xref: /titanic_50/usr/src/uts/common/fs/zfs/dnode.c (revision 196c7f05d2deba7404e90ad67f3861185c78ca2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/dbuf.h>
28 #include <sys/dnode.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/zio.h>
37 #include <sys/dmu_zfetch.h>
38 #include <sys/range_tree.h>
39 
40 static kmem_cache_t *dnode_cache;
41 /*
42  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
43  * turned on when DEBUG is also defined.
44  */
45 #ifdef	DEBUG
46 #define	DNODE_STATS
47 #endif	/* DEBUG */
48 
49 #ifdef	DNODE_STATS
50 #define	DNODE_STAT_ADD(stat)			((stat)++)
51 #else
52 #define	DNODE_STAT_ADD(stat)			/* nothing */
53 #endif	/* DNODE_STATS */
54 
55 static dnode_phys_t dnode_phys_zero;
56 
57 int zfs_default_bs = SPA_MINBLOCKSHIFT;
58 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
59 
60 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
61 
62 static int
63 dbuf_compare(const void *x1, const void *x2)
64 {
65 	const dmu_buf_impl_t *d1 = x1;
66 	const dmu_buf_impl_t *d2 = x2;
67 
68 	if (d1->db_level < d2->db_level) {
69 		return (-1);
70 	}
71 	if (d1->db_level > d2->db_level) {
72 		return (1);
73 	}
74 
75 	if (d1->db_blkid < d2->db_blkid) {
76 		return (-1);
77 	}
78 	if (d1->db_blkid > d2->db_blkid) {
79 		return (1);
80 	}
81 
82 	if (d1->db_state == DB_SEARCH) {
83 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
84 		return (-1);
85 	} else if (d2->db_state == DB_SEARCH) {
86 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
87 		return (1);
88 	}
89 
90 	if ((uintptr_t)d1 < (uintptr_t)d2) {
91 		return (-1);
92 	}
93 	if ((uintptr_t)d1 > (uintptr_t)d2) {
94 		return (1);
95 	}
96 	return (0);
97 }
98 
99 /* ARGSUSED */
100 static int
101 dnode_cons(void *arg, void *unused, int kmflag)
102 {
103 	dnode_t *dn = arg;
104 	int i;
105 
106 	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
107 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
108 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
109 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
110 
111 	/*
112 	 * Every dbuf has a reference, and dropping a tracked reference is
113 	 * O(number of references), so don't track dn_holds.
114 	 */
115 	refcount_create_untracked(&dn->dn_holds);
116 	refcount_create(&dn->dn_tx_holds);
117 	list_link_init(&dn->dn_link);
118 
119 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
120 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
121 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
122 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
123 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
124 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
125 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
126 
127 	for (i = 0; i < TXG_SIZE; i++) {
128 		list_link_init(&dn->dn_dirty_link[i]);
129 		dn->dn_free_ranges[i] = NULL;
130 		list_create(&dn->dn_dirty_records[i],
131 		    sizeof (dbuf_dirty_record_t),
132 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
133 	}
134 
135 	dn->dn_allocated_txg = 0;
136 	dn->dn_free_txg = 0;
137 	dn->dn_assigned_txg = 0;
138 	dn->dn_dirtyctx = 0;
139 	dn->dn_dirtyctx_firstset = NULL;
140 	dn->dn_bonus = NULL;
141 	dn->dn_have_spill = B_FALSE;
142 	dn->dn_zio = NULL;
143 	dn->dn_oldused = 0;
144 	dn->dn_oldflags = 0;
145 	dn->dn_olduid = 0;
146 	dn->dn_oldgid = 0;
147 	dn->dn_newuid = 0;
148 	dn->dn_newgid = 0;
149 	dn->dn_id_flags = 0;
150 
151 	dn->dn_dbufs_count = 0;
152 	dn->dn_unlisted_l0_blkid = 0;
153 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
154 	    offsetof(dmu_buf_impl_t, db_link));
155 
156 	dn->dn_moved = 0;
157 	return (0);
158 }
159 
160 /* ARGSUSED */
161 static void
162 dnode_dest(void *arg, void *unused)
163 {
164 	int i;
165 	dnode_t *dn = arg;
166 
167 	rw_destroy(&dn->dn_struct_rwlock);
168 	mutex_destroy(&dn->dn_mtx);
169 	mutex_destroy(&dn->dn_dbufs_mtx);
170 	cv_destroy(&dn->dn_notxholds);
171 	refcount_destroy(&dn->dn_holds);
172 	refcount_destroy(&dn->dn_tx_holds);
173 	ASSERT(!list_link_active(&dn->dn_link));
174 
175 	for (i = 0; i < TXG_SIZE; i++) {
176 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
177 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
178 		list_destroy(&dn->dn_dirty_records[i]);
179 		ASSERT0(dn->dn_next_nblkptr[i]);
180 		ASSERT0(dn->dn_next_nlevels[i]);
181 		ASSERT0(dn->dn_next_indblkshift[i]);
182 		ASSERT0(dn->dn_next_bonustype[i]);
183 		ASSERT0(dn->dn_rm_spillblk[i]);
184 		ASSERT0(dn->dn_next_bonuslen[i]);
185 		ASSERT0(dn->dn_next_blksz[i]);
186 	}
187 
188 	ASSERT0(dn->dn_allocated_txg);
189 	ASSERT0(dn->dn_free_txg);
190 	ASSERT0(dn->dn_assigned_txg);
191 	ASSERT0(dn->dn_dirtyctx);
192 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
193 	ASSERT3P(dn->dn_bonus, ==, NULL);
194 	ASSERT(!dn->dn_have_spill);
195 	ASSERT3P(dn->dn_zio, ==, NULL);
196 	ASSERT0(dn->dn_oldused);
197 	ASSERT0(dn->dn_oldflags);
198 	ASSERT0(dn->dn_olduid);
199 	ASSERT0(dn->dn_oldgid);
200 	ASSERT0(dn->dn_newuid);
201 	ASSERT0(dn->dn_newgid);
202 	ASSERT0(dn->dn_id_flags);
203 
204 	ASSERT0(dn->dn_dbufs_count);
205 	ASSERT0(dn->dn_unlisted_l0_blkid);
206 	avl_destroy(&dn->dn_dbufs);
207 }
208 
209 void
210 dnode_init(void)
211 {
212 	ASSERT(dnode_cache == NULL);
213 	dnode_cache = kmem_cache_create("dnode_t",
214 	    sizeof (dnode_t),
215 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
216 	kmem_cache_set_move(dnode_cache, dnode_move);
217 }
218 
219 void
220 dnode_fini(void)
221 {
222 	kmem_cache_destroy(dnode_cache);
223 	dnode_cache = NULL;
224 }
225 
226 
227 #ifdef ZFS_DEBUG
228 void
229 dnode_verify(dnode_t *dn)
230 {
231 	int drop_struct_lock = FALSE;
232 
233 	ASSERT(dn->dn_phys);
234 	ASSERT(dn->dn_objset);
235 	ASSERT(dn->dn_handle->dnh_dnode == dn);
236 
237 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
238 
239 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
240 		return;
241 
242 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
243 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
244 		drop_struct_lock = TRUE;
245 	}
246 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
247 		int i;
248 		ASSERT3U(dn->dn_indblkshift, >=, 0);
249 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
250 		if (dn->dn_datablkshift) {
251 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
252 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
253 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
254 		}
255 		ASSERT3U(dn->dn_nlevels, <=, 30);
256 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
257 		ASSERT3U(dn->dn_nblkptr, >=, 1);
258 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
259 		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
260 		ASSERT3U(dn->dn_datablksz, ==,
261 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
262 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
263 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
264 		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
265 		for (i = 0; i < TXG_SIZE; i++) {
266 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
267 		}
268 	}
269 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
270 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
271 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
272 	if (dn->dn_dbuf != NULL) {
273 		ASSERT3P(dn->dn_phys, ==,
274 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
275 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
276 	}
277 	if (drop_struct_lock)
278 		rw_exit(&dn->dn_struct_rwlock);
279 }
280 #endif
281 
282 void
283 dnode_byteswap(dnode_phys_t *dnp)
284 {
285 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
286 	int i;
287 
288 	if (dnp->dn_type == DMU_OT_NONE) {
289 		bzero(dnp, sizeof (dnode_phys_t));
290 		return;
291 	}
292 
293 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
294 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
295 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
296 	dnp->dn_used = BSWAP_64(dnp->dn_used);
297 
298 	/*
299 	 * dn_nblkptr is only one byte, so it's OK to read it in either
300 	 * byte order.  We can't read dn_bouslen.
301 	 */
302 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
303 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
304 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
305 		buf64[i] = BSWAP_64(buf64[i]);
306 
307 	/*
308 	 * OK to check dn_bonuslen for zero, because it won't matter if
309 	 * we have the wrong byte order.  This is necessary because the
310 	 * dnode dnode is smaller than a regular dnode.
311 	 */
312 	if (dnp->dn_bonuslen != 0) {
313 		/*
314 		 * Note that the bonus length calculated here may be
315 		 * longer than the actual bonus buffer.  This is because
316 		 * we always put the bonus buffer after the last block
317 		 * pointer (instead of packing it against the end of the
318 		 * dnode buffer).
319 		 */
320 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
321 		size_t len = DN_MAX_BONUSLEN - off;
322 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
323 		dmu_object_byteswap_t byteswap =
324 		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
325 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
326 	}
327 
328 	/* Swap SPILL block if we have one */
329 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
330 		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
331 
332 }
333 
334 void
335 dnode_buf_byteswap(void *vbuf, size_t size)
336 {
337 	dnode_phys_t *buf = vbuf;
338 	int i;
339 
340 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
341 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
342 
343 	size >>= DNODE_SHIFT;
344 	for (i = 0; i < size; i++) {
345 		dnode_byteswap(buf);
346 		buf++;
347 	}
348 }
349 
350 void
351 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
352 {
353 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
354 
355 	dnode_setdirty(dn, tx);
356 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
358 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
359 	dn->dn_bonuslen = newsize;
360 	if (newsize == 0)
361 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
362 	else
363 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
364 	rw_exit(&dn->dn_struct_rwlock);
365 }
366 
367 void
368 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
369 {
370 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
371 	dnode_setdirty(dn, tx);
372 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
373 	dn->dn_bonustype = newtype;
374 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
375 	rw_exit(&dn->dn_struct_rwlock);
376 }
377 
378 void
379 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
380 {
381 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
382 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
383 	dnode_setdirty(dn, tx);
384 	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
385 	dn->dn_have_spill = B_FALSE;
386 }
387 
388 static void
389 dnode_setdblksz(dnode_t *dn, int size)
390 {
391 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
392 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
393 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
394 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
395 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
396 	dn->dn_datablksz = size;
397 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
398 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
399 }
400 
401 static dnode_t *
402 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
403     uint64_t object, dnode_handle_t *dnh)
404 {
405 	dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
406 
407 	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
408 	dn->dn_moved = 0;
409 
410 	/*
411 	 * Defer setting dn_objset until the dnode is ready to be a candidate
412 	 * for the dnode_move() callback.
413 	 */
414 	dn->dn_object = object;
415 	dn->dn_dbuf = db;
416 	dn->dn_handle = dnh;
417 	dn->dn_phys = dnp;
418 
419 	if (dnp->dn_datablkszsec) {
420 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
421 	} else {
422 		dn->dn_datablksz = 0;
423 		dn->dn_datablkszsec = 0;
424 		dn->dn_datablkshift = 0;
425 	}
426 	dn->dn_indblkshift = dnp->dn_indblkshift;
427 	dn->dn_nlevels = dnp->dn_nlevels;
428 	dn->dn_type = dnp->dn_type;
429 	dn->dn_nblkptr = dnp->dn_nblkptr;
430 	dn->dn_checksum = dnp->dn_checksum;
431 	dn->dn_compress = dnp->dn_compress;
432 	dn->dn_bonustype = dnp->dn_bonustype;
433 	dn->dn_bonuslen = dnp->dn_bonuslen;
434 	dn->dn_maxblkid = dnp->dn_maxblkid;
435 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
436 	dn->dn_id_flags = 0;
437 
438 	dmu_zfetch_init(&dn->dn_zfetch, dn);
439 
440 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
441 
442 	mutex_enter(&os->os_lock);
443 	list_insert_head(&os->os_dnodes, dn);
444 	membar_producer();
445 	/*
446 	 * Everything else must be valid before assigning dn_objset makes the
447 	 * dnode eligible for dnode_move().
448 	 */
449 	dn->dn_objset = os;
450 	mutex_exit(&os->os_lock);
451 
452 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
453 	return (dn);
454 }
455 
456 /*
457  * Caller must be holding the dnode handle, which is released upon return.
458  */
459 static void
460 dnode_destroy(dnode_t *dn)
461 {
462 	objset_t *os = dn->dn_objset;
463 
464 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
465 
466 	mutex_enter(&os->os_lock);
467 	POINTER_INVALIDATE(&dn->dn_objset);
468 	list_remove(&os->os_dnodes, dn);
469 	mutex_exit(&os->os_lock);
470 
471 	/* the dnode can no longer move, so we can release the handle */
472 	zrl_remove(&dn->dn_handle->dnh_zrlock);
473 
474 	dn->dn_allocated_txg = 0;
475 	dn->dn_free_txg = 0;
476 	dn->dn_assigned_txg = 0;
477 
478 	dn->dn_dirtyctx = 0;
479 	if (dn->dn_dirtyctx_firstset != NULL) {
480 		kmem_free(dn->dn_dirtyctx_firstset, 1);
481 		dn->dn_dirtyctx_firstset = NULL;
482 	}
483 	if (dn->dn_bonus != NULL) {
484 		mutex_enter(&dn->dn_bonus->db_mtx);
485 		dbuf_evict(dn->dn_bonus);
486 		dn->dn_bonus = NULL;
487 	}
488 	dn->dn_zio = NULL;
489 
490 	dn->dn_have_spill = B_FALSE;
491 	dn->dn_oldused = 0;
492 	dn->dn_oldflags = 0;
493 	dn->dn_olduid = 0;
494 	dn->dn_oldgid = 0;
495 	dn->dn_newuid = 0;
496 	dn->dn_newgid = 0;
497 	dn->dn_id_flags = 0;
498 	dn->dn_unlisted_l0_blkid = 0;
499 
500 	dmu_zfetch_rele(&dn->dn_zfetch);
501 	kmem_cache_free(dnode_cache, dn);
502 	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
503 }
504 
505 void
506 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
507     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
508 {
509 	int i;
510 
511 	ASSERT3U(blocksize, <=,
512 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
513 	if (blocksize == 0)
514 		blocksize = 1 << zfs_default_bs;
515 	else
516 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
517 
518 	if (ibs == 0)
519 		ibs = zfs_default_ibs;
520 
521 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
522 
523 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
524 	    dn->dn_object, tx->tx_txg, blocksize, ibs);
525 
526 	ASSERT(dn->dn_type == DMU_OT_NONE);
527 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
528 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
529 	ASSERT(ot != DMU_OT_NONE);
530 	ASSERT(DMU_OT_IS_VALID(ot));
531 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
532 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
533 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
534 	ASSERT(DMU_OT_IS_VALID(bonustype));
535 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
536 	ASSERT(dn->dn_type == DMU_OT_NONE);
537 	ASSERT0(dn->dn_maxblkid);
538 	ASSERT0(dn->dn_allocated_txg);
539 	ASSERT0(dn->dn_assigned_txg);
540 	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
541 	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
542 	ASSERT(avl_is_empty(&dn->dn_dbufs));
543 
544 	for (i = 0; i < TXG_SIZE; i++) {
545 		ASSERT0(dn->dn_next_nblkptr[i]);
546 		ASSERT0(dn->dn_next_nlevels[i]);
547 		ASSERT0(dn->dn_next_indblkshift[i]);
548 		ASSERT0(dn->dn_next_bonuslen[i]);
549 		ASSERT0(dn->dn_next_bonustype[i]);
550 		ASSERT0(dn->dn_rm_spillblk[i]);
551 		ASSERT0(dn->dn_next_blksz[i]);
552 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
553 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
554 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
555 	}
556 
557 	dn->dn_type = ot;
558 	dnode_setdblksz(dn, blocksize);
559 	dn->dn_indblkshift = ibs;
560 	dn->dn_nlevels = 1;
561 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
562 		dn->dn_nblkptr = 1;
563 	else
564 		dn->dn_nblkptr = 1 +
565 		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
566 	dn->dn_bonustype = bonustype;
567 	dn->dn_bonuslen = bonuslen;
568 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
569 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
570 	dn->dn_dirtyctx = 0;
571 
572 	dn->dn_free_txg = 0;
573 	if (dn->dn_dirtyctx_firstset) {
574 		kmem_free(dn->dn_dirtyctx_firstset, 1);
575 		dn->dn_dirtyctx_firstset = NULL;
576 	}
577 
578 	dn->dn_allocated_txg = tx->tx_txg;
579 	dn->dn_id_flags = 0;
580 
581 	dnode_setdirty(dn, tx);
582 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
583 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
584 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
585 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
586 }
587 
588 void
589 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
590     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
591 {
592 	int nblkptr;
593 
594 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
595 	ASSERT3U(blocksize, <=,
596 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
597 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
598 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
599 	ASSERT(tx->tx_txg != 0);
600 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
601 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
602 	    (bonustype == DMU_OT_SA && bonuslen == 0));
603 	ASSERT(DMU_OT_IS_VALID(bonustype));
604 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
605 
606 	/* clean up any unreferenced dbufs */
607 	dnode_evict_dbufs(dn);
608 
609 	dn->dn_id_flags = 0;
610 
611 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
612 	dnode_setdirty(dn, tx);
613 	if (dn->dn_datablksz != blocksize) {
614 		/* change blocksize */
615 		ASSERT(dn->dn_maxblkid == 0 &&
616 		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
617 		    dnode_block_freed(dn, 0)));
618 		dnode_setdblksz(dn, blocksize);
619 		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
620 	}
621 	if (dn->dn_bonuslen != bonuslen)
622 		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
623 
624 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
625 		nblkptr = 1;
626 	else
627 		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
628 	if (dn->dn_bonustype != bonustype)
629 		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
630 	if (dn->dn_nblkptr != nblkptr)
631 		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
632 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
633 		dbuf_rm_spill(dn, tx);
634 		dnode_rm_spill(dn, tx);
635 	}
636 	rw_exit(&dn->dn_struct_rwlock);
637 
638 	/* change type */
639 	dn->dn_type = ot;
640 
641 	/* change bonus size and type */
642 	mutex_enter(&dn->dn_mtx);
643 	dn->dn_bonustype = bonustype;
644 	dn->dn_bonuslen = bonuslen;
645 	dn->dn_nblkptr = nblkptr;
646 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
647 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
648 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
649 
650 	/* fix up the bonus db_size */
651 	if (dn->dn_bonus) {
652 		dn->dn_bonus->db.db_size =
653 		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
654 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
655 	}
656 
657 	dn->dn_allocated_txg = tx->tx_txg;
658 	mutex_exit(&dn->dn_mtx);
659 }
660 
661 #ifdef	DNODE_STATS
662 static struct {
663 	uint64_t dms_dnode_invalid;
664 	uint64_t dms_dnode_recheck1;
665 	uint64_t dms_dnode_recheck2;
666 	uint64_t dms_dnode_special;
667 	uint64_t dms_dnode_handle;
668 	uint64_t dms_dnode_rwlock;
669 	uint64_t dms_dnode_active;
670 } dnode_move_stats;
671 #endif	/* DNODE_STATS */
672 
673 static void
674 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
675 {
676 	int i;
677 
678 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
679 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
680 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
681 	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
682 
683 	/* Copy fields. */
684 	ndn->dn_objset = odn->dn_objset;
685 	ndn->dn_object = odn->dn_object;
686 	ndn->dn_dbuf = odn->dn_dbuf;
687 	ndn->dn_handle = odn->dn_handle;
688 	ndn->dn_phys = odn->dn_phys;
689 	ndn->dn_type = odn->dn_type;
690 	ndn->dn_bonuslen = odn->dn_bonuslen;
691 	ndn->dn_bonustype = odn->dn_bonustype;
692 	ndn->dn_nblkptr = odn->dn_nblkptr;
693 	ndn->dn_checksum = odn->dn_checksum;
694 	ndn->dn_compress = odn->dn_compress;
695 	ndn->dn_nlevels = odn->dn_nlevels;
696 	ndn->dn_indblkshift = odn->dn_indblkshift;
697 	ndn->dn_datablkshift = odn->dn_datablkshift;
698 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
699 	ndn->dn_datablksz = odn->dn_datablksz;
700 	ndn->dn_maxblkid = odn->dn_maxblkid;
701 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
702 	    sizeof (odn->dn_next_nblkptr));
703 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
704 	    sizeof (odn->dn_next_nlevels));
705 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
706 	    sizeof (odn->dn_next_indblkshift));
707 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
708 	    sizeof (odn->dn_next_bonustype));
709 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
710 	    sizeof (odn->dn_rm_spillblk));
711 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
712 	    sizeof (odn->dn_next_bonuslen));
713 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
714 	    sizeof (odn->dn_next_blksz));
715 	for (i = 0; i < TXG_SIZE; i++) {
716 		list_move_tail(&ndn->dn_dirty_records[i],
717 		    &odn->dn_dirty_records[i]);
718 	}
719 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
720 	    sizeof (odn->dn_free_ranges));
721 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
722 	ndn->dn_free_txg = odn->dn_free_txg;
723 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
724 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
725 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
726 	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
727 	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
728 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
729 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
730 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
731 	ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
732 	ndn->dn_bonus = odn->dn_bonus;
733 	ndn->dn_have_spill = odn->dn_have_spill;
734 	ndn->dn_zio = odn->dn_zio;
735 	ndn->dn_oldused = odn->dn_oldused;
736 	ndn->dn_oldflags = odn->dn_oldflags;
737 	ndn->dn_olduid = odn->dn_olduid;
738 	ndn->dn_oldgid = odn->dn_oldgid;
739 	ndn->dn_newuid = odn->dn_newuid;
740 	ndn->dn_newgid = odn->dn_newgid;
741 	ndn->dn_id_flags = odn->dn_id_flags;
742 	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
743 	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
744 	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
745 	ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
746 	ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
747 
748 	/*
749 	 * Update back pointers. Updating the handle fixes the back pointer of
750 	 * every descendant dbuf as well as the bonus dbuf.
751 	 */
752 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
753 	ndn->dn_handle->dnh_dnode = ndn;
754 	if (ndn->dn_zfetch.zf_dnode == odn) {
755 		ndn->dn_zfetch.zf_dnode = ndn;
756 	}
757 
758 	/*
759 	 * Invalidate the original dnode by clearing all of its back pointers.
760 	 */
761 	odn->dn_dbuf = NULL;
762 	odn->dn_handle = NULL;
763 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
764 	    offsetof(dmu_buf_impl_t, db_link));
765 	odn->dn_dbufs_count = 0;
766 	odn->dn_unlisted_l0_blkid = 0;
767 	odn->dn_bonus = NULL;
768 	odn->dn_zfetch.zf_dnode = NULL;
769 
770 	/*
771 	 * Set the low bit of the objset pointer to ensure that dnode_move()
772 	 * recognizes the dnode as invalid in any subsequent callback.
773 	 */
774 	POINTER_INVALIDATE(&odn->dn_objset);
775 
776 	/*
777 	 * Satisfy the destructor.
778 	 */
779 	for (i = 0; i < TXG_SIZE; i++) {
780 		list_create(&odn->dn_dirty_records[i],
781 		    sizeof (dbuf_dirty_record_t),
782 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
783 		odn->dn_free_ranges[i] = NULL;
784 		odn->dn_next_nlevels[i] = 0;
785 		odn->dn_next_indblkshift[i] = 0;
786 		odn->dn_next_bonustype[i] = 0;
787 		odn->dn_rm_spillblk[i] = 0;
788 		odn->dn_next_bonuslen[i] = 0;
789 		odn->dn_next_blksz[i] = 0;
790 	}
791 	odn->dn_allocated_txg = 0;
792 	odn->dn_free_txg = 0;
793 	odn->dn_assigned_txg = 0;
794 	odn->dn_dirtyctx = 0;
795 	odn->dn_dirtyctx_firstset = NULL;
796 	odn->dn_have_spill = B_FALSE;
797 	odn->dn_zio = NULL;
798 	odn->dn_oldused = 0;
799 	odn->dn_oldflags = 0;
800 	odn->dn_olduid = 0;
801 	odn->dn_oldgid = 0;
802 	odn->dn_newuid = 0;
803 	odn->dn_newgid = 0;
804 	odn->dn_id_flags = 0;
805 
806 	/*
807 	 * Mark the dnode.
808 	 */
809 	ndn->dn_moved = 1;
810 	odn->dn_moved = (uint8_t)-1;
811 }
812 
813 #ifdef	_KERNEL
814 /*ARGSUSED*/
815 static kmem_cbrc_t
816 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
817 {
818 	dnode_t *odn = buf, *ndn = newbuf;
819 	objset_t *os;
820 	int64_t refcount;
821 	uint32_t dbufs;
822 
823 	/*
824 	 * The dnode is on the objset's list of known dnodes if the objset
825 	 * pointer is valid. We set the low bit of the objset pointer when
826 	 * freeing the dnode to invalidate it, and the memory patterns written
827 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
828 	 * A newly created dnode sets the objset pointer last of all to indicate
829 	 * that the dnode is known and in a valid state to be moved by this
830 	 * function.
831 	 */
832 	os = odn->dn_objset;
833 	if (!POINTER_IS_VALID(os)) {
834 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
835 		return (KMEM_CBRC_DONT_KNOW);
836 	}
837 
838 	/*
839 	 * Ensure that the objset does not go away during the move.
840 	 */
841 	rw_enter(&os_lock, RW_WRITER);
842 	if (os != odn->dn_objset) {
843 		rw_exit(&os_lock);
844 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
845 		return (KMEM_CBRC_DONT_KNOW);
846 	}
847 
848 	/*
849 	 * If the dnode is still valid, then so is the objset. We know that no
850 	 * valid objset can be freed while we hold os_lock, so we can safely
851 	 * ensure that the objset remains in use.
852 	 */
853 	mutex_enter(&os->os_lock);
854 
855 	/*
856 	 * Recheck the objset pointer in case the dnode was removed just before
857 	 * acquiring the lock.
858 	 */
859 	if (os != odn->dn_objset) {
860 		mutex_exit(&os->os_lock);
861 		rw_exit(&os_lock);
862 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
863 		return (KMEM_CBRC_DONT_KNOW);
864 	}
865 
866 	/*
867 	 * At this point we know that as long as we hold os->os_lock, the dnode
868 	 * cannot be freed and fields within the dnode can be safely accessed.
869 	 * The objset listing this dnode cannot go away as long as this dnode is
870 	 * on its list.
871 	 */
872 	rw_exit(&os_lock);
873 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
874 		mutex_exit(&os->os_lock);
875 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
876 		return (KMEM_CBRC_NO);
877 	}
878 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
879 
880 	/*
881 	 * Lock the dnode handle to prevent the dnode from obtaining any new
882 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
883 	 * from accessing the dnode, so that we can discount their holds. The
884 	 * handle is safe to access because we know that while the dnode cannot
885 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
886 	 * safely move any dnode referenced only by dbufs.
887 	 */
888 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
889 		mutex_exit(&os->os_lock);
890 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
891 		return (KMEM_CBRC_LATER);
892 	}
893 
894 	/*
895 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
896 	 * We need to guarantee that there is a hold for every dbuf in order to
897 	 * determine whether the dnode is actively referenced. Falsely matching
898 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
899 	 * that a thread already having an active dnode hold is about to add a
900 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
901 	 * progress.
902 	 */
903 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
904 		zrl_exit(&odn->dn_handle->dnh_zrlock);
905 		mutex_exit(&os->os_lock);
906 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
907 		return (KMEM_CBRC_LATER);
908 	}
909 
910 	/*
911 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
912 	 * case, the dbuf count is decremented under the handle lock before the
913 	 * dbuf's hold is released. This order ensures that if we count the hold
914 	 * after the dbuf is removed but before its hold is released, we will
915 	 * treat the unmatched hold as active and exit safely. If we count the
916 	 * hold before the dbuf is removed, the hold is discounted, and the
917 	 * removal is blocked until the move completes.
918 	 */
919 	refcount = refcount_count(&odn->dn_holds);
920 	ASSERT(refcount >= 0);
921 	dbufs = odn->dn_dbufs_count;
922 
923 	/* We can't have more dbufs than dnode holds. */
924 	ASSERT3U(dbufs, <=, refcount);
925 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
926 	    uint32_t, dbufs);
927 
928 	if (refcount > dbufs) {
929 		rw_exit(&odn->dn_struct_rwlock);
930 		zrl_exit(&odn->dn_handle->dnh_zrlock);
931 		mutex_exit(&os->os_lock);
932 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
933 		return (KMEM_CBRC_LATER);
934 	}
935 
936 	rw_exit(&odn->dn_struct_rwlock);
937 
938 	/*
939 	 * At this point we know that anyone with a hold on the dnode is not
940 	 * actively referencing it. The dnode is known and in a valid state to
941 	 * move. We're holding the locks needed to execute the critical section.
942 	 */
943 	dnode_move_impl(odn, ndn);
944 
945 	list_link_replace(&odn->dn_link, &ndn->dn_link);
946 	/* If the dnode was safe to move, the refcount cannot have changed. */
947 	ASSERT(refcount == refcount_count(&ndn->dn_holds));
948 	ASSERT(dbufs == ndn->dn_dbufs_count);
949 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
950 	mutex_exit(&os->os_lock);
951 
952 	return (KMEM_CBRC_YES);
953 }
954 #endif	/* _KERNEL */
955 
956 void
957 dnode_special_close(dnode_handle_t *dnh)
958 {
959 	dnode_t *dn = dnh->dnh_dnode;
960 
961 	/*
962 	 * Wait for final references to the dnode to clear.  This can
963 	 * only happen if the arc is asyncronously evicting state that
964 	 * has a hold on this dnode while we are trying to evict this
965 	 * dnode.
966 	 */
967 	while (refcount_count(&dn->dn_holds) > 0)
968 		delay(1);
969 	zrl_add(&dnh->dnh_zrlock);
970 	dnode_destroy(dn); /* implicit zrl_remove() */
971 	zrl_destroy(&dnh->dnh_zrlock);
972 	dnh->dnh_dnode = NULL;
973 }
974 
975 dnode_t *
976 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
977     dnode_handle_t *dnh)
978 {
979 	dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
980 	dnh->dnh_dnode = dn;
981 	zrl_init(&dnh->dnh_zrlock);
982 	DNODE_VERIFY(dn);
983 	return (dn);
984 }
985 
986 static void
987 dnode_buf_pageout(dmu_buf_t *db, void *arg)
988 {
989 	dnode_children_t *children_dnodes = arg;
990 	int i;
991 	int epb = db->db_size >> DNODE_SHIFT;
992 
993 	ASSERT(epb == children_dnodes->dnc_count);
994 
995 	for (i = 0; i < epb; i++) {
996 		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
997 		dnode_t *dn;
998 
999 		/*
1000 		 * The dnode handle lock guards against the dnode moving to
1001 		 * another valid address, so there is no need here to guard
1002 		 * against changes to or from NULL.
1003 		 */
1004 		if (dnh->dnh_dnode == NULL) {
1005 			zrl_destroy(&dnh->dnh_zrlock);
1006 			continue;
1007 		}
1008 
1009 		zrl_add(&dnh->dnh_zrlock);
1010 		dn = dnh->dnh_dnode;
1011 		/*
1012 		 * If there are holds on this dnode, then there should
1013 		 * be holds on the dnode's containing dbuf as well; thus
1014 		 * it wouldn't be eligible for eviction and this function
1015 		 * would not have been called.
1016 		 */
1017 		ASSERT(refcount_is_zero(&dn->dn_holds));
1018 		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1019 
1020 		dnode_destroy(dn); /* implicit zrl_remove() */
1021 		zrl_destroy(&dnh->dnh_zrlock);
1022 		dnh->dnh_dnode = NULL;
1023 	}
1024 	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1025 	    epb * sizeof (dnode_handle_t));
1026 }
1027 
1028 /*
1029  * errors:
1030  * EINVAL - invalid object number.
1031  * EIO - i/o error.
1032  * succeeds even for free dnodes.
1033  */
1034 int
1035 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1036     void *tag, dnode_t **dnp)
1037 {
1038 	int epb, idx, err;
1039 	int drop_struct_lock = FALSE;
1040 	int type;
1041 	uint64_t blk;
1042 	dnode_t *mdn, *dn;
1043 	dmu_buf_impl_t *db;
1044 	dnode_children_t *children_dnodes;
1045 	dnode_handle_t *dnh;
1046 
1047 	/*
1048 	 * If you are holding the spa config lock as writer, you shouldn't
1049 	 * be asking the DMU to do *anything* unless it's the root pool
1050 	 * which may require us to read from the root filesystem while
1051 	 * holding some (not all) of the locks as writer.
1052 	 */
1053 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1054 	    (spa_is_root(os->os_spa) &&
1055 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1056 
1057 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1058 		dn = (object == DMU_USERUSED_OBJECT) ?
1059 		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1060 		if (dn == NULL)
1061 			return (SET_ERROR(ENOENT));
1062 		type = dn->dn_type;
1063 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1064 			return (SET_ERROR(ENOENT));
1065 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1066 			return (SET_ERROR(EEXIST));
1067 		DNODE_VERIFY(dn);
1068 		(void) refcount_add(&dn->dn_holds, tag);
1069 		*dnp = dn;
1070 		return (0);
1071 	}
1072 
1073 	if (object == 0 || object >= DN_MAX_OBJECT)
1074 		return (SET_ERROR(EINVAL));
1075 
1076 	mdn = DMU_META_DNODE(os);
1077 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1078 
1079 	DNODE_VERIFY(mdn);
1080 
1081 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1082 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1083 		drop_struct_lock = TRUE;
1084 	}
1085 
1086 	blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1087 
1088 	db = dbuf_hold(mdn, blk, FTAG);
1089 	if (drop_struct_lock)
1090 		rw_exit(&mdn->dn_struct_rwlock);
1091 	if (db == NULL)
1092 		return (SET_ERROR(EIO));
1093 	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1094 	if (err) {
1095 		dbuf_rele(db, FTAG);
1096 		return (err);
1097 	}
1098 
1099 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1100 	epb = db->db.db_size >> DNODE_SHIFT;
1101 
1102 	idx = object & (epb-1);
1103 
1104 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1105 	children_dnodes = dmu_buf_get_user(&db->db);
1106 	if (children_dnodes == NULL) {
1107 		int i;
1108 		dnode_children_t *winner;
1109 		children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1110 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1111 		children_dnodes->dnc_count = epb;
1112 		dnh = &children_dnodes->dnc_children[0];
1113 		for (i = 0; i < epb; i++) {
1114 			zrl_init(&dnh[i].dnh_zrlock);
1115 			dnh[i].dnh_dnode = NULL;
1116 		}
1117 		if (winner = dmu_buf_set_user(&db->db, children_dnodes,
1118 		    dnode_buf_pageout)) {
1119 
1120 			for (i = 0; i < epb; i++) {
1121 				zrl_destroy(&dnh[i].dnh_zrlock);
1122 			}
1123 
1124 			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1125 			    epb * sizeof (dnode_handle_t));
1126 			children_dnodes = winner;
1127 		}
1128 	}
1129 	ASSERT(children_dnodes->dnc_count == epb);
1130 
1131 	dnh = &children_dnodes->dnc_children[idx];
1132 	zrl_add(&dnh->dnh_zrlock);
1133 	if ((dn = dnh->dnh_dnode) == NULL) {
1134 		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1135 		dnode_t *winner;
1136 
1137 		dn = dnode_create(os, phys, db, object, dnh);
1138 		winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1139 		if (winner != NULL) {
1140 			zrl_add(&dnh->dnh_zrlock);
1141 			dnode_destroy(dn); /* implicit zrl_remove() */
1142 			dn = winner;
1143 		}
1144 	}
1145 
1146 	mutex_enter(&dn->dn_mtx);
1147 	type = dn->dn_type;
1148 	if (dn->dn_free_txg ||
1149 	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1150 	    ((flag & DNODE_MUST_BE_FREE) &&
1151 	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1152 		mutex_exit(&dn->dn_mtx);
1153 		zrl_remove(&dnh->dnh_zrlock);
1154 		dbuf_rele(db, FTAG);
1155 		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1156 	}
1157 	mutex_exit(&dn->dn_mtx);
1158 
1159 	if (refcount_add(&dn->dn_holds, tag) == 1)
1160 		dbuf_add_ref(db, dnh);
1161 	/* Now we can rely on the hold to prevent the dnode from moving. */
1162 	zrl_remove(&dnh->dnh_zrlock);
1163 
1164 	DNODE_VERIFY(dn);
1165 	ASSERT3P(dn->dn_dbuf, ==, db);
1166 	ASSERT3U(dn->dn_object, ==, object);
1167 	dbuf_rele(db, FTAG);
1168 
1169 	*dnp = dn;
1170 	return (0);
1171 }
1172 
1173 /*
1174  * Return held dnode if the object is allocated, NULL if not.
1175  */
1176 int
1177 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1178 {
1179 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1180 }
1181 
1182 /*
1183  * Can only add a reference if there is already at least one
1184  * reference on the dnode.  Returns FALSE if unable to add a
1185  * new reference.
1186  */
1187 boolean_t
1188 dnode_add_ref(dnode_t *dn, void *tag)
1189 {
1190 	mutex_enter(&dn->dn_mtx);
1191 	if (refcount_is_zero(&dn->dn_holds)) {
1192 		mutex_exit(&dn->dn_mtx);
1193 		return (FALSE);
1194 	}
1195 	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1196 	mutex_exit(&dn->dn_mtx);
1197 	return (TRUE);
1198 }
1199 
1200 void
1201 dnode_rele(dnode_t *dn, void *tag)
1202 {
1203 	uint64_t refs;
1204 	/* Get while the hold prevents the dnode from moving. */
1205 	dmu_buf_impl_t *db = dn->dn_dbuf;
1206 	dnode_handle_t *dnh = dn->dn_handle;
1207 
1208 	mutex_enter(&dn->dn_mtx);
1209 	refs = refcount_remove(&dn->dn_holds, tag);
1210 	mutex_exit(&dn->dn_mtx);
1211 
1212 	/*
1213 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1214 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1215 	 * prevent the dnode from moving, since releasing the last hold could
1216 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1217 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1218 	 * other direct or indirect hold on the dnode must first drop the dnode
1219 	 * handle.
1220 	 */
1221 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1222 
1223 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1224 	if (refs == 0 && db != NULL) {
1225 		/*
1226 		 * Another thread could add a hold to the dnode handle in
1227 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1228 		 * hold on the parent dbuf prevents the handle from being
1229 		 * destroyed, the hold on the handle is OK. We can't yet assert
1230 		 * that the handle has zero references, but that will be
1231 		 * asserted anyway when the handle gets destroyed.
1232 		 */
1233 		dbuf_rele(db, dnh);
1234 	}
1235 }
1236 
1237 void
1238 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1239 {
1240 	objset_t *os = dn->dn_objset;
1241 	uint64_t txg = tx->tx_txg;
1242 
1243 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1244 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1245 		return;
1246 	}
1247 
1248 	DNODE_VERIFY(dn);
1249 
1250 #ifdef ZFS_DEBUG
1251 	mutex_enter(&dn->dn_mtx);
1252 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1253 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1254 	mutex_exit(&dn->dn_mtx);
1255 #endif
1256 
1257 	/*
1258 	 * Determine old uid/gid when necessary
1259 	 */
1260 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1261 
1262 	mutex_enter(&os->os_lock);
1263 
1264 	/*
1265 	 * If we are already marked dirty, we're done.
1266 	 */
1267 	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1268 		mutex_exit(&os->os_lock);
1269 		return;
1270 	}
1271 
1272 	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1273 	    !avl_is_empty(&dn->dn_dbufs));
1274 	ASSERT(dn->dn_datablksz != 0);
1275 	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1276 	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1277 	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1278 
1279 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1280 	    dn->dn_object, txg);
1281 
1282 	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1283 		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1284 	} else {
1285 		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1286 	}
1287 
1288 	mutex_exit(&os->os_lock);
1289 
1290 	/*
1291 	 * The dnode maintains a hold on its containing dbuf as
1292 	 * long as there are holds on it.  Each instantiated child
1293 	 * dbuf maintains a hold on the dnode.  When the last child
1294 	 * drops its hold, the dnode will drop its hold on the
1295 	 * containing dbuf. We add a "dirty hold" here so that the
1296 	 * dnode will hang around after we finish processing its
1297 	 * children.
1298 	 */
1299 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1300 
1301 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1302 
1303 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1304 }
1305 
1306 void
1307 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1308 {
1309 	int txgoff = tx->tx_txg & TXG_MASK;
1310 
1311 	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1312 
1313 	/* we should be the only holder... hopefully */
1314 	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1315 
1316 	mutex_enter(&dn->dn_mtx);
1317 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1318 		mutex_exit(&dn->dn_mtx);
1319 		return;
1320 	}
1321 	dn->dn_free_txg = tx->tx_txg;
1322 	mutex_exit(&dn->dn_mtx);
1323 
1324 	/*
1325 	 * If the dnode is already dirty, it needs to be moved from
1326 	 * the dirty list to the free list.
1327 	 */
1328 	mutex_enter(&dn->dn_objset->os_lock);
1329 	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1330 		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1331 		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1332 		mutex_exit(&dn->dn_objset->os_lock);
1333 	} else {
1334 		mutex_exit(&dn->dn_objset->os_lock);
1335 		dnode_setdirty(dn, tx);
1336 	}
1337 }
1338 
1339 /*
1340  * Try to change the block size for the indicated dnode.  This can only
1341  * succeed if there are no blocks allocated or dirty beyond first block
1342  */
1343 int
1344 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1345 {
1346 	dmu_buf_impl_t *db;
1347 	int err;
1348 
1349 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1350 	if (size == 0)
1351 		size = SPA_MINBLOCKSIZE;
1352 	else
1353 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1354 
1355 	if (ibs == dn->dn_indblkshift)
1356 		ibs = 0;
1357 
1358 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1359 		return (0);
1360 
1361 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1362 
1363 	/* Check for any allocated blocks beyond the first */
1364 	if (dn->dn_maxblkid != 0)
1365 		goto fail;
1366 
1367 	mutex_enter(&dn->dn_dbufs_mtx);
1368 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1369 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1370 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1371 		    db->db_blkid != DMU_SPILL_BLKID) {
1372 			mutex_exit(&dn->dn_dbufs_mtx);
1373 			goto fail;
1374 		}
1375 	}
1376 	mutex_exit(&dn->dn_dbufs_mtx);
1377 
1378 	if (ibs && dn->dn_nlevels != 1)
1379 		goto fail;
1380 
1381 	/* resize the old block */
1382 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1383 	if (err == 0)
1384 		dbuf_new_size(db, size, tx);
1385 	else if (err != ENOENT)
1386 		goto fail;
1387 
1388 	dnode_setdblksz(dn, size);
1389 	dnode_setdirty(dn, tx);
1390 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1391 	if (ibs) {
1392 		dn->dn_indblkshift = ibs;
1393 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1394 	}
1395 	/* rele after we have fixed the blocksize in the dnode */
1396 	if (db)
1397 		dbuf_rele(db, FTAG);
1398 
1399 	rw_exit(&dn->dn_struct_rwlock);
1400 	return (0);
1401 
1402 fail:
1403 	rw_exit(&dn->dn_struct_rwlock);
1404 	return (SET_ERROR(ENOTSUP));
1405 }
1406 
1407 /* read-holding callers must not rely on the lock being continuously held */
1408 void
1409 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1410 {
1411 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1412 	int epbs, new_nlevels;
1413 	uint64_t sz;
1414 
1415 	ASSERT(blkid != DMU_BONUS_BLKID);
1416 
1417 	ASSERT(have_read ?
1418 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1419 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1420 
1421 	/*
1422 	 * if we have a read-lock, check to see if we need to do any work
1423 	 * before upgrading to a write-lock.
1424 	 */
1425 	if (have_read) {
1426 		if (blkid <= dn->dn_maxblkid)
1427 			return;
1428 
1429 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1430 			rw_exit(&dn->dn_struct_rwlock);
1431 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1432 		}
1433 	}
1434 
1435 	if (blkid <= dn->dn_maxblkid)
1436 		goto out;
1437 
1438 	dn->dn_maxblkid = blkid;
1439 
1440 	/*
1441 	 * Compute the number of levels necessary to support the new maxblkid.
1442 	 */
1443 	new_nlevels = 1;
1444 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1445 	for (sz = dn->dn_nblkptr;
1446 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1447 		new_nlevels++;
1448 
1449 	if (new_nlevels > dn->dn_nlevels) {
1450 		int old_nlevels = dn->dn_nlevels;
1451 		dmu_buf_impl_t *db;
1452 		list_t *list;
1453 		dbuf_dirty_record_t *new, *dr, *dr_next;
1454 
1455 		dn->dn_nlevels = new_nlevels;
1456 
1457 		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1458 		dn->dn_next_nlevels[txgoff] = new_nlevels;
1459 
1460 		/* dirty the left indirects */
1461 		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1462 		ASSERT(db != NULL);
1463 		new = dbuf_dirty(db, tx);
1464 		dbuf_rele(db, FTAG);
1465 
1466 		/* transfer the dirty records to the new indirect */
1467 		mutex_enter(&dn->dn_mtx);
1468 		mutex_enter(&new->dt.di.dr_mtx);
1469 		list = &dn->dn_dirty_records[txgoff];
1470 		for (dr = list_head(list); dr; dr = dr_next) {
1471 			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1472 			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1473 			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1474 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1475 				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1476 				list_remove(&dn->dn_dirty_records[txgoff], dr);
1477 				list_insert_tail(&new->dt.di.dr_children, dr);
1478 				dr->dr_parent = new;
1479 			}
1480 		}
1481 		mutex_exit(&new->dt.di.dr_mtx);
1482 		mutex_exit(&dn->dn_mtx);
1483 	}
1484 
1485 out:
1486 	if (have_read)
1487 		rw_downgrade(&dn->dn_struct_rwlock);
1488 }
1489 
1490 void
1491 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1492 {
1493 	dmu_buf_impl_t *db;
1494 	uint64_t blkoff, blkid, nblks;
1495 	int blksz, blkshift, head, tail;
1496 	int trunc = FALSE;
1497 	int epbs;
1498 
1499 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1500 	blksz = dn->dn_datablksz;
1501 	blkshift = dn->dn_datablkshift;
1502 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1503 
1504 	if (len == DMU_OBJECT_END) {
1505 		len = UINT64_MAX - off;
1506 		trunc = TRUE;
1507 	}
1508 
1509 	/*
1510 	 * First, block align the region to free:
1511 	 */
1512 	if (ISP2(blksz)) {
1513 		head = P2NPHASE(off, blksz);
1514 		blkoff = P2PHASE(off, blksz);
1515 		if ((off >> blkshift) > dn->dn_maxblkid)
1516 			goto out;
1517 	} else {
1518 		ASSERT(dn->dn_maxblkid == 0);
1519 		if (off == 0 && len >= blksz) {
1520 			/*
1521 			 * Freeing the whole block; fast-track this request.
1522 			 * Note that we won't dirty any indirect blocks,
1523 			 * which is fine because we will be freeing the entire
1524 			 * file and thus all indirect blocks will be freed
1525 			 * by free_children().
1526 			 */
1527 			blkid = 0;
1528 			nblks = 1;
1529 			goto done;
1530 		} else if (off >= blksz) {
1531 			/* Freeing past end-of-data */
1532 			goto out;
1533 		} else {
1534 			/* Freeing part of the block. */
1535 			head = blksz - off;
1536 			ASSERT3U(head, >, 0);
1537 		}
1538 		blkoff = off;
1539 	}
1540 	/* zero out any partial block data at the start of the range */
1541 	if (head) {
1542 		ASSERT3U(blkoff + head, ==, blksz);
1543 		if (len < head)
1544 			head = len;
1545 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1546 		    FTAG, &db) == 0) {
1547 			caddr_t data;
1548 
1549 			/* don't dirty if it isn't on disk and isn't dirty */
1550 			if (db->db_last_dirty ||
1551 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1552 				rw_exit(&dn->dn_struct_rwlock);
1553 				dmu_buf_will_dirty(&db->db, tx);
1554 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1555 				data = db->db.db_data;
1556 				bzero(data + blkoff, head);
1557 			}
1558 			dbuf_rele(db, FTAG);
1559 		}
1560 		off += head;
1561 		len -= head;
1562 	}
1563 
1564 	/* If the range was less than one block, we're done */
1565 	if (len == 0)
1566 		goto out;
1567 
1568 	/* If the remaining range is past end of file, we're done */
1569 	if ((off >> blkshift) > dn->dn_maxblkid)
1570 		goto out;
1571 
1572 	ASSERT(ISP2(blksz));
1573 	if (trunc)
1574 		tail = 0;
1575 	else
1576 		tail = P2PHASE(len, blksz);
1577 
1578 	ASSERT0(P2PHASE(off, blksz));
1579 	/* zero out any partial block data at the end of the range */
1580 	if (tail) {
1581 		if (len < tail)
1582 			tail = len;
1583 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1584 		    TRUE, FTAG, &db) == 0) {
1585 			/* don't dirty if not on disk and not dirty */
1586 			if (db->db_last_dirty ||
1587 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1588 				rw_exit(&dn->dn_struct_rwlock);
1589 				dmu_buf_will_dirty(&db->db, tx);
1590 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1591 				bzero(db->db.db_data, tail);
1592 			}
1593 			dbuf_rele(db, FTAG);
1594 		}
1595 		len -= tail;
1596 	}
1597 
1598 	/* If the range did not include a full block, we are done */
1599 	if (len == 0)
1600 		goto out;
1601 
1602 	ASSERT(IS_P2ALIGNED(off, blksz));
1603 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1604 	blkid = off >> blkshift;
1605 	nblks = len >> blkshift;
1606 	if (trunc)
1607 		nblks += 1;
1608 
1609 	/*
1610 	 * Dirty the first and last indirect blocks, as they (and/or their
1611 	 * parents) will need to be written out if they were only
1612 	 * partially freed.  Interior indirect blocks will be themselves freed,
1613 	 * by free_children(), so they need not be dirtied.  Note that these
1614 	 * interior blocks have already been prefetched by dmu_tx_hold_free().
1615 	 */
1616 	if (dn->dn_nlevels > 1) {
1617 		uint64_t first, last;
1618 
1619 		first = blkid >> epbs;
1620 		if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1621 			dmu_buf_will_dirty(&db->db, tx);
1622 			dbuf_rele(db, FTAG);
1623 		}
1624 		if (trunc)
1625 			last = dn->dn_maxblkid >> epbs;
1626 		else
1627 			last = (blkid + nblks - 1) >> epbs;
1628 		if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1629 			dmu_buf_will_dirty(&db->db, tx);
1630 			dbuf_rele(db, FTAG);
1631 		}
1632 	}
1633 
1634 done:
1635 	/*
1636 	 * Add this range to the dnode range list.
1637 	 * We will finish up this free operation in the syncing phase.
1638 	 */
1639 	mutex_enter(&dn->dn_mtx);
1640 	int txgoff = tx->tx_txg & TXG_MASK;
1641 	if (dn->dn_free_ranges[txgoff] == NULL) {
1642 		dn->dn_free_ranges[txgoff] =
1643 		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1644 	}
1645 	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1646 	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1647 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1648 	    blkid, nblks, tx->tx_txg);
1649 	mutex_exit(&dn->dn_mtx);
1650 
1651 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1652 	dnode_setdirty(dn, tx);
1653 out:
1654 
1655 	rw_exit(&dn->dn_struct_rwlock);
1656 }
1657 
1658 static boolean_t
1659 dnode_spill_freed(dnode_t *dn)
1660 {
1661 	int i;
1662 
1663 	mutex_enter(&dn->dn_mtx);
1664 	for (i = 0; i < TXG_SIZE; i++) {
1665 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1666 			break;
1667 	}
1668 	mutex_exit(&dn->dn_mtx);
1669 	return (i < TXG_SIZE);
1670 }
1671 
1672 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1673 uint64_t
1674 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1675 {
1676 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1677 	int i;
1678 
1679 	if (blkid == DMU_BONUS_BLKID)
1680 		return (FALSE);
1681 
1682 	/*
1683 	 * If we're in the process of opening the pool, dp will not be
1684 	 * set yet, but there shouldn't be anything dirty.
1685 	 */
1686 	if (dp == NULL)
1687 		return (FALSE);
1688 
1689 	if (dn->dn_free_txg)
1690 		return (TRUE);
1691 
1692 	if (blkid == DMU_SPILL_BLKID)
1693 		return (dnode_spill_freed(dn));
1694 
1695 	mutex_enter(&dn->dn_mtx);
1696 	for (i = 0; i < TXG_SIZE; i++) {
1697 		if (dn->dn_free_ranges[i] != NULL &&
1698 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1699 			break;
1700 	}
1701 	mutex_exit(&dn->dn_mtx);
1702 	return (i < TXG_SIZE);
1703 }
1704 
1705 /* call from syncing context when we actually write/free space for this dnode */
1706 void
1707 dnode_diduse_space(dnode_t *dn, int64_t delta)
1708 {
1709 	uint64_t space;
1710 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1711 	    dn, dn->dn_phys,
1712 	    (u_longlong_t)dn->dn_phys->dn_used,
1713 	    (longlong_t)delta);
1714 
1715 	mutex_enter(&dn->dn_mtx);
1716 	space = DN_USED_BYTES(dn->dn_phys);
1717 	if (delta > 0) {
1718 		ASSERT3U(space + delta, >=, space); /* no overflow */
1719 	} else {
1720 		ASSERT3U(space, >=, -delta); /* no underflow */
1721 	}
1722 	space += delta;
1723 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1724 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1725 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1726 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1727 	} else {
1728 		dn->dn_phys->dn_used = space;
1729 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1730 	}
1731 	mutex_exit(&dn->dn_mtx);
1732 }
1733 
1734 /*
1735  * Call when we think we're going to write/free space in open context to track
1736  * the amount of memory in use by the currently open txg.
1737  */
1738 void
1739 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1740 {
1741 	objset_t *os = dn->dn_objset;
1742 	dsl_dataset_t *ds = os->os_dsl_dataset;
1743 	int64_t aspace = spa_get_asize(os->os_spa, space);
1744 
1745 	if (ds != NULL) {
1746 		dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1747 		dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1748 	}
1749 
1750 	dmu_tx_willuse_space(tx, aspace);
1751 }
1752 
1753 /*
1754  * Scans a block at the indicated "level" looking for a hole or data,
1755  * depending on 'flags'.
1756  *
1757  * If level > 0, then we are scanning an indirect block looking at its
1758  * pointers.  If level == 0, then we are looking at a block of dnodes.
1759  *
1760  * If we don't find what we are looking for in the block, we return ESRCH.
1761  * Otherwise, return with *offset pointing to the beginning (if searching
1762  * forwards) or end (if searching backwards) of the range covered by the
1763  * block pointer we matched on (or dnode).
1764  *
1765  * The basic search algorithm used below by dnode_next_offset() is to
1766  * use this function to search up the block tree (widen the search) until
1767  * we find something (i.e., we don't return ESRCH) and then search back
1768  * down the tree (narrow the search) until we reach our original search
1769  * level.
1770  */
1771 static int
1772 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1773 	int lvl, uint64_t blkfill, uint64_t txg)
1774 {
1775 	dmu_buf_impl_t *db = NULL;
1776 	void *data = NULL;
1777 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1778 	uint64_t epb = 1ULL << epbs;
1779 	uint64_t minfill, maxfill;
1780 	boolean_t hole;
1781 	int i, inc, error, span;
1782 
1783 	dprintf("probing object %llu offset %llx level %d of %u\n",
1784 	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1785 
1786 	hole = ((flags & DNODE_FIND_HOLE) != 0);
1787 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1788 	ASSERT(txg == 0 || !hole);
1789 
1790 	if (lvl == dn->dn_phys->dn_nlevels) {
1791 		error = 0;
1792 		epb = dn->dn_phys->dn_nblkptr;
1793 		data = dn->dn_phys->dn_blkptr;
1794 	} else {
1795 		uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1796 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1797 		if (error) {
1798 			if (error != ENOENT)
1799 				return (error);
1800 			if (hole)
1801 				return (0);
1802 			/*
1803 			 * This can only happen when we are searching up
1804 			 * the block tree for data.  We don't really need to
1805 			 * adjust the offset, as we will just end up looking
1806 			 * at the pointer to this block in its parent, and its
1807 			 * going to be unallocated, so we will skip over it.
1808 			 */
1809 			return (SET_ERROR(ESRCH));
1810 		}
1811 		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1812 		if (error) {
1813 			dbuf_rele(db, FTAG);
1814 			return (error);
1815 		}
1816 		data = db->db.db_data;
1817 	}
1818 
1819 
1820 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1821 	    db->db_blkptr->blk_birth <= txg ||
1822 	    BP_IS_HOLE(db->db_blkptr))) {
1823 		/*
1824 		 * This can only happen when we are searching up the tree
1825 		 * and these conditions mean that we need to keep climbing.
1826 		 */
1827 		error = SET_ERROR(ESRCH);
1828 	} else if (lvl == 0) {
1829 		dnode_phys_t *dnp = data;
1830 		span = DNODE_SHIFT;
1831 		ASSERT(dn->dn_type == DMU_OT_DNODE);
1832 
1833 		for (i = (*offset >> span) & (blkfill - 1);
1834 		    i >= 0 && i < blkfill; i += inc) {
1835 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1836 				break;
1837 			*offset += (1ULL << span) * inc;
1838 		}
1839 		if (i < 0 || i == blkfill)
1840 			error = SET_ERROR(ESRCH);
1841 	} else {
1842 		blkptr_t *bp = data;
1843 		uint64_t start = *offset;
1844 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1845 		minfill = 0;
1846 		maxfill = blkfill << ((lvl - 1) * epbs);
1847 
1848 		if (hole)
1849 			maxfill--;
1850 		else
1851 			minfill++;
1852 
1853 		*offset = *offset >> span;
1854 		for (i = BF64_GET(*offset, 0, epbs);
1855 		    i >= 0 && i < epb; i += inc) {
1856 			if (BP_GET_FILL(&bp[i]) >= minfill &&
1857 			    BP_GET_FILL(&bp[i]) <= maxfill &&
1858 			    (hole || bp[i].blk_birth > txg))
1859 				break;
1860 			if (inc > 0 || *offset > 0)
1861 				*offset += inc;
1862 		}
1863 		*offset = *offset << span;
1864 		if (inc < 0) {
1865 			/* traversing backwards; position offset at the end */
1866 			ASSERT3U(*offset, <=, start);
1867 			*offset = MIN(*offset + (1ULL << span) - 1, start);
1868 		} else if (*offset < start) {
1869 			*offset = start;
1870 		}
1871 		if (i < 0 || i >= epb)
1872 			error = SET_ERROR(ESRCH);
1873 	}
1874 
1875 	if (db)
1876 		dbuf_rele(db, FTAG);
1877 
1878 	return (error);
1879 }
1880 
1881 /*
1882  * Find the next hole, data, or sparse region at or after *offset.
1883  * The value 'blkfill' tells us how many items we expect to find
1884  * in an L0 data block; this value is 1 for normal objects,
1885  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1886  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1887  *
1888  * Examples:
1889  *
1890  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1891  *	Finds the next/previous hole/data in a file.
1892  *	Used in dmu_offset_next().
1893  *
1894  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1895  *	Finds the next free/allocated dnode an objset's meta-dnode.
1896  *	Only finds objects that have new contents since txg (ie.
1897  *	bonus buffer changes and content removal are ignored).
1898  *	Used in dmu_object_next().
1899  *
1900  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1901  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1902  *	Used in dmu_object_alloc().
1903  */
1904 int
1905 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1906     int minlvl, uint64_t blkfill, uint64_t txg)
1907 {
1908 	uint64_t initial_offset = *offset;
1909 	int lvl, maxlvl;
1910 	int error = 0;
1911 
1912 	if (!(flags & DNODE_FIND_HAVELOCK))
1913 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1914 
1915 	if (dn->dn_phys->dn_nlevels == 0) {
1916 		error = SET_ERROR(ESRCH);
1917 		goto out;
1918 	}
1919 
1920 	if (dn->dn_datablkshift == 0) {
1921 		if (*offset < dn->dn_datablksz) {
1922 			if (flags & DNODE_FIND_HOLE)
1923 				*offset = dn->dn_datablksz;
1924 		} else {
1925 			error = SET_ERROR(ESRCH);
1926 		}
1927 		goto out;
1928 	}
1929 
1930 	maxlvl = dn->dn_phys->dn_nlevels;
1931 
1932 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1933 		error = dnode_next_offset_level(dn,
1934 		    flags, offset, lvl, blkfill, txg);
1935 		if (error != ESRCH)
1936 			break;
1937 	}
1938 
1939 	while (error == 0 && --lvl >= minlvl) {
1940 		error = dnode_next_offset_level(dn,
1941 		    flags, offset, lvl, blkfill, txg);
1942 	}
1943 
1944 	/*
1945 	 * There's always a "virtual hole" at the end of the object, even
1946 	 * if all BP's which physically exist are non-holes.
1947 	 */
1948 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
1949 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
1950 		error = 0;
1951 	}
1952 
1953 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1954 	    initial_offset < *offset : initial_offset > *offset))
1955 		error = SET_ERROR(ESRCH);
1956 out:
1957 	if (!(flags & DNODE_FIND_HAVELOCK))
1958 		rw_exit(&dn->dn_struct_rwlock);
1959 
1960 	return (error);
1961 }
1962