xref: /titanic_50/usr/src/uts/common/fs/zfs/zio_inject.c (revision 84ba300aaa958c8e8427c2ec66a932d86bee71c4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * ZFS fault injection
28  *
29  * To handle fault injection, we keep track of a series of zinject_record_t
30  * structures which describe which logical block(s) should be injected with a
31  * fault.  These are kept in a global list.  Each record corresponds to a given
32  * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
33  * or exported while the injection record exists.
34  *
35  * Device level injection is done using the 'zi_guid' field.  If this is set, it
36  * means that the error is destined for a particular device, not a piece of
37  * data.
38  *
39  * This is a rather poor data structure and algorithm, but we don't expect more
40  * than a few faults at any one time, so it should be sufficient for our needs.
41  */
42 
43 #include <sys/arc.h>
44 #include <sys/zio_impl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/dmu_objset.h>
48 #include <sys/fs/zfs.h>
49 
50 uint32_t zio_injection_enabled;
51 
52 /*
53  * Data describing each zinject handler registered on the system, and
54  * contains the list node linking the handler in the global zinject
55  * handler list.
56  */
57 typedef struct inject_handler {
58 	int			zi_id;
59 	spa_t			*zi_spa;
60 	zinject_record_t	zi_record;
61 	uint64_t		*zi_lanes;
62 	int			zi_next_lane;
63 	list_node_t		zi_link;
64 } inject_handler_t;
65 
66 /*
67  * List of all zinject handlers registered on the system, protected by
68  * the inject_lock defined below.
69  */
70 static list_t inject_handlers;
71 
72 /*
73  * This protects insertion into, and traversal of, the inject handler
74  * list defined above; as well as the inject_delay_count. Any time a
75  * handler is inserted or removed from the list, this lock should be
76  * taken as a RW_WRITER; and any time traversal is done over the list
77  * (without modification to it) this lock should be taken as a RW_READER.
78  */
79 static krwlock_t inject_lock;
80 
81 /*
82  * This holds the number of zinject delay handlers that have been
83  * registered on the system. It is protected by the inject_lock defined
84  * above. Thus modifications to this count must be a RW_WRITER of the
85  * inject_lock, and reads of this count must be (at least) a RW_READER
86  * of the lock.
87  */
88 static int inject_delay_count = 0;
89 
90 /*
91  * This lock is used only in zio_handle_io_delay(), refer to the comment
92  * in that function for more details.
93  */
94 static kmutex_t inject_delay_mtx;
95 
96 /*
97  * Used to assign unique identifying numbers to each new zinject handler.
98  */
99 static int inject_next_id = 1;
100 
101 /*
102  * Returns true if the given record matches the I/O in progress.
103  */
104 static boolean_t
105 zio_match_handler(zbookmark_phys_t *zb, uint64_t type,
106     zinject_record_t *record, int error)
107 {
108 	/*
109 	 * Check for a match against the MOS, which is based on type
110 	 */
111 	if (zb->zb_objset == DMU_META_OBJSET &&
112 	    record->zi_objset == DMU_META_OBJSET &&
113 	    record->zi_object == DMU_META_DNODE_OBJECT) {
114 		if (record->zi_type == DMU_OT_NONE ||
115 		    type == record->zi_type)
116 			return (record->zi_freq == 0 ||
117 			    spa_get_random(100) < record->zi_freq);
118 		else
119 			return (B_FALSE);
120 	}
121 
122 	/*
123 	 * Check for an exact match.
124 	 */
125 	if (zb->zb_objset == record->zi_objset &&
126 	    zb->zb_object == record->zi_object &&
127 	    zb->zb_level == record->zi_level &&
128 	    zb->zb_blkid >= record->zi_start &&
129 	    zb->zb_blkid <= record->zi_end &&
130 	    error == record->zi_error)
131 		return (record->zi_freq == 0 ||
132 		    spa_get_random(100) < record->zi_freq);
133 
134 	return (B_FALSE);
135 }
136 
137 /*
138  * Panic the system when a config change happens in the function
139  * specified by tag.
140  */
141 void
142 zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
143 {
144 	inject_handler_t *handler;
145 
146 	rw_enter(&inject_lock, RW_READER);
147 
148 	for (handler = list_head(&inject_handlers); handler != NULL;
149 	    handler = list_next(&inject_handlers, handler)) {
150 
151 		if (spa != handler->zi_spa)
152 			continue;
153 
154 		if (handler->zi_record.zi_type == type &&
155 		    strcmp(tag, handler->zi_record.zi_func) == 0)
156 			panic("Panic requested in function %s\n", tag);
157 	}
158 
159 	rw_exit(&inject_lock);
160 }
161 
162 /*
163  * Determine if the I/O in question should return failure.  Returns the errno
164  * to be returned to the caller.
165  */
166 int
167 zio_handle_fault_injection(zio_t *zio, int error)
168 {
169 	int ret = 0;
170 	inject_handler_t *handler;
171 
172 	/*
173 	 * Ignore I/O not associated with any logical data.
174 	 */
175 	if (zio->io_logical == NULL)
176 		return (0);
177 
178 	/*
179 	 * Currently, we only support fault injection on reads.
180 	 */
181 	if (zio->io_type != ZIO_TYPE_READ)
182 		return (0);
183 
184 	rw_enter(&inject_lock, RW_READER);
185 
186 	for (handler = list_head(&inject_handlers); handler != NULL;
187 	    handler = list_next(&inject_handlers, handler)) {
188 
189 		if (zio->io_spa != handler->zi_spa ||
190 		    handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
191 			continue;
192 
193 		/* If this handler matches, return EIO */
194 		if (zio_match_handler(&zio->io_logical->io_bookmark,
195 		    zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
196 		    &handler->zi_record, error)) {
197 			ret = error;
198 			break;
199 		}
200 	}
201 
202 	rw_exit(&inject_lock);
203 
204 	return (ret);
205 }
206 
207 /*
208  * Determine if the zio is part of a label update and has an injection
209  * handler associated with that portion of the label. Currently, we
210  * allow error injection in either the nvlist or the uberblock region of
211  * of the vdev label.
212  */
213 int
214 zio_handle_label_injection(zio_t *zio, int error)
215 {
216 	inject_handler_t *handler;
217 	vdev_t *vd = zio->io_vd;
218 	uint64_t offset = zio->io_offset;
219 	int label;
220 	int ret = 0;
221 
222 	if (offset >= VDEV_LABEL_START_SIZE &&
223 	    offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
224 		return (0);
225 
226 	rw_enter(&inject_lock, RW_READER);
227 
228 	for (handler = list_head(&inject_handlers); handler != NULL;
229 	    handler = list_next(&inject_handlers, handler)) {
230 		uint64_t start = handler->zi_record.zi_start;
231 		uint64_t end = handler->zi_record.zi_end;
232 
233 		if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
234 			continue;
235 
236 		/*
237 		 * The injection region is the relative offsets within a
238 		 * vdev label. We must determine the label which is being
239 		 * updated and adjust our region accordingly.
240 		 */
241 		label = vdev_label_number(vd->vdev_psize, offset);
242 		start = vdev_label_offset(vd->vdev_psize, label, start);
243 		end = vdev_label_offset(vd->vdev_psize, label, end);
244 
245 		if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
246 		    (offset >= start && offset <= end)) {
247 			ret = error;
248 			break;
249 		}
250 	}
251 	rw_exit(&inject_lock);
252 	return (ret);
253 }
254 
255 
256 int
257 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
258 {
259 	inject_handler_t *handler;
260 	int ret = 0;
261 
262 	/*
263 	 * We skip over faults in the labels unless it's during
264 	 * device open (i.e. zio == NULL).
265 	 */
266 	if (zio != NULL) {
267 		uint64_t offset = zio->io_offset;
268 
269 		if (offset < VDEV_LABEL_START_SIZE ||
270 		    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
271 			return (0);
272 	}
273 
274 	rw_enter(&inject_lock, RW_READER);
275 
276 	for (handler = list_head(&inject_handlers); handler != NULL;
277 	    handler = list_next(&inject_handlers, handler)) {
278 
279 		if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
280 			continue;
281 
282 		if (vd->vdev_guid == handler->zi_record.zi_guid) {
283 			if (handler->zi_record.zi_failfast &&
284 			    (zio == NULL || (zio->io_flags &
285 			    (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
286 				continue;
287 			}
288 
289 			/* Handle type specific I/O failures */
290 			if (zio != NULL &&
291 			    handler->zi_record.zi_iotype != ZIO_TYPES &&
292 			    handler->zi_record.zi_iotype != zio->io_type)
293 				continue;
294 
295 			if (handler->zi_record.zi_error == error) {
296 				/*
297 				 * For a failed open, pretend like the device
298 				 * has gone away.
299 				 */
300 				if (error == ENXIO)
301 					vd->vdev_stat.vs_aux =
302 					    VDEV_AUX_OPEN_FAILED;
303 
304 				/*
305 				 * Treat these errors as if they had been
306 				 * retried so that all the appropriate stats
307 				 * and FMA events are generated.
308 				 */
309 				if (!handler->zi_record.zi_failfast &&
310 				    zio != NULL)
311 					zio->io_flags |= ZIO_FLAG_IO_RETRY;
312 
313 				ret = error;
314 				break;
315 			}
316 			if (handler->zi_record.zi_error == ENXIO) {
317 				ret = SET_ERROR(EIO);
318 				break;
319 			}
320 		}
321 	}
322 
323 	rw_exit(&inject_lock);
324 
325 	return (ret);
326 }
327 
328 /*
329  * Simulate hardware that ignores cache flushes.  For requested number
330  * of seconds nix the actual writing to disk.
331  */
332 void
333 zio_handle_ignored_writes(zio_t *zio)
334 {
335 	inject_handler_t *handler;
336 
337 	rw_enter(&inject_lock, RW_READER);
338 
339 	for (handler = list_head(&inject_handlers); handler != NULL;
340 	    handler = list_next(&inject_handlers, handler)) {
341 
342 		/* Ignore errors not destined for this pool */
343 		if (zio->io_spa != handler->zi_spa ||
344 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
345 			continue;
346 
347 		/*
348 		 * Positive duration implies # of seconds, negative
349 		 * a number of txgs
350 		 */
351 		if (handler->zi_record.zi_timer == 0) {
352 			if (handler->zi_record.zi_duration > 0)
353 				handler->zi_record.zi_timer = ddi_get_lbolt64();
354 			else
355 				handler->zi_record.zi_timer = zio->io_txg;
356 		}
357 
358 		/* Have a "problem" writing 60% of the time */
359 		if (spa_get_random(100) < 60)
360 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
361 		break;
362 	}
363 
364 	rw_exit(&inject_lock);
365 }
366 
367 void
368 spa_handle_ignored_writes(spa_t *spa)
369 {
370 	inject_handler_t *handler;
371 
372 	if (zio_injection_enabled == 0)
373 		return;
374 
375 	rw_enter(&inject_lock, RW_READER);
376 
377 	for (handler = list_head(&inject_handlers); handler != NULL;
378 	    handler = list_next(&inject_handlers, handler)) {
379 
380 		if (spa != handler->zi_spa ||
381 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
382 			continue;
383 
384 		if (handler->zi_record.zi_duration > 0) {
385 			VERIFY(handler->zi_record.zi_timer == 0 ||
386 			    handler->zi_record.zi_timer +
387 			    handler->zi_record.zi_duration * hz >
388 			    ddi_get_lbolt64());
389 		} else {
390 			/* duration is negative so the subtraction here adds */
391 			VERIFY(handler->zi_record.zi_timer == 0 ||
392 			    handler->zi_record.zi_timer -
393 			    handler->zi_record.zi_duration >=
394 			    spa_syncing_txg(spa));
395 		}
396 	}
397 
398 	rw_exit(&inject_lock);
399 }
400 
401 hrtime_t
402 zio_handle_io_delay(zio_t *zio)
403 {
404 	vdev_t *vd = zio->io_vd;
405 	inject_handler_t *min_handler = NULL;
406 	hrtime_t min_target = 0;
407 
408 	rw_enter(&inject_lock, RW_READER);
409 
410 	/*
411 	 * inject_delay_count is a subset of zio_injection_enabled that
412 	 * is only incremented for delay handlers. These checks are
413 	 * mainly added to remind the reader why we're not explicitly
414 	 * checking zio_injection_enabled like the other functions.
415 	 */
416 	IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
417 	IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
418 
419 	/*
420 	 * If there aren't any inject delay handlers registered, then we
421 	 * can short circuit and simply return 0 here. A value of zero
422 	 * informs zio_delay_interrupt() that this request should not be
423 	 * delayed. This short circuit keeps us from acquiring the
424 	 * inject_delay_mutex unnecessarily.
425 	 */
426 	if (inject_delay_count == 0) {
427 		rw_exit(&inject_lock);
428 		return (0);
429 	}
430 
431 	/*
432 	 * Each inject handler has a number of "lanes" associated with
433 	 * it. Each lane is able to handle requests independently of one
434 	 * another, and at a latency defined by the inject handler
435 	 * record's zi_timer field. Thus if a handler in configured with
436 	 * a single lane with a 10ms latency, it will delay requests
437 	 * such that only a single request is completed every 10ms. So,
438 	 * if more than one request is attempted per each 10ms interval,
439 	 * the average latency of the requests will be greater than
440 	 * 10ms; but if only a single request is submitted each 10ms
441 	 * interval the average latency will be 10ms.
442 	 *
443 	 * We need to acquire this mutex to prevent multiple concurrent
444 	 * threads being assigned to the same lane of a given inject
445 	 * handler. The mutex allows us to perform the following two
446 	 * operations atomically:
447 	 *
448 	 *	1. determine the minimum handler and minimum target
449 	 *	   value of all the possible handlers
450 	 *	2. update that minimum handler's lane array
451 	 *
452 	 * Without atomicity, two (or more) threads could pick the same
453 	 * lane in step (1), and then conflict with each other in step
454 	 * (2). This could allow a single lane handler to process
455 	 * multiple requests simultaneously, which shouldn't be possible.
456 	 */
457 	mutex_enter(&inject_delay_mtx);
458 
459 	for (inject_handler_t *handler = list_head(&inject_handlers);
460 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
461 		if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
462 			continue;
463 
464 		if (vd->vdev_guid != handler->zi_record.zi_guid)
465 			continue;
466 
467 		/*
468 		 * Defensive; should never happen as the array allocation
469 		 * occurs prior to inserting this handler on the list.
470 		 */
471 		ASSERT3P(handler->zi_lanes, !=, NULL);
472 
473 		/*
474 		 * This should never happen, the zinject command should
475 		 * prevent a user from setting an IO delay with zero lanes.
476 		 */
477 		ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
478 
479 		ASSERT3U(handler->zi_record.zi_nlanes, >,
480 		    handler->zi_next_lane);
481 
482 		/*
483 		 * We want to issue this IO to the lane that will become
484 		 * idle the soonest, so we compare the soonest this
485 		 * specific handler can complete the IO with all other
486 		 * handlers, to find the lowest value of all possible
487 		 * lanes. We then use this lane to submit the request.
488 		 *
489 		 * Since each handler has a constant value for its
490 		 * delay, we can just use the "next" lane for that
491 		 * handler; as it will always be the lane with the
492 		 * lowest value for that particular handler (i.e. the
493 		 * lane that will become idle the soonest). This saves a
494 		 * scan of each handler's lanes array.
495 		 *
496 		 * There's two cases to consider when determining when
497 		 * this specific IO request should complete. If this
498 		 * lane is idle, we want to "submit" the request now so
499 		 * it will complete after zi_timer milliseconds. Thus,
500 		 * we set the target to now + zi_timer.
501 		 *
502 		 * If the lane is busy, we want this request to complete
503 		 * zi_timer milliseconds after the lane becomes idle.
504 		 * Since the 'zi_lanes' array holds the time at which
505 		 * each lane will become idle, we use that value to
506 		 * determine when this request should complete.
507 		 */
508 		hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
509 		hrtime_t busy = handler->zi_record.zi_timer +
510 		    handler->zi_lanes[handler->zi_next_lane];
511 		hrtime_t target = MAX(idle, busy);
512 
513 		if (min_handler == NULL) {
514 			min_handler = handler;
515 			min_target = target;
516 			continue;
517 		}
518 
519 		ASSERT3P(min_handler, !=, NULL);
520 		ASSERT3U(min_target, !=, 0);
521 
522 		/*
523 		 * We don't yet increment the "next lane" variable since
524 		 * we still might find a lower value lane in another
525 		 * handler during any remaining iterations. Once we're
526 		 * sure we've selected the absolute minimum, we'll claim
527 		 * the lane and increment the handler's "next lane"
528 		 * field below.
529 		 */
530 
531 		if (target < min_target) {
532 			min_handler = handler;
533 			min_target = target;
534 		}
535 	}
536 
537 	/*
538 	 * 'min_handler' will be NULL if no IO delays are registered for
539 	 * this vdev, otherwise it will point to the handler containing
540 	 * the lane that will become idle the soonest.
541 	 */
542 	if (min_handler != NULL) {
543 		ASSERT3U(min_target, !=, 0);
544 		min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
545 
546 		/*
547 		 * If we've used all possible lanes for this handler,
548 		 * loop back and start using the first lane again;
549 		 * otherwise, just increment the lane index.
550 		 */
551 		min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
552 		    min_handler->zi_record.zi_nlanes;
553 	}
554 
555 	mutex_exit(&inject_delay_mtx);
556 	rw_exit(&inject_lock);
557 
558 	return (min_target);
559 }
560 
561 /*
562  * Create a new handler for the given record.  We add it to the list, adding
563  * a reference to the spa_t in the process.  We increment zio_injection_enabled,
564  * which is the switch to trigger all fault injection.
565  */
566 int
567 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
568 {
569 	inject_handler_t *handler;
570 	int error;
571 	spa_t *spa;
572 
573 	/*
574 	 * If this is pool-wide metadata, make sure we unload the corresponding
575 	 * spa_t, so that the next attempt to load it will trigger the fault.
576 	 * We call spa_reset() to unload the pool appropriately.
577 	 */
578 	if (flags & ZINJECT_UNLOAD_SPA)
579 		if ((error = spa_reset(name)) != 0)
580 			return (error);
581 
582 	if (record->zi_cmd == ZINJECT_DELAY_IO) {
583 		/*
584 		 * A value of zero for the number of lanes or for the
585 		 * delay time doesn't make sense.
586 		 */
587 		if (record->zi_timer == 0 || record->zi_nlanes == 0)
588 			return (SET_ERROR(EINVAL));
589 
590 		/*
591 		 * The number of lanes is directly mapped to the size of
592 		 * an array used by the handler. Thus, to ensure the
593 		 * user doesn't trigger an allocation that's "too large"
594 		 * we cap the number of lanes here.
595 		 */
596 		if (record->zi_nlanes >= UINT16_MAX)
597 			return (SET_ERROR(EINVAL));
598 	}
599 
600 	if (!(flags & ZINJECT_NULL)) {
601 		/*
602 		 * spa_inject_ref() will add an injection reference, which will
603 		 * prevent the pool from being removed from the namespace while
604 		 * still allowing it to be unloaded.
605 		 */
606 		if ((spa = spa_inject_addref(name)) == NULL)
607 			return (SET_ERROR(ENOENT));
608 
609 		handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
610 
611 		handler->zi_spa = spa;
612 		handler->zi_record = *record;
613 
614 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
615 			handler->zi_lanes = kmem_zalloc(
616 			    sizeof (*handler->zi_lanes) *
617 			    handler->zi_record.zi_nlanes, KM_SLEEP);
618 			handler->zi_next_lane = 0;
619 		} else {
620 			handler->zi_lanes = NULL;
621 			handler->zi_next_lane = 0;
622 		}
623 
624 		rw_enter(&inject_lock, RW_WRITER);
625 
626 		/*
627 		 * We can't move this increment into the conditional
628 		 * above because we need to hold the RW_WRITER lock of
629 		 * inject_lock, and we don't want to hold that while
630 		 * allocating the handler's zi_lanes array.
631 		 */
632 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
633 			ASSERT3S(inject_delay_count, >=, 0);
634 			inject_delay_count++;
635 			ASSERT3S(inject_delay_count, >, 0);
636 		}
637 
638 		*id = handler->zi_id = inject_next_id++;
639 		list_insert_tail(&inject_handlers, handler);
640 		atomic_inc_32(&zio_injection_enabled);
641 
642 		rw_exit(&inject_lock);
643 	}
644 
645 	/*
646 	 * Flush the ARC, so that any attempts to read this data will end up
647 	 * going to the ZIO layer.  Note that this is a little overkill, but
648 	 * we don't have the necessary ARC interfaces to do anything else, and
649 	 * fault injection isn't a performance critical path.
650 	 */
651 	if (flags & ZINJECT_FLUSH_ARC)
652 		/*
653 		 * We must use FALSE to ensure arc_flush returns, since
654 		 * we're not preventing concurrent ARC insertions.
655 		 */
656 		arc_flush(NULL, FALSE);
657 
658 	return (0);
659 }
660 
661 /*
662  * Returns the next record with an ID greater than that supplied to the
663  * function.  Used to iterate over all handlers in the system.
664  */
665 int
666 zio_inject_list_next(int *id, char *name, size_t buflen,
667     zinject_record_t *record)
668 {
669 	inject_handler_t *handler;
670 	int ret;
671 
672 	mutex_enter(&spa_namespace_lock);
673 	rw_enter(&inject_lock, RW_READER);
674 
675 	for (handler = list_head(&inject_handlers); handler != NULL;
676 	    handler = list_next(&inject_handlers, handler))
677 		if (handler->zi_id > *id)
678 			break;
679 
680 	if (handler) {
681 		*record = handler->zi_record;
682 		*id = handler->zi_id;
683 		(void) strncpy(name, spa_name(handler->zi_spa), buflen);
684 		ret = 0;
685 	} else {
686 		ret = SET_ERROR(ENOENT);
687 	}
688 
689 	rw_exit(&inject_lock);
690 	mutex_exit(&spa_namespace_lock);
691 
692 	return (ret);
693 }
694 
695 /*
696  * Clear the fault handler with the given identifier, or return ENOENT if none
697  * exists.
698  */
699 int
700 zio_clear_fault(int id)
701 {
702 	inject_handler_t *handler;
703 
704 	rw_enter(&inject_lock, RW_WRITER);
705 
706 	for (handler = list_head(&inject_handlers); handler != NULL;
707 	    handler = list_next(&inject_handlers, handler))
708 		if (handler->zi_id == id)
709 			break;
710 
711 	if (handler == NULL) {
712 		rw_exit(&inject_lock);
713 		return (SET_ERROR(ENOENT));
714 	}
715 
716 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
717 		ASSERT3S(inject_delay_count, >, 0);
718 		inject_delay_count--;
719 		ASSERT3S(inject_delay_count, >=, 0);
720 	}
721 
722 	list_remove(&inject_handlers, handler);
723 	rw_exit(&inject_lock);
724 
725 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
726 		ASSERT3P(handler->zi_lanes, !=, NULL);
727 		kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
728 		    handler->zi_record.zi_nlanes);
729 	} else {
730 		ASSERT3P(handler->zi_lanes, ==, NULL);
731 	}
732 
733 	spa_inject_delref(handler->zi_spa);
734 	kmem_free(handler, sizeof (inject_handler_t));
735 	atomic_dec_32(&zio_injection_enabled);
736 
737 	return (0);
738 }
739 
740 void
741 zio_inject_init(void)
742 {
743 	rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
744 	mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
745 	list_create(&inject_handlers, sizeof (inject_handler_t),
746 	    offsetof(inject_handler_t, zi_link));
747 }
748 
749 void
750 zio_inject_fini(void)
751 {
752 	list_destroy(&inject_handlers);
753 	mutex_destroy(&inject_delay_mtx);
754 	rw_destroy(&inject_lock);
755 }
756