1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/metaslab.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/arc.h> 44 #include <sys/sunddi.h> 45 #include <sys/zfeature.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_znode.h> 48 #include "zfs_namecheck.h" 49 #include "zfs_prop.h" 50 51 /* 52 * Filesystem and Snapshot Limits 53 * ------------------------------ 54 * 55 * These limits are used to restrict the number of filesystems and/or snapshots 56 * that can be created at a given level in the tree or below. A typical 57 * use-case is with a delegated dataset where the administrator wants to ensure 58 * that a user within the zone is not creating too many additional filesystems 59 * or snapshots, even though they're not exceeding their space quota. 60 * 61 * The filesystem and snapshot counts are stored as extensible properties. This 62 * capability is controlled by a feature flag and must be enabled to be used. 63 * Once enabled, the feature is not active until the first limit is set. At 64 * that point, future operations to create/destroy filesystems or snapshots 65 * will validate and update the counts. 66 * 67 * Because the count properties will not exist before the feature is active, 68 * the counts are updated when a limit is first set on an uninitialized 69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 72 * snapshot count properties on a node indicate uninitialized counts on that 73 * node.) When first setting a limit on an uninitialized node, the code starts 74 * at the filesystem with the new limit and descends into all sub-filesystems 75 * to add the count properties. 76 * 77 * In practice this is lightweight since a limit is typically set when the 78 * filesystem is created and thus has no children. Once valid, changing the 79 * limit value won't require a re-traversal since the counts are already valid. 80 * When recursively fixing the counts, if a node with a limit is encountered 81 * during the descent, the counts are known to be valid and there is no need to 82 * descend into that filesystem's children. The counts on filesystems above the 83 * one with the new limit will still be uninitialized, unless a limit is 84 * eventually set on one of those filesystems. The counts are always recursively 85 * updated when a limit is set on a dataset, unless there is already a limit. 86 * When a new limit value is set on a filesystem with an existing limit, it is 87 * possible for the new limit to be less than the current count at that level 88 * since a user who can change the limit is also allowed to exceed the limit. 89 * 90 * Once the feature is active, then whenever a filesystem or snapshot is 91 * created, the code recurses up the tree, validating the new count against the 92 * limit at each initialized level. In practice, most levels will not have a 93 * limit set. If there is a limit at any initialized level up the tree, the 94 * check must pass or the creation will fail. Likewise, when a filesystem or 95 * snapshot is destroyed, the counts are recursively adjusted all the way up 96 * the initizized nodes in the tree. Renaming a filesystem into different point 97 * in the tree will first validate, then update the counts on each branch up to 98 * the common ancestor. A receive will also validate the counts and then update 99 * them. 100 * 101 * An exception to the above behavior is that the limit is not enforced if the 102 * user has permission to modify the limit. This is primarily so that 103 * recursive snapshots in the global zone always work. We want to prevent a 104 * denial-of-service in which a lower level delegated dataset could max out its 105 * limit and thus block recursive snapshots from being taken in the global zone. 106 * Because of this, it is possible for the snapshot count to be over the limit 107 * and snapshots taken in the global zone could cause a lower level dataset to 108 * hit or exceed its limit. The administrator taking the global zone recursive 109 * snapshot should be aware of this side-effect and behave accordingly. 110 * For consistency, the filesystem limit is also not enforced if the user can 111 * modify the limit. 112 * 113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 116 * dsl_dir_init_fs_ss_count(). 117 * 118 * There is a special case when we receive a filesystem that already exists. In 119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 120 * never update the filesystem counts for temporary clones. 121 * 122 * Likewise, we do not update the snapshot counts for temporary snapshots, 123 * such as those created by zfs diff. 124 */ 125 126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 127 128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 129 130 static void 131 dsl_dir_evict(void *dbu) 132 { 133 dsl_dir_t *dd = dbu; 134 dsl_pool_t *dp = dd->dd_pool; 135 int t; 136 137 dd->dd_dbuf = NULL; 138 139 for (t = 0; t < TXG_SIZE; t++) { 140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 141 ASSERT(dd->dd_tempreserved[t] == 0); 142 ASSERT(dd->dd_space_towrite[t] == 0); 143 } 144 145 if (dd->dd_parent) 146 dsl_dir_async_rele(dd->dd_parent, dd); 147 148 spa_async_close(dd->dd_pool->dp_spa, dd); 149 150 dsl_prop_fini(dd); 151 mutex_destroy(&dd->dd_lock); 152 kmem_free(dd, sizeof (dsl_dir_t)); 153 } 154 155 int 156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 157 const char *tail, void *tag, dsl_dir_t **ddp) 158 { 159 dmu_buf_t *dbuf; 160 dsl_dir_t *dd; 161 int err; 162 163 ASSERT(dsl_pool_config_held(dp)); 164 165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 166 if (err != 0) 167 return (err); 168 dd = dmu_buf_get_user(dbuf); 169 #ifdef ZFS_DEBUG 170 { 171 dmu_object_info_t doi; 172 dmu_object_info_from_db(dbuf, &doi); 173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 175 } 176 #endif 177 if (dd == NULL) { 178 dsl_dir_t *winner; 179 180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 181 dd->dd_object = ddobj; 182 dd->dd_dbuf = dbuf; 183 dd->dd_pool = dp; 184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 185 dsl_prop_init(dd); 186 187 dsl_dir_snap_cmtime_update(dd); 188 189 if (dsl_dir_phys(dd)->dd_parent_obj) { 190 err = dsl_dir_hold_obj(dp, 191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 192 &dd->dd_parent); 193 if (err != 0) 194 goto errout; 195 if (tail) { 196 #ifdef ZFS_DEBUG 197 uint64_t foundobj; 198 199 err = zap_lookup(dp->dp_meta_objset, 200 dsl_dir_phys(dd->dd_parent)-> 201 dd_child_dir_zapobj, tail, 202 sizeof (foundobj), 1, &foundobj); 203 ASSERT(err || foundobj == ddobj); 204 #endif 205 (void) strcpy(dd->dd_myname, tail); 206 } else { 207 err = zap_value_search(dp->dp_meta_objset, 208 dsl_dir_phys(dd->dd_parent)-> 209 dd_child_dir_zapobj, 210 ddobj, 0, dd->dd_myname); 211 } 212 if (err != 0) 213 goto errout; 214 } else { 215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 216 } 217 218 if (dsl_dir_is_clone(dd)) { 219 dmu_buf_t *origin_bonus; 220 dsl_dataset_phys_t *origin_phys; 221 222 /* 223 * We can't open the origin dataset, because 224 * that would require opening this dsl_dir. 225 * Just look at its phys directly instead. 226 */ 227 err = dmu_bonus_hold(dp->dp_meta_objset, 228 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 229 &origin_bonus); 230 if (err != 0) 231 goto errout; 232 origin_phys = origin_bonus->db_data; 233 dd->dd_origin_txg = 234 origin_phys->ds_creation_txg; 235 dmu_buf_rele(origin_bonus, FTAG); 236 } 237 238 dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf); 239 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 240 if (winner != NULL) { 241 if (dd->dd_parent) 242 dsl_dir_rele(dd->dd_parent, dd); 243 dsl_prop_fini(dd); 244 mutex_destroy(&dd->dd_lock); 245 kmem_free(dd, sizeof (dsl_dir_t)); 246 dd = winner; 247 } else { 248 spa_open_ref(dp->dp_spa, dd); 249 } 250 } 251 252 /* 253 * The dsl_dir_t has both open-to-close and instantiate-to-evict 254 * holds on the spa. We need the open-to-close holds because 255 * otherwise the spa_refcnt wouldn't change when we open a 256 * dir which the spa also has open, so we could incorrectly 257 * think it was OK to unload/export/destroy the pool. We need 258 * the instantiate-to-evict hold because the dsl_dir_t has a 259 * pointer to the dd_pool, which has a pointer to the spa_t. 260 */ 261 spa_open_ref(dp->dp_spa, tag); 262 ASSERT3P(dd->dd_pool, ==, dp); 263 ASSERT3U(dd->dd_object, ==, ddobj); 264 ASSERT3P(dd->dd_dbuf, ==, dbuf); 265 *ddp = dd; 266 return (0); 267 268 errout: 269 if (dd->dd_parent) 270 dsl_dir_rele(dd->dd_parent, dd); 271 dsl_prop_fini(dd); 272 mutex_destroy(&dd->dd_lock); 273 kmem_free(dd, sizeof (dsl_dir_t)); 274 dmu_buf_rele(dbuf, tag); 275 return (err); 276 } 277 278 void 279 dsl_dir_rele(dsl_dir_t *dd, void *tag) 280 { 281 dprintf_dd(dd, "%s\n", ""); 282 spa_close(dd->dd_pool->dp_spa, tag); 283 dmu_buf_rele(dd->dd_dbuf, tag); 284 } 285 286 /* 287 * Remove a reference to the given dsl dir that is being asynchronously 288 * released. Async releases occur from a taskq performing eviction of 289 * dsl datasets and dirs. This process is identical to a normal release 290 * with the exception of using the async API for releasing the reference on 291 * the spa. 292 */ 293 void 294 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 295 { 296 dprintf_dd(dd, "%s\n", ""); 297 spa_async_close(dd->dd_pool->dp_spa, tag); 298 dmu_buf_rele(dd->dd_dbuf, tag); 299 } 300 301 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 302 void 303 dsl_dir_name(dsl_dir_t *dd, char *buf) 304 { 305 if (dd->dd_parent) { 306 dsl_dir_name(dd->dd_parent, buf); 307 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 308 ZFS_MAX_DATASET_NAME_LEN); 309 } else { 310 buf[0] = '\0'; 311 } 312 if (!MUTEX_HELD(&dd->dd_lock)) { 313 /* 314 * recursive mutex so that we can use 315 * dprintf_dd() with dd_lock held 316 */ 317 mutex_enter(&dd->dd_lock); 318 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 319 <, ZFS_MAX_DATASET_NAME_LEN); 320 mutex_exit(&dd->dd_lock); 321 } else { 322 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 323 <, ZFS_MAX_DATASET_NAME_LEN); 324 } 325 } 326 327 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 328 int 329 dsl_dir_namelen(dsl_dir_t *dd) 330 { 331 int result = 0; 332 333 if (dd->dd_parent) { 334 /* parent's name + 1 for the "/" */ 335 result = dsl_dir_namelen(dd->dd_parent) + 1; 336 } 337 338 if (!MUTEX_HELD(&dd->dd_lock)) { 339 /* see dsl_dir_name */ 340 mutex_enter(&dd->dd_lock); 341 result += strlen(dd->dd_myname); 342 mutex_exit(&dd->dd_lock); 343 } else { 344 result += strlen(dd->dd_myname); 345 } 346 347 return (result); 348 } 349 350 static int 351 getcomponent(const char *path, char *component, const char **nextp) 352 { 353 char *p; 354 355 if ((path == NULL) || (path[0] == '\0')) 356 return (SET_ERROR(ENOENT)); 357 /* This would be a good place to reserve some namespace... */ 358 p = strpbrk(path, "/@"); 359 if (p && (p[1] == '/' || p[1] == '@')) { 360 /* two separators in a row */ 361 return (SET_ERROR(EINVAL)); 362 } 363 if (p == NULL || p == path) { 364 /* 365 * if the first thing is an @ or /, it had better be an 366 * @ and it had better not have any more ats or slashes, 367 * and it had better have something after the @. 368 */ 369 if (p != NULL && 370 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 371 return (SET_ERROR(EINVAL)); 372 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 373 return (SET_ERROR(ENAMETOOLONG)); 374 (void) strcpy(component, path); 375 p = NULL; 376 } else if (p[0] == '/') { 377 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 378 return (SET_ERROR(ENAMETOOLONG)); 379 (void) strncpy(component, path, p - path); 380 component[p - path] = '\0'; 381 p++; 382 } else if (p[0] == '@') { 383 /* 384 * if the next separator is an @, there better not be 385 * any more slashes. 386 */ 387 if (strchr(path, '/')) 388 return (SET_ERROR(EINVAL)); 389 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 390 return (SET_ERROR(ENAMETOOLONG)); 391 (void) strncpy(component, path, p - path); 392 component[p - path] = '\0'; 393 } else { 394 panic("invalid p=%p", (void *)p); 395 } 396 *nextp = p; 397 return (0); 398 } 399 400 /* 401 * Return the dsl_dir_t, and possibly the last component which couldn't 402 * be found in *tail. The name must be in the specified dsl_pool_t. This 403 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 404 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 405 * (*tail)[0] == '@' means that the last component is a snapshot. 406 */ 407 int 408 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 409 dsl_dir_t **ddp, const char **tailp) 410 { 411 char buf[ZFS_MAX_DATASET_NAME_LEN]; 412 const char *spaname, *next, *nextnext = NULL; 413 int err; 414 dsl_dir_t *dd; 415 uint64_t ddobj; 416 417 err = getcomponent(name, buf, &next); 418 if (err != 0) 419 return (err); 420 421 /* Make sure the name is in the specified pool. */ 422 spaname = spa_name(dp->dp_spa); 423 if (strcmp(buf, spaname) != 0) 424 return (SET_ERROR(EXDEV)); 425 426 ASSERT(dsl_pool_config_held(dp)); 427 428 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 429 if (err != 0) { 430 return (err); 431 } 432 433 while (next != NULL) { 434 dsl_dir_t *child_dd; 435 err = getcomponent(next, buf, &nextnext); 436 if (err != 0) 437 break; 438 ASSERT(next[0] != '\0'); 439 if (next[0] == '@') 440 break; 441 dprintf("looking up %s in obj%lld\n", 442 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 443 444 err = zap_lookup(dp->dp_meta_objset, 445 dsl_dir_phys(dd)->dd_child_dir_zapobj, 446 buf, sizeof (ddobj), 1, &ddobj); 447 if (err != 0) { 448 if (err == ENOENT) 449 err = 0; 450 break; 451 } 452 453 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 454 if (err != 0) 455 break; 456 dsl_dir_rele(dd, tag); 457 dd = child_dd; 458 next = nextnext; 459 } 460 461 if (err != 0) { 462 dsl_dir_rele(dd, tag); 463 return (err); 464 } 465 466 /* 467 * It's an error if there's more than one component left, or 468 * tailp==NULL and there's any component left. 469 */ 470 if (next != NULL && 471 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 472 /* bad path name */ 473 dsl_dir_rele(dd, tag); 474 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 475 err = SET_ERROR(ENOENT); 476 } 477 if (tailp != NULL) 478 *tailp = next; 479 *ddp = dd; 480 return (err); 481 } 482 483 /* 484 * If the counts are already initialized for this filesystem and its 485 * descendants then do nothing, otherwise initialize the counts. 486 * 487 * The counts on this filesystem, and those below, may be uninitialized due to 488 * either the use of a pre-existing pool which did not support the 489 * filesystem/snapshot limit feature, or one in which the feature had not yet 490 * been enabled. 491 * 492 * Recursively descend the filesystem tree and update the filesystem/snapshot 493 * counts on each filesystem below, then update the cumulative count on the 494 * current filesystem. If the filesystem already has a count set on it, 495 * then we know that its counts, and the counts on the filesystems below it, 496 * are already correct, so we don't have to update this filesystem. 497 */ 498 static void 499 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 500 { 501 uint64_t my_fs_cnt = 0; 502 uint64_t my_ss_cnt = 0; 503 dsl_pool_t *dp = dd->dd_pool; 504 objset_t *os = dp->dp_meta_objset; 505 zap_cursor_t *zc; 506 zap_attribute_t *za; 507 dsl_dataset_t *ds; 508 509 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 510 ASSERT(dsl_pool_config_held(dp)); 511 ASSERT(dmu_tx_is_syncing(tx)); 512 513 dsl_dir_zapify(dd, tx); 514 515 /* 516 * If the filesystem count has already been initialized then we 517 * don't need to recurse down any further. 518 */ 519 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 520 return; 521 522 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 523 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 524 525 /* Iterate my child dirs */ 526 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 527 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 528 dsl_dir_t *chld_dd; 529 uint64_t count; 530 531 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 532 &chld_dd)); 533 534 /* 535 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 536 * temporary datasets. 537 */ 538 if (chld_dd->dd_myname[0] == '$' || 539 chld_dd->dd_myname[0] == '%') { 540 dsl_dir_rele(chld_dd, FTAG); 541 continue; 542 } 543 544 my_fs_cnt++; /* count this child */ 545 546 dsl_dir_init_fs_ss_count(chld_dd, tx); 547 548 VERIFY0(zap_lookup(os, chld_dd->dd_object, 549 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 550 my_fs_cnt += count; 551 VERIFY0(zap_lookup(os, chld_dd->dd_object, 552 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 553 my_ss_cnt += count; 554 555 dsl_dir_rele(chld_dd, FTAG); 556 } 557 zap_cursor_fini(zc); 558 /* Count my snapshots (we counted children's snapshots above) */ 559 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 560 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 561 562 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 563 zap_cursor_retrieve(zc, za) == 0; 564 zap_cursor_advance(zc)) { 565 /* Don't count temporary snapshots */ 566 if (za->za_name[0] != '%') 567 my_ss_cnt++; 568 } 569 zap_cursor_fini(zc); 570 571 dsl_dataset_rele(ds, FTAG); 572 573 kmem_free(zc, sizeof (zap_cursor_t)); 574 kmem_free(za, sizeof (zap_attribute_t)); 575 576 /* we're in a sync task, update counts */ 577 dmu_buf_will_dirty(dd->dd_dbuf, tx); 578 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 579 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 580 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 581 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 582 } 583 584 static int 585 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 586 { 587 char *ddname = (char *)arg; 588 dsl_pool_t *dp = dmu_tx_pool(tx); 589 dsl_dataset_t *ds; 590 dsl_dir_t *dd; 591 int error; 592 593 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 594 if (error != 0) 595 return (error); 596 597 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 598 dsl_dataset_rele(ds, FTAG); 599 return (SET_ERROR(ENOTSUP)); 600 } 601 602 dd = ds->ds_dir; 603 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 604 dsl_dir_is_zapified(dd) && 605 zap_contains(dp->dp_meta_objset, dd->dd_object, 606 DD_FIELD_FILESYSTEM_COUNT) == 0) { 607 dsl_dataset_rele(ds, FTAG); 608 return (SET_ERROR(EALREADY)); 609 } 610 611 dsl_dataset_rele(ds, FTAG); 612 return (0); 613 } 614 615 static void 616 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 617 { 618 char *ddname = (char *)arg; 619 dsl_pool_t *dp = dmu_tx_pool(tx); 620 dsl_dataset_t *ds; 621 spa_t *spa; 622 623 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 624 625 spa = dsl_dataset_get_spa(ds); 626 627 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 628 /* 629 * Since the feature was not active and we're now setting a 630 * limit, increment the feature-active counter so that the 631 * feature becomes active for the first time. 632 * 633 * We are already in a sync task so we can update the MOS. 634 */ 635 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 636 } 637 638 /* 639 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 640 * we need to ensure the counts are correct. Descend down the tree from 641 * this point and update all of the counts to be accurate. 642 */ 643 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 644 645 dsl_dataset_rele(ds, FTAG); 646 } 647 648 /* 649 * Make sure the feature is enabled and activate it if necessary. 650 * Since we're setting a limit, ensure the on-disk counts are valid. 651 * This is only called by the ioctl path when setting a limit value. 652 * 653 * We do not need to validate the new limit, since users who can change the 654 * limit are also allowed to exceed the limit. 655 */ 656 int 657 dsl_dir_activate_fs_ss_limit(const char *ddname) 658 { 659 int error; 660 661 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 662 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 663 ZFS_SPACE_CHECK_RESERVED); 664 665 if (error == EALREADY) 666 error = 0; 667 668 return (error); 669 } 670 671 /* 672 * Used to determine if the filesystem_limit or snapshot_limit should be 673 * enforced. We allow the limit to be exceeded if the user has permission to 674 * write the property value. We pass in the creds that we got in the open 675 * context since we will always be the GZ root in syncing context. We also have 676 * to handle the case where we are allowed to change the limit on the current 677 * dataset, but there may be another limit in the tree above. 678 * 679 * We can never modify these two properties within a non-global zone. In 680 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 681 * can't use that function since we are already holding the dp_config_rwlock. 682 * In addition, we already have the dd and dealing with snapshots is simplified 683 * in this code. 684 */ 685 686 typedef enum { 687 ENFORCE_ALWAYS, 688 ENFORCE_NEVER, 689 ENFORCE_ABOVE 690 } enforce_res_t; 691 692 static enforce_res_t 693 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 694 { 695 enforce_res_t enforce = ENFORCE_ALWAYS; 696 uint64_t obj; 697 dsl_dataset_t *ds; 698 uint64_t zoned; 699 700 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 701 prop == ZFS_PROP_SNAPSHOT_LIMIT); 702 703 #ifdef _KERNEL 704 if (crgetzoneid(cr) != GLOBAL_ZONEID) 705 return (ENFORCE_ALWAYS); 706 707 if (secpolicy_zfs(cr) == 0) 708 return (ENFORCE_NEVER); 709 #endif 710 711 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 712 return (ENFORCE_ALWAYS); 713 714 ASSERT(dsl_pool_config_held(dd->dd_pool)); 715 716 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 717 return (ENFORCE_ALWAYS); 718 719 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 720 /* Only root can access zoned fs's from the GZ */ 721 enforce = ENFORCE_ALWAYS; 722 } else { 723 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 724 enforce = ENFORCE_ABOVE; 725 } 726 727 dsl_dataset_rele(ds, FTAG); 728 return (enforce); 729 } 730 731 /* 732 * Check if adding additional child filesystem(s) would exceed any filesystem 733 * limits or adding additional snapshot(s) would exceed any snapshot limits. 734 * The prop argument indicates which limit to check. 735 * 736 * Note that all filesystem limits up to the root (or the highest 737 * initialized) filesystem or the given ancestor must be satisfied. 738 */ 739 int 740 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 741 dsl_dir_t *ancestor, cred_t *cr) 742 { 743 objset_t *os = dd->dd_pool->dp_meta_objset; 744 uint64_t limit, count; 745 char *count_prop; 746 enforce_res_t enforce; 747 int err = 0; 748 749 ASSERT(dsl_pool_config_held(dd->dd_pool)); 750 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 751 prop == ZFS_PROP_SNAPSHOT_LIMIT); 752 753 /* 754 * If we're allowed to change the limit, don't enforce the limit 755 * e.g. this can happen if a snapshot is taken by an administrative 756 * user in the global zone (i.e. a recursive snapshot by root). 757 * However, we must handle the case of delegated permissions where we 758 * are allowed to change the limit on the current dataset, but there 759 * is another limit in the tree above. 760 */ 761 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 762 if (enforce == ENFORCE_NEVER) 763 return (0); 764 765 /* 766 * e.g. if renaming a dataset with no snapshots, count adjustment 767 * is 0. 768 */ 769 if (delta == 0) 770 return (0); 771 772 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 773 /* 774 * We don't enforce the limit for temporary snapshots. This is 775 * indicated by a NULL cred_t argument. 776 */ 777 if (cr == NULL) 778 return (0); 779 780 count_prop = DD_FIELD_SNAPSHOT_COUNT; 781 } else { 782 count_prop = DD_FIELD_FILESYSTEM_COUNT; 783 } 784 785 /* 786 * If an ancestor has been provided, stop checking the limit once we 787 * hit that dir. We need this during rename so that we don't overcount 788 * the check once we recurse up to the common ancestor. 789 */ 790 if (ancestor == dd) 791 return (0); 792 793 /* 794 * If we hit an uninitialized node while recursing up the tree, we can 795 * stop since we know there is no limit here (or above). The counts are 796 * not valid on this node and we know we won't touch this node's counts. 797 */ 798 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 799 count_prop, sizeof (count), 1, &count) == ENOENT) 800 return (0); 801 802 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 803 B_FALSE); 804 if (err != 0) 805 return (err); 806 807 /* Is there a limit which we've hit? */ 808 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 809 return (SET_ERROR(EDQUOT)); 810 811 if (dd->dd_parent != NULL) 812 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 813 ancestor, cr); 814 815 return (err); 816 } 817 818 /* 819 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 820 * parents. When a new filesystem/snapshot is created, increment the count on 821 * all parents, and when a filesystem/snapshot is destroyed, decrement the 822 * count. 823 */ 824 void 825 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 826 dmu_tx_t *tx) 827 { 828 int err; 829 objset_t *os = dd->dd_pool->dp_meta_objset; 830 uint64_t count; 831 832 ASSERT(dsl_pool_config_held(dd->dd_pool)); 833 ASSERT(dmu_tx_is_syncing(tx)); 834 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 835 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 836 837 /* 838 * When we receive an incremental stream into a filesystem that already 839 * exists, a temporary clone is created. We don't count this temporary 840 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 841 * $MOS & $ORIGIN) objsets. 842 */ 843 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 844 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 845 return; 846 847 /* 848 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 849 */ 850 if (delta == 0) 851 return; 852 853 /* 854 * If we hit an uninitialized node while recursing up the tree, we can 855 * stop since we know the counts are not valid on this node and we 856 * know we shouldn't touch this node's counts. An uninitialized count 857 * on the node indicates that either the feature has not yet been 858 * activated or there are no limits on this part of the tree. 859 */ 860 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 861 prop, sizeof (count), 1, &count)) == ENOENT) 862 return; 863 VERIFY0(err); 864 865 count += delta; 866 /* Use a signed verify to make sure we're not neg. */ 867 VERIFY3S(count, >=, 0); 868 869 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 870 tx)); 871 872 /* Roll up this additional count into our ancestors */ 873 if (dd->dd_parent != NULL) 874 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 875 } 876 877 uint64_t 878 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 879 dmu_tx_t *tx) 880 { 881 objset_t *mos = dp->dp_meta_objset; 882 uint64_t ddobj; 883 dsl_dir_phys_t *ddphys; 884 dmu_buf_t *dbuf; 885 886 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 887 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 888 if (pds) { 889 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 890 name, sizeof (uint64_t), 1, &ddobj, tx)); 891 } else { 892 /* it's the root dir */ 893 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 894 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 895 } 896 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 897 dmu_buf_will_dirty(dbuf, tx); 898 ddphys = dbuf->db_data; 899 900 ddphys->dd_creation_time = gethrestime_sec(); 901 if (pds) { 902 ddphys->dd_parent_obj = pds->dd_object; 903 904 /* update the filesystem counts */ 905 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 906 } 907 ddphys->dd_props_zapobj = zap_create(mos, 908 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 909 ddphys->dd_child_dir_zapobj = zap_create(mos, 910 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 911 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 912 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 913 dmu_buf_rele(dbuf, FTAG); 914 915 return (ddobj); 916 } 917 918 boolean_t 919 dsl_dir_is_clone(dsl_dir_t *dd) 920 { 921 return (dsl_dir_phys(dd)->dd_origin_obj && 922 (dd->dd_pool->dp_origin_snap == NULL || 923 dsl_dir_phys(dd)->dd_origin_obj != 924 dd->dd_pool->dp_origin_snap->ds_object)); 925 } 926 927 void 928 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 929 { 930 mutex_enter(&dd->dd_lock); 931 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 932 dsl_dir_phys(dd)->dd_used_bytes); 933 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 934 dsl_dir_phys(dd)->dd_quota); 935 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 936 dsl_dir_phys(dd)->dd_reserved); 937 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 938 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 939 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 940 dsl_dir_phys(dd)->dd_compressed_bytes)); 941 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 942 dsl_dir_phys(dd)->dd_uncompressed_bytes); 943 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 944 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 945 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 946 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 947 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 948 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 949 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 950 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 951 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 952 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 953 } 954 mutex_exit(&dd->dd_lock); 955 956 if (dsl_dir_is_zapified(dd)) { 957 uint64_t count; 958 objset_t *os = dd->dd_pool->dp_meta_objset; 959 960 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 961 sizeof (count), 1, &count) == 0) { 962 dsl_prop_nvlist_add_uint64(nv, 963 ZFS_PROP_FILESYSTEM_COUNT, count); 964 } 965 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 966 sizeof (count), 1, &count) == 0) { 967 dsl_prop_nvlist_add_uint64(nv, 968 ZFS_PROP_SNAPSHOT_COUNT, count); 969 } 970 } 971 972 if (dsl_dir_is_clone(dd)) { 973 dsl_dataset_t *ds; 974 char buf[ZFS_MAX_DATASET_NAME_LEN]; 975 976 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 977 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 978 dsl_dataset_name(ds, buf); 979 dsl_dataset_rele(ds, FTAG); 980 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 981 } 982 } 983 984 void 985 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 986 { 987 dsl_pool_t *dp = dd->dd_pool; 988 989 ASSERT(dsl_dir_phys(dd)); 990 991 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 992 /* up the hold count until we can be written out */ 993 dmu_buf_add_ref(dd->dd_dbuf, dd); 994 } 995 } 996 997 static int64_t 998 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 999 { 1000 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1001 uint64_t new_accounted = 1002 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1003 return (new_accounted - old_accounted); 1004 } 1005 1006 void 1007 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1008 { 1009 ASSERT(dmu_tx_is_syncing(tx)); 1010 1011 mutex_enter(&dd->dd_lock); 1012 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1013 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1014 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1015 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1016 mutex_exit(&dd->dd_lock); 1017 1018 /* release the hold from dsl_dir_dirty */ 1019 dmu_buf_rele(dd->dd_dbuf, dd); 1020 } 1021 1022 static uint64_t 1023 dsl_dir_space_towrite(dsl_dir_t *dd) 1024 { 1025 uint64_t space = 0; 1026 int i; 1027 1028 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1029 1030 for (i = 0; i < TXG_SIZE; i++) { 1031 space += dd->dd_space_towrite[i&TXG_MASK]; 1032 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1033 } 1034 return (space); 1035 } 1036 1037 /* 1038 * How much space would dd have available if ancestor had delta applied 1039 * to it? If ondiskonly is set, we're only interested in what's 1040 * on-disk, not estimated pending changes. 1041 */ 1042 uint64_t 1043 dsl_dir_space_available(dsl_dir_t *dd, 1044 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1045 { 1046 uint64_t parentspace, myspace, quota, used; 1047 1048 /* 1049 * If there are no restrictions otherwise, assume we have 1050 * unlimited space available. 1051 */ 1052 quota = UINT64_MAX; 1053 parentspace = UINT64_MAX; 1054 1055 if (dd->dd_parent != NULL) { 1056 parentspace = dsl_dir_space_available(dd->dd_parent, 1057 ancestor, delta, ondiskonly); 1058 } 1059 1060 mutex_enter(&dd->dd_lock); 1061 if (dsl_dir_phys(dd)->dd_quota != 0) 1062 quota = dsl_dir_phys(dd)->dd_quota; 1063 used = dsl_dir_phys(dd)->dd_used_bytes; 1064 if (!ondiskonly) 1065 used += dsl_dir_space_towrite(dd); 1066 1067 if (dd->dd_parent == NULL) { 1068 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1069 quota = MIN(quota, poolsize); 1070 } 1071 1072 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1073 /* 1074 * We have some space reserved, in addition to what our 1075 * parent gave us. 1076 */ 1077 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1078 } 1079 1080 if (dd == ancestor) { 1081 ASSERT(delta <= 0); 1082 ASSERT(used >= -delta); 1083 used += delta; 1084 if (parentspace != UINT64_MAX) 1085 parentspace -= delta; 1086 } 1087 1088 if (used > quota) { 1089 /* over quota */ 1090 myspace = 0; 1091 } else { 1092 /* 1093 * the lesser of the space provided by our parent and 1094 * the space left in our quota 1095 */ 1096 myspace = MIN(parentspace, quota - used); 1097 } 1098 1099 mutex_exit(&dd->dd_lock); 1100 1101 return (myspace); 1102 } 1103 1104 struct tempreserve { 1105 list_node_t tr_node; 1106 dsl_dir_t *tr_ds; 1107 uint64_t tr_size; 1108 }; 1109 1110 static int 1111 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1112 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1113 dmu_tx_t *tx, boolean_t first) 1114 { 1115 uint64_t txg = tx->tx_txg; 1116 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1117 uint64_t deferred = 0; 1118 struct tempreserve *tr; 1119 int retval = EDQUOT; 1120 int txgidx = txg & TXG_MASK; 1121 int i; 1122 uint64_t ref_rsrv = 0; 1123 1124 ASSERT3U(txg, !=, 0); 1125 ASSERT3S(asize, >, 0); 1126 1127 mutex_enter(&dd->dd_lock); 1128 1129 /* 1130 * Check against the dsl_dir's quota. We don't add in the delta 1131 * when checking for over-quota because they get one free hit. 1132 */ 1133 est_inflight = dsl_dir_space_towrite(dd); 1134 for (i = 0; i < TXG_SIZE; i++) 1135 est_inflight += dd->dd_tempreserved[i]; 1136 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1137 1138 /* 1139 * On the first iteration, fetch the dataset's used-on-disk and 1140 * refreservation values. Also, if checkrefquota is set, test if 1141 * allocating this space would exceed the dataset's refquota. 1142 */ 1143 if (first && tx->tx_objset) { 1144 int error; 1145 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1146 1147 error = dsl_dataset_check_quota(ds, checkrefquota, 1148 asize, est_inflight, &used_on_disk, &ref_rsrv); 1149 if (error) { 1150 mutex_exit(&dd->dd_lock); 1151 return (error); 1152 } 1153 } 1154 1155 /* 1156 * If this transaction will result in a net free of space, 1157 * we want to let it through. 1158 */ 1159 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1160 quota = UINT64_MAX; 1161 else 1162 quota = dsl_dir_phys(dd)->dd_quota; 1163 1164 /* 1165 * Adjust the quota against the actual pool size at the root 1166 * minus any outstanding deferred frees. 1167 * To ensure that it's possible to remove files from a full 1168 * pool without inducing transient overcommits, we throttle 1169 * netfree transactions against a quota that is slightly larger, 1170 * but still within the pool's allocation slop. In cases where 1171 * we're very close to full, this will allow a steady trickle of 1172 * removes to get through. 1173 */ 1174 if (dd->dd_parent == NULL) { 1175 spa_t *spa = dd->dd_pool->dp_spa; 1176 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1177 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1178 if (poolsize - deferred < quota) { 1179 quota = poolsize - deferred; 1180 retval = ENOSPC; 1181 } 1182 } 1183 1184 /* 1185 * If they are requesting more space, and our current estimate 1186 * is over quota, they get to try again unless the actual 1187 * on-disk is over quota and there are no pending changes (which 1188 * may free up space for us). 1189 */ 1190 if (used_on_disk + est_inflight >= quota) { 1191 if (est_inflight > 0 || used_on_disk < quota || 1192 (retval == ENOSPC && used_on_disk < quota + deferred)) 1193 retval = ERESTART; 1194 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1195 "quota=%lluK tr=%lluK err=%d\n", 1196 used_on_disk>>10, est_inflight>>10, 1197 quota>>10, asize>>10, retval); 1198 mutex_exit(&dd->dd_lock); 1199 return (SET_ERROR(retval)); 1200 } 1201 1202 /* We need to up our estimated delta before dropping dd_lock */ 1203 dd->dd_tempreserved[txgidx] += asize; 1204 1205 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1206 asize - ref_rsrv); 1207 mutex_exit(&dd->dd_lock); 1208 1209 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1210 tr->tr_ds = dd; 1211 tr->tr_size = asize; 1212 list_insert_tail(tr_list, tr); 1213 1214 /* see if it's OK with our parent */ 1215 if (dd->dd_parent && parent_rsrv) { 1216 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1217 1218 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1219 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1220 } else { 1221 return (0); 1222 } 1223 } 1224 1225 /* 1226 * Reserve space in this dsl_dir, to be used in this tx's txg. 1227 * After the space has been dirtied (and dsl_dir_willuse_space() 1228 * has been called), the reservation should be canceled, using 1229 * dsl_dir_tempreserve_clear(). 1230 */ 1231 int 1232 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1233 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1234 { 1235 int err; 1236 list_t *tr_list; 1237 1238 if (asize == 0) { 1239 *tr_cookiep = NULL; 1240 return (0); 1241 } 1242 1243 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1244 list_create(tr_list, sizeof (struct tempreserve), 1245 offsetof(struct tempreserve, tr_node)); 1246 ASSERT3S(asize, >, 0); 1247 ASSERT3S(fsize, >=, 0); 1248 1249 err = arc_tempreserve_space(lsize, tx->tx_txg); 1250 if (err == 0) { 1251 struct tempreserve *tr; 1252 1253 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1254 tr->tr_size = lsize; 1255 list_insert_tail(tr_list, tr); 1256 } else { 1257 if (err == EAGAIN) { 1258 /* 1259 * If arc_memory_throttle() detected that pageout 1260 * is running and we are low on memory, we delay new 1261 * non-pageout transactions to give pageout an 1262 * advantage. 1263 * 1264 * It is unfortunate to be delaying while the caller's 1265 * locks are held. 1266 */ 1267 txg_delay(dd->dd_pool, tx->tx_txg, 1268 MSEC2NSEC(10), MSEC2NSEC(10)); 1269 err = SET_ERROR(ERESTART); 1270 } 1271 } 1272 1273 if (err == 0) { 1274 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1275 FALSE, asize > usize, tr_list, tx, TRUE); 1276 } 1277 1278 if (err != 0) 1279 dsl_dir_tempreserve_clear(tr_list, tx); 1280 else 1281 *tr_cookiep = tr_list; 1282 1283 return (err); 1284 } 1285 1286 /* 1287 * Clear a temporary reservation that we previously made with 1288 * dsl_dir_tempreserve_space(). 1289 */ 1290 void 1291 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1292 { 1293 int txgidx = tx->tx_txg & TXG_MASK; 1294 list_t *tr_list = tr_cookie; 1295 struct tempreserve *tr; 1296 1297 ASSERT3U(tx->tx_txg, !=, 0); 1298 1299 if (tr_cookie == NULL) 1300 return; 1301 1302 while ((tr = list_head(tr_list)) != NULL) { 1303 if (tr->tr_ds) { 1304 mutex_enter(&tr->tr_ds->dd_lock); 1305 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1306 tr->tr_size); 1307 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1308 mutex_exit(&tr->tr_ds->dd_lock); 1309 } else { 1310 arc_tempreserve_clear(tr->tr_size); 1311 } 1312 list_remove(tr_list, tr); 1313 kmem_free(tr, sizeof (struct tempreserve)); 1314 } 1315 1316 kmem_free(tr_list, sizeof (list_t)); 1317 } 1318 1319 /* 1320 * This should be called from open context when we think we're going to write 1321 * or free space, for example when dirtying data. Be conservative; it's okay 1322 * to write less space or free more, but we don't want to write more or free 1323 * less than the amount specified. 1324 */ 1325 void 1326 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1327 { 1328 int64_t parent_space; 1329 uint64_t est_used; 1330 1331 mutex_enter(&dd->dd_lock); 1332 if (space > 0) 1333 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1334 1335 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1336 parent_space = parent_delta(dd, est_used, space); 1337 mutex_exit(&dd->dd_lock); 1338 1339 /* Make sure that we clean up dd_space_to* */ 1340 dsl_dir_dirty(dd, tx); 1341 1342 /* XXX this is potentially expensive and unnecessary... */ 1343 if (parent_space && dd->dd_parent) 1344 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1345 } 1346 1347 /* call from syncing context when we actually write/free space for this dd */ 1348 void 1349 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1350 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1351 { 1352 int64_t accounted_delta; 1353 1354 /* 1355 * dsl_dataset_set_refreservation_sync_impl() calls this with 1356 * dd_lock held, so that it can atomically update 1357 * ds->ds_reserved and the dsl_dir accounting, so that 1358 * dsl_dataset_check_quota() can see dataset and dir accounting 1359 * consistently. 1360 */ 1361 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1362 1363 ASSERT(dmu_tx_is_syncing(tx)); 1364 ASSERT(type < DD_USED_NUM); 1365 1366 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1367 1368 if (needlock) 1369 mutex_enter(&dd->dd_lock); 1370 accounted_delta = 1371 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1372 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1373 ASSERT(compressed >= 0 || 1374 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1375 ASSERT(uncompressed >= 0 || 1376 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1377 dsl_dir_phys(dd)->dd_used_bytes += used; 1378 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1379 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1380 1381 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1382 ASSERT(used > 0 || 1383 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1384 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1385 #ifdef DEBUG 1386 dd_used_t t; 1387 uint64_t u = 0; 1388 for (t = 0; t < DD_USED_NUM; t++) 1389 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1390 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1391 #endif 1392 } 1393 if (needlock) 1394 mutex_exit(&dd->dd_lock); 1395 1396 if (dd->dd_parent != NULL) { 1397 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1398 accounted_delta, compressed, uncompressed, tx); 1399 dsl_dir_transfer_space(dd->dd_parent, 1400 used - accounted_delta, 1401 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1402 } 1403 } 1404 1405 void 1406 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1407 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1408 { 1409 ASSERT(dmu_tx_is_syncing(tx)); 1410 ASSERT(oldtype < DD_USED_NUM); 1411 ASSERT(newtype < DD_USED_NUM); 1412 1413 if (delta == 0 || 1414 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1415 return; 1416 1417 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1418 mutex_enter(&dd->dd_lock); 1419 ASSERT(delta > 0 ? 1420 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1421 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1422 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1423 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1424 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1425 mutex_exit(&dd->dd_lock); 1426 } 1427 1428 typedef struct dsl_dir_set_qr_arg { 1429 const char *ddsqra_name; 1430 zprop_source_t ddsqra_source; 1431 uint64_t ddsqra_value; 1432 } dsl_dir_set_qr_arg_t; 1433 1434 static int 1435 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1436 { 1437 dsl_dir_set_qr_arg_t *ddsqra = arg; 1438 dsl_pool_t *dp = dmu_tx_pool(tx); 1439 dsl_dataset_t *ds; 1440 int error; 1441 uint64_t towrite, newval; 1442 1443 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1444 if (error != 0) 1445 return (error); 1446 1447 error = dsl_prop_predict(ds->ds_dir, "quota", 1448 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1449 if (error != 0) { 1450 dsl_dataset_rele(ds, FTAG); 1451 return (error); 1452 } 1453 1454 if (newval == 0) { 1455 dsl_dataset_rele(ds, FTAG); 1456 return (0); 1457 } 1458 1459 mutex_enter(&ds->ds_dir->dd_lock); 1460 /* 1461 * If we are doing the preliminary check in open context, and 1462 * there are pending changes, then don't fail it, since the 1463 * pending changes could under-estimate the amount of space to be 1464 * freed up. 1465 */ 1466 towrite = dsl_dir_space_towrite(ds->ds_dir); 1467 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1468 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1469 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1470 error = SET_ERROR(ENOSPC); 1471 } 1472 mutex_exit(&ds->ds_dir->dd_lock); 1473 dsl_dataset_rele(ds, FTAG); 1474 return (error); 1475 } 1476 1477 static void 1478 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1479 { 1480 dsl_dir_set_qr_arg_t *ddsqra = arg; 1481 dsl_pool_t *dp = dmu_tx_pool(tx); 1482 dsl_dataset_t *ds; 1483 uint64_t newval; 1484 1485 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1486 1487 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1488 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1489 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1490 &ddsqra->ddsqra_value, tx); 1491 1492 VERIFY0(dsl_prop_get_int_ds(ds, 1493 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1494 } else { 1495 newval = ddsqra->ddsqra_value; 1496 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1497 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1498 } 1499 1500 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1501 mutex_enter(&ds->ds_dir->dd_lock); 1502 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1503 mutex_exit(&ds->ds_dir->dd_lock); 1504 dsl_dataset_rele(ds, FTAG); 1505 } 1506 1507 int 1508 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1509 { 1510 dsl_dir_set_qr_arg_t ddsqra; 1511 1512 ddsqra.ddsqra_name = ddname; 1513 ddsqra.ddsqra_source = source; 1514 ddsqra.ddsqra_value = quota; 1515 1516 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1517 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1518 } 1519 1520 int 1521 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1522 { 1523 dsl_dir_set_qr_arg_t *ddsqra = arg; 1524 dsl_pool_t *dp = dmu_tx_pool(tx); 1525 dsl_dataset_t *ds; 1526 dsl_dir_t *dd; 1527 uint64_t newval, used, avail; 1528 int error; 1529 1530 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1531 if (error != 0) 1532 return (error); 1533 dd = ds->ds_dir; 1534 1535 /* 1536 * If we are doing the preliminary check in open context, the 1537 * space estimates may be inaccurate. 1538 */ 1539 if (!dmu_tx_is_syncing(tx)) { 1540 dsl_dataset_rele(ds, FTAG); 1541 return (0); 1542 } 1543 1544 error = dsl_prop_predict(ds->ds_dir, 1545 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1546 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1547 if (error != 0) { 1548 dsl_dataset_rele(ds, FTAG); 1549 return (error); 1550 } 1551 1552 mutex_enter(&dd->dd_lock); 1553 used = dsl_dir_phys(dd)->dd_used_bytes; 1554 mutex_exit(&dd->dd_lock); 1555 1556 if (dd->dd_parent) { 1557 avail = dsl_dir_space_available(dd->dd_parent, 1558 NULL, 0, FALSE); 1559 } else { 1560 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1561 } 1562 1563 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1564 uint64_t delta = MAX(used, newval) - 1565 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1566 1567 if (delta > avail || 1568 (dsl_dir_phys(dd)->dd_quota > 0 && 1569 newval > dsl_dir_phys(dd)->dd_quota)) 1570 error = SET_ERROR(ENOSPC); 1571 } 1572 1573 dsl_dataset_rele(ds, FTAG); 1574 return (error); 1575 } 1576 1577 void 1578 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1579 { 1580 uint64_t used; 1581 int64_t delta; 1582 1583 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1584 1585 mutex_enter(&dd->dd_lock); 1586 used = dsl_dir_phys(dd)->dd_used_bytes; 1587 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1588 dsl_dir_phys(dd)->dd_reserved = value; 1589 1590 if (dd->dd_parent != NULL) { 1591 /* Roll up this additional usage into our ancestors */ 1592 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1593 delta, 0, 0, tx); 1594 } 1595 mutex_exit(&dd->dd_lock); 1596 } 1597 1598 1599 static void 1600 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1601 { 1602 dsl_dir_set_qr_arg_t *ddsqra = arg; 1603 dsl_pool_t *dp = dmu_tx_pool(tx); 1604 dsl_dataset_t *ds; 1605 uint64_t newval; 1606 1607 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1608 1609 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1610 dsl_prop_set_sync_impl(ds, 1611 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1612 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1613 &ddsqra->ddsqra_value, tx); 1614 1615 VERIFY0(dsl_prop_get_int_ds(ds, 1616 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1617 } else { 1618 newval = ddsqra->ddsqra_value; 1619 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1620 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1621 (longlong_t)newval); 1622 } 1623 1624 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1625 dsl_dataset_rele(ds, FTAG); 1626 } 1627 1628 int 1629 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1630 uint64_t reservation) 1631 { 1632 dsl_dir_set_qr_arg_t ddsqra; 1633 1634 ddsqra.ddsqra_name = ddname; 1635 ddsqra.ddsqra_source = source; 1636 ddsqra.ddsqra_value = reservation; 1637 1638 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1639 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1640 } 1641 1642 static dsl_dir_t * 1643 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1644 { 1645 for (; ds1; ds1 = ds1->dd_parent) { 1646 dsl_dir_t *dd; 1647 for (dd = ds2; dd; dd = dd->dd_parent) { 1648 if (ds1 == dd) 1649 return (dd); 1650 } 1651 } 1652 return (NULL); 1653 } 1654 1655 /* 1656 * If delta is applied to dd, how much of that delta would be applied to 1657 * ancestor? Syncing context only. 1658 */ 1659 static int64_t 1660 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1661 { 1662 if (dd == ancestor) 1663 return (delta); 1664 1665 mutex_enter(&dd->dd_lock); 1666 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1667 mutex_exit(&dd->dd_lock); 1668 return (would_change(dd->dd_parent, delta, ancestor)); 1669 } 1670 1671 typedef struct dsl_dir_rename_arg { 1672 const char *ddra_oldname; 1673 const char *ddra_newname; 1674 cred_t *ddra_cred; 1675 } dsl_dir_rename_arg_t; 1676 1677 /* ARGSUSED */ 1678 static int 1679 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1680 { 1681 int *deltap = arg; 1682 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1683 1684 dsl_dataset_name(ds, namebuf); 1685 1686 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN) 1687 return (SET_ERROR(ENAMETOOLONG)); 1688 return (0); 1689 } 1690 1691 static int 1692 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1693 { 1694 dsl_dir_rename_arg_t *ddra = arg; 1695 dsl_pool_t *dp = dmu_tx_pool(tx); 1696 dsl_dir_t *dd, *newparent; 1697 const char *mynewname; 1698 int error; 1699 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1700 1701 /* target dir should exist */ 1702 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1703 if (error != 0) 1704 return (error); 1705 1706 /* new parent should exist */ 1707 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1708 &newparent, &mynewname); 1709 if (error != 0) { 1710 dsl_dir_rele(dd, FTAG); 1711 return (error); 1712 } 1713 1714 /* can't rename to different pool */ 1715 if (dd->dd_pool != newparent->dd_pool) { 1716 dsl_dir_rele(newparent, FTAG); 1717 dsl_dir_rele(dd, FTAG); 1718 return (SET_ERROR(ENXIO)); 1719 } 1720 1721 /* new name should not already exist */ 1722 if (mynewname == NULL) { 1723 dsl_dir_rele(newparent, FTAG); 1724 dsl_dir_rele(dd, FTAG); 1725 return (SET_ERROR(EEXIST)); 1726 } 1727 1728 /* if the name length is growing, validate child name lengths */ 1729 if (delta > 0) { 1730 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1731 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1732 if (error != 0) { 1733 dsl_dir_rele(newparent, FTAG); 1734 dsl_dir_rele(dd, FTAG); 1735 return (error); 1736 } 1737 } 1738 1739 if (dmu_tx_is_syncing(tx)) { 1740 if (spa_feature_is_active(dp->dp_spa, 1741 SPA_FEATURE_FS_SS_LIMIT)) { 1742 /* 1743 * Although this is the check function and we don't 1744 * normally make on-disk changes in check functions, 1745 * we need to do that here. 1746 * 1747 * Ensure this portion of the tree's counts have been 1748 * initialized in case the new parent has limits set. 1749 */ 1750 dsl_dir_init_fs_ss_count(dd, tx); 1751 } 1752 } 1753 1754 if (newparent != dd->dd_parent) { 1755 /* is there enough space? */ 1756 uint64_t myspace = 1757 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1758 dsl_dir_phys(dd)->dd_reserved); 1759 objset_t *os = dd->dd_pool->dp_meta_objset; 1760 uint64_t fs_cnt = 0; 1761 uint64_t ss_cnt = 0; 1762 1763 if (dsl_dir_is_zapified(dd)) { 1764 int err; 1765 1766 err = zap_lookup(os, dd->dd_object, 1767 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1768 &fs_cnt); 1769 if (err != ENOENT && err != 0) { 1770 dsl_dir_rele(newparent, FTAG); 1771 dsl_dir_rele(dd, FTAG); 1772 return (err); 1773 } 1774 1775 /* 1776 * have to add 1 for the filesystem itself that we're 1777 * moving 1778 */ 1779 fs_cnt++; 1780 1781 err = zap_lookup(os, dd->dd_object, 1782 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1783 &ss_cnt); 1784 if (err != ENOENT && err != 0) { 1785 dsl_dir_rele(newparent, FTAG); 1786 dsl_dir_rele(dd, FTAG); 1787 return (err); 1788 } 1789 } 1790 1791 /* no rename into our descendant */ 1792 if (closest_common_ancestor(dd, newparent) == dd) { 1793 dsl_dir_rele(newparent, FTAG); 1794 dsl_dir_rele(dd, FTAG); 1795 return (SET_ERROR(EINVAL)); 1796 } 1797 1798 error = dsl_dir_transfer_possible(dd->dd_parent, 1799 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1800 if (error != 0) { 1801 dsl_dir_rele(newparent, FTAG); 1802 dsl_dir_rele(dd, FTAG); 1803 return (error); 1804 } 1805 } 1806 1807 dsl_dir_rele(newparent, FTAG); 1808 dsl_dir_rele(dd, FTAG); 1809 return (0); 1810 } 1811 1812 static void 1813 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1814 { 1815 dsl_dir_rename_arg_t *ddra = arg; 1816 dsl_pool_t *dp = dmu_tx_pool(tx); 1817 dsl_dir_t *dd, *newparent; 1818 const char *mynewname; 1819 int error; 1820 objset_t *mos = dp->dp_meta_objset; 1821 1822 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1823 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1824 &mynewname)); 1825 1826 /* Log this before we change the name. */ 1827 spa_history_log_internal_dd(dd, "rename", tx, 1828 "-> %s", ddra->ddra_newname); 1829 1830 if (newparent != dd->dd_parent) { 1831 objset_t *os = dd->dd_pool->dp_meta_objset; 1832 uint64_t fs_cnt = 0; 1833 uint64_t ss_cnt = 0; 1834 1835 /* 1836 * We already made sure the dd counts were initialized in the 1837 * check function. 1838 */ 1839 if (spa_feature_is_active(dp->dp_spa, 1840 SPA_FEATURE_FS_SS_LIMIT)) { 1841 VERIFY0(zap_lookup(os, dd->dd_object, 1842 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1843 &fs_cnt)); 1844 /* add 1 for the filesystem itself that we're moving */ 1845 fs_cnt++; 1846 1847 VERIFY0(zap_lookup(os, dd->dd_object, 1848 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1849 &ss_cnt)); 1850 } 1851 1852 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1853 DD_FIELD_FILESYSTEM_COUNT, tx); 1854 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1855 DD_FIELD_FILESYSTEM_COUNT, tx); 1856 1857 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1858 DD_FIELD_SNAPSHOT_COUNT, tx); 1859 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1860 DD_FIELD_SNAPSHOT_COUNT, tx); 1861 1862 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1863 -dsl_dir_phys(dd)->dd_used_bytes, 1864 -dsl_dir_phys(dd)->dd_compressed_bytes, 1865 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1866 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1867 dsl_dir_phys(dd)->dd_used_bytes, 1868 dsl_dir_phys(dd)->dd_compressed_bytes, 1869 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1870 1871 if (dsl_dir_phys(dd)->dd_reserved > 1872 dsl_dir_phys(dd)->dd_used_bytes) { 1873 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1874 dsl_dir_phys(dd)->dd_used_bytes; 1875 1876 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1877 -unused_rsrv, 0, 0, tx); 1878 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1879 unused_rsrv, 0, 0, tx); 1880 } 1881 } 1882 1883 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1884 1885 /* remove from old parent zapobj */ 1886 error = zap_remove(mos, 1887 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1888 dd->dd_myname, tx); 1889 ASSERT0(error); 1890 1891 (void) strcpy(dd->dd_myname, mynewname); 1892 dsl_dir_rele(dd->dd_parent, dd); 1893 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1894 VERIFY0(dsl_dir_hold_obj(dp, 1895 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1896 1897 /* add to new parent zapobj */ 1898 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1899 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1900 1901 dsl_prop_notify_all(dd); 1902 1903 dsl_dir_rele(newparent, FTAG); 1904 dsl_dir_rele(dd, FTAG); 1905 } 1906 1907 int 1908 dsl_dir_rename(const char *oldname, const char *newname) 1909 { 1910 dsl_dir_rename_arg_t ddra; 1911 1912 ddra.ddra_oldname = oldname; 1913 ddra.ddra_newname = newname; 1914 ddra.ddra_cred = CRED(); 1915 1916 return (dsl_sync_task(oldname, 1917 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1918 3, ZFS_SPACE_CHECK_RESERVED)); 1919 } 1920 1921 int 1922 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1923 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1924 { 1925 dsl_dir_t *ancestor; 1926 int64_t adelta; 1927 uint64_t avail; 1928 int err; 1929 1930 ancestor = closest_common_ancestor(sdd, tdd); 1931 adelta = would_change(sdd, -space, ancestor); 1932 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1933 if (avail < space) 1934 return (SET_ERROR(ENOSPC)); 1935 1936 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1937 ancestor, cr); 1938 if (err != 0) 1939 return (err); 1940 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1941 ancestor, cr); 1942 if (err != 0) 1943 return (err); 1944 1945 return (0); 1946 } 1947 1948 timestruc_t 1949 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1950 { 1951 timestruc_t t; 1952 1953 mutex_enter(&dd->dd_lock); 1954 t = dd->dd_snap_cmtime; 1955 mutex_exit(&dd->dd_lock); 1956 1957 return (t); 1958 } 1959 1960 void 1961 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1962 { 1963 timestruc_t t; 1964 1965 gethrestime(&t); 1966 mutex_enter(&dd->dd_lock); 1967 dd->dd_snap_cmtime = t; 1968 mutex_exit(&dd->dd_lock); 1969 } 1970 1971 void 1972 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1973 { 1974 objset_t *mos = dd->dd_pool->dp_meta_objset; 1975 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1976 } 1977 1978 boolean_t 1979 dsl_dir_is_zapified(dsl_dir_t *dd) 1980 { 1981 dmu_object_info_t doi; 1982 1983 dmu_object_info_from_db(dd->dd_dbuf, &doi); 1984 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 1985 } 1986