xref: /titanic_50/usr/src/uts/common/fs/zfs/zil.c (revision 2654012f83cec5dc15b61dfe3e4a4915f186e7a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/dmu.h>
29 #include <sys/zap.h>
30 #include <sys/arc.h>
31 #include <sys/stat.h>
32 #include <sys/resource.h>
33 #include <sys/zil.h>
34 #include <sys/zil_impl.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/vdev.h>
37 #include <sys/dmu_tx.h>
38 
39 /*
40  * The zfs intent log (ZIL) saves transaction records of system calls
41  * that change the file system in memory with enough information
42  * to be able to replay them. These are stored in memory until
43  * either the DMU transaction group (txg) commits them to the stable pool
44  * and they can be discarded, or they are flushed to the stable log
45  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
46  * requirement. In the event of a panic or power fail then those log
47  * records (transactions) are replayed.
48  *
49  * There is one ZIL per file system. Its on-disk (pool) format consists
50  * of 3 parts:
51  *
52  * 	- ZIL header
53  * 	- ZIL blocks
54  * 	- ZIL records
55  *
56  * A log record holds a system call transaction. Log blocks can
57  * hold many log records and the blocks are chained together.
58  * Each ZIL block contains a block pointer (blkptr_t) to the next
59  * ZIL block in the chain. The ZIL header points to the first
60  * block in the chain. Note there is not a fixed place in the pool
61  * to hold blocks. They are dynamically allocated and freed as
62  * needed from the blocks available. Figure X shows the ZIL structure:
63  */
64 
65 /*
66  * This global ZIL switch affects all pools
67  */
68 int zil_disable = 0;	/* disable intent logging */
69 
70 /*
71  * Tunable parameter for debugging or performance analysis.  Setting
72  * zfs_nocacheflush will cause corruption on power loss if a volatile
73  * out-of-order write cache is enabled.
74  */
75 boolean_t zfs_nocacheflush = B_FALSE;
76 
77 static kmem_cache_t *zil_lwb_cache;
78 
79 static int
80 zil_dva_compare(const void *x1, const void *x2)
81 {
82 	const dva_t *dva1 = x1;
83 	const dva_t *dva2 = x2;
84 
85 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
86 		return (-1);
87 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
88 		return (1);
89 
90 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
91 		return (-1);
92 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
93 		return (1);
94 
95 	return (0);
96 }
97 
98 static void
99 zil_dva_tree_init(avl_tree_t *t)
100 {
101 	avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
102 	    offsetof(zil_dva_node_t, zn_node));
103 }
104 
105 static void
106 zil_dva_tree_fini(avl_tree_t *t)
107 {
108 	zil_dva_node_t *zn;
109 	void *cookie = NULL;
110 
111 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
112 		kmem_free(zn, sizeof (zil_dva_node_t));
113 
114 	avl_destroy(t);
115 }
116 
117 static int
118 zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
119 {
120 	zil_dva_node_t *zn;
121 	avl_index_t where;
122 
123 	if (avl_find(t, dva, &where) != NULL)
124 		return (EEXIST);
125 
126 	zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
127 	zn->zn_dva = *dva;
128 	avl_insert(t, zn, where);
129 
130 	return (0);
131 }
132 
133 static zil_header_t *
134 zil_header_in_syncing_context(zilog_t *zilog)
135 {
136 	return ((zil_header_t *)zilog->zl_header);
137 }
138 
139 static void
140 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
141 {
142 	zio_cksum_t *zc = &bp->blk_cksum;
143 
144 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
145 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
146 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
147 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
148 }
149 
150 /*
151  * Read a log block, make sure it's valid, and byteswap it if necessary.
152  */
153 static int
154 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
155 {
156 	blkptr_t blk = *bp;
157 	zbookmark_t zb;
158 	uint32_t aflags = ARC_WAIT;
159 	int error;
160 
161 	zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
162 	zb.zb_object = 0;
163 	zb.zb_level = -1;
164 	zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
165 
166 	*abufpp = NULL;
167 
168 	/*
169 	 * We shouldn't be doing any scrubbing while we're doing log
170 	 * replay, it's OK to not lock.
171 	 */
172 	error = arc_read_nolock(NULL, zilog->zl_spa, &blk,
173 	    arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
174 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb);
175 
176 	if (error == 0) {
177 		char *data = (*abufpp)->b_data;
178 		uint64_t blksz = BP_GET_LSIZE(bp);
179 		zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
180 		zio_cksum_t cksum = bp->blk_cksum;
181 
182 		/*
183 		 * Validate the checksummed log block.
184 		 *
185 		 * Sequence numbers should be... sequential.  The checksum
186 		 * verifier for the next block should be bp's checksum plus 1.
187 		 *
188 		 * Also check the log chain linkage and size used.
189 		 */
190 		cksum.zc_word[ZIL_ZC_SEQ]++;
191 
192 		if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum,
193 		    sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) ||
194 		    (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) {
195 			error = ECKSUM;
196 		}
197 
198 		if (error) {
199 			VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
200 			*abufpp = NULL;
201 		}
202 	}
203 
204 	dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
205 
206 	return (error);
207 }
208 
209 /*
210  * Parse the intent log, and call parse_func for each valid record within.
211  * Return the highest sequence number.
212  */
213 uint64_t
214 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
215     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
216 {
217 	const zil_header_t *zh = zilog->zl_header;
218 	uint64_t claim_seq = zh->zh_claim_seq;
219 	uint64_t seq = 0;
220 	uint64_t max_seq = 0;
221 	blkptr_t blk = zh->zh_log;
222 	arc_buf_t *abuf;
223 	char *lrbuf, *lrp;
224 	zil_trailer_t *ztp;
225 	int reclen, error;
226 
227 	if (BP_IS_HOLE(&blk))
228 		return (max_seq);
229 
230 	/*
231 	 * Starting at the block pointed to by zh_log we read the log chain.
232 	 * For each block in the chain we strongly check that block to
233 	 * ensure its validity.  We stop when an invalid block is found.
234 	 * For each block pointer in the chain we call parse_blk_func().
235 	 * For each record in each valid block we call parse_lr_func().
236 	 * If the log has been claimed, stop if we encounter a sequence
237 	 * number greater than the highest claimed sequence number.
238 	 */
239 	zil_dva_tree_init(&zilog->zl_dva_tree);
240 	for (;;) {
241 		seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
242 
243 		if (claim_seq != 0 && seq > claim_seq)
244 			break;
245 
246 		ASSERT(max_seq < seq);
247 		max_seq = seq;
248 
249 		error = zil_read_log_block(zilog, &blk, &abuf);
250 
251 		if (parse_blk_func != NULL)
252 			parse_blk_func(zilog, &blk, arg, txg);
253 
254 		if (error)
255 			break;
256 
257 		lrbuf = abuf->b_data;
258 		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
259 		blk = ztp->zit_next_blk;
260 
261 		if (parse_lr_func == NULL) {
262 			VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
263 			continue;
264 		}
265 
266 		for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
267 			lr_t *lr = (lr_t *)lrp;
268 			reclen = lr->lrc_reclen;
269 			ASSERT3U(reclen, >=, sizeof (lr_t));
270 			parse_lr_func(zilog, lr, arg, txg);
271 		}
272 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
273 	}
274 	zil_dva_tree_fini(&zilog->zl_dva_tree);
275 
276 	return (max_seq);
277 }
278 
279 /* ARGSUSED */
280 static void
281 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
282 {
283 	spa_t *spa = zilog->zl_spa;
284 	int err;
285 
286 	/*
287 	 * Claim log block if not already committed and not already claimed.
288 	 */
289 	if (bp->blk_birth >= first_txg &&
290 	    zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
291 		err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL,
292 		    ZIO_FLAG_MUSTSUCCEED));
293 		ASSERT(err == 0);
294 	}
295 }
296 
297 static void
298 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
299 {
300 	if (lrc->lrc_txtype == TX_WRITE) {
301 		lr_write_t *lr = (lr_write_t *)lrc;
302 		zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
303 	}
304 }
305 
306 /* ARGSUSED */
307 static void
308 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
309 {
310 	zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
311 }
312 
313 static void
314 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
315 {
316 	/*
317 	 * If we previously claimed it, we need to free it.
318 	 */
319 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
320 		lr_write_t *lr = (lr_write_t *)lrc;
321 		blkptr_t *bp = &lr->lr_blkptr;
322 		if (bp->blk_birth >= claim_txg &&
323 		    !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
324 			(void) arc_free(NULL, zilog->zl_spa,
325 			    dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
326 		}
327 	}
328 }
329 
330 /*
331  * Create an on-disk intent log.
332  */
333 static void
334 zil_create(zilog_t *zilog)
335 {
336 	const zil_header_t *zh = zilog->zl_header;
337 	lwb_t *lwb;
338 	uint64_t txg = 0;
339 	dmu_tx_t *tx = NULL;
340 	blkptr_t blk;
341 	int error = 0;
342 
343 	/*
344 	 * Wait for any previous destroy to complete.
345 	 */
346 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
347 
348 	ASSERT(zh->zh_claim_txg == 0);
349 	ASSERT(zh->zh_replay_seq == 0);
350 
351 	blk = zh->zh_log;
352 
353 	/*
354 	 * If we don't already have an initial log block, allocate one now.
355 	 */
356 	if (BP_IS_HOLE(&blk)) {
357 		tx = dmu_tx_create(zilog->zl_os);
358 		(void) dmu_tx_assign(tx, TXG_WAIT);
359 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
360 		txg = dmu_tx_get_txg(tx);
361 
362 		error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk,
363 		    NULL, txg);
364 
365 		if (error == 0)
366 			zil_init_log_chain(zilog, &blk);
367 	}
368 
369 	/*
370 	 * Allocate a log write buffer (lwb) for the first log block.
371 	 */
372 	if (error == 0) {
373 		lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
374 		lwb->lwb_zilog = zilog;
375 		lwb->lwb_blk = blk;
376 		lwb->lwb_nused = 0;
377 		lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
378 		lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
379 		lwb->lwb_max_txg = txg;
380 		lwb->lwb_zio = NULL;
381 
382 		mutex_enter(&zilog->zl_lock);
383 		list_insert_tail(&zilog->zl_lwb_list, lwb);
384 		mutex_exit(&zilog->zl_lock);
385 	}
386 
387 	/*
388 	 * If we just allocated the first log block, commit our transaction
389 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
390 	 * (zh is part of the MOS, so we cannot modify it in open context.)
391 	 */
392 	if (tx != NULL) {
393 		dmu_tx_commit(tx);
394 		txg_wait_synced(zilog->zl_dmu_pool, txg);
395 	}
396 
397 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
398 }
399 
400 /*
401  * In one tx, free all log blocks and clear the log header.
402  * If keep_first is set, then we're replaying a log with no content.
403  * We want to keep the first block, however, so that the first
404  * synchronous transaction doesn't require a txg_wait_synced()
405  * in zil_create().  We don't need to txg_wait_synced() here either
406  * when keep_first is set, because both zil_create() and zil_destroy()
407  * will wait for any in-progress destroys to complete.
408  */
409 void
410 zil_destroy(zilog_t *zilog, boolean_t keep_first)
411 {
412 	const zil_header_t *zh = zilog->zl_header;
413 	lwb_t *lwb;
414 	dmu_tx_t *tx;
415 	uint64_t txg;
416 
417 	/*
418 	 * Wait for any previous destroy to complete.
419 	 */
420 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
421 
422 	if (BP_IS_HOLE(&zh->zh_log))
423 		return;
424 
425 	tx = dmu_tx_create(zilog->zl_os);
426 	(void) dmu_tx_assign(tx, TXG_WAIT);
427 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
428 	txg = dmu_tx_get_txg(tx);
429 
430 	mutex_enter(&zilog->zl_lock);
431 
432 	/*
433 	 * It is possible for the ZIL to get the previously mounted zilog
434 	 * structure of the same dataset if quickly remounted and the dbuf
435 	 * eviction has not completed. In this case we can see a non
436 	 * empty lwb list and keep_first will be set. We fix this by
437 	 * clearing the keep_first. This will be slower but it's very rare.
438 	 */
439 	if (!list_is_empty(&zilog->zl_lwb_list) && keep_first)
440 		keep_first = B_FALSE;
441 
442 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
443 	zilog->zl_destroy_txg = txg;
444 	zilog->zl_keep_first = keep_first;
445 
446 	if (!list_is_empty(&zilog->zl_lwb_list)) {
447 		ASSERT(zh->zh_claim_txg == 0);
448 		ASSERT(!keep_first);
449 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
450 			list_remove(&zilog->zl_lwb_list, lwb);
451 			if (lwb->lwb_buf != NULL)
452 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
453 			zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
454 			kmem_cache_free(zil_lwb_cache, lwb);
455 		}
456 	} else {
457 		if (!keep_first) {
458 			(void) zil_parse(zilog, zil_free_log_block,
459 			    zil_free_log_record, tx, zh->zh_claim_txg);
460 		}
461 	}
462 	mutex_exit(&zilog->zl_lock);
463 
464 	dmu_tx_commit(tx);
465 }
466 
467 /*
468  * zil_rollback_destroy() is only called by the rollback code.
469  * We already have a syncing tx. Rollback has exclusive access to the
470  * dataset, so we don't have to worry about concurrent zil access.
471  * The actual freeing of any log blocks occurs in zil_sync() later in
472  * this txg syncing phase.
473  */
474 void
475 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx)
476 {
477 	const zil_header_t *zh = zilog->zl_header;
478 	uint64_t txg;
479 
480 	if (BP_IS_HOLE(&zh->zh_log))
481 		return;
482 
483 	txg = dmu_tx_get_txg(tx);
484 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
485 	zilog->zl_destroy_txg = txg;
486 	zilog->zl_keep_first = B_FALSE;
487 
488 	/*
489 	 * Ensure there's no outstanding ZIL IO.  No lwbs or just the
490 	 * unused one that allocated in advance is ok.
491 	 */
492 	ASSERT(zilog->zl_lwb_list.list_head.list_next ==
493 	    zilog->zl_lwb_list.list_head.list_prev);
494 	(void) zil_parse(zilog, zil_free_log_block, zil_free_log_record,
495 	    tx, zh->zh_claim_txg);
496 }
497 
498 int
499 zil_claim(char *osname, void *txarg)
500 {
501 	dmu_tx_t *tx = txarg;
502 	uint64_t first_txg = dmu_tx_get_txg(tx);
503 	zilog_t *zilog;
504 	zil_header_t *zh;
505 	objset_t *os;
506 	int error;
507 
508 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os);
509 	if (error) {
510 		cmn_err(CE_WARN, "can't open objset for %s", osname);
511 		return (0);
512 	}
513 
514 	zilog = dmu_objset_zil(os);
515 	zh = zil_header_in_syncing_context(zilog);
516 
517 	/*
518 	 * Claim all log blocks if we haven't already done so, and remember
519 	 * the highest claimed sequence number.  This ensures that if we can
520 	 * read only part of the log now (e.g. due to a missing device),
521 	 * but we can read the entire log later, we will not try to replay
522 	 * or destroy beyond the last block we successfully claimed.
523 	 */
524 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
525 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
526 		zh->zh_claim_txg = first_txg;
527 		zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
528 		    zil_claim_log_record, tx, first_txg);
529 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
530 	}
531 
532 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
533 	dmu_objset_close(os);
534 	return (0);
535 }
536 
537 /*
538  * Check the log by walking the log chain.
539  * Checksum errors are ok as they indicate the end of the chain.
540  * Any other error (no device or read failure) returns an error.
541  */
542 /* ARGSUSED */
543 int
544 zil_check_log_chain(char *osname, void *txarg)
545 {
546 	zilog_t *zilog;
547 	zil_header_t *zh;
548 	blkptr_t blk;
549 	arc_buf_t *abuf;
550 	objset_t *os;
551 	char *lrbuf;
552 	zil_trailer_t *ztp;
553 	int error;
554 
555 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os);
556 	if (error) {
557 		cmn_err(CE_WARN, "can't open objset for %s", osname);
558 		return (0);
559 	}
560 
561 	zilog = dmu_objset_zil(os);
562 	zh = zil_header_in_syncing_context(zilog);
563 	blk = zh->zh_log;
564 	if (BP_IS_HOLE(&blk)) {
565 		dmu_objset_close(os);
566 		return (0); /* no chain */
567 	}
568 
569 	for (;;) {
570 		error = zil_read_log_block(zilog, &blk, &abuf);
571 		if (error)
572 			break;
573 		lrbuf = abuf->b_data;
574 		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
575 		blk = ztp->zit_next_blk;
576 		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
577 	}
578 	dmu_objset_close(os);
579 	if (error == ECKSUM)
580 		return (0); /* normal end of chain */
581 	return (error);
582 }
583 
584 /*
585  * Clear a log chain
586  */
587 /* ARGSUSED */
588 int
589 zil_clear_log_chain(char *osname, void *txarg)
590 {
591 	zilog_t *zilog;
592 	zil_header_t *zh;
593 	objset_t *os;
594 	dmu_tx_t *tx;
595 	int error;
596 
597 	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os);
598 	if (error) {
599 		cmn_err(CE_WARN, "can't open objset for %s", osname);
600 		return (0);
601 	}
602 
603 	zilog = dmu_objset_zil(os);
604 	tx = dmu_tx_create(zilog->zl_os);
605 	(void) dmu_tx_assign(tx, TXG_WAIT);
606 	zh = zil_header_in_syncing_context(zilog);
607 	BP_ZERO(&zh->zh_log);
608 	dsl_dataset_dirty(dmu_objset_ds(os), tx);
609 	dmu_tx_commit(tx);
610 	dmu_objset_close(os);
611 	return (0);
612 }
613 
614 static int
615 zil_vdev_compare(const void *x1, const void *x2)
616 {
617 	uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
618 	uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
619 
620 	if (v1 < v2)
621 		return (-1);
622 	if (v1 > v2)
623 		return (1);
624 
625 	return (0);
626 }
627 
628 void
629 zil_add_block(zilog_t *zilog, blkptr_t *bp)
630 {
631 	avl_tree_t *t = &zilog->zl_vdev_tree;
632 	avl_index_t where;
633 	zil_vdev_node_t *zv, zvsearch;
634 	int ndvas = BP_GET_NDVAS(bp);
635 	int i;
636 
637 	if (zfs_nocacheflush)
638 		return;
639 
640 	ASSERT(zilog->zl_writer);
641 
642 	/*
643 	 * Even though we're zl_writer, we still need a lock because the
644 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
645 	 * that will run concurrently.
646 	 */
647 	mutex_enter(&zilog->zl_vdev_lock);
648 	for (i = 0; i < ndvas; i++) {
649 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
650 		if (avl_find(t, &zvsearch, &where) == NULL) {
651 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
652 			zv->zv_vdev = zvsearch.zv_vdev;
653 			avl_insert(t, zv, where);
654 		}
655 	}
656 	mutex_exit(&zilog->zl_vdev_lock);
657 }
658 
659 void
660 zil_flush_vdevs(zilog_t *zilog)
661 {
662 	spa_t *spa = zilog->zl_spa;
663 	avl_tree_t *t = &zilog->zl_vdev_tree;
664 	void *cookie = NULL;
665 	zil_vdev_node_t *zv;
666 	zio_t *zio;
667 
668 	ASSERT(zilog->zl_writer);
669 
670 	/*
671 	 * We don't need zl_vdev_lock here because we're the zl_writer,
672 	 * and all zl_get_data() callbacks are done.
673 	 */
674 	if (avl_numnodes(t) == 0)
675 		return;
676 
677 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
678 
679 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
680 
681 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
682 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
683 		if (vd != NULL)
684 			zio_flush(zio, vd);
685 		kmem_free(zv, sizeof (*zv));
686 	}
687 
688 	/*
689 	 * Wait for all the flushes to complete.  Not all devices actually
690 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
691 	 */
692 	(void) zio_wait(zio);
693 
694 	spa_config_exit(spa, SCL_STATE, FTAG);
695 }
696 
697 /*
698  * Function called when a log block write completes
699  */
700 static void
701 zil_lwb_write_done(zio_t *zio)
702 {
703 	lwb_t *lwb = zio->io_private;
704 	zilog_t *zilog = lwb->lwb_zilog;
705 
706 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
707 	ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG);
708 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
709 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
710 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
711 	ASSERT(!BP_IS_GANG(zio->io_bp));
712 	ASSERT(!BP_IS_HOLE(zio->io_bp));
713 	ASSERT(zio->io_bp->blk_fill == 0);
714 
715 	/*
716 	 * Now that we've written this log block, we have a stable pointer
717 	 * to the next block in the chain, so it's OK to let the txg in
718 	 * which we allocated the next block sync.
719 	 */
720 	txg_rele_to_sync(&lwb->lwb_txgh);
721 
722 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
723 	mutex_enter(&zilog->zl_lock);
724 	lwb->lwb_buf = NULL;
725 	if (zio->io_error)
726 		zilog->zl_log_error = B_TRUE;
727 	mutex_exit(&zilog->zl_lock);
728 }
729 
730 /*
731  * Initialize the io for a log block.
732  */
733 static void
734 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
735 {
736 	zbookmark_t zb;
737 
738 	zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
739 	zb.zb_object = 0;
740 	zb.zb_level = -1;
741 	zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
742 
743 	if (zilog->zl_root_zio == NULL) {
744 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
745 		    ZIO_FLAG_CANFAIL);
746 	}
747 	if (lwb->lwb_zio == NULL) {
748 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
749 		    0, &lwb->lwb_blk, lwb->lwb_buf,
750 		    lwb->lwb_sz, zil_lwb_write_done, lwb,
751 		    ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb);
752 	}
753 }
754 
755 /*
756  * Start a log block write and advance to the next log block.
757  * Calls are serialized.
758  */
759 static lwb_t *
760 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
761 {
762 	lwb_t *nlwb;
763 	zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
764 	spa_t *spa = zilog->zl_spa;
765 	blkptr_t *bp = &ztp->zit_next_blk;
766 	uint64_t txg;
767 	uint64_t zil_blksz;
768 	int error;
769 
770 	ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
771 
772 	/*
773 	 * Allocate the next block and save its address in this block
774 	 * before writing it in order to establish the log chain.
775 	 * Note that if the allocation of nlwb synced before we wrote
776 	 * the block that points at it (lwb), we'd leak it if we crashed.
777 	 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
778 	 */
779 	txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
780 	txg_rele_to_quiesce(&lwb->lwb_txgh);
781 
782 	/*
783 	 * Pick a ZIL blocksize. We request a size that is the
784 	 * maximum of the previous used size, the current used size and
785 	 * the amount waiting in the queue.
786 	 */
787 	zil_blksz = MAX(zilog->zl_prev_used,
788 	    zilog->zl_cur_used + sizeof (*ztp));
789 	zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
790 	zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
791 	if (zil_blksz > ZIL_MAX_BLKSZ)
792 		zil_blksz = ZIL_MAX_BLKSZ;
793 
794 	BP_ZERO(bp);
795 	/* pass the old blkptr in order to spread log blocks across devs */
796 	error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg);
797 	if (error) {
798 		dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg);
799 
800 		/*
801 		 * We dirty the dataset to ensure that zil_sync() will
802 		 * be called to remove this lwb from our zl_lwb_list.
803 		 * Failing to do so, may leave an lwb with a NULL lwb_buf
804 		 * hanging around on the zl_lwb_list.
805 		 */
806 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
807 		dmu_tx_commit(tx);
808 
809 		/*
810 		 * Since we've just experienced an allocation failure so we
811 		 * terminate the current lwb and send it on its way.
812 		 */
813 		ztp->zit_pad = 0;
814 		ztp->zit_nused = lwb->lwb_nused;
815 		ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
816 		zio_nowait(lwb->lwb_zio);
817 
818 		/*
819 		 * By returning NULL the caller will call tx_wait_synced()
820 		 */
821 		return (NULL);
822 	}
823 
824 	ASSERT3U(bp->blk_birth, ==, txg);
825 	ztp->zit_pad = 0;
826 	ztp->zit_nused = lwb->lwb_nused;
827 	ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
828 	bp->blk_cksum = lwb->lwb_blk.blk_cksum;
829 	bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
830 
831 	/*
832 	 * Allocate a new log write buffer (lwb).
833 	 */
834 	nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
835 
836 	nlwb->lwb_zilog = zilog;
837 	nlwb->lwb_blk = *bp;
838 	nlwb->lwb_nused = 0;
839 	nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
840 	nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
841 	nlwb->lwb_max_txg = txg;
842 	nlwb->lwb_zio = NULL;
843 
844 	/*
845 	 * Put new lwb at the end of the log chain
846 	 */
847 	mutex_enter(&zilog->zl_lock);
848 	list_insert_tail(&zilog->zl_lwb_list, nlwb);
849 	mutex_exit(&zilog->zl_lock);
850 
851 	/* Record the block for later vdev flushing */
852 	zil_add_block(zilog, &lwb->lwb_blk);
853 
854 	/*
855 	 * kick off the write for the old log block
856 	 */
857 	dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
858 	ASSERT(lwb->lwb_zio);
859 	zio_nowait(lwb->lwb_zio);
860 
861 	return (nlwb);
862 }
863 
864 static lwb_t *
865 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
866 {
867 	lr_t *lrc = &itx->itx_lr; /* common log record */
868 	lr_write_t *lr = (lr_write_t *)lrc;
869 	uint64_t txg = lrc->lrc_txg;
870 	uint64_t reclen = lrc->lrc_reclen;
871 	uint64_t dlen;
872 
873 	if (lwb == NULL)
874 		return (NULL);
875 	ASSERT(lwb->lwb_buf != NULL);
876 
877 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
878 		dlen = P2ROUNDUP_TYPED(
879 		    lr->lr_length, sizeof (uint64_t), uint64_t);
880 	else
881 		dlen = 0;
882 
883 	zilog->zl_cur_used += (reclen + dlen);
884 
885 	zil_lwb_write_init(zilog, lwb);
886 
887 	/*
888 	 * If this record won't fit in the current log block, start a new one.
889 	 */
890 	if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
891 		lwb = zil_lwb_write_start(zilog, lwb);
892 		if (lwb == NULL)
893 			return (NULL);
894 		zil_lwb_write_init(zilog, lwb);
895 		ASSERT(lwb->lwb_nused == 0);
896 		if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
897 			txg_wait_synced(zilog->zl_dmu_pool, txg);
898 			return (lwb);
899 		}
900 	}
901 
902 	/*
903 	 * Update the lrc_seq, to be log record sequence number. See zil.h
904 	 * Then copy the record to the log buffer.
905 	 */
906 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
907 	bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
908 
909 	/*
910 	 * If it's a write, fetch the data or get its blkptr as appropriate.
911 	 */
912 	if (lrc->lrc_txtype == TX_WRITE) {
913 		if (txg > spa_freeze_txg(zilog->zl_spa))
914 			txg_wait_synced(zilog->zl_dmu_pool, txg);
915 		if (itx->itx_wr_state != WR_COPIED) {
916 			char *dbuf;
917 			int error;
918 
919 			/* alignment is guaranteed */
920 			lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
921 			if (dlen) {
922 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
923 				dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
924 				lr->lr_common.lrc_reclen += dlen;
925 			} else {
926 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
927 				dbuf = NULL;
928 			}
929 			error = zilog->zl_get_data(
930 			    itx->itx_private, lr, dbuf, lwb->lwb_zio);
931 			if (error) {
932 				ASSERT(error == ENOENT || error == EEXIST ||
933 				    error == EALREADY);
934 				return (lwb);
935 			}
936 		}
937 	}
938 
939 	lwb->lwb_nused += reclen + dlen;
940 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
941 	ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
942 	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
943 
944 	return (lwb);
945 }
946 
947 itx_t *
948 zil_itx_create(uint64_t txtype, size_t lrsize)
949 {
950 	itx_t *itx;
951 
952 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
953 
954 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
955 	itx->itx_lr.lrc_txtype = txtype;
956 	itx->itx_lr.lrc_reclen = lrsize;
957 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
958 	itx->itx_lr.lrc_seq = 0;	/* defensive */
959 
960 	return (itx);
961 }
962 
963 uint64_t
964 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
965 {
966 	uint64_t seq;
967 
968 	ASSERT(itx->itx_lr.lrc_seq == 0);
969 
970 	mutex_enter(&zilog->zl_lock);
971 	list_insert_tail(&zilog->zl_itx_list, itx);
972 	zilog->zl_itx_list_sz += itx->itx_sod;
973 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
974 	itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
975 	mutex_exit(&zilog->zl_lock);
976 
977 	return (seq);
978 }
979 
980 /*
981  * Free up all in-memory intent log transactions that have now been synced.
982  */
983 static void
984 zil_itx_clean(zilog_t *zilog)
985 {
986 	uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
987 	uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
988 	list_t clean_list;
989 	itx_t *itx;
990 
991 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
992 
993 	mutex_enter(&zilog->zl_lock);
994 	/* wait for a log writer to finish walking list */
995 	while (zilog->zl_writer) {
996 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
997 	}
998 
999 	/*
1000 	 * Move the sync'd log transactions to a separate list so we can call
1001 	 * kmem_free without holding the zl_lock.
1002 	 *
1003 	 * There is no need to set zl_writer as we don't drop zl_lock here
1004 	 */
1005 	while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
1006 	    itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
1007 		list_remove(&zilog->zl_itx_list, itx);
1008 		zilog->zl_itx_list_sz -= itx->itx_sod;
1009 		list_insert_tail(&clean_list, itx);
1010 	}
1011 	cv_broadcast(&zilog->zl_cv_writer);
1012 	mutex_exit(&zilog->zl_lock);
1013 
1014 	/* destroy sync'd log transactions */
1015 	while ((itx = list_head(&clean_list)) != NULL) {
1016 		list_remove(&clean_list, itx);
1017 		kmem_free(itx, offsetof(itx_t, itx_lr)
1018 		    + itx->itx_lr.lrc_reclen);
1019 	}
1020 	list_destroy(&clean_list);
1021 }
1022 
1023 /*
1024  * If there are any in-memory intent log transactions which have now been
1025  * synced then start up a taskq to free them.
1026  */
1027 void
1028 zil_clean(zilog_t *zilog)
1029 {
1030 	itx_t *itx;
1031 
1032 	mutex_enter(&zilog->zl_lock);
1033 	itx = list_head(&zilog->zl_itx_list);
1034 	if ((itx != NULL) &&
1035 	    (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) {
1036 		(void) taskq_dispatch(zilog->zl_clean_taskq,
1037 		    (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP);
1038 	}
1039 	mutex_exit(&zilog->zl_lock);
1040 }
1041 
1042 static void
1043 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid)
1044 {
1045 	uint64_t txg;
1046 	uint64_t commit_seq = 0;
1047 	itx_t *itx, *itx_next = (itx_t *)-1;
1048 	lwb_t *lwb;
1049 	spa_t *spa;
1050 
1051 	zilog->zl_writer = B_TRUE;
1052 	ASSERT(zilog->zl_root_zio == NULL);
1053 	spa = zilog->zl_spa;
1054 
1055 	if (zilog->zl_suspend) {
1056 		lwb = NULL;
1057 	} else {
1058 		lwb = list_tail(&zilog->zl_lwb_list);
1059 		if (lwb == NULL) {
1060 			/*
1061 			 * Return if there's nothing to flush before we
1062 			 * dirty the fs by calling zil_create()
1063 			 */
1064 			if (list_is_empty(&zilog->zl_itx_list)) {
1065 				zilog->zl_writer = B_FALSE;
1066 				return;
1067 			}
1068 			mutex_exit(&zilog->zl_lock);
1069 			zil_create(zilog);
1070 			mutex_enter(&zilog->zl_lock);
1071 			lwb = list_tail(&zilog->zl_lwb_list);
1072 		}
1073 	}
1074 
1075 	/* Loop through in-memory log transactions filling log blocks. */
1076 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1077 	for (;;) {
1078 		/*
1079 		 * Find the next itx to push:
1080 		 * Push all transactions related to specified foid and all
1081 		 * other transactions except TX_WRITE, TX_TRUNCATE,
1082 		 * TX_SETATTR and TX_ACL for all other files.
1083 		 */
1084 		if (itx_next != (itx_t *)-1)
1085 			itx = itx_next;
1086 		else
1087 			itx = list_head(&zilog->zl_itx_list);
1088 		for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) {
1089 			if (foid == 0) /* push all foids? */
1090 				break;
1091 			if (itx->itx_sync) /* push all O_[D]SYNC */
1092 				break;
1093 			switch (itx->itx_lr.lrc_txtype) {
1094 			case TX_SETATTR:
1095 			case TX_WRITE:
1096 			case TX_TRUNCATE:
1097 			case TX_ACL:
1098 				/* lr_foid is same offset for these records */
1099 				if (((lr_write_t *)&itx->itx_lr)->lr_foid
1100 				    != foid) {
1101 					continue; /* skip this record */
1102 				}
1103 			}
1104 			break;
1105 		}
1106 		if (itx == NULL)
1107 			break;
1108 
1109 		if ((itx->itx_lr.lrc_seq > seq) &&
1110 		    ((lwb == NULL) || (lwb->lwb_nused == 0) ||
1111 		    (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) {
1112 			break;
1113 		}
1114 
1115 		/*
1116 		 * Save the next pointer.  Even though we soon drop
1117 		 * zl_lock all threads that may change the list
1118 		 * (another writer or zil_itx_clean) can't do so until
1119 		 * they have zl_writer.
1120 		 */
1121 		itx_next = list_next(&zilog->zl_itx_list, itx);
1122 		list_remove(&zilog->zl_itx_list, itx);
1123 		zilog->zl_itx_list_sz -= itx->itx_sod;
1124 		mutex_exit(&zilog->zl_lock);
1125 		txg = itx->itx_lr.lrc_txg;
1126 		ASSERT(txg);
1127 
1128 		if (txg > spa_last_synced_txg(spa) ||
1129 		    txg > spa_freeze_txg(spa))
1130 			lwb = zil_lwb_commit(zilog, itx, lwb);
1131 		kmem_free(itx, offsetof(itx_t, itx_lr)
1132 		    + itx->itx_lr.lrc_reclen);
1133 		mutex_enter(&zilog->zl_lock);
1134 	}
1135 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1136 	/* determine commit sequence number */
1137 	itx = list_head(&zilog->zl_itx_list);
1138 	if (itx)
1139 		commit_seq = itx->itx_lr.lrc_seq;
1140 	else
1141 		commit_seq = zilog->zl_itx_seq;
1142 	mutex_exit(&zilog->zl_lock);
1143 
1144 	/* write the last block out */
1145 	if (lwb != NULL && lwb->lwb_zio != NULL)
1146 		lwb = zil_lwb_write_start(zilog, lwb);
1147 
1148 	zilog->zl_prev_used = zilog->zl_cur_used;
1149 	zilog->zl_cur_used = 0;
1150 
1151 	/*
1152 	 * Wait if necessary for the log blocks to be on stable storage.
1153 	 */
1154 	if (zilog->zl_root_zio) {
1155 		DTRACE_PROBE1(zil__cw3, zilog_t *, zilog);
1156 		(void) zio_wait(zilog->zl_root_zio);
1157 		zilog->zl_root_zio = NULL;
1158 		DTRACE_PROBE1(zil__cw4, zilog_t *, zilog);
1159 		zil_flush_vdevs(zilog);
1160 	}
1161 
1162 	if (zilog->zl_log_error || lwb == NULL) {
1163 		zilog->zl_log_error = 0;
1164 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1165 	}
1166 
1167 	mutex_enter(&zilog->zl_lock);
1168 	zilog->zl_writer = B_FALSE;
1169 
1170 	ASSERT3U(commit_seq, >=, zilog->zl_commit_seq);
1171 	zilog->zl_commit_seq = commit_seq;
1172 }
1173 
1174 /*
1175  * Push zfs transactions to stable storage up to the supplied sequence number.
1176  * If foid is 0 push out all transactions, otherwise push only those
1177  * for that file or might have been used to create that file.
1178  */
1179 void
1180 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid)
1181 {
1182 	if (zilog == NULL || seq == 0)
1183 		return;
1184 
1185 	mutex_enter(&zilog->zl_lock);
1186 
1187 	seq = MIN(seq, zilog->zl_itx_seq);	/* cap seq at largest itx seq */
1188 
1189 	while (zilog->zl_writer) {
1190 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1191 		if (seq < zilog->zl_commit_seq) {
1192 			mutex_exit(&zilog->zl_lock);
1193 			return;
1194 		}
1195 	}
1196 	zil_commit_writer(zilog, seq, foid); /* drops zl_lock */
1197 	/* wake up others waiting on the commit */
1198 	cv_broadcast(&zilog->zl_cv_writer);
1199 	mutex_exit(&zilog->zl_lock);
1200 }
1201 
1202 /*
1203  * Called in syncing context to free committed log blocks and update log header.
1204  */
1205 void
1206 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1207 {
1208 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1209 	uint64_t txg = dmu_tx_get_txg(tx);
1210 	spa_t *spa = zilog->zl_spa;
1211 	lwb_t *lwb;
1212 
1213 	mutex_enter(&zilog->zl_lock);
1214 
1215 	ASSERT(zilog->zl_stop_sync == 0);
1216 
1217 	zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK];
1218 
1219 	if (zilog->zl_destroy_txg == txg) {
1220 		blkptr_t blk = zh->zh_log;
1221 
1222 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1223 		ASSERT(spa_sync_pass(spa) == 1);
1224 
1225 		bzero(zh, sizeof (zil_header_t));
1226 		bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq));
1227 
1228 		if (zilog->zl_keep_first) {
1229 			/*
1230 			 * If this block was part of log chain that couldn't
1231 			 * be claimed because a device was missing during
1232 			 * zil_claim(), but that device later returns,
1233 			 * then this block could erroneously appear valid.
1234 			 * To guard against this, assign a new GUID to the new
1235 			 * log chain so it doesn't matter what blk points to.
1236 			 */
1237 			zil_init_log_chain(zilog, &blk);
1238 			zh->zh_log = blk;
1239 		}
1240 	}
1241 
1242 	for (;;) {
1243 		lwb = list_head(&zilog->zl_lwb_list);
1244 		if (lwb == NULL) {
1245 			mutex_exit(&zilog->zl_lock);
1246 			return;
1247 		}
1248 		zh->zh_log = lwb->lwb_blk;
1249 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1250 			break;
1251 		list_remove(&zilog->zl_lwb_list, lwb);
1252 		zio_free_blk(spa, &lwb->lwb_blk, txg);
1253 		kmem_cache_free(zil_lwb_cache, lwb);
1254 
1255 		/*
1256 		 * If we don't have anything left in the lwb list then
1257 		 * we've had an allocation failure and we need to zero
1258 		 * out the zil_header blkptr so that we don't end
1259 		 * up freeing the same block twice.
1260 		 */
1261 		if (list_head(&zilog->zl_lwb_list) == NULL)
1262 			BP_ZERO(&zh->zh_log);
1263 	}
1264 	mutex_exit(&zilog->zl_lock);
1265 }
1266 
1267 void
1268 zil_init(void)
1269 {
1270 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1271 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1272 }
1273 
1274 void
1275 zil_fini(void)
1276 {
1277 	kmem_cache_destroy(zil_lwb_cache);
1278 }
1279 
1280 zilog_t *
1281 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1282 {
1283 	zilog_t *zilog;
1284 
1285 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1286 
1287 	zilog->zl_header = zh_phys;
1288 	zilog->zl_os = os;
1289 	zilog->zl_spa = dmu_objset_spa(os);
1290 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1291 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1292 
1293 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1294 
1295 	list_create(&zilog->zl_itx_list, sizeof (itx_t),
1296 	    offsetof(itx_t, itx_node));
1297 
1298 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1299 	    offsetof(lwb_t, lwb_node));
1300 
1301 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1302 
1303 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1304 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1305 
1306 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1307 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1308 
1309 	return (zilog);
1310 }
1311 
1312 void
1313 zil_free(zilog_t *zilog)
1314 {
1315 	lwb_t *lwb;
1316 
1317 	zilog->zl_stop_sync = 1;
1318 
1319 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1320 		list_remove(&zilog->zl_lwb_list, lwb);
1321 		if (lwb->lwb_buf != NULL)
1322 			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1323 		kmem_cache_free(zil_lwb_cache, lwb);
1324 	}
1325 	list_destroy(&zilog->zl_lwb_list);
1326 
1327 	avl_destroy(&zilog->zl_vdev_tree);
1328 	mutex_destroy(&zilog->zl_vdev_lock);
1329 
1330 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1331 	list_destroy(&zilog->zl_itx_list);
1332 	mutex_destroy(&zilog->zl_lock);
1333 
1334 	cv_destroy(&zilog->zl_cv_writer);
1335 	cv_destroy(&zilog->zl_cv_suspend);
1336 
1337 	kmem_free(zilog, sizeof (zilog_t));
1338 }
1339 
1340 /*
1341  * return true if the initial log block is not valid
1342  */
1343 static boolean_t
1344 zil_empty(zilog_t *zilog)
1345 {
1346 	const zil_header_t *zh = zilog->zl_header;
1347 	arc_buf_t *abuf = NULL;
1348 
1349 	if (BP_IS_HOLE(&zh->zh_log))
1350 		return (B_TRUE);
1351 
1352 	if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
1353 		return (B_TRUE);
1354 
1355 	VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1356 	return (B_FALSE);
1357 }
1358 
1359 /*
1360  * Open an intent log.
1361  */
1362 zilog_t *
1363 zil_open(objset_t *os, zil_get_data_t *get_data)
1364 {
1365 	zilog_t *zilog = dmu_objset_zil(os);
1366 
1367 	zilog->zl_get_data = get_data;
1368 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1369 	    2, 2, TASKQ_PREPOPULATE);
1370 
1371 	return (zilog);
1372 }
1373 
1374 /*
1375  * Close an intent log.
1376  */
1377 void
1378 zil_close(zilog_t *zilog)
1379 {
1380 	/*
1381 	 * If the log isn't already committed, mark the objset dirty
1382 	 * (so zil_sync() will be called) and wait for that txg to sync.
1383 	 */
1384 	if (!zil_is_committed(zilog)) {
1385 		uint64_t txg;
1386 		dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1387 		(void) dmu_tx_assign(tx, TXG_WAIT);
1388 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1389 		txg = dmu_tx_get_txg(tx);
1390 		dmu_tx_commit(tx);
1391 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1392 	}
1393 
1394 	taskq_destroy(zilog->zl_clean_taskq);
1395 	zilog->zl_clean_taskq = NULL;
1396 	zilog->zl_get_data = NULL;
1397 
1398 	zil_itx_clean(zilog);
1399 	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1400 }
1401 
1402 /*
1403  * Suspend an intent log.  While in suspended mode, we still honor
1404  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1405  * We suspend the log briefly when taking a snapshot so that the snapshot
1406  * contains all the data it's supposed to, and has an empty intent log.
1407  */
1408 int
1409 zil_suspend(zilog_t *zilog)
1410 {
1411 	const zil_header_t *zh = zilog->zl_header;
1412 
1413 	mutex_enter(&zilog->zl_lock);
1414 	if (zh->zh_claim_txg != 0) {		/* unplayed log */
1415 		mutex_exit(&zilog->zl_lock);
1416 		return (EBUSY);
1417 	}
1418 	if (zilog->zl_suspend++ != 0) {
1419 		/*
1420 		 * Someone else already began a suspend.
1421 		 * Just wait for them to finish.
1422 		 */
1423 		while (zilog->zl_suspending)
1424 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1425 		mutex_exit(&zilog->zl_lock);
1426 		return (0);
1427 	}
1428 	zilog->zl_suspending = B_TRUE;
1429 	mutex_exit(&zilog->zl_lock);
1430 
1431 	zil_commit(zilog, UINT64_MAX, 0);
1432 
1433 	/*
1434 	 * Wait for any in-flight log writes to complete.
1435 	 */
1436 	mutex_enter(&zilog->zl_lock);
1437 	while (zilog->zl_writer)
1438 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1439 	mutex_exit(&zilog->zl_lock);
1440 
1441 	zil_destroy(zilog, B_FALSE);
1442 
1443 	mutex_enter(&zilog->zl_lock);
1444 	zilog->zl_suspending = B_FALSE;
1445 	cv_broadcast(&zilog->zl_cv_suspend);
1446 	mutex_exit(&zilog->zl_lock);
1447 
1448 	return (0);
1449 }
1450 
1451 void
1452 zil_resume(zilog_t *zilog)
1453 {
1454 	mutex_enter(&zilog->zl_lock);
1455 	ASSERT(zilog->zl_suspend != 0);
1456 	zilog->zl_suspend--;
1457 	mutex_exit(&zilog->zl_lock);
1458 }
1459 
1460 typedef struct zil_replay_arg {
1461 	objset_t	*zr_os;
1462 	zil_replay_func_t **zr_replay;
1463 	zil_replay_cleaner_t *zr_replay_cleaner;
1464 	void		*zr_arg;
1465 	uint64_t	*zr_txgp;
1466 	boolean_t	zr_byteswap;
1467 	char		*zr_lrbuf;
1468 } zil_replay_arg_t;
1469 
1470 static void
1471 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1472 {
1473 	zil_replay_arg_t *zr = zra;
1474 	const zil_header_t *zh = zilog->zl_header;
1475 	uint64_t reclen = lr->lrc_reclen;
1476 	uint64_t txtype = lr->lrc_txtype;
1477 	char *name;
1478 	int pass, error, sunk;
1479 
1480 	if (zilog->zl_stop_replay)
1481 		return;
1482 
1483 	if (lr->lrc_txg < claim_txg)		/* already committed */
1484 		return;
1485 
1486 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1487 		return;
1488 
1489 	/* Strip case-insensitive bit, still present in log record */
1490 	txtype &= ~TX_CI;
1491 
1492 	/*
1493 	 * Make a copy of the data so we can revise and extend it.
1494 	 */
1495 	bcopy(lr, zr->zr_lrbuf, reclen);
1496 
1497 	/*
1498 	 * The log block containing this lr may have been byteswapped
1499 	 * so that we can easily examine common fields like lrc_txtype.
1500 	 * However, the log is a mix of different data types, and only the
1501 	 * replay vectors know how to byteswap their records.  Therefore, if
1502 	 * the lr was byteswapped, undo it before invoking the replay vector.
1503 	 */
1504 	if (zr->zr_byteswap)
1505 		byteswap_uint64_array(zr->zr_lrbuf, reclen);
1506 
1507 	/*
1508 	 * If this is a TX_WRITE with a blkptr, suck in the data.
1509 	 */
1510 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1511 		lr_write_t *lrw = (lr_write_t *)lr;
1512 		blkptr_t *wbp = &lrw->lr_blkptr;
1513 		uint64_t wlen = lrw->lr_length;
1514 		char *wbuf = zr->zr_lrbuf + reclen;
1515 
1516 		if (BP_IS_HOLE(wbp)) {	/* compressed to a hole */
1517 			bzero(wbuf, wlen);
1518 		} else {
1519 			/*
1520 			 * A subsequent write may have overwritten this block,
1521 			 * in which case wbp may have been been freed and
1522 			 * reallocated, and our read of wbp may fail with a
1523 			 * checksum error.  We can safely ignore this because
1524 			 * the later write will provide the correct data.
1525 			 */
1526 			zbookmark_t zb;
1527 
1528 			zb.zb_objset = dmu_objset_id(zilog->zl_os);
1529 			zb.zb_object = lrw->lr_foid;
1530 			zb.zb_level = -1;
1531 			zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp);
1532 
1533 			(void) zio_wait(zio_read(NULL, zilog->zl_spa,
1534 			    wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL,
1535 			    ZIO_PRIORITY_SYNC_READ,
1536 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
1537 			(void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen);
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Replay of large truncates can end up needing additional txs
1543 	 * and a different txg. If they are nested within the replay tx
1544 	 * as below then a hang is possible. So we do the truncate here
1545 	 * and redo the truncate later (a no-op) and update the sequence
1546 	 * number whilst in the replay tx. Fortunately, it's safe to repeat
1547 	 * a truncate if we crash and the truncate commits. A create over
1548 	 * an existing file will also come in as a TX_TRUNCATE record.
1549 	 *
1550 	 * Note, remove of large files and renames over large files is
1551 	 * handled by putting the deleted object on a stable list
1552 	 * and if necessary force deleting the object outside of the replay
1553 	 * transaction using the zr_replay_cleaner.
1554 	 */
1555 	if (txtype == TX_TRUNCATE) {
1556 		*zr->zr_txgp = TXG_NOWAIT;
1557 		error = zr->zr_replay[TX_TRUNCATE](zr->zr_arg, zr->zr_lrbuf,
1558 		    zr->zr_byteswap);
1559 		if (error)
1560 			goto bad;
1561 		zr->zr_byteswap = 0; /* only byteswap once */
1562 	}
1563 
1564 	/*
1565 	 * We must now do two things atomically: replay this log record,
1566 	 * and update the log header to reflect the fact that we did so.
1567 	 * We use the DMU's ability to assign into a specific txg to do this.
1568 	 */
1569 	for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) {
1570 		uint64_t replay_txg;
1571 		dmu_tx_t *replay_tx;
1572 
1573 		replay_tx = dmu_tx_create(zr->zr_os);
1574 		error = dmu_tx_assign(replay_tx, TXG_WAIT);
1575 		if (error) {
1576 			dmu_tx_abort(replay_tx);
1577 			break;
1578 		}
1579 
1580 		replay_txg = dmu_tx_get_txg(replay_tx);
1581 
1582 		if (txtype == 0 || txtype >= TX_MAX_TYPE) {
1583 			error = EINVAL;
1584 		} else {
1585 			/*
1586 			 * On the first pass, arrange for the replay vector
1587 			 * to fail its dmu_tx_assign().  That's the only way
1588 			 * to ensure that those code paths remain well tested.
1589 			 *
1590 			 * Only byteswap (if needed) on the 1st pass.
1591 			 */
1592 			*zr->zr_txgp = replay_txg - (pass == 1);
1593 			error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
1594 			    zr->zr_byteswap && pass == 1);
1595 			*zr->zr_txgp = TXG_NOWAIT;
1596 		}
1597 
1598 		if (error == 0) {
1599 			dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx);
1600 			zilog->zl_replay_seq[replay_txg & TXG_MASK] =
1601 			    lr->lrc_seq;
1602 		}
1603 
1604 		dmu_tx_commit(replay_tx);
1605 
1606 		if (!error)
1607 			return;
1608 
1609 		/*
1610 		 * The DMU's dnode layer doesn't see removes until the txg
1611 		 * commits, so a subsequent claim can spuriously fail with
1612 		 * EEXIST. So if we receive any error other than ERESTART
1613 		 * we try syncing out any removes then retrying the
1614 		 * transaction.
1615 		 */
1616 		if (error != ERESTART && !sunk) {
1617 			if (zr->zr_replay_cleaner)
1618 				zr->zr_replay_cleaner(zr->zr_arg);
1619 			txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1620 			sunk = B_TRUE;
1621 			continue; /* retry */
1622 		}
1623 
1624 		if (error != ERESTART)
1625 			break;
1626 
1627 		if (pass != 1)
1628 			txg_wait_open(spa_get_dsl(zilog->zl_spa),
1629 			    replay_txg + 1);
1630 
1631 		dprintf("pass %d, retrying\n", pass);
1632 	}
1633 
1634 bad:
1635 	ASSERT(error && error != ERESTART);
1636 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1637 	dmu_objset_name(zr->zr_os, name);
1638 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1639 	    "dataset %s, seq 0x%llx, txtype %llu %s\n",
1640 	    error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype,
1641 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1642 	zilog->zl_stop_replay = 1;
1643 	kmem_free(name, MAXNAMELEN);
1644 }
1645 
1646 /* ARGSUSED */
1647 static void
1648 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1649 {
1650 	zilog->zl_replay_blks++;
1651 }
1652 
1653 /*
1654  * If this dataset has a non-empty intent log, replay it and destroy it.
1655  */
1656 void
1657 zil_replay(objset_t *os, void *arg, uint64_t *txgp,
1658 	zil_replay_func_t *replay_func[TX_MAX_TYPE],
1659 	zil_replay_cleaner_t *replay_cleaner)
1660 {
1661 	zilog_t *zilog = dmu_objset_zil(os);
1662 	const zil_header_t *zh = zilog->zl_header;
1663 	zil_replay_arg_t zr;
1664 
1665 	if (zil_empty(zilog)) {
1666 		zil_destroy(zilog, B_TRUE);
1667 		return;
1668 	}
1669 
1670 	zr.zr_os = os;
1671 	zr.zr_replay = replay_func;
1672 	zr.zr_replay_cleaner = replay_cleaner;
1673 	zr.zr_arg = arg;
1674 	zr.zr_txgp = txgp;
1675 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1676 	zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1677 
1678 	/*
1679 	 * Wait for in-progress removes to sync before starting replay.
1680 	 */
1681 	txg_wait_synced(zilog->zl_dmu_pool, 0);
1682 
1683 	zilog->zl_stop_replay = 0;
1684 	zilog->zl_replay_time = lbolt;
1685 	ASSERT(zilog->zl_replay_blks == 0);
1686 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1687 	    zh->zh_claim_txg);
1688 	kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
1689 
1690 	zil_destroy(zilog, B_FALSE);
1691 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1692 }
1693 
1694 /*
1695  * Report whether all transactions are committed
1696  */
1697 int
1698 zil_is_committed(zilog_t *zilog)
1699 {
1700 	lwb_t *lwb;
1701 	int ret;
1702 
1703 	mutex_enter(&zilog->zl_lock);
1704 	while (zilog->zl_writer)
1705 		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1706 
1707 	/* recent unpushed intent log transactions? */
1708 	if (!list_is_empty(&zilog->zl_itx_list)) {
1709 		ret = B_FALSE;
1710 		goto out;
1711 	}
1712 
1713 	/* intent log never used? */
1714 	lwb = list_head(&zilog->zl_lwb_list);
1715 	if (lwb == NULL) {
1716 		ret = B_TRUE;
1717 		goto out;
1718 	}
1719 
1720 	/*
1721 	 * more than 1 log buffer means zil_sync() hasn't yet freed
1722 	 * entries after a txg has committed
1723 	 */
1724 	if (list_next(&zilog->zl_lwb_list, lwb)) {
1725 		ret = B_FALSE;
1726 		goto out;
1727 	}
1728 
1729 	ASSERT(zil_empty(zilog));
1730 	ret = B_TRUE;
1731 out:
1732 	cv_broadcast(&zilog->zl_cv_writer);
1733 	mutex_exit(&zilog->zl_lock);
1734 	return (ret);
1735 }
1736