1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/space_reftree.h> 41 #include <sys/zio.h> 42 #include <sys/zap.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/arc.h> 45 #include <sys/zil.h> 46 #include <sys/dsl_scan.h> 47 48 /* 49 * Virtual device management. 50 */ 51 52 static vdev_ops_t *vdev_ops_table[] = { 53 &vdev_root_ops, 54 &vdev_raidz_ops, 55 &vdev_mirror_ops, 56 &vdev_replacing_ops, 57 &vdev_spare_ops, 58 &vdev_disk_ops, 59 &vdev_file_ops, 60 &vdev_missing_ops, 61 &vdev_hole_ops, 62 NULL 63 }; 64 65 /* maximum scrub/resilver I/O queue per leaf vdev */ 66 int zfs_scrub_limit = 10; 67 68 /* 69 * When a vdev is added, it will be divided into approximately (but no 70 * more than) this number of metaslabs. 71 */ 72 int metaslabs_per_vdev = 200; 73 74 /* 75 * Given a vdev type, return the appropriate ops vector. 76 */ 77 static vdev_ops_t * 78 vdev_getops(const char *type) 79 { 80 vdev_ops_t *ops, **opspp; 81 82 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 83 if (strcmp(ops->vdev_op_type, type) == 0) 84 break; 85 86 return (ops); 87 } 88 89 /* 90 * Default asize function: return the MAX of psize with the asize of 91 * all children. This is what's used by anything other than RAID-Z. 92 */ 93 uint64_t 94 vdev_default_asize(vdev_t *vd, uint64_t psize) 95 { 96 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 97 uint64_t csize; 98 99 for (int c = 0; c < vd->vdev_children; c++) { 100 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 101 asize = MAX(asize, csize); 102 } 103 104 return (asize); 105 } 106 107 /* 108 * Get the minimum allocatable size. We define the allocatable size as 109 * the vdev's asize rounded to the nearest metaslab. This allows us to 110 * replace or attach devices which don't have the same physical size but 111 * can still satisfy the same number of allocations. 112 */ 113 uint64_t 114 vdev_get_min_asize(vdev_t *vd) 115 { 116 vdev_t *pvd = vd->vdev_parent; 117 118 /* 119 * If our parent is NULL (inactive spare or cache) or is the root, 120 * just return our own asize. 121 */ 122 if (pvd == NULL) 123 return (vd->vdev_asize); 124 125 /* 126 * The top-level vdev just returns the allocatable size rounded 127 * to the nearest metaslab. 128 */ 129 if (vd == vd->vdev_top) 130 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 131 132 /* 133 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 134 * so each child must provide at least 1/Nth of its asize. 135 */ 136 if (pvd->vdev_ops == &vdev_raidz_ops) 137 return (pvd->vdev_min_asize / pvd->vdev_children); 138 139 return (pvd->vdev_min_asize); 140 } 141 142 void 143 vdev_set_min_asize(vdev_t *vd) 144 { 145 vd->vdev_min_asize = vdev_get_min_asize(vd); 146 147 for (int c = 0; c < vd->vdev_children; c++) 148 vdev_set_min_asize(vd->vdev_child[c]); 149 } 150 151 vdev_t * 152 vdev_lookup_top(spa_t *spa, uint64_t vdev) 153 { 154 vdev_t *rvd = spa->spa_root_vdev; 155 156 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 157 158 if (vdev < rvd->vdev_children) { 159 ASSERT(rvd->vdev_child[vdev] != NULL); 160 return (rvd->vdev_child[vdev]); 161 } 162 163 return (NULL); 164 } 165 166 vdev_t * 167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 168 { 169 vdev_t *mvd; 170 171 if (vd->vdev_guid == guid) 172 return (vd); 173 174 for (int c = 0; c < vd->vdev_children; c++) 175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 176 NULL) 177 return (mvd); 178 179 return (NULL); 180 } 181 182 static int 183 vdev_count_leaves_impl(vdev_t *vd) 184 { 185 int n = 0; 186 187 if (vd->vdev_ops->vdev_op_leaf) 188 return (1); 189 190 for (int c = 0; c < vd->vdev_children; c++) 191 n += vdev_count_leaves_impl(vd->vdev_child[c]); 192 193 return (n); 194 } 195 196 int 197 vdev_count_leaves(spa_t *spa) 198 { 199 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 200 } 201 202 void 203 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 204 { 205 size_t oldsize, newsize; 206 uint64_t id = cvd->vdev_id; 207 vdev_t **newchild; 208 spa_t *spa = cvd->vdev_spa; 209 210 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 211 ASSERT(cvd->vdev_parent == NULL); 212 213 cvd->vdev_parent = pvd; 214 215 if (pvd == NULL) 216 return; 217 218 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 219 220 oldsize = pvd->vdev_children * sizeof (vdev_t *); 221 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 222 newsize = pvd->vdev_children * sizeof (vdev_t *); 223 224 newchild = kmem_zalloc(newsize, KM_SLEEP); 225 if (pvd->vdev_child != NULL) { 226 bcopy(pvd->vdev_child, newchild, oldsize); 227 kmem_free(pvd->vdev_child, oldsize); 228 } 229 230 pvd->vdev_child = newchild; 231 pvd->vdev_child[id] = cvd; 232 233 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 234 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 235 236 /* 237 * Walk up all ancestors to update guid sum. 238 */ 239 for (; pvd != NULL; pvd = pvd->vdev_parent) 240 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 241 } 242 243 void 244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 245 { 246 int c; 247 uint_t id = cvd->vdev_id; 248 249 ASSERT(cvd->vdev_parent == pvd); 250 251 if (pvd == NULL) 252 return; 253 254 ASSERT(id < pvd->vdev_children); 255 ASSERT(pvd->vdev_child[id] == cvd); 256 257 pvd->vdev_child[id] = NULL; 258 cvd->vdev_parent = NULL; 259 260 for (c = 0; c < pvd->vdev_children; c++) 261 if (pvd->vdev_child[c]) 262 break; 263 264 if (c == pvd->vdev_children) { 265 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 266 pvd->vdev_child = NULL; 267 pvd->vdev_children = 0; 268 } 269 270 /* 271 * Walk up all ancestors to update guid sum. 272 */ 273 for (; pvd != NULL; pvd = pvd->vdev_parent) 274 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 275 } 276 277 /* 278 * Remove any holes in the child array. 279 */ 280 void 281 vdev_compact_children(vdev_t *pvd) 282 { 283 vdev_t **newchild, *cvd; 284 int oldc = pvd->vdev_children; 285 int newc; 286 287 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 288 289 for (int c = newc = 0; c < oldc; c++) 290 if (pvd->vdev_child[c]) 291 newc++; 292 293 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 294 295 for (int c = newc = 0; c < oldc; c++) { 296 if ((cvd = pvd->vdev_child[c]) != NULL) { 297 newchild[newc] = cvd; 298 cvd->vdev_id = newc++; 299 } 300 } 301 302 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 303 pvd->vdev_child = newchild; 304 pvd->vdev_children = newc; 305 } 306 307 /* 308 * Allocate and minimally initialize a vdev_t. 309 */ 310 vdev_t * 311 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 312 { 313 vdev_t *vd; 314 315 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 316 317 if (spa->spa_root_vdev == NULL) { 318 ASSERT(ops == &vdev_root_ops); 319 spa->spa_root_vdev = vd; 320 spa->spa_load_guid = spa_generate_guid(NULL); 321 } 322 323 if (guid == 0 && ops != &vdev_hole_ops) { 324 if (spa->spa_root_vdev == vd) { 325 /* 326 * The root vdev's guid will also be the pool guid, 327 * which must be unique among all pools. 328 */ 329 guid = spa_generate_guid(NULL); 330 } else { 331 /* 332 * Any other vdev's guid must be unique within the pool. 333 */ 334 guid = spa_generate_guid(spa); 335 } 336 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 337 } 338 339 vd->vdev_spa = spa; 340 vd->vdev_id = id; 341 vd->vdev_guid = guid; 342 vd->vdev_guid_sum = guid; 343 vd->vdev_ops = ops; 344 vd->vdev_state = VDEV_STATE_CLOSED; 345 vd->vdev_ishole = (ops == &vdev_hole_ops); 346 347 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 348 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 349 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 350 for (int t = 0; t < DTL_TYPES; t++) { 351 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 352 &vd->vdev_dtl_lock); 353 } 354 txg_list_create(&vd->vdev_ms_list, 355 offsetof(struct metaslab, ms_txg_node)); 356 txg_list_create(&vd->vdev_dtl_list, 357 offsetof(struct vdev, vdev_dtl_node)); 358 vd->vdev_stat.vs_timestamp = gethrtime(); 359 vdev_queue_init(vd); 360 vdev_cache_init(vd); 361 362 return (vd); 363 } 364 365 /* 366 * Allocate a new vdev. The 'alloctype' is used to control whether we are 367 * creating a new vdev or loading an existing one - the behavior is slightly 368 * different for each case. 369 */ 370 int 371 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 372 int alloctype) 373 { 374 vdev_ops_t *ops; 375 char *type; 376 uint64_t guid = 0, islog, nparity; 377 vdev_t *vd; 378 379 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 380 381 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 382 return (SET_ERROR(EINVAL)); 383 384 if ((ops = vdev_getops(type)) == NULL) 385 return (SET_ERROR(EINVAL)); 386 387 /* 388 * If this is a load, get the vdev guid from the nvlist. 389 * Otherwise, vdev_alloc_common() will generate one for us. 390 */ 391 if (alloctype == VDEV_ALLOC_LOAD) { 392 uint64_t label_id; 393 394 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 395 label_id != id) 396 return (SET_ERROR(EINVAL)); 397 398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 399 return (SET_ERROR(EINVAL)); 400 } else if (alloctype == VDEV_ALLOC_SPARE) { 401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 402 return (SET_ERROR(EINVAL)); 403 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 405 return (SET_ERROR(EINVAL)); 406 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 407 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 408 return (SET_ERROR(EINVAL)); 409 } 410 411 /* 412 * The first allocated vdev must be of type 'root'. 413 */ 414 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 415 return (SET_ERROR(EINVAL)); 416 417 /* 418 * Determine whether we're a log vdev. 419 */ 420 islog = 0; 421 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 422 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 423 return (SET_ERROR(ENOTSUP)); 424 425 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 426 return (SET_ERROR(ENOTSUP)); 427 428 /* 429 * Set the nparity property for RAID-Z vdevs. 430 */ 431 nparity = -1ULL; 432 if (ops == &vdev_raidz_ops) { 433 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 434 &nparity) == 0) { 435 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 436 return (SET_ERROR(EINVAL)); 437 /* 438 * Previous versions could only support 1 or 2 parity 439 * device. 440 */ 441 if (nparity > 1 && 442 spa_version(spa) < SPA_VERSION_RAIDZ2) 443 return (SET_ERROR(ENOTSUP)); 444 if (nparity > 2 && 445 spa_version(spa) < SPA_VERSION_RAIDZ3) 446 return (SET_ERROR(ENOTSUP)); 447 } else { 448 /* 449 * We require the parity to be specified for SPAs that 450 * support multiple parity levels. 451 */ 452 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 453 return (SET_ERROR(EINVAL)); 454 /* 455 * Otherwise, we default to 1 parity device for RAID-Z. 456 */ 457 nparity = 1; 458 } 459 } else { 460 nparity = 0; 461 } 462 ASSERT(nparity != -1ULL); 463 464 vd = vdev_alloc_common(spa, id, guid, ops); 465 466 vd->vdev_islog = islog; 467 vd->vdev_nparity = nparity; 468 469 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 470 vd->vdev_path = spa_strdup(vd->vdev_path); 471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 472 vd->vdev_devid = spa_strdup(vd->vdev_devid); 473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 474 &vd->vdev_physpath) == 0) 475 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 477 vd->vdev_fru = spa_strdup(vd->vdev_fru); 478 479 /* 480 * Set the whole_disk property. If it's not specified, leave the value 481 * as -1. 482 */ 483 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 484 &vd->vdev_wholedisk) != 0) 485 vd->vdev_wholedisk = -1ULL; 486 487 /* 488 * Look for the 'not present' flag. This will only be set if the device 489 * was not present at the time of import. 490 */ 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 492 &vd->vdev_not_present); 493 494 /* 495 * Get the alignment requirement. 496 */ 497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 498 499 /* 500 * Retrieve the vdev creation time. 501 */ 502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 503 &vd->vdev_crtxg); 504 505 /* 506 * If we're a top-level vdev, try to load the allocation parameters. 507 */ 508 if (parent && !parent->vdev_parent && 509 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 511 &vd->vdev_ms_array); 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 513 &vd->vdev_ms_shift); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 515 &vd->vdev_asize); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 517 &vd->vdev_removing); 518 } 519 520 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 521 ASSERT(alloctype == VDEV_ALLOC_LOAD || 522 alloctype == VDEV_ALLOC_ADD || 523 alloctype == VDEV_ALLOC_SPLIT || 524 alloctype == VDEV_ALLOC_ROOTPOOL); 525 vd->vdev_mg = metaslab_group_create(islog ? 526 spa_log_class(spa) : spa_normal_class(spa), vd); 527 } 528 529 /* 530 * If we're a leaf vdev, try to load the DTL object and other state. 531 */ 532 if (vd->vdev_ops->vdev_op_leaf && 533 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 534 alloctype == VDEV_ALLOC_ROOTPOOL)) { 535 if (alloctype == VDEV_ALLOC_LOAD) { 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 537 &vd->vdev_dtl_object); 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 539 &vd->vdev_unspare); 540 } 541 542 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 543 uint64_t spare = 0; 544 545 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 546 &spare) == 0 && spare) 547 spa_spare_add(vd); 548 } 549 550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 551 &vd->vdev_offline); 552 553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 554 &vd->vdev_resilver_txg); 555 556 /* 557 * When importing a pool, we want to ignore the persistent fault 558 * state, as the diagnosis made on another system may not be 559 * valid in the current context. Local vdevs will 560 * remain in the faulted state. 561 */ 562 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 563 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 564 &vd->vdev_faulted); 565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 566 &vd->vdev_degraded); 567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 568 &vd->vdev_removed); 569 570 if (vd->vdev_faulted || vd->vdev_degraded) { 571 char *aux; 572 573 vd->vdev_label_aux = 574 VDEV_AUX_ERR_EXCEEDED; 575 if (nvlist_lookup_string(nv, 576 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 577 strcmp(aux, "external") == 0) 578 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 579 } 580 } 581 } 582 583 /* 584 * Add ourselves to the parent's list of children. 585 */ 586 vdev_add_child(parent, vd); 587 588 *vdp = vd; 589 590 return (0); 591 } 592 593 void 594 vdev_free(vdev_t *vd) 595 { 596 spa_t *spa = vd->vdev_spa; 597 598 /* 599 * vdev_free() implies closing the vdev first. This is simpler than 600 * trying to ensure complicated semantics for all callers. 601 */ 602 vdev_close(vd); 603 604 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 605 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 606 607 /* 608 * Free all children. 609 */ 610 for (int c = 0; c < vd->vdev_children; c++) 611 vdev_free(vd->vdev_child[c]); 612 613 ASSERT(vd->vdev_child == NULL); 614 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 615 616 /* 617 * Discard allocation state. 618 */ 619 if (vd->vdev_mg != NULL) { 620 vdev_metaslab_fini(vd); 621 metaslab_group_destroy(vd->vdev_mg); 622 } 623 624 ASSERT0(vd->vdev_stat.vs_space); 625 ASSERT0(vd->vdev_stat.vs_dspace); 626 ASSERT0(vd->vdev_stat.vs_alloc); 627 628 /* 629 * Remove this vdev from its parent's child list. 630 */ 631 vdev_remove_child(vd->vdev_parent, vd); 632 633 ASSERT(vd->vdev_parent == NULL); 634 635 /* 636 * Clean up vdev structure. 637 */ 638 vdev_queue_fini(vd); 639 vdev_cache_fini(vd); 640 641 if (vd->vdev_path) 642 spa_strfree(vd->vdev_path); 643 if (vd->vdev_devid) 644 spa_strfree(vd->vdev_devid); 645 if (vd->vdev_physpath) 646 spa_strfree(vd->vdev_physpath); 647 if (vd->vdev_fru) 648 spa_strfree(vd->vdev_fru); 649 650 if (vd->vdev_isspare) 651 spa_spare_remove(vd); 652 if (vd->vdev_isl2cache) 653 spa_l2cache_remove(vd); 654 655 txg_list_destroy(&vd->vdev_ms_list); 656 txg_list_destroy(&vd->vdev_dtl_list); 657 658 mutex_enter(&vd->vdev_dtl_lock); 659 space_map_close(vd->vdev_dtl_sm); 660 for (int t = 0; t < DTL_TYPES; t++) { 661 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 662 range_tree_destroy(vd->vdev_dtl[t]); 663 } 664 mutex_exit(&vd->vdev_dtl_lock); 665 666 mutex_destroy(&vd->vdev_dtl_lock); 667 mutex_destroy(&vd->vdev_stat_lock); 668 mutex_destroy(&vd->vdev_probe_lock); 669 670 if (vd == spa->spa_root_vdev) 671 spa->spa_root_vdev = NULL; 672 673 kmem_free(vd, sizeof (vdev_t)); 674 } 675 676 /* 677 * Transfer top-level vdev state from svd to tvd. 678 */ 679 static void 680 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 681 { 682 spa_t *spa = svd->vdev_spa; 683 metaslab_t *msp; 684 vdev_t *vd; 685 int t; 686 687 ASSERT(tvd == tvd->vdev_top); 688 689 tvd->vdev_ms_array = svd->vdev_ms_array; 690 tvd->vdev_ms_shift = svd->vdev_ms_shift; 691 tvd->vdev_ms_count = svd->vdev_ms_count; 692 693 svd->vdev_ms_array = 0; 694 svd->vdev_ms_shift = 0; 695 svd->vdev_ms_count = 0; 696 697 if (tvd->vdev_mg) 698 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 699 tvd->vdev_mg = svd->vdev_mg; 700 tvd->vdev_ms = svd->vdev_ms; 701 702 svd->vdev_mg = NULL; 703 svd->vdev_ms = NULL; 704 705 if (tvd->vdev_mg != NULL) 706 tvd->vdev_mg->mg_vd = tvd; 707 708 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 709 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 710 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 711 712 svd->vdev_stat.vs_alloc = 0; 713 svd->vdev_stat.vs_space = 0; 714 svd->vdev_stat.vs_dspace = 0; 715 716 for (t = 0; t < TXG_SIZE; t++) { 717 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 718 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 719 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 720 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 721 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 722 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 723 } 724 725 if (list_link_active(&svd->vdev_config_dirty_node)) { 726 vdev_config_clean(svd); 727 vdev_config_dirty(tvd); 728 } 729 730 if (list_link_active(&svd->vdev_state_dirty_node)) { 731 vdev_state_clean(svd); 732 vdev_state_dirty(tvd); 733 } 734 735 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 736 svd->vdev_deflate_ratio = 0; 737 738 tvd->vdev_islog = svd->vdev_islog; 739 svd->vdev_islog = 0; 740 } 741 742 static void 743 vdev_top_update(vdev_t *tvd, vdev_t *vd) 744 { 745 if (vd == NULL) 746 return; 747 748 vd->vdev_top = tvd; 749 750 for (int c = 0; c < vd->vdev_children; c++) 751 vdev_top_update(tvd, vd->vdev_child[c]); 752 } 753 754 /* 755 * Add a mirror/replacing vdev above an existing vdev. 756 */ 757 vdev_t * 758 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 759 { 760 spa_t *spa = cvd->vdev_spa; 761 vdev_t *pvd = cvd->vdev_parent; 762 vdev_t *mvd; 763 764 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 765 766 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 767 768 mvd->vdev_asize = cvd->vdev_asize; 769 mvd->vdev_min_asize = cvd->vdev_min_asize; 770 mvd->vdev_max_asize = cvd->vdev_max_asize; 771 mvd->vdev_ashift = cvd->vdev_ashift; 772 mvd->vdev_state = cvd->vdev_state; 773 mvd->vdev_crtxg = cvd->vdev_crtxg; 774 775 vdev_remove_child(pvd, cvd); 776 vdev_add_child(pvd, mvd); 777 cvd->vdev_id = mvd->vdev_children; 778 vdev_add_child(mvd, cvd); 779 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 780 781 if (mvd == mvd->vdev_top) 782 vdev_top_transfer(cvd, mvd); 783 784 return (mvd); 785 } 786 787 /* 788 * Remove a 1-way mirror/replacing vdev from the tree. 789 */ 790 void 791 vdev_remove_parent(vdev_t *cvd) 792 { 793 vdev_t *mvd = cvd->vdev_parent; 794 vdev_t *pvd = mvd->vdev_parent; 795 796 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 797 798 ASSERT(mvd->vdev_children == 1); 799 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 800 mvd->vdev_ops == &vdev_replacing_ops || 801 mvd->vdev_ops == &vdev_spare_ops); 802 cvd->vdev_ashift = mvd->vdev_ashift; 803 804 vdev_remove_child(mvd, cvd); 805 vdev_remove_child(pvd, mvd); 806 807 /* 808 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 809 * Otherwise, we could have detached an offline device, and when we 810 * go to import the pool we'll think we have two top-level vdevs, 811 * instead of a different version of the same top-level vdev. 812 */ 813 if (mvd->vdev_top == mvd) { 814 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 815 cvd->vdev_orig_guid = cvd->vdev_guid; 816 cvd->vdev_guid += guid_delta; 817 cvd->vdev_guid_sum += guid_delta; 818 } 819 cvd->vdev_id = mvd->vdev_id; 820 vdev_add_child(pvd, cvd); 821 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 822 823 if (cvd == cvd->vdev_top) 824 vdev_top_transfer(mvd, cvd); 825 826 ASSERT(mvd->vdev_children == 0); 827 vdev_free(mvd); 828 } 829 830 int 831 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 832 { 833 spa_t *spa = vd->vdev_spa; 834 objset_t *mos = spa->spa_meta_objset; 835 uint64_t m; 836 uint64_t oldc = vd->vdev_ms_count; 837 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 838 metaslab_t **mspp; 839 int error; 840 841 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 842 843 /* 844 * This vdev is not being allocated from yet or is a hole. 845 */ 846 if (vd->vdev_ms_shift == 0) 847 return (0); 848 849 ASSERT(!vd->vdev_ishole); 850 851 /* 852 * Compute the raidz-deflation ratio. Note, we hard-code 853 * in 128k (1 << 17) because it is the "typical" blocksize. 854 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 855 * otherwise it would inconsistently account for existing bp's. 856 */ 857 vd->vdev_deflate_ratio = (1 << 17) / 858 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 859 860 ASSERT(oldc <= newc); 861 862 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 863 864 if (oldc != 0) { 865 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 866 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 867 } 868 869 vd->vdev_ms = mspp; 870 vd->vdev_ms_count = newc; 871 872 for (m = oldc; m < newc; m++) { 873 uint64_t object = 0; 874 875 if (txg == 0) { 876 error = dmu_read(mos, vd->vdev_ms_array, 877 m * sizeof (uint64_t), sizeof (uint64_t), &object, 878 DMU_READ_PREFETCH); 879 if (error) 880 return (error); 881 } 882 883 error = metaslab_init(vd->vdev_mg, m, object, txg, 884 &(vd->vdev_ms[m])); 885 if (error) 886 return (error); 887 } 888 889 if (txg == 0) 890 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 891 892 /* 893 * If the vdev is being removed we don't activate 894 * the metaslabs since we want to ensure that no new 895 * allocations are performed on this device. 896 */ 897 if (oldc == 0 && !vd->vdev_removing) 898 metaslab_group_activate(vd->vdev_mg); 899 900 if (txg == 0) 901 spa_config_exit(spa, SCL_ALLOC, FTAG); 902 903 return (0); 904 } 905 906 void 907 vdev_metaslab_fini(vdev_t *vd) 908 { 909 uint64_t m; 910 uint64_t count = vd->vdev_ms_count; 911 912 if (vd->vdev_ms != NULL) { 913 metaslab_group_passivate(vd->vdev_mg); 914 for (m = 0; m < count; m++) { 915 metaslab_t *msp = vd->vdev_ms[m]; 916 917 if (msp != NULL) 918 metaslab_fini(msp); 919 } 920 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 921 vd->vdev_ms = NULL; 922 } 923 } 924 925 typedef struct vdev_probe_stats { 926 boolean_t vps_readable; 927 boolean_t vps_writeable; 928 int vps_flags; 929 } vdev_probe_stats_t; 930 931 static void 932 vdev_probe_done(zio_t *zio) 933 { 934 spa_t *spa = zio->io_spa; 935 vdev_t *vd = zio->io_vd; 936 vdev_probe_stats_t *vps = zio->io_private; 937 938 ASSERT(vd->vdev_probe_zio != NULL); 939 940 if (zio->io_type == ZIO_TYPE_READ) { 941 if (zio->io_error == 0) 942 vps->vps_readable = 1; 943 if (zio->io_error == 0 && spa_writeable(spa)) { 944 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 945 zio->io_offset, zio->io_size, zio->io_data, 946 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 947 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 948 } else { 949 zio_buf_free(zio->io_data, zio->io_size); 950 } 951 } else if (zio->io_type == ZIO_TYPE_WRITE) { 952 if (zio->io_error == 0) 953 vps->vps_writeable = 1; 954 zio_buf_free(zio->io_data, zio->io_size); 955 } else if (zio->io_type == ZIO_TYPE_NULL) { 956 zio_t *pio; 957 958 vd->vdev_cant_read |= !vps->vps_readable; 959 vd->vdev_cant_write |= !vps->vps_writeable; 960 961 if (vdev_readable(vd) && 962 (vdev_writeable(vd) || !spa_writeable(spa))) { 963 zio->io_error = 0; 964 } else { 965 ASSERT(zio->io_error != 0); 966 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 967 spa, vd, NULL, 0, 0); 968 zio->io_error = SET_ERROR(ENXIO); 969 } 970 971 mutex_enter(&vd->vdev_probe_lock); 972 ASSERT(vd->vdev_probe_zio == zio); 973 vd->vdev_probe_zio = NULL; 974 mutex_exit(&vd->vdev_probe_lock); 975 976 while ((pio = zio_walk_parents(zio)) != NULL) 977 if (!vdev_accessible(vd, pio)) 978 pio->io_error = SET_ERROR(ENXIO); 979 980 kmem_free(vps, sizeof (*vps)); 981 } 982 } 983 984 /* 985 * Determine whether this device is accessible. 986 * 987 * Read and write to several known locations: the pad regions of each 988 * vdev label but the first, which we leave alone in case it contains 989 * a VTOC. 990 */ 991 zio_t * 992 vdev_probe(vdev_t *vd, zio_t *zio) 993 { 994 spa_t *spa = vd->vdev_spa; 995 vdev_probe_stats_t *vps = NULL; 996 zio_t *pio; 997 998 ASSERT(vd->vdev_ops->vdev_op_leaf); 999 1000 /* 1001 * Don't probe the probe. 1002 */ 1003 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1004 return (NULL); 1005 1006 /* 1007 * To prevent 'probe storms' when a device fails, we create 1008 * just one probe i/o at a time. All zios that want to probe 1009 * this vdev will become parents of the probe io. 1010 */ 1011 mutex_enter(&vd->vdev_probe_lock); 1012 1013 if ((pio = vd->vdev_probe_zio) == NULL) { 1014 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1015 1016 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1017 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1018 ZIO_FLAG_TRYHARD; 1019 1020 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1021 /* 1022 * vdev_cant_read and vdev_cant_write can only 1023 * transition from TRUE to FALSE when we have the 1024 * SCL_ZIO lock as writer; otherwise they can only 1025 * transition from FALSE to TRUE. This ensures that 1026 * any zio looking at these values can assume that 1027 * failures persist for the life of the I/O. That's 1028 * important because when a device has intermittent 1029 * connectivity problems, we want to ensure that 1030 * they're ascribed to the device (ENXIO) and not 1031 * the zio (EIO). 1032 * 1033 * Since we hold SCL_ZIO as writer here, clear both 1034 * values so the probe can reevaluate from first 1035 * principles. 1036 */ 1037 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1038 vd->vdev_cant_read = B_FALSE; 1039 vd->vdev_cant_write = B_FALSE; 1040 } 1041 1042 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1043 vdev_probe_done, vps, 1044 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1045 1046 /* 1047 * We can't change the vdev state in this context, so we 1048 * kick off an async task to do it on our behalf. 1049 */ 1050 if (zio != NULL) { 1051 vd->vdev_probe_wanted = B_TRUE; 1052 spa_async_request(spa, SPA_ASYNC_PROBE); 1053 } 1054 } 1055 1056 if (zio != NULL) 1057 zio_add_child(zio, pio); 1058 1059 mutex_exit(&vd->vdev_probe_lock); 1060 1061 if (vps == NULL) { 1062 ASSERT(zio != NULL); 1063 return (NULL); 1064 } 1065 1066 for (int l = 1; l < VDEV_LABELS; l++) { 1067 zio_nowait(zio_read_phys(pio, vd, 1068 vdev_label_offset(vd->vdev_psize, l, 1069 offsetof(vdev_label_t, vl_pad2)), 1070 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1071 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1072 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1073 } 1074 1075 if (zio == NULL) 1076 return (pio); 1077 1078 zio_nowait(pio); 1079 return (NULL); 1080 } 1081 1082 static void 1083 vdev_open_child(void *arg) 1084 { 1085 vdev_t *vd = arg; 1086 1087 vd->vdev_open_thread = curthread; 1088 vd->vdev_open_error = vdev_open(vd); 1089 vd->vdev_open_thread = NULL; 1090 } 1091 1092 boolean_t 1093 vdev_uses_zvols(vdev_t *vd) 1094 { 1095 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1096 strlen(ZVOL_DIR)) == 0) 1097 return (B_TRUE); 1098 for (int c = 0; c < vd->vdev_children; c++) 1099 if (vdev_uses_zvols(vd->vdev_child[c])) 1100 return (B_TRUE); 1101 return (B_FALSE); 1102 } 1103 1104 void 1105 vdev_open_children(vdev_t *vd) 1106 { 1107 taskq_t *tq; 1108 int children = vd->vdev_children; 1109 1110 /* 1111 * in order to handle pools on top of zvols, do the opens 1112 * in a single thread so that the same thread holds the 1113 * spa_namespace_lock 1114 */ 1115 if (vdev_uses_zvols(vd)) { 1116 for (int c = 0; c < children; c++) 1117 vd->vdev_child[c]->vdev_open_error = 1118 vdev_open(vd->vdev_child[c]); 1119 return; 1120 } 1121 tq = taskq_create("vdev_open", children, minclsyspri, 1122 children, children, TASKQ_PREPOPULATE); 1123 1124 for (int c = 0; c < children; c++) 1125 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1126 TQ_SLEEP) != NULL); 1127 1128 taskq_destroy(tq); 1129 } 1130 1131 /* 1132 * Prepare a virtual device for access. 1133 */ 1134 int 1135 vdev_open(vdev_t *vd) 1136 { 1137 spa_t *spa = vd->vdev_spa; 1138 int error; 1139 uint64_t osize = 0; 1140 uint64_t max_osize = 0; 1141 uint64_t asize, max_asize, psize; 1142 uint64_t ashift = 0; 1143 1144 ASSERT(vd->vdev_open_thread == curthread || 1145 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1146 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1147 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1148 vd->vdev_state == VDEV_STATE_OFFLINE); 1149 1150 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1151 vd->vdev_cant_read = B_FALSE; 1152 vd->vdev_cant_write = B_FALSE; 1153 vd->vdev_min_asize = vdev_get_min_asize(vd); 1154 1155 /* 1156 * If this vdev is not removed, check its fault status. If it's 1157 * faulted, bail out of the open. 1158 */ 1159 if (!vd->vdev_removed && vd->vdev_faulted) { 1160 ASSERT(vd->vdev_children == 0); 1161 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1162 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1163 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1164 vd->vdev_label_aux); 1165 return (SET_ERROR(ENXIO)); 1166 } else if (vd->vdev_offline) { 1167 ASSERT(vd->vdev_children == 0); 1168 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1169 return (SET_ERROR(ENXIO)); 1170 } 1171 1172 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1173 1174 /* 1175 * Reset the vdev_reopening flag so that we actually close 1176 * the vdev on error. 1177 */ 1178 vd->vdev_reopening = B_FALSE; 1179 if (zio_injection_enabled && error == 0) 1180 error = zio_handle_device_injection(vd, NULL, ENXIO); 1181 1182 if (error) { 1183 if (vd->vdev_removed && 1184 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1185 vd->vdev_removed = B_FALSE; 1186 1187 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1188 vd->vdev_stat.vs_aux); 1189 return (error); 1190 } 1191 1192 vd->vdev_removed = B_FALSE; 1193 1194 /* 1195 * Recheck the faulted flag now that we have confirmed that 1196 * the vdev is accessible. If we're faulted, bail. 1197 */ 1198 if (vd->vdev_faulted) { 1199 ASSERT(vd->vdev_children == 0); 1200 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1201 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1203 vd->vdev_label_aux); 1204 return (SET_ERROR(ENXIO)); 1205 } 1206 1207 if (vd->vdev_degraded) { 1208 ASSERT(vd->vdev_children == 0); 1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1210 VDEV_AUX_ERR_EXCEEDED); 1211 } else { 1212 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1213 } 1214 1215 /* 1216 * For hole or missing vdevs we just return success. 1217 */ 1218 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1219 return (0); 1220 1221 for (int c = 0; c < vd->vdev_children; c++) { 1222 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1224 VDEV_AUX_NONE); 1225 break; 1226 } 1227 } 1228 1229 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1230 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1231 1232 if (vd->vdev_children == 0) { 1233 if (osize < SPA_MINDEVSIZE) { 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1235 VDEV_AUX_TOO_SMALL); 1236 return (SET_ERROR(EOVERFLOW)); 1237 } 1238 psize = osize; 1239 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1240 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1241 VDEV_LABEL_END_SIZE); 1242 } else { 1243 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1244 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1245 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1246 VDEV_AUX_TOO_SMALL); 1247 return (SET_ERROR(EOVERFLOW)); 1248 } 1249 psize = 0; 1250 asize = osize; 1251 max_asize = max_osize; 1252 } 1253 1254 vd->vdev_psize = psize; 1255 1256 /* 1257 * Make sure the allocatable size hasn't shrunk. 1258 */ 1259 if (asize < vd->vdev_min_asize) { 1260 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1261 VDEV_AUX_BAD_LABEL); 1262 return (SET_ERROR(EINVAL)); 1263 } 1264 1265 if (vd->vdev_asize == 0) { 1266 /* 1267 * This is the first-ever open, so use the computed values. 1268 * For testing purposes, a higher ashift can be requested. 1269 */ 1270 vd->vdev_asize = asize; 1271 vd->vdev_max_asize = max_asize; 1272 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1273 } else { 1274 /* 1275 * Detect if the alignment requirement has increased. 1276 * We don't want to make the pool unavailable, just 1277 * issue a warning instead. 1278 */ 1279 if (ashift > vd->vdev_top->vdev_ashift && 1280 vd->vdev_ops->vdev_op_leaf) { 1281 cmn_err(CE_WARN, 1282 "Disk, '%s', has a block alignment that is " 1283 "larger than the pool's alignment\n", 1284 vd->vdev_path); 1285 } 1286 vd->vdev_max_asize = max_asize; 1287 } 1288 1289 /* 1290 * If all children are healthy and the asize has increased, 1291 * then we've experienced dynamic LUN growth. If automatic 1292 * expansion is enabled then use the additional space. 1293 */ 1294 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1295 (vd->vdev_expanding || spa->spa_autoexpand)) 1296 vd->vdev_asize = asize; 1297 1298 vdev_set_min_asize(vd); 1299 1300 /* 1301 * Ensure we can issue some IO before declaring the 1302 * vdev open for business. 1303 */ 1304 if (vd->vdev_ops->vdev_op_leaf && 1305 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1306 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1307 VDEV_AUX_ERR_EXCEEDED); 1308 return (error); 1309 } 1310 1311 /* 1312 * Track the min and max ashift values for normal data devices. 1313 */ 1314 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1315 !vd->vdev_islog && vd->vdev_aux == NULL) { 1316 if (vd->vdev_ashift > spa->spa_max_ashift) 1317 spa->spa_max_ashift = vd->vdev_ashift; 1318 if (vd->vdev_ashift < spa->spa_min_ashift) 1319 spa->spa_min_ashift = vd->vdev_ashift; 1320 } 1321 1322 /* 1323 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1324 * resilver. But don't do this if we are doing a reopen for a scrub, 1325 * since this would just restart the scrub we are already doing. 1326 */ 1327 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1328 vdev_resilver_needed(vd, NULL, NULL)) 1329 spa_async_request(spa, SPA_ASYNC_RESILVER); 1330 1331 return (0); 1332 } 1333 1334 /* 1335 * Called once the vdevs are all opened, this routine validates the label 1336 * contents. This needs to be done before vdev_load() so that we don't 1337 * inadvertently do repair I/Os to the wrong device. 1338 * 1339 * If 'strict' is false ignore the spa guid check. This is necessary because 1340 * if the machine crashed during a re-guid the new guid might have been written 1341 * to all of the vdev labels, but not the cached config. The strict check 1342 * will be performed when the pool is opened again using the mos config. 1343 * 1344 * This function will only return failure if one of the vdevs indicates that it 1345 * has since been destroyed or exported. This is only possible if 1346 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1347 * will be updated but the function will return 0. 1348 */ 1349 int 1350 vdev_validate(vdev_t *vd, boolean_t strict) 1351 { 1352 spa_t *spa = vd->vdev_spa; 1353 nvlist_t *label; 1354 uint64_t guid = 0, top_guid; 1355 uint64_t state; 1356 1357 for (int c = 0; c < vd->vdev_children; c++) 1358 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1359 return (SET_ERROR(EBADF)); 1360 1361 /* 1362 * If the device has already failed, or was marked offline, don't do 1363 * any further validation. Otherwise, label I/O will fail and we will 1364 * overwrite the previous state. 1365 */ 1366 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1367 uint64_t aux_guid = 0; 1368 nvlist_t *nvl; 1369 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1370 spa_last_synced_txg(spa) : -1ULL; 1371 1372 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1373 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1374 VDEV_AUX_BAD_LABEL); 1375 return (0); 1376 } 1377 1378 /* 1379 * Determine if this vdev has been split off into another 1380 * pool. If so, then refuse to open it. 1381 */ 1382 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1383 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1384 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1385 VDEV_AUX_SPLIT_POOL); 1386 nvlist_free(label); 1387 return (0); 1388 } 1389 1390 if (strict && (nvlist_lookup_uint64(label, 1391 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1392 guid != spa_guid(spa))) { 1393 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1394 VDEV_AUX_CORRUPT_DATA); 1395 nvlist_free(label); 1396 return (0); 1397 } 1398 1399 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1400 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1401 &aux_guid) != 0) 1402 aux_guid = 0; 1403 1404 /* 1405 * If this vdev just became a top-level vdev because its 1406 * sibling was detached, it will have adopted the parent's 1407 * vdev guid -- but the label may or may not be on disk yet. 1408 * Fortunately, either version of the label will have the 1409 * same top guid, so if we're a top-level vdev, we can 1410 * safely compare to that instead. 1411 * 1412 * If we split this vdev off instead, then we also check the 1413 * original pool's guid. We don't want to consider the vdev 1414 * corrupt if it is partway through a split operation. 1415 */ 1416 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1417 &guid) != 0 || 1418 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1419 &top_guid) != 0 || 1420 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1421 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1423 VDEV_AUX_CORRUPT_DATA); 1424 nvlist_free(label); 1425 return (0); 1426 } 1427 1428 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1429 &state) != 0) { 1430 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1431 VDEV_AUX_CORRUPT_DATA); 1432 nvlist_free(label); 1433 return (0); 1434 } 1435 1436 nvlist_free(label); 1437 1438 /* 1439 * If this is a verbatim import, no need to check the 1440 * state of the pool. 1441 */ 1442 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1443 spa_load_state(spa) == SPA_LOAD_OPEN && 1444 state != POOL_STATE_ACTIVE) 1445 return (SET_ERROR(EBADF)); 1446 1447 /* 1448 * If we were able to open and validate a vdev that was 1449 * previously marked permanently unavailable, clear that state 1450 * now. 1451 */ 1452 if (vd->vdev_not_present) 1453 vd->vdev_not_present = 0; 1454 } 1455 1456 return (0); 1457 } 1458 1459 /* 1460 * Close a virtual device. 1461 */ 1462 void 1463 vdev_close(vdev_t *vd) 1464 { 1465 spa_t *spa = vd->vdev_spa; 1466 vdev_t *pvd = vd->vdev_parent; 1467 1468 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1469 1470 /* 1471 * If our parent is reopening, then we are as well, unless we are 1472 * going offline. 1473 */ 1474 if (pvd != NULL && pvd->vdev_reopening) 1475 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1476 1477 vd->vdev_ops->vdev_op_close(vd); 1478 1479 vdev_cache_purge(vd); 1480 1481 /* 1482 * We record the previous state before we close it, so that if we are 1483 * doing a reopen(), we don't generate FMA ereports if we notice that 1484 * it's still faulted. 1485 */ 1486 vd->vdev_prevstate = vd->vdev_state; 1487 1488 if (vd->vdev_offline) 1489 vd->vdev_state = VDEV_STATE_OFFLINE; 1490 else 1491 vd->vdev_state = VDEV_STATE_CLOSED; 1492 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1493 } 1494 1495 void 1496 vdev_hold(vdev_t *vd) 1497 { 1498 spa_t *spa = vd->vdev_spa; 1499 1500 ASSERT(spa_is_root(spa)); 1501 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1502 return; 1503 1504 for (int c = 0; c < vd->vdev_children; c++) 1505 vdev_hold(vd->vdev_child[c]); 1506 1507 if (vd->vdev_ops->vdev_op_leaf) 1508 vd->vdev_ops->vdev_op_hold(vd); 1509 } 1510 1511 void 1512 vdev_rele(vdev_t *vd) 1513 { 1514 spa_t *spa = vd->vdev_spa; 1515 1516 ASSERT(spa_is_root(spa)); 1517 for (int c = 0; c < vd->vdev_children; c++) 1518 vdev_rele(vd->vdev_child[c]); 1519 1520 if (vd->vdev_ops->vdev_op_leaf) 1521 vd->vdev_ops->vdev_op_rele(vd); 1522 } 1523 1524 /* 1525 * Reopen all interior vdevs and any unopened leaves. We don't actually 1526 * reopen leaf vdevs which had previously been opened as they might deadlock 1527 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1528 * If the leaf has never been opened then open it, as usual. 1529 */ 1530 void 1531 vdev_reopen(vdev_t *vd) 1532 { 1533 spa_t *spa = vd->vdev_spa; 1534 1535 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1536 1537 /* set the reopening flag unless we're taking the vdev offline */ 1538 vd->vdev_reopening = !vd->vdev_offline; 1539 vdev_close(vd); 1540 (void) vdev_open(vd); 1541 1542 /* 1543 * Call vdev_validate() here to make sure we have the same device. 1544 * Otherwise, a device with an invalid label could be successfully 1545 * opened in response to vdev_reopen(). 1546 */ 1547 if (vd->vdev_aux) { 1548 (void) vdev_validate_aux(vd); 1549 if (vdev_readable(vd) && vdev_writeable(vd) && 1550 vd->vdev_aux == &spa->spa_l2cache && 1551 !l2arc_vdev_present(vd)) 1552 l2arc_add_vdev(spa, vd); 1553 } else { 1554 (void) vdev_validate(vd, B_TRUE); 1555 } 1556 1557 /* 1558 * Reassess parent vdev's health. 1559 */ 1560 vdev_propagate_state(vd); 1561 } 1562 1563 int 1564 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1565 { 1566 int error; 1567 1568 /* 1569 * Normally, partial opens (e.g. of a mirror) are allowed. 1570 * For a create, however, we want to fail the request if 1571 * there are any components we can't open. 1572 */ 1573 error = vdev_open(vd); 1574 1575 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1576 vdev_close(vd); 1577 return (error ? error : ENXIO); 1578 } 1579 1580 /* 1581 * Recursively load DTLs and initialize all labels. 1582 */ 1583 if ((error = vdev_dtl_load(vd)) != 0 || 1584 (error = vdev_label_init(vd, txg, isreplacing ? 1585 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1586 vdev_close(vd); 1587 return (error); 1588 } 1589 1590 return (0); 1591 } 1592 1593 void 1594 vdev_metaslab_set_size(vdev_t *vd) 1595 { 1596 /* 1597 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1598 */ 1599 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1600 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1601 } 1602 1603 void 1604 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1605 { 1606 ASSERT(vd == vd->vdev_top); 1607 ASSERT(!vd->vdev_ishole); 1608 ASSERT(ISP2(flags)); 1609 ASSERT(spa_writeable(vd->vdev_spa)); 1610 1611 if (flags & VDD_METASLAB) 1612 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1613 1614 if (flags & VDD_DTL) 1615 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1616 1617 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1618 } 1619 1620 void 1621 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1622 { 1623 for (int c = 0; c < vd->vdev_children; c++) 1624 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1625 1626 if (vd->vdev_ops->vdev_op_leaf) 1627 vdev_dirty(vd->vdev_top, flags, vd, txg); 1628 } 1629 1630 /* 1631 * DTLs. 1632 * 1633 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1634 * the vdev has less than perfect replication. There are four kinds of DTL: 1635 * 1636 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1637 * 1638 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1639 * 1640 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1641 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1642 * txgs that was scrubbed. 1643 * 1644 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1645 * persistent errors or just some device being offline. 1646 * Unlike the other three, the DTL_OUTAGE map is not generally 1647 * maintained; it's only computed when needed, typically to 1648 * determine whether a device can be detached. 1649 * 1650 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1651 * either has the data or it doesn't. 1652 * 1653 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1654 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1655 * if any child is less than fully replicated, then so is its parent. 1656 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1657 * comprising only those txgs which appear in 'maxfaults' or more children; 1658 * those are the txgs we don't have enough replication to read. For example, 1659 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1660 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1661 * two child DTL_MISSING maps. 1662 * 1663 * It should be clear from the above that to compute the DTLs and outage maps 1664 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1665 * Therefore, that is all we keep on disk. When loading the pool, or after 1666 * a configuration change, we generate all other DTLs from first principles. 1667 */ 1668 void 1669 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1670 { 1671 range_tree_t *rt = vd->vdev_dtl[t]; 1672 1673 ASSERT(t < DTL_TYPES); 1674 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1675 ASSERT(spa_writeable(vd->vdev_spa)); 1676 1677 mutex_enter(rt->rt_lock); 1678 if (!range_tree_contains(rt, txg, size)) 1679 range_tree_add(rt, txg, size); 1680 mutex_exit(rt->rt_lock); 1681 } 1682 1683 boolean_t 1684 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1685 { 1686 range_tree_t *rt = vd->vdev_dtl[t]; 1687 boolean_t dirty = B_FALSE; 1688 1689 ASSERT(t < DTL_TYPES); 1690 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1691 1692 mutex_enter(rt->rt_lock); 1693 if (range_tree_space(rt) != 0) 1694 dirty = range_tree_contains(rt, txg, size); 1695 mutex_exit(rt->rt_lock); 1696 1697 return (dirty); 1698 } 1699 1700 boolean_t 1701 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1702 { 1703 range_tree_t *rt = vd->vdev_dtl[t]; 1704 boolean_t empty; 1705 1706 mutex_enter(rt->rt_lock); 1707 empty = (range_tree_space(rt) == 0); 1708 mutex_exit(rt->rt_lock); 1709 1710 return (empty); 1711 } 1712 1713 /* 1714 * Returns the lowest txg in the DTL range. 1715 */ 1716 static uint64_t 1717 vdev_dtl_min(vdev_t *vd) 1718 { 1719 range_seg_t *rs; 1720 1721 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1722 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1723 ASSERT0(vd->vdev_children); 1724 1725 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1726 return (rs->rs_start - 1); 1727 } 1728 1729 /* 1730 * Returns the highest txg in the DTL. 1731 */ 1732 static uint64_t 1733 vdev_dtl_max(vdev_t *vd) 1734 { 1735 range_seg_t *rs; 1736 1737 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1738 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1739 ASSERT0(vd->vdev_children); 1740 1741 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1742 return (rs->rs_end); 1743 } 1744 1745 /* 1746 * Determine if a resilvering vdev should remove any DTL entries from 1747 * its range. If the vdev was resilvering for the entire duration of the 1748 * scan then it should excise that range from its DTLs. Otherwise, this 1749 * vdev is considered partially resilvered and should leave its DTL 1750 * entries intact. The comment in vdev_dtl_reassess() describes how we 1751 * excise the DTLs. 1752 */ 1753 static boolean_t 1754 vdev_dtl_should_excise(vdev_t *vd) 1755 { 1756 spa_t *spa = vd->vdev_spa; 1757 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1758 1759 ASSERT0(scn->scn_phys.scn_errors); 1760 ASSERT0(vd->vdev_children); 1761 1762 if (vd->vdev_resilver_txg == 0 || 1763 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1764 return (B_TRUE); 1765 1766 /* 1767 * When a resilver is initiated the scan will assign the scn_max_txg 1768 * value to the highest txg value that exists in all DTLs. If this 1769 * device's max DTL is not part of this scan (i.e. it is not in 1770 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1771 * for excision. 1772 */ 1773 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1774 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1775 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1776 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1777 return (B_TRUE); 1778 } 1779 return (B_FALSE); 1780 } 1781 1782 /* 1783 * Reassess DTLs after a config change or scrub completion. 1784 */ 1785 void 1786 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1787 { 1788 spa_t *spa = vd->vdev_spa; 1789 avl_tree_t reftree; 1790 int minref; 1791 1792 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1793 1794 for (int c = 0; c < vd->vdev_children; c++) 1795 vdev_dtl_reassess(vd->vdev_child[c], txg, 1796 scrub_txg, scrub_done); 1797 1798 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1799 return; 1800 1801 if (vd->vdev_ops->vdev_op_leaf) { 1802 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1803 1804 mutex_enter(&vd->vdev_dtl_lock); 1805 1806 /* 1807 * If we've completed a scan cleanly then determine 1808 * if this vdev should remove any DTLs. We only want to 1809 * excise regions on vdevs that were available during 1810 * the entire duration of this scan. 1811 */ 1812 if (scrub_txg != 0 && 1813 (spa->spa_scrub_started || 1814 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1815 vdev_dtl_should_excise(vd)) { 1816 /* 1817 * We completed a scrub up to scrub_txg. If we 1818 * did it without rebooting, then the scrub dtl 1819 * will be valid, so excise the old region and 1820 * fold in the scrub dtl. Otherwise, leave the 1821 * dtl as-is if there was an error. 1822 * 1823 * There's little trick here: to excise the beginning 1824 * of the DTL_MISSING map, we put it into a reference 1825 * tree and then add a segment with refcnt -1 that 1826 * covers the range [0, scrub_txg). This means 1827 * that each txg in that range has refcnt -1 or 0. 1828 * We then add DTL_SCRUB with a refcnt of 2, so that 1829 * entries in the range [0, scrub_txg) will have a 1830 * positive refcnt -- either 1 or 2. We then convert 1831 * the reference tree into the new DTL_MISSING map. 1832 */ 1833 space_reftree_create(&reftree); 1834 space_reftree_add_map(&reftree, 1835 vd->vdev_dtl[DTL_MISSING], 1); 1836 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1837 space_reftree_add_map(&reftree, 1838 vd->vdev_dtl[DTL_SCRUB], 2); 1839 space_reftree_generate_map(&reftree, 1840 vd->vdev_dtl[DTL_MISSING], 1); 1841 space_reftree_destroy(&reftree); 1842 } 1843 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1844 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1845 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1846 if (scrub_done) 1847 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1848 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1849 if (!vdev_readable(vd)) 1850 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1851 else 1852 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1853 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1854 1855 /* 1856 * If the vdev was resilvering and no longer has any 1857 * DTLs then reset its resilvering flag. 1858 */ 1859 if (vd->vdev_resilver_txg != 0 && 1860 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1861 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1862 vd->vdev_resilver_txg = 0; 1863 1864 mutex_exit(&vd->vdev_dtl_lock); 1865 1866 if (txg != 0) 1867 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1868 return; 1869 } 1870 1871 mutex_enter(&vd->vdev_dtl_lock); 1872 for (int t = 0; t < DTL_TYPES; t++) { 1873 /* account for child's outage in parent's missing map */ 1874 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1875 if (t == DTL_SCRUB) 1876 continue; /* leaf vdevs only */ 1877 if (t == DTL_PARTIAL) 1878 minref = 1; /* i.e. non-zero */ 1879 else if (vd->vdev_nparity != 0) 1880 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1881 else 1882 minref = vd->vdev_children; /* any kind of mirror */ 1883 space_reftree_create(&reftree); 1884 for (int c = 0; c < vd->vdev_children; c++) { 1885 vdev_t *cvd = vd->vdev_child[c]; 1886 mutex_enter(&cvd->vdev_dtl_lock); 1887 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1888 mutex_exit(&cvd->vdev_dtl_lock); 1889 } 1890 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1891 space_reftree_destroy(&reftree); 1892 } 1893 mutex_exit(&vd->vdev_dtl_lock); 1894 } 1895 1896 int 1897 vdev_dtl_load(vdev_t *vd) 1898 { 1899 spa_t *spa = vd->vdev_spa; 1900 objset_t *mos = spa->spa_meta_objset; 1901 int error = 0; 1902 1903 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1904 ASSERT(!vd->vdev_ishole); 1905 1906 error = space_map_open(&vd->vdev_dtl_sm, mos, 1907 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1908 if (error) 1909 return (error); 1910 ASSERT(vd->vdev_dtl_sm != NULL); 1911 1912 mutex_enter(&vd->vdev_dtl_lock); 1913 1914 /* 1915 * Now that we've opened the space_map we need to update 1916 * the in-core DTL. 1917 */ 1918 space_map_update(vd->vdev_dtl_sm); 1919 1920 error = space_map_load(vd->vdev_dtl_sm, 1921 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1922 mutex_exit(&vd->vdev_dtl_lock); 1923 1924 return (error); 1925 } 1926 1927 for (int c = 0; c < vd->vdev_children; c++) { 1928 error = vdev_dtl_load(vd->vdev_child[c]); 1929 if (error != 0) 1930 break; 1931 } 1932 1933 return (error); 1934 } 1935 1936 void 1937 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1938 { 1939 spa_t *spa = vd->vdev_spa; 1940 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1941 objset_t *mos = spa->spa_meta_objset; 1942 range_tree_t *rtsync; 1943 kmutex_t rtlock; 1944 dmu_tx_t *tx; 1945 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1946 1947 ASSERT(!vd->vdev_ishole); 1948 ASSERT(vd->vdev_ops->vdev_op_leaf); 1949 1950 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1951 1952 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1953 mutex_enter(&vd->vdev_dtl_lock); 1954 space_map_free(vd->vdev_dtl_sm, tx); 1955 space_map_close(vd->vdev_dtl_sm); 1956 vd->vdev_dtl_sm = NULL; 1957 mutex_exit(&vd->vdev_dtl_lock); 1958 dmu_tx_commit(tx); 1959 return; 1960 } 1961 1962 if (vd->vdev_dtl_sm == NULL) { 1963 uint64_t new_object; 1964 1965 new_object = space_map_alloc(mos, tx); 1966 VERIFY3U(new_object, !=, 0); 1967 1968 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1969 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1970 ASSERT(vd->vdev_dtl_sm != NULL); 1971 } 1972 1973 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1974 1975 rtsync = range_tree_create(NULL, NULL, &rtlock); 1976 1977 mutex_enter(&rtlock); 1978 1979 mutex_enter(&vd->vdev_dtl_lock); 1980 range_tree_walk(rt, range_tree_add, rtsync); 1981 mutex_exit(&vd->vdev_dtl_lock); 1982 1983 space_map_truncate(vd->vdev_dtl_sm, tx); 1984 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1985 range_tree_vacate(rtsync, NULL, NULL); 1986 1987 range_tree_destroy(rtsync); 1988 1989 mutex_exit(&rtlock); 1990 mutex_destroy(&rtlock); 1991 1992 /* 1993 * If the object for the space map has changed then dirty 1994 * the top level so that we update the config. 1995 */ 1996 if (object != space_map_object(vd->vdev_dtl_sm)) { 1997 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1998 "new object %llu", txg, spa_name(spa), object, 1999 space_map_object(vd->vdev_dtl_sm)); 2000 vdev_config_dirty(vd->vdev_top); 2001 } 2002 2003 dmu_tx_commit(tx); 2004 2005 mutex_enter(&vd->vdev_dtl_lock); 2006 space_map_update(vd->vdev_dtl_sm); 2007 mutex_exit(&vd->vdev_dtl_lock); 2008 } 2009 2010 /* 2011 * Determine whether the specified vdev can be offlined/detached/removed 2012 * without losing data. 2013 */ 2014 boolean_t 2015 vdev_dtl_required(vdev_t *vd) 2016 { 2017 spa_t *spa = vd->vdev_spa; 2018 vdev_t *tvd = vd->vdev_top; 2019 uint8_t cant_read = vd->vdev_cant_read; 2020 boolean_t required; 2021 2022 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2023 2024 if (vd == spa->spa_root_vdev || vd == tvd) 2025 return (B_TRUE); 2026 2027 /* 2028 * Temporarily mark the device as unreadable, and then determine 2029 * whether this results in any DTL outages in the top-level vdev. 2030 * If not, we can safely offline/detach/remove the device. 2031 */ 2032 vd->vdev_cant_read = B_TRUE; 2033 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2034 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2035 vd->vdev_cant_read = cant_read; 2036 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2037 2038 if (!required && zio_injection_enabled) 2039 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2040 2041 return (required); 2042 } 2043 2044 /* 2045 * Determine if resilver is needed, and if so the txg range. 2046 */ 2047 boolean_t 2048 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2049 { 2050 boolean_t needed = B_FALSE; 2051 uint64_t thismin = UINT64_MAX; 2052 uint64_t thismax = 0; 2053 2054 if (vd->vdev_children == 0) { 2055 mutex_enter(&vd->vdev_dtl_lock); 2056 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2057 vdev_writeable(vd)) { 2058 2059 thismin = vdev_dtl_min(vd); 2060 thismax = vdev_dtl_max(vd); 2061 needed = B_TRUE; 2062 } 2063 mutex_exit(&vd->vdev_dtl_lock); 2064 } else { 2065 for (int c = 0; c < vd->vdev_children; c++) { 2066 vdev_t *cvd = vd->vdev_child[c]; 2067 uint64_t cmin, cmax; 2068 2069 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2070 thismin = MIN(thismin, cmin); 2071 thismax = MAX(thismax, cmax); 2072 needed = B_TRUE; 2073 } 2074 } 2075 } 2076 2077 if (needed && minp) { 2078 *minp = thismin; 2079 *maxp = thismax; 2080 } 2081 return (needed); 2082 } 2083 2084 void 2085 vdev_load(vdev_t *vd) 2086 { 2087 /* 2088 * Recursively load all children. 2089 */ 2090 for (int c = 0; c < vd->vdev_children; c++) 2091 vdev_load(vd->vdev_child[c]); 2092 2093 /* 2094 * If this is a top-level vdev, initialize its metaslabs. 2095 */ 2096 if (vd == vd->vdev_top && !vd->vdev_ishole && 2097 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2098 vdev_metaslab_init(vd, 0) != 0)) 2099 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2100 VDEV_AUX_CORRUPT_DATA); 2101 2102 /* 2103 * If this is a leaf vdev, load its DTL. 2104 */ 2105 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2106 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2107 VDEV_AUX_CORRUPT_DATA); 2108 } 2109 2110 /* 2111 * The special vdev case is used for hot spares and l2cache devices. Its 2112 * sole purpose it to set the vdev state for the associated vdev. To do this, 2113 * we make sure that we can open the underlying device, then try to read the 2114 * label, and make sure that the label is sane and that it hasn't been 2115 * repurposed to another pool. 2116 */ 2117 int 2118 vdev_validate_aux(vdev_t *vd) 2119 { 2120 nvlist_t *label; 2121 uint64_t guid, version; 2122 uint64_t state; 2123 2124 if (!vdev_readable(vd)) 2125 return (0); 2126 2127 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2129 VDEV_AUX_CORRUPT_DATA); 2130 return (-1); 2131 } 2132 2133 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2134 !SPA_VERSION_IS_SUPPORTED(version) || 2135 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2136 guid != vd->vdev_guid || 2137 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2138 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2139 VDEV_AUX_CORRUPT_DATA); 2140 nvlist_free(label); 2141 return (-1); 2142 } 2143 2144 /* 2145 * We don't actually check the pool state here. If it's in fact in 2146 * use by another pool, we update this fact on the fly when requested. 2147 */ 2148 nvlist_free(label); 2149 return (0); 2150 } 2151 2152 void 2153 vdev_remove(vdev_t *vd, uint64_t txg) 2154 { 2155 spa_t *spa = vd->vdev_spa; 2156 objset_t *mos = spa->spa_meta_objset; 2157 dmu_tx_t *tx; 2158 2159 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2160 2161 if (vd->vdev_ms != NULL) { 2162 metaslab_group_t *mg = vd->vdev_mg; 2163 2164 metaslab_group_histogram_verify(mg); 2165 metaslab_class_histogram_verify(mg->mg_class); 2166 2167 for (int m = 0; m < vd->vdev_ms_count; m++) { 2168 metaslab_t *msp = vd->vdev_ms[m]; 2169 2170 if (msp == NULL || msp->ms_sm == NULL) 2171 continue; 2172 2173 mutex_enter(&msp->ms_lock); 2174 /* 2175 * If the metaslab was not loaded when the vdev 2176 * was removed then the histogram accounting may 2177 * not be accurate. Update the histogram information 2178 * here so that we ensure that the metaslab group 2179 * and metaslab class are up-to-date. 2180 */ 2181 metaslab_group_histogram_remove(mg, msp); 2182 2183 VERIFY0(space_map_allocated(msp->ms_sm)); 2184 space_map_free(msp->ms_sm, tx); 2185 space_map_close(msp->ms_sm); 2186 msp->ms_sm = NULL; 2187 mutex_exit(&msp->ms_lock); 2188 } 2189 2190 metaslab_group_histogram_verify(mg); 2191 metaslab_class_histogram_verify(mg->mg_class); 2192 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2193 ASSERT0(mg->mg_histogram[i]); 2194 2195 } 2196 2197 if (vd->vdev_ms_array) { 2198 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2199 vd->vdev_ms_array = 0; 2200 } 2201 dmu_tx_commit(tx); 2202 } 2203 2204 void 2205 vdev_sync_done(vdev_t *vd, uint64_t txg) 2206 { 2207 metaslab_t *msp; 2208 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2209 2210 ASSERT(!vd->vdev_ishole); 2211 2212 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2213 metaslab_sync_done(msp, txg); 2214 2215 if (reassess) 2216 metaslab_sync_reassess(vd->vdev_mg); 2217 } 2218 2219 void 2220 vdev_sync(vdev_t *vd, uint64_t txg) 2221 { 2222 spa_t *spa = vd->vdev_spa; 2223 vdev_t *lvd; 2224 metaslab_t *msp; 2225 dmu_tx_t *tx; 2226 2227 ASSERT(!vd->vdev_ishole); 2228 2229 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2230 ASSERT(vd == vd->vdev_top); 2231 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2232 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2233 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2234 ASSERT(vd->vdev_ms_array != 0); 2235 vdev_config_dirty(vd); 2236 dmu_tx_commit(tx); 2237 } 2238 2239 /* 2240 * Remove the metadata associated with this vdev once it's empty. 2241 */ 2242 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2243 vdev_remove(vd, txg); 2244 2245 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2246 metaslab_sync(msp, txg); 2247 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2248 } 2249 2250 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2251 vdev_dtl_sync(lvd, txg); 2252 2253 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2254 } 2255 2256 uint64_t 2257 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2258 { 2259 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2260 } 2261 2262 /* 2263 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2264 * not be opened, and no I/O is attempted. 2265 */ 2266 int 2267 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2268 { 2269 vdev_t *vd, *tvd; 2270 2271 spa_vdev_state_enter(spa, SCL_NONE); 2272 2273 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2274 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2275 2276 if (!vd->vdev_ops->vdev_op_leaf) 2277 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2278 2279 tvd = vd->vdev_top; 2280 2281 /* 2282 * We don't directly use the aux state here, but if we do a 2283 * vdev_reopen(), we need this value to be present to remember why we 2284 * were faulted. 2285 */ 2286 vd->vdev_label_aux = aux; 2287 2288 /* 2289 * Faulted state takes precedence over degraded. 2290 */ 2291 vd->vdev_delayed_close = B_FALSE; 2292 vd->vdev_faulted = 1ULL; 2293 vd->vdev_degraded = 0ULL; 2294 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2295 2296 /* 2297 * If this device has the only valid copy of the data, then 2298 * back off and simply mark the vdev as degraded instead. 2299 */ 2300 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2301 vd->vdev_degraded = 1ULL; 2302 vd->vdev_faulted = 0ULL; 2303 2304 /* 2305 * If we reopen the device and it's not dead, only then do we 2306 * mark it degraded. 2307 */ 2308 vdev_reopen(tvd); 2309 2310 if (vdev_readable(vd)) 2311 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2312 } 2313 2314 return (spa_vdev_state_exit(spa, vd, 0)); 2315 } 2316 2317 /* 2318 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2319 * user that something is wrong. The vdev continues to operate as normal as far 2320 * as I/O is concerned. 2321 */ 2322 int 2323 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2324 { 2325 vdev_t *vd; 2326 2327 spa_vdev_state_enter(spa, SCL_NONE); 2328 2329 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2330 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2331 2332 if (!vd->vdev_ops->vdev_op_leaf) 2333 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2334 2335 /* 2336 * If the vdev is already faulted, then don't do anything. 2337 */ 2338 if (vd->vdev_faulted || vd->vdev_degraded) 2339 return (spa_vdev_state_exit(spa, NULL, 0)); 2340 2341 vd->vdev_degraded = 1ULL; 2342 if (!vdev_is_dead(vd)) 2343 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2344 aux); 2345 2346 return (spa_vdev_state_exit(spa, vd, 0)); 2347 } 2348 2349 /* 2350 * Online the given vdev. 2351 * 2352 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2353 * spare device should be detached when the device finishes resilvering. 2354 * Second, the online should be treated like a 'test' online case, so no FMA 2355 * events are generated if the device fails to open. 2356 */ 2357 int 2358 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2359 { 2360 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2361 boolean_t postevent = B_FALSE; 2362 2363 spa_vdev_state_enter(spa, SCL_NONE); 2364 2365 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2366 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2367 2368 if (!vd->vdev_ops->vdev_op_leaf) 2369 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2370 2371 postevent = 2372 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2373 B_TRUE : B_FALSE; 2374 2375 tvd = vd->vdev_top; 2376 vd->vdev_offline = B_FALSE; 2377 vd->vdev_tmpoffline = B_FALSE; 2378 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2379 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2380 2381 /* XXX - L2ARC 1.0 does not support expansion */ 2382 if (!vd->vdev_aux) { 2383 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2384 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2385 } 2386 2387 vdev_reopen(tvd); 2388 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2389 2390 if (!vd->vdev_aux) { 2391 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2392 pvd->vdev_expanding = B_FALSE; 2393 } 2394 2395 if (newstate) 2396 *newstate = vd->vdev_state; 2397 if ((flags & ZFS_ONLINE_UNSPARE) && 2398 !vdev_is_dead(vd) && vd->vdev_parent && 2399 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2400 vd->vdev_parent->vdev_child[0] == vd) 2401 vd->vdev_unspare = B_TRUE; 2402 2403 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2404 2405 /* XXX - L2ARC 1.0 does not support expansion */ 2406 if (vd->vdev_aux) 2407 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2408 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2409 } 2410 2411 if (postevent) 2412 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2413 2414 return (spa_vdev_state_exit(spa, vd, 0)); 2415 } 2416 2417 static int 2418 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2419 { 2420 vdev_t *vd, *tvd; 2421 int error = 0; 2422 uint64_t generation; 2423 metaslab_group_t *mg; 2424 2425 top: 2426 spa_vdev_state_enter(spa, SCL_ALLOC); 2427 2428 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2429 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2430 2431 if (!vd->vdev_ops->vdev_op_leaf) 2432 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2433 2434 tvd = vd->vdev_top; 2435 mg = tvd->vdev_mg; 2436 generation = spa->spa_config_generation + 1; 2437 2438 /* 2439 * If the device isn't already offline, try to offline it. 2440 */ 2441 if (!vd->vdev_offline) { 2442 /* 2443 * If this device has the only valid copy of some data, 2444 * don't allow it to be offlined. Log devices are always 2445 * expendable. 2446 */ 2447 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2448 vdev_dtl_required(vd)) 2449 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2450 2451 /* 2452 * If the top-level is a slog and it has had allocations 2453 * then proceed. We check that the vdev's metaslab group 2454 * is not NULL since it's possible that we may have just 2455 * added this vdev but not yet initialized its metaslabs. 2456 */ 2457 if (tvd->vdev_islog && mg != NULL) { 2458 /* 2459 * Prevent any future allocations. 2460 */ 2461 metaslab_group_passivate(mg); 2462 (void) spa_vdev_state_exit(spa, vd, 0); 2463 2464 error = spa_offline_log(spa); 2465 2466 spa_vdev_state_enter(spa, SCL_ALLOC); 2467 2468 /* 2469 * Check to see if the config has changed. 2470 */ 2471 if (error || generation != spa->spa_config_generation) { 2472 metaslab_group_activate(mg); 2473 if (error) 2474 return (spa_vdev_state_exit(spa, 2475 vd, error)); 2476 (void) spa_vdev_state_exit(spa, vd, 0); 2477 goto top; 2478 } 2479 ASSERT0(tvd->vdev_stat.vs_alloc); 2480 } 2481 2482 /* 2483 * Offline this device and reopen its top-level vdev. 2484 * If the top-level vdev is a log device then just offline 2485 * it. Otherwise, if this action results in the top-level 2486 * vdev becoming unusable, undo it and fail the request. 2487 */ 2488 vd->vdev_offline = B_TRUE; 2489 vdev_reopen(tvd); 2490 2491 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2492 vdev_is_dead(tvd)) { 2493 vd->vdev_offline = B_FALSE; 2494 vdev_reopen(tvd); 2495 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2496 } 2497 2498 /* 2499 * Add the device back into the metaslab rotor so that 2500 * once we online the device it's open for business. 2501 */ 2502 if (tvd->vdev_islog && mg != NULL) 2503 metaslab_group_activate(mg); 2504 } 2505 2506 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2507 2508 return (spa_vdev_state_exit(spa, vd, 0)); 2509 } 2510 2511 int 2512 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2513 { 2514 int error; 2515 2516 mutex_enter(&spa->spa_vdev_top_lock); 2517 error = vdev_offline_locked(spa, guid, flags); 2518 mutex_exit(&spa->spa_vdev_top_lock); 2519 2520 return (error); 2521 } 2522 2523 /* 2524 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2525 * vdev_offline(), we assume the spa config is locked. We also clear all 2526 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2527 */ 2528 void 2529 vdev_clear(spa_t *spa, vdev_t *vd) 2530 { 2531 vdev_t *rvd = spa->spa_root_vdev; 2532 2533 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2534 2535 if (vd == NULL) 2536 vd = rvd; 2537 2538 vd->vdev_stat.vs_read_errors = 0; 2539 vd->vdev_stat.vs_write_errors = 0; 2540 vd->vdev_stat.vs_checksum_errors = 0; 2541 2542 for (int c = 0; c < vd->vdev_children; c++) 2543 vdev_clear(spa, vd->vdev_child[c]); 2544 2545 /* 2546 * If we're in the FAULTED state or have experienced failed I/O, then 2547 * clear the persistent state and attempt to reopen the device. We 2548 * also mark the vdev config dirty, so that the new faulted state is 2549 * written out to disk. 2550 */ 2551 if (vd->vdev_faulted || vd->vdev_degraded || 2552 !vdev_readable(vd) || !vdev_writeable(vd)) { 2553 2554 /* 2555 * When reopening in reponse to a clear event, it may be due to 2556 * a fmadm repair request. In this case, if the device is 2557 * still broken, we want to still post the ereport again. 2558 */ 2559 vd->vdev_forcefault = B_TRUE; 2560 2561 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2562 vd->vdev_cant_read = B_FALSE; 2563 vd->vdev_cant_write = B_FALSE; 2564 2565 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2566 2567 vd->vdev_forcefault = B_FALSE; 2568 2569 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2570 vdev_state_dirty(vd->vdev_top); 2571 2572 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2573 spa_async_request(spa, SPA_ASYNC_RESILVER); 2574 2575 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2576 } 2577 2578 /* 2579 * When clearing a FMA-diagnosed fault, we always want to 2580 * unspare the device, as we assume that the original spare was 2581 * done in response to the FMA fault. 2582 */ 2583 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2584 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2585 vd->vdev_parent->vdev_child[0] == vd) 2586 vd->vdev_unspare = B_TRUE; 2587 } 2588 2589 boolean_t 2590 vdev_is_dead(vdev_t *vd) 2591 { 2592 /* 2593 * Holes and missing devices are always considered "dead". 2594 * This simplifies the code since we don't have to check for 2595 * these types of devices in the various code paths. 2596 * Instead we rely on the fact that we skip over dead devices 2597 * before issuing I/O to them. 2598 */ 2599 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2600 vd->vdev_ops == &vdev_missing_ops); 2601 } 2602 2603 boolean_t 2604 vdev_readable(vdev_t *vd) 2605 { 2606 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2607 } 2608 2609 boolean_t 2610 vdev_writeable(vdev_t *vd) 2611 { 2612 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2613 } 2614 2615 boolean_t 2616 vdev_allocatable(vdev_t *vd) 2617 { 2618 uint64_t state = vd->vdev_state; 2619 2620 /* 2621 * We currently allow allocations from vdevs which may be in the 2622 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2623 * fails to reopen then we'll catch it later when we're holding 2624 * the proper locks. Note that we have to get the vdev state 2625 * in a local variable because although it changes atomically, 2626 * we're asking two separate questions about it. 2627 */ 2628 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2629 !vd->vdev_cant_write && !vd->vdev_ishole); 2630 } 2631 2632 boolean_t 2633 vdev_accessible(vdev_t *vd, zio_t *zio) 2634 { 2635 ASSERT(zio->io_vd == vd); 2636 2637 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2638 return (B_FALSE); 2639 2640 if (zio->io_type == ZIO_TYPE_READ) 2641 return (!vd->vdev_cant_read); 2642 2643 if (zio->io_type == ZIO_TYPE_WRITE) 2644 return (!vd->vdev_cant_write); 2645 2646 return (B_TRUE); 2647 } 2648 2649 /* 2650 * Get statistics for the given vdev. 2651 */ 2652 void 2653 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2654 { 2655 spa_t *spa = vd->vdev_spa; 2656 vdev_t *rvd = spa->spa_root_vdev; 2657 2658 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2659 2660 mutex_enter(&vd->vdev_stat_lock); 2661 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2662 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2663 vs->vs_state = vd->vdev_state; 2664 vs->vs_rsize = vdev_get_min_asize(vd); 2665 if (vd->vdev_ops->vdev_op_leaf) 2666 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2667 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2668 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2669 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2670 } 2671 2672 /* 2673 * If we're getting stats on the root vdev, aggregate the I/O counts 2674 * over all top-level vdevs (i.e. the direct children of the root). 2675 */ 2676 if (vd == rvd) { 2677 for (int c = 0; c < rvd->vdev_children; c++) { 2678 vdev_t *cvd = rvd->vdev_child[c]; 2679 vdev_stat_t *cvs = &cvd->vdev_stat; 2680 2681 for (int t = 0; t < ZIO_TYPES; t++) { 2682 vs->vs_ops[t] += cvs->vs_ops[t]; 2683 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2684 } 2685 cvs->vs_scan_removing = cvd->vdev_removing; 2686 } 2687 } 2688 mutex_exit(&vd->vdev_stat_lock); 2689 } 2690 2691 void 2692 vdev_clear_stats(vdev_t *vd) 2693 { 2694 mutex_enter(&vd->vdev_stat_lock); 2695 vd->vdev_stat.vs_space = 0; 2696 vd->vdev_stat.vs_dspace = 0; 2697 vd->vdev_stat.vs_alloc = 0; 2698 mutex_exit(&vd->vdev_stat_lock); 2699 } 2700 2701 void 2702 vdev_scan_stat_init(vdev_t *vd) 2703 { 2704 vdev_stat_t *vs = &vd->vdev_stat; 2705 2706 for (int c = 0; c < vd->vdev_children; c++) 2707 vdev_scan_stat_init(vd->vdev_child[c]); 2708 2709 mutex_enter(&vd->vdev_stat_lock); 2710 vs->vs_scan_processed = 0; 2711 mutex_exit(&vd->vdev_stat_lock); 2712 } 2713 2714 void 2715 vdev_stat_update(zio_t *zio, uint64_t psize) 2716 { 2717 spa_t *spa = zio->io_spa; 2718 vdev_t *rvd = spa->spa_root_vdev; 2719 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2720 vdev_t *pvd; 2721 uint64_t txg = zio->io_txg; 2722 vdev_stat_t *vs = &vd->vdev_stat; 2723 zio_type_t type = zio->io_type; 2724 int flags = zio->io_flags; 2725 2726 /* 2727 * If this i/o is a gang leader, it didn't do any actual work. 2728 */ 2729 if (zio->io_gang_tree) 2730 return; 2731 2732 if (zio->io_error == 0) { 2733 /* 2734 * If this is a root i/o, don't count it -- we've already 2735 * counted the top-level vdevs, and vdev_get_stats() will 2736 * aggregate them when asked. This reduces contention on 2737 * the root vdev_stat_lock and implicitly handles blocks 2738 * that compress away to holes, for which there is no i/o. 2739 * (Holes never create vdev children, so all the counters 2740 * remain zero, which is what we want.) 2741 * 2742 * Note: this only applies to successful i/o (io_error == 0) 2743 * because unlike i/o counts, errors are not additive. 2744 * When reading a ditto block, for example, failure of 2745 * one top-level vdev does not imply a root-level error. 2746 */ 2747 if (vd == rvd) 2748 return; 2749 2750 ASSERT(vd == zio->io_vd); 2751 2752 if (flags & ZIO_FLAG_IO_BYPASS) 2753 return; 2754 2755 mutex_enter(&vd->vdev_stat_lock); 2756 2757 if (flags & ZIO_FLAG_IO_REPAIR) { 2758 if (flags & ZIO_FLAG_SCAN_THREAD) { 2759 dsl_scan_phys_t *scn_phys = 2760 &spa->spa_dsl_pool->dp_scan->scn_phys; 2761 uint64_t *processed = &scn_phys->scn_processed; 2762 2763 /* XXX cleanup? */ 2764 if (vd->vdev_ops->vdev_op_leaf) 2765 atomic_add_64(processed, psize); 2766 vs->vs_scan_processed += psize; 2767 } 2768 2769 if (flags & ZIO_FLAG_SELF_HEAL) 2770 vs->vs_self_healed += psize; 2771 } 2772 2773 vs->vs_ops[type]++; 2774 vs->vs_bytes[type] += psize; 2775 2776 mutex_exit(&vd->vdev_stat_lock); 2777 return; 2778 } 2779 2780 if (flags & ZIO_FLAG_SPECULATIVE) 2781 return; 2782 2783 /* 2784 * If this is an I/O error that is going to be retried, then ignore the 2785 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2786 * hard errors, when in reality they can happen for any number of 2787 * innocuous reasons (bus resets, MPxIO link failure, etc). 2788 */ 2789 if (zio->io_error == EIO && 2790 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2791 return; 2792 2793 /* 2794 * Intent logs writes won't propagate their error to the root 2795 * I/O so don't mark these types of failures as pool-level 2796 * errors. 2797 */ 2798 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2799 return; 2800 2801 mutex_enter(&vd->vdev_stat_lock); 2802 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2803 if (zio->io_error == ECKSUM) 2804 vs->vs_checksum_errors++; 2805 else 2806 vs->vs_read_errors++; 2807 } 2808 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2809 vs->vs_write_errors++; 2810 mutex_exit(&vd->vdev_stat_lock); 2811 2812 if (type == ZIO_TYPE_WRITE && txg != 0 && 2813 (!(flags & ZIO_FLAG_IO_REPAIR) || 2814 (flags & ZIO_FLAG_SCAN_THREAD) || 2815 spa->spa_claiming)) { 2816 /* 2817 * This is either a normal write (not a repair), or it's 2818 * a repair induced by the scrub thread, or it's a repair 2819 * made by zil_claim() during spa_load() in the first txg. 2820 * In the normal case, we commit the DTL change in the same 2821 * txg as the block was born. In the scrub-induced repair 2822 * case, we know that scrubs run in first-pass syncing context, 2823 * so we commit the DTL change in spa_syncing_txg(spa). 2824 * In the zil_claim() case, we commit in spa_first_txg(spa). 2825 * 2826 * We currently do not make DTL entries for failed spontaneous 2827 * self-healing writes triggered by normal (non-scrubbing) 2828 * reads, because we have no transactional context in which to 2829 * do so -- and it's not clear that it'd be desirable anyway. 2830 */ 2831 if (vd->vdev_ops->vdev_op_leaf) { 2832 uint64_t commit_txg = txg; 2833 if (flags & ZIO_FLAG_SCAN_THREAD) { 2834 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2835 ASSERT(spa_sync_pass(spa) == 1); 2836 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2837 commit_txg = spa_syncing_txg(spa); 2838 } else if (spa->spa_claiming) { 2839 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2840 commit_txg = spa_first_txg(spa); 2841 } 2842 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2843 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2844 return; 2845 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2846 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2847 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2848 } 2849 if (vd != rvd) 2850 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2851 } 2852 } 2853 2854 /* 2855 * Update the in-core space usage stats for this vdev, its metaslab class, 2856 * and the root vdev. 2857 */ 2858 void 2859 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2860 int64_t space_delta) 2861 { 2862 int64_t dspace_delta = space_delta; 2863 spa_t *spa = vd->vdev_spa; 2864 vdev_t *rvd = spa->spa_root_vdev; 2865 metaslab_group_t *mg = vd->vdev_mg; 2866 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2867 2868 ASSERT(vd == vd->vdev_top); 2869 2870 /* 2871 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2872 * factor. We must calculate this here and not at the root vdev 2873 * because the root vdev's psize-to-asize is simply the max of its 2874 * childrens', thus not accurate enough for us. 2875 */ 2876 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2877 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2878 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2879 vd->vdev_deflate_ratio; 2880 2881 mutex_enter(&vd->vdev_stat_lock); 2882 vd->vdev_stat.vs_alloc += alloc_delta; 2883 vd->vdev_stat.vs_space += space_delta; 2884 vd->vdev_stat.vs_dspace += dspace_delta; 2885 mutex_exit(&vd->vdev_stat_lock); 2886 2887 if (mc == spa_normal_class(spa)) { 2888 mutex_enter(&rvd->vdev_stat_lock); 2889 rvd->vdev_stat.vs_alloc += alloc_delta; 2890 rvd->vdev_stat.vs_space += space_delta; 2891 rvd->vdev_stat.vs_dspace += dspace_delta; 2892 mutex_exit(&rvd->vdev_stat_lock); 2893 } 2894 2895 if (mc != NULL) { 2896 ASSERT(rvd == vd->vdev_parent); 2897 ASSERT(vd->vdev_ms_count != 0); 2898 2899 metaslab_class_space_update(mc, 2900 alloc_delta, defer_delta, space_delta, dspace_delta); 2901 } 2902 } 2903 2904 /* 2905 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2906 * so that it will be written out next time the vdev configuration is synced. 2907 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2908 */ 2909 void 2910 vdev_config_dirty(vdev_t *vd) 2911 { 2912 spa_t *spa = vd->vdev_spa; 2913 vdev_t *rvd = spa->spa_root_vdev; 2914 int c; 2915 2916 ASSERT(spa_writeable(spa)); 2917 2918 /* 2919 * If this is an aux vdev (as with l2cache and spare devices), then we 2920 * update the vdev config manually and set the sync flag. 2921 */ 2922 if (vd->vdev_aux != NULL) { 2923 spa_aux_vdev_t *sav = vd->vdev_aux; 2924 nvlist_t **aux; 2925 uint_t naux; 2926 2927 for (c = 0; c < sav->sav_count; c++) { 2928 if (sav->sav_vdevs[c] == vd) 2929 break; 2930 } 2931 2932 if (c == sav->sav_count) { 2933 /* 2934 * We're being removed. There's nothing more to do. 2935 */ 2936 ASSERT(sav->sav_sync == B_TRUE); 2937 return; 2938 } 2939 2940 sav->sav_sync = B_TRUE; 2941 2942 if (nvlist_lookup_nvlist_array(sav->sav_config, 2943 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2944 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2945 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2946 } 2947 2948 ASSERT(c < naux); 2949 2950 /* 2951 * Setting the nvlist in the middle if the array is a little 2952 * sketchy, but it will work. 2953 */ 2954 nvlist_free(aux[c]); 2955 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2956 2957 return; 2958 } 2959 2960 /* 2961 * The dirty list is protected by the SCL_CONFIG lock. The caller 2962 * must either hold SCL_CONFIG as writer, or must be the sync thread 2963 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2964 * so this is sufficient to ensure mutual exclusion. 2965 */ 2966 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2967 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2968 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2969 2970 if (vd == rvd) { 2971 for (c = 0; c < rvd->vdev_children; c++) 2972 vdev_config_dirty(rvd->vdev_child[c]); 2973 } else { 2974 ASSERT(vd == vd->vdev_top); 2975 2976 if (!list_link_active(&vd->vdev_config_dirty_node) && 2977 !vd->vdev_ishole) 2978 list_insert_head(&spa->spa_config_dirty_list, vd); 2979 } 2980 } 2981 2982 void 2983 vdev_config_clean(vdev_t *vd) 2984 { 2985 spa_t *spa = vd->vdev_spa; 2986 2987 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2988 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2989 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2990 2991 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2992 list_remove(&spa->spa_config_dirty_list, vd); 2993 } 2994 2995 /* 2996 * Mark a top-level vdev's state as dirty, so that the next pass of 2997 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2998 * the state changes from larger config changes because they require 2999 * much less locking, and are often needed for administrative actions. 3000 */ 3001 void 3002 vdev_state_dirty(vdev_t *vd) 3003 { 3004 spa_t *spa = vd->vdev_spa; 3005 3006 ASSERT(spa_writeable(spa)); 3007 ASSERT(vd == vd->vdev_top); 3008 3009 /* 3010 * The state list is protected by the SCL_STATE lock. The caller 3011 * must either hold SCL_STATE as writer, or must be the sync thread 3012 * (which holds SCL_STATE as reader). There's only one sync thread, 3013 * so this is sufficient to ensure mutual exclusion. 3014 */ 3015 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3016 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3017 spa_config_held(spa, SCL_STATE, RW_READER))); 3018 3019 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3020 list_insert_head(&spa->spa_state_dirty_list, vd); 3021 } 3022 3023 void 3024 vdev_state_clean(vdev_t *vd) 3025 { 3026 spa_t *spa = vd->vdev_spa; 3027 3028 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3029 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3030 spa_config_held(spa, SCL_STATE, RW_READER))); 3031 3032 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3033 list_remove(&spa->spa_state_dirty_list, vd); 3034 } 3035 3036 /* 3037 * Propagate vdev state up from children to parent. 3038 */ 3039 void 3040 vdev_propagate_state(vdev_t *vd) 3041 { 3042 spa_t *spa = vd->vdev_spa; 3043 vdev_t *rvd = spa->spa_root_vdev; 3044 int degraded = 0, faulted = 0; 3045 int corrupted = 0; 3046 vdev_t *child; 3047 3048 if (vd->vdev_children > 0) { 3049 for (int c = 0; c < vd->vdev_children; c++) { 3050 child = vd->vdev_child[c]; 3051 3052 /* 3053 * Don't factor holes into the decision. 3054 */ 3055 if (child->vdev_ishole) 3056 continue; 3057 3058 if (!vdev_readable(child) || 3059 (!vdev_writeable(child) && spa_writeable(spa))) { 3060 /* 3061 * Root special: if there is a top-level log 3062 * device, treat the root vdev as if it were 3063 * degraded. 3064 */ 3065 if (child->vdev_islog && vd == rvd) 3066 degraded++; 3067 else 3068 faulted++; 3069 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3070 degraded++; 3071 } 3072 3073 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3074 corrupted++; 3075 } 3076 3077 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3078 3079 /* 3080 * Root special: if there is a top-level vdev that cannot be 3081 * opened due to corrupted metadata, then propagate the root 3082 * vdev's aux state as 'corrupt' rather than 'insufficient 3083 * replicas'. 3084 */ 3085 if (corrupted && vd == rvd && 3086 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3087 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3088 VDEV_AUX_CORRUPT_DATA); 3089 } 3090 3091 if (vd->vdev_parent) 3092 vdev_propagate_state(vd->vdev_parent); 3093 } 3094 3095 /* 3096 * Set a vdev's state. If this is during an open, we don't update the parent 3097 * state, because we're in the process of opening children depth-first. 3098 * Otherwise, we propagate the change to the parent. 3099 * 3100 * If this routine places a device in a faulted state, an appropriate ereport is 3101 * generated. 3102 */ 3103 void 3104 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3105 { 3106 uint64_t save_state; 3107 spa_t *spa = vd->vdev_spa; 3108 3109 if (state == vd->vdev_state) { 3110 vd->vdev_stat.vs_aux = aux; 3111 return; 3112 } 3113 3114 save_state = vd->vdev_state; 3115 3116 vd->vdev_state = state; 3117 vd->vdev_stat.vs_aux = aux; 3118 3119 /* 3120 * If we are setting the vdev state to anything but an open state, then 3121 * always close the underlying device unless the device has requested 3122 * a delayed close (i.e. we're about to remove or fault the device). 3123 * Otherwise, we keep accessible but invalid devices open forever. 3124 * We don't call vdev_close() itself, because that implies some extra 3125 * checks (offline, etc) that we don't want here. This is limited to 3126 * leaf devices, because otherwise closing the device will affect other 3127 * children. 3128 */ 3129 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3130 vd->vdev_ops->vdev_op_leaf) 3131 vd->vdev_ops->vdev_op_close(vd); 3132 3133 /* 3134 * If we have brought this vdev back into service, we need 3135 * to notify fmd so that it can gracefully repair any outstanding 3136 * cases due to a missing device. We do this in all cases, even those 3137 * that probably don't correlate to a repaired fault. This is sure to 3138 * catch all cases, and we let the zfs-retire agent sort it out. If 3139 * this is a transient state it's OK, as the retire agent will 3140 * double-check the state of the vdev before repairing it. 3141 */ 3142 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3143 vd->vdev_prevstate != state) 3144 zfs_post_state_change(spa, vd); 3145 3146 if (vd->vdev_removed && 3147 state == VDEV_STATE_CANT_OPEN && 3148 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3149 /* 3150 * If the previous state is set to VDEV_STATE_REMOVED, then this 3151 * device was previously marked removed and someone attempted to 3152 * reopen it. If this failed due to a nonexistent device, then 3153 * keep the device in the REMOVED state. We also let this be if 3154 * it is one of our special test online cases, which is only 3155 * attempting to online the device and shouldn't generate an FMA 3156 * fault. 3157 */ 3158 vd->vdev_state = VDEV_STATE_REMOVED; 3159 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3160 } else if (state == VDEV_STATE_REMOVED) { 3161 vd->vdev_removed = B_TRUE; 3162 } else if (state == VDEV_STATE_CANT_OPEN) { 3163 /* 3164 * If we fail to open a vdev during an import or recovery, we 3165 * mark it as "not available", which signifies that it was 3166 * never there to begin with. Failure to open such a device 3167 * is not considered an error. 3168 */ 3169 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3170 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3171 vd->vdev_ops->vdev_op_leaf) 3172 vd->vdev_not_present = 1; 3173 3174 /* 3175 * Post the appropriate ereport. If the 'prevstate' field is 3176 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3177 * that this is part of a vdev_reopen(). In this case, we don't 3178 * want to post the ereport if the device was already in the 3179 * CANT_OPEN state beforehand. 3180 * 3181 * If the 'checkremove' flag is set, then this is an attempt to 3182 * online the device in response to an insertion event. If we 3183 * hit this case, then we have detected an insertion event for a 3184 * faulted or offline device that wasn't in the removed state. 3185 * In this scenario, we don't post an ereport because we are 3186 * about to replace the device, or attempt an online with 3187 * vdev_forcefault, which will generate the fault for us. 3188 */ 3189 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3190 !vd->vdev_not_present && !vd->vdev_checkremove && 3191 vd != spa->spa_root_vdev) { 3192 const char *class; 3193 3194 switch (aux) { 3195 case VDEV_AUX_OPEN_FAILED: 3196 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3197 break; 3198 case VDEV_AUX_CORRUPT_DATA: 3199 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3200 break; 3201 case VDEV_AUX_NO_REPLICAS: 3202 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3203 break; 3204 case VDEV_AUX_BAD_GUID_SUM: 3205 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3206 break; 3207 case VDEV_AUX_TOO_SMALL: 3208 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3209 break; 3210 case VDEV_AUX_BAD_LABEL: 3211 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3212 break; 3213 default: 3214 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3215 } 3216 3217 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3218 } 3219 3220 /* Erase any notion of persistent removed state */ 3221 vd->vdev_removed = B_FALSE; 3222 } else { 3223 vd->vdev_removed = B_FALSE; 3224 } 3225 3226 if (!isopen && vd->vdev_parent) 3227 vdev_propagate_state(vd->vdev_parent); 3228 } 3229 3230 /* 3231 * Check the vdev configuration to ensure that it's capable of supporting 3232 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3233 * In addition, only a single top-level vdev is allowed and none of the leaves 3234 * can be wholedisks. 3235 */ 3236 boolean_t 3237 vdev_is_bootable(vdev_t *vd) 3238 { 3239 if (!vd->vdev_ops->vdev_op_leaf) { 3240 char *vdev_type = vd->vdev_ops->vdev_op_type; 3241 3242 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3243 vd->vdev_children > 1) { 3244 return (B_FALSE); 3245 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3246 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3247 return (B_FALSE); 3248 } 3249 } 3250 3251 for (int c = 0; c < vd->vdev_children; c++) { 3252 if (!vdev_is_bootable(vd->vdev_child[c])) 3253 return (B_FALSE); 3254 } 3255 return (B_TRUE); 3256 } 3257 3258 /* 3259 * Load the state from the original vdev tree (ovd) which 3260 * we've retrieved from the MOS config object. If the original 3261 * vdev was offline or faulted then we transfer that state to the 3262 * device in the current vdev tree (nvd). 3263 */ 3264 void 3265 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3266 { 3267 spa_t *spa = nvd->vdev_spa; 3268 3269 ASSERT(nvd->vdev_top->vdev_islog); 3270 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3271 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3272 3273 for (int c = 0; c < nvd->vdev_children; c++) 3274 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3275 3276 if (nvd->vdev_ops->vdev_op_leaf) { 3277 /* 3278 * Restore the persistent vdev state 3279 */ 3280 nvd->vdev_offline = ovd->vdev_offline; 3281 nvd->vdev_faulted = ovd->vdev_faulted; 3282 nvd->vdev_degraded = ovd->vdev_degraded; 3283 nvd->vdev_removed = ovd->vdev_removed; 3284 } 3285 } 3286 3287 /* 3288 * Determine if a log device has valid content. If the vdev was 3289 * removed or faulted in the MOS config then we know that 3290 * the content on the log device has already been written to the pool. 3291 */ 3292 boolean_t 3293 vdev_log_state_valid(vdev_t *vd) 3294 { 3295 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3296 !vd->vdev_removed) 3297 return (B_TRUE); 3298 3299 for (int c = 0; c < vd->vdev_children; c++) 3300 if (vdev_log_state_valid(vd->vdev_child[c])) 3301 return (B_TRUE); 3302 3303 return (B_FALSE); 3304 } 3305 3306 /* 3307 * Expand a vdev if possible. 3308 */ 3309 void 3310 vdev_expand(vdev_t *vd, uint64_t txg) 3311 { 3312 ASSERT(vd->vdev_top == vd); 3313 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3314 3315 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3316 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3317 vdev_config_dirty(vd); 3318 } 3319 } 3320 3321 /* 3322 * Split a vdev. 3323 */ 3324 void 3325 vdev_split(vdev_t *vd) 3326 { 3327 vdev_t *cvd, *pvd = vd->vdev_parent; 3328 3329 vdev_remove_child(pvd, vd); 3330 vdev_compact_children(pvd); 3331 3332 cvd = pvd->vdev_child[0]; 3333 if (pvd->vdev_children == 1) { 3334 vdev_remove_parent(cvd); 3335 cvd->vdev_splitting = B_TRUE; 3336 } 3337 vdev_propagate_state(cvd); 3338 } 3339 3340 void 3341 vdev_deadman(vdev_t *vd) 3342 { 3343 for (int c = 0; c < vd->vdev_children; c++) { 3344 vdev_t *cvd = vd->vdev_child[c]; 3345 3346 vdev_deadman(cvd); 3347 } 3348 3349 if (vd->vdev_ops->vdev_op_leaf) { 3350 vdev_queue_t *vq = &vd->vdev_queue; 3351 3352 mutex_enter(&vq->vq_lock); 3353 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3354 spa_t *spa = vd->vdev_spa; 3355 zio_t *fio; 3356 uint64_t delta; 3357 3358 /* 3359 * Look at the head of all the pending queues, 3360 * if any I/O has been outstanding for longer than 3361 * the spa_deadman_synctime we panic the system. 3362 */ 3363 fio = avl_first(&vq->vq_active_tree); 3364 delta = gethrtime() - fio->io_timestamp; 3365 if (delta > spa_deadman_synctime(spa)) { 3366 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3367 "delta %lluns, last io %lluns", 3368 fio->io_timestamp, delta, 3369 vq->vq_io_complete_ts); 3370 fm_panic("I/O to pool '%s' appears to be " 3371 "hung.", spa_name(spa)); 3372 } 3373 } 3374 mutex_exit(&vq->vq_lock); 3375 } 3376 } 3377