1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/dmu.h> 28 #include <sys/dmu_impl.h> 29 #include <sys/dbuf.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 33 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 34 #include <sys/dsl_pool.h> 35 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 36 #include <sys/spa.h> 37 #include <sys/sa.h> 38 #include <sys/sa_impl.h> 39 #include <sys/zfs_context.h> 40 #include <sys/varargs.h> 41 42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 43 uint64_t arg1, uint64_t arg2); 44 45 46 dmu_tx_t * 47 dmu_tx_create_dd(dsl_dir_t *dd) 48 { 49 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 50 tx->tx_dir = dd; 51 if (dd != NULL) 52 tx->tx_pool = dd->dd_pool; 53 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 54 offsetof(dmu_tx_hold_t, txh_node)); 55 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), 56 offsetof(dmu_tx_callback_t, dcb_node)); 57 tx->tx_start = gethrtime(); 58 #ifdef ZFS_DEBUG 59 refcount_create(&tx->tx_space_written); 60 refcount_create(&tx->tx_space_freed); 61 #endif 62 return (tx); 63 } 64 65 dmu_tx_t * 66 dmu_tx_create(objset_t *os) 67 { 68 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); 69 tx->tx_objset = os; 70 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset); 71 return (tx); 72 } 73 74 dmu_tx_t * 75 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 76 { 77 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 78 79 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 80 tx->tx_pool = dp; 81 tx->tx_txg = txg; 82 tx->tx_anyobj = TRUE; 83 84 return (tx); 85 } 86 87 int 88 dmu_tx_is_syncing(dmu_tx_t *tx) 89 { 90 return (tx->tx_anyobj); 91 } 92 93 int 94 dmu_tx_private_ok(dmu_tx_t *tx) 95 { 96 return (tx->tx_anyobj); 97 } 98 99 static dmu_tx_hold_t * 100 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 101 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 102 { 103 dmu_tx_hold_t *txh; 104 dnode_t *dn = NULL; 105 int err; 106 107 if (object != DMU_NEW_OBJECT) { 108 err = dnode_hold(os, object, tx, &dn); 109 if (err) { 110 tx->tx_err = err; 111 return (NULL); 112 } 113 114 if (err == 0 && tx->tx_txg != 0) { 115 mutex_enter(&dn->dn_mtx); 116 /* 117 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 118 * problem, but there's no way for it to happen (for 119 * now, at least). 120 */ 121 ASSERT(dn->dn_assigned_txg == 0); 122 dn->dn_assigned_txg = tx->tx_txg; 123 (void) refcount_add(&dn->dn_tx_holds, tx); 124 mutex_exit(&dn->dn_mtx); 125 } 126 } 127 128 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 129 txh->txh_tx = tx; 130 txh->txh_dnode = dn; 131 #ifdef ZFS_DEBUG 132 txh->txh_type = type; 133 txh->txh_arg1 = arg1; 134 txh->txh_arg2 = arg2; 135 #endif 136 list_insert_tail(&tx->tx_holds, txh); 137 138 return (txh); 139 } 140 141 void 142 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 143 { 144 /* 145 * If we're syncing, they can manipulate any object anyhow, and 146 * the hold on the dnode_t can cause problems. 147 */ 148 if (!dmu_tx_is_syncing(tx)) { 149 (void) dmu_tx_hold_object_impl(tx, os, 150 object, THT_NEWOBJECT, 0, 0); 151 } 152 } 153 154 static int 155 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 156 { 157 int err; 158 dmu_buf_impl_t *db; 159 160 rw_enter(&dn->dn_struct_rwlock, RW_READER); 161 db = dbuf_hold_level(dn, level, blkid, FTAG); 162 rw_exit(&dn->dn_struct_rwlock); 163 if (db == NULL) 164 return (SET_ERROR(EIO)); 165 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 166 dbuf_rele(db, FTAG); 167 return (err); 168 } 169 170 static void 171 dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db, 172 int level, uint64_t blkid, boolean_t freeable, uint64_t *history) 173 { 174 objset_t *os = dn->dn_objset; 175 dsl_dataset_t *ds = os->os_dsl_dataset; 176 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 177 dmu_buf_impl_t *parent = NULL; 178 blkptr_t *bp = NULL; 179 uint64_t space; 180 181 if (level >= dn->dn_nlevels || history[level] == blkid) 182 return; 183 184 history[level] = blkid; 185 186 space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift); 187 188 if (db == NULL || db == dn->dn_dbuf) { 189 ASSERT(level != 0); 190 db = NULL; 191 } else { 192 ASSERT(DB_DNODE(db) == dn); 193 ASSERT(db->db_level == level); 194 ASSERT(db->db.db_size == space); 195 ASSERT(db->db_blkid == blkid); 196 bp = db->db_blkptr; 197 parent = db->db_parent; 198 } 199 200 freeable = (bp && (freeable || 201 dsl_dataset_block_freeable(ds, bp, bp->blk_birth))); 202 203 if (freeable) 204 txh->txh_space_tooverwrite += space; 205 else 206 txh->txh_space_towrite += space; 207 if (bp) 208 txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp); 209 210 dmu_tx_count_twig(txh, dn, parent, level + 1, 211 blkid >> epbs, freeable, history); 212 } 213 214 /* ARGSUSED */ 215 static void 216 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 217 { 218 dnode_t *dn = txh->txh_dnode; 219 uint64_t start, end, i; 220 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 221 int err = 0; 222 223 if (len == 0) 224 return; 225 226 min_bs = SPA_MINBLOCKSHIFT; 227 max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1; 228 min_ibs = DN_MIN_INDBLKSHIFT; 229 max_ibs = DN_MAX_INDBLKSHIFT; 230 231 if (dn) { 232 uint64_t history[DN_MAX_LEVELS]; 233 int nlvls = dn->dn_nlevels; 234 int delta; 235 236 /* 237 * For i/o error checking, read the first and last level-0 238 * blocks (if they are not aligned), and all the level-1 blocks. 239 */ 240 if (dn->dn_maxblkid == 0) { 241 delta = dn->dn_datablksz; 242 start = (off < dn->dn_datablksz) ? 0 : 1; 243 end = (off+len <= dn->dn_datablksz) ? 0 : 1; 244 if (start == 0 && (off > 0 || len < dn->dn_datablksz)) { 245 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 246 if (err) 247 goto out; 248 delta -= off; 249 } 250 } else { 251 zio_t *zio = zio_root(dn->dn_objset->os_spa, 252 NULL, NULL, ZIO_FLAG_CANFAIL); 253 254 /* first level-0 block */ 255 start = off >> dn->dn_datablkshift; 256 if (P2PHASE(off, dn->dn_datablksz) || 257 len < dn->dn_datablksz) { 258 err = dmu_tx_check_ioerr(zio, dn, 0, start); 259 if (err) 260 goto out; 261 } 262 263 /* last level-0 block */ 264 end = (off+len-1) >> dn->dn_datablkshift; 265 if (end != start && end <= dn->dn_maxblkid && 266 P2PHASE(off+len, dn->dn_datablksz)) { 267 err = dmu_tx_check_ioerr(zio, dn, 0, end); 268 if (err) 269 goto out; 270 } 271 272 /* level-1 blocks */ 273 if (nlvls > 1) { 274 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 275 for (i = (start>>shft)+1; i < end>>shft; i++) { 276 err = dmu_tx_check_ioerr(zio, dn, 1, i); 277 if (err) 278 goto out; 279 } 280 } 281 282 err = zio_wait(zio); 283 if (err) 284 goto out; 285 delta = P2NPHASE(off, dn->dn_datablksz); 286 } 287 288 min_ibs = max_ibs = dn->dn_indblkshift; 289 if (dn->dn_maxblkid > 0) { 290 /* 291 * The blocksize can't change, 292 * so we can make a more precise estimate. 293 */ 294 ASSERT(dn->dn_datablkshift != 0); 295 min_bs = max_bs = dn->dn_datablkshift; 296 } else { 297 /* 298 * The blocksize can increase up to the recordsize, 299 * or if it is already more than the recordsize, 300 * up to the next power of 2. 301 */ 302 min_bs = highbit64(dn->dn_datablksz - 1); 303 max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1)); 304 } 305 306 /* 307 * If this write is not off the end of the file 308 * we need to account for overwrites/unref. 309 */ 310 if (start <= dn->dn_maxblkid) { 311 for (int l = 0; l < DN_MAX_LEVELS; l++) 312 history[l] = -1ULL; 313 } 314 while (start <= dn->dn_maxblkid) { 315 dmu_buf_impl_t *db; 316 317 rw_enter(&dn->dn_struct_rwlock, RW_READER); 318 err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db); 319 rw_exit(&dn->dn_struct_rwlock); 320 321 if (err) { 322 txh->txh_tx->tx_err = err; 323 return; 324 } 325 326 dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE, 327 history); 328 dbuf_rele(db, FTAG); 329 if (++start > end) { 330 /* 331 * Account for new indirects appearing 332 * before this IO gets assigned into a txg. 333 */ 334 bits = 64 - min_bs; 335 epbs = min_ibs - SPA_BLKPTRSHIFT; 336 for (bits -= epbs * (nlvls - 1); 337 bits >= 0; bits -= epbs) 338 txh->txh_fudge += 1ULL << max_ibs; 339 goto out; 340 } 341 off += delta; 342 if (len >= delta) 343 len -= delta; 344 delta = dn->dn_datablksz; 345 } 346 } 347 348 /* 349 * 'end' is the last thing we will access, not one past. 350 * This way we won't overflow when accessing the last byte. 351 */ 352 start = P2ALIGN(off, 1ULL << max_bs); 353 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 354 txh->txh_space_towrite += end - start + 1; 355 356 start >>= min_bs; 357 end >>= min_bs; 358 359 epbs = min_ibs - SPA_BLKPTRSHIFT; 360 361 /* 362 * The object contains at most 2^(64 - min_bs) blocks, 363 * and each indirect level maps 2^epbs. 364 */ 365 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 366 start >>= epbs; 367 end >>= epbs; 368 ASSERT3U(end, >=, start); 369 txh->txh_space_towrite += (end - start + 1) << max_ibs; 370 if (start != 0) { 371 /* 372 * We also need a new blkid=0 indirect block 373 * to reference any existing file data. 374 */ 375 txh->txh_space_towrite += 1ULL << max_ibs; 376 } 377 } 378 379 out: 380 if (txh->txh_space_towrite + txh->txh_space_tooverwrite > 381 2 * DMU_MAX_ACCESS) 382 err = SET_ERROR(EFBIG); 383 384 if (err) 385 txh->txh_tx->tx_err = err; 386 } 387 388 static void 389 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 390 { 391 dnode_t *dn = txh->txh_dnode; 392 dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset); 393 uint64_t space = mdn->dn_datablksz + 394 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 395 396 if (dn && dn->dn_dbuf->db_blkptr && 397 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 398 dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) { 399 txh->txh_space_tooverwrite += space; 400 txh->txh_space_tounref += space; 401 } else { 402 txh->txh_space_towrite += space; 403 if (dn && dn->dn_dbuf->db_blkptr) 404 txh->txh_space_tounref += space; 405 } 406 } 407 408 void 409 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 410 { 411 dmu_tx_hold_t *txh; 412 413 ASSERT(tx->tx_txg == 0); 414 ASSERT(len < DMU_MAX_ACCESS); 415 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 416 417 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 418 object, THT_WRITE, off, len); 419 if (txh == NULL) 420 return; 421 422 dmu_tx_count_write(txh, off, len); 423 dmu_tx_count_dnode(txh); 424 } 425 426 static void 427 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 428 { 429 uint64_t blkid, nblks, lastblk; 430 uint64_t space = 0, unref = 0, skipped = 0; 431 dnode_t *dn = txh->txh_dnode; 432 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 433 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 434 int epbs; 435 uint64_t l0span = 0, nl1blks = 0; 436 437 if (dn->dn_nlevels == 0) 438 return; 439 440 /* 441 * The struct_rwlock protects us against dn_nlevels 442 * changing, in case (against all odds) we manage to dirty & 443 * sync out the changes after we check for being dirty. 444 * Also, dbuf_hold_impl() wants us to have the struct_rwlock. 445 */ 446 rw_enter(&dn->dn_struct_rwlock, RW_READER); 447 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 448 if (dn->dn_maxblkid == 0) { 449 if (off == 0 && len >= dn->dn_datablksz) { 450 blkid = 0; 451 nblks = 1; 452 } else { 453 rw_exit(&dn->dn_struct_rwlock); 454 return; 455 } 456 } else { 457 blkid = off >> dn->dn_datablkshift; 458 nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; 459 460 if (blkid > dn->dn_maxblkid) { 461 rw_exit(&dn->dn_struct_rwlock); 462 return; 463 } 464 if (blkid + nblks > dn->dn_maxblkid) 465 nblks = dn->dn_maxblkid - blkid + 1; 466 467 } 468 l0span = nblks; /* save for later use to calc level > 1 overhead */ 469 if (dn->dn_nlevels == 1) { 470 int i; 471 for (i = 0; i < nblks; i++) { 472 blkptr_t *bp = dn->dn_phys->dn_blkptr; 473 ASSERT3U(blkid + i, <, dn->dn_nblkptr); 474 bp += blkid + i; 475 if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) { 476 dprintf_bp(bp, "can free old%s", ""); 477 space += bp_get_dsize(spa, bp); 478 } 479 unref += BP_GET_ASIZE(bp); 480 } 481 nl1blks = 1; 482 nblks = 0; 483 } 484 485 lastblk = blkid + nblks - 1; 486 while (nblks) { 487 dmu_buf_impl_t *dbuf; 488 uint64_t ibyte, new_blkid; 489 int epb = 1 << epbs; 490 int err, i, blkoff, tochk; 491 blkptr_t *bp; 492 493 ibyte = blkid << dn->dn_datablkshift; 494 err = dnode_next_offset(dn, 495 DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); 496 new_blkid = ibyte >> dn->dn_datablkshift; 497 if (err == ESRCH) { 498 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 499 break; 500 } 501 if (err) { 502 txh->txh_tx->tx_err = err; 503 break; 504 } 505 if (new_blkid > lastblk) { 506 skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; 507 break; 508 } 509 510 if (new_blkid > blkid) { 511 ASSERT((new_blkid >> epbs) > (blkid >> epbs)); 512 skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1; 513 nblks -= new_blkid - blkid; 514 blkid = new_blkid; 515 } 516 blkoff = P2PHASE(blkid, epb); 517 tochk = MIN(epb - blkoff, nblks); 518 519 err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf); 520 if (err) { 521 txh->txh_tx->tx_err = err; 522 break; 523 } 524 525 txh->txh_memory_tohold += dbuf->db.db_size; 526 527 /* 528 * We don't check memory_tohold against DMU_MAX_ACCESS because 529 * memory_tohold is an over-estimation (especially the >L1 530 * indirect blocks), so it could fail. Callers should have 531 * already verified that they will not be holding too much 532 * memory. 533 */ 534 535 err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 536 if (err != 0) { 537 txh->txh_tx->tx_err = err; 538 dbuf_rele(dbuf, FTAG); 539 break; 540 } 541 542 bp = dbuf->db.db_data; 543 bp += blkoff; 544 545 for (i = 0; i < tochk; i++) { 546 if (dsl_dataset_block_freeable(ds, &bp[i], 547 bp[i].blk_birth)) { 548 dprintf_bp(&bp[i], "can free old%s", ""); 549 space += bp_get_dsize(spa, &bp[i]); 550 } 551 unref += BP_GET_ASIZE(bp); 552 } 553 dbuf_rele(dbuf, FTAG); 554 555 ++nl1blks; 556 blkid += tochk; 557 nblks -= tochk; 558 } 559 rw_exit(&dn->dn_struct_rwlock); 560 561 /* 562 * Add in memory requirements of higher-level indirects. 563 * This assumes a worst-possible scenario for dn_nlevels and a 564 * worst-possible distribution of l1-blocks over the region to free. 565 */ 566 { 567 uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs); 568 int level = 2; 569 /* 570 * Here we don't use DN_MAX_LEVEL, but calculate it with the 571 * given datablkshift and indblkshift. This makes the 572 * difference between 19 and 8 on large files. 573 */ 574 int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) / 575 (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 576 577 while (level++ < maxlevel) { 578 txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1) 579 << dn->dn_indblkshift; 580 blkcnt = 1 + (blkcnt >> epbs); 581 } 582 } 583 584 /* account for new level 1 indirect blocks that might show up */ 585 if (skipped > 0) { 586 txh->txh_fudge += skipped << dn->dn_indblkshift; 587 skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); 588 txh->txh_memory_tohold += skipped << dn->dn_indblkshift; 589 } 590 txh->txh_space_tofree += space; 591 txh->txh_space_tounref += unref; 592 } 593 594 /* 595 * This function marks the transaction as being a "net free". The end 596 * result is that refquotas will be disabled for this transaction, and 597 * this transaction will be able to use half of the pool space overhead 598 * (see dsl_pool_adjustedsize()). Therefore this function should only 599 * be called for transactions that we expect will not cause a net increase 600 * in the amount of space used (but it's OK if that is occasionally not true). 601 */ 602 void 603 dmu_tx_mark_netfree(dmu_tx_t *tx) 604 { 605 dmu_tx_hold_t *txh; 606 607 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 608 DMU_NEW_OBJECT, THT_FREE, 0, 0); 609 610 /* 611 * Pretend that this operation will free 1GB of space. This 612 * should be large enough to cancel out the largest write. 613 * We don't want to use something like UINT64_MAX, because that would 614 * cause overflows when doing math with these values (e.g. in 615 * dmu_tx_try_assign()). 616 */ 617 txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024; 618 } 619 620 void 621 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 622 { 623 dmu_tx_hold_t *txh; 624 dnode_t *dn; 625 int err; 626 zio_t *zio; 627 628 ASSERT(tx->tx_txg == 0); 629 630 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 631 object, THT_FREE, off, len); 632 if (txh == NULL) 633 return; 634 dn = txh->txh_dnode; 635 dmu_tx_count_dnode(txh); 636 637 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 638 return; 639 if (len == DMU_OBJECT_END) 640 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 641 642 /* 643 * For i/o error checking, we read the first and last level-0 644 * blocks if they are not aligned, and all the level-1 blocks. 645 * 646 * Note: dbuf_free_range() assumes that we have not instantiated 647 * any level-0 dbufs that will be completely freed. Therefore we must 648 * exercise care to not read or count the first and last blocks 649 * if they are blocksize-aligned. 650 */ 651 if (dn->dn_datablkshift == 0) { 652 if (off != 0 || len < dn->dn_datablksz) 653 dmu_tx_count_write(txh, 0, dn->dn_datablksz); 654 } else { 655 /* first block will be modified if it is not aligned */ 656 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) 657 dmu_tx_count_write(txh, off, 1); 658 /* last block will be modified if it is not aligned */ 659 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) 660 dmu_tx_count_write(txh, off+len, 1); 661 } 662 663 /* 664 * Check level-1 blocks. 665 */ 666 if (dn->dn_nlevels > 1) { 667 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 668 SPA_BLKPTRSHIFT; 669 uint64_t start = off >> shift; 670 uint64_t end = (off + len) >> shift; 671 672 ASSERT(dn->dn_indblkshift != 0); 673 674 /* 675 * dnode_reallocate() can result in an object with indirect 676 * blocks having an odd data block size. In this case, 677 * just check the single block. 678 */ 679 if (dn->dn_datablkshift == 0) 680 start = end = 0; 681 682 zio = zio_root(tx->tx_pool->dp_spa, 683 NULL, NULL, ZIO_FLAG_CANFAIL); 684 for (uint64_t i = start; i <= end; i++) { 685 uint64_t ibyte = i << shift; 686 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 687 i = ibyte >> shift; 688 if (err == ESRCH) 689 break; 690 if (err) { 691 tx->tx_err = err; 692 return; 693 } 694 695 err = dmu_tx_check_ioerr(zio, dn, 1, i); 696 if (err) { 697 tx->tx_err = err; 698 return; 699 } 700 } 701 err = zio_wait(zio); 702 if (err) { 703 tx->tx_err = err; 704 return; 705 } 706 } 707 708 dmu_tx_count_free(txh, off, len); 709 } 710 711 void 712 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) 713 { 714 dmu_tx_hold_t *txh; 715 dnode_t *dn; 716 uint64_t nblocks; 717 int epbs, err; 718 719 ASSERT(tx->tx_txg == 0); 720 721 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 722 object, THT_ZAP, add, (uintptr_t)name); 723 if (txh == NULL) 724 return; 725 dn = txh->txh_dnode; 726 727 dmu_tx_count_dnode(txh); 728 729 if (dn == NULL) { 730 /* 731 * We will be able to fit a new object's entries into one leaf 732 * block. So there will be at most 2 blocks total, 733 * including the header block. 734 */ 735 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 736 return; 737 } 738 739 ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); 740 741 if (dn->dn_maxblkid == 0 && !add) { 742 blkptr_t *bp; 743 744 /* 745 * If there is only one block (i.e. this is a micro-zap) 746 * and we are not adding anything, the accounting is simple. 747 */ 748 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 749 if (err) { 750 tx->tx_err = err; 751 return; 752 } 753 754 /* 755 * Use max block size here, since we don't know how much 756 * the size will change between now and the dbuf dirty call. 757 */ 758 bp = &dn->dn_phys->dn_blkptr[0]; 759 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 760 bp, bp->blk_birth)) 761 txh->txh_space_tooverwrite += MZAP_MAX_BLKSZ; 762 else 763 txh->txh_space_towrite += MZAP_MAX_BLKSZ; 764 if (!BP_IS_HOLE(bp)) 765 txh->txh_space_tounref += MZAP_MAX_BLKSZ; 766 return; 767 } 768 769 if (dn->dn_maxblkid > 0 && name) { 770 /* 771 * access the name in this fat-zap so that we'll check 772 * for i/o errors to the leaf blocks, etc. 773 */ 774 err = zap_lookup(dn->dn_objset, dn->dn_object, name, 775 8, 0, NULL); 776 if (err == EIO) { 777 tx->tx_err = err; 778 return; 779 } 780 } 781 782 err = zap_count_write(dn->dn_objset, dn->dn_object, name, add, 783 &txh->txh_space_towrite, &txh->txh_space_tooverwrite); 784 785 /* 786 * If the modified blocks are scattered to the four winds, 787 * we'll have to modify an indirect twig for each. 788 */ 789 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 790 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 791 if (dn->dn_objset->os_dsl_dataset->ds_phys->ds_prev_snap_obj) 792 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 793 else 794 txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift; 795 } 796 797 void 798 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 799 { 800 dmu_tx_hold_t *txh; 801 802 ASSERT(tx->tx_txg == 0); 803 804 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 805 object, THT_BONUS, 0, 0); 806 if (txh) 807 dmu_tx_count_dnode(txh); 808 } 809 810 void 811 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 812 { 813 dmu_tx_hold_t *txh; 814 ASSERT(tx->tx_txg == 0); 815 816 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 817 DMU_NEW_OBJECT, THT_SPACE, space, 0); 818 819 txh->txh_space_towrite += space; 820 } 821 822 int 823 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 824 { 825 dmu_tx_hold_t *txh; 826 int holds = 0; 827 828 /* 829 * By asserting that the tx is assigned, we're counting the 830 * number of dn_tx_holds, which is the same as the number of 831 * dn_holds. Otherwise, we'd be counting dn_holds, but 832 * dn_tx_holds could be 0. 833 */ 834 ASSERT(tx->tx_txg != 0); 835 836 /* if (tx->tx_anyobj == TRUE) */ 837 /* return (0); */ 838 839 for (txh = list_head(&tx->tx_holds); txh; 840 txh = list_next(&tx->tx_holds, txh)) { 841 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 842 holds++; 843 } 844 845 return (holds); 846 } 847 848 #ifdef ZFS_DEBUG 849 void 850 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 851 { 852 dmu_tx_hold_t *txh; 853 int match_object = FALSE, match_offset = FALSE; 854 dnode_t *dn; 855 856 DB_DNODE_ENTER(db); 857 dn = DB_DNODE(db); 858 ASSERT(tx->tx_txg != 0); 859 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); 860 ASSERT3U(dn->dn_object, ==, db->db.db_object); 861 862 if (tx->tx_anyobj) { 863 DB_DNODE_EXIT(db); 864 return; 865 } 866 867 /* XXX No checking on the meta dnode for now */ 868 if (db->db.db_object == DMU_META_DNODE_OBJECT) { 869 DB_DNODE_EXIT(db); 870 return; 871 } 872 873 for (txh = list_head(&tx->tx_holds); txh; 874 txh = list_next(&tx->tx_holds, txh)) { 875 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 876 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 877 match_object = TRUE; 878 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 879 int datablkshift = dn->dn_datablkshift ? 880 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 881 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 882 int shift = datablkshift + epbs * db->db_level; 883 uint64_t beginblk = shift >= 64 ? 0 : 884 (txh->txh_arg1 >> shift); 885 uint64_t endblk = shift >= 64 ? 0 : 886 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 887 uint64_t blkid = db->db_blkid; 888 889 /* XXX txh_arg2 better not be zero... */ 890 891 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 892 txh->txh_type, beginblk, endblk); 893 894 switch (txh->txh_type) { 895 case THT_WRITE: 896 if (blkid >= beginblk && blkid <= endblk) 897 match_offset = TRUE; 898 /* 899 * We will let this hold work for the bonus 900 * or spill buffer so that we don't need to 901 * hold it when creating a new object. 902 */ 903 if (blkid == DMU_BONUS_BLKID || 904 blkid == DMU_SPILL_BLKID) 905 match_offset = TRUE; 906 /* 907 * They might have to increase nlevels, 908 * thus dirtying the new TLIBs. Or the 909 * might have to change the block size, 910 * thus dirying the new lvl=0 blk=0. 911 */ 912 if (blkid == 0) 913 match_offset = TRUE; 914 break; 915 case THT_FREE: 916 /* 917 * We will dirty all the level 1 blocks in 918 * the free range and perhaps the first and 919 * last level 0 block. 920 */ 921 if (blkid >= beginblk && (blkid <= endblk || 922 txh->txh_arg2 == DMU_OBJECT_END)) 923 match_offset = TRUE; 924 break; 925 case THT_SPILL: 926 if (blkid == DMU_SPILL_BLKID) 927 match_offset = TRUE; 928 break; 929 case THT_BONUS: 930 if (blkid == DMU_BONUS_BLKID) 931 match_offset = TRUE; 932 break; 933 case THT_ZAP: 934 match_offset = TRUE; 935 break; 936 case THT_NEWOBJECT: 937 match_object = TRUE; 938 break; 939 default: 940 ASSERT(!"bad txh_type"); 941 } 942 } 943 if (match_object && match_offset) { 944 DB_DNODE_EXIT(db); 945 return; 946 } 947 } 948 DB_DNODE_EXIT(db); 949 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 950 (u_longlong_t)db->db.db_object, db->db_level, 951 (u_longlong_t)db->db_blkid); 952 } 953 #endif 954 955 /* 956 * If we can't do 10 iops, something is wrong. Let us go ahead 957 * and hit zfs_dirty_data_max. 958 */ 959 hrtime_t zfs_delay_max_ns = MSEC2NSEC(100); 960 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ 961 962 /* 963 * We delay transactions when we've determined that the backend storage 964 * isn't able to accommodate the rate of incoming writes. 965 * 966 * If there is already a transaction waiting, we delay relative to when 967 * that transaction finishes waiting. This way the calculated min_time 968 * is independent of the number of threads concurrently executing 969 * transactions. 970 * 971 * If we are the only waiter, wait relative to when the transaction 972 * started, rather than the current time. This credits the transaction for 973 * "time already served", e.g. reading indirect blocks. 974 * 975 * The minimum time for a transaction to take is calculated as: 976 * min_time = scale * (dirty - min) / (max - dirty) 977 * min_time is then capped at zfs_delay_max_ns. 978 * 979 * The delay has two degrees of freedom that can be adjusted via tunables. 980 * The percentage of dirty data at which we start to delay is defined by 981 * zfs_delay_min_dirty_percent. This should typically be at or above 982 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to 983 * delay after writing at full speed has failed to keep up with the incoming 984 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly 985 * speaking, this variable determines the amount of delay at the midpoint of 986 * the curve. 987 * 988 * delay 989 * 10ms +-------------------------------------------------------------*+ 990 * | *| 991 * 9ms + *+ 992 * | *| 993 * 8ms + *+ 994 * | * | 995 * 7ms + * + 996 * | * | 997 * 6ms + * + 998 * | * | 999 * 5ms + * + 1000 * | * | 1001 * 4ms + * + 1002 * | * | 1003 * 3ms + * + 1004 * | * | 1005 * 2ms + (midpoint) * + 1006 * | | ** | 1007 * 1ms + v *** + 1008 * | zfs_delay_scale ----------> ******** | 1009 * 0 +-------------------------------------*********----------------+ 1010 * 0% <- zfs_dirty_data_max -> 100% 1011 * 1012 * Note that since the delay is added to the outstanding time remaining on the 1013 * most recent transaction, the delay is effectively the inverse of IOPS. 1014 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve 1015 * was chosen such that small changes in the amount of accumulated dirty data 1016 * in the first 3/4 of the curve yield relatively small differences in the 1017 * amount of delay. 1018 * 1019 * The effects can be easier to understand when the amount of delay is 1020 * represented on a log scale: 1021 * 1022 * delay 1023 * 100ms +-------------------------------------------------------------++ 1024 * + + 1025 * | | 1026 * + *+ 1027 * 10ms + *+ 1028 * + ** + 1029 * | (midpoint) ** | 1030 * + | ** + 1031 * 1ms + v **** + 1032 * + zfs_delay_scale ----------> ***** + 1033 * | **** | 1034 * + **** + 1035 * 100us + ** + 1036 * + * + 1037 * | * | 1038 * + * + 1039 * 10us + * + 1040 * + + 1041 * | | 1042 * + + 1043 * +--------------------------------------------------------------+ 1044 * 0% <- zfs_dirty_data_max -> 100% 1045 * 1046 * Note here that only as the amount of dirty data approaches its limit does 1047 * the delay start to increase rapidly. The goal of a properly tuned system 1048 * should be to keep the amount of dirty data out of that range by first 1049 * ensuring that the appropriate limits are set for the I/O scheduler to reach 1050 * optimal throughput on the backend storage, and then by changing the value 1051 * of zfs_delay_scale to increase the steepness of the curve. 1052 */ 1053 static void 1054 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) 1055 { 1056 dsl_pool_t *dp = tx->tx_pool; 1057 uint64_t delay_min_bytes = 1058 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 1059 hrtime_t wakeup, min_tx_time, now; 1060 1061 if (dirty <= delay_min_bytes) 1062 return; 1063 1064 /* 1065 * The caller has already waited until we are under the max. 1066 * We make them pass us the amount of dirty data so we don't 1067 * have to handle the case of it being >= the max, which could 1068 * cause a divide-by-zero if it's == the max. 1069 */ 1070 ASSERT3U(dirty, <, zfs_dirty_data_max); 1071 1072 now = gethrtime(); 1073 min_tx_time = zfs_delay_scale * 1074 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); 1075 if (now > tx->tx_start + min_tx_time) 1076 return; 1077 1078 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); 1079 1080 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, 1081 uint64_t, min_tx_time); 1082 1083 mutex_enter(&dp->dp_lock); 1084 wakeup = MAX(tx->tx_start + min_tx_time, 1085 dp->dp_last_wakeup + min_tx_time); 1086 dp->dp_last_wakeup = wakeup; 1087 mutex_exit(&dp->dp_lock); 1088 1089 #ifdef _KERNEL 1090 mutex_enter(&curthread->t_delay_lock); 1091 while (cv_timedwait_hires(&curthread->t_delay_cv, 1092 &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns, 1093 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0) 1094 continue; 1095 mutex_exit(&curthread->t_delay_lock); 1096 #else 1097 hrtime_t delta = wakeup - gethrtime(); 1098 struct timespec ts; 1099 ts.tv_sec = delta / NANOSEC; 1100 ts.tv_nsec = delta % NANOSEC; 1101 (void) nanosleep(&ts, NULL); 1102 #endif 1103 } 1104 1105 static int 1106 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how) 1107 { 1108 dmu_tx_hold_t *txh; 1109 spa_t *spa = tx->tx_pool->dp_spa; 1110 uint64_t memory, asize, fsize, usize; 1111 uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; 1112 1113 ASSERT0(tx->tx_txg); 1114 1115 if (tx->tx_err) 1116 return (tx->tx_err); 1117 1118 if (spa_suspended(spa)) { 1119 /* 1120 * If the user has indicated a blocking failure mode 1121 * then return ERESTART which will block in dmu_tx_wait(). 1122 * Otherwise, return EIO so that an error can get 1123 * propagated back to the VOP calls. 1124 * 1125 * Note that we always honor the txg_how flag regardless 1126 * of the failuremode setting. 1127 */ 1128 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 1129 txg_how != TXG_WAIT) 1130 return (SET_ERROR(EIO)); 1131 1132 return (SET_ERROR(ERESTART)); 1133 } 1134 1135 if (!tx->tx_waited && 1136 dsl_pool_need_dirty_delay(tx->tx_pool)) { 1137 tx->tx_wait_dirty = B_TRUE; 1138 return (SET_ERROR(ERESTART)); 1139 } 1140 1141 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 1142 tx->tx_needassign_txh = NULL; 1143 1144 /* 1145 * NB: No error returns are allowed after txg_hold_open, but 1146 * before processing the dnode holds, due to the 1147 * dmu_tx_unassign() logic. 1148 */ 1149 1150 towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; 1151 for (txh = list_head(&tx->tx_holds); txh; 1152 txh = list_next(&tx->tx_holds, txh)) { 1153 dnode_t *dn = txh->txh_dnode; 1154 if (dn != NULL) { 1155 mutex_enter(&dn->dn_mtx); 1156 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 1157 mutex_exit(&dn->dn_mtx); 1158 tx->tx_needassign_txh = txh; 1159 return (SET_ERROR(ERESTART)); 1160 } 1161 if (dn->dn_assigned_txg == 0) 1162 dn->dn_assigned_txg = tx->tx_txg; 1163 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1164 (void) refcount_add(&dn->dn_tx_holds, tx); 1165 mutex_exit(&dn->dn_mtx); 1166 } 1167 towrite += txh->txh_space_towrite; 1168 tofree += txh->txh_space_tofree; 1169 tooverwrite += txh->txh_space_tooverwrite; 1170 tounref += txh->txh_space_tounref; 1171 tohold += txh->txh_memory_tohold; 1172 fudge += txh->txh_fudge; 1173 } 1174 1175 /* 1176 * If a snapshot has been taken since we made our estimates, 1177 * assume that we won't be able to free or overwrite anything. 1178 */ 1179 if (tx->tx_objset && 1180 dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) > 1181 tx->tx_lastsnap_txg) { 1182 towrite += tooverwrite; 1183 tooverwrite = tofree = 0; 1184 } 1185 1186 /* needed allocation: worst-case estimate of write space */ 1187 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); 1188 /* freed space estimate: worst-case overwrite + free estimate */ 1189 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 1190 /* convert unrefd space to worst-case estimate */ 1191 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); 1192 /* calculate memory footprint estimate */ 1193 memory = towrite + tooverwrite + tohold; 1194 1195 #ifdef ZFS_DEBUG 1196 /* 1197 * Add in 'tohold' to account for our dirty holds on this memory 1198 * XXX - the "fudge" factor is to account for skipped blocks that 1199 * we missed because dnode_next_offset() misses in-core-only blocks. 1200 */ 1201 tx->tx_space_towrite = asize + 1202 spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); 1203 tx->tx_space_tofree = tofree; 1204 tx->tx_space_tooverwrite = tooverwrite; 1205 tx->tx_space_tounref = tounref; 1206 #endif 1207 1208 if (tx->tx_dir && asize != 0) { 1209 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 1210 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); 1211 if (err) 1212 return (err); 1213 } 1214 1215 return (0); 1216 } 1217 1218 static void 1219 dmu_tx_unassign(dmu_tx_t *tx) 1220 { 1221 dmu_tx_hold_t *txh; 1222 1223 if (tx->tx_txg == 0) 1224 return; 1225 1226 txg_rele_to_quiesce(&tx->tx_txgh); 1227 1228 /* 1229 * Walk the transaction's hold list, removing the hold on the 1230 * associated dnode, and notifying waiters if the refcount drops to 0. 1231 */ 1232 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 1233 txh = list_next(&tx->tx_holds, txh)) { 1234 dnode_t *dn = txh->txh_dnode; 1235 1236 if (dn == NULL) 1237 continue; 1238 mutex_enter(&dn->dn_mtx); 1239 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1240 1241 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1242 dn->dn_assigned_txg = 0; 1243 cv_broadcast(&dn->dn_notxholds); 1244 } 1245 mutex_exit(&dn->dn_mtx); 1246 } 1247 1248 txg_rele_to_sync(&tx->tx_txgh); 1249 1250 tx->tx_lasttried_txg = tx->tx_txg; 1251 tx->tx_txg = 0; 1252 } 1253 1254 /* 1255 * Assign tx to a transaction group. txg_how can be one of: 1256 * 1257 * (1) TXG_WAIT. If the current open txg is full, waits until there's 1258 * a new one. This should be used when you're not holding locks. 1259 * It will only fail if we're truly out of space (or over quota). 1260 * 1261 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 1262 * blocking, returns immediately with ERESTART. This should be used 1263 * whenever you're holding locks. On an ERESTART error, the caller 1264 * should drop locks, do a dmu_tx_wait(tx), and try again. 1265 * 1266 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait() 1267 * has already been called on behalf of this operation (though 1268 * most likely on a different tx). 1269 */ 1270 int 1271 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how) 1272 { 1273 int err; 1274 1275 ASSERT(tx->tx_txg == 0); 1276 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT || 1277 txg_how == TXG_WAITED); 1278 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 1279 1280 /* If we might wait, we must not hold the config lock. */ 1281 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool)); 1282 1283 if (txg_how == TXG_WAITED) 1284 tx->tx_waited = B_TRUE; 1285 1286 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 1287 dmu_tx_unassign(tx); 1288 1289 if (err != ERESTART || txg_how != TXG_WAIT) 1290 return (err); 1291 1292 dmu_tx_wait(tx); 1293 } 1294 1295 txg_rele_to_quiesce(&tx->tx_txgh); 1296 1297 return (0); 1298 } 1299 1300 void 1301 dmu_tx_wait(dmu_tx_t *tx) 1302 { 1303 spa_t *spa = tx->tx_pool->dp_spa; 1304 dsl_pool_t *dp = tx->tx_pool; 1305 1306 ASSERT(tx->tx_txg == 0); 1307 ASSERT(!dsl_pool_config_held(tx->tx_pool)); 1308 1309 if (tx->tx_wait_dirty) { 1310 /* 1311 * dmu_tx_try_assign() has determined that we need to wait 1312 * because we've consumed much or all of the dirty buffer 1313 * space. 1314 */ 1315 mutex_enter(&dp->dp_lock); 1316 while (dp->dp_dirty_total >= zfs_dirty_data_max) 1317 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); 1318 uint64_t dirty = dp->dp_dirty_total; 1319 mutex_exit(&dp->dp_lock); 1320 1321 dmu_tx_delay(tx, dirty); 1322 1323 tx->tx_wait_dirty = B_FALSE; 1324 1325 /* 1326 * Note: setting tx_waited only has effect if the caller 1327 * used TX_WAIT. Otherwise they are going to destroy 1328 * this tx and try again. The common case, zfs_write(), 1329 * uses TX_WAIT. 1330 */ 1331 tx->tx_waited = B_TRUE; 1332 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { 1333 /* 1334 * If the pool is suspended we need to wait until it 1335 * is resumed. Note that it's possible that the pool 1336 * has become active after this thread has tried to 1337 * obtain a tx. If that's the case then tx_lasttried_txg 1338 * would not have been set. 1339 */ 1340 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); 1341 } else if (tx->tx_needassign_txh) { 1342 /* 1343 * A dnode is assigned to the quiescing txg. Wait for its 1344 * transaction to complete. 1345 */ 1346 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 1347 1348 mutex_enter(&dn->dn_mtx); 1349 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 1350 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 1351 mutex_exit(&dn->dn_mtx); 1352 tx->tx_needassign_txh = NULL; 1353 } else { 1354 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 1355 } 1356 } 1357 1358 void 1359 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 1360 { 1361 #ifdef ZFS_DEBUG 1362 if (tx->tx_dir == NULL || delta == 0) 1363 return; 1364 1365 if (delta > 0) { 1366 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 1367 tx->tx_space_towrite); 1368 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 1369 } else { 1370 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 1371 } 1372 #endif 1373 } 1374 1375 void 1376 dmu_tx_commit(dmu_tx_t *tx) 1377 { 1378 dmu_tx_hold_t *txh; 1379 1380 ASSERT(tx->tx_txg != 0); 1381 1382 /* 1383 * Go through the transaction's hold list and remove holds on 1384 * associated dnodes, notifying waiters if no holds remain. 1385 */ 1386 while (txh = list_head(&tx->tx_holds)) { 1387 dnode_t *dn = txh->txh_dnode; 1388 1389 list_remove(&tx->tx_holds, txh); 1390 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1391 if (dn == NULL) 1392 continue; 1393 mutex_enter(&dn->dn_mtx); 1394 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1395 1396 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1397 dn->dn_assigned_txg = 0; 1398 cv_broadcast(&dn->dn_notxholds); 1399 } 1400 mutex_exit(&dn->dn_mtx); 1401 dnode_rele(dn, tx); 1402 } 1403 1404 if (tx->tx_tempreserve_cookie) 1405 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1406 1407 if (!list_is_empty(&tx->tx_callbacks)) 1408 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); 1409 1410 if (tx->tx_anyobj == FALSE) 1411 txg_rele_to_sync(&tx->tx_txgh); 1412 1413 list_destroy(&tx->tx_callbacks); 1414 list_destroy(&tx->tx_holds); 1415 #ifdef ZFS_DEBUG 1416 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 1417 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 1418 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 1419 refcount_destroy_many(&tx->tx_space_written, 1420 refcount_count(&tx->tx_space_written)); 1421 refcount_destroy_many(&tx->tx_space_freed, 1422 refcount_count(&tx->tx_space_freed)); 1423 #endif 1424 kmem_free(tx, sizeof (dmu_tx_t)); 1425 } 1426 1427 void 1428 dmu_tx_abort(dmu_tx_t *tx) 1429 { 1430 dmu_tx_hold_t *txh; 1431 1432 ASSERT(tx->tx_txg == 0); 1433 1434 while (txh = list_head(&tx->tx_holds)) { 1435 dnode_t *dn = txh->txh_dnode; 1436 1437 list_remove(&tx->tx_holds, txh); 1438 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1439 if (dn != NULL) 1440 dnode_rele(dn, tx); 1441 } 1442 1443 /* 1444 * Call any registered callbacks with an error code. 1445 */ 1446 if (!list_is_empty(&tx->tx_callbacks)) 1447 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED); 1448 1449 list_destroy(&tx->tx_callbacks); 1450 list_destroy(&tx->tx_holds); 1451 #ifdef ZFS_DEBUG 1452 refcount_destroy_many(&tx->tx_space_written, 1453 refcount_count(&tx->tx_space_written)); 1454 refcount_destroy_many(&tx->tx_space_freed, 1455 refcount_count(&tx->tx_space_freed)); 1456 #endif 1457 kmem_free(tx, sizeof (dmu_tx_t)); 1458 } 1459 1460 uint64_t 1461 dmu_tx_get_txg(dmu_tx_t *tx) 1462 { 1463 ASSERT(tx->tx_txg != 0); 1464 return (tx->tx_txg); 1465 } 1466 1467 dsl_pool_t * 1468 dmu_tx_pool(dmu_tx_t *tx) 1469 { 1470 ASSERT(tx->tx_pool != NULL); 1471 return (tx->tx_pool); 1472 } 1473 1474 1475 void 1476 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) 1477 { 1478 dmu_tx_callback_t *dcb; 1479 1480 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); 1481 1482 dcb->dcb_func = func; 1483 dcb->dcb_data = data; 1484 1485 list_insert_tail(&tx->tx_callbacks, dcb); 1486 } 1487 1488 /* 1489 * Call all the commit callbacks on a list, with a given error code. 1490 */ 1491 void 1492 dmu_tx_do_callbacks(list_t *cb_list, int error) 1493 { 1494 dmu_tx_callback_t *dcb; 1495 1496 while (dcb = list_head(cb_list)) { 1497 list_remove(cb_list, dcb); 1498 dcb->dcb_func(dcb->dcb_data, error); 1499 kmem_free(dcb, sizeof (dmu_tx_callback_t)); 1500 } 1501 } 1502 1503 /* 1504 * Interface to hold a bunch of attributes. 1505 * used for creating new files. 1506 * attrsize is the total size of all attributes 1507 * to be added during object creation 1508 * 1509 * For updating/adding a single attribute dmu_tx_hold_sa() should be used. 1510 */ 1511 1512 /* 1513 * hold necessary attribute name for attribute registration. 1514 * should be a very rare case where this is needed. If it does 1515 * happen it would only happen on the first write to the file system. 1516 */ 1517 static void 1518 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) 1519 { 1520 int i; 1521 1522 if (!sa->sa_need_attr_registration) 1523 return; 1524 1525 for (i = 0; i != sa->sa_num_attrs; i++) { 1526 if (!sa->sa_attr_table[i].sa_registered) { 1527 if (sa->sa_reg_attr_obj) 1528 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, 1529 B_TRUE, sa->sa_attr_table[i].sa_name); 1530 else 1531 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 1532 B_TRUE, sa->sa_attr_table[i].sa_name); 1533 } 1534 } 1535 } 1536 1537 1538 void 1539 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) 1540 { 1541 dnode_t *dn; 1542 dmu_tx_hold_t *txh; 1543 1544 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, 1545 THT_SPILL, 0, 0); 1546 1547 dn = txh->txh_dnode; 1548 1549 if (dn == NULL) 1550 return; 1551 1552 /* If blkptr doesn't exist then add space to towrite */ 1553 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 1554 txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE; 1555 } else { 1556 blkptr_t *bp; 1557 1558 bp = &dn->dn_phys->dn_spill; 1559 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 1560 bp, bp->blk_birth)) 1561 txh->txh_space_tooverwrite += SPA_OLD_MAXBLOCKSIZE; 1562 else 1563 txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE; 1564 if (!BP_IS_HOLE(bp)) 1565 txh->txh_space_tounref += SPA_OLD_MAXBLOCKSIZE; 1566 } 1567 } 1568 1569 void 1570 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) 1571 { 1572 sa_os_t *sa = tx->tx_objset->os_sa; 1573 1574 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1575 1576 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1577 return; 1578 1579 if (tx->tx_objset->os_sa->sa_layout_attr_obj) 1580 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1581 else { 1582 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1583 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1584 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1585 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1586 } 1587 1588 dmu_tx_sa_registration_hold(sa, tx); 1589 1590 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill) 1591 return; 1592 1593 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, 1594 THT_SPILL, 0, 0); 1595 } 1596 1597 /* 1598 * Hold SA attribute 1599 * 1600 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) 1601 * 1602 * variable_size is the total size of all variable sized attributes 1603 * passed to this function. It is not the total size of all 1604 * variable size attributes that *may* exist on this object. 1605 */ 1606 void 1607 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) 1608 { 1609 uint64_t object; 1610 sa_os_t *sa = tx->tx_objset->os_sa; 1611 1612 ASSERT(hdl != NULL); 1613 1614 object = sa_handle_object(hdl); 1615 1616 dmu_tx_hold_bonus(tx, object); 1617 1618 if (tx->tx_objset->os_sa->sa_master_obj == 0) 1619 return; 1620 1621 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || 1622 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { 1623 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); 1624 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); 1625 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1626 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1627 } 1628 1629 dmu_tx_sa_registration_hold(sa, tx); 1630 1631 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) 1632 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); 1633 1634 if (sa->sa_force_spill || may_grow || hdl->sa_spill) { 1635 ASSERT(tx->tx_txg == 0); 1636 dmu_tx_hold_spill(tx, object); 1637 } else { 1638 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; 1639 dnode_t *dn; 1640 1641 DB_DNODE_ENTER(db); 1642 dn = DB_DNODE(db); 1643 if (dn->dn_have_spill) { 1644 ASSERT(tx->tx_txg == 0); 1645 dmu_tx_hold_spill(tx, object); 1646 } 1647 DB_DNODE_EXIT(db); 1648 } 1649 } 1650