if (netmask < subnetmask) { 15626 addr = netmask & ipif->ipif_subnet; 15627 irep = ire_create_bcast(ill, addr, zoneid, irep); 15628 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15629 } 15630 15631 /* 15632 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15633 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15634 * created. Creating these broadcast IREs will only create confusion 15635 * as `addr' will be the same as the IP address. 15636 */ 15637 if (subnetmask != 0xFFFFFFFF) { 15638 addr = ipif->ipif_subnet; 15639 irep = ire_create_bcast(ill, addr, zoneid, irep); 15640 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15641 } 15642 15643 return (irep); 15644 } 15645 15646 /* 15647 * Mirror of ipif_create_bcast_ires() 15648 */ 15649 static void 15650 ipif_delete_bcast_ires(ipif_t *ipif) 15651 { 15652 ipaddr_t addr; 15653 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15654 ipaddr_t subnetmask = ipif->ipif_net_mask; 15655 ill_t *ill = ipif->ipif_ill; 15656 zoneid_t zoneid = ipif->ipif_zoneid; 15657 ire_t *ire; 15658 15659 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15660 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15661 15662 if (ipif->ipif_lcl_addr == INADDR_ANY || 15663 (ipif->ipif_flags & IPIF_NOLOCAL)) 15664 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15665 15666 ire = ire_lookup_bcast(ill, 0, zoneid); 15667 ASSERT(ire != NULL); 15668 ire_delete(ire); ire_refrele(ire); 15669 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15670 ASSERT(ire != NULL); 15671 ire_delete(ire); ire_refrele(ire); 15672 15673 /* 15674 * For backward compatibility, we create net broadcast IREs based on 15675 * the old "IP address class system", since some old machines only 15676 * respond to these class derived net broadcast. However, we must not 15677 * create these net broadcast IREs if the subnetmask is shorter than 15678 * the IP address class based derived netmask. Otherwise, we may 15679 * create a net broadcast address which is the same as an IP address 15680 * on the subnet -- and then TCP will refuse to talk to that address. 15681 */ 15682 if (netmask < subnetmask) { 15683 addr = netmask & ipif->ipif_subnet; 15684 ire = ire_lookup_bcast(ill, addr, zoneid); 15685 ASSERT(ire != NULL); 15686 ire_delete(ire); ire_refrele(ire); 15687 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15688 ASSERT(ire != NULL); 15689 ire_delete(ire); ire_refrele(ire); 15690 } 15691 15692 /* 15693 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15694 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15695 * created. Creating these broadcast IREs will only create confusion 15696 * as `addr' will be the same as the IP address. 15697 */ 15698 if (subnetmask != 0xFFFFFFFF) { 15699 addr = ipif->ipif_subnet; 15700 ire = ire_lookup_bcast(ill, addr, zoneid); 15701 ASSERT(ire != NULL); 15702 ire_delete(ire); ire_refrele(ire); 15703 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15704 ASSERT(ire != NULL); 15705 ire_delete(ire); ire_refrele(ire); 15706 } 15707 } 15708 15709 /* 15710 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15711 * from lifr_flags and the name from lifr_name. 15712 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15713 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15714 * Returns EINPROGRESS when mp has been consumed by queueing it on 15715 * ipx_pending_mp and the ioctl will complete in ip_rput. 15716 * 15717 * Can operate on either a module or a driver queue. 15718 * Returns an error if not a module queue. 15719 */ 15720 /* ARGSUSED */ 15721 int 15722 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15723 ip_ioctl_cmd_t *ipip, void *if_req) 15724 { 15725 ill_t *ill = q->q_ptr; 15726 phyint_t *phyi; 15727 ip_stack_t *ipst; 15728 struct lifreq *lifr = if_req; 15729 uint64_t new_flags; 15730 15731 ASSERT(ipif != NULL); 15732 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15733 15734 if (q->q_next == NULL) { 15735 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15736 return (EINVAL); 15737 } 15738 15739 /* 15740 * If we are not writer on 'q' then this interface exists already 15741 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15742 * so return EALREADY. 15743 */ 15744 if (ill != ipif->ipif_ill) 15745 return (EALREADY); 15746 15747 if (ill->ill_name[0] != '\0') 15748 return (EALREADY); 15749 15750 /* 15751 * If there's another ill already with the requested name, ensure 15752 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15753 * fuse together two unrelated ills, which will cause chaos. 15754 */ 15755 ipst = ill->ill_ipst; 15756 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15757 lifr->lifr_name, NULL); 15758 if (phyi != NULL) { 15759 ill_t *ill_mate = phyi->phyint_illv4; 15760 15761 if (ill_mate == NULL) 15762 ill_mate = phyi->phyint_illv6; 15763 ASSERT(ill_mate != NULL); 15764 15765 if (ill_mate->ill_media->ip_m_mac_type != 15766 ill->ill_media->ip_m_mac_type) { 15767 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15768 "use the same ill name on differing media\n")); 15769 return (EINVAL); 15770 } 15771 } 15772 15773 /* 15774 * We start off as IFF_IPV4 in ipif_allocate and become 15775 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15776 * The only flags that we read from user space are IFF_IPV4, 15777 * IFF_IPV6, and IFF_BROADCAST. 15778 * 15779 * This ill has not been inserted into the global list. 15780 * So we are still single threaded and don't need any lock 15781 * 15782 * Saniy check the flags. 15783 */ 15784 15785 if ((lifr->lifr_flags & IFF_BROADCAST) && 15786 ((lifr->lifr_flags & IFF_IPV6) || 15787 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15788 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15789 "or IPv6 i.e., no broadcast \n")); 15790 return (EINVAL); 15791 } 15792 15793 new_flags = 15794 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15795 15796 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15797 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15798 "IFF_IPV4 or IFF_IPV6\n")); 15799 return (EINVAL); 15800 } 15801 15802 /* 15803 * We always start off as IPv4, so only need to check for IPv6. 15804 */ 15805 if ((new_flags & IFF_IPV6) != 0) { 15806 ill->ill_flags |= ILLF_IPV6; 15807 ill->ill_flags &= ~ILLF_IPV4; 15808 15809 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15810 ill->ill_flags |= ILLF_NOLINKLOCAL; 15811 } 15812 15813 if ((new_flags & IFF_BROADCAST) != 0) 15814 ipif->ipif_flags |= IPIF_BROADCAST; 15815 else 15816 ipif->ipif_flags &= ~IPIF_BROADCAST; 15817 15818 /* We started off as V4. */ 15819 if (ill->ill_flags & ILLF_IPV6) { 15820 ill->ill_phyint->phyint_illv6 = ill; 15821 ill->ill_phyint->phyint_illv4 = NULL; 15822 } 15823 15824 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15825 } 15826 15827 /* ARGSUSED */ 15828 int 15829 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15830 ip_ioctl_cmd_t *ipip, void *if_req) 15831 { 15832 /* 15833 * ill_phyint_reinit merged the v4 and v6 into a single 15834 * ipsq. We might not have been able to complete the 15835 * slifname in ipif_set_values, if we could not become 15836 * exclusive. If so restart it here 15837 */ 15838 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15839 } 15840 15841 /* 15842 * Return a pointer to the ipif which matches the index, IP version type and 15843 * zoneid. 15844 */ 15845 ipif_t * 15846 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15847 ip_stack_t *ipst) 15848 { 15849 ill_t *ill; 15850 ipif_t *ipif = NULL; 15851 15852 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15853 if (ill != NULL) { 15854 mutex_enter(&ill->ill_lock); 15855 for (ipif = ill->ill_ipif; ipif != NULL; 15856 ipif = ipif->ipif_next) { 15857 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15858 zoneid == ipif->ipif_zoneid || 15859 ipif->ipif_zoneid == ALL_ZONES)) { 15860 ipif_refhold_locked(ipif); 15861 break; 15862 } 15863 } 15864 mutex_exit(&ill->ill_lock); 15865 ill_refrele(ill); 15866 } 15867 return (ipif); 15868 } 15869 15870 /* 15871 * Change an existing physical interface's index. If the new index 15872 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15873 * Finally, we update other systems which may have a dependence on the 15874 * index value. 15875 */ 15876 /* ARGSUSED */ 15877 int 15878 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15879 ip_ioctl_cmd_t *ipip, void *ifreq) 15880 { 15881 ill_t *ill; 15882 phyint_t *phyi; 15883 struct ifreq *ifr = (struct ifreq *)ifreq; 15884 struct lifreq *lifr = (struct lifreq *)ifreq; 15885 uint_t old_index, index; 15886 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15887 avl_index_t where; 15888 15889 if (ipip->ipi_cmd_type == IF_CMD) 15890 index = ifr->ifr_index; 15891 else 15892 index = lifr->lifr_index; 15893 15894 /* 15895 * Only allow on physical interface. Also, index zero is illegal. 15896 */ 15897 ill = ipif->ipif_ill; 15898 phyi = ill->ill_phyint; 15899 if (ipif->ipif_id != 0 || index == 0) { 15900 return (EINVAL); 15901 } 15902 15903 /* If the index is not changing, no work to do */ 15904 if (phyi->phyint_ifindex == index) 15905 return (0); 15906 15907 /* 15908 * Use phyint_exists() to determine if the new interface index 15909 * is already in use. If the index is unused then we need to 15910 * change the phyint's position in the phyint_list_avl_by_index 15911 * tree. If we do not do this, subsequent lookups (using the new 15912 * index value) will not find the phyint. 15913 */ 15914 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15915 if (phyint_exists(index, ipst)) { 15916 rw_exit(&ipst->ips_ill_g_lock); 15917 return (EEXIST); 15918 } 15919 15920 /* 15921 * The new index is unused. Set it in the phyint. However we must not 15922 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15923 * changes. The event must be bound to old ifindex value. 15924 */ 15925 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15926 &index, sizeof (index)); 15927 15928 old_index = phyi->phyint_ifindex; 15929 phyi->phyint_ifindex = index; 15930 15931 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15932 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15933 &index, &where); 15934 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15935 phyi, where); 15936 rw_exit(&ipst->ips_ill_g_lock); 15937 15938 /* Update SCTP's ILL list */ 15939 sctp_ill_reindex(ill, old_index); 15940 15941 /* Send the routing sockets message */ 15942 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15943 if (ILL_OTHER(ill)) 15944 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15945 15946 /* Perhaps ilgs should use this ill */ 15947 update_conn_ill(NULL, ill->ill_ipst); 15948 return (0); 15949 } 15950 15951 /* ARGSUSED */ 15952 int 15953 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15954 ip_ioctl_cmd_t *ipip, void *ifreq) 15955 { 15956 struct ifreq *ifr = (struct ifreq *)ifreq; 15957 struct lifreq *lifr = (struct lifreq *)ifreq; 15958 15959 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15960 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15961 /* Get the interface index */ 15962 if (ipip->ipi_cmd_type == IF_CMD) { 15963 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15964 } else { 15965 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15966 } 15967 return (0); 15968 } 15969 15970 /* ARGSUSED */ 15971 int 15972 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15973 ip_ioctl_cmd_t *ipip, void *ifreq) 15974 { 15975 struct lifreq *lifr = (struct lifreq *)ifreq; 15976 15977 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15978 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15979 /* Get the interface zone */ 15980 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15981 lifr->lifr_zoneid = ipif->ipif_zoneid; 15982 return (0); 15983 } 15984 15985 /* 15986 * Set the zoneid of an interface. 15987 */ 15988 /* ARGSUSED */ 15989 int 15990 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15991 ip_ioctl_cmd_t *ipip, void *ifreq) 15992 { 15993 struct lifreq *lifr = (struct lifreq *)ifreq; 15994 int err = 0; 15995 boolean_t need_up = B_FALSE; 15996 zone_t *zptr; 15997 zone_status_t status; 15998 zoneid_t zoneid; 15999 16000 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16001 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16002 if (!is_system_labeled()) 16003 return (ENOTSUP); 16004 zoneid = GLOBAL_ZONEID; 16005 } 16006 16007 /* cannot assign instance zero to a non-global zone */ 16008 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16009 return (ENOTSUP); 16010 16011 /* 16012 * Cannot assign to a zone that doesn't exist or is shutting down. In 16013 * the event of a race with the zone shutdown processing, since IP 16014 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16015 * interface will be cleaned up even if the zone is shut down 16016 * immediately after the status check. If the interface can't be brought 16017 * down right away, and the zone is shut down before the restart 16018 * function is called, we resolve the possible races by rechecking the 16019 * zone status in the restart function. 16020 */ 16021 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16022 return (EINVAL); 16023 status = zone_status_get(zptr); 16024 zone_rele(zptr); 16025 16026 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16027 return (EINVAL); 16028 16029 if (ipif->ipif_flags & IPIF_UP) { 16030 /* 16031 * If the interface is already marked up, 16032 * we call ipif_down which will take care 16033 * of ditching any IREs that have been set 16034 * up based on the old interface address. 16035 */ 16036 err = ipif_logical_down(ipif, q, mp); 16037 if (err == EINPROGRESS) 16038 return (err); 16039 (void) ipif_down_tail(ipif); 16040 need_up = B_TRUE; 16041 } 16042 16043 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16044 return (err); 16045 } 16046 16047 static int 16048 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16049 queue_t *q, mblk_t *mp, boolean_t need_up) 16050 { 16051 int err = 0; 16052 ip_stack_t *ipst; 16053 16054 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16055 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16056 16057 if (CONN_Q(q)) 16058 ipst = CONNQ_TO_IPST(q); 16059 else 16060 ipst = ILLQ_TO_IPST(q); 16061 16062 /* 16063 * For exclusive stacks we don't allow a different zoneid than 16064 * global. 16065 */ 16066 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16067 zoneid != GLOBAL_ZONEID) 16068 return (EINVAL); 16069 16070 /* Set the new zone id. */ 16071 ipif->ipif_zoneid = zoneid; 16072 16073 /* Update sctp list */ 16074 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16075 16076 /* The default multicast interface might have changed */ 16077 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16078 16079 if (need_up) { 16080 /* 16081 * Now bring the interface back up. If this 16082 * is the only IPIF for the ILL, ipif_up 16083 * will have to re-bind to the device, so 16084 * we may get back EINPROGRESS, in which 16085 * case, this IOCTL will get completed in 16086 * ip_rput_dlpi when we see the DL_BIND_ACK. 16087 */ 16088 err = ipif_up(ipif, q, mp); 16089 } 16090 return (err); 16091 } 16092 16093 /* ARGSUSED */ 16094 int 16095 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16096 ip_ioctl_cmd_t *ipip, void *if_req) 16097 { 16098 struct lifreq *lifr = (struct lifreq *)if_req; 16099 zoneid_t zoneid; 16100 zone_t *zptr; 16101 zone_status_t status; 16102 16103 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16104 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16105 zoneid = GLOBAL_ZONEID; 16106 16107 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16108 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16109 16110 /* 16111 * We recheck the zone status to resolve the following race condition: 16112 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16113 * 2) hme0:1 is up and can't be brought down right away; 16114 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16115 * 3) zone "myzone" is halted; the zone status switches to 16116 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16117 * the interfaces to remove - hme0:1 is not returned because it's not 16118 * yet in "myzone", so it won't be removed; 16119 * 4) the restart function for SIOCSLIFZONE is called; without the 16120 * status check here, we would have hme0:1 in "myzone" after it's been 16121 * destroyed. 16122 * Note that if the status check fails, we need to bring the interface 16123 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16124 * ipif_up_done[_v6](). 16125 */ 16126 status = ZONE_IS_UNINITIALIZED; 16127 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16128 status = zone_status_get(zptr); 16129 zone_rele(zptr); 16130 } 16131 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16132 if (ipif->ipif_isv6) { 16133 (void) ipif_up_done_v6(ipif); 16134 } else { 16135 (void) ipif_up_done(ipif); 16136 } 16137 return (EINVAL); 16138 } 16139 16140 (void) ipif_down_tail(ipif); 16141 16142 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16143 B_TRUE)); 16144 } 16145 16146 /* 16147 * Return the number of addresses on `ill' with one or more of the values 16148 * in `set' set and all of the values in `clear' clear. 16149 */ 16150 static uint_t 16151 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16152 { 16153 ipif_t *ipif; 16154 uint_t cnt = 0; 16155 16156 ASSERT(IAM_WRITER_ILL(ill)); 16157 16158 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16159 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16160 cnt++; 16161 16162 return (cnt); 16163 } 16164 16165 /* 16166 * Return the number of migratable addresses on `ill' that are under 16167 * application control. 16168 */ 16169 uint_t 16170 ill_appaddr_cnt(const ill_t *ill) 16171 { 16172 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16173 IPIF_NOFAILOVER)); 16174 } 16175 16176 /* 16177 * Return the number of point-to-point addresses on `ill'. 16178 */ 16179 uint_t 16180 ill_ptpaddr_cnt(const ill_t *ill) 16181 { 16182 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16183 } 16184 16185 /* ARGSUSED */ 16186 int 16187 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16188 ip_ioctl_cmd_t *ipip, void *ifreq) 16189 { 16190 struct lifreq *lifr = ifreq; 16191 16192 ASSERT(q->q_next == NULL); 16193 ASSERT(CONN_Q(q)); 16194 16195 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16196 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16197 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16198 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16199 16200 return (0); 16201 } 16202 16203 /* Find the previous ILL in this usesrc group */ 16204 static ill_t * 16205 ill_prev_usesrc(ill_t *uill) 16206 { 16207 ill_t *ill; 16208 16209 for (ill = uill->ill_usesrc_grp_next; 16210 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16211 ill = ill->ill_usesrc_grp_next) 16212 /* do nothing */; 16213 return (ill); 16214 } 16215 16216 /* 16217 * Release all members of the usesrc group. This routine is called 16218 * from ill_delete when the interface being unplumbed is the 16219 * group head. 16220 * 16221 * This silently clears the usesrc that ifconfig setup. 16222 * An alternative would be to keep that ifindex, and drop packets on the floor 16223 * since no source address can be selected. 16224 * Even if we keep the current semantics, don't need a lock and a linked list. 16225 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16226 * the one that is being removed. Issue is how we return the usesrc users 16227 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16228 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16229 * ill walk, but the walker would need to insert in the ioctl response. 16230 */ 16231 static void 16232 ill_disband_usesrc_group(ill_t *uill) 16233 { 16234 ill_t *next_ill, *tmp_ill; 16235 ip_stack_t *ipst = uill->ill_ipst; 16236 16237 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16238 next_ill = uill->ill_usesrc_grp_next; 16239 16240 do { 16241 ASSERT(next_ill != NULL); 16242 tmp_ill = next_ill->ill_usesrc_grp_next; 16243 ASSERT(tmp_ill != NULL); 16244 next_ill->ill_usesrc_grp_next = NULL; 16245 next_ill->ill_usesrc_ifindex = 0; 16246 next_ill = tmp_ill; 16247 } while (next_ill->ill_usesrc_ifindex != 0); 16248 uill->ill_usesrc_grp_next = NULL; 16249 } 16250 16251 /* 16252 * Remove the client usesrc ILL from the list and relink to a new list 16253 */ 16254 int 16255 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16256 { 16257 ill_t *ill, *tmp_ill; 16258 ip_stack_t *ipst = ucill->ill_ipst; 16259 16260 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16261 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16262 16263 /* 16264 * Check if the usesrc client ILL passed in is not already 16265 * in use as a usesrc ILL i.e one whose source address is 16266 * in use OR a usesrc ILL is not already in use as a usesrc 16267 * client ILL 16268 */ 16269 if ((ucill->ill_usesrc_ifindex == 0) || 16270 (uill->ill_usesrc_ifindex != 0)) { 16271 return (-1); 16272 } 16273 16274 ill = ill_prev_usesrc(ucill); 16275 ASSERT(ill->ill_usesrc_grp_next != NULL); 16276 16277 /* Remove from the current list */ 16278 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16279 /* Only two elements in the list */ 16280 ASSERT(ill->ill_usesrc_ifindex == 0); 16281 ill->ill_usesrc_grp_next = NULL; 16282 } else { 16283 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16284 } 16285 16286 if (ifindex == 0) { 16287 ucill->ill_usesrc_ifindex = 0; 16288 ucill->ill_usesrc_grp_next = NULL; 16289 return (0); 16290 } 16291 16292 ucill->ill_usesrc_ifindex = ifindex; 16293 tmp_ill = uill->ill_usesrc_grp_next; 16294 uill->ill_usesrc_grp_next = ucill; 16295 ucill->ill_usesrc_grp_next = 16296 (tmp_ill != NULL) ? tmp_ill : uill; 16297 return (0); 16298 } 16299 16300 /* 16301 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16302 * ip.c for locking details. 16303 */ 16304 /* ARGSUSED */ 16305 int 16306 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16307 ip_ioctl_cmd_t *ipip, void *ifreq) 16308 { 16309 struct lifreq *lifr = (struct lifreq *)ifreq; 16310 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16311 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16312 int err = 0, ret; 16313 uint_t ifindex; 16314 ipsq_t *ipsq = NULL; 16315 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16316 16317 ASSERT(IAM_WRITER_IPIF(ipif)); 16318 ASSERT(q->q_next == NULL); 16319 ASSERT(CONN_Q(q)); 16320 16321 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16322 16323 ifindex = lifr->lifr_index; 16324 if (ifindex == 0) { 16325 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16326 /* non usesrc group interface, nothing to reset */ 16327 return (0); 16328 } 16329 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16330 /* valid reset request */ 16331 reset_flg = B_TRUE; 16332 } 16333 16334 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16335 if (usesrc_ill == NULL) 16336 return (ENXIO); 16337 if (usesrc_ill == ipif->ipif_ill) { 16338 ill_refrele(usesrc_ill); 16339 return (EINVAL); 16340 } 16341 16342 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16343 NEW_OP, B_TRUE); 16344 if (ipsq == NULL) { 16345 err = EINPROGRESS; 16346 /* Operation enqueued on the ipsq of the usesrc ILL */ 16347 goto done; 16348 } 16349 16350 /* USESRC isn't currently supported with IPMP */ 16351 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16352 err = ENOTSUP; 16353 goto done; 16354 } 16355 16356 /* 16357 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16358 * used by IPMP underlying interfaces, but someone might think it's 16359 * more general and try to use it independently with VNI.) 16360 */ 16361 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16362 err = ENOTSUP; 16363 goto done; 16364 } 16365 16366 /* 16367 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16368 * already a client then return EINVAL 16369 */ 16370 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16371 err = EINVAL; 16372 goto done; 16373 } 16374 16375 /* 16376 * If the ill_usesrc_ifindex field is already set to what it needs to 16377 * be then this is a duplicate operation. 16378 */ 16379 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16380 err = 0; 16381 goto done; 16382 } 16383 16384 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16385 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16386 usesrc_ill->ill_isv6)); 16387 16388 /* 16389 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16390 * and the ill_usesrc_ifindex fields 16391 */ 16392 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16393 16394 if (reset_flg) { 16395 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16396 if (ret != 0) { 16397 err = EINVAL; 16398 } 16399 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16400 goto done; 16401 } 16402 16403 /* 16404 * Four possibilities to consider: 16405 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16406 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16407 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16408 * 4. Both are part of their respective usesrc groups 16409 */ 16410 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16411 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16412 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16413 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16414 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16415 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16416 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16417 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16418 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16419 /* Insert at head of list */ 16420 usesrc_cli_ill->ill_usesrc_grp_next = 16421 usesrc_ill->ill_usesrc_grp_next; 16422 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16423 } else { 16424 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16425 ifindex); 16426 if (ret != 0) 16427 err = EINVAL; 16428 } 16429 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16430 16431 done: 16432 if (ipsq != NULL) 16433 ipsq_exit(ipsq); 16434 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16435 ill_refrele(usesrc_ill); 16436 16437 /* Let conn_ixa caching know that source address selection changed */ 16438 ip_update_source_selection(ipst); 16439 16440 return (err); 16441 } 16442 16443 /* ARGSUSED */ 16444 int 16445 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16446 ip_ioctl_cmd_t *ipip, void *if_req) 16447 { 16448 struct lifreq *lifr = (struct lifreq *)if_req; 16449 ill_t *ill = ipif->ipif_ill; 16450 16451 /* 16452 * Need a lock since IFF_UP can be set even when there are 16453 * references to the ipif. 16454 */ 16455 mutex_enter(&ill->ill_lock); 16456 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16457 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16458 else 16459 lifr->lifr_dadstate = DAD_DONE; 16460 mutex_exit(&ill->ill_lock); 16461 return (0); 16462 } 16463 16464 /* 16465 * comparison function used by avl. 16466 */ 16467 static int 16468 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16469 { 16470 16471 uint_t index; 16472 16473 ASSERT(phyip != NULL && index_ptr != NULL); 16474 16475 index = *((uint_t *)index_ptr); 16476 /* 16477 * let the phyint with the lowest index be on top. 16478 */ 16479 if (((phyint_t *)phyip)->phyint_ifindex < index) 16480 return (1); 16481 if (((phyint_t *)phyip)->phyint_ifindex > index) 16482 return (-1); 16483 return (0); 16484 } 16485 16486 /* 16487 * comparison function used by avl. 16488 */ 16489 static int 16490 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16491 { 16492 ill_t *ill; 16493 int res = 0; 16494 16495 ASSERT(phyip != NULL && name_ptr != NULL); 16496 16497 if (((phyint_t *)phyip)->phyint_illv4) 16498 ill = ((phyint_t *)phyip)->phyint_illv4; 16499 else 16500 ill = ((phyint_t *)phyip)->phyint_illv6; 16501 ASSERT(ill != NULL); 16502 16503 res = strcmp(ill->ill_name, (char *)name_ptr); 16504 if (res > 0) 16505 return (1); 16506 else if (res < 0) 16507 return (-1); 16508 return (0); 16509 } 16510 16511 /* 16512 * This function is called on the unplumb path via ill_glist_delete() when 16513 * there are no ills left on the phyint and thus the phyint can be freed. 16514 */ 16515 static void 16516 phyint_free(phyint_t *phyi) 16517 { 16518 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16519 16520 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16521 16522 /* 16523 * If this phyint was an IPMP meta-interface, blow away the group. 16524 * This is safe to do because all of the illgrps have already been 16525 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16526 * If we're cleaning up as a result of failed initialization, 16527 * phyint_grp may be NULL. 16528 */ 16529 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16530 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16531 ipmp_grp_destroy(phyi->phyint_grp); 16532 phyi->phyint_grp = NULL; 16533 rw_exit(&ipst->ips_ipmp_lock); 16534 } 16535 16536 /* 16537 * If this interface was under IPMP, take it out of the group. 16538 */ 16539 if (phyi->phyint_grp != NULL) 16540 ipmp_phyint_leave_grp(phyi); 16541 16542 /* 16543 * Delete the phyint and disassociate its ipsq. The ipsq itself 16544 * will be freed in ipsq_exit(). 16545 */ 16546 phyi->phyint_ipsq->ipsq_phyint = NULL; 16547 phyi->phyint_name[0] = '\0'; 16548 16549 mi_free(phyi); 16550 } 16551 16552 /* 16553 * Attach the ill to the phyint structure which can be shared by both 16554 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16555 * function is called from ipif_set_values and ill_lookup_on_name (for 16556 * loopback) where we know the name of the ill. We lookup the ill and if 16557 * there is one present already with the name use that phyint. Otherwise 16558 * reuse the one allocated by ill_init. 16559 */ 16560 static void 16561 ill_phyint_reinit(ill_t *ill) 16562 { 16563 boolean_t isv6 = ill->ill_isv6; 16564 phyint_t *phyi_old; 16565 phyint_t *phyi; 16566 avl_index_t where = 0; 16567 ill_t *ill_other = NULL; 16568 ip_stack_t *ipst = ill->ill_ipst; 16569 16570 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16571 16572 phyi_old = ill->ill_phyint; 16573 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16574 phyi_old->phyint_illv6 == NULL)); 16575 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16576 phyi_old->phyint_illv4 == NULL)); 16577 ASSERT(phyi_old->phyint_ifindex == 0); 16578 16579 /* 16580 * Now that our ill has a name, set it in the phyint. 16581 */ 16582 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16583 16584 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16585 ill->ill_name, &where); 16586 16587 /* 16588 * 1. We grabbed the ill_g_lock before inserting this ill into 16589 * the global list of ills. So no other thread could have located 16590 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16591 * 2. Now locate the other protocol instance of this ill. 16592 * 3. Now grab both ill locks in the right order, and the phyint lock of 16593 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16594 * of neither ill can change. 16595 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16596 * other ill. 16597 * 5. Release all locks. 16598 */ 16599 16600 /* 16601 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16602 * we are initializing IPv4. 16603 */ 16604 if (phyi != NULL) { 16605 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16606 ASSERT(ill_other->ill_phyint != NULL); 16607 ASSERT((isv6 && !ill_other->ill_isv6) || 16608 (!isv6 && ill_other->ill_isv6)); 16609 GRAB_ILL_LOCKS(ill, ill_other); 16610 /* 16611 * We are potentially throwing away phyint_flags which 16612 * could be different from the one that we obtain from 16613 * ill_other->ill_phyint. But it is okay as we are assuming 16614 * that the state maintained within IP is correct. 16615 */ 16616 mutex_enter(&phyi->phyint_lock); 16617 if (isv6) { 16618 ASSERT(phyi->phyint_illv6 == NULL); 16619 phyi->phyint_illv6 = ill; 16620 } else { 16621 ASSERT(phyi->phyint_illv4 == NULL); 16622 phyi->phyint_illv4 = ill; 16623 } 16624 16625 /* 16626 * Delete the old phyint and make its ipsq eligible 16627 * to be freed in ipsq_exit(). 16628 */ 16629 phyi_old->phyint_illv4 = NULL; 16630 phyi_old->phyint_illv6 = NULL; 16631 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16632 phyi_old->phyint_name[0] = '\0'; 16633 mi_free(phyi_old); 16634 } else { 16635 mutex_enter(&ill->ill_lock); 16636 /* 16637 * We don't need to acquire any lock, since 16638 * the ill is not yet visible globally and we 16639 * have not yet released the ill_g_lock. 16640 */ 16641 phyi = phyi_old; 16642 mutex_enter(&phyi->phyint_lock); 16643 /* XXX We need a recovery strategy here. */ 16644 if (!phyint_assign_ifindex(phyi, ipst)) 16645 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16646 16647 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16648 (void *)phyi, where); 16649 16650 (void) avl_find(&ipst->ips_phyint_g_list-> 16651 phyint_list_avl_by_index, 16652 &phyi->phyint_ifindex, &where); 16653 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16654 (void *)phyi, where); 16655 } 16656 16657 /* 16658 * Reassigning ill_phyint automatically reassigns the ipsq also. 16659 * pending mp is not affected because that is per ill basis. 16660 */ 16661 ill->ill_phyint = phyi; 16662 16663 /* 16664 * Now that the phyint's ifindex has been assigned, complete the 16665 * remaining 16666 */ 16667 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16668 if (ill->ill_isv6) { 16669 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16670 ill->ill_phyint->phyint_ifindex; 16671 ill->ill_mcast_type = ipst->ips_mld_max_version; 16672 } else { 16673 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16674 } 16675 16676 /* 16677 * Generate an event within the hooks framework to indicate that 16678 * a new interface has just been added to IP. For this event to 16679 * be generated, the network interface must, at least, have an 16680 * ifindex assigned to it. (We don't generate the event for 16681 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16682 * 16683 * This needs to be run inside the ill_g_lock perimeter to ensure 16684 * that the ordering of delivered events to listeners matches the 16685 * order of them in the kernel. 16686 */ 16687 if (!IS_LOOPBACK(ill)) { 16688 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16689 ill->ill_name_length); 16690 } 16691 RELEASE_ILL_LOCKS(ill, ill_other); 16692 mutex_exit(&phyi->phyint_lock); 16693 } 16694 16695 /* 16696 * Notify any downstream modules of the name of this interface. 16697 * An M_IOCTL is used even though we don't expect a successful reply. 16698 * Any reply message from the driver (presumably an M_IOCNAK) will 16699 * eventually get discarded somewhere upstream. The message format is 16700 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16701 * to IP. 16702 */ 16703 static void 16704 ip_ifname_notify(ill_t *ill, queue_t *q) 16705 { 16706 mblk_t *mp1, *mp2; 16707 struct iocblk *iocp; 16708 struct lifreq *lifr; 16709 16710 mp1 = mkiocb(SIOCSLIFNAME); 16711 if (mp1 == NULL) 16712 return; 16713 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16714 if (mp2 == NULL) { 16715 freeb(mp1); 16716 return; 16717 } 16718 16719 mp1->b_cont = mp2; 16720 iocp = (struct iocblk *)mp1->b_rptr; 16721 iocp->ioc_count = sizeof (struct lifreq); 16722 16723 lifr = (struct lifreq *)mp2->b_rptr; 16724 mp2->b_wptr += sizeof (struct lifreq); 16725 bzero(lifr, sizeof (struct lifreq)); 16726 16727 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16728 lifr->lifr_ppa = ill->ill_ppa; 16729 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16730 16731 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16732 char *, "SIOCSLIFNAME", ill_t *, ill); 16733 putnext(q, mp1); 16734 } 16735 16736 static int 16737 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16738 { 16739 int err; 16740 ip_stack_t *ipst = ill->ill_ipst; 16741 phyint_t *phyi = ill->ill_phyint; 16742 16743 /* 16744 * Now that ill_name is set, the configuration for the IPMP 16745 * meta-interface can be performed. 16746 */ 16747 if (IS_IPMP(ill)) { 16748 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16749 /* 16750 * If phyi->phyint_grp is NULL, then this is the first IPMP 16751 * meta-interface and we need to create the IPMP group. 16752 */ 16753 if (phyi->phyint_grp == NULL) { 16754 /* 16755 * If someone has renamed another IPMP group to have 16756 * the same name as our interface, bail. 16757 */ 16758 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16759 rw_exit(&ipst->ips_ipmp_lock); 16760 return (EEXIST); 16761 } 16762 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16763 if (phyi->phyint_grp == NULL) { 16764 rw_exit(&ipst->ips_ipmp_lock); 16765 return (ENOMEM); 16766 } 16767 } 16768 rw_exit(&ipst->ips_ipmp_lock); 16769 } 16770 16771 /* Tell downstream modules where they are. */ 16772 ip_ifname_notify(ill, q); 16773 16774 /* 16775 * ill_dl_phys returns EINPROGRESS in the usual case. 16776 * Error cases are ENOMEM ... 16777 */ 16778 err = ill_dl_phys(ill, ipif, mp, q); 16779 16780 if (ill->ill_isv6) { 16781 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16782 if (ipst->ips_mld_slowtimeout_id == 0) { 16783 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16784 (void *)ipst, 16785 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16786 } 16787 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16788 } else { 16789 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16790 if (ipst->ips_igmp_slowtimeout_id == 0) { 16791 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16792 (void *)ipst, 16793 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16794 } 16795 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16796 } 16797 16798 return (err); 16799 } 16800 16801 /* 16802 * Common routine for ppa and ifname setting. Should be called exclusive. 16803 * 16804 * Returns EINPROGRESS when mp has been consumed by queueing it on 16805 * ipx_pending_mp and the ioctl will complete in ip_rput. 16806 * 16807 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16808 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16809 * For SLIFNAME, we pass these values back to the userland. 16810 */ 16811 static int 16812 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16813 { 16814 ill_t *ill; 16815 ipif_t *ipif; 16816 ipsq_t *ipsq; 16817 char *ppa_ptr; 16818 char *old_ptr; 16819 char old_char; 16820 int error; 16821 ip_stack_t *ipst; 16822 16823 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16824 ASSERT(q->q_next != NULL); 16825 ASSERT(interf_name != NULL); 16826 16827 ill = (ill_t *)q->q_ptr; 16828 ipst = ill->ill_ipst; 16829 16830 ASSERT(ill->ill_ipst != NULL); 16831 ASSERT(ill->ill_name[0] == '\0'); 16832 ASSERT(IAM_WRITER_ILL(ill)); 16833 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16834 ASSERT(ill->ill_ppa == UINT_MAX); 16835 16836 ill->ill_defend_start = ill->ill_defend_count = 0; 16837 /* The ppa is sent down by ifconfig or is chosen */ 16838 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16839 return (EINVAL); 16840 } 16841 16842 /* 16843 * make sure ppa passed in is same as ppa in the name. 16844 * This check is not made when ppa == UINT_MAX in that case ppa 16845 * in the name could be anything. System will choose a ppa and 16846 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16847 */ 16848 if (*new_ppa_ptr != UINT_MAX) { 16849 /* stoi changes the pointer */ 16850 old_ptr = ppa_ptr; 16851 /* 16852 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16853 * (they don't have an externally visible ppa). We assign one 16854 * here so that we can manage the interface. Note that in 16855 * the past this value was always 0 for DLPI 1 drivers. 16856 */ 16857 if (*new_ppa_ptr == 0) 16858 *new_ppa_ptr = stoi(&old_ptr); 16859 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16860 return (EINVAL); 16861 } 16862 /* 16863 * terminate string before ppa 16864 * save char at that location. 16865 */ 16866 old_char = ppa_ptr[0]; 16867 ppa_ptr[0] = '\0'; 16868 16869 ill->ill_ppa = *new_ppa_ptr; 16870 /* 16871 * Finish as much work now as possible before calling ill_glist_insert 16872 * which makes the ill globally visible and also merges it with the 16873 * other protocol instance of this phyint. The remaining work is 16874 * done after entering the ipsq which may happen sometime later. 16875 */ 16876 ipif = ill->ill_ipif; 16877 16878 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16879 ipif_assign_seqid(ipif); 16880 16881 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16882 ill->ill_flags |= ILLF_IPV4; 16883 16884 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16885 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16886 16887 if (ill->ill_flags & ILLF_IPV6) { 16888 16889 ill->ill_isv6 = B_TRUE; 16890 ill_set_inputfn(ill); 16891 if (ill->ill_rq != NULL) { 16892 ill->ill_rq->q_qinfo = &iprinitv6; 16893 } 16894 16895 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16896 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16897 ipif->ipif_v6subnet = ipv6_all_zeros; 16898 ipif->ipif_v6net_mask = ipv6_all_zeros; 16899 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16900 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16901 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16902 /* 16903 * point-to-point or Non-mulicast capable 16904 * interfaces won't do NUD unless explicitly 16905 * configured to do so. 16906 */ 16907 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16908 !(ill->ill_flags & ILLF_MULTICAST)) { 16909 ill->ill_flags |= ILLF_NONUD; 16910 } 16911 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16912 if (ill->ill_flags & ILLF_NOARP) { 16913 /* 16914 * Note: xresolv interfaces will eventually need 16915 * NOARP set here as well, but that will require 16916 * those external resolvers to have some 16917 * knowledge of that flag and act appropriately. 16918 * Not to be changed at present. 16919 */ 16920 ill->ill_flags &= ~ILLF_NOARP; 16921 } 16922 /* 16923 * Set the ILLF_ROUTER flag according to the global 16924 * IPv6 forwarding policy. 16925 */ 16926 if (ipst->ips_ipv6_forwarding != 0) 16927 ill->ill_flags |= ILLF_ROUTER; 16928 } else if (ill->ill_flags & ILLF_IPV4) { 16929 ill->ill_isv6 = B_FALSE; 16930 ill_set_inputfn(ill); 16931 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16932 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16933 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16934 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16935 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16936 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16937 /* 16938 * Set the ILLF_ROUTER flag according to the global 16939 * IPv4 forwarding policy. 16940 */ 16941 if (ipst->ips_ip_forwarding != 0) 16942 ill->ill_flags |= ILLF_ROUTER; 16943 } 16944 16945 ASSERT(ill->ill_phyint != NULL); 16946 16947 /* 16948 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16949 * be completed in ill_glist_insert -> ill_phyint_reinit 16950 */ 16951 if (!ill_allocate_mibs(ill)) 16952 return (ENOMEM); 16953 16954 /* 16955 * Pick a default sap until we get the DL_INFO_ACK back from 16956 * the driver. 16957 */ 16958 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16959 ill->ill_media->ip_m_ipv4sap; 16960 16961 ill->ill_ifname_pending = 1; 16962 ill->ill_ifname_pending_err = 0; 16963 16964 /* 16965 * When the first ipif comes up in ipif_up_done(), multicast groups 16966 * that were joined while this ill was not bound to the DLPI link need 16967 * to be recovered by ill_recover_multicast(). 16968 */ 16969 ill->ill_need_recover_multicast = 1; 16970 16971 ill_refhold(ill); 16972 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16973 if ((error = ill_glist_insert(ill, interf_name, 16974 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16975 ill->ill_ppa = UINT_MAX; 16976 ill->ill_name[0] = '\0'; 16977 /* 16978 * undo null termination done above. 16979 */ 16980 ppa_ptr[0] = old_char; 16981 rw_exit(&ipst->ips_ill_g_lock); 16982 ill_refrele(ill); 16983 return (error); 16984 } 16985 16986 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16987 16988 /* 16989 * When we return the buffer pointed to by interf_name should contain 16990 * the same name as in ill_name. 16991 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16992 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16993 * so copy full name and update the ppa ptr. 16994 * When ppa passed in != UINT_MAX all values are correct just undo 16995 * null termination, this saves a bcopy. 16996 */ 16997 if (*new_ppa_ptr == UINT_MAX) { 16998 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16999 *new_ppa_ptr = ill->ill_ppa; 17000 } else { 17001 /* 17002 * undo null termination done above. 17003 */ 17004 ppa_ptr[0] = old_char; 17005 } 17006 17007 /* Let SCTP know about this ILL */ 17008 sctp_update_ill(ill, SCTP_ILL_INSERT); 17009 17010 /* 17011 * ill_glist_insert has made the ill visible globally, and 17012 * ill_phyint_reinit could have changed the ipsq. At this point, 17013 * we need to hold the ips_ill_g_lock across the call to enter the 17014 * ipsq to enforce atomicity and prevent reordering. In the event 17015 * the ipsq has changed, and if the new ipsq is currently busy, 17016 * we need to make sure that this half-completed ioctl is ahead of 17017 * any subsequent ioctl. We achieve this by not dropping the 17018 * ips_ill_g_lock which prevents any ill lookup itself thereby 17019 * ensuring that new ioctls can't start. 17020 */ 17021 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17022 B_TRUE); 17023 17024 rw_exit(&ipst->ips_ill_g_lock); 17025 ill_refrele(ill); 17026 if (ipsq == NULL) 17027 return (EINPROGRESS); 17028 17029 /* 17030 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17031 */ 17032 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17033 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17034 else 17035 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17036 17037 error = ipif_set_values_tail(ill, ipif, mp, q); 17038 ipsq_exit(ipsq); 17039 if (error != 0 && error != EINPROGRESS) { 17040 /* 17041 * restore previous values 17042 */ 17043 ill->ill_isv6 = B_FALSE; 17044 ill_set_inputfn(ill); 17045 } 17046 return (error); 17047 } 17048 17049 void 17050 ipif_init(ip_stack_t *ipst) 17051 { 17052 int i; 17053 17054 for (i = 0; i < MAX_G_HEADS; i++) { 17055 ipst->ips_ill_g_heads[i].ill_g_list_head = 17056 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17057 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17058 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17059 } 17060 17061 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17062 ill_phyint_compare_index, 17063 sizeof (phyint_t), 17064 offsetof(struct phyint, phyint_avl_by_index)); 17065 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17066 ill_phyint_compare_name, 17067 sizeof (phyint_t), 17068 offsetof(struct phyint, phyint_avl_by_name)); 17069 } 17070 17071 /* 17072 * Save enough information so that we can recreate the IRE if 17073 * the interface goes down and then up. 17074 */ 17075 void 17076 ill_save_ire(ill_t *ill, ire_t *ire) 17077 { 17078 mblk_t *save_mp; 17079 17080 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17081 if (save_mp != NULL) { 17082 ifrt_t *ifrt; 17083 17084 save_mp->b_wptr += sizeof (ifrt_t); 17085 ifrt = (ifrt_t *)save_mp->b_rptr; 17086 bzero(ifrt, sizeof (ifrt_t)); 17087 ifrt->ifrt_type = ire->ire_type; 17088 if (ire->ire_ipversion == IPV4_VERSION) { 17089 ASSERT(!ill->ill_isv6); 17090 ifrt->ifrt_addr = ire->ire_addr; 17091 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17092 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17093 ifrt->ifrt_mask = ire->ire_mask; 17094 } else { 17095 ASSERT(ill->ill_isv6); 17096 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17097 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17098 mutex_enter(&ire->ire_lock); 17099 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17100 mutex_exit(&ire->ire_lock); 17101 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17102 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17103 } 17104 ifrt->ifrt_flags = ire->ire_flags; 17105 ifrt->ifrt_zoneid = ire->ire_zoneid; 17106 mutex_enter(&ill->ill_saved_ire_lock); 17107 save_mp->b_cont = ill->ill_saved_ire_mp; 17108 ill->ill_saved_ire_mp = save_mp; 17109 ill->ill_saved_ire_cnt++; 17110 mutex_exit(&ill->ill_saved_ire_lock); 17111 } 17112 } 17113 17114 /* 17115 * Remove one entry from ill_saved_ire_mp. 17116 */ 17117 void 17118 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17119 { 17120 mblk_t **mpp; 17121 mblk_t *mp; 17122 ifrt_t *ifrt; 17123 17124 /* Remove from ill_saved_ire_mp list if it is there */ 17125 mutex_enter(&ill->ill_saved_ire_lock); 17126 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17127 mpp = &(*mpp)->b_cont) { 17128 in6_addr_t gw_addr_v6; 17129 17130 /* 17131 * On a given ill, the tuple of address, gateway, mask, 17132 * ire_type, and zoneid is unique for each saved IRE. 17133 */ 17134 mp = *mpp; 17135 ifrt = (ifrt_t *)mp->b_rptr; 17136 /* ire_gateway_addr_v6 can change - need lock */ 17137 mutex_enter(&ire->ire_lock); 17138 gw_addr_v6 = ire->ire_gateway_addr_v6; 17139 mutex_exit(&ire->ire_lock); 17140 17141 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17142 ifrt->ifrt_type != ire->ire_type) 17143 continue; 17144 17145 if (ill->ill_isv6 ? 17146 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17147 &ire->ire_addr_v6) && 17148 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17149 &gw_addr_v6) && 17150 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17151 &ire->ire_mask_v6)) : 17152 (ifrt->ifrt_addr == ire->ire_addr && 17153 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17154 ifrt->ifrt_mask == ire->ire_mask)) { 17155 *mpp = mp->b_cont; 17156 ill->ill_saved_ire_cnt--; 17157 freeb(mp); 17158 break; 17159 } 17160 } 17161 mutex_exit(&ill->ill_saved_ire_lock); 17162 } 17163 17164 /* 17165 * IP multirouting broadcast routes handling 17166 * Append CGTP broadcast IREs to regular ones created 17167 * at ifconfig time. 17168 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17169 * the destination and the gateway are broadcast addresses. 17170 * The caller has verified that the destination is an IRE_BROADCAST and that 17171 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17172 * we create a MULTIRT IRE_BROADCAST. 17173 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17174 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17175 */ 17176 static void 17177 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17178 { 17179 ire_t *ire_prim; 17180 17181 ASSERT(ire != NULL); 17182 17183 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17184 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17185 NULL); 17186 if (ire_prim != NULL) { 17187 /* 17188 * We are in the special case of broadcasts for 17189 * CGTP. We add an IRE_BROADCAST that holds 17190 * the RTF_MULTIRT flag, the destination 17191 * address and the low level 17192 * info of ire_prim. In other words, CGTP 17193 * broadcast is added to the redundant ipif. 17194 */ 17195 ill_t *ill_prim; 17196 ire_t *bcast_ire; 17197 17198 ill_prim = ire_prim->ire_ill; 17199 17200 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17201 (void *)ire_prim, (void *)ill_prim)); 17202 17203 bcast_ire = ire_create( 17204 (uchar_t *)&ire->ire_addr, 17205 (uchar_t *)&ip_g_all_ones, 17206 (uchar_t *)&ire->ire_gateway_addr, 17207 IRE_BROADCAST, 17208 ill_prim, 17209 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17210 ire->ire_flags | RTF_KERNEL, 17211 NULL, 17212 ipst); 17213 17214 /* 17215 * Here we assume that ire_add does head insertion so that 17216 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17217 */ 17218 if (bcast_ire != NULL) { 17219 if (ire->ire_flags & RTF_SETSRC) { 17220 bcast_ire->ire_setsrc_addr = 17221 ire->ire_setsrc_addr; 17222 } 17223 bcast_ire = ire_add(bcast_ire); 17224 if (bcast_ire != NULL) { 17225 ip2dbg(("ip_cgtp_filter_bcast_add: " 17226 "added bcast_ire %p\n", 17227 (void *)bcast_ire)); 17228 17229 ill_save_ire(ill_prim, bcast_ire); 17230 ire_refrele(bcast_ire); 17231 } 17232 } 17233 ire_refrele(ire_prim); 17234 } 17235 } 17236 17237 /* 17238 * IP multirouting broadcast routes handling 17239 * Remove the broadcast ire. 17240 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17241 * the destination and the gateway are broadcast addresses. 17242 * The caller has only verified that RTF_MULTIRT was set. We check 17243 * that the destination is broadcast and that the gateway is a broadcast 17244 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17245 */ 17246 static void 17247 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17248 { 17249 ASSERT(ire != NULL); 17250 17251 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17252 ire_t *ire_prim; 17253 17254 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17255 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17256 ipst, NULL); 17257 if (ire_prim != NULL) { 17258 ill_t *ill_prim; 17259 ire_t *bcast_ire; 17260 17261 ill_prim = ire_prim->ire_ill; 17262 17263 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17264 "ire_prim %p, ill_prim %p\n", 17265 (void *)ire_prim, (void *)ill_prim)); 17266 17267 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17268 ire->ire_gateway_addr, IRE_BROADCAST, 17269 ill_prim, ALL_ZONES, NULL, 17270 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17271 MATCH_IRE_MASK, 0, ipst, NULL); 17272 17273 if (bcast_ire != NULL) { 17274 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17275 "looked up bcast_ire %p\n", 17276 (void *)bcast_ire)); 17277 ill_remove_saved_ire(bcast_ire->ire_ill, 17278 bcast_ire); 17279 ire_delete(bcast_ire); 17280 ire_refrele(bcast_ire); 17281 } 17282 ire_refrele(ire_prim); 17283 } 17284 } 17285 } 17286 17287 /* 17288 * Derive an interface id from the link layer address. 17289 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17290 */ 17291 static void 17292 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17293 { 17294 char *addr; 17295 17296 /* 17297 * Note that some IPv6 interfaces get plumbed over links that claim to 17298 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17299 * PPP links). The ETHERADDRL check here ensures that we only set the 17300 * interface ID on IPv6 interfaces above links that actually have real 17301 * Ethernet addresses. 17302 */ 17303 if (ill->ill_phys_addr_length == ETHERADDRL) { 17304 /* Form EUI-64 like address */ 17305 addr = (char *)&v6addr->s6_addr32[2]; 17306 bcopy(ill->ill_phys_addr, addr, 3); 17307 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17308 addr[3] = (char)0xff; 17309 addr[4] = (char)0xfe; 17310 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17311 } 17312 } 17313 17314 /* ARGSUSED */ 17315 static void 17316 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17317 { 17318 } 17319 17320 typedef struct ipmp_ifcookie { 17321 uint32_t ic_hostid; 17322 char ic_ifname[LIFNAMSIZ]; 17323 char ic_zonename[ZONENAME_MAX]; 17324 } ipmp_ifcookie_t; 17325 17326 /* 17327 * Construct a pseudo-random interface ID for the IPMP interface that's both 17328 * predictable and (almost) guaranteed to be unique. 17329 */ 17330 static void 17331 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17332 { 17333 zone_t *zp; 17334 uint8_t *addr; 17335 uchar_t hash[16]; 17336 ulong_t hostid; 17337 MD5_CTX ctx; 17338 ipmp_ifcookie_t ic = { 0 }; 17339 17340 ASSERT(IS_IPMP(ill)); 17341 17342 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17343 ic.ic_hostid = htonl((uint32_t)hostid); 17344 17345 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17346 17347 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17348 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17349 zone_rele(zp); 17350 } 17351 17352 MD5Init(&ctx); 17353 MD5Update(&ctx, &ic, sizeof (ic)); 17354 MD5Final(hash, &ctx); 17355 17356 /* 17357 * Map the hash to an interface ID per the basic approach in RFC3041. 17358 */ 17359 addr = &v6addr->s6_addr8[8]; 17360 bcopy(hash + 8, addr, sizeof (uint64_t)); 17361 addr[0] &= ~0x2; /* set local bit */ 17362 } 17363 17364 /* 17365 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17366 */ 17367 static void 17368 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17369 { 17370 phyint_t *phyi = ill->ill_phyint; 17371 17372 /* 17373 * Check PHYI_MULTI_BCAST and length of physical 17374 * address to determine if we use the mapping or the 17375 * broadcast address. 17376 */ 17377 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17378 ill->ill_phys_addr_length != ETHERADDRL) { 17379 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17380 return; 17381 } 17382 m_physaddr[0] = 0x33; 17383 m_physaddr[1] = 0x33; 17384 m_physaddr[2] = m_ip6addr[12]; 17385 m_physaddr[3] = m_ip6addr[13]; 17386 m_physaddr[4] = m_ip6addr[14]; 17387 m_physaddr[5] = m_ip6addr[15]; 17388 } 17389 17390 /* 17391 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17392 */ 17393 static void 17394 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17395 { 17396 phyint_t *phyi = ill->ill_phyint; 17397 17398 /* 17399 * Check PHYI_MULTI_BCAST and length of physical 17400 * address to determine if we use the mapping or the 17401 * broadcast address. 17402 */ 17403 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17404 ill->ill_phys_addr_length != ETHERADDRL) { 17405 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17406 return; 17407 } 17408 m_physaddr[0] = 0x01; 17409 m_physaddr[1] = 0x00; 17410 m_physaddr[2] = 0x5e; 17411 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17412 m_physaddr[4] = m_ipaddr[2]; 17413 m_physaddr[5] = m_ipaddr[3]; 17414 } 17415 17416 /* ARGSUSED */ 17417 static void 17418 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17419 { 17420 /* 17421 * for the MULTI_BCAST case and other cases when we want to 17422 * use the link-layer broadcast address for multicast. 17423 */ 17424 uint8_t *bphys_addr; 17425 dl_unitdata_req_t *dlur; 17426 17427 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17428 if (ill->ill_sap_length < 0) { 17429 bphys_addr = (uchar_t *)dlur + 17430 dlur->dl_dest_addr_offset; 17431 } else { 17432 bphys_addr = (uchar_t *)dlur + 17433 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17434 } 17435 17436 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17437 } 17438 17439 /* 17440 * Derive IPoIB interface id from the link layer address. 17441 */ 17442 static void 17443 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17444 { 17445 char *addr; 17446 17447 ASSERT(ill->ill_phys_addr_length == 20); 17448 addr = (char *)&v6addr->s6_addr32[2]; 17449 bcopy(ill->ill_phys_addr + 12, addr, 8); 17450 /* 17451 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17452 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17453 * rules. In these cases, the IBA considers these GUIDs to be in 17454 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17455 * required; vendors are required not to assign global EUI-64's 17456 * that differ only in u/l bit values, thus guaranteeing uniqueness 17457 * of the interface identifier. Whether the GUID is in modified 17458 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17459 * bit set to 1. 17460 */ 17461 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17462 } 17463 17464 /* 17465 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17466 * Note on mapping from multicast IP addresses to IPoIB multicast link 17467 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17468 * The format of an IPoIB multicast address is: 17469 * 17470 * 4 byte QPN Scope Sign. Pkey 17471 * +--------------------------------------------+ 17472 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17473 * +--------------------------------------------+ 17474 * 17475 * The Scope and Pkey components are properties of the IBA port and 17476 * network interface. They can be ascertained from the broadcast address. 17477 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17478 */ 17479 static void 17480 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17481 { 17482 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17483 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17484 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17485 uint8_t *bphys_addr; 17486 dl_unitdata_req_t *dlur; 17487 17488 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17489 17490 /* 17491 * RFC 4391: IPv4 MGID is 28-bit long. 17492 */ 17493 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17494 m_physaddr[17] = m_ipaddr[1]; 17495 m_physaddr[18] = m_ipaddr[2]; 17496 m_physaddr[19] = m_ipaddr[3]; 17497 17498 17499 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17500 if (ill->ill_sap_length < 0) { 17501 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17502 } else { 17503 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17504 ill->ill_sap_length; 17505 } 17506 /* 17507 * Now fill in the IBA scope/Pkey values from the broadcast address. 17508 */ 17509 m_physaddr[5] = bphys_addr[5]; 17510 m_physaddr[8] = bphys_addr[8]; 17511 m_physaddr[9] = bphys_addr[9]; 17512 } 17513 17514 static void 17515 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17516 { 17517 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17518 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17519 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17520 uint8_t *bphys_addr; 17521 dl_unitdata_req_t *dlur; 17522 17523 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17524 17525 /* 17526 * RFC 4391: IPv4 MGID is 80-bit long. 17527 */ 17528 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17529 17530 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17531 if (ill->ill_sap_length < 0) { 17532 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17533 } else { 17534 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17535 ill->ill_sap_length; 17536 } 17537 /* 17538 * Now fill in the IBA scope/Pkey values from the broadcast address. 17539 */ 17540 m_physaddr[5] = bphys_addr[5]; 17541 m_physaddr[8] = bphys_addr[8]; 17542 m_physaddr[9] = bphys_addr[9]; 17543 } 17544 17545 /* 17546 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17547 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17548 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17549 * of RFC4213. 17550 */ 17551 static void 17552 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17553 { 17554 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17555 v6addr->s6_addr32[2] = 0; 17556 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17557 } 17558 17559 /* 17560 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17561 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17562 * id. 17563 */ 17564 static void 17565 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17566 { 17567 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17568 17569 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17570 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17571 } 17572 17573 static void 17574 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17575 { 17576 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17577 } 17578 17579 static void 17580 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17581 { 17582 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17583 } 17584 17585 static void 17586 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17587 { 17588 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17589 } 17590 17591 static void 17592 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17593 { 17594 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17595 } 17596 17597 /* 17598 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17599 * Returns an held ill, or NULL. 17600 */ 17601 ill_t * 17602 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17603 ip_stack_t *ipst) 17604 { 17605 ill_t *ill; 17606 ipif_t *ipif; 17607 17608 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17609 if (ill == NULL) 17610 return (NULL); 17611 17612 mutex_enter(&ill->ill_lock); 17613 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17614 if (IPIF_IS_CONDEMNED(ipif)) 17615 continue; 17616 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17617 ipif->ipif_zoneid != ALL_ZONES) 17618 continue; 17619 17620 mutex_exit(&ill->ill_lock); 17621 return (ill); 17622 } 17623 mutex_exit(&ill->ill_lock); 17624 ill_refrele(ill); 17625 return (NULL); 17626 } 17627 17628 /* 17629 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17630 * If a pointer to an ipif_t is returned then the caller will need to do 17631 * an ill_refrele(). 17632 */ 17633 ipif_t * 17634 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17635 ip_stack_t *ipst) 17636 { 17637 ipif_t *ipif; 17638 ill_t *ill; 17639 17640 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17641 if (ill == NULL) 17642 return (NULL); 17643 17644 mutex_enter(&ill->ill_lock); 17645 if (ill->ill_state_flags & ILL_CONDEMNED) { 17646 mutex_exit(&ill->ill_lock); 17647 ill_refrele(ill); 17648 return (NULL); 17649 } 17650 17651 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17652 if (!IPIF_CAN_LOOKUP(ipif)) 17653 continue; 17654 if (lifidx == ipif->ipif_id) { 17655 ipif_refhold_locked(ipif); 17656 break; 17657 } 17658 } 17659 17660 mutex_exit(&ill->ill_lock); 17661 ill_refrele(ill); 17662 return (ipif); 17663 } 17664 17665 /* 17666 * Set ill_inputfn based on the current know state. 17667 * This needs to be called when any of the factors taken into 17668 * account changes. 17669 */ 17670 void 17671 ill_set_inputfn(ill_t *ill) 17672 { 17673 ip_stack_t *ipst = ill->ill_ipst; 17674 17675 if (ill->ill_isv6) { 17676 if (is_system_labeled()) 17677 ill->ill_inputfn = ill_input_full_v6; 17678 else 17679 ill->ill_inputfn = ill_input_short_v6; 17680 } else { 17681 if (is_system_labeled()) 17682 ill->ill_inputfn = ill_input_full_v4; 17683 else if (ill->ill_dhcpinit != 0) 17684 ill->ill_inputfn = ill_input_full_v4; 17685 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17686 != NULL) 17687 ill->ill_inputfn = ill_input_full_v4; 17688 else if (ipst->ips_ip_cgtp_filter && 17689 ipst->ips_ip_cgtp_filter_ops != NULL) 17690 ill->ill_inputfn = ill_input_full_v4; 17691 else 17692 ill->ill_inputfn = ill_input_short_v4; 17693 } 17694 } 17695 17696 /* 17697 * Re-evaluate ill_inputfn for all the IPv4 ills. 17698 * Used when RSVP and CGTP comes and goes. 17699 */ 17700 void 17701 ill_set_inputfn_all(ip_stack_t *ipst) 17702 { 17703 ill_walk_context_t ctx; 17704 ill_t *ill; 17705 17706 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17707 ill = ILL_START_WALK_V4(&ctx, ipst); 17708 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17709 ill_set_inputfn(ill); 17710 17711 rw_exit(&ipst->ips_ill_g_lock); 17712 } 17713 17714 /* 17715 * Set the physical address information for `ill' to the contents of the 17716 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17717 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17718 * EINPROGRESS will be returned. 17719 */ 17720 int 17721 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17722 { 17723 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17724 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17725 17726 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17727 17728 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17729 dlindp->dl_data != DL_CURR_DEST_ADDR && 17730 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17731 /* Changing DL_IPV6_TOKEN is not yet supported */ 17732 return (0); 17733 } 17734 17735 /* 17736 * We need to store up to two copies of `mp' in `ill'. Due to the 17737 * design of ipsq_pending_mp_add(), we can't pass them as separate 17738 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17739 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17740 */ 17741 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17742 freemsg(mp); 17743 return (ENOMEM); 17744 } 17745 17746 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17747 17748 /* 17749 * Since we'll only do a logical down, we can't rely on ipif_down 17750 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17751 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17752 * case, to quiesce ire's and nce's for ill_is_quiescent. 17753 */ 17754 mutex_enter(&ill->ill_lock); 17755 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17756 /* no more ire/nce addition allowed */ 17757 mutex_exit(&ill->ill_lock); 17758 17759 /* 17760 * If we can quiesce the ill, then set the address. If not, then 17761 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17762 */ 17763 ill_down_ipifs(ill, B_TRUE); 17764 mutex_enter(&ill->ill_lock); 17765 if (!ill_is_quiescent(ill)) { 17766 /* call cannot fail since `conn_t *' argument is NULL */ 17767 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17768 mp, ILL_DOWN); 17769 mutex_exit(&ill->ill_lock); 17770 return (EINPROGRESS); 17771 } 17772 mutex_exit(&ill->ill_lock); 17773 17774 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17775 return (0); 17776 } 17777 17778 /* 17779 * Once the ill associated with `q' has quiesced, set its physical address 17780 * information to the values in `addrmp'. Note that two copies of `addrmp' 17781 * are passed (linked by b_cont), since we sometimes need to save two distinct 17782 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17783 * failure (we'll free the other copy if it's not needed). Since the ill_t 17784 * is quiesced, we know any stale nce's with the old address information have 17785 * already been removed, so we don't need to call nce_flush(). 17786 */ 17787 /* ARGSUSED */ 17788 static void 17789 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17790 { 17791 ill_t *ill = q->q_ptr; 17792 mblk_t *addrmp2 = unlinkb(addrmp); 17793 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17794 uint_t addrlen, addroff; 17795 int status; 17796 17797 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17798 17799 addroff = dlindp->dl_addr_offset; 17800 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17801 17802 switch (dlindp->dl_data) { 17803 case DL_IPV6_LINK_LAYER_ADDR: 17804 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17805 freemsg(addrmp2); 17806 break; 17807 17808 case DL_CURR_DEST_ADDR: 17809 freemsg(ill->ill_dest_addr_mp); 17810 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17811 ill->ill_dest_addr_mp = addrmp; 17812 if (ill->ill_isv6) { 17813 ill_setdesttoken(ill); 17814 ipif_setdestlinklocal(ill->ill_ipif); 17815 } 17816 freemsg(addrmp2); 17817 break; 17818 17819 case DL_CURR_PHYS_ADDR: 17820 freemsg(ill->ill_phys_addr_mp); 17821 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17822 ill->ill_phys_addr_mp = addrmp; 17823 ill->ill_phys_addr_length = addrlen; 17824 if (ill->ill_isv6) 17825 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17826 else 17827 freemsg(addrmp2); 17828 if (ill->ill_isv6) { 17829 ill_setdefaulttoken(ill); 17830 ipif_setlinklocal(ill->ill_ipif); 17831 } 17832 break; 17833 default: 17834 ASSERT(0); 17835 } 17836 17837 /* 17838 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17839 * as we bring the ipifs up again. 17840 */ 17841 mutex_enter(&ill->ill_lock); 17842 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17843 mutex_exit(&ill->ill_lock); 17844 /* 17845 * If there are ipifs to bring up, ill_up_ipifs() will return 17846 * EINPROGRESS, and ipsq_current_finish() will be called by 17847 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17848 * brought up. 17849 */ 17850 status = ill_up_ipifs(ill, q, addrmp); 17851 if (status != EINPROGRESS) 17852 ipsq_current_finish(ipsq); 17853 } 17854 17855 /* 17856 * Helper routine for setting the ill_nd_lla fields. 17857 */ 17858 void 17859 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17860 { 17861 freemsg(ill->ill_nd_lla_mp); 17862 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17863 ill->ill_nd_lla_mp = ndmp; 17864 ill->ill_nd_lla_len = addrlen; 17865 } 17866 17867 /* 17868 * Replumb the ill. 17869 */ 17870 int 17871 ill_replumb(ill_t *ill, mblk_t *mp) 17872 { 17873 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17874 17875 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17876 17877 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17878 17879 /* 17880 * If we can quiesce the ill, then continue. If not, then 17881 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17882 */ 17883 ill_down_ipifs(ill, B_FALSE); 17884 17885 mutex_enter(&ill->ill_lock); 17886 if (!ill_is_quiescent(ill)) { 17887 /* call cannot fail since `conn_t *' argument is NULL */ 17888 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17889 mp, ILL_DOWN); 17890 mutex_exit(&ill->ill_lock); 17891 return (EINPROGRESS); 17892 } 17893 mutex_exit(&ill->ill_lock); 17894 17895 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17896 return (0); 17897 } 17898 17899 /* ARGSUSED */ 17900 static void 17901 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17902 { 17903 ill_t *ill = q->q_ptr; 17904 int err; 17905 conn_t *connp = NULL; 17906 17907 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17908 freemsg(ill->ill_replumb_mp); 17909 ill->ill_replumb_mp = copyb(mp); 17910 17911 if (ill->ill_replumb_mp == NULL) { 17912 /* out of memory */ 17913 ipsq_current_finish(ipsq); 17914 return; 17915 } 17916 17917 mutex_enter(&ill->ill_lock); 17918 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17919 ill->ill_rq, ill->ill_replumb_mp, 0); 17920 mutex_exit(&ill->ill_lock); 17921 17922 if (!ill->ill_up_ipifs) { 17923 /* already closing */ 17924 ipsq_current_finish(ipsq); 17925 return; 17926 } 17927 ill->ill_replumbing = 1; 17928 err = ill_down_ipifs_tail(ill); 17929 17930 /* 17931 * Successfully quiesced and brought down the interface, now we send 17932 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17933 * DL_NOTE_REPLUMB message. 17934 */ 17935 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17936 DL_NOTIFY_CONF); 17937 ASSERT(mp != NULL); 17938 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17939 DL_NOTE_REPLUMB_DONE; 17940 ill_dlpi_send(ill, mp); 17941 17942 /* 17943 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17944 * streams have to be unbound. When all the DLPI exchanges are done, 17945 * ipsq_current_finish() will be called by arp_bringup_done(). The 17946 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17947 * arp_bringup_done(). 17948 */ 17949 ASSERT(ill->ill_replumb_mp != NULL); 17950 if (err == EINPROGRESS) 17951 return; 17952 else 17953 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17954 ASSERT(connp == NULL); 17955 if (err == 0 && ill->ill_replumb_mp != NULL && 17956 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17957 return; 17958 } 17959 ipsq_current_finish(ipsq); 17960 } 17961 17962 /* 17963 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17964 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17965 * as per the ioctl. On failure, an errno is returned. 17966 */ 17967 static int 17968 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17969 { 17970 int rval; 17971 struct strioctl iocb; 17972 17973 iocb.ic_cmd = cmd; 17974 iocb.ic_timout = 15; 17975 iocb.ic_len = bufsize; 17976 iocb.ic_dp = buf; 17977 17978 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17979 } 17980 17981 /* 17982 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17983 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17984 */ 17985 static int 17986 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17987 uint_t *bufsizep, cred_t *cr) 17988 { 17989 int err; 17990 struct lifnum lifn; 17991 17992 bzero(&lifn, sizeof (lifn)); 17993 lifn.lifn_family = af; 17994 lifn.lifn_flags = LIFC_UNDER_IPMP; 17995 17996 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17997 return (err); 17998 17999 /* 18000 * Pad the interface count to account for additional interfaces that 18001 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18002 */ 18003 lifn.lifn_count += 4; 18004 bzero(lifcp, sizeof (*lifcp)); 18005 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18006 lifcp->lifc_family = af; 18007 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18008 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18009 18010 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18011 if (err != 0) { 18012 kmem_free(lifcp->lifc_buf, *bufsizep); 18013 return (err); 18014 } 18015 18016 return (0); 18017 } 18018 18019 /* 18020 * Helper for ip_interface_cleanup() that removes the loopback interface. 18021 */ 18022 static void 18023 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18024 { 18025 int err; 18026 struct lifreq lifr; 18027 18028 bzero(&lifr, sizeof (lifr)); 18029 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18030 18031 /* 18032 * Attempt to remove the interface. It may legitimately not exist 18033 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18034 */ 18035 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18036 if (err != 0 && err != ENXIO) { 18037 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18038 "error %d\n", isv6 ? "v6" : "v4", err)); 18039 } 18040 } 18041 18042 /* 18043 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18044 * groups and that IPMP data addresses are down. These conditions must be met 18045 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18046 */ 18047 static void 18048 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18049 { 18050 int af = isv6 ? AF_INET6 : AF_INET; 18051 int i, nifs; 18052 int err; 18053 uint_t bufsize; 18054 uint_t lifrsize = sizeof (struct lifreq); 18055 struct lifconf lifc; 18056 struct lifreq *lifrp; 18057 18058 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18059 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18060 "(error %d); any IPMP interfaces cannot be shutdown", err); 18061 return; 18062 } 18063 18064 nifs = lifc.lifc_len / lifrsize; 18065 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18066 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18067 if (err != 0) { 18068 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18069 "flags: error %d", lifrp->lifr_name, err); 18070 continue; 18071 } 18072 18073 if (lifrp->lifr_flags & IFF_IPMP) { 18074 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18075 continue; 18076 18077 lifrp->lifr_flags &= ~IFF_UP; 18078 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18079 if (err != 0) { 18080 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18081 "bring down (error %d); IPMP interface may " 18082 "not be shutdown", lifrp->lifr_name, err); 18083 } 18084 18085 /* 18086 * Check if IFF_DUPLICATE is still set -- and if so, 18087 * reset the address to clear it. 18088 */ 18089 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18090 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18091 continue; 18092 18093 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18094 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18095 lifrp, lifrsize, cr)) != 0) { 18096 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18097 "reset DAD (error %d); IPMP interface may " 18098 "not be shutdown", lifrp->lifr_name, err); 18099 } 18100 continue; 18101 } 18102 18103 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18104 lifrp->lifr_groupname[0] = '\0'; 18105 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18106 lifrsize, cr)) != 0) { 18107 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18108 "leave IPMP group (error %d); associated " 18109 "IPMP interface may not be shutdown", 18110 lifrp->lifr_name, err); 18111 continue; 18112 } 18113 } 18114 } 18115 18116 kmem_free(lifc.lifc_buf, bufsize); 18117 } 18118 18119 #define UDPDEV "/devices/pseudo/udp@0:udp" 18120 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18121 18122 /* 18123 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18124 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18125 * when the user-level processes in the zone are killed and the latter are 18126 * cleaned up by str_stack_shutdown(). 18127 */ 18128 void 18129 ip_interface_cleanup(ip_stack_t *ipst) 18130 { 18131 ldi_handle_t lh; 18132 ldi_ident_t li; 18133 cred_t *cr; 18134 int err; 18135 int i; 18136 char *devs[] = { UDP6DEV, UDPDEV }; 18137 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18138 18139 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18140 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18141 " error %d", err); 18142 return; 18143 } 18144 18145 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18146 ASSERT(cr != NULL); 18147 18148 /* 18149 * NOTE: loop executes exactly twice and is hardcoded to know that the 18150 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18151 * the loop.) 18152 */ 18153 for (i = 0; i < 2; i++) { 18154 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18155 if (err != 0) { 18156 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18157 " error %d", devs[i], err); 18158 continue; 18159 } 18160 18161 ip_loopback_removeif(lh, i == 0, cr); 18162 ip_ipmp_cleanup(lh, i == 0, cr); 18163 18164 (void) ldi_close(lh, FREAD|FWRITE, cr); 18165 } 18166 18167 ldi_ident_release(li); 18168 crfree(cr); 18169 } 18170 18171 /* 18172 * This needs to be in-sync with nic_event_t definition 18173 */ 18174 static const char * 18175 ill_hook_event2str(nic_event_t event) 18176 { 18177 switch (event) { 18178 case NE_PLUMB: 18179 return ("PLUMB"); 18180 case NE_UNPLUMB: 18181 return ("UNPLUMB"); 18182 case NE_UP: 18183 return ("UP"); 18184 case NE_DOWN: 18185 return ("DOWN"); 18186 case NE_ADDRESS_CHANGE: 18187 return ("ADDRESS_CHANGE"); 18188 case NE_LIF_UP: 18189 return ("LIF_UP"); 18190 case NE_LIF_DOWN: 18191 return ("LIF_DOWN"); 18192 case NE_IFINDEX_CHANGE: 18193 return ("IFINDEX_CHANGE"); 18194 default: 18195 return ("UNKNOWN"); 18196 } 18197 } 18198 18199 void 18200 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18201 nic_event_data_t data, size_t datalen) 18202 { 18203 ip_stack_t *ipst = ill->ill_ipst; 18204 hook_nic_event_int_t *info; 18205 const char *str = NULL; 18206 18207 /* create a new nic event info */ 18208 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18209 goto fail; 18210 18211 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18212 info->hnei_event.hne_lif = lif; 18213 info->hnei_event.hne_event = event; 18214 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18215 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18216 info->hnei_event.hne_data = NULL; 18217 info->hnei_event.hne_datalen = 0; 18218 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18219 18220 if (data != NULL && datalen != 0) { 18221 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18222 if (info->hnei_event.hne_data == NULL) 18223 goto fail; 18224 bcopy(data, info->hnei_event.hne_data, datalen); 18225 info->hnei_event.hne_datalen = datalen; 18226 } 18227 18228 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18229 DDI_NOSLEEP) == DDI_SUCCESS) 18230 return; 18231 18232 fail: 18233 if (info != NULL) { 18234 if (info->hnei_event.hne_data != NULL) { 18235 kmem_free(info->hnei_event.hne_data, 18236 info->hnei_event.hne_datalen); 18237 } 18238 kmem_free(info, sizeof (hook_nic_event_t)); 18239 } 18240 str = ill_hook_event2str(event); 18241 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18242 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18243 } 18244 18245 static int 18246 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18247 { 18248 int err = 0; 18249 const in_addr_t *addr = NULL; 18250 nce_t *nce = NULL; 18251 ill_t *ill = ipif->ipif_ill; 18252 ill_t *bound_ill; 18253 boolean_t added_ipif = B_FALSE; 18254 uint16_t state; 18255 uint16_t flags; 18256 18257 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18258 ill_t *, ill, ipif_t *, ipif); 18259 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18260 addr = &ipif->ipif_lcl_addr; 18261 } 18262 18263 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18264 if (res_act != Res_act_initial) 18265 return (EINVAL); 18266 } 18267 18268 if (addr != NULL) { 18269 ipmp_illgrp_t *illg = ill->ill_grp; 18270 18271 /* add unicast nce for the local addr */ 18272 18273 if (IS_IPMP(ill)) { 18274 /* 18275 * If we're here via ipif_up(), then the ipif 18276 * won't be bound yet -- add it to the group, 18277 * which will bind it if possible. (We would 18278 * add it in ipif_up(), but deleting on failure 18279 * there is gruesome.) If we're here via 18280 * ipmp_ill_bind_ipif(), then the ipif has 18281 * already been added to the group and we 18282 * just need to use the binding. 18283 */ 18284 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18285 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18286 if (bound_ill == NULL) { 18287 /* 18288 * We couldn't bind the ipif to an ill 18289 * yet, so we have nothing to publish. 18290 * Mark the address as ready and return. 18291 */ 18292 ipif->ipif_addr_ready = 1; 18293 return (0); 18294 } 18295 added_ipif = B_TRUE; 18296 } 18297 } else { 18298 bound_ill = ill; 18299 } 18300 18301 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18302 NCE_F_NONUD); 18303 /* 18304 * If this is an initial bring-up (or the ipif was never 18305 * completely brought up), do DAD. Otherwise, we're here 18306 * because IPMP has rebound an address to this ill: send 18307 * unsolicited advertisements (ARP announcements) to 18308 * inform others. 18309 */ 18310 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18311 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18312 } else { 18313 state = ND_REACHABLE; 18314 flags |= NCE_F_UNSOL_ADV; 18315 } 18316 18317 retry: 18318 err = nce_lookup_then_add_v4(ill, 18319 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18320 addr, flags, state, &nce); 18321 18322 /* 18323 * note that we may encounter EEXIST if we are moving 18324 * the nce as a result of a rebind operation. 18325 */ 18326 switch (err) { 18327 case 0: 18328 ipif->ipif_added_nce = 1; 18329 nce->nce_ipif_cnt++; 18330 break; 18331 case EEXIST: 18332 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18333 ill->ill_name)); 18334 if (!NCE_MYADDR(nce->nce_common)) { 18335 /* 18336 * A leftover nce from before this address 18337 * existed 18338 */ 18339 ncec_delete(nce->nce_common); 18340 nce_refrele(nce); 18341 nce = NULL; 18342 goto retry; 18343 } 18344 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18345 nce_refrele(nce); 18346 nce = NULL; 18347 ip1dbg(("ipif_arp_up: NCE already exists " 18348 "for %s:%u\n", ill->ill_name, 18349 ipif->ipif_id)); 18350 goto arp_up_done; 18351 } 18352 /* 18353 * Duplicate local addresses are permissible for 18354 * IPIF_POINTOPOINT interfaces which will get marked 18355 * IPIF_UNNUMBERED later in 18356 * ip_addr_availability_check(). 18357 * 18358 * The nce_ipif_cnt field tracks the number of 18359 * ipifs that have nce_addr as their local address. 18360 */ 18361 ipif->ipif_addr_ready = 1; 18362 ipif->ipif_added_nce = 1; 18363 nce->nce_ipif_cnt++; 18364 err = 0; 18365 break; 18366 default: 18367 ASSERT(nce == NULL); 18368 goto arp_up_done; 18369 } 18370 if (arp_no_defense) { 18371 if ((ipif->ipif_flags & IPIF_UP) && 18372 !ipif->ipif_addr_ready) 18373 ipif_up_notify(ipif); 18374 ipif->ipif_addr_ready = 1; 18375 } 18376 } else { 18377 /* zero address. nothing to publish */ 18378 ipif->ipif_addr_ready = 1; 18379 } 18380 if (nce != NULL) 18381 nce_refrele(nce); 18382 arp_up_done: 18383 if (added_ipif && err != 0) 18384 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18385 return (err); 18386 } 18387 18388 int 18389 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18390 { 18391 int err = 0; 18392 ill_t *ill = ipif->ipif_ill; 18393 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18394 18395 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18396 ill_t *, ill, ipif_t *, ipif); 18397 18398 /* 18399 * need to bring up ARP or setup mcast mapping only 18400 * when the first interface is coming UP. 18401 */ 18402 first_interface = (ill->ill_ipif_up_count == 0 && 18403 ill->ill_ipif_dup_count == 0 && !was_dup); 18404 18405 if (res_act == Res_act_initial && first_interface) { 18406 /* 18407 * Send ATTACH + BIND 18408 */ 18409 err = arp_ll_up(ill); 18410 if (err != EINPROGRESS && err != 0) 18411 return (err); 18412 18413 /* 18414 * Add NCE for local address. Start DAD. 18415 * we'll wait to hear that DAD has finished 18416 * before using the interface. 18417 */ 18418 if (err == EINPROGRESS) 18419 wait_for_dlpi = B_TRUE; 18420 } 18421 18422 if (!wait_for_dlpi) 18423 (void) ipif_arp_up_done_tail(ipif, res_act); 18424 18425 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18426 } 18427 18428 /* 18429 * Finish processing of "arp_up" after all the DLPI message 18430 * exchanges have completed between arp and the driver. 18431 */ 18432 void 18433 arp_bringup_done(ill_t *ill, int err) 18434 { 18435 mblk_t *mp1; 18436 ipif_t *ipif; 18437 conn_t *connp = NULL; 18438 ipsq_t *ipsq; 18439 queue_t *q; 18440 18441 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18442 18443 ASSERT(IAM_WRITER_ILL(ill)); 18444 18445 ipsq = ill->ill_phyint->phyint_ipsq; 18446 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18447 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18448 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18449 if (mp1 == NULL) /* bringup was aborted by the user */ 18450 return; 18451 18452 /* 18453 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18454 * must have an associated conn_t. Otherwise, we're bringing this 18455 * interface back up as part of handling an asynchronous event (e.g., 18456 * physical address change). 18457 */ 18458 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18459 ASSERT(connp != NULL); 18460 q = CONNP_TO_WQ(connp); 18461 } else { 18462 ASSERT(connp == NULL); 18463 q = ill->ill_rq; 18464 } 18465 if (err == 0) { 18466 if (ipif->ipif_isv6) { 18467 if ((err = ipif_up_done_v6(ipif)) != 0) 18468 ip0dbg(("arp_bringup_done: init failed\n")); 18469 } else { 18470 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18471 if (err != 0 || 18472 (err = ipif_up_done(ipif)) != 0) { 18473 ip0dbg(("arp_bringup_done: " 18474 "init failed err %x\n", err)); 18475 (void) ipif_arp_down(ipif); 18476 } 18477 18478 } 18479 } else { 18480 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18481 } 18482 18483 if ((err == 0) && (ill->ill_up_ipifs)) { 18484 err = ill_up_ipifs(ill, q, mp1); 18485 if (err == EINPROGRESS) 18486 return; 18487 } 18488 18489 /* 18490 * If we have a moved ipif to bring up, and everything has succeeded 18491 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18492 * down -- the admin can try to bring it up by hand if need be. 18493 */ 18494 if (ill->ill_move_ipif != NULL) { 18495 ipif = ill->ill_move_ipif; 18496 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18497 ipif->ipif_ill->ill_name)); 18498 ill->ill_move_ipif = NULL; 18499 if (err == 0) { 18500 err = ipif_up(ipif, q, mp1); 18501 if (err == EINPROGRESS) 18502 return; 18503 } 18504 } 18505 18506 /* 18507 * The operation must complete without EINPROGRESS since 18508 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18509 * Otherwise, the operation will be stuck forever in the ipsq. 18510 */ 18511 ASSERT(err != EINPROGRESS); 18512 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18513 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18514 int, ipsq->ipsq_xop->ipx_current_ioctl, 18515 ill_t *, ill, ipif_t *, ipif); 18516 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18517 } else { 18518 ipsq_current_finish(ipsq); 18519 } 18520 } 18521 18522 /* 18523 * Finish processing of arp replumb after all the DLPI message 18524 * exchanges have completed between arp and the driver. 18525 */ 18526 void 18527 arp_replumb_done(ill_t *ill, int err) 18528 { 18529 mblk_t *mp1; 18530 ipif_t *ipif; 18531 conn_t *connp = NULL; 18532 ipsq_t *ipsq; 18533 queue_t *q; 18534 18535 ASSERT(IAM_WRITER_ILL(ill)); 18536 18537 ipsq = ill->ill_phyint->phyint_ipsq; 18538 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18539 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18540 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18541 if (mp1 == NULL) { 18542 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18543 ipsq->ipsq_xop->ipx_current_ioctl)); 18544 /* bringup was aborted by the user */ 18545 return; 18546 } 18547 /* 18548 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18549 * must have an associated conn_t. Otherwise, we're bringing this 18550 * interface back up as part of handling an asynchronous event (e.g., 18551 * physical address change). 18552 */ 18553 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18554 ASSERT(connp != NULL); 18555 q = CONNP_TO_WQ(connp); 18556 } else { 18557 ASSERT(connp == NULL); 18558 q = ill->ill_rq; 18559 } 18560 if ((err == 0) && (ill->ill_up_ipifs)) { 18561 err = ill_up_ipifs(ill, q, mp1); 18562 if (err == EINPROGRESS) 18563 return; 18564 } 18565 /* 18566 * The operation must complete without EINPROGRESS since 18567 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18568 * Otherwise, the operation will be stuck forever in the ipsq. 18569 */ 18570 ASSERT(err != EINPROGRESS); 18571 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18572 DTRACE_PROBE4(ipif__ioctl, char *, 18573 "arp_replumb_done finish", 18574 int, ipsq->ipsq_xop->ipx_current_ioctl, 18575 ill_t *, ill, ipif_t *, ipif); 18576 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18577 } else { 18578 ipsq_current_finish(ipsq); 18579 } 18580 } 18581 18582 void 18583 ipif_up_notify(ipif_t *ipif) 18584 { 18585 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18586 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18587 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18588 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18589 NE_LIF_UP, NULL, 0); 18590 } 18591 18592 /* 18593 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18594 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18595 * TPI end points with STREAMS modules pushed above. This is assured by not 18596 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18597 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18598 * while unwinding from the ispq and that could be a thread from the bottom. 18599 */ 18600 /* ARGSUSED */ 18601 int 18602 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18603 ip_ioctl_cmd_t *ipip, void *arg) 18604 { 18605 mblk_t *cmd_mp = mp->b_cont->b_cont; 18606 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18607 int ret = 0; 18608 int i; 18609 size_t size; 18610 ip_stack_t *ipst; 18611 zoneid_t zoneid; 18612 ilb_stack_t *ilbs; 18613 18614 ipst = CONNQ_TO_IPST(q); 18615 ilbs = ipst->ips_netstack->netstack_ilb; 18616 zoneid = Q_TO_CONN(q)->conn_zoneid; 18617 18618 switch (command) { 18619 case ILB_CREATE_RULE: { 18620 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18621 18622 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18623 ret = EINVAL; 18624 break; 18625 } 18626 18627 ret = ilb_rule_add(ilbs, zoneid, cmd); 18628 break; 18629 } 18630 case ILB_DESTROY_RULE: 18631 case ILB_ENABLE_RULE: 18632 case ILB_DISABLE_RULE: { 18633 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18634 18635 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18636 ret = EINVAL; 18637 break; 18638 } 18639 18640 if (cmd->flags & ILB_RULE_ALLRULES) { 18641 if (command == ILB_DESTROY_RULE) { 18642 ilb_rule_del_all(ilbs, zoneid); 18643 break; 18644 } else if (command == ILB_ENABLE_RULE) { 18645 ilb_rule_enable_all(ilbs, zoneid); 18646 break; 18647 } else if (command == ILB_DISABLE_RULE) { 18648 ilb_rule_disable_all(ilbs, zoneid); 18649 break; 18650 } 18651 } else { 18652 if (command == ILB_DESTROY_RULE) { 18653 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18654 } else if (command == ILB_ENABLE_RULE) { 18655 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18656 NULL); 18657 } else if (command == ILB_DISABLE_RULE) { 18658 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18659 NULL); 18660 } 18661 } 18662 break; 18663 } 18664 case ILB_NUM_RULES: { 18665 ilb_num_rules_cmd_t *cmd; 18666 18667 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18668 ret = EINVAL; 18669 break; 18670 } 18671 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18672 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18673 break; 18674 } 18675 case ILB_RULE_NAMES: { 18676 ilb_rule_names_cmd_t *cmd; 18677 18678 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18679 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18680 cmd->num_names == 0) { 18681 ret = EINVAL; 18682 break; 18683 } 18684 size = cmd->num_names * ILB_RULE_NAMESZ; 18685 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18686 size != cmd_mp->b_wptr) { 18687 ret = EINVAL; 18688 break; 18689 } 18690 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18691 break; 18692 } 18693 case ILB_NUM_SERVERS: { 18694 ilb_num_servers_cmd_t *cmd; 18695 18696 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18697 ret = EINVAL; 18698 break; 18699 } 18700 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18701 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18702 &(cmd->num)); 18703 break; 18704 } 18705 case ILB_LIST_RULE: { 18706 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18707 18708 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18709 ret = EINVAL; 18710 break; 18711 } 18712 ret = ilb_rule_list(ilbs, zoneid, cmd); 18713 break; 18714 } 18715 case ILB_LIST_SERVERS: { 18716 ilb_servers_info_cmd_t *cmd; 18717 18718 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18719 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18720 cmd->num_servers == 0) { 18721 ret = EINVAL; 18722 break; 18723 } 18724 size = cmd->num_servers * sizeof (ilb_server_info_t); 18725 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18726 size != cmd_mp->b_wptr) { 18727 ret = EINVAL; 18728 break; 18729 } 18730 18731 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18732 &cmd->num_servers); 18733 break; 18734 } 18735 case ILB_ADD_SERVERS: { 18736 ilb_servers_info_cmd_t *cmd; 18737 ilb_rule_t *rule; 18738 18739 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18740 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18741 ret = EINVAL; 18742 break; 18743 } 18744 size = cmd->num_servers * sizeof (ilb_server_info_t); 18745 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18746 size != cmd_mp->b_wptr) { 18747 ret = EINVAL; 18748 break; 18749 } 18750 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18751 if (rule == NULL) { 18752 ASSERT(ret != 0); 18753 break; 18754 } 18755 for (i = 0; i < cmd->num_servers; i++) { 18756 ilb_server_info_t *s; 18757 18758 s = &cmd->servers[i]; 18759 s->err = ilb_server_add(ilbs, rule, s); 18760 } 18761 ILB_RULE_REFRELE(rule); 18762 break; 18763 } 18764 case ILB_DEL_SERVERS: 18765 case ILB_ENABLE_SERVERS: 18766 case ILB_DISABLE_SERVERS: { 18767 ilb_servers_cmd_t *cmd; 18768 ilb_rule_t *rule; 18769 int (*f)(); 18770 18771 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18772 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18773 ret = EINVAL; 18774 break; 18775 } 18776 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18777 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18778 size != cmd_mp->b_wptr) { 18779 ret = EINVAL; 18780 break; 18781 } 18782 18783 if (command == ILB_DEL_SERVERS) 18784 f = ilb_server_del; 18785 else if (command == ILB_ENABLE_SERVERS) 18786 f = ilb_server_enable; 18787 else if (command == ILB_DISABLE_SERVERS) 18788 f = ilb_server_disable; 18789 18790 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18791 if (rule == NULL) { 18792 ASSERT(ret != 0); 18793 break; 18794 } 18795 18796 for (i = 0; i < cmd->num_servers; i++) { 18797 ilb_server_arg_t *s; 18798 18799 s = &cmd->servers[i]; 18800 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18801 } 18802 ILB_RULE_REFRELE(rule); 18803 break; 18804 } 18805 case ILB_LIST_NAT_TABLE: { 18806 ilb_list_nat_cmd_t *cmd; 18807 18808 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18809 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18810 ret = EINVAL; 18811 break; 18812 } 18813 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18814 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18815 size != cmd_mp->b_wptr) { 18816 ret = EINVAL; 18817 break; 18818 } 18819 18820 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18821 &cmd->flags); 18822 break; 18823 } 18824 case ILB_LIST_STICKY_TABLE: { 18825 ilb_list_sticky_cmd_t *cmd; 18826 18827 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18828 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18829 ret = EINVAL; 18830 break; 18831 } 18832 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18833 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18834 size != cmd_mp->b_wptr) { 18835 ret = EINVAL; 18836 break; 18837 } 18838 18839 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18840 &cmd->num_sticky, &cmd->flags); 18841 break; 18842 } 18843 default: 18844 ret = EINVAL; 18845 break; 18846 } 18847 done: 18848 return (ret); 18849 } 18850 18851 /* Remove all cache entries for this logical interface */ 18852 void 18853 ipif_nce_down(ipif_t *ipif) 18854 { 18855 ill_t *ill = ipif->ipif_ill; 18856 nce_t *nce; 18857 18858 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18859 ill_t *, ill, ipif_t *, ipif); 18860 if (ipif->ipif_added_nce) { 18861 if (ipif->ipif_isv6) 18862 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18863 else 18864 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18865 if (nce != NULL) { 18866 if (--nce->nce_ipif_cnt == 0) 18867 ncec_delete(nce->nce_common); 18868 ipif->ipif_added_nce = 0; 18869 nce_refrele(nce); 18870 } else { 18871 /* 18872 * nce may already be NULL because it was already 18873 * flushed, e.g., due to a call to nce_flush 18874 */ 18875 ipif->ipif_added_nce = 0; 18876 } 18877 } 18878 /* 18879 * Make IPMP aware of the deleted data address. 18880 */ 18881 if (IS_IPMP(ill)) 18882 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18883 18884 /* 18885 * Remove all other nces dependent on this ill when the last ipif 18886 * is going away. 18887 */ 18888 if (ill->ill_ipif_up_count == 0) { 18889 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18890 (uchar_t *)ill, ill->ill_ipst); 18891 if (IS_UNDER_IPMP(ill)) 18892 nce_flush(ill, B_TRUE); 18893 } 18894 } 18895 18896 /* 18897 * find the first interface that uses usill for its source address. 18898 */ 18899 ill_t * 18900 ill_lookup_usesrc(ill_t *usill) 18901 { 18902 ip_stack_t *ipst = usill->ill_ipst; 18903 ill_t *ill; 18904 18905 ASSERT(usill != NULL); 18906 18907 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 18908 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18909 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18910 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 18911 ill = ill->ill_usesrc_grp_next) { 18912 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 18913 !ILL_IS_CONDEMNED(ill)) { 18914 ill_refhold(ill); 18915 break; 18916 } 18917 } 18918 rw_exit(&ipst->ips_ill_g_lock); 18919 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18920 return (ill); 18921 } 18922