1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/vnode.h> 40 #include <sys/file.h> 41 #include <sys/kmem.h> 42 #include <sys/cmn_err.h> 43 #include <sys/errno.h> 44 #include <sys/unistd.h> 45 #include <sys/mode.h> 46 #include <sys/atomic.h> 47 #include <vm/pvn.h> 48 #include "fs/fs_subr.h" 49 #include <sys/zfs_dir.h> 50 #include <sys/zfs_acl.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/fs/zfs.h> 54 #endif /* _KERNEL */ 55 56 #include <sys/dmu.h> 57 #include <sys/refcount.h> 58 #include <sys/stat.h> 59 #include <sys/zap.h> 60 #include <sys/zfs_znode.h> 61 62 /* 63 * Functions needed for userland (ie: libzpool) are not put under 64 * #ifdef_KERNEL; the rest of the functions have dependencies 65 * (such as VFS logic) that will not compile easily in userland. 66 */ 67 #ifdef _KERNEL 68 struct kmem_cache *znode_cache = NULL; 69 70 /*ARGSUSED*/ 71 static void 72 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 73 { 74 znode_t *zp = user_ptr; 75 vnode_t *vp = ZTOV(zp); 76 77 mutex_enter(&zp->z_lock); 78 if (vp->v_count == 0) { 79 mutex_exit(&zp->z_lock); 80 vn_invalid(vp); 81 zfs_znode_free(zp); 82 } else { 83 /* signal force unmount that this znode can be freed */ 84 zp->z_dbuf = NULL; 85 mutex_exit(&zp->z_lock); 86 } 87 } 88 89 /*ARGSUSED*/ 90 static int 91 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 92 { 93 znode_t *zp = buf; 94 95 zp->z_vnode = vn_alloc(KM_SLEEP); 96 zp->z_vnode->v_data = (caddr_t)zp; 97 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 98 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 99 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 100 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 101 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 102 103 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 104 avl_create(&zp->z_range_avl, zfs_range_compare, 105 sizeof (rl_t), offsetof(rl_t, r_node)); 106 107 zp->z_dbuf_held = 0; 108 zp->z_dirlocks = 0; 109 return (0); 110 } 111 112 /*ARGSUSED*/ 113 static void 114 zfs_znode_cache_destructor(void *buf, void *cdarg) 115 { 116 znode_t *zp = buf; 117 118 ASSERT(zp->z_dirlocks == 0); 119 mutex_destroy(&zp->z_lock); 120 rw_destroy(&zp->z_map_lock); 121 rw_destroy(&zp->z_parent_lock); 122 rw_destroy(&zp->z_name_lock); 123 mutex_destroy(&zp->z_acl_lock); 124 avl_destroy(&zp->z_range_avl); 125 126 ASSERT(zp->z_dbuf_held == 0); 127 ASSERT(ZTOV(zp)->v_count == 0); 128 vn_free(ZTOV(zp)); 129 } 130 131 void 132 zfs_znode_init(void) 133 { 134 /* 135 * Initialize zcache 136 */ 137 ASSERT(znode_cache == NULL); 138 znode_cache = kmem_cache_create("zfs_znode_cache", 139 sizeof (znode_t), 0, zfs_znode_cache_constructor, 140 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 141 } 142 143 void 144 zfs_znode_fini(void) 145 { 146 /* 147 * Cleanup vfs & vnode ops 148 */ 149 zfs_remove_op_tables(); 150 151 /* 152 * Cleanup zcache 153 */ 154 if (znode_cache) 155 kmem_cache_destroy(znode_cache); 156 znode_cache = NULL; 157 } 158 159 struct vnodeops *zfs_dvnodeops; 160 struct vnodeops *zfs_fvnodeops; 161 struct vnodeops *zfs_symvnodeops; 162 struct vnodeops *zfs_xdvnodeops; 163 struct vnodeops *zfs_evnodeops; 164 165 void 166 zfs_remove_op_tables() 167 { 168 /* 169 * Remove vfs ops 170 */ 171 ASSERT(zfsfstype); 172 (void) vfs_freevfsops_by_type(zfsfstype); 173 zfsfstype = 0; 174 175 /* 176 * Remove vnode ops 177 */ 178 if (zfs_dvnodeops) 179 vn_freevnodeops(zfs_dvnodeops); 180 if (zfs_fvnodeops) 181 vn_freevnodeops(zfs_fvnodeops); 182 if (zfs_symvnodeops) 183 vn_freevnodeops(zfs_symvnodeops); 184 if (zfs_xdvnodeops) 185 vn_freevnodeops(zfs_xdvnodeops); 186 if (zfs_evnodeops) 187 vn_freevnodeops(zfs_evnodeops); 188 189 zfs_dvnodeops = NULL; 190 zfs_fvnodeops = NULL; 191 zfs_symvnodeops = NULL; 192 zfs_xdvnodeops = NULL; 193 zfs_evnodeops = NULL; 194 } 195 196 extern const fs_operation_def_t zfs_dvnodeops_template[]; 197 extern const fs_operation_def_t zfs_fvnodeops_template[]; 198 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 199 extern const fs_operation_def_t zfs_symvnodeops_template[]; 200 extern const fs_operation_def_t zfs_evnodeops_template[]; 201 202 int 203 zfs_create_op_tables() 204 { 205 int error; 206 207 /* 208 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 209 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 210 * In this case we just return as the ops vectors are already set up. 211 */ 212 if (zfs_dvnodeops) 213 return (0); 214 215 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 216 &zfs_dvnodeops); 217 if (error) 218 return (error); 219 220 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 221 &zfs_fvnodeops); 222 if (error) 223 return (error); 224 225 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 226 &zfs_symvnodeops); 227 if (error) 228 return (error); 229 230 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 231 &zfs_xdvnodeops); 232 if (error) 233 return (error); 234 235 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 236 &zfs_evnodeops); 237 238 return (error); 239 } 240 241 /* 242 * zfs_init_fs - Initialize the zfsvfs struct and the file system 243 * incore "master" object. Verify version compatibility. 244 */ 245 int 246 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 247 { 248 extern int zfsfstype; 249 250 objset_t *os = zfsvfs->z_os; 251 uint64_t version = ZPL_VERSION; 252 int i, error; 253 dmu_object_info_t doi; 254 uint64_t fsid_guid; 255 256 *zpp = NULL; 257 258 /* 259 * XXX - hack to auto-create the pool root filesystem at 260 * the first attempted mount. 261 */ 262 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 263 dmu_tx_t *tx = dmu_tx_create(os); 264 265 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 266 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 267 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 268 error = dmu_tx_assign(tx, TXG_WAIT); 269 ASSERT3U(error, ==, 0); 270 zfs_create_fs(os, cr, tx); 271 dmu_tx_commit(tx); 272 } 273 274 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1, 275 &version); 276 if (error) { 277 return (error); 278 } else if (version != ZPL_VERSION) { 279 (void) printf("Mismatched versions: File system " 280 "is version %lld on-disk format, which is " 281 "incompatible with this software version %lld!", 282 (u_longlong_t)version, ZPL_VERSION); 283 return (ENOTSUP); 284 } 285 286 /* 287 * The fsid is 64 bits, composed of an 8-bit fs type, which 288 * separates our fsid from any other filesystem types, and a 289 * 56-bit objset unique ID. The objset unique ID is unique to 290 * all objsets open on this system, provided by unique_create(). 291 * The 8-bit fs type must be put in the low bits of fsid[1] 292 * because that's where other Solaris filesystems put it. 293 */ 294 fsid_guid = dmu_objset_fsid_guid(os); 295 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 296 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 297 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 298 zfsfstype & 0xFF; 299 300 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 301 &zfsvfs->z_root); 302 if (error) 303 return (error); 304 ASSERT(zfsvfs->z_root != 0); 305 306 /* 307 * Create the per mount vop tables. 308 */ 309 310 /* 311 * Initialize zget mutex's 312 */ 313 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 314 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 315 316 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 317 if (error) 318 return (error); 319 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 320 321 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 322 &zfsvfs->z_unlinkedobj); 323 if (error) 324 return (error); 325 326 return (0); 327 } 328 329 /* 330 * define a couple of values we need available 331 * for both 64 and 32 bit environments. 332 */ 333 #ifndef NBITSMINOR64 334 #define NBITSMINOR64 32 335 #endif 336 #ifndef MAXMAJ64 337 #define MAXMAJ64 0xffffffffUL 338 #endif 339 #ifndef MAXMIN64 340 #define MAXMIN64 0xffffffffUL 341 #endif 342 343 /* 344 * Create special expldev for ZFS private use. 345 * Can't use standard expldev since it doesn't do 346 * what we want. The standard expldev() takes a 347 * dev32_t in LP64 and expands it to a long dev_t. 348 * We need an interface that takes a dev32_t in ILP32 349 * and expands it to a long dev_t. 350 */ 351 static uint64_t 352 zfs_expldev(dev_t dev) 353 { 354 #ifndef _LP64 355 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 356 return (((uint64_t)major << NBITSMINOR64) | 357 ((minor_t)dev & MAXMIN32)); 358 #else 359 return (dev); 360 #endif 361 } 362 363 /* 364 * Special cmpldev for ZFS private use. 365 * Can't use standard cmpldev since it takes 366 * a long dev_t and compresses it to dev32_t in 367 * LP64. We need to do a compaction of a long dev_t 368 * to a dev32_t in ILP32. 369 */ 370 dev_t 371 zfs_cmpldev(uint64_t dev) 372 { 373 #ifndef _LP64 374 minor_t minor = (minor_t)dev & MAXMIN64; 375 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 376 377 if (major > MAXMAJ32 || minor > MAXMIN32) 378 return (NODEV32); 379 380 return (((dev32_t)major << NBITSMINOR32) | minor); 381 #else 382 return (dev); 383 #endif 384 } 385 386 /* 387 * Construct a new znode/vnode and intialize. 388 * 389 * This does not do a call to dmu_set_user() that is 390 * up to the caller to do, in case you don't want to 391 * return the znode 392 */ 393 static znode_t * 394 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 395 { 396 znode_t *zp; 397 vnode_t *vp; 398 399 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 400 401 ASSERT(zp->z_dirlocks == NULL); 402 403 zp->z_phys = db->db_data; 404 zp->z_zfsvfs = zfsvfs; 405 zp->z_unlinked = 0; 406 zp->z_atime_dirty = 0; 407 zp->z_dbuf_held = 0; 408 zp->z_mapcnt = 0; 409 zp->z_last_itx = 0; 410 zp->z_dbuf = db; 411 zp->z_id = obj_num; 412 zp->z_blksz = blksz; 413 zp->z_seq = 0x7A4653; 414 zp->z_sync_cnt = 0; 415 416 mutex_enter(&zfsvfs->z_znodes_lock); 417 list_insert_tail(&zfsvfs->z_all_znodes, zp); 418 mutex_exit(&zfsvfs->z_znodes_lock); 419 420 vp = ZTOV(zp); 421 vn_reinit(vp); 422 423 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 424 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 425 426 switch (vp->v_type) { 427 case VDIR: 428 if (zp->z_phys->zp_flags & ZFS_XATTR) { 429 vn_setops(vp, zfs_xdvnodeops); 430 vp->v_flag |= V_XATTRDIR; 431 } else 432 vn_setops(vp, zfs_dvnodeops); 433 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 434 break; 435 case VBLK: 436 case VCHR: 437 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 438 /*FALLTHROUGH*/ 439 case VFIFO: 440 case VSOCK: 441 case VDOOR: 442 vn_setops(vp, zfs_fvnodeops); 443 break; 444 case VREG: 445 vp->v_flag |= VMODSORT; 446 vn_setops(vp, zfs_fvnodeops); 447 break; 448 case VLNK: 449 vn_setops(vp, zfs_symvnodeops); 450 break; 451 default: 452 vn_setops(vp, zfs_evnodeops); 453 break; 454 } 455 456 return (zp); 457 } 458 459 static void 460 zfs_znode_dmu_init(znode_t *zp) 461 { 462 znode_t *nzp; 463 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 464 dmu_buf_t *db = zp->z_dbuf; 465 466 mutex_enter(&zp->z_lock); 467 468 nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func); 469 470 /* 471 * there should be no 472 * concurrent zgets on this object. 473 */ 474 ASSERT3P(nzp, ==, NULL); 475 476 /* 477 * Slap on VROOT if we are the root znode 478 */ 479 if (zp->z_id == zfsvfs->z_root) { 480 ZTOV(zp)->v_flag |= VROOT; 481 } 482 483 ASSERT(zp->z_dbuf_held == 0); 484 zp->z_dbuf_held = 1; 485 VFS_HOLD(zfsvfs->z_vfs); 486 mutex_exit(&zp->z_lock); 487 vn_exists(ZTOV(zp)); 488 } 489 490 /* 491 * Create a new DMU object to hold a zfs znode. 492 * 493 * IN: dzp - parent directory for new znode 494 * vap - file attributes for new znode 495 * tx - dmu transaction id for zap operations 496 * cr - credentials of caller 497 * flag - flags: 498 * IS_ROOT_NODE - new object will be root 499 * IS_XATTR - new object is an attribute 500 * IS_REPLAY - intent log replay 501 * 502 * OUT: oid - ID of created object 503 * 504 */ 505 void 506 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 507 uint_t flag, znode_t **zpp, int bonuslen) 508 { 509 dmu_buf_t *dbp; 510 znode_phys_t *pzp; 511 znode_t *zp; 512 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 513 timestruc_t now; 514 uint64_t gen; 515 int err; 516 517 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 518 519 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 520 *oid = vap->va_nodeid; 521 flag |= IS_REPLAY; 522 now = vap->va_ctime; /* see zfs_replay_create() */ 523 gen = vap->va_nblocks; /* ditto */ 524 } else { 525 *oid = 0; 526 gethrestime(&now); 527 gen = dmu_tx_get_txg(tx); 528 } 529 530 /* 531 * Create a new DMU object. 532 */ 533 /* 534 * There's currently no mechanism for pre-reading the blocks that will 535 * be to needed allocate a new object, so we accept the small chance 536 * that there will be an i/o error and we will fail one of the 537 * assertions below. 538 */ 539 if (vap->va_type == VDIR) { 540 if (flag & IS_REPLAY) { 541 err = zap_create_claim(zfsvfs->z_os, *oid, 542 DMU_OT_DIRECTORY_CONTENTS, 543 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 544 ASSERT3U(err, ==, 0); 545 } else { 546 *oid = zap_create(zfsvfs->z_os, 547 DMU_OT_DIRECTORY_CONTENTS, 548 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 549 } 550 } else { 551 if (flag & IS_REPLAY) { 552 err = dmu_object_claim(zfsvfs->z_os, *oid, 553 DMU_OT_PLAIN_FILE_CONTENTS, 0, 554 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 555 ASSERT3U(err, ==, 0); 556 } else { 557 *oid = dmu_object_alloc(zfsvfs->z_os, 558 DMU_OT_PLAIN_FILE_CONTENTS, 0, 559 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 560 } 561 } 562 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 563 dmu_buf_will_dirty(dbp, tx); 564 565 /* 566 * Initialize the znode physical data to zero. 567 */ 568 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 569 bzero(dbp->db_data, dbp->db_size); 570 pzp = dbp->db_data; 571 572 /* 573 * If this is the root, fix up the half-initialized parent pointer 574 * to reference the just-allocated physical data area. 575 */ 576 if (flag & IS_ROOT_NODE) { 577 dzp->z_phys = pzp; 578 dzp->z_id = *oid; 579 } 580 581 /* 582 * If parent is an xattr, so am I. 583 */ 584 if (dzp->z_phys->zp_flags & ZFS_XATTR) 585 flag |= IS_XATTR; 586 587 if (vap->va_type == VBLK || vap->va_type == VCHR) { 588 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 589 } 590 591 if (vap->va_type == VDIR) { 592 pzp->zp_size = 2; /* contents ("." and "..") */ 593 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 594 } 595 596 pzp->zp_parent = dzp->z_id; 597 if (flag & IS_XATTR) 598 pzp->zp_flags |= ZFS_XATTR; 599 600 pzp->zp_gen = gen; 601 602 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 603 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 604 605 if (vap->va_mask & AT_ATIME) { 606 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 607 } else { 608 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 609 } 610 611 if (vap->va_mask & AT_MTIME) { 612 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 613 } else { 614 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 615 } 616 617 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 618 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 619 620 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 621 622 if (zpp) { 623 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 624 625 mutex_enter(hash_mtx); 626 zfs_znode_dmu_init(zp); 627 mutex_exit(hash_mtx); 628 629 *zpp = zp; 630 } else { 631 ZTOV(zp)->v_count = 0; 632 dmu_buf_rele(dbp, NULL); 633 zfs_znode_free(zp); 634 } 635 } 636 637 int 638 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 639 { 640 dmu_object_info_t doi; 641 dmu_buf_t *db; 642 znode_t *zp; 643 int err; 644 645 *zpp = NULL; 646 647 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 648 649 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 650 if (err) { 651 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 652 return (err); 653 } 654 655 dmu_object_info_from_db(db, &doi); 656 if (doi.doi_bonus_type != DMU_OT_ZNODE || 657 doi.doi_bonus_size < sizeof (znode_phys_t)) { 658 dmu_buf_rele(db, NULL); 659 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 660 return (EINVAL); 661 } 662 663 ASSERT(db->db_object == obj_num); 664 ASSERT(db->db_offset == -1); 665 ASSERT(db->db_data != NULL); 666 667 zp = dmu_buf_get_user(db); 668 669 if (zp != NULL) { 670 mutex_enter(&zp->z_lock); 671 672 ASSERT3U(zp->z_id, ==, obj_num); 673 if (zp->z_unlinked) { 674 dmu_buf_rele(db, NULL); 675 mutex_exit(&zp->z_lock); 676 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 677 return (ENOENT); 678 } else if (zp->z_dbuf_held) { 679 dmu_buf_rele(db, NULL); 680 } else { 681 zp->z_dbuf_held = 1; 682 VFS_HOLD(zfsvfs->z_vfs); 683 } 684 685 686 VN_HOLD(ZTOV(zp)); 687 mutex_exit(&zp->z_lock); 688 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 689 *zpp = zp; 690 return (0); 691 } 692 693 /* 694 * Not found create new znode/vnode 695 */ 696 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 697 ASSERT3U(zp->z_id, ==, obj_num); 698 zfs_znode_dmu_init(zp); 699 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 700 *zpp = zp; 701 return (0); 702 } 703 704 void 705 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 706 { 707 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 708 int error; 709 710 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 711 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 712 error = dmu_object_free(zfsvfs->z_os, 713 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 714 ASSERT3U(error, ==, 0); 715 } 716 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 717 ASSERT3U(error, ==, 0); 718 zp->z_dbuf_held = 0; 719 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 720 dmu_buf_rele(zp->z_dbuf, NULL); 721 } 722 723 void 724 zfs_zinactive(znode_t *zp) 725 { 726 vnode_t *vp = ZTOV(zp); 727 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 728 uint64_t z_id = zp->z_id; 729 730 ASSERT(zp->z_dbuf_held && zp->z_phys); 731 732 /* 733 * Don't allow a zfs_zget() while were trying to release this znode 734 */ 735 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 736 737 mutex_enter(&zp->z_lock); 738 mutex_enter(&vp->v_lock); 739 vp->v_count--; 740 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 741 /* 742 * If the hold count is greater than zero, somebody has 743 * obtained a new reference on this znode while we were 744 * processing it here, so we are done. If we still have 745 * mapped pages then we are also done, since we don't 746 * want to inactivate the znode until the pages get pushed. 747 * 748 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 749 * this seems like it would leave the znode hanging with 750 * no chance to go inactive... 751 */ 752 mutex_exit(&vp->v_lock); 753 mutex_exit(&zp->z_lock); 754 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 755 return; 756 } 757 mutex_exit(&vp->v_lock); 758 759 /* 760 * If this was the last reference to a file with no links, 761 * remove the file from the file system. 762 */ 763 if (zp->z_unlinked) { 764 mutex_exit(&zp->z_lock); 765 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 766 zfs_rmnode(zp); 767 VFS_RELE(zfsvfs->z_vfs); 768 return; 769 } 770 ASSERT(zp->z_phys); 771 ASSERT(zp->z_dbuf_held); 772 773 zp->z_dbuf_held = 0; 774 mutex_exit(&zp->z_lock); 775 dmu_buf_rele(zp->z_dbuf, NULL); 776 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 777 VFS_RELE(zfsvfs->z_vfs); 778 } 779 780 void 781 zfs_znode_free(znode_t *zp) 782 { 783 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 784 785 mutex_enter(&zfsvfs->z_znodes_lock); 786 list_remove(&zfsvfs->z_all_znodes, zp); 787 mutex_exit(&zfsvfs->z_znodes_lock); 788 789 kmem_cache_free(znode_cache, zp); 790 } 791 792 void 793 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 794 { 795 timestruc_t now; 796 797 ASSERT(MUTEX_HELD(&zp->z_lock)); 798 799 gethrestime(&now); 800 801 if (tx) { 802 dmu_buf_will_dirty(zp->z_dbuf, tx); 803 zp->z_atime_dirty = 0; 804 zp->z_seq++; 805 } else { 806 zp->z_atime_dirty = 1; 807 } 808 809 if (flag & AT_ATIME) 810 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 811 812 if (flag & AT_MTIME) 813 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 814 815 if (flag & AT_CTIME) 816 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 817 } 818 819 /* 820 * Update the requested znode timestamps with the current time. 821 * If we are in a transaction, then go ahead and mark the znode 822 * dirty in the transaction so the timestamps will go to disk. 823 * Otherwise, we will get pushed next time the znode is updated 824 * in a transaction, or when this znode eventually goes inactive. 825 * 826 * Why is this OK? 827 * 1 - Only the ACCESS time is ever updated outside of a transaction. 828 * 2 - Multiple consecutive updates will be collapsed into a single 829 * znode update by the transaction grouping semantics of the DMU. 830 */ 831 void 832 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 833 { 834 mutex_enter(&zp->z_lock); 835 zfs_time_stamper_locked(zp, flag, tx); 836 mutex_exit(&zp->z_lock); 837 } 838 839 /* 840 * Grow the block size for a file. 841 * 842 * IN: zp - znode of file to free data in. 843 * size - requested block size 844 * tx - open transaction. 845 * 846 * NOTE: this function assumes that the znode is write locked. 847 */ 848 void 849 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 850 { 851 int error; 852 u_longlong_t dummy; 853 854 if (size <= zp->z_blksz) 855 return; 856 /* 857 * If the file size is already greater than the current blocksize, 858 * we will not grow. If there is more than one block in a file, 859 * the blocksize cannot change. 860 */ 861 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 862 return; 863 864 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 865 size, 0, tx); 866 if (error == ENOTSUP) 867 return; 868 ASSERT3U(error, ==, 0); 869 870 /* What blocksize did we actually get? */ 871 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 872 } 873 874 /* 875 * This is a dummy interface used when pvn_vplist_dirty() should *not* 876 * be calling back into the fs for a putpage(). E.g.: when truncating 877 * a file, the pages being "thrown away* don't need to be written out. 878 */ 879 /* ARGSUSED */ 880 static int 881 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 882 int flags, cred_t *cr) 883 { 884 ASSERT(0); 885 return (0); 886 } 887 888 /* 889 * Free space in a file. 890 * 891 * IN: zp - znode of file to free data in. 892 * off - start of section to free. 893 * len - length of section to free (0 => to EOF). 894 * flag - current file open mode flags. 895 * 896 * RETURN: 0 if success 897 * error code if failure 898 */ 899 int 900 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 901 { 902 vnode_t *vp = ZTOV(zp); 903 dmu_tx_t *tx; 904 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 905 zilog_t *zilog = zfsvfs->z_log; 906 rl_t *rl; 907 uint64_t end = off + len; 908 uint64_t size, new_blksz; 909 int error; 910 911 if (ZTOV(zp)->v_type == VFIFO) 912 return (0); 913 914 /* 915 * If we will change zp_size then lock the whole file, 916 * otherwise just lock the range being freed. 917 */ 918 if (len == 0 || off + len > zp->z_phys->zp_size) { 919 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 920 } else { 921 rl = zfs_range_lock(zp, off, len, RL_WRITER); 922 /* recheck, in case zp_size changed */ 923 if (off + len > zp->z_phys->zp_size) { 924 /* lost race: file size changed, lock whole file */ 925 zfs_range_unlock(rl); 926 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 927 } 928 } 929 930 /* 931 * Nothing to do if file already at desired length. 932 */ 933 size = zp->z_phys->zp_size; 934 if (len == 0 && size == off) { 935 zfs_range_unlock(rl); 936 return (0); 937 } 938 939 /* 940 * Check for any locks in the region to be freed. 941 */ 942 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 943 uint64_t start = off; 944 uint64_t extent = len; 945 946 if (off > size) { 947 start = size; 948 extent += off - size; 949 } else if (len == 0) { 950 extent = size - off; 951 } 952 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 953 zfs_range_unlock(rl); 954 return (error); 955 } 956 } 957 958 tx = dmu_tx_create(zfsvfs->z_os); 959 dmu_tx_hold_bonus(tx, zp->z_id); 960 new_blksz = 0; 961 if (end > size && 962 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 963 /* 964 * We are growing the file past the current block size. 965 */ 966 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 967 ASSERT(!ISP2(zp->z_blksz)); 968 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 969 } else { 970 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 971 } 972 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 973 } else if (off < size) { 974 /* 975 * If len == 0, we are truncating the file. 976 */ 977 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 978 } 979 980 error = dmu_tx_assign(tx, zfsvfs->z_assign); 981 if (error) { 982 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 983 dmu_tx_wait(tx); 984 dmu_tx_abort(tx); 985 zfs_range_unlock(rl); 986 return (error); 987 } 988 989 if (new_blksz) 990 zfs_grow_blocksize(zp, new_blksz, tx); 991 992 if (end > size || len == 0) 993 zp->z_phys->zp_size = end; 994 995 if (off < size) { 996 objset_t *os = zfsvfs->z_os; 997 uint64_t rlen = len; 998 999 if (len == 0) 1000 rlen = -1; 1001 else if (end > size) 1002 rlen = size - off; 1003 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1004 } 1005 1006 if (log) { 1007 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1008 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1009 } 1010 1011 zfs_range_unlock(rl); 1012 1013 dmu_tx_commit(tx); 1014 1015 /* 1016 * Clear any mapped pages in the truncated region. This has to 1017 * happen outside of the transaction to avoid the possibility of 1018 * a deadlock with someone trying to push a page that we are 1019 * about to invalidate. 1020 */ 1021 rw_enter(&zp->z_map_lock, RW_WRITER); 1022 if (off < size && vn_has_cached_data(vp)) { 1023 page_t *pp; 1024 uint64_t start = off & PAGEMASK; 1025 int poff = off & PAGEOFFSET; 1026 1027 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1028 /* 1029 * We need to zero a partial page. 1030 */ 1031 pagezero(pp, poff, PAGESIZE - poff); 1032 start += PAGESIZE; 1033 page_unlock(pp); 1034 } 1035 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1036 B_INVAL | B_TRUNC, NULL); 1037 ASSERT(error == 0); 1038 } 1039 rw_exit(&zp->z_map_lock); 1040 1041 return (0); 1042 } 1043 1044 void 1045 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx) 1046 { 1047 zfsvfs_t zfsvfs; 1048 uint64_t moid, doid, roid = 0; 1049 uint64_t version = ZPL_VERSION; 1050 int error; 1051 znode_t *rootzp = NULL; 1052 vnode_t *vp; 1053 vattr_t vattr; 1054 1055 /* 1056 * First attempt to create master node. 1057 */ 1058 /* 1059 * In an empty objset, there are no blocks to read and thus 1060 * there can be no i/o errors (which we assert below). 1061 */ 1062 moid = MASTER_NODE_OBJ; 1063 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1064 DMU_OT_NONE, 0, tx); 1065 ASSERT(error == 0); 1066 1067 /* 1068 * Set starting attributes. 1069 */ 1070 1071 error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx); 1072 ASSERT(error == 0); 1073 1074 /* 1075 * Create a delete queue. 1076 */ 1077 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1078 1079 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1080 ASSERT(error == 0); 1081 1082 /* 1083 * Create root znode. Create minimal znode/vnode/zfsvfs 1084 * to allow zfs_mknode to work. 1085 */ 1086 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1087 vattr.va_type = VDIR; 1088 vattr.va_mode = S_IFDIR|0755; 1089 vattr.va_uid = 0; 1090 vattr.va_gid = 3; 1091 1092 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1093 rootzp->z_zfsvfs = &zfsvfs; 1094 rootzp->z_unlinked = 0; 1095 rootzp->z_atime_dirty = 0; 1096 rootzp->z_dbuf_held = 0; 1097 1098 vp = ZTOV(rootzp); 1099 vn_reinit(vp); 1100 vp->v_type = VDIR; 1101 1102 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1103 1104 zfsvfs.z_os = os; 1105 zfsvfs.z_assign = TXG_NOWAIT; 1106 zfsvfs.z_parent = &zfsvfs; 1107 1108 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1109 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1110 offsetof(znode_t, z_link_node)); 1111 1112 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1113 ASSERT3U(rootzp->z_id, ==, roid); 1114 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1115 ASSERT(error == 0); 1116 1117 ZTOV(rootzp)->v_count = 0; 1118 kmem_cache_free(znode_cache, rootzp); 1119 } 1120 #endif /* _KERNEL */ 1121 1122 /* 1123 * Given an object number, return its parent object number and whether 1124 * or not the object is an extended attribute directory. 1125 */ 1126 static int 1127 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1128 { 1129 dmu_buf_t *db; 1130 dmu_object_info_t doi; 1131 znode_phys_t *zp; 1132 int error; 1133 1134 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1135 return (error); 1136 1137 dmu_object_info_from_db(db, &doi); 1138 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1139 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1140 dmu_buf_rele(db, FTAG); 1141 return (EINVAL); 1142 } 1143 1144 zp = db->db_data; 1145 *pobjp = zp->zp_parent; 1146 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1147 S_ISDIR(zp->zp_mode); 1148 dmu_buf_rele(db, FTAG); 1149 1150 return (0); 1151 } 1152 1153 int 1154 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1155 { 1156 char *path = buf + len - 1; 1157 int error; 1158 1159 *path = '\0'; 1160 1161 for (;;) { 1162 uint64_t pobj; 1163 char component[MAXNAMELEN + 2]; 1164 size_t complen; 1165 int is_xattrdir; 1166 1167 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1168 &is_xattrdir)) != 0) 1169 break; 1170 1171 if (pobj == obj) { 1172 if (path[0] != '/') 1173 *--path = '/'; 1174 break; 1175 } 1176 1177 component[0] = '/'; 1178 if (is_xattrdir) { 1179 (void) sprintf(component + 1, "<xattrdir>"); 1180 } else { 1181 error = zap_value_search(osp, pobj, obj, component + 1); 1182 if (error != 0) 1183 break; 1184 } 1185 1186 complen = strlen(component); 1187 path -= complen; 1188 ASSERT(path >= buf); 1189 bcopy(component, path, complen); 1190 obj = pobj; 1191 } 1192 1193 if (error == 0) 1194 (void) memmove(buf, path, buf + len - path); 1195 return (error); 1196 } 1197