1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_send.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dbuf.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/sa.h> 42 #include <sys/sa_impl.h> 43 #include <sys/zfeature.h> 44 #include <sys/blkptr.h> 45 #include <sys/range_tree.h> 46 47 /* 48 * Number of times that zfs_free_range() took the slow path while doing 49 * a zfs receive. A nonzero value indicates a potential performance problem. 50 */ 51 uint64_t zfs_free_range_recv_miss; 52 53 static void dbuf_destroy(dmu_buf_impl_t *db); 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 56 57 /* 58 * Global data structures and functions for the dbuf cache. 59 */ 60 static kmem_cache_t *dbuf_cache; 61 62 /* ARGSUSED */ 63 static int 64 dbuf_cons(void *vdb, void *unused, int kmflag) 65 { 66 dmu_buf_impl_t *db = vdb; 67 bzero(db, sizeof (dmu_buf_impl_t)); 68 69 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 70 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 71 refcount_create(&db->db_holds); 72 73 return (0); 74 } 75 76 /* ARGSUSED */ 77 static void 78 dbuf_dest(void *vdb, void *unused) 79 { 80 dmu_buf_impl_t *db = vdb; 81 mutex_destroy(&db->db_mtx); 82 cv_destroy(&db->db_changed); 83 refcount_destroy(&db->db_holds); 84 } 85 86 /* 87 * dbuf hash table routines 88 */ 89 static dbuf_hash_table_t dbuf_hash_table; 90 91 static uint64_t dbuf_hash_count; 92 93 static uint64_t 94 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 95 { 96 uintptr_t osv = (uintptr_t)os; 97 uint64_t crc = -1ULL; 98 99 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 100 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 101 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 102 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 103 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 104 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 105 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 106 107 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 108 109 return (crc); 110 } 111 112 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 113 114 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 115 ((dbuf)->db.db_object == (obj) && \ 116 (dbuf)->db_objset == (os) && \ 117 (dbuf)->db_level == (level) && \ 118 (dbuf)->db_blkid == (blkid)) 119 120 dmu_buf_impl_t * 121 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 122 { 123 dbuf_hash_table_t *h = &dbuf_hash_table; 124 objset_t *os = dn->dn_objset; 125 uint64_t obj = dn->dn_object; 126 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 127 uint64_t idx = hv & h->hash_table_mask; 128 dmu_buf_impl_t *db; 129 130 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 131 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 132 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 133 mutex_enter(&db->db_mtx); 134 if (db->db_state != DB_EVICTING) { 135 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 136 return (db); 137 } 138 mutex_exit(&db->db_mtx); 139 } 140 } 141 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 142 return (NULL); 143 } 144 145 /* 146 * Insert an entry into the hash table. If there is already an element 147 * equal to elem in the hash table, then the already existing element 148 * will be returned and the new element will not be inserted. 149 * Otherwise returns NULL. 150 */ 151 static dmu_buf_impl_t * 152 dbuf_hash_insert(dmu_buf_impl_t *db) 153 { 154 dbuf_hash_table_t *h = &dbuf_hash_table; 155 objset_t *os = db->db_objset; 156 uint64_t obj = db->db.db_object; 157 int level = db->db_level; 158 uint64_t blkid = db->db_blkid; 159 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 160 uint64_t idx = hv & h->hash_table_mask; 161 dmu_buf_impl_t *dbf; 162 163 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 164 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 165 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 166 mutex_enter(&dbf->db_mtx); 167 if (dbf->db_state != DB_EVICTING) { 168 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 169 return (dbf); 170 } 171 mutex_exit(&dbf->db_mtx); 172 } 173 } 174 175 mutex_enter(&db->db_mtx); 176 db->db_hash_next = h->hash_table[idx]; 177 h->hash_table[idx] = db; 178 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 179 atomic_inc_64(&dbuf_hash_count); 180 181 return (NULL); 182 } 183 184 /* 185 * Remove an entry from the hash table. It must be in the EVICTING state. 186 */ 187 static void 188 dbuf_hash_remove(dmu_buf_impl_t *db) 189 { 190 dbuf_hash_table_t *h = &dbuf_hash_table; 191 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 192 db->db_level, db->db_blkid); 193 uint64_t idx = hv & h->hash_table_mask; 194 dmu_buf_impl_t *dbf, **dbp; 195 196 /* 197 * We musn't hold db_mtx to maintain lock ordering: 198 * DBUF_HASH_MUTEX > db_mtx. 199 */ 200 ASSERT(refcount_is_zero(&db->db_holds)); 201 ASSERT(db->db_state == DB_EVICTING); 202 ASSERT(!MUTEX_HELD(&db->db_mtx)); 203 204 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 205 dbp = &h->hash_table[idx]; 206 while ((dbf = *dbp) != db) { 207 dbp = &dbf->db_hash_next; 208 ASSERT(dbf != NULL); 209 } 210 *dbp = db->db_hash_next; 211 db->db_hash_next = NULL; 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 atomic_dec_64(&dbuf_hash_count); 214 } 215 216 static arc_evict_func_t dbuf_do_evict; 217 218 static void 219 dbuf_evict_user(dmu_buf_impl_t *db) 220 { 221 ASSERT(MUTEX_HELD(&db->db_mtx)); 222 223 if (db->db_level != 0 || db->db_evict_func == NULL) 224 return; 225 226 if (db->db_user_data_ptr_ptr) 227 *db->db_user_data_ptr_ptr = db->db.db_data; 228 db->db_evict_func(&db->db, db->db_user_ptr); 229 db->db_user_ptr = NULL; 230 db->db_user_data_ptr_ptr = NULL; 231 db->db_evict_func = NULL; 232 } 233 234 boolean_t 235 dbuf_is_metadata(dmu_buf_impl_t *db) 236 { 237 if (db->db_level > 0) { 238 return (B_TRUE); 239 } else { 240 boolean_t is_metadata; 241 242 DB_DNODE_ENTER(db); 243 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 244 DB_DNODE_EXIT(db); 245 246 return (is_metadata); 247 } 248 } 249 250 void 251 dbuf_evict(dmu_buf_impl_t *db) 252 { 253 ASSERT(MUTEX_HELD(&db->db_mtx)); 254 ASSERT(db->db_buf == NULL); 255 ASSERT(db->db_data_pending == NULL); 256 257 dbuf_clear(db); 258 dbuf_destroy(db); 259 } 260 261 void 262 dbuf_init(void) 263 { 264 uint64_t hsize = 1ULL << 16; 265 dbuf_hash_table_t *h = &dbuf_hash_table; 266 int i; 267 268 /* 269 * The hash table is big enough to fill all of physical memory 270 * with an average 4K block size. The table will take up 271 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 272 */ 273 while (hsize * 4096 < physmem * PAGESIZE) 274 hsize <<= 1; 275 276 retry: 277 h->hash_table_mask = hsize - 1; 278 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 279 if (h->hash_table == NULL) { 280 /* XXX - we should really return an error instead of assert */ 281 ASSERT(hsize > (1ULL << 10)); 282 hsize >>= 1; 283 goto retry; 284 } 285 286 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 287 sizeof (dmu_buf_impl_t), 288 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 289 290 for (i = 0; i < DBUF_MUTEXES; i++) 291 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 292 } 293 294 void 295 dbuf_fini(void) 296 { 297 dbuf_hash_table_t *h = &dbuf_hash_table; 298 int i; 299 300 for (i = 0; i < DBUF_MUTEXES; i++) 301 mutex_destroy(&h->hash_mutexes[i]); 302 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 303 kmem_cache_destroy(dbuf_cache); 304 } 305 306 /* 307 * Other stuff. 308 */ 309 310 #ifdef ZFS_DEBUG 311 static void 312 dbuf_verify(dmu_buf_impl_t *db) 313 { 314 dnode_t *dn; 315 dbuf_dirty_record_t *dr; 316 317 ASSERT(MUTEX_HELD(&db->db_mtx)); 318 319 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 320 return; 321 322 ASSERT(db->db_objset != NULL); 323 DB_DNODE_ENTER(db); 324 dn = DB_DNODE(db); 325 if (dn == NULL) { 326 ASSERT(db->db_parent == NULL); 327 ASSERT(db->db_blkptr == NULL); 328 } else { 329 ASSERT3U(db->db.db_object, ==, dn->dn_object); 330 ASSERT3P(db->db_objset, ==, dn->dn_objset); 331 ASSERT3U(db->db_level, <, dn->dn_nlevels); 332 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 333 db->db_blkid == DMU_SPILL_BLKID || 334 !avl_is_empty(&dn->dn_dbufs)); 335 } 336 if (db->db_blkid == DMU_BONUS_BLKID) { 337 ASSERT(dn != NULL); 338 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 339 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 340 } else if (db->db_blkid == DMU_SPILL_BLKID) { 341 ASSERT(dn != NULL); 342 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 343 ASSERT0(db->db.db_offset); 344 } else { 345 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 346 } 347 348 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 349 ASSERT(dr->dr_dbuf == db); 350 351 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 352 ASSERT(dr->dr_dbuf == db); 353 354 /* 355 * We can't assert that db_size matches dn_datablksz because it 356 * can be momentarily different when another thread is doing 357 * dnode_set_blksz(). 358 */ 359 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 360 dr = db->db_data_pending; 361 /* 362 * It should only be modified in syncing context, so 363 * make sure we only have one copy of the data. 364 */ 365 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 366 } 367 368 /* verify db->db_blkptr */ 369 if (db->db_blkptr) { 370 if (db->db_parent == dn->dn_dbuf) { 371 /* db is pointed to by the dnode */ 372 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 373 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 374 ASSERT(db->db_parent == NULL); 375 else 376 ASSERT(db->db_parent != NULL); 377 if (db->db_blkid != DMU_SPILL_BLKID) 378 ASSERT3P(db->db_blkptr, ==, 379 &dn->dn_phys->dn_blkptr[db->db_blkid]); 380 } else { 381 /* db is pointed to by an indirect block */ 382 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 383 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 384 ASSERT3U(db->db_parent->db.db_object, ==, 385 db->db.db_object); 386 /* 387 * dnode_grow_indblksz() can make this fail if we don't 388 * have the struct_rwlock. XXX indblksz no longer 389 * grows. safe to do this now? 390 */ 391 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 392 ASSERT3P(db->db_blkptr, ==, 393 ((blkptr_t *)db->db_parent->db.db_data + 394 db->db_blkid % epb)); 395 } 396 } 397 } 398 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 399 (db->db_buf == NULL || db->db_buf->b_data) && 400 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 401 db->db_state != DB_FILL && !dn->dn_free_txg) { 402 /* 403 * If the blkptr isn't set but they have nonzero data, 404 * it had better be dirty, otherwise we'll lose that 405 * data when we evict this buffer. 406 */ 407 if (db->db_dirtycnt == 0) { 408 uint64_t *buf = db->db.db_data; 409 int i; 410 411 for (i = 0; i < db->db.db_size >> 3; i++) { 412 ASSERT(buf[i] == 0); 413 } 414 } 415 } 416 DB_DNODE_EXIT(db); 417 } 418 #endif 419 420 static void 421 dbuf_update_data(dmu_buf_impl_t *db) 422 { 423 ASSERT(MUTEX_HELD(&db->db_mtx)); 424 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 425 ASSERT(!refcount_is_zero(&db->db_holds)); 426 *db->db_user_data_ptr_ptr = db->db.db_data; 427 } 428 } 429 430 static void 431 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 432 { 433 ASSERT(MUTEX_HELD(&db->db_mtx)); 434 db->db_buf = buf; 435 if (buf != NULL) { 436 ASSERT(buf->b_data != NULL); 437 db->db.db_data = buf->b_data; 438 if (!arc_released(buf)) 439 arc_set_callback(buf, dbuf_do_evict, db); 440 dbuf_update_data(db); 441 } else { 442 dbuf_evict_user(db); 443 db->db.db_data = NULL; 444 if (db->db_state != DB_NOFILL) 445 db->db_state = DB_UNCACHED; 446 } 447 } 448 449 /* 450 * Loan out an arc_buf for read. Return the loaned arc_buf. 451 */ 452 arc_buf_t * 453 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 454 { 455 arc_buf_t *abuf; 456 457 mutex_enter(&db->db_mtx); 458 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 459 int blksz = db->db.db_size; 460 spa_t *spa = db->db_objset->os_spa; 461 462 mutex_exit(&db->db_mtx); 463 abuf = arc_loan_buf(spa, blksz); 464 bcopy(db->db.db_data, abuf->b_data, blksz); 465 } else { 466 abuf = db->db_buf; 467 arc_loan_inuse_buf(abuf, db); 468 dbuf_set_data(db, NULL); 469 mutex_exit(&db->db_mtx); 470 } 471 return (abuf); 472 } 473 474 uint64_t 475 dbuf_whichblock(dnode_t *dn, uint64_t offset) 476 { 477 if (dn->dn_datablkshift) { 478 return (offset >> dn->dn_datablkshift); 479 } else { 480 ASSERT3U(offset, <, dn->dn_datablksz); 481 return (0); 482 } 483 } 484 485 static void 486 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 487 { 488 dmu_buf_impl_t *db = vdb; 489 490 mutex_enter(&db->db_mtx); 491 ASSERT3U(db->db_state, ==, DB_READ); 492 /* 493 * All reads are synchronous, so we must have a hold on the dbuf 494 */ 495 ASSERT(refcount_count(&db->db_holds) > 0); 496 ASSERT(db->db_buf == NULL); 497 ASSERT(db->db.db_data == NULL); 498 if (db->db_level == 0 && db->db_freed_in_flight) { 499 /* we were freed in flight; disregard any error */ 500 arc_release(buf, db); 501 bzero(buf->b_data, db->db.db_size); 502 arc_buf_freeze(buf); 503 db->db_freed_in_flight = FALSE; 504 dbuf_set_data(db, buf); 505 db->db_state = DB_CACHED; 506 } else if (zio == NULL || zio->io_error == 0) { 507 dbuf_set_data(db, buf); 508 db->db_state = DB_CACHED; 509 } else { 510 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 511 ASSERT3P(db->db_buf, ==, NULL); 512 VERIFY(arc_buf_remove_ref(buf, db)); 513 db->db_state = DB_UNCACHED; 514 } 515 cv_broadcast(&db->db_changed); 516 dbuf_rele_and_unlock(db, NULL); 517 } 518 519 static void 520 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 521 { 522 dnode_t *dn; 523 zbookmark_phys_t zb; 524 uint32_t aflags = ARC_NOWAIT; 525 526 DB_DNODE_ENTER(db); 527 dn = DB_DNODE(db); 528 ASSERT(!refcount_is_zero(&db->db_holds)); 529 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 530 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 531 ASSERT(MUTEX_HELD(&db->db_mtx)); 532 ASSERT(db->db_state == DB_UNCACHED); 533 ASSERT(db->db_buf == NULL); 534 535 if (db->db_blkid == DMU_BONUS_BLKID) { 536 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 537 538 ASSERT3U(bonuslen, <=, db->db.db_size); 539 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 540 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 541 if (bonuslen < DN_MAX_BONUSLEN) 542 bzero(db->db.db_data, DN_MAX_BONUSLEN); 543 if (bonuslen) 544 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 545 DB_DNODE_EXIT(db); 546 dbuf_update_data(db); 547 db->db_state = DB_CACHED; 548 mutex_exit(&db->db_mtx); 549 return; 550 } 551 552 /* 553 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 554 * processes the delete record and clears the bp while we are waiting 555 * for the dn_mtx (resulting in a "no" from block_freed). 556 */ 557 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 558 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 559 BP_IS_HOLE(db->db_blkptr)))) { 560 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 561 562 DB_DNODE_EXIT(db); 563 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa, 564 db->db.db_size, db, type)); 565 bzero(db->db.db_data, db->db.db_size); 566 db->db_state = DB_CACHED; 567 *flags |= DB_RF_CACHED; 568 mutex_exit(&db->db_mtx); 569 return; 570 } 571 572 DB_DNODE_EXIT(db); 573 574 db->db_state = DB_READ; 575 mutex_exit(&db->db_mtx); 576 577 if (DBUF_IS_L2CACHEABLE(db)) 578 aflags |= ARC_L2CACHE; 579 if (DBUF_IS_L2COMPRESSIBLE(db)) 580 aflags |= ARC_L2COMPRESS; 581 582 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 583 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 584 db->db.db_object, db->db_level, db->db_blkid); 585 586 dbuf_add_ref(db, NULL); 587 588 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 589 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 590 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 591 &aflags, &zb); 592 if (aflags & ARC_CACHED) 593 *flags |= DB_RF_CACHED; 594 } 595 596 int 597 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 598 { 599 int err = 0; 600 boolean_t havepzio = (zio != NULL); 601 boolean_t prefetch; 602 dnode_t *dn; 603 604 /* 605 * We don't have to hold the mutex to check db_state because it 606 * can't be freed while we have a hold on the buffer. 607 */ 608 ASSERT(!refcount_is_zero(&db->db_holds)); 609 610 if (db->db_state == DB_NOFILL) 611 return (SET_ERROR(EIO)); 612 613 DB_DNODE_ENTER(db); 614 dn = DB_DNODE(db); 615 if ((flags & DB_RF_HAVESTRUCT) == 0) 616 rw_enter(&dn->dn_struct_rwlock, RW_READER); 617 618 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 619 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 620 DBUF_IS_CACHEABLE(db); 621 622 mutex_enter(&db->db_mtx); 623 if (db->db_state == DB_CACHED) { 624 mutex_exit(&db->db_mtx); 625 if (prefetch) 626 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 627 db->db.db_size, TRUE); 628 if ((flags & DB_RF_HAVESTRUCT) == 0) 629 rw_exit(&dn->dn_struct_rwlock); 630 DB_DNODE_EXIT(db); 631 } else if (db->db_state == DB_UNCACHED) { 632 spa_t *spa = dn->dn_objset->os_spa; 633 634 if (zio == NULL) 635 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 636 dbuf_read_impl(db, zio, &flags); 637 638 /* dbuf_read_impl has dropped db_mtx for us */ 639 640 if (prefetch) 641 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 642 db->db.db_size, flags & DB_RF_CACHED); 643 644 if ((flags & DB_RF_HAVESTRUCT) == 0) 645 rw_exit(&dn->dn_struct_rwlock); 646 DB_DNODE_EXIT(db); 647 648 if (!havepzio) 649 err = zio_wait(zio); 650 } else { 651 /* 652 * Another reader came in while the dbuf was in flight 653 * between UNCACHED and CACHED. Either a writer will finish 654 * writing the buffer (sending the dbuf to CACHED) or the 655 * first reader's request will reach the read_done callback 656 * and send the dbuf to CACHED. Otherwise, a failure 657 * occurred and the dbuf went to UNCACHED. 658 */ 659 mutex_exit(&db->db_mtx); 660 if (prefetch) 661 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 662 db->db.db_size, TRUE); 663 if ((flags & DB_RF_HAVESTRUCT) == 0) 664 rw_exit(&dn->dn_struct_rwlock); 665 DB_DNODE_EXIT(db); 666 667 /* Skip the wait per the caller's request. */ 668 mutex_enter(&db->db_mtx); 669 if ((flags & DB_RF_NEVERWAIT) == 0) { 670 while (db->db_state == DB_READ || 671 db->db_state == DB_FILL) { 672 ASSERT(db->db_state == DB_READ || 673 (flags & DB_RF_HAVESTRUCT) == 0); 674 cv_wait(&db->db_changed, &db->db_mtx); 675 } 676 if (db->db_state == DB_UNCACHED) 677 err = SET_ERROR(EIO); 678 } 679 mutex_exit(&db->db_mtx); 680 } 681 682 ASSERT(err || havepzio || db->db_state == DB_CACHED); 683 return (err); 684 } 685 686 static void 687 dbuf_noread(dmu_buf_impl_t *db) 688 { 689 ASSERT(!refcount_is_zero(&db->db_holds)); 690 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 691 mutex_enter(&db->db_mtx); 692 while (db->db_state == DB_READ || db->db_state == DB_FILL) 693 cv_wait(&db->db_changed, &db->db_mtx); 694 if (db->db_state == DB_UNCACHED) { 695 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 696 spa_t *spa = db->db_objset->os_spa; 697 698 ASSERT(db->db_buf == NULL); 699 ASSERT(db->db.db_data == NULL); 700 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 701 db->db_state = DB_FILL; 702 } else if (db->db_state == DB_NOFILL) { 703 dbuf_set_data(db, NULL); 704 } else { 705 ASSERT3U(db->db_state, ==, DB_CACHED); 706 } 707 mutex_exit(&db->db_mtx); 708 } 709 710 /* 711 * This is our just-in-time copy function. It makes a copy of 712 * buffers, that have been modified in a previous transaction 713 * group, before we modify them in the current active group. 714 * 715 * This function is used in two places: when we are dirtying a 716 * buffer for the first time in a txg, and when we are freeing 717 * a range in a dnode that includes this buffer. 718 * 719 * Note that when we are called from dbuf_free_range() we do 720 * not put a hold on the buffer, we just traverse the active 721 * dbuf list for the dnode. 722 */ 723 static void 724 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 725 { 726 dbuf_dirty_record_t *dr = db->db_last_dirty; 727 728 ASSERT(MUTEX_HELD(&db->db_mtx)); 729 ASSERT(db->db.db_data != NULL); 730 ASSERT(db->db_level == 0); 731 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 732 733 if (dr == NULL || 734 (dr->dt.dl.dr_data != 735 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 736 return; 737 738 /* 739 * If the last dirty record for this dbuf has not yet synced 740 * and its referencing the dbuf data, either: 741 * reset the reference to point to a new copy, 742 * or (if there a no active holders) 743 * just null out the current db_data pointer. 744 */ 745 ASSERT(dr->dr_txg >= txg - 2); 746 if (db->db_blkid == DMU_BONUS_BLKID) { 747 /* Note that the data bufs here are zio_bufs */ 748 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 749 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 750 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 751 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 752 int size = db->db.db_size; 753 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 754 spa_t *spa = db->db_objset->os_spa; 755 756 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 757 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 758 } else { 759 dbuf_set_data(db, NULL); 760 } 761 } 762 763 void 764 dbuf_unoverride(dbuf_dirty_record_t *dr) 765 { 766 dmu_buf_impl_t *db = dr->dr_dbuf; 767 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 768 uint64_t txg = dr->dr_txg; 769 770 ASSERT(MUTEX_HELD(&db->db_mtx)); 771 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 772 ASSERT(db->db_level == 0); 773 774 if (db->db_blkid == DMU_BONUS_BLKID || 775 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 776 return; 777 778 ASSERT(db->db_data_pending != dr); 779 780 /* free this block */ 781 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 782 zio_free(db->db_objset->os_spa, txg, bp); 783 784 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 785 dr->dt.dl.dr_nopwrite = B_FALSE; 786 787 /* 788 * Release the already-written buffer, so we leave it in 789 * a consistent dirty state. Note that all callers are 790 * modifying the buffer, so they will immediately do 791 * another (redundant) arc_release(). Therefore, leave 792 * the buf thawed to save the effort of freezing & 793 * immediately re-thawing it. 794 */ 795 arc_release(dr->dt.dl.dr_data, db); 796 } 797 798 /* 799 * Evict (if its unreferenced) or clear (if its referenced) any level-0 800 * data blocks in the free range, so that any future readers will find 801 * empty blocks. 802 * 803 * This is a no-op if the dataset is in the middle of an incremental 804 * receive; see comment below for details. 805 */ 806 void 807 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 808 dmu_tx_t *tx) 809 { 810 dmu_buf_impl_t *db, *db_next, db_search; 811 uint64_t txg = tx->tx_txg; 812 avl_index_t where; 813 814 if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID)) 815 end_blkid = dn->dn_maxblkid; 816 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 817 818 db_search.db_level = 0; 819 db_search.db_blkid = start_blkid; 820 db_search.db_state = DB_SEARCH; 821 822 mutex_enter(&dn->dn_dbufs_mtx); 823 if (start_blkid >= dn->dn_unlisted_l0_blkid) { 824 /* There can't be any dbufs in this range; no need to search. */ 825 #ifdef DEBUG 826 db = avl_find(&dn->dn_dbufs, &db_search, &where); 827 ASSERT3P(db, ==, NULL); 828 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 829 ASSERT(db == NULL || db->db_level > 0); 830 #endif 831 mutex_exit(&dn->dn_dbufs_mtx); 832 return; 833 } else if (dmu_objset_is_receiving(dn->dn_objset)) { 834 /* 835 * If we are receiving, we expect there to be no dbufs in 836 * the range to be freed, because receive modifies each 837 * block at most once, and in offset order. If this is 838 * not the case, it can lead to performance problems, 839 * so note that we unexpectedly took the slow path. 840 */ 841 atomic_inc_64(&zfs_free_range_recv_miss); 842 } 843 844 db = avl_find(&dn->dn_dbufs, &db_search, &where); 845 ASSERT3P(db, ==, NULL); 846 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 847 848 for (; db != NULL; db = db_next) { 849 db_next = AVL_NEXT(&dn->dn_dbufs, db); 850 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 851 852 if (db->db_level != 0 || db->db_blkid > end_blkid) { 853 break; 854 } 855 ASSERT3U(db->db_blkid, >=, start_blkid); 856 857 /* found a level 0 buffer in the range */ 858 mutex_enter(&db->db_mtx); 859 if (dbuf_undirty(db, tx)) { 860 /* mutex has been dropped and dbuf destroyed */ 861 continue; 862 } 863 864 if (db->db_state == DB_UNCACHED || 865 db->db_state == DB_NOFILL || 866 db->db_state == DB_EVICTING) { 867 ASSERT(db->db.db_data == NULL); 868 mutex_exit(&db->db_mtx); 869 continue; 870 } 871 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 872 /* will be handled in dbuf_read_done or dbuf_rele */ 873 db->db_freed_in_flight = TRUE; 874 mutex_exit(&db->db_mtx); 875 continue; 876 } 877 if (refcount_count(&db->db_holds) == 0) { 878 ASSERT(db->db_buf); 879 dbuf_clear(db); 880 continue; 881 } 882 /* The dbuf is referenced */ 883 884 if (db->db_last_dirty != NULL) { 885 dbuf_dirty_record_t *dr = db->db_last_dirty; 886 887 if (dr->dr_txg == txg) { 888 /* 889 * This buffer is "in-use", re-adjust the file 890 * size to reflect that this buffer may 891 * contain new data when we sync. 892 */ 893 if (db->db_blkid != DMU_SPILL_BLKID && 894 db->db_blkid > dn->dn_maxblkid) 895 dn->dn_maxblkid = db->db_blkid; 896 dbuf_unoverride(dr); 897 } else { 898 /* 899 * This dbuf is not dirty in the open context. 900 * Either uncache it (if its not referenced in 901 * the open context) or reset its contents to 902 * empty. 903 */ 904 dbuf_fix_old_data(db, txg); 905 } 906 } 907 /* clear the contents if its cached */ 908 if (db->db_state == DB_CACHED) { 909 ASSERT(db->db.db_data != NULL); 910 arc_release(db->db_buf, db); 911 bzero(db->db.db_data, db->db.db_size); 912 arc_buf_freeze(db->db_buf); 913 } 914 915 mutex_exit(&db->db_mtx); 916 } 917 mutex_exit(&dn->dn_dbufs_mtx); 918 } 919 920 static int 921 dbuf_block_freeable(dmu_buf_impl_t *db) 922 { 923 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 924 uint64_t birth_txg = 0; 925 926 /* 927 * We don't need any locking to protect db_blkptr: 928 * If it's syncing, then db_last_dirty will be set 929 * so we'll ignore db_blkptr. 930 * 931 * This logic ensures that only block births for 932 * filled blocks are considered. 933 */ 934 ASSERT(MUTEX_HELD(&db->db_mtx)); 935 if (db->db_last_dirty && (db->db_blkptr == NULL || 936 !BP_IS_HOLE(db->db_blkptr))) { 937 birth_txg = db->db_last_dirty->dr_txg; 938 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 939 birth_txg = db->db_blkptr->blk_birth; 940 } 941 942 /* 943 * If this block don't exist or is in a snapshot, it can't be freed. 944 * Don't pass the bp to dsl_dataset_block_freeable() since we 945 * are holding the db_mtx lock and might deadlock if we are 946 * prefetching a dedup-ed block. 947 */ 948 if (birth_txg != 0) 949 return (ds == NULL || 950 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 951 else 952 return (B_FALSE); 953 } 954 955 void 956 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 957 { 958 arc_buf_t *buf, *obuf; 959 int osize = db->db.db_size; 960 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 961 dnode_t *dn; 962 963 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 964 965 DB_DNODE_ENTER(db); 966 dn = DB_DNODE(db); 967 968 /* XXX does *this* func really need the lock? */ 969 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 970 971 /* 972 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 973 * is OK, because there can be no other references to the db 974 * when we are changing its size, so no concurrent DB_FILL can 975 * be happening. 976 */ 977 /* 978 * XXX we should be doing a dbuf_read, checking the return 979 * value and returning that up to our callers 980 */ 981 dmu_buf_will_dirty(&db->db, tx); 982 983 /* create the data buffer for the new block */ 984 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 985 986 /* copy old block data to the new block */ 987 obuf = db->db_buf; 988 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 989 /* zero the remainder */ 990 if (size > osize) 991 bzero((uint8_t *)buf->b_data + osize, size - osize); 992 993 mutex_enter(&db->db_mtx); 994 dbuf_set_data(db, buf); 995 VERIFY(arc_buf_remove_ref(obuf, db)); 996 db->db.db_size = size; 997 998 if (db->db_level == 0) { 999 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1000 db->db_last_dirty->dt.dl.dr_data = buf; 1001 } 1002 mutex_exit(&db->db_mtx); 1003 1004 dnode_willuse_space(dn, size-osize, tx); 1005 DB_DNODE_EXIT(db); 1006 } 1007 1008 void 1009 dbuf_release_bp(dmu_buf_impl_t *db) 1010 { 1011 objset_t *os = db->db_objset; 1012 1013 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1014 ASSERT(arc_released(os->os_phys_buf) || 1015 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1016 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1017 1018 (void) arc_release(db->db_buf, db); 1019 } 1020 1021 dbuf_dirty_record_t * 1022 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1023 { 1024 dnode_t *dn; 1025 objset_t *os; 1026 dbuf_dirty_record_t **drp, *dr; 1027 int drop_struct_lock = FALSE; 1028 boolean_t do_free_accounting = B_FALSE; 1029 int txgoff = tx->tx_txg & TXG_MASK; 1030 1031 ASSERT(tx->tx_txg != 0); 1032 ASSERT(!refcount_is_zero(&db->db_holds)); 1033 DMU_TX_DIRTY_BUF(tx, db); 1034 1035 DB_DNODE_ENTER(db); 1036 dn = DB_DNODE(db); 1037 /* 1038 * Shouldn't dirty a regular buffer in syncing context. Private 1039 * objects may be dirtied in syncing context, but only if they 1040 * were already pre-dirtied in open context. 1041 */ 1042 ASSERT(!dmu_tx_is_syncing(tx) || 1043 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1044 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1045 dn->dn_objset->os_dsl_dataset == NULL); 1046 /* 1047 * We make this assert for private objects as well, but after we 1048 * check if we're already dirty. They are allowed to re-dirty 1049 * in syncing context. 1050 */ 1051 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1052 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1053 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1054 1055 mutex_enter(&db->db_mtx); 1056 /* 1057 * XXX make this true for indirects too? The problem is that 1058 * transactions created with dmu_tx_create_assigned() from 1059 * syncing context don't bother holding ahead. 1060 */ 1061 ASSERT(db->db_level != 0 || 1062 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1063 db->db_state == DB_NOFILL); 1064 1065 mutex_enter(&dn->dn_mtx); 1066 /* 1067 * Don't set dirtyctx to SYNC if we're just modifying this as we 1068 * initialize the objset. 1069 */ 1070 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1071 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1072 dn->dn_dirtyctx = 1073 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1074 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1075 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1076 } 1077 mutex_exit(&dn->dn_mtx); 1078 1079 if (db->db_blkid == DMU_SPILL_BLKID) 1080 dn->dn_have_spill = B_TRUE; 1081 1082 /* 1083 * If this buffer is already dirty, we're done. 1084 */ 1085 drp = &db->db_last_dirty; 1086 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1087 db->db.db_object == DMU_META_DNODE_OBJECT); 1088 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1089 drp = &dr->dr_next; 1090 if (dr && dr->dr_txg == tx->tx_txg) { 1091 DB_DNODE_EXIT(db); 1092 1093 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1094 /* 1095 * If this buffer has already been written out, 1096 * we now need to reset its state. 1097 */ 1098 dbuf_unoverride(dr); 1099 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1100 db->db_state != DB_NOFILL) 1101 arc_buf_thaw(db->db_buf); 1102 } 1103 mutex_exit(&db->db_mtx); 1104 return (dr); 1105 } 1106 1107 /* 1108 * Only valid if not already dirty. 1109 */ 1110 ASSERT(dn->dn_object == 0 || 1111 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1112 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1113 1114 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1115 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1116 dn->dn_phys->dn_nlevels > db->db_level || 1117 dn->dn_next_nlevels[txgoff] > db->db_level || 1118 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1119 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1120 1121 /* 1122 * We should only be dirtying in syncing context if it's the 1123 * mos or we're initializing the os or it's a special object. 1124 * However, we are allowed to dirty in syncing context provided 1125 * we already dirtied it in open context. Hence we must make 1126 * this assertion only if we're not already dirty. 1127 */ 1128 os = dn->dn_objset; 1129 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1130 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1131 ASSERT(db->db.db_size != 0); 1132 1133 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1134 1135 if (db->db_blkid != DMU_BONUS_BLKID) { 1136 /* 1137 * Update the accounting. 1138 * Note: we delay "free accounting" until after we drop 1139 * the db_mtx. This keeps us from grabbing other locks 1140 * (and possibly deadlocking) in bp_get_dsize() while 1141 * also holding the db_mtx. 1142 */ 1143 dnode_willuse_space(dn, db->db.db_size, tx); 1144 do_free_accounting = dbuf_block_freeable(db); 1145 } 1146 1147 /* 1148 * If this buffer is dirty in an old transaction group we need 1149 * to make a copy of it so that the changes we make in this 1150 * transaction group won't leak out when we sync the older txg. 1151 */ 1152 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1153 if (db->db_level == 0) { 1154 void *data_old = db->db_buf; 1155 1156 if (db->db_state != DB_NOFILL) { 1157 if (db->db_blkid == DMU_BONUS_BLKID) { 1158 dbuf_fix_old_data(db, tx->tx_txg); 1159 data_old = db->db.db_data; 1160 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1161 /* 1162 * Release the data buffer from the cache so 1163 * that we can modify it without impacting 1164 * possible other users of this cached data 1165 * block. Note that indirect blocks and 1166 * private objects are not released until the 1167 * syncing state (since they are only modified 1168 * then). 1169 */ 1170 arc_release(db->db_buf, db); 1171 dbuf_fix_old_data(db, tx->tx_txg); 1172 data_old = db->db_buf; 1173 } 1174 ASSERT(data_old != NULL); 1175 } 1176 dr->dt.dl.dr_data = data_old; 1177 } else { 1178 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1179 list_create(&dr->dt.di.dr_children, 1180 sizeof (dbuf_dirty_record_t), 1181 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1182 } 1183 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1184 dr->dr_accounted = db->db.db_size; 1185 dr->dr_dbuf = db; 1186 dr->dr_txg = tx->tx_txg; 1187 dr->dr_next = *drp; 1188 *drp = dr; 1189 1190 /* 1191 * We could have been freed_in_flight between the dbuf_noread 1192 * and dbuf_dirty. We win, as though the dbuf_noread() had 1193 * happened after the free. 1194 */ 1195 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1196 db->db_blkid != DMU_SPILL_BLKID) { 1197 mutex_enter(&dn->dn_mtx); 1198 if (dn->dn_free_ranges[txgoff] != NULL) { 1199 range_tree_clear(dn->dn_free_ranges[txgoff], 1200 db->db_blkid, 1); 1201 } 1202 mutex_exit(&dn->dn_mtx); 1203 db->db_freed_in_flight = FALSE; 1204 } 1205 1206 /* 1207 * This buffer is now part of this txg 1208 */ 1209 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1210 db->db_dirtycnt += 1; 1211 ASSERT3U(db->db_dirtycnt, <=, 3); 1212 1213 mutex_exit(&db->db_mtx); 1214 1215 if (db->db_blkid == DMU_BONUS_BLKID || 1216 db->db_blkid == DMU_SPILL_BLKID) { 1217 mutex_enter(&dn->dn_mtx); 1218 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1219 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1220 mutex_exit(&dn->dn_mtx); 1221 dnode_setdirty(dn, tx); 1222 DB_DNODE_EXIT(db); 1223 return (dr); 1224 } else if (do_free_accounting) { 1225 blkptr_t *bp = db->db_blkptr; 1226 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1227 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1228 /* 1229 * This is only a guess -- if the dbuf is dirty 1230 * in a previous txg, we don't know how much 1231 * space it will use on disk yet. We should 1232 * really have the struct_rwlock to access 1233 * db_blkptr, but since this is just a guess, 1234 * it's OK if we get an odd answer. 1235 */ 1236 ddt_prefetch(os->os_spa, bp); 1237 dnode_willuse_space(dn, -willfree, tx); 1238 } 1239 1240 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1241 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1242 drop_struct_lock = TRUE; 1243 } 1244 1245 if (db->db_level == 0) { 1246 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1247 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1248 } 1249 1250 if (db->db_level+1 < dn->dn_nlevels) { 1251 dmu_buf_impl_t *parent = db->db_parent; 1252 dbuf_dirty_record_t *di; 1253 int parent_held = FALSE; 1254 1255 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1256 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1257 1258 parent = dbuf_hold_level(dn, db->db_level+1, 1259 db->db_blkid >> epbs, FTAG); 1260 ASSERT(parent != NULL); 1261 parent_held = TRUE; 1262 } 1263 if (drop_struct_lock) 1264 rw_exit(&dn->dn_struct_rwlock); 1265 ASSERT3U(db->db_level+1, ==, parent->db_level); 1266 di = dbuf_dirty(parent, tx); 1267 if (parent_held) 1268 dbuf_rele(parent, FTAG); 1269 1270 mutex_enter(&db->db_mtx); 1271 /* 1272 * Since we've dropped the mutex, it's possible that 1273 * dbuf_undirty() might have changed this out from under us. 1274 */ 1275 if (db->db_last_dirty == dr || 1276 dn->dn_object == DMU_META_DNODE_OBJECT) { 1277 mutex_enter(&di->dt.di.dr_mtx); 1278 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1279 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1280 list_insert_tail(&di->dt.di.dr_children, dr); 1281 mutex_exit(&di->dt.di.dr_mtx); 1282 dr->dr_parent = di; 1283 } 1284 mutex_exit(&db->db_mtx); 1285 } else { 1286 ASSERT(db->db_level+1 == dn->dn_nlevels); 1287 ASSERT(db->db_blkid < dn->dn_nblkptr); 1288 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1289 mutex_enter(&dn->dn_mtx); 1290 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1291 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1292 mutex_exit(&dn->dn_mtx); 1293 if (drop_struct_lock) 1294 rw_exit(&dn->dn_struct_rwlock); 1295 } 1296 1297 dnode_setdirty(dn, tx); 1298 DB_DNODE_EXIT(db); 1299 return (dr); 1300 } 1301 1302 /* 1303 * Undirty a buffer in the transaction group referenced by the given 1304 * transaction. Return whether this evicted the dbuf. 1305 */ 1306 static boolean_t 1307 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1308 { 1309 dnode_t *dn; 1310 uint64_t txg = tx->tx_txg; 1311 dbuf_dirty_record_t *dr, **drp; 1312 1313 ASSERT(txg != 0); 1314 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1315 ASSERT0(db->db_level); 1316 ASSERT(MUTEX_HELD(&db->db_mtx)); 1317 1318 /* 1319 * If this buffer is not dirty, we're done. 1320 */ 1321 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1322 if (dr->dr_txg <= txg) 1323 break; 1324 if (dr == NULL || dr->dr_txg < txg) 1325 return (B_FALSE); 1326 ASSERT(dr->dr_txg == txg); 1327 ASSERT(dr->dr_dbuf == db); 1328 1329 DB_DNODE_ENTER(db); 1330 dn = DB_DNODE(db); 1331 1332 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1333 1334 ASSERT(db->db.db_size != 0); 1335 1336 /* 1337 * Any space we accounted for in dp_dirty_* will be cleaned up by 1338 * dsl_pool_sync(). This is relatively rare so the discrepancy 1339 * is not a big deal. 1340 */ 1341 1342 *drp = dr->dr_next; 1343 1344 /* 1345 * Note that there are three places in dbuf_dirty() 1346 * where this dirty record may be put on a list. 1347 * Make sure to do a list_remove corresponding to 1348 * every one of those list_insert calls. 1349 */ 1350 if (dr->dr_parent) { 1351 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1352 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1353 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1354 } else if (db->db_blkid == DMU_SPILL_BLKID || 1355 db->db_level+1 == dn->dn_nlevels) { 1356 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1357 mutex_enter(&dn->dn_mtx); 1358 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1359 mutex_exit(&dn->dn_mtx); 1360 } 1361 DB_DNODE_EXIT(db); 1362 1363 if (db->db_state != DB_NOFILL) { 1364 dbuf_unoverride(dr); 1365 1366 ASSERT(db->db_buf != NULL); 1367 ASSERT(dr->dt.dl.dr_data != NULL); 1368 if (dr->dt.dl.dr_data != db->db_buf) 1369 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1370 } 1371 1372 if (db->db_level != 0) { 1373 mutex_destroy(&dr->dt.di.dr_mtx); 1374 list_destroy(&dr->dt.di.dr_children); 1375 } 1376 1377 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1378 1379 ASSERT(db->db_dirtycnt > 0); 1380 db->db_dirtycnt -= 1; 1381 1382 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1383 arc_buf_t *buf = db->db_buf; 1384 1385 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1386 dbuf_set_data(db, NULL); 1387 VERIFY(arc_buf_remove_ref(buf, db)); 1388 dbuf_evict(db); 1389 return (B_TRUE); 1390 } 1391 1392 return (B_FALSE); 1393 } 1394 1395 void 1396 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1397 { 1398 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1399 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1400 1401 ASSERT(tx->tx_txg != 0); 1402 ASSERT(!refcount_is_zero(&db->db_holds)); 1403 1404 DB_DNODE_ENTER(db); 1405 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1406 rf |= DB_RF_HAVESTRUCT; 1407 DB_DNODE_EXIT(db); 1408 (void) dbuf_read(db, NULL, rf); 1409 (void) dbuf_dirty(db, tx); 1410 } 1411 1412 void 1413 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1414 { 1415 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1416 1417 db->db_state = DB_NOFILL; 1418 1419 dmu_buf_will_fill(db_fake, tx); 1420 } 1421 1422 void 1423 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1424 { 1425 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1426 1427 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1428 ASSERT(tx->tx_txg != 0); 1429 ASSERT(db->db_level == 0); 1430 ASSERT(!refcount_is_zero(&db->db_holds)); 1431 1432 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1433 dmu_tx_private_ok(tx)); 1434 1435 dbuf_noread(db); 1436 (void) dbuf_dirty(db, tx); 1437 } 1438 1439 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1440 /* ARGSUSED */ 1441 void 1442 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1443 { 1444 mutex_enter(&db->db_mtx); 1445 DBUF_VERIFY(db); 1446 1447 if (db->db_state == DB_FILL) { 1448 if (db->db_level == 0 && db->db_freed_in_flight) { 1449 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1450 /* we were freed while filling */ 1451 /* XXX dbuf_undirty? */ 1452 bzero(db->db.db_data, db->db.db_size); 1453 db->db_freed_in_flight = FALSE; 1454 } 1455 db->db_state = DB_CACHED; 1456 cv_broadcast(&db->db_changed); 1457 } 1458 mutex_exit(&db->db_mtx); 1459 } 1460 1461 void 1462 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1463 bp_embedded_type_t etype, enum zio_compress comp, 1464 int uncompressed_size, int compressed_size, int byteorder, 1465 dmu_tx_t *tx) 1466 { 1467 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1468 struct dirty_leaf *dl; 1469 dmu_object_type_t type; 1470 1471 DB_DNODE_ENTER(db); 1472 type = DB_DNODE(db)->dn_type; 1473 DB_DNODE_EXIT(db); 1474 1475 ASSERT0(db->db_level); 1476 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1477 1478 dmu_buf_will_not_fill(dbuf, tx); 1479 1480 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1481 dl = &db->db_last_dirty->dt.dl; 1482 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1483 data, comp, uncompressed_size, compressed_size); 1484 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1485 BP_SET_TYPE(&dl->dr_overridden_by, type); 1486 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1487 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1488 1489 dl->dr_override_state = DR_OVERRIDDEN; 1490 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1491 } 1492 1493 /* 1494 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1495 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1496 */ 1497 void 1498 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1499 { 1500 ASSERT(!refcount_is_zero(&db->db_holds)); 1501 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1502 ASSERT(db->db_level == 0); 1503 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1504 ASSERT(buf != NULL); 1505 ASSERT(arc_buf_size(buf) == db->db.db_size); 1506 ASSERT(tx->tx_txg != 0); 1507 1508 arc_return_buf(buf, db); 1509 ASSERT(arc_released(buf)); 1510 1511 mutex_enter(&db->db_mtx); 1512 1513 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1514 cv_wait(&db->db_changed, &db->db_mtx); 1515 1516 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1517 1518 if (db->db_state == DB_CACHED && 1519 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1520 mutex_exit(&db->db_mtx); 1521 (void) dbuf_dirty(db, tx); 1522 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1523 VERIFY(arc_buf_remove_ref(buf, db)); 1524 xuio_stat_wbuf_copied(); 1525 return; 1526 } 1527 1528 xuio_stat_wbuf_nocopy(); 1529 if (db->db_state == DB_CACHED) { 1530 dbuf_dirty_record_t *dr = db->db_last_dirty; 1531 1532 ASSERT(db->db_buf != NULL); 1533 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1534 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1535 if (!arc_released(db->db_buf)) { 1536 ASSERT(dr->dt.dl.dr_override_state == 1537 DR_OVERRIDDEN); 1538 arc_release(db->db_buf, db); 1539 } 1540 dr->dt.dl.dr_data = buf; 1541 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1542 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1543 arc_release(db->db_buf, db); 1544 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1545 } 1546 db->db_buf = NULL; 1547 } 1548 ASSERT(db->db_buf == NULL); 1549 dbuf_set_data(db, buf); 1550 db->db_state = DB_FILL; 1551 mutex_exit(&db->db_mtx); 1552 (void) dbuf_dirty(db, tx); 1553 dmu_buf_fill_done(&db->db, tx); 1554 } 1555 1556 /* 1557 * "Clear" the contents of this dbuf. This will mark the dbuf 1558 * EVICTING and clear *most* of its references. Unfortunately, 1559 * when we are not holding the dn_dbufs_mtx, we can't clear the 1560 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1561 * in this case. For callers from the DMU we will usually see: 1562 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy() 1563 * For the arc callback, we will usually see: 1564 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1565 * Sometimes, though, we will get a mix of these two: 1566 * DMU: dbuf_clear()->arc_clear_callback() 1567 * ARC: dbuf_do_evict()->dbuf_destroy() 1568 * 1569 * This routine will dissociate the dbuf from the arc, by calling 1570 * arc_clear_callback(), but will not evict the data from the ARC. 1571 */ 1572 void 1573 dbuf_clear(dmu_buf_impl_t *db) 1574 { 1575 dnode_t *dn; 1576 dmu_buf_impl_t *parent = db->db_parent; 1577 dmu_buf_impl_t *dndb; 1578 boolean_t dbuf_gone = B_FALSE; 1579 1580 ASSERT(MUTEX_HELD(&db->db_mtx)); 1581 ASSERT(refcount_is_zero(&db->db_holds)); 1582 1583 dbuf_evict_user(db); 1584 1585 if (db->db_state == DB_CACHED) { 1586 ASSERT(db->db.db_data != NULL); 1587 if (db->db_blkid == DMU_BONUS_BLKID) { 1588 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1589 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1590 } 1591 db->db.db_data = NULL; 1592 db->db_state = DB_UNCACHED; 1593 } 1594 1595 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1596 ASSERT(db->db_data_pending == NULL); 1597 1598 db->db_state = DB_EVICTING; 1599 db->db_blkptr = NULL; 1600 1601 DB_DNODE_ENTER(db); 1602 dn = DB_DNODE(db); 1603 dndb = dn->dn_dbuf; 1604 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1605 avl_remove(&dn->dn_dbufs, db); 1606 atomic_dec_32(&dn->dn_dbufs_count); 1607 membar_producer(); 1608 DB_DNODE_EXIT(db); 1609 /* 1610 * Decrementing the dbuf count means that the hold corresponding 1611 * to the removed dbuf is no longer discounted in dnode_move(), 1612 * so the dnode cannot be moved until after we release the hold. 1613 * The membar_producer() ensures visibility of the decremented 1614 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1615 * release any lock. 1616 */ 1617 dnode_rele(dn, db); 1618 db->db_dnode_handle = NULL; 1619 } else { 1620 DB_DNODE_EXIT(db); 1621 } 1622 1623 if (db->db_buf) 1624 dbuf_gone = arc_clear_callback(db->db_buf); 1625 1626 if (!dbuf_gone) 1627 mutex_exit(&db->db_mtx); 1628 1629 /* 1630 * If this dbuf is referenced from an indirect dbuf, 1631 * decrement the ref count on the indirect dbuf. 1632 */ 1633 if (parent && parent != dndb) 1634 dbuf_rele(parent, db); 1635 } 1636 1637 static int 1638 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1639 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1640 { 1641 int nlevels, epbs; 1642 1643 *parentp = NULL; 1644 *bpp = NULL; 1645 1646 ASSERT(blkid != DMU_BONUS_BLKID); 1647 1648 if (blkid == DMU_SPILL_BLKID) { 1649 mutex_enter(&dn->dn_mtx); 1650 if (dn->dn_have_spill && 1651 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1652 *bpp = &dn->dn_phys->dn_spill; 1653 else 1654 *bpp = NULL; 1655 dbuf_add_ref(dn->dn_dbuf, NULL); 1656 *parentp = dn->dn_dbuf; 1657 mutex_exit(&dn->dn_mtx); 1658 return (0); 1659 } 1660 1661 if (dn->dn_phys->dn_nlevels == 0) 1662 nlevels = 1; 1663 else 1664 nlevels = dn->dn_phys->dn_nlevels; 1665 1666 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1667 1668 ASSERT3U(level * epbs, <, 64); 1669 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1670 if (level >= nlevels || 1671 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1672 /* the buffer has no parent yet */ 1673 return (SET_ERROR(ENOENT)); 1674 } else if (level < nlevels-1) { 1675 /* this block is referenced from an indirect block */ 1676 int err = dbuf_hold_impl(dn, level+1, 1677 blkid >> epbs, fail_sparse, NULL, parentp); 1678 if (err) 1679 return (err); 1680 err = dbuf_read(*parentp, NULL, 1681 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1682 if (err) { 1683 dbuf_rele(*parentp, NULL); 1684 *parentp = NULL; 1685 return (err); 1686 } 1687 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1688 (blkid & ((1ULL << epbs) - 1)); 1689 return (0); 1690 } else { 1691 /* the block is referenced from the dnode */ 1692 ASSERT3U(level, ==, nlevels-1); 1693 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1694 blkid < dn->dn_phys->dn_nblkptr); 1695 if (dn->dn_dbuf) { 1696 dbuf_add_ref(dn->dn_dbuf, NULL); 1697 *parentp = dn->dn_dbuf; 1698 } 1699 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1700 return (0); 1701 } 1702 } 1703 1704 static dmu_buf_impl_t * 1705 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1706 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1707 { 1708 objset_t *os = dn->dn_objset; 1709 dmu_buf_impl_t *db, *odb; 1710 1711 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1712 ASSERT(dn->dn_type != DMU_OT_NONE); 1713 1714 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1715 1716 db->db_objset = os; 1717 db->db.db_object = dn->dn_object; 1718 db->db_level = level; 1719 db->db_blkid = blkid; 1720 db->db_last_dirty = NULL; 1721 db->db_dirtycnt = 0; 1722 db->db_dnode_handle = dn->dn_handle; 1723 db->db_parent = parent; 1724 db->db_blkptr = blkptr; 1725 1726 db->db_user_ptr = NULL; 1727 db->db_user_data_ptr_ptr = NULL; 1728 db->db_evict_func = NULL; 1729 db->db_immediate_evict = 0; 1730 db->db_freed_in_flight = 0; 1731 1732 if (blkid == DMU_BONUS_BLKID) { 1733 ASSERT3P(parent, ==, dn->dn_dbuf); 1734 db->db.db_size = DN_MAX_BONUSLEN - 1735 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1736 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1737 db->db.db_offset = DMU_BONUS_BLKID; 1738 db->db_state = DB_UNCACHED; 1739 /* the bonus dbuf is not placed in the hash table */ 1740 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1741 return (db); 1742 } else if (blkid == DMU_SPILL_BLKID) { 1743 db->db.db_size = (blkptr != NULL) ? 1744 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1745 db->db.db_offset = 0; 1746 } else { 1747 int blocksize = 1748 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 1749 db->db.db_size = blocksize; 1750 db->db.db_offset = db->db_blkid * blocksize; 1751 } 1752 1753 /* 1754 * Hold the dn_dbufs_mtx while we get the new dbuf 1755 * in the hash table *and* added to the dbufs list. 1756 * This prevents a possible deadlock with someone 1757 * trying to look up this dbuf before its added to the 1758 * dn_dbufs list. 1759 */ 1760 mutex_enter(&dn->dn_dbufs_mtx); 1761 db->db_state = DB_EVICTING; 1762 if ((odb = dbuf_hash_insert(db)) != NULL) { 1763 /* someone else inserted it first */ 1764 kmem_cache_free(dbuf_cache, db); 1765 mutex_exit(&dn->dn_dbufs_mtx); 1766 return (odb); 1767 } 1768 avl_add(&dn->dn_dbufs, db); 1769 if (db->db_level == 0 && db->db_blkid >= 1770 dn->dn_unlisted_l0_blkid) 1771 dn->dn_unlisted_l0_blkid = db->db_blkid + 1; 1772 db->db_state = DB_UNCACHED; 1773 mutex_exit(&dn->dn_dbufs_mtx); 1774 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1775 1776 if (parent && parent != dn->dn_dbuf) 1777 dbuf_add_ref(parent, db); 1778 1779 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1780 refcount_count(&dn->dn_holds) > 0); 1781 (void) refcount_add(&dn->dn_holds, db); 1782 atomic_inc_32(&dn->dn_dbufs_count); 1783 1784 dprintf_dbuf(db, "db=%p\n", db); 1785 1786 return (db); 1787 } 1788 1789 static int 1790 dbuf_do_evict(void *private) 1791 { 1792 dmu_buf_impl_t *db = private; 1793 1794 if (!MUTEX_HELD(&db->db_mtx)) 1795 mutex_enter(&db->db_mtx); 1796 1797 ASSERT(refcount_is_zero(&db->db_holds)); 1798 1799 if (db->db_state != DB_EVICTING) { 1800 ASSERT(db->db_state == DB_CACHED); 1801 DBUF_VERIFY(db); 1802 db->db_buf = NULL; 1803 dbuf_evict(db); 1804 } else { 1805 mutex_exit(&db->db_mtx); 1806 dbuf_destroy(db); 1807 } 1808 return (0); 1809 } 1810 1811 static void 1812 dbuf_destroy(dmu_buf_impl_t *db) 1813 { 1814 ASSERT(refcount_is_zero(&db->db_holds)); 1815 1816 if (db->db_blkid != DMU_BONUS_BLKID) { 1817 /* 1818 * If this dbuf is still on the dn_dbufs list, 1819 * remove it from that list. 1820 */ 1821 if (db->db_dnode_handle != NULL) { 1822 dnode_t *dn; 1823 1824 DB_DNODE_ENTER(db); 1825 dn = DB_DNODE(db); 1826 mutex_enter(&dn->dn_dbufs_mtx); 1827 avl_remove(&dn->dn_dbufs, db); 1828 atomic_dec_32(&dn->dn_dbufs_count); 1829 mutex_exit(&dn->dn_dbufs_mtx); 1830 DB_DNODE_EXIT(db); 1831 /* 1832 * Decrementing the dbuf count means that the hold 1833 * corresponding to the removed dbuf is no longer 1834 * discounted in dnode_move(), so the dnode cannot be 1835 * moved until after we release the hold. 1836 */ 1837 dnode_rele(dn, db); 1838 db->db_dnode_handle = NULL; 1839 } 1840 dbuf_hash_remove(db); 1841 } 1842 db->db_parent = NULL; 1843 db->db_buf = NULL; 1844 1845 ASSERT(db->db.db_data == NULL); 1846 ASSERT(db->db_hash_next == NULL); 1847 ASSERT(db->db_blkptr == NULL); 1848 ASSERT(db->db_data_pending == NULL); 1849 1850 kmem_cache_free(dbuf_cache, db); 1851 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1852 } 1853 1854 void 1855 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio) 1856 { 1857 dmu_buf_impl_t *db = NULL; 1858 blkptr_t *bp = NULL; 1859 1860 ASSERT(blkid != DMU_BONUS_BLKID); 1861 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1862 1863 if (dnode_block_freed(dn, blkid)) 1864 return; 1865 1866 /* dbuf_find() returns with db_mtx held */ 1867 if (db = dbuf_find(dn, 0, blkid)) { 1868 /* 1869 * This dbuf is already in the cache. We assume that 1870 * it is already CACHED, or else about to be either 1871 * read or filled. 1872 */ 1873 mutex_exit(&db->db_mtx); 1874 return; 1875 } 1876 1877 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1878 if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 1879 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1880 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1881 zbookmark_phys_t zb; 1882 1883 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1884 dn->dn_object, 0, blkid); 1885 1886 (void) arc_read(NULL, dn->dn_objset->os_spa, 1887 bp, NULL, NULL, prio, 1888 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1889 &aflags, &zb); 1890 } 1891 if (db) 1892 dbuf_rele(db, NULL); 1893 } 1894 } 1895 1896 /* 1897 * Returns with db_holds incremented, and db_mtx not held. 1898 * Note: dn_struct_rwlock must be held. 1899 */ 1900 int 1901 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1902 void *tag, dmu_buf_impl_t **dbp) 1903 { 1904 dmu_buf_impl_t *db, *parent = NULL; 1905 1906 ASSERT(blkid != DMU_BONUS_BLKID); 1907 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1908 ASSERT3U(dn->dn_nlevels, >, level); 1909 1910 *dbp = NULL; 1911 top: 1912 /* dbuf_find() returns with db_mtx held */ 1913 db = dbuf_find(dn, level, blkid); 1914 1915 if (db == NULL) { 1916 blkptr_t *bp = NULL; 1917 int err; 1918 1919 ASSERT3P(parent, ==, NULL); 1920 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1921 if (fail_sparse) { 1922 if (err == 0 && bp && BP_IS_HOLE(bp)) 1923 err = SET_ERROR(ENOENT); 1924 if (err) { 1925 if (parent) 1926 dbuf_rele(parent, NULL); 1927 return (err); 1928 } 1929 } 1930 if (err && err != ENOENT) 1931 return (err); 1932 db = dbuf_create(dn, level, blkid, parent, bp); 1933 } 1934 1935 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1936 arc_buf_add_ref(db->db_buf, db); 1937 if (db->db_buf->b_data == NULL) { 1938 dbuf_clear(db); 1939 if (parent) { 1940 dbuf_rele(parent, NULL); 1941 parent = NULL; 1942 } 1943 goto top; 1944 } 1945 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1946 } 1947 1948 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1949 1950 /* 1951 * If this buffer is currently syncing out, and we are are 1952 * still referencing it from db_data, we need to make a copy 1953 * of it in case we decide we want to dirty it again in this txg. 1954 */ 1955 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1956 dn->dn_object != DMU_META_DNODE_OBJECT && 1957 db->db_state == DB_CACHED && db->db_data_pending) { 1958 dbuf_dirty_record_t *dr = db->db_data_pending; 1959 1960 if (dr->dt.dl.dr_data == db->db_buf) { 1961 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1962 1963 dbuf_set_data(db, 1964 arc_buf_alloc(dn->dn_objset->os_spa, 1965 db->db.db_size, db, type)); 1966 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1967 db->db.db_size); 1968 } 1969 } 1970 1971 (void) refcount_add(&db->db_holds, tag); 1972 dbuf_update_data(db); 1973 DBUF_VERIFY(db); 1974 mutex_exit(&db->db_mtx); 1975 1976 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1977 if (parent) 1978 dbuf_rele(parent, NULL); 1979 1980 ASSERT3P(DB_DNODE(db), ==, dn); 1981 ASSERT3U(db->db_blkid, ==, blkid); 1982 ASSERT3U(db->db_level, ==, level); 1983 *dbp = db; 1984 1985 return (0); 1986 } 1987 1988 dmu_buf_impl_t * 1989 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1990 { 1991 dmu_buf_impl_t *db; 1992 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1993 return (err ? NULL : db); 1994 } 1995 1996 dmu_buf_impl_t * 1997 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1998 { 1999 dmu_buf_impl_t *db; 2000 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 2001 return (err ? NULL : db); 2002 } 2003 2004 void 2005 dbuf_create_bonus(dnode_t *dn) 2006 { 2007 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2008 2009 ASSERT(dn->dn_bonus == NULL); 2010 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2011 } 2012 2013 int 2014 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2015 { 2016 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2017 dnode_t *dn; 2018 2019 if (db->db_blkid != DMU_SPILL_BLKID) 2020 return (SET_ERROR(ENOTSUP)); 2021 if (blksz == 0) 2022 blksz = SPA_MINBLOCKSIZE; 2023 if (blksz > SPA_MAXBLOCKSIZE) 2024 blksz = SPA_MAXBLOCKSIZE; 2025 else 2026 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2027 2028 DB_DNODE_ENTER(db); 2029 dn = DB_DNODE(db); 2030 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2031 dbuf_new_size(db, blksz, tx); 2032 rw_exit(&dn->dn_struct_rwlock); 2033 DB_DNODE_EXIT(db); 2034 2035 return (0); 2036 } 2037 2038 void 2039 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2040 { 2041 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2042 } 2043 2044 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2045 void 2046 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2047 { 2048 int64_t holds = refcount_add(&db->db_holds, tag); 2049 ASSERT(holds > 1); 2050 } 2051 2052 /* 2053 * If you call dbuf_rele() you had better not be referencing the dnode handle 2054 * unless you have some other direct or indirect hold on the dnode. (An indirect 2055 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2056 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2057 * dnode's parent dbuf evicting its dnode handles. 2058 */ 2059 void 2060 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2061 { 2062 mutex_enter(&db->db_mtx); 2063 dbuf_rele_and_unlock(db, tag); 2064 } 2065 2066 void 2067 dmu_buf_rele(dmu_buf_t *db, void *tag) 2068 { 2069 dbuf_rele((dmu_buf_impl_t *)db, tag); 2070 } 2071 2072 /* 2073 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2074 * db_dirtycnt and db_holds to be updated atomically. 2075 */ 2076 void 2077 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2078 { 2079 int64_t holds; 2080 2081 ASSERT(MUTEX_HELD(&db->db_mtx)); 2082 DBUF_VERIFY(db); 2083 2084 /* 2085 * Remove the reference to the dbuf before removing its hold on the 2086 * dnode so we can guarantee in dnode_move() that a referenced bonus 2087 * buffer has a corresponding dnode hold. 2088 */ 2089 holds = refcount_remove(&db->db_holds, tag); 2090 ASSERT(holds >= 0); 2091 2092 /* 2093 * We can't freeze indirects if there is a possibility that they 2094 * may be modified in the current syncing context. 2095 */ 2096 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2097 arc_buf_freeze(db->db_buf); 2098 2099 if (holds == db->db_dirtycnt && 2100 db->db_level == 0 && db->db_immediate_evict) 2101 dbuf_evict_user(db); 2102 2103 if (holds == 0) { 2104 if (db->db_blkid == DMU_BONUS_BLKID) { 2105 mutex_exit(&db->db_mtx); 2106 2107 /* 2108 * If the dnode moves here, we cannot cross this barrier 2109 * until the move completes. 2110 */ 2111 DB_DNODE_ENTER(db); 2112 atomic_dec_32(&DB_DNODE(db)->dn_dbufs_count); 2113 DB_DNODE_EXIT(db); 2114 /* 2115 * The bonus buffer's dnode hold is no longer discounted 2116 * in dnode_move(). The dnode cannot move until after 2117 * the dnode_rele(). 2118 */ 2119 dnode_rele(DB_DNODE(db), db); 2120 } else if (db->db_buf == NULL) { 2121 /* 2122 * This is a special case: we never associated this 2123 * dbuf with any data allocated from the ARC. 2124 */ 2125 ASSERT(db->db_state == DB_UNCACHED || 2126 db->db_state == DB_NOFILL); 2127 dbuf_evict(db); 2128 } else if (arc_released(db->db_buf)) { 2129 arc_buf_t *buf = db->db_buf; 2130 /* 2131 * This dbuf has anonymous data associated with it. 2132 */ 2133 dbuf_set_data(db, NULL); 2134 VERIFY(arc_buf_remove_ref(buf, db)); 2135 dbuf_evict(db); 2136 } else { 2137 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2138 2139 /* 2140 * A dbuf will be eligible for eviction if either the 2141 * 'primarycache' property is set or a duplicate 2142 * copy of this buffer is already cached in the arc. 2143 * 2144 * In the case of the 'primarycache' a buffer 2145 * is considered for eviction if it matches the 2146 * criteria set in the property. 2147 * 2148 * To decide if our buffer is considered a 2149 * duplicate, we must call into the arc to determine 2150 * if multiple buffers are referencing the same 2151 * block on-disk. If so, then we simply evict 2152 * ourselves. 2153 */ 2154 if (!DBUF_IS_CACHEABLE(db)) { 2155 if (db->db_blkptr != NULL && 2156 !BP_IS_HOLE(db->db_blkptr) && 2157 !BP_IS_EMBEDDED(db->db_blkptr)) { 2158 spa_t *spa = 2159 dmu_objset_spa(db->db_objset); 2160 blkptr_t bp = *db->db_blkptr; 2161 dbuf_clear(db); 2162 arc_freed(spa, &bp); 2163 } else { 2164 dbuf_clear(db); 2165 } 2166 } else if (arc_buf_eviction_needed(db->db_buf)) { 2167 dbuf_clear(db); 2168 } else { 2169 mutex_exit(&db->db_mtx); 2170 } 2171 } 2172 } else { 2173 mutex_exit(&db->db_mtx); 2174 } 2175 } 2176 2177 #pragma weak dmu_buf_refcount = dbuf_refcount 2178 uint64_t 2179 dbuf_refcount(dmu_buf_impl_t *db) 2180 { 2181 return (refcount_count(&db->db_holds)); 2182 } 2183 2184 void * 2185 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2186 dmu_buf_evict_func_t *evict_func) 2187 { 2188 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2189 user_data_ptr_ptr, evict_func)); 2190 } 2191 2192 void * 2193 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2194 dmu_buf_evict_func_t *evict_func) 2195 { 2196 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2197 2198 db->db_immediate_evict = TRUE; 2199 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2200 user_data_ptr_ptr, evict_func)); 2201 } 2202 2203 void * 2204 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2205 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2206 { 2207 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2208 ASSERT(db->db_level == 0); 2209 2210 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2211 2212 mutex_enter(&db->db_mtx); 2213 2214 if (db->db_user_ptr == old_user_ptr) { 2215 db->db_user_ptr = user_ptr; 2216 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2217 db->db_evict_func = evict_func; 2218 2219 dbuf_update_data(db); 2220 } else { 2221 old_user_ptr = db->db_user_ptr; 2222 } 2223 2224 mutex_exit(&db->db_mtx); 2225 return (old_user_ptr); 2226 } 2227 2228 void * 2229 dmu_buf_get_user(dmu_buf_t *db_fake) 2230 { 2231 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2232 ASSERT(!refcount_is_zero(&db->db_holds)); 2233 2234 return (db->db_user_ptr); 2235 } 2236 2237 boolean_t 2238 dmu_buf_freeable(dmu_buf_t *dbuf) 2239 { 2240 boolean_t res = B_FALSE; 2241 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2242 2243 if (db->db_blkptr) 2244 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2245 db->db_blkptr, db->db_blkptr->blk_birth); 2246 2247 return (res); 2248 } 2249 2250 blkptr_t * 2251 dmu_buf_get_blkptr(dmu_buf_t *db) 2252 { 2253 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2254 return (dbi->db_blkptr); 2255 } 2256 2257 static void 2258 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2259 { 2260 /* ASSERT(dmu_tx_is_syncing(tx) */ 2261 ASSERT(MUTEX_HELD(&db->db_mtx)); 2262 2263 if (db->db_blkptr != NULL) 2264 return; 2265 2266 if (db->db_blkid == DMU_SPILL_BLKID) { 2267 db->db_blkptr = &dn->dn_phys->dn_spill; 2268 BP_ZERO(db->db_blkptr); 2269 return; 2270 } 2271 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2272 /* 2273 * This buffer was allocated at a time when there was 2274 * no available blkptrs from the dnode, or it was 2275 * inappropriate to hook it in (i.e., nlevels mis-match). 2276 */ 2277 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2278 ASSERT(db->db_parent == NULL); 2279 db->db_parent = dn->dn_dbuf; 2280 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2281 DBUF_VERIFY(db); 2282 } else { 2283 dmu_buf_impl_t *parent = db->db_parent; 2284 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2285 2286 ASSERT(dn->dn_phys->dn_nlevels > 1); 2287 if (parent == NULL) { 2288 mutex_exit(&db->db_mtx); 2289 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2290 (void) dbuf_hold_impl(dn, db->db_level+1, 2291 db->db_blkid >> epbs, FALSE, db, &parent); 2292 rw_exit(&dn->dn_struct_rwlock); 2293 mutex_enter(&db->db_mtx); 2294 db->db_parent = parent; 2295 } 2296 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2297 (db->db_blkid & ((1ULL << epbs) - 1)); 2298 DBUF_VERIFY(db); 2299 } 2300 } 2301 2302 static void 2303 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2304 { 2305 dmu_buf_impl_t *db = dr->dr_dbuf; 2306 dnode_t *dn; 2307 zio_t *zio; 2308 2309 ASSERT(dmu_tx_is_syncing(tx)); 2310 2311 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2312 2313 mutex_enter(&db->db_mtx); 2314 2315 ASSERT(db->db_level > 0); 2316 DBUF_VERIFY(db); 2317 2318 /* Read the block if it hasn't been read yet. */ 2319 if (db->db_buf == NULL) { 2320 mutex_exit(&db->db_mtx); 2321 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2322 mutex_enter(&db->db_mtx); 2323 } 2324 ASSERT3U(db->db_state, ==, DB_CACHED); 2325 ASSERT(db->db_buf != NULL); 2326 2327 DB_DNODE_ENTER(db); 2328 dn = DB_DNODE(db); 2329 /* Indirect block size must match what the dnode thinks it is. */ 2330 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2331 dbuf_check_blkptr(dn, db); 2332 DB_DNODE_EXIT(db); 2333 2334 /* Provide the pending dirty record to child dbufs */ 2335 db->db_data_pending = dr; 2336 2337 mutex_exit(&db->db_mtx); 2338 dbuf_write(dr, db->db_buf, tx); 2339 2340 zio = dr->dr_zio; 2341 mutex_enter(&dr->dt.di.dr_mtx); 2342 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2343 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2344 mutex_exit(&dr->dt.di.dr_mtx); 2345 zio_nowait(zio); 2346 } 2347 2348 static void 2349 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2350 { 2351 arc_buf_t **datap = &dr->dt.dl.dr_data; 2352 dmu_buf_impl_t *db = dr->dr_dbuf; 2353 dnode_t *dn; 2354 objset_t *os; 2355 uint64_t txg = tx->tx_txg; 2356 2357 ASSERT(dmu_tx_is_syncing(tx)); 2358 2359 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2360 2361 mutex_enter(&db->db_mtx); 2362 /* 2363 * To be synced, we must be dirtied. But we 2364 * might have been freed after the dirty. 2365 */ 2366 if (db->db_state == DB_UNCACHED) { 2367 /* This buffer has been freed since it was dirtied */ 2368 ASSERT(db->db.db_data == NULL); 2369 } else if (db->db_state == DB_FILL) { 2370 /* This buffer was freed and is now being re-filled */ 2371 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2372 } else { 2373 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2374 } 2375 DBUF_VERIFY(db); 2376 2377 DB_DNODE_ENTER(db); 2378 dn = DB_DNODE(db); 2379 2380 if (db->db_blkid == DMU_SPILL_BLKID) { 2381 mutex_enter(&dn->dn_mtx); 2382 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2383 mutex_exit(&dn->dn_mtx); 2384 } 2385 2386 /* 2387 * If this is a bonus buffer, simply copy the bonus data into the 2388 * dnode. It will be written out when the dnode is synced (and it 2389 * will be synced, since it must have been dirty for dbuf_sync to 2390 * be called). 2391 */ 2392 if (db->db_blkid == DMU_BONUS_BLKID) { 2393 dbuf_dirty_record_t **drp; 2394 2395 ASSERT(*datap != NULL); 2396 ASSERT0(db->db_level); 2397 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2398 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2399 DB_DNODE_EXIT(db); 2400 2401 if (*datap != db->db.db_data) { 2402 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2403 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2404 } 2405 db->db_data_pending = NULL; 2406 drp = &db->db_last_dirty; 2407 while (*drp != dr) 2408 drp = &(*drp)->dr_next; 2409 ASSERT(dr->dr_next == NULL); 2410 ASSERT(dr->dr_dbuf == db); 2411 *drp = dr->dr_next; 2412 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2413 ASSERT(db->db_dirtycnt > 0); 2414 db->db_dirtycnt -= 1; 2415 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2416 return; 2417 } 2418 2419 os = dn->dn_objset; 2420 2421 /* 2422 * This function may have dropped the db_mtx lock allowing a dmu_sync 2423 * operation to sneak in. As a result, we need to ensure that we 2424 * don't check the dr_override_state until we have returned from 2425 * dbuf_check_blkptr. 2426 */ 2427 dbuf_check_blkptr(dn, db); 2428 2429 /* 2430 * If this buffer is in the middle of an immediate write, 2431 * wait for the synchronous IO to complete. 2432 */ 2433 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2434 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2435 cv_wait(&db->db_changed, &db->db_mtx); 2436 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2437 } 2438 2439 if (db->db_state != DB_NOFILL && 2440 dn->dn_object != DMU_META_DNODE_OBJECT && 2441 refcount_count(&db->db_holds) > 1 && 2442 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2443 *datap == db->db_buf) { 2444 /* 2445 * If this buffer is currently "in use" (i.e., there 2446 * are active holds and db_data still references it), 2447 * then make a copy before we start the write so that 2448 * any modifications from the open txg will not leak 2449 * into this write. 2450 * 2451 * NOTE: this copy does not need to be made for 2452 * objects only modified in the syncing context (e.g. 2453 * DNONE_DNODE blocks). 2454 */ 2455 int blksz = arc_buf_size(*datap); 2456 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2457 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2458 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2459 } 2460 db->db_data_pending = dr; 2461 2462 mutex_exit(&db->db_mtx); 2463 2464 dbuf_write(dr, *datap, tx); 2465 2466 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2467 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2468 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2469 DB_DNODE_EXIT(db); 2470 } else { 2471 /* 2472 * Although zio_nowait() does not "wait for an IO", it does 2473 * initiate the IO. If this is an empty write it seems plausible 2474 * that the IO could actually be completed before the nowait 2475 * returns. We need to DB_DNODE_EXIT() first in case 2476 * zio_nowait() invalidates the dbuf. 2477 */ 2478 DB_DNODE_EXIT(db); 2479 zio_nowait(dr->dr_zio); 2480 } 2481 } 2482 2483 void 2484 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2485 { 2486 dbuf_dirty_record_t *dr; 2487 2488 while (dr = list_head(list)) { 2489 if (dr->dr_zio != NULL) { 2490 /* 2491 * If we find an already initialized zio then we 2492 * are processing the meta-dnode, and we have finished. 2493 * The dbufs for all dnodes are put back on the list 2494 * during processing, so that we can zio_wait() 2495 * these IOs after initiating all child IOs. 2496 */ 2497 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2498 DMU_META_DNODE_OBJECT); 2499 break; 2500 } 2501 list_remove(list, dr); 2502 if (dr->dr_dbuf->db_level > 0) 2503 dbuf_sync_indirect(dr, tx); 2504 else 2505 dbuf_sync_leaf(dr, tx); 2506 } 2507 } 2508 2509 /* ARGSUSED */ 2510 static void 2511 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2512 { 2513 dmu_buf_impl_t *db = vdb; 2514 dnode_t *dn; 2515 blkptr_t *bp = zio->io_bp; 2516 blkptr_t *bp_orig = &zio->io_bp_orig; 2517 spa_t *spa = zio->io_spa; 2518 int64_t delta; 2519 uint64_t fill = 0; 2520 int i; 2521 2522 ASSERT3P(db->db_blkptr, ==, bp); 2523 2524 DB_DNODE_ENTER(db); 2525 dn = DB_DNODE(db); 2526 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2527 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2528 zio->io_prev_space_delta = delta; 2529 2530 if (bp->blk_birth != 0) { 2531 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2532 BP_GET_TYPE(bp) == dn->dn_type) || 2533 (db->db_blkid == DMU_SPILL_BLKID && 2534 BP_GET_TYPE(bp) == dn->dn_bonustype) || 2535 BP_IS_EMBEDDED(bp)); 2536 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2537 } 2538 2539 mutex_enter(&db->db_mtx); 2540 2541 #ifdef ZFS_DEBUG 2542 if (db->db_blkid == DMU_SPILL_BLKID) { 2543 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2544 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2545 db->db_blkptr == &dn->dn_phys->dn_spill); 2546 } 2547 #endif 2548 2549 if (db->db_level == 0) { 2550 mutex_enter(&dn->dn_mtx); 2551 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2552 db->db_blkid != DMU_SPILL_BLKID) 2553 dn->dn_phys->dn_maxblkid = db->db_blkid; 2554 mutex_exit(&dn->dn_mtx); 2555 2556 if (dn->dn_type == DMU_OT_DNODE) { 2557 dnode_phys_t *dnp = db->db.db_data; 2558 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2559 i--, dnp++) { 2560 if (dnp->dn_type != DMU_OT_NONE) 2561 fill++; 2562 } 2563 } else { 2564 if (BP_IS_HOLE(bp)) { 2565 fill = 0; 2566 } else { 2567 fill = 1; 2568 } 2569 } 2570 } else { 2571 blkptr_t *ibp = db->db.db_data; 2572 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2573 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2574 if (BP_IS_HOLE(ibp)) 2575 continue; 2576 fill += BP_GET_FILL(ibp); 2577 } 2578 } 2579 DB_DNODE_EXIT(db); 2580 2581 if (!BP_IS_EMBEDDED(bp)) 2582 bp->blk_fill = fill; 2583 2584 mutex_exit(&db->db_mtx); 2585 } 2586 2587 /* 2588 * The SPA will call this callback several times for each zio - once 2589 * for every physical child i/o (zio->io_phys_children times). This 2590 * allows the DMU to monitor the progress of each logical i/o. For example, 2591 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 2592 * block. There may be a long delay before all copies/fragments are completed, 2593 * so this callback allows us to retire dirty space gradually, as the physical 2594 * i/os complete. 2595 */ 2596 /* ARGSUSED */ 2597 static void 2598 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 2599 { 2600 dmu_buf_impl_t *db = arg; 2601 objset_t *os = db->db_objset; 2602 dsl_pool_t *dp = dmu_objset_pool(os); 2603 dbuf_dirty_record_t *dr; 2604 int delta = 0; 2605 2606 dr = db->db_data_pending; 2607 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 2608 2609 /* 2610 * The callback will be called io_phys_children times. Retire one 2611 * portion of our dirty space each time we are called. Any rounding 2612 * error will be cleaned up by dsl_pool_sync()'s call to 2613 * dsl_pool_undirty_space(). 2614 */ 2615 delta = dr->dr_accounted / zio->io_phys_children; 2616 dsl_pool_undirty_space(dp, delta, zio->io_txg); 2617 } 2618 2619 /* ARGSUSED */ 2620 static void 2621 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2622 { 2623 dmu_buf_impl_t *db = vdb; 2624 blkptr_t *bp_orig = &zio->io_bp_orig; 2625 blkptr_t *bp = db->db_blkptr; 2626 objset_t *os = db->db_objset; 2627 dmu_tx_t *tx = os->os_synctx; 2628 dbuf_dirty_record_t **drp, *dr; 2629 2630 ASSERT0(zio->io_error); 2631 ASSERT(db->db_blkptr == bp); 2632 2633 /* 2634 * For nopwrites and rewrites we ensure that the bp matches our 2635 * original and bypass all the accounting. 2636 */ 2637 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2638 ASSERT(BP_EQUAL(bp, bp_orig)); 2639 } else { 2640 dsl_dataset_t *ds = os->os_dsl_dataset; 2641 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2642 dsl_dataset_block_born(ds, bp, tx); 2643 } 2644 2645 mutex_enter(&db->db_mtx); 2646 2647 DBUF_VERIFY(db); 2648 2649 drp = &db->db_last_dirty; 2650 while ((dr = *drp) != db->db_data_pending) 2651 drp = &dr->dr_next; 2652 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2653 ASSERT(dr->dr_dbuf == db); 2654 ASSERT(dr->dr_next == NULL); 2655 *drp = dr->dr_next; 2656 2657 #ifdef ZFS_DEBUG 2658 if (db->db_blkid == DMU_SPILL_BLKID) { 2659 dnode_t *dn; 2660 2661 DB_DNODE_ENTER(db); 2662 dn = DB_DNODE(db); 2663 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2664 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2665 db->db_blkptr == &dn->dn_phys->dn_spill); 2666 DB_DNODE_EXIT(db); 2667 } 2668 #endif 2669 2670 if (db->db_level == 0) { 2671 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2672 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2673 if (db->db_state != DB_NOFILL) { 2674 if (dr->dt.dl.dr_data != db->db_buf) 2675 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2676 db)); 2677 else if (!arc_released(db->db_buf)) 2678 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2679 } 2680 } else { 2681 dnode_t *dn; 2682 2683 DB_DNODE_ENTER(db); 2684 dn = DB_DNODE(db); 2685 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2686 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 2687 if (!BP_IS_HOLE(db->db_blkptr)) { 2688 int epbs = 2689 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2690 ASSERT3U(db->db_blkid, <=, 2691 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 2692 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2693 db->db.db_size); 2694 if (!arc_released(db->db_buf)) 2695 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2696 } 2697 DB_DNODE_EXIT(db); 2698 mutex_destroy(&dr->dt.di.dr_mtx); 2699 list_destroy(&dr->dt.di.dr_children); 2700 } 2701 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2702 2703 cv_broadcast(&db->db_changed); 2704 ASSERT(db->db_dirtycnt > 0); 2705 db->db_dirtycnt -= 1; 2706 db->db_data_pending = NULL; 2707 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 2708 } 2709 2710 static void 2711 dbuf_write_nofill_ready(zio_t *zio) 2712 { 2713 dbuf_write_ready(zio, NULL, zio->io_private); 2714 } 2715 2716 static void 2717 dbuf_write_nofill_done(zio_t *zio) 2718 { 2719 dbuf_write_done(zio, NULL, zio->io_private); 2720 } 2721 2722 static void 2723 dbuf_write_override_ready(zio_t *zio) 2724 { 2725 dbuf_dirty_record_t *dr = zio->io_private; 2726 dmu_buf_impl_t *db = dr->dr_dbuf; 2727 2728 dbuf_write_ready(zio, NULL, db); 2729 } 2730 2731 static void 2732 dbuf_write_override_done(zio_t *zio) 2733 { 2734 dbuf_dirty_record_t *dr = zio->io_private; 2735 dmu_buf_impl_t *db = dr->dr_dbuf; 2736 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2737 2738 mutex_enter(&db->db_mtx); 2739 if (!BP_EQUAL(zio->io_bp, obp)) { 2740 if (!BP_IS_HOLE(obp)) 2741 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2742 arc_release(dr->dt.dl.dr_data, db); 2743 } 2744 mutex_exit(&db->db_mtx); 2745 2746 dbuf_write_done(zio, NULL, db); 2747 } 2748 2749 /* Issue I/O to commit a dirty buffer to disk. */ 2750 static void 2751 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2752 { 2753 dmu_buf_impl_t *db = dr->dr_dbuf; 2754 dnode_t *dn; 2755 objset_t *os; 2756 dmu_buf_impl_t *parent = db->db_parent; 2757 uint64_t txg = tx->tx_txg; 2758 zbookmark_phys_t zb; 2759 zio_prop_t zp; 2760 zio_t *zio; 2761 int wp_flag = 0; 2762 2763 DB_DNODE_ENTER(db); 2764 dn = DB_DNODE(db); 2765 os = dn->dn_objset; 2766 2767 if (db->db_state != DB_NOFILL) { 2768 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2769 /* 2770 * Private object buffers are released here rather 2771 * than in dbuf_dirty() since they are only modified 2772 * in the syncing context and we don't want the 2773 * overhead of making multiple copies of the data. 2774 */ 2775 if (BP_IS_HOLE(db->db_blkptr)) { 2776 arc_buf_thaw(data); 2777 } else { 2778 dbuf_release_bp(db); 2779 } 2780 } 2781 } 2782 2783 if (parent != dn->dn_dbuf) { 2784 /* Our parent is an indirect block. */ 2785 /* We have a dirty parent that has been scheduled for write. */ 2786 ASSERT(parent && parent->db_data_pending); 2787 /* Our parent's buffer is one level closer to the dnode. */ 2788 ASSERT(db->db_level == parent->db_level-1); 2789 /* 2790 * We're about to modify our parent's db_data by modifying 2791 * our block pointer, so the parent must be released. 2792 */ 2793 ASSERT(arc_released(parent->db_buf)); 2794 zio = parent->db_data_pending->dr_zio; 2795 } else { 2796 /* Our parent is the dnode itself. */ 2797 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2798 db->db_blkid != DMU_SPILL_BLKID) || 2799 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2800 if (db->db_blkid != DMU_SPILL_BLKID) 2801 ASSERT3P(db->db_blkptr, ==, 2802 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2803 zio = dn->dn_zio; 2804 } 2805 2806 ASSERT(db->db_level == 0 || data == db->db_buf); 2807 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2808 ASSERT(zio); 2809 2810 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2811 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2812 db->db.db_object, db->db_level, db->db_blkid); 2813 2814 if (db->db_blkid == DMU_SPILL_BLKID) 2815 wp_flag = WP_SPILL; 2816 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2817 2818 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2819 DB_DNODE_EXIT(db); 2820 2821 if (db->db_level == 0 && 2822 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2823 /* 2824 * The BP for this block has been provided by open context 2825 * (by dmu_sync() or dmu_buf_write_embedded()). 2826 */ 2827 void *contents = (data != NULL) ? data->b_data : NULL; 2828 2829 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2830 db->db_blkptr, contents, db->db.db_size, &zp, 2831 dbuf_write_override_ready, NULL, dbuf_write_override_done, 2832 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2833 mutex_enter(&db->db_mtx); 2834 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2835 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2836 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2837 mutex_exit(&db->db_mtx); 2838 } else if (db->db_state == DB_NOFILL) { 2839 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 2840 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 2841 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2842 db->db_blkptr, NULL, db->db.db_size, &zp, 2843 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, 2844 ZIO_PRIORITY_ASYNC_WRITE, 2845 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2846 } else { 2847 ASSERT(arc_released(data)); 2848 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2849 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), 2850 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, 2851 dbuf_write_physdone, dbuf_write_done, db, 2852 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2853 } 2854 } 2855