xref: /titanic_50/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision 3e95bd4ab92abca814bd28e854607d1975c7dc88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/buf.h>
31 #include <sys/conf.h>
32 #include <sys/cred.h>
33 #include <sys/kmem.h>
34 #include <sys/sysmacros.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/debug.h>
38 #include <sys/errno.h>
39 #include <sys/time.h>
40 #include <sys/file.h>
41 #include <sys/user.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/strsun.h>
45 #include <sys/sunddi.h>
46 #include <sys/esunddi.h>
47 #include <sys/flock.h>
48 #include <sys/modctl.h>
49 #include <sys/cmn_err.h>
50 #include <sys/vmsystm.h>
51 #include <sys/policy.h>
52 
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 
56 #include <sys/isa_defs.h>
57 #include <sys/inttypes.h>
58 #include <sys/systm.h>
59 #include <sys/cpuvar.h>
60 #include <sys/filio.h>
61 #include <sys/sendfile.h>
62 #include <sys/ddi.h>
63 #include <vm/seg.h>
64 #include <vm/seg_map.h>
65 #include <vm/seg_kpm.h>
66 
67 #include <fs/sockfs/nl7c.h>
68 #include <fs/sockfs/sockcommon.h>
69 #include <fs/sockfs/sockfilter_impl.h>
70 #include <fs/sockfs/socktpi.h>
71 
72 #ifdef SOCK_TEST
73 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
74 #else
75 #define	do_useracc	1
76 #endif /* SOCK_TEST */
77 
78 extern int 	xnet_truncate_print;
79 
80 extern void	nl7c_init(void);
81 extern int	sockfs_defer_nl7c_init;
82 
83 /*
84  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
85  *	 as there isn't a formal definition of IOV_MAX ???
86  */
87 #define	MSG_MAXIOVLEN	16
88 
89 /*
90  * Kernel component of socket creation.
91  *
92  * The socket library determines which version number to use.
93  * First the library calls this with a NULL devpath. If this fails
94  * to find a transport (using solookup) the library will look in /etc/netconfig
95  * for the appropriate transport. If one is found it will pass in the
96  * devpath for the kernel to use.
97  */
98 int
99 so_socket(int family, int type, int protocol, char *devpath, int version)
100 {
101 	struct sonode *so;
102 	vnode_t *vp;
103 	struct file *fp;
104 	int fd;
105 	int error;
106 
107 	if (devpath != NULL) {
108 		char *buf;
109 		size_t kdevpathlen = 0;
110 
111 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
112 		if ((error = copyinstr(devpath, buf,
113 		    MAXPATHLEN, &kdevpathlen)) != 0) {
114 			kmem_free(buf, MAXPATHLEN);
115 			return (set_errno(error));
116 		}
117 		so = socket_create(family, type, protocol, buf, NULL,
118 		    SOCKET_SLEEP, version, CRED(), &error);
119 		kmem_free(buf, MAXPATHLEN);
120 	} else {
121 		so = socket_create(family, type, protocol, NULL, NULL,
122 		    SOCKET_SLEEP, version, CRED(), &error);
123 	}
124 	if (so == NULL)
125 		return (set_errno(error));
126 
127 	/* Allocate a file descriptor for the socket */
128 	vp = SOTOV(so);
129 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
130 		(void) socket_close(so, 0, CRED());
131 		socket_destroy(so);
132 		return (set_errno(error));
133 	}
134 
135 	/*
136 	 * Now fill in the entries that falloc reserved
137 	 */
138 	mutex_exit(&fp->f_tlock);
139 	setf(fd, fp);
140 
141 	return (fd);
142 }
143 
144 /*
145  * Map from a file descriptor to a socket node.
146  * Returns with the file descriptor held i.e. the caller has to
147  * use releasef when done with the file descriptor.
148  */
149 struct sonode *
150 getsonode(int sock, int *errorp, file_t **fpp)
151 {
152 	file_t *fp;
153 	vnode_t *vp;
154 	struct sonode *so;
155 
156 	if ((fp = getf(sock)) == NULL) {
157 		*errorp = EBADF;
158 		eprintline(*errorp);
159 		return (NULL);
160 	}
161 	vp = fp->f_vnode;
162 	/* Check if it is a socket */
163 	if (vp->v_type != VSOCK) {
164 		releasef(sock);
165 		*errorp = ENOTSOCK;
166 		eprintline(*errorp);
167 		return (NULL);
168 	}
169 	/*
170 	 * Use the stream head to find the real socket vnode.
171 	 * This is needed when namefs sits above sockfs.
172 	 */
173 	if (vp->v_stream) {
174 		ASSERT(vp->v_stream->sd_vnode);
175 		vp = vp->v_stream->sd_vnode;
176 
177 		so = VTOSO(vp);
178 		if (so->so_version == SOV_STREAM) {
179 			releasef(sock);
180 			*errorp = ENOTSOCK;
181 			eprintsoline(so, *errorp);
182 			return (NULL);
183 		}
184 	} else {
185 		so = VTOSO(vp);
186 	}
187 	if (fpp)
188 		*fpp = fp;
189 	return (so);
190 }
191 
192 /*
193  * Allocate and copyin a sockaddr.
194  * Ensures NULL termination for AF_UNIX addresses by extending them
195  * with one NULL byte if need be. Verifies that the length is not
196  * excessive to prevent an application from consuming all of kernel
197  * memory. Returns NULL when an error occurred.
198  */
199 static struct sockaddr *
200 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
201 	    int *errorp)
202 {
203 	char	*faddr;
204 	size_t	namelen = (size_t)*namelenp;
205 
206 	ASSERT(namelen != 0);
207 	if (namelen > SO_MAXARGSIZE) {
208 		*errorp = EINVAL;
209 		eprintsoline(so, *errorp);
210 		return (NULL);
211 	}
212 
213 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
214 	if (copyin(name, faddr, namelen)) {
215 		kmem_free(faddr, namelen);
216 		*errorp = EFAULT;
217 		eprintsoline(so, *errorp);
218 		return (NULL);
219 	}
220 
221 	/*
222 	 * Add space for NULL termination if needed.
223 	 * Do a quick check if the last byte is NUL.
224 	 */
225 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
226 		/* Check if there is any NULL termination */
227 		size_t	i;
228 		int foundnull = 0;
229 
230 		for (i = sizeof (name->sa_family); i < namelen; i++) {
231 			if (faddr[i] == '\0') {
232 				foundnull = 1;
233 				break;
234 			}
235 		}
236 		if (!foundnull) {
237 			/* Add extra byte for NUL padding */
238 			char *nfaddr;
239 
240 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
241 			bcopy(faddr, nfaddr, namelen);
242 			kmem_free(faddr, namelen);
243 
244 			/* NUL terminate */
245 			nfaddr[namelen] = '\0';
246 			namelen++;
247 			ASSERT((socklen_t)namelen == namelen);
248 			*namelenp = (socklen_t)namelen;
249 			faddr = nfaddr;
250 		}
251 	}
252 	return ((struct sockaddr *)faddr);
253 }
254 
255 /*
256  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
257  */
258 static int
259 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
260 		void *kaddr, socklen_t klen)
261 {
262 	if (uaddr != NULL) {
263 		if (ulen > klen)
264 			ulen = klen;
265 
266 		if (ulen != 0) {
267 			if (copyout(kaddr, uaddr, ulen))
268 				return (EFAULT);
269 		}
270 	} else
271 		ulen = 0;
272 
273 	if (ulenp != NULL) {
274 		if (copyout(&ulen, ulenp, sizeof (ulen)))
275 			return (EFAULT);
276 	}
277 	return (0);
278 }
279 
280 /*
281  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
282  * If klen is greater than ulen it still uses the non-truncated
283  * klen to update ulenp.
284  */
285 static int
286 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
287 		void *kaddr, socklen_t klen)
288 {
289 	if (uaddr != NULL) {
290 		if (ulen >= klen)
291 			ulen = klen;
292 		else if (ulen != 0 && xnet_truncate_print) {
293 			printf("sockfs: truncating copyout of address using "
294 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
295 			    curproc->p_pid, klen, ulen);
296 		}
297 
298 		if (ulen != 0) {
299 			if (copyout(kaddr, uaddr, ulen))
300 				return (EFAULT);
301 		} else
302 			klen = 0;
303 	} else
304 		klen = 0;
305 
306 	if (ulenp != NULL) {
307 		if (copyout(&klen, ulenp, sizeof (klen)))
308 			return (EFAULT);
309 	}
310 	return (0);
311 }
312 
313 /*
314  * The socketpair() code in libsocket creates two sockets (using
315  * the /etc/netconfig fallback if needed) before calling this routine
316  * to connect the two sockets together.
317  *
318  * For a SOCK_STREAM socketpair a listener is needed - in that case this
319  * routine will create a new file descriptor as part of accepting the
320  * connection. The library socketpair() will check if svs[2] has changed
321  * in which case it will close the changed fd.
322  *
323  * Note that this code could use the TPI feature of accepting the connection
324  * on the listening endpoint. However, that would require significant changes
325  * to soaccept.
326  */
327 int
328 so_socketpair(int sv[2])
329 {
330 	int svs[2];
331 	struct sonode *so1, *so2;
332 	int error;
333 	struct sockaddr_ux *name;
334 	size_t namelen;
335 	sotpi_info_t *sti1;
336 	sotpi_info_t *sti2;
337 
338 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
339 
340 	error = useracc(sv, sizeof (svs), B_WRITE);
341 	if (error && do_useracc)
342 		return (set_errno(EFAULT));
343 
344 	if (copyin(sv, svs, sizeof (svs)))
345 		return (set_errno(EFAULT));
346 
347 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
348 		return (set_errno(error));
349 
350 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
351 		releasef(svs[0]);
352 		return (set_errno(error));
353 	}
354 
355 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
356 		error = EOPNOTSUPP;
357 		goto done;
358 	}
359 
360 	sti1 = SOTOTPI(so1);
361 	sti2 = SOTOTPI(so2);
362 
363 	/*
364 	 * The code below makes assumptions about the "sockfs" implementation.
365 	 * So make sure that the correct implementation is really used.
366 	 */
367 	ASSERT(so1->so_ops == &sotpi_sonodeops);
368 	ASSERT(so2->so_ops == &sotpi_sonodeops);
369 
370 	if (so1->so_type == SOCK_DGRAM) {
371 		/*
372 		 * Bind both sockets and connect them with each other.
373 		 * Need to allocate name/namelen for soconnect.
374 		 */
375 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
376 		if (error) {
377 			eprintsoline(so1, error);
378 			goto done;
379 		}
380 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
381 		if (error) {
382 			eprintsoline(so2, error);
383 			goto done;
384 		}
385 		namelen = sizeof (struct sockaddr_ux);
386 		name = kmem_alloc(namelen, KM_SLEEP);
387 		name->sou_family = AF_UNIX;
388 		name->sou_addr = sti2->sti_ux_laddr;
389 		error = socket_connect(so1,
390 		    (struct sockaddr *)name,
391 		    (socklen_t)namelen,
392 		    0, _SOCONNECT_NOXLATE, CRED());
393 		if (error) {
394 			kmem_free(name, namelen);
395 			eprintsoline(so1, error);
396 			goto done;
397 		}
398 		name->sou_addr = sti1->sti_ux_laddr;
399 		error = socket_connect(so2,
400 		    (struct sockaddr *)name,
401 		    (socklen_t)namelen,
402 		    0, _SOCONNECT_NOXLATE, CRED());
403 		kmem_free(name, namelen);
404 		if (error) {
405 			eprintsoline(so2, error);
406 			goto done;
407 		}
408 		releasef(svs[0]);
409 		releasef(svs[1]);
410 	} else {
411 		/*
412 		 * Bind both sockets, with so1 being a listener.
413 		 * Connect so2 to so1 - nonblocking to avoid waiting for
414 		 * soaccept to complete.
415 		 * Accept a connection on so1. Pass out the new fd as sv[0].
416 		 * The library will detect the changed fd and close
417 		 * the original one.
418 		 */
419 		struct sonode *nso;
420 		struct vnode *nvp;
421 		struct file *nfp;
422 		int nfd;
423 
424 		/*
425 		 * We could simply call socket_listen() here (which would do the
426 		 * binding automatically) if the code didn't rely on passing
427 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
428 		 */
429 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
430 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
431 		    CRED());
432 		if (error) {
433 			eprintsoline(so1, error);
434 			goto done;
435 		}
436 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
437 		if (error) {
438 			eprintsoline(so2, error);
439 			goto done;
440 		}
441 
442 		namelen = sizeof (struct sockaddr_ux);
443 		name = kmem_alloc(namelen, KM_SLEEP);
444 		name->sou_family = AF_UNIX;
445 		name->sou_addr = sti1->sti_ux_laddr;
446 		error = socket_connect(so2,
447 		    (struct sockaddr *)name,
448 		    (socklen_t)namelen,
449 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
450 		kmem_free(name, namelen);
451 		if (error) {
452 			if (error != EINPROGRESS) {
453 				eprintsoline(so2, error); goto done;
454 			}
455 		}
456 
457 		error = socket_accept(so1, 0, CRED(), &nso);
458 		if (error) {
459 			eprintsoline(so1, error);
460 			goto done;
461 		}
462 
463 		/* wait for so2 being SS_CONNECTED ignoring signals */
464 		mutex_enter(&so2->so_lock);
465 		error = sowaitconnected(so2, 0, 1);
466 		mutex_exit(&so2->so_lock);
467 		if (error != 0) {
468 			(void) socket_close(nso, 0, CRED());
469 			socket_destroy(nso);
470 			eprintsoline(so2, error);
471 			goto done;
472 		}
473 
474 		nvp = SOTOV(nso);
475 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
476 			(void) socket_close(nso, 0, CRED());
477 			socket_destroy(nso);
478 			eprintsoline(nso, error);
479 			goto done;
480 		}
481 		/*
482 		 * fill in the entries that falloc reserved
483 		 */
484 		mutex_exit(&nfp->f_tlock);
485 		setf(nfd, nfp);
486 
487 		releasef(svs[0]);
488 		releasef(svs[1]);
489 		svs[0] = nfd;
490 
491 		/*
492 		 * The socketpair library routine will close the original
493 		 * svs[0] when this code passes out a different file
494 		 * descriptor.
495 		 */
496 		if (copyout(svs, sv, sizeof (svs))) {
497 			(void) closeandsetf(nfd, NULL);
498 			eprintline(EFAULT);
499 			return (set_errno(EFAULT));
500 		}
501 	}
502 	return (0);
503 
504 done:
505 	releasef(svs[0]);
506 	releasef(svs[1]);
507 	return (set_errno(error));
508 }
509 
510 int
511 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
512 {
513 	struct sonode *so;
514 	int error;
515 
516 	dprint(1, ("bind(%d, %p, %d)\n",
517 	    sock, (void *)name, namelen));
518 
519 	if ((so = getsonode(sock, &error, NULL)) == NULL)
520 		return (set_errno(error));
521 
522 	/* Allocate and copyin name */
523 	/*
524 	 * X/Open test does not expect EFAULT with NULL name and non-zero
525 	 * namelen.
526 	 */
527 	if (name != NULL && namelen != 0) {
528 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
529 		name = copyin_name(so, name, &namelen, &error);
530 		if (name == NULL) {
531 			releasef(sock);
532 			return (set_errno(error));
533 		}
534 	} else {
535 		name = NULL;
536 		namelen = 0;
537 	}
538 
539 	switch (version) {
540 	default:
541 		error = socket_bind(so, name, namelen, 0, CRED());
542 		break;
543 	case SOV_XPG4_2:
544 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
545 		break;
546 	case SOV_SOCKBSD:
547 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
548 		break;
549 	}
550 done:
551 	releasef(sock);
552 	if (name != NULL)
553 		kmem_free(name, (size_t)namelen);
554 
555 	if (error)
556 		return (set_errno(error));
557 	return (0);
558 }
559 
560 /* ARGSUSED2 */
561 int
562 listen(int sock, int backlog, int version)
563 {
564 	struct sonode *so;
565 	int error;
566 
567 	dprint(1, ("listen(%d, %d)\n",
568 	    sock, backlog));
569 
570 	if ((so = getsonode(sock, &error, NULL)) == NULL)
571 		return (set_errno(error));
572 
573 	error = socket_listen(so, backlog, CRED());
574 
575 	releasef(sock);
576 	if (error)
577 		return (set_errno(error));
578 	return (0);
579 }
580 
581 /*ARGSUSED3*/
582 int
583 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
584 {
585 	struct sonode *so;
586 	file_t *fp;
587 	int error;
588 	socklen_t namelen;
589 	struct sonode *nso;
590 	struct vnode *nvp;
591 	struct file *nfp;
592 	int nfd;
593 	struct sockaddr *addrp;
594 	socklen_t addrlen;
595 
596 	dprint(1, ("accept(%d, %p, %p)\n",
597 	    sock, (void *)name, (void *)namelenp));
598 
599 	if ((so = getsonode(sock, &error, &fp)) == NULL)
600 		return (set_errno(error));
601 
602 	if (name != NULL) {
603 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
604 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
605 			releasef(sock);
606 			return (set_errno(EFAULT));
607 		}
608 		if (namelen != 0) {
609 			error = useracc(name, (size_t)namelen, B_WRITE);
610 			if (error && do_useracc) {
611 				releasef(sock);
612 				return (set_errno(EFAULT));
613 			}
614 		} else
615 			name = NULL;
616 	} else {
617 		namelen = 0;
618 	}
619 
620 	/*
621 	 * Allocate the user fd before socket_accept() in order to
622 	 * catch EMFILE errors before calling socket_accept().
623 	 */
624 	if ((nfd = ufalloc(0)) == -1) {
625 		eprintsoline(so, EMFILE);
626 		releasef(sock);
627 		return (set_errno(EMFILE));
628 	}
629 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
630 	if (error) {
631 		setf(nfd, NULL);
632 		releasef(sock);
633 		return (set_errno(error));
634 	}
635 
636 	nvp = SOTOV(nso);
637 
638 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
639 	if (namelen != 0) {
640 		addrlen = so->so_max_addr_len;
641 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
642 
643 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
644 		    &addrlen, B_TRUE, CRED())) == 0) {
645 			error = copyout_name(name, namelen, namelenp,
646 			    addrp, addrlen);
647 		} else {
648 			ASSERT(error == EINVAL || error == ENOTCONN);
649 			error = ECONNABORTED;
650 		}
651 		kmem_free(addrp, so->so_max_addr_len);
652 	}
653 
654 	if (error) {
655 		setf(nfd, NULL);
656 		(void) socket_close(nso, 0, CRED());
657 		socket_destroy(nso);
658 		releasef(sock);
659 		return (set_errno(error));
660 	}
661 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
662 		setf(nfd, NULL);
663 		(void) socket_close(nso, 0, CRED());
664 		socket_destroy(nso);
665 		eprintsoline(so, error);
666 		releasef(sock);
667 		return (set_errno(error));
668 	}
669 	/*
670 	 * fill in the entries that falloc reserved
671 	 */
672 	nfp->f_vnode = nvp;
673 	mutex_exit(&nfp->f_tlock);
674 	setf(nfd, nfp);
675 
676 	/*
677 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
678 	 */
679 	if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) {
680 		uint_t oflag = nfp->f_flag;
681 		int arg = 0;
682 
683 		if (so->so_state & SS_NONBLOCK)
684 			arg |= FNONBLOCK;
685 		else if (so->so_state & SS_NDELAY)
686 			arg |= FNDELAY;
687 
688 		/*
689 		 * This code is a simplification of the F_SETFL code in fcntl()
690 		 * Ignore any errors from VOP_SETFL.
691 		 */
692 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
693 		    != 0) {
694 			eprintsoline(so, error);
695 			error = 0;
696 		} else {
697 			mutex_enter(&nfp->f_tlock);
698 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
699 			nfp->f_flag |= arg;
700 			mutex_exit(&nfp->f_tlock);
701 		}
702 	}
703 	releasef(sock);
704 	return (nfd);
705 }
706 
707 int
708 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
709 {
710 	struct sonode *so;
711 	file_t *fp;
712 	int error;
713 
714 	dprint(1, ("connect(%d, %p, %d)\n",
715 	    sock, (void *)name, namelen));
716 
717 	if ((so = getsonode(sock, &error, &fp)) == NULL)
718 		return (set_errno(error));
719 
720 	/* Allocate and copyin name */
721 	if (namelen != 0) {
722 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
723 		name = copyin_name(so, name, &namelen, &error);
724 		if (name == NULL) {
725 			releasef(sock);
726 			return (set_errno(error));
727 		}
728 	} else
729 		name = NULL;
730 
731 	error = socket_connect(so, name, namelen, fp->f_flag,
732 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
733 	releasef(sock);
734 	if (name)
735 		kmem_free(name, (size_t)namelen);
736 	if (error)
737 		return (set_errno(error));
738 	return (0);
739 }
740 
741 /*ARGSUSED2*/
742 int
743 shutdown(int sock, int how, int version)
744 {
745 	struct sonode *so;
746 	int error;
747 
748 	dprint(1, ("shutdown(%d, %d)\n",
749 	    sock, how));
750 
751 	if ((so = getsonode(sock, &error, NULL)) == NULL)
752 		return (set_errno(error));
753 
754 	error = socket_shutdown(so, how, CRED());
755 
756 	releasef(sock);
757 	if (error)
758 		return (set_errno(error));
759 	return (0);
760 }
761 
762 /*
763  * Common receive routine.
764  */
765 static ssize_t
766 recvit(int sock,
767 	struct nmsghdr *msg,
768 	struct uio *uiop,
769 	int flags,
770 	socklen_t *namelenp,
771 	socklen_t *controllenp,
772 	int *flagsp)
773 {
774 	struct sonode *so;
775 	file_t *fp;
776 	void *name;
777 	socklen_t namelen;
778 	void *control;
779 	socklen_t controllen;
780 	ssize_t len;
781 	int error;
782 
783 	if ((so = getsonode(sock, &error, &fp)) == NULL)
784 		return (set_errno(error));
785 
786 	len = uiop->uio_resid;
787 	uiop->uio_fmode = fp->f_flag;
788 	uiop->uio_extflg = UIO_COPY_CACHED;
789 
790 	name = msg->msg_name;
791 	namelen = msg->msg_namelen;
792 	control = msg->msg_control;
793 	controllen = msg->msg_controllen;
794 
795 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
796 	    MSG_DONTWAIT | MSG_XPG4_2);
797 
798 	error = socket_recvmsg(so, msg, uiop, CRED());
799 	if (error) {
800 		releasef(sock);
801 		return (set_errno(error));
802 	}
803 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
804 	releasef(sock);
805 
806 	error = copyout_name(name, namelen, namelenp,
807 	    msg->msg_name, msg->msg_namelen);
808 	if (error)
809 		goto err;
810 
811 	if (flagsp != NULL) {
812 		/*
813 		 * Clear internal flag.
814 		 */
815 		msg->msg_flags &= ~MSG_XPG4_2;
816 
817 		/*
818 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
819 		 * when controllen is zero and there is control data to
820 		 * copy out.
821 		 */
822 		if (controllen != 0 &&
823 		    (msg->msg_controllen > controllen || control == NULL)) {
824 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
825 			    msg->msg_controllen, controllen, control));
826 
827 			msg->msg_flags |= MSG_CTRUNC;
828 		}
829 		if (copyout(&msg->msg_flags, flagsp,
830 		    sizeof (msg->msg_flags))) {
831 			error = EFAULT;
832 			goto err;
833 		}
834 	}
835 	/*
836 	 * Note: This MUST be done last. There can be no "goto err" after this
837 	 * point since it could make so_closefds run twice on some part
838 	 * of the file descriptor array.
839 	 */
840 	if (controllen != 0) {
841 		if (!(flags & MSG_XPG4_2)) {
842 			/*
843 			 * Good old msg_accrights can only return a multiple
844 			 * of 4 bytes.
845 			 */
846 			controllen &= ~((int)sizeof (uint32_t) - 1);
847 		}
848 		error = copyout_arg(control, controllen, controllenp,
849 		    msg->msg_control, msg->msg_controllen);
850 		if (error)
851 			goto err;
852 
853 		if (msg->msg_controllen > controllen || control == NULL) {
854 			if (control == NULL)
855 				controllen = 0;
856 			so_closefds(msg->msg_control, msg->msg_controllen,
857 			    !(flags & MSG_XPG4_2), controllen);
858 		}
859 	}
860 	if (msg->msg_namelen != 0)
861 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
862 	if (msg->msg_controllen != 0)
863 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
864 	return (len - uiop->uio_resid);
865 
866 err:
867 	/*
868 	 * If we fail and the control part contains file descriptors
869 	 * we have to close the fd's.
870 	 */
871 	if (msg->msg_controllen != 0)
872 		so_closefds(msg->msg_control, msg->msg_controllen,
873 		    !(flags & MSG_XPG4_2), 0);
874 	if (msg->msg_namelen != 0)
875 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
876 	if (msg->msg_controllen != 0)
877 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
878 	return (set_errno(error));
879 }
880 
881 /*
882  * Native system call
883  */
884 ssize_t
885 recv(int sock, void *buffer, size_t len, int flags)
886 {
887 	struct nmsghdr lmsg;
888 	struct uio auio;
889 	struct iovec aiov[1];
890 
891 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
892 	    sock, buffer, len, flags));
893 
894 	if ((ssize_t)len < 0) {
895 		return (set_errno(EINVAL));
896 	}
897 
898 	aiov[0].iov_base = buffer;
899 	aiov[0].iov_len = len;
900 	auio.uio_loffset = 0;
901 	auio.uio_iov = aiov;
902 	auio.uio_iovcnt = 1;
903 	auio.uio_resid = len;
904 	auio.uio_segflg = UIO_USERSPACE;
905 	auio.uio_limit = 0;
906 
907 	lmsg.msg_namelen = 0;
908 	lmsg.msg_controllen = 0;
909 	lmsg.msg_flags = 0;
910 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
911 }
912 
913 ssize_t
914 recvfrom(int sock, void *buffer, size_t len, int flags,
915 	struct sockaddr *name, socklen_t *namelenp)
916 {
917 	struct nmsghdr lmsg;
918 	struct uio auio;
919 	struct iovec aiov[1];
920 
921 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
922 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
923 
924 	if ((ssize_t)len < 0) {
925 		return (set_errno(EINVAL));
926 	}
927 
928 	aiov[0].iov_base = buffer;
929 	aiov[0].iov_len = len;
930 	auio.uio_loffset = 0;
931 	auio.uio_iov = aiov;
932 	auio.uio_iovcnt = 1;
933 	auio.uio_resid = len;
934 	auio.uio_segflg = UIO_USERSPACE;
935 	auio.uio_limit = 0;
936 
937 	lmsg.msg_name = (char *)name;
938 	if (namelenp != NULL) {
939 		if (copyin(namelenp, &lmsg.msg_namelen,
940 		    sizeof (lmsg.msg_namelen)))
941 			return (set_errno(EFAULT));
942 	} else {
943 		lmsg.msg_namelen = 0;
944 	}
945 	lmsg.msg_controllen = 0;
946 	lmsg.msg_flags = 0;
947 
948 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
949 }
950 
951 /*
952  * Uses the MSG_XPG4_2 flag to determine if the caller is using
953  * struct omsghdr or struct nmsghdr.
954  */
955 ssize_t
956 recvmsg(int sock, struct nmsghdr *msg, int flags)
957 {
958 	STRUCT_DECL(nmsghdr, u_lmsg);
959 	STRUCT_HANDLE(nmsghdr, umsgptr);
960 	struct nmsghdr lmsg;
961 	struct uio auio;
962 	struct iovec aiov[MSG_MAXIOVLEN];
963 	int iovcnt;
964 	ssize_t len;
965 	int i;
966 	int *flagsp;
967 	model_t	model;
968 
969 	dprint(1, ("recvmsg(%d, %p, %d)\n",
970 	    sock, (void *)msg, flags));
971 
972 	model = get_udatamodel();
973 	STRUCT_INIT(u_lmsg, model);
974 	STRUCT_SET_HANDLE(umsgptr, model, msg);
975 
976 	if (flags & MSG_XPG4_2) {
977 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
978 			return (set_errno(EFAULT));
979 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
980 	} else {
981 		/*
982 		 * Assumes that nmsghdr and omsghdr are identically shaped
983 		 * except for the added msg_flags field.
984 		 */
985 		if (copyin(msg, STRUCT_BUF(u_lmsg),
986 		    SIZEOF_STRUCT(omsghdr, model)))
987 			return (set_errno(EFAULT));
988 		STRUCT_FSET(u_lmsg, msg_flags, 0);
989 		flagsp = NULL;
990 	}
991 
992 	/*
993 	 * Code below us will kmem_alloc memory and hang it
994 	 * off msg_control and msg_name fields. This forces
995 	 * us to copy the structure to its native form.
996 	 */
997 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
998 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
999 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1000 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1001 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1002 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1003 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1004 
1005 	iovcnt = lmsg.msg_iovlen;
1006 
1007 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1008 		return (set_errno(EMSGSIZE));
1009 	}
1010 
1011 #ifdef _SYSCALL32_IMPL
1012 	/*
1013 	 * 32-bit callers need to have their iovec expanded, while ensuring
1014 	 * that they can't move more than 2Gbytes of data in a single call.
1015 	 */
1016 	if (model == DATAMODEL_ILP32) {
1017 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1018 		ssize32_t count32;
1019 
1020 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1021 		    iovcnt * sizeof (struct iovec32)))
1022 			return (set_errno(EFAULT));
1023 
1024 		count32 = 0;
1025 		for (i = 0; i < iovcnt; i++) {
1026 			ssize32_t iovlen32;
1027 
1028 			iovlen32 = aiov32[i].iov_len;
1029 			count32 += iovlen32;
1030 			if (iovlen32 < 0 || count32 < 0)
1031 				return (set_errno(EINVAL));
1032 			aiov[i].iov_len = iovlen32;
1033 			aiov[i].iov_base =
1034 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1035 		}
1036 	} else
1037 #endif /* _SYSCALL32_IMPL */
1038 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1039 		return (set_errno(EFAULT));
1040 	}
1041 	len = 0;
1042 	for (i = 0; i < iovcnt; i++) {
1043 		ssize_t iovlen = aiov[i].iov_len;
1044 		len += iovlen;
1045 		if (iovlen < 0 || len < 0) {
1046 			return (set_errno(EINVAL));
1047 		}
1048 	}
1049 	auio.uio_loffset = 0;
1050 	auio.uio_iov = aiov;
1051 	auio.uio_iovcnt = iovcnt;
1052 	auio.uio_resid = len;
1053 	auio.uio_segflg = UIO_USERSPACE;
1054 	auio.uio_limit = 0;
1055 
1056 	if (lmsg.msg_control != NULL &&
1057 	    (do_useracc == 0 ||
1058 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1059 	    B_WRITE) != 0)) {
1060 		return (set_errno(EFAULT));
1061 	}
1062 
1063 	return (recvit(sock, &lmsg, &auio, flags,
1064 	    STRUCT_FADDR(umsgptr, msg_namelen),
1065 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1066 }
1067 
1068 /*
1069  * Common send function.
1070  */
1071 static ssize_t
1072 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1073 {
1074 	struct sonode *so;
1075 	file_t *fp;
1076 	void *name;
1077 	socklen_t namelen;
1078 	void *control;
1079 	socklen_t controllen;
1080 	ssize_t len;
1081 	int error;
1082 
1083 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1084 		return (set_errno(error));
1085 
1086 	uiop->uio_fmode = fp->f_flag;
1087 
1088 	if (so->so_family == AF_UNIX)
1089 		uiop->uio_extflg = UIO_COPY_CACHED;
1090 	else
1091 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1092 
1093 	/* Allocate and copyin name and control */
1094 	name = msg->msg_name;
1095 	namelen = msg->msg_namelen;
1096 	if (name != NULL && namelen != 0) {
1097 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1098 		name = copyin_name(so,
1099 		    (struct sockaddr *)name,
1100 		    &namelen, &error);
1101 		if (name == NULL)
1102 			goto done3;
1103 		/* copyin_name null terminates addresses for AF_UNIX */
1104 		msg->msg_namelen = namelen;
1105 		msg->msg_name = name;
1106 	} else {
1107 		msg->msg_name = name = NULL;
1108 		msg->msg_namelen = namelen = 0;
1109 	}
1110 
1111 	control = msg->msg_control;
1112 	controllen = msg->msg_controllen;
1113 	if ((control != NULL) && (controllen != 0)) {
1114 		/*
1115 		 * Verify that the length is not excessive to prevent
1116 		 * an application from consuming all of kernel memory.
1117 		 */
1118 		if (controllen > SO_MAXARGSIZE) {
1119 			error = EINVAL;
1120 			goto done2;
1121 		}
1122 		control = kmem_alloc(controllen, KM_SLEEP);
1123 
1124 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1125 		if (copyin(msg->msg_control, control, controllen)) {
1126 			error = EFAULT;
1127 			goto done1;
1128 		}
1129 		msg->msg_control = control;
1130 	} else {
1131 		msg->msg_control = control = NULL;
1132 		msg->msg_controllen = controllen = 0;
1133 	}
1134 
1135 	len = uiop->uio_resid;
1136 	msg->msg_flags = flags;
1137 
1138 	error = socket_sendmsg(so, msg, uiop, CRED());
1139 done1:
1140 	if (control != NULL)
1141 		kmem_free(control, controllen);
1142 done2:
1143 	if (name != NULL)
1144 		kmem_free(name, namelen);
1145 done3:
1146 	if (error != 0) {
1147 		releasef(sock);
1148 		return (set_errno(error));
1149 	}
1150 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1151 	releasef(sock);
1152 	return (len - uiop->uio_resid);
1153 }
1154 
1155 /*
1156  * Native system call
1157  */
1158 ssize_t
1159 send(int sock, void *buffer, size_t len, int flags)
1160 {
1161 	struct nmsghdr lmsg;
1162 	struct uio auio;
1163 	struct iovec aiov[1];
1164 
1165 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1166 	    sock, buffer, len, flags));
1167 
1168 	if ((ssize_t)len < 0) {
1169 		return (set_errno(EINVAL));
1170 	}
1171 
1172 	aiov[0].iov_base = buffer;
1173 	aiov[0].iov_len = len;
1174 	auio.uio_loffset = 0;
1175 	auio.uio_iov = aiov;
1176 	auio.uio_iovcnt = 1;
1177 	auio.uio_resid = len;
1178 	auio.uio_segflg = UIO_USERSPACE;
1179 	auio.uio_limit = 0;
1180 
1181 	lmsg.msg_name = NULL;
1182 	lmsg.msg_control = NULL;
1183 	if (!(flags & MSG_XPG4_2)) {
1184 		/*
1185 		 * In order to be compatible with the libsocket/sockmod
1186 		 * implementation we set EOR for all send* calls.
1187 		 */
1188 		flags |= MSG_EOR;
1189 	}
1190 	return (sendit(sock, &lmsg, &auio, flags));
1191 }
1192 
1193 /*
1194  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1195  * struct omsghdr or struct nmsghdr.
1196  */
1197 ssize_t
1198 sendmsg(int sock, struct nmsghdr *msg, int flags)
1199 {
1200 	struct nmsghdr lmsg;
1201 	STRUCT_DECL(nmsghdr, u_lmsg);
1202 	struct uio auio;
1203 	struct iovec aiov[MSG_MAXIOVLEN];
1204 	int iovcnt;
1205 	ssize_t len;
1206 	int i;
1207 	model_t	model;
1208 
1209 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1210 
1211 	model = get_udatamodel();
1212 	STRUCT_INIT(u_lmsg, model);
1213 
1214 	if (flags & MSG_XPG4_2) {
1215 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1216 		    STRUCT_SIZE(u_lmsg)))
1217 			return (set_errno(EFAULT));
1218 	} else {
1219 		/*
1220 		 * Assumes that nmsghdr and omsghdr are identically shaped
1221 		 * except for the added msg_flags field.
1222 		 */
1223 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1224 		    SIZEOF_STRUCT(omsghdr, model)))
1225 			return (set_errno(EFAULT));
1226 		/*
1227 		 * In order to be compatible with the libsocket/sockmod
1228 		 * implementation we set EOR for all send* calls.
1229 		 */
1230 		flags |= MSG_EOR;
1231 	}
1232 
1233 	/*
1234 	 * Code below us will kmem_alloc memory and hang it
1235 	 * off msg_control and msg_name fields. This forces
1236 	 * us to copy the structure to its native form.
1237 	 */
1238 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1239 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1240 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1241 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1242 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1243 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1244 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1245 
1246 	iovcnt = lmsg.msg_iovlen;
1247 
1248 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1249 		/*
1250 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1251 		 * be compatible with SunOS 4.X and 4.4BSD.
1252 		 */
1253 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1254 			return (set_errno(EMSGSIZE));
1255 	}
1256 
1257 #ifdef _SYSCALL32_IMPL
1258 	/*
1259 	 * 32-bit callers need to have their iovec expanded, while ensuring
1260 	 * that they can't move more than 2Gbytes of data in a single call.
1261 	 */
1262 	if (model == DATAMODEL_ILP32) {
1263 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1264 		ssize32_t count32;
1265 
1266 		if (iovcnt != 0 &&
1267 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1268 		    iovcnt * sizeof (struct iovec32)))
1269 			return (set_errno(EFAULT));
1270 
1271 		count32 = 0;
1272 		for (i = 0; i < iovcnt; i++) {
1273 			ssize32_t iovlen32;
1274 
1275 			iovlen32 = aiov32[i].iov_len;
1276 			count32 += iovlen32;
1277 			if (iovlen32 < 0 || count32 < 0)
1278 				return (set_errno(EINVAL));
1279 			aiov[i].iov_len = iovlen32;
1280 			aiov[i].iov_base =
1281 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1282 		}
1283 	} else
1284 #endif /* _SYSCALL32_IMPL */
1285 	if (iovcnt != 0 &&
1286 	    copyin(lmsg.msg_iov, aiov,
1287 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1288 		return (set_errno(EFAULT));
1289 	}
1290 	len = 0;
1291 	for (i = 0; i < iovcnt; i++) {
1292 		ssize_t iovlen = aiov[i].iov_len;
1293 		len += iovlen;
1294 		if (iovlen < 0 || len < 0) {
1295 			return (set_errno(EINVAL));
1296 		}
1297 	}
1298 	auio.uio_loffset = 0;
1299 	auio.uio_iov = aiov;
1300 	auio.uio_iovcnt = iovcnt;
1301 	auio.uio_resid = len;
1302 	auio.uio_segflg = UIO_USERSPACE;
1303 	auio.uio_limit = 0;
1304 
1305 	return (sendit(sock, &lmsg, &auio, flags));
1306 }
1307 
1308 ssize_t
1309 sendto(int sock, void *buffer, size_t len, int flags,
1310     struct sockaddr *name, socklen_t namelen)
1311 {
1312 	struct nmsghdr lmsg;
1313 	struct uio auio;
1314 	struct iovec aiov[1];
1315 
1316 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1317 	    sock, buffer, len, flags, (void *)name, namelen));
1318 
1319 	if ((ssize_t)len < 0) {
1320 		return (set_errno(EINVAL));
1321 	}
1322 
1323 	aiov[0].iov_base = buffer;
1324 	aiov[0].iov_len = len;
1325 	auio.uio_loffset = 0;
1326 	auio.uio_iov = aiov;
1327 	auio.uio_iovcnt = 1;
1328 	auio.uio_resid = len;
1329 	auio.uio_segflg = UIO_USERSPACE;
1330 	auio.uio_limit = 0;
1331 
1332 	lmsg.msg_name = (char *)name;
1333 	lmsg.msg_namelen = namelen;
1334 	lmsg.msg_control = NULL;
1335 	if (!(flags & MSG_XPG4_2)) {
1336 		/*
1337 		 * In order to be compatible with the libsocket/sockmod
1338 		 * implementation we set EOR for all send* calls.
1339 		 */
1340 		flags |= MSG_EOR;
1341 	}
1342 	return (sendit(sock, &lmsg, &auio, flags));
1343 }
1344 
1345 /*ARGSUSED3*/
1346 int
1347 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1348 {
1349 	struct sonode *so;
1350 	int error;
1351 	socklen_t namelen;
1352 	socklen_t sock_addrlen;
1353 	struct sockaddr *sock_addrp;
1354 
1355 	dprint(1, ("getpeername(%d, %p, %p)\n",
1356 	    sock, (void *)name, (void *)namelenp));
1357 
1358 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1359 		goto bad;
1360 
1361 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1362 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1363 	    (name == NULL && namelen != 0)) {
1364 		error = EFAULT;
1365 		goto rel_out;
1366 	}
1367 	sock_addrlen = so->so_max_addr_len;
1368 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1369 
1370 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1371 	    B_FALSE, CRED())) == 0) {
1372 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1373 		error = copyout_name(name, namelen, namelenp,
1374 		    (void *)sock_addrp, sock_addrlen);
1375 	}
1376 	kmem_free(sock_addrp, so->so_max_addr_len);
1377 rel_out:
1378 	releasef(sock);
1379 bad:	return (error != 0 ? set_errno(error) : 0);
1380 }
1381 
1382 /*ARGSUSED3*/
1383 int
1384 getsockname(int sock, struct sockaddr *name,
1385 		socklen_t *namelenp, int version)
1386 {
1387 	struct sonode *so;
1388 	int error;
1389 	socklen_t namelen, sock_addrlen;
1390 	struct sockaddr *sock_addrp;
1391 
1392 	dprint(1, ("getsockname(%d, %p, %p)\n",
1393 	    sock, (void *)name, (void *)namelenp));
1394 
1395 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1396 		goto bad;
1397 
1398 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1399 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1400 	    (name == NULL && namelen != 0)) {
1401 		error = EFAULT;
1402 		goto rel_out;
1403 	}
1404 
1405 	sock_addrlen = so->so_max_addr_len;
1406 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1407 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1408 	    CRED())) == 0) {
1409 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1410 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1411 		error = copyout_name(name, namelen, namelenp,
1412 		    (void *)sock_addrp, sock_addrlen);
1413 	}
1414 	kmem_free(sock_addrp, so->so_max_addr_len);
1415 rel_out:
1416 	releasef(sock);
1417 bad:	return (error != 0 ? set_errno(error) : 0);
1418 }
1419 
1420 /*ARGSUSED5*/
1421 int
1422 getsockopt(int sock,
1423 	int level,
1424 	int option_name,
1425 	void *option_value,
1426 	socklen_t *option_lenp,
1427 	int version)
1428 {
1429 	struct sonode *so;
1430 	socklen_t optlen, optlen_res;
1431 	void *optval;
1432 	int error;
1433 
1434 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1435 	    sock, level, option_name, option_value, (void *)option_lenp));
1436 
1437 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1438 		return (set_errno(error));
1439 
1440 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1441 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1442 		releasef(sock);
1443 		return (set_errno(EFAULT));
1444 	}
1445 	/*
1446 	 * Verify that the length is not excessive to prevent
1447 	 * an application from consuming all of kernel memory.
1448 	 */
1449 	if (optlen > SO_MAXARGSIZE) {
1450 		error = EINVAL;
1451 		releasef(sock);
1452 		return (set_errno(error));
1453 	}
1454 	optval = kmem_alloc(optlen, KM_SLEEP);
1455 	optlen_res = optlen;
1456 	error = socket_getsockopt(so, level, option_name, optval,
1457 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1458 	    CRED());
1459 	releasef(sock);
1460 	if (error) {
1461 		kmem_free(optval, optlen);
1462 		return (set_errno(error));
1463 	}
1464 	error = copyout_arg(option_value, optlen, option_lenp,
1465 	    optval, optlen_res);
1466 	kmem_free(optval, optlen);
1467 	if (error)
1468 		return (set_errno(error));
1469 	return (0);
1470 }
1471 
1472 /*ARGSUSED5*/
1473 int
1474 setsockopt(int sock,
1475 	int level,
1476 	int option_name,
1477 	void *option_value,
1478 	socklen_t option_len,
1479 	int version)
1480 {
1481 	struct sonode *so;
1482 	intptr_t buffer[2];
1483 	void *optval = NULL;
1484 	int error;
1485 
1486 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1487 	    sock, level, option_name, option_value, option_len));
1488 
1489 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1490 		return (set_errno(error));
1491 
1492 	if (option_value != NULL) {
1493 		if (option_len != 0) {
1494 			/*
1495 			 * Verify that the length is not excessive to prevent
1496 			 * an application from consuming all of kernel memory.
1497 			 */
1498 			if (option_len > SO_MAXARGSIZE) {
1499 				error = EINVAL;
1500 				goto done2;
1501 			}
1502 			optval = option_len <= sizeof (buffer) ?
1503 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1504 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1505 			if (copyin(option_value, optval, (size_t)option_len)) {
1506 				error = EFAULT;
1507 				goto done1;
1508 			}
1509 		}
1510 	} else
1511 		option_len = 0;
1512 
1513 	error = socket_setsockopt(so, level, option_name, optval,
1514 	    (t_uscalar_t)option_len, CRED());
1515 done1:
1516 	if (optval != buffer)
1517 		kmem_free(optval, (size_t)option_len);
1518 done2:
1519 	releasef(sock);
1520 	if (error)
1521 		return (set_errno(error));
1522 	return (0);
1523 }
1524 
1525 static int
1526 sockconf_add_sock(int family, int type, int protocol, char *name)
1527 {
1528 	int error = 0;
1529 	char *kdevpath = NULL;
1530 	char *kmodule = NULL;
1531 	char *buf = NULL;
1532 	size_t pathlen = 0;
1533 	struct sockparams *sp;
1534 
1535 	if (name == NULL)
1536 		return (EINVAL);
1537 	/*
1538 	 * Copyin the name.
1539 	 * This also makes it possible to check for too long pathnames.
1540 	 * Compress the space needed for the name before passing it
1541 	 * to soconfig - soconfig will store the string until
1542 	 * the configuration is removed.
1543 	 */
1544 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1545 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1546 		kmem_free(buf, MAXPATHLEN);
1547 		return (error);
1548 	}
1549 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1550 		/* For device */
1551 
1552 		/*
1553 		 * Special handling for NCA:
1554 		 *
1555 		 * DEV_NCA is never opened even if an application
1556 		 * requests for AF_NCA. The device opened is instead a
1557 		 * predefined AF_INET transport (NCA_INET_DEV).
1558 		 *
1559 		 * Prior to Volo (PSARC/2007/587) NCA would determine
1560 		 * the device using a lookup, which worked then because
1561 		 * all protocols were based on TPI. Since TPI is no
1562 		 * longer the default, we have to explicitly state
1563 		 * which device to use.
1564 		 */
1565 		if (strcmp(buf, NCA_DEV) == 0) {
1566 			/* only support entry <28, 2, 0> */
1567 			if (family != AF_NCA || type != SOCK_STREAM ||
1568 			    protocol != 0) {
1569 				kmem_free(buf, MAXPATHLEN);
1570 				return (EINVAL);
1571 			}
1572 
1573 			pathlen = strlen(NCA_INET_DEV) + 1;
1574 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1575 			bcopy(NCA_INET_DEV, kdevpath, pathlen);
1576 			kdevpath[pathlen - 1] = '\0';
1577 		} else {
1578 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1579 			bcopy(buf, kdevpath, pathlen);
1580 			kdevpath[pathlen - 1] = '\0';
1581 		}
1582 	} else {
1583 		/* For socket module */
1584 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1585 		bcopy(buf, kmodule, pathlen);
1586 		kmodule[pathlen - 1] = '\0';
1587 		pathlen = 0;
1588 	}
1589 	kmem_free(buf, MAXPATHLEN);
1590 
1591 	/* sockparams_create frees mod name and devpath upon failure */
1592 	sp = sockparams_create(family, type, protocol, kmodule,
1593 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1594 	if (sp != NULL) {
1595 		error = sockparams_add(sp);
1596 		if (error != 0)
1597 			sockparams_destroy(sp);
1598 	}
1599 
1600 	return (error);
1601 }
1602 
1603 static int
1604 sockconf_remove_sock(int family, int type, int protocol)
1605 {
1606 	return (sockparams_delete(family, type, protocol));
1607 }
1608 
1609 static int
1610 sockconfig_remove_filter(const char *uname)
1611 {
1612 	char kname[SOF_MAXNAMELEN];
1613 	size_t len;
1614 	int error;
1615 	sof_entry_t *ent;
1616 
1617 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1618 		return (error);
1619 
1620 	ent = sof_entry_remove_by_name(kname);
1621 	if (ent == NULL)
1622 		return (ENXIO);
1623 
1624 	mutex_enter(&ent->sofe_lock);
1625 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1626 	if (ent->sofe_refcnt == 0) {
1627 		mutex_exit(&ent->sofe_lock);
1628 		sof_entry_free(ent);
1629 	} else {
1630 		/* let the last socket free the filter */
1631 		ent->sofe_flags |= SOFEF_CONDEMED;
1632 		mutex_exit(&ent->sofe_lock);
1633 	}
1634 
1635 	return (0);
1636 }
1637 
1638 static int
1639 sockconfig_add_filter(const char *uname, void *ufilpropp)
1640 {
1641 	struct sockconfig_filter_props filprop;
1642 	sof_entry_t *ent;
1643 	int error;
1644 	size_t tuplesz, len;
1645 	char hintbuf[SOF_MAXNAMELEN];
1646 
1647 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1648 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1649 
1650 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1651 	    &len)) != 0) {
1652 		sof_entry_free(ent);
1653 		return (error);
1654 	}
1655 
1656 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1657 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1658 			sof_entry_free(ent);
1659 			return (EFAULT);
1660 		}
1661 	}
1662 #ifdef	_SYSCALL32_IMPL
1663 	else {
1664 		struct sockconfig_filter_props32 filprop32;
1665 
1666 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1667 			sof_entry_free(ent);
1668 			return (EFAULT);
1669 		}
1670 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1671 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1672 		filprop.sfp_hint = filprop32.sfp_hint;
1673 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1674 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1675 		filprop.sfp_socktuple =
1676 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1677 	}
1678 #endif	/* _SYSCALL32_IMPL */
1679 
1680 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1681 	    sizeof (ent->sofe_modname), &len)) != 0) {
1682 		sof_entry_free(ent);
1683 		return (error);
1684 	}
1685 
1686 	/*
1687 	 * A filter must specify at least one socket tuple.
1688 	 */
1689 	if (filprop.sfp_socktuple_cnt == 0 ||
1690 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1691 		sof_entry_free(ent);
1692 		return (EINVAL);
1693 	}
1694 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1695 	ent->sofe_hint = filprop.sfp_hint;
1696 
1697 	/*
1698 	 * Verify the hint, and copy in the hint argument, if necessary.
1699 	 */
1700 	switch (ent->sofe_hint) {
1701 	case SOF_HINT_BEFORE:
1702 	case SOF_HINT_AFTER:
1703 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1704 		    sizeof (hintbuf), &len)) != 0) {
1705 			sof_entry_free(ent);
1706 			return (error);
1707 		}
1708 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1709 		bcopy(hintbuf, ent->sofe_hintarg, len);
1710 		/* FALLTHRU */
1711 	case SOF_HINT_TOP:
1712 	case SOF_HINT_BOTTOM:
1713 		/* hints cannot be used with programmatic filters */
1714 		if (ent->sofe_flags & SOFEF_PROG) {
1715 			sof_entry_free(ent);
1716 			return (EINVAL);
1717 		}
1718 		break;
1719 	case SOF_HINT_NONE:
1720 		break;
1721 	default:
1722 		/* bad hint value */
1723 		sof_entry_free(ent);
1724 		return (EINVAL);
1725 	}
1726 
1727 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1728 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1729 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1730 
1731 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1732 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1733 		    tuplesz)) {
1734 			sof_entry_free(ent);
1735 			return (EFAULT);
1736 		}
1737 	}
1738 #ifdef	_SYSCALL32_IMPL
1739 	else {
1740 		int i;
1741 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1742 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1743 		sof_socktuple32_t tup32;
1744 
1745 		tup = ent->sofe_socktuple;
1746 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1747 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1748 
1749 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1750 				sof_entry_free(ent);
1751 				return (EFAULT);
1752 			}
1753 			tup->sofst_family = tup32.sofst_family;
1754 			tup->sofst_type = tup32.sofst_type;
1755 			tup->sofst_protocol = tup32.sofst_protocol;
1756 
1757 			data += sizeof (tup32);
1758 		}
1759 	}
1760 #endif	/* _SYSCALL32_IMPL */
1761 
1762 	/* Sockets can start using the filter as soon as the filter is added */
1763 	if ((error = sof_entry_add(ent)) != 0)
1764 		sof_entry_free(ent);
1765 
1766 	return (error);
1767 }
1768 
1769 /*
1770  * Socket configuration system call. It is used to add and remove
1771  * socket types.
1772  */
1773 int
1774 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1775 {
1776 	int error = 0;
1777 
1778 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1779 		return (set_errno(EPERM));
1780 
1781 	if (sockfs_defer_nl7c_init) {
1782 		nl7c_init();
1783 		sockfs_defer_nl7c_init = 0;
1784 	}
1785 
1786 	switch (cmd) {
1787 	case SOCKCONFIG_ADD_SOCK:
1788 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1789 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1790 		break;
1791 	case SOCKCONFIG_REMOVE_SOCK:
1792 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1793 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1794 		break;
1795 	case SOCKCONFIG_ADD_FILTER:
1796 		error = sockconfig_add_filter((const char *)arg1, arg2);
1797 		break;
1798 	case SOCKCONFIG_REMOVE_FILTER:
1799 		error = sockconfig_remove_filter((const char *)arg1);
1800 		break;
1801 	default:
1802 #ifdef	DEBUG
1803 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1804 #endif
1805 		error = EINVAL;
1806 		break;
1807 	}
1808 
1809 	if (error != 0) {
1810 		eprintline(error);
1811 		return (set_errno(error));
1812 	}
1813 	return (0);
1814 }
1815 
1816 
1817 /*
1818  * Sendfile is implemented through two schemes, direct I/O or by
1819  * caching in the filesystem page cache. We cache the input file by
1820  * default and use direct I/O only if sendfile_max_size is set
1821  * appropriately as explained below. Note that this logic is consistent
1822  * with other filesystems where caching is turned on by default
1823  * unless explicitly turned off by using the DIRECTIO ioctl.
1824  *
1825  * We choose a slightly different scheme here. One can turn off
1826  * caching by setting sendfile_max_size to 0. One can also enable
1827  * caching of files <= sendfile_max_size by setting sendfile_max_size
1828  * to an appropriate value. By default sendfile_max_size is set to the
1829  * maximum value so that all files are cached. In future, we may provide
1830  * better interfaces for caching the file.
1831  *
1832  * Sendfile through Direct I/O (Zero copy)
1833  * --------------------------------------
1834  *
1835  * As disks are normally slower than the network, we can't have a
1836  * single thread that reads the disk and writes to the network. We
1837  * need to have parallelism. This is done by having the sendfile
1838  * thread create another thread that reads from the filesystem
1839  * and queues it for network processing. In this scheme, the data
1840  * is never copied anywhere i.e it is zero copy unlike the other
1841  * scheme.
1842  *
1843  * We have a sendfile queue (snfq) where each sendfile
1844  * request (snf_req_t) is queued for processing by a thread. Number
1845  * of threads is dynamically allocated and they exit if they are idling
1846  * beyond a specified amount of time. When each request (snf_req_t) is
1847  * processed by a thread, it produces a number of mblk_t structures to
1848  * be consumed by the sendfile thread. snf_deque and snf_enque are
1849  * used for consuming and producing mblks. Size of the filesystem
1850  * read is determined by the tunable (sendfile_read_size). A single
1851  * mblk holds sendfile_read_size worth of data (except the last
1852  * read of the file) which is sent down as a whole to the network.
1853  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1854  * value for the UFS filesystem backed by a striped storage array.
1855  *
1856  * Synchronisation between read (producer) and write (consumer) threads.
1857  * --------------------------------------------------------------------
1858  *
1859  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1860  * adding and deleting items in this list. Error can happen anytime
1861  * during read or write. There could be unprocessed mblks in the
1862  * sr_ib_XXX list when a read or write error occurs. Whenever error
1863  * is encountered, we need two things to happen :
1864  *
1865  * a) One of the threads need to clean the mblks.
1866  * b) When one thread encounters an error, the other should stop.
1867  *
1868  * For (a), we don't want to penalize the reader thread as it could do
1869  * some useful work processing other requests. For (b), the error can
1870  * be detected by examining sr_read_error or sr_write_error.
1871  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1872  * writer encounters error, we need to report the write error back to
1873  * the application as that's what would have happened if the operations
1874  * were done sequentially. With this in mind, following should work :
1875  *
1876  * 	- Check for errors before read or write.
1877  *	- If the reader encounters error, set the error in sr_read_error.
1878  *	  Check sr_write_error, if it is set, send cv_signal as it is
1879  *	  waiting for reader to complete. If it is not set, the writer
1880  *	  is either running sinking data to the network or blocked
1881  *        because of flow control. For handling the latter case, we
1882  *	  always send a signal. In any case, it will examine sr_read_error
1883  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1884  *	  the writer that the reader is done in all the cases.
1885  *	- If the writer encounters error, set the error in sr_write_error.
1886  *	  The reader thread is either blocked because of flow control or
1887  *	  running reading data from the disk. For the former, we need to
1888  *	  wakeup the thread. Again to keep it simple, we always wake up
1889  *	  the reader thread. Then, wait for the read thread to complete
1890  *	  if it is not done yet. Cleanup and return.
1891  *
1892  * High and low water marks for the read thread.
1893  * --------------------------------------------
1894  *
1895  * If sendfile() is used to send data over a slow network, we need to
1896  * make sure that the read thread does not produce data at a faster
1897  * rate than the network. This can happen if the disk is faster than
1898  * the network. In such a case, we don't want to build a very large queue.
1899  * But we would still like to get all of the network throughput possible.
1900  * This implies that network should never block waiting for data.
1901  * As there are lot of disk throughput/network throughput combinations
1902  * possible, it is difficult to come up with an accurate number.
1903  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1904  * latency of 3ms for reading a disk block. Thus, the total latency to
1905  * initiate a new read, transfer data from the disk and queue for
1906  * transmission would take about a max of 25ms. Todays max transfer rate
1907  * for network is 100MB/sec. If the thread is blocked because of flow
1908  * control, it would take 25ms to get new data ready for transmission.
1909  * We have to make sure that network is not idling, while we are initiating
1910  * new transfers. So, at 100MB/sec, to keep network busy we would need
1911  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1912  * We need to pick a high water mark so that the woken up thread would
1913  * do considerable work before blocking again to prevent thrashing. Currently,
1914  * we pick this to be 10 times that of the low water mark.
1915  *
1916  * Sendfile with segmap caching (One copy from page cache to mblks).
1917  * ----------------------------------------------------------------
1918  *
1919  * We use the segmap cache for caching the file, if the size of file
1920  * is <= sendfile_max_size. In this case we don't use threads as VM
1921  * is reasonably fast enough to keep up with the network. If the underlying
1922  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1923  * of data into segmap space, and use the virtual address from segmap
1924  * directly through desballoc() to avoid copy. Once the transport is done
1925  * with the data, the mapping will be released through segmap_release()
1926  * called by the call-back routine.
1927  *
1928  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1929  * to copy the data from the filesystem into our temporary network buffer.
1930  *
1931  * To disable caching, set sendfile_max_size to 0.
1932  */
1933 
1934 uint_t sendfile_read_size = 1024 * 1024;
1935 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1936 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1937 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1938 struct sendfile_stats sf_stats;
1939 struct sendfile_queue *snfq;
1940 clock_t snfq_timeout;
1941 off64_t sendfile_max_size;
1942 
1943 static void snf_enque(snf_req_t *, mblk_t *);
1944 static mblk_t *snf_deque(snf_req_t *);
1945 
1946 void
1947 sendfile_init(void)
1948 {
1949 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1950 
1951 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1952 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1953 	snfq->snfq_max_threads = max_ncpus;
1954 	snfq_timeout = SNFQ_TIMEOUT;
1955 	/* Cache all files by default. */
1956 	sendfile_max_size = MAXOFFSET_T;
1957 }
1958 
1959 /*
1960  * Queues a mblk_t for network processing.
1961  */
1962 static void
1963 snf_enque(snf_req_t *sr, mblk_t *mp)
1964 {
1965 	mp->b_next = NULL;
1966 	mutex_enter(&sr->sr_lock);
1967 	if (sr->sr_mp_head == NULL) {
1968 		sr->sr_mp_head = sr->sr_mp_tail = mp;
1969 		cv_signal(&sr->sr_cv);
1970 	} else {
1971 		sr->sr_mp_tail->b_next = mp;
1972 		sr->sr_mp_tail = mp;
1973 	}
1974 	sr->sr_qlen += MBLKL(mp);
1975 	while ((sr->sr_qlen > sr->sr_hiwat) &&
1976 	    (sr->sr_write_error == 0)) {
1977 		sf_stats.ss_full_waits++;
1978 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1979 	}
1980 	mutex_exit(&sr->sr_lock);
1981 }
1982 
1983 /*
1984  * De-queues a mblk_t for network processing.
1985  */
1986 static mblk_t *
1987 snf_deque(snf_req_t *sr)
1988 {
1989 	mblk_t *mp;
1990 
1991 	mutex_enter(&sr->sr_lock);
1992 	/*
1993 	 * If we have encountered an error on read or read is
1994 	 * completed and no more mblks, return NULL.
1995 	 * We need to check for NULL sr_mp_head also as
1996 	 * the reads could have completed and there is
1997 	 * nothing more to come.
1998 	 */
1999 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2000 	    ((sr->sr_read_error & SR_READ_DONE) &&
2001 	    sr->sr_mp_head == NULL)) {
2002 		mutex_exit(&sr->sr_lock);
2003 		return (NULL);
2004 	}
2005 	/*
2006 	 * To start with neither SR_READ_DONE is marked nor
2007 	 * the error is set. When we wake up from cv_wait,
2008 	 * following are the possibilities :
2009 	 *
2010 	 *	a) sr_read_error is zero and mblks are queued.
2011 	 *	b) sr_read_error is set to SR_READ_DONE
2012 	 *	   and mblks are queued.
2013 	 *	c) sr_read_error is set to SR_READ_DONE
2014 	 *	   and no mblks.
2015 	 *	d) sr_read_error is set to some error other
2016 	 *	   than SR_READ_DONE.
2017 	 */
2018 
2019 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2020 		sf_stats.ss_empty_waits++;
2021 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2022 	}
2023 	/* Handle (a) and (b) first  - the normal case. */
2024 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2025 	    (sr->sr_mp_head != NULL)) {
2026 		mp = sr->sr_mp_head;
2027 		sr->sr_mp_head = mp->b_next;
2028 		sr->sr_qlen -= MBLKL(mp);
2029 		if (sr->sr_qlen < sr->sr_lowat)
2030 			cv_signal(&sr->sr_cv);
2031 		mutex_exit(&sr->sr_lock);
2032 		mp->b_next = NULL;
2033 		return (mp);
2034 	}
2035 	/* Handle (c) and (d). */
2036 	mutex_exit(&sr->sr_lock);
2037 	return (NULL);
2038 }
2039 
2040 /*
2041  * Reads data from the filesystem and queues it for network processing.
2042  */
2043 void
2044 snf_async_read(snf_req_t *sr)
2045 {
2046 	size_t iosize;
2047 	u_offset_t fileoff;
2048 	u_offset_t size;
2049 	int ret_size;
2050 	int error;
2051 	file_t *fp;
2052 	mblk_t *mp;
2053 	struct vnode *vp;
2054 	int extra = 0;
2055 	int maxblk = 0;
2056 	int wroff = 0;
2057 	struct sonode *so;
2058 
2059 	fp = sr->sr_fp;
2060 	size = sr->sr_file_size;
2061 	fileoff = sr->sr_file_off;
2062 
2063 	/*
2064 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2065 	 */
2066 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2067 	    kcred, NULL, NULL);
2068 
2069 	vp = sr->sr_vp;
2070 	if (vp->v_type == VSOCK) {
2071 		stdata_t *stp;
2072 
2073 		/*
2074 		 * Get the extra space to insert a header and a trailer.
2075 		 */
2076 		so = VTOSO(vp);
2077 		stp = vp->v_stream;
2078 		if (stp == NULL) {
2079 			wroff = so->so_proto_props.sopp_wroff;
2080 			maxblk = so->so_proto_props.sopp_maxblk;
2081 			extra = wroff + so->so_proto_props.sopp_tail;
2082 		} else {
2083 			wroff = (int)(stp->sd_wroff);
2084 			maxblk = (int)(stp->sd_maxblk);
2085 			extra = wroff + (int)(stp->sd_tail);
2086 		}
2087 	}
2088 
2089 	while ((size != 0) && (sr->sr_write_error == 0)) {
2090 
2091 		iosize = (int)MIN(sr->sr_maxpsz, size);
2092 
2093 		/*
2094 		 * For sockets acting as an SSL proxy, we
2095 		 * need to adjust the size to the maximum
2096 		 * SSL record size set in the stream head.
2097 		 *
2098 		 * Socket filters can limit the mblk size,
2099 		 * so limit reads to maxblk if there are
2100 		 * filters present.
2101 		 */
2102 		if (vp->v_type == VSOCK &&
2103 		    (!SOCK_IS_NONSTR(so) &&
2104 		    SOTOTPI(so)->sti_kssl_ctx != NULL) ||
2105 		    (so->so_filter_active > 0 && maxblk != INFPSZ))
2106 			iosize = (int)MIN(iosize, maxblk);
2107 
2108 		if (is_system_labeled()) {
2109 			mp = allocb_cred(iosize + extra, CRED(),
2110 			    curproc->p_pid);
2111 		} else {
2112 			mp = allocb(iosize + extra, BPRI_MED);
2113 		}
2114 		if (mp == NULL) {
2115 			error = EAGAIN;
2116 			break;
2117 		}
2118 
2119 		mp->b_rptr += wroff;
2120 
2121 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2122 
2123 		/* Error or Reached EOF ? */
2124 		if ((error != 0) || (ret_size == 0)) {
2125 			freeb(mp);
2126 			break;
2127 		}
2128 		mp->b_wptr = mp->b_rptr + ret_size;
2129 
2130 		snf_enque(sr, mp);
2131 		size -= ret_size;
2132 		fileoff += ret_size;
2133 	}
2134 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2135 	    kcred, NULL, NULL);
2136 	mutex_enter(&sr->sr_lock);
2137 	sr->sr_read_error = error;
2138 	sr->sr_read_error |= SR_READ_DONE;
2139 	cv_signal(&sr->sr_cv);
2140 	mutex_exit(&sr->sr_lock);
2141 }
2142 
2143 void
2144 snf_async_thread(void)
2145 {
2146 	snf_req_t *sr;
2147 	callb_cpr_t cprinfo;
2148 	clock_t time_left = 1;
2149 
2150 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2151 
2152 	mutex_enter(&snfq->snfq_lock);
2153 	for (;;) {
2154 		/*
2155 		 * If we didn't find a entry, then block until woken up
2156 		 * again and then look through the queues again.
2157 		 */
2158 		while ((sr = snfq->snfq_req_head) == NULL) {
2159 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2160 			if (time_left <= 0) {
2161 				snfq->snfq_svc_threads--;
2162 				CALLB_CPR_EXIT(&cprinfo);
2163 				thread_exit();
2164 				/* NOTREACHED */
2165 			}
2166 			snfq->snfq_idle_cnt++;
2167 
2168 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2169 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2170 			snfq->snfq_idle_cnt--;
2171 
2172 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2173 		}
2174 		snfq->snfq_req_head = sr->sr_next;
2175 		snfq->snfq_req_cnt--;
2176 		mutex_exit(&snfq->snfq_lock);
2177 		snf_async_read(sr);
2178 		mutex_enter(&snfq->snfq_lock);
2179 	}
2180 }
2181 
2182 
2183 snf_req_t *
2184 create_thread(int operation, struct vnode *vp, file_t *fp,
2185     u_offset_t fileoff, u_offset_t size)
2186 {
2187 	snf_req_t *sr;
2188 	stdata_t *stp;
2189 
2190 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2191 
2192 	sr->sr_vp = vp;
2193 	sr->sr_fp = fp;
2194 	stp = vp->v_stream;
2195 
2196 	/*
2197 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2198 	 * stream might be closed before thread returns from snf_async_read.
2199 	 */
2200 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2201 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2202 	} else {
2203 		sr->sr_maxpsz = MAXBSIZE;
2204 	}
2205 
2206 	sr->sr_operation = operation;
2207 	sr->sr_file_off = fileoff;
2208 	sr->sr_file_size = size;
2209 	sr->sr_hiwat = sendfile_req_hiwat;
2210 	sr->sr_lowat = sendfile_req_lowat;
2211 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2212 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2213 	/*
2214 	 * See whether we need another thread for servicing this
2215 	 * request. If there are already enough requests queued
2216 	 * for the threads, create one if not exceeding
2217 	 * snfq_max_threads.
2218 	 */
2219 	mutex_enter(&snfq->snfq_lock);
2220 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2221 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2222 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2223 		    TS_RUN, minclsyspri);
2224 		snfq->snfq_svc_threads++;
2225 	}
2226 	if (snfq->snfq_req_head == NULL) {
2227 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2228 		cv_signal(&snfq->snfq_cv);
2229 	} else {
2230 		snfq->snfq_req_tail->sr_next = sr;
2231 		snfq->snfq_req_tail = sr;
2232 	}
2233 	snfq->snfq_req_cnt++;
2234 	mutex_exit(&snfq->snfq_lock);
2235 	return (sr);
2236 }
2237 
2238 int
2239 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2240     ssize_t *count)
2241 {
2242 	snf_req_t *sr;
2243 	mblk_t *mp;
2244 	int iosize;
2245 	int error = 0;
2246 	short fflag;
2247 	struct vnode *vp;
2248 	int ksize;
2249 	struct nmsghdr msg;
2250 
2251 	ksize = 0;
2252 	*count = 0;
2253 	bzero(&msg, sizeof (msg));
2254 
2255 	vp = fp->f_vnode;
2256 	fflag = fp->f_flag;
2257 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2258 		return (EAGAIN);
2259 
2260 	/*
2261 	 * We check for read error in snf_deque. It has to check
2262 	 * for successful READ_DONE and return NULL, and we might
2263 	 * as well make an additional check there.
2264 	 */
2265 	while ((mp = snf_deque(sr)) != NULL) {
2266 
2267 		if (ISSIG(curthread, JUSTLOOKING)) {
2268 			freeb(mp);
2269 			error = EINTR;
2270 			break;
2271 		}
2272 		iosize = MBLKL(mp);
2273 
2274 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2275 
2276 		if (error != 0) {
2277 			if (mp != NULL)
2278 				freeb(mp);
2279 			break;
2280 		}
2281 		ksize += iosize;
2282 	}
2283 	*count = ksize;
2284 
2285 	mutex_enter(&sr->sr_lock);
2286 	sr->sr_write_error = error;
2287 	/* Look at the big comments on why we cv_signal here. */
2288 	cv_signal(&sr->sr_cv);
2289 
2290 	/* Wait for the reader to complete always. */
2291 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2292 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2293 	}
2294 	/* If there is no write error, check for read error. */
2295 	if (error == 0)
2296 		error = (sr->sr_read_error & ~SR_READ_DONE);
2297 
2298 	if (error != 0) {
2299 		mblk_t *next_mp;
2300 
2301 		mp = sr->sr_mp_head;
2302 		while (mp != NULL) {
2303 			next_mp = mp->b_next;
2304 			mp->b_next = NULL;
2305 			freeb(mp);
2306 			mp = next_mp;
2307 		}
2308 	}
2309 	mutex_exit(&sr->sr_lock);
2310 	kmem_free(sr, sizeof (snf_req_t));
2311 	return (error);
2312 }
2313 
2314 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2315 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2316 
2317 /*
2318  * Maximum no.of elements in the list returned by vpm, including
2319  * NULL for the last entry
2320  */
2321 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2322 
2323 typedef struct {
2324 	unsigned int	snfv_ref;
2325 	frtn_t		snfv_frtn;
2326 	vnode_t		*snfv_vp;
2327 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2328 } snf_vmap_desbinfo;
2329 
2330 typedef struct {
2331 	frtn_t		snfi_frtn;
2332 	caddr_t		snfi_base;
2333 	uint_t		snfi_mapoff;
2334 	size_t		snfi_len;
2335 	vnode_t		*snfi_vp;
2336 } snf_smap_desbinfo;
2337 
2338 /*
2339  * The callback function used for vpm mapped mblks called when the last ref of
2340  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2341  * can be the driver too due to lazy reclaim.
2342  */
2343 void
2344 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2345 {
2346 	ASSERT(snfv->snfv_ref != 0);
2347 	if (atomic_add_32_nv(&snfv->snfv_ref, -1) == 0) {
2348 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2349 		VN_RELE(snfv->snfv_vp);
2350 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2351 	}
2352 }
2353 
2354 /*
2355  * The callback function used for segmap'ped mblks called when the last ref of
2356  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2357  * can be the driver too due to lazy reclaim.
2358  */
2359 void
2360 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2361 {
2362 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2363 		/*
2364 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2365 		 * segmap_kpm as long as the latter never falls back to
2366 		 * "use_segmap_range". (See segmap_getmapflt().)
2367 		 *
2368 		 * Using S_OTHER saves an redundant hat_setref() in
2369 		 * segmap_unlock()
2370 		 */
2371 		(void) segmap_fault(kas.a_hat, segkmap,
2372 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2373 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2374 		    F_SOFTUNLOCK, S_OTHER);
2375 	}
2376 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2377 	VN_RELE(snfi->snfi_vp);
2378 	kmem_free(snfi, sizeof (*snfi));
2379 }
2380 
2381 /*
2382  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2383  * When segmap is used, the mblk contains a segmap slot of no more
2384  * than MAXBSIZE.
2385  *
2386  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2387  * in each iteration and sent by socket_sendmblk until an error occurs or
2388  * the requested size has been transferred. An mblk is esballoca'ed from
2389  * each mapped page and a chain of these mblk is sent to the transport layer.
2390  * vpm will be called to unmap the pages when all mblks have been freed by
2391  * free_func.
2392  *
2393  * At the end of the whole sendfile() operation, we wait till the data from
2394  * the last mblk is ack'ed by the transport before returning so that the
2395  * caller of sendfile() can safely modify the file content.
2396  */
2397 int
2398 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2399     ssize_t *count, boolean_t nowait)
2400 {
2401 	caddr_t base;
2402 	int mapoff;
2403 	vnode_t *vp;
2404 	mblk_t *mp = NULL;
2405 	int chain_size;
2406 	int error;
2407 	clock_t deadlk_wait;
2408 	short fflag;
2409 	int ksize;
2410 	struct vattr va;
2411 	boolean_t dowait = B_FALSE;
2412 	struct nmsghdr msg;
2413 
2414 	vp = fp->f_vnode;
2415 	fflag = fp->f_flag;
2416 	ksize = 0;
2417 	bzero(&msg, sizeof (msg));
2418 
2419 	for (;;) {
2420 		if (ISSIG(curthread, JUSTLOOKING)) {
2421 			error = EINTR;
2422 			break;
2423 		}
2424 
2425 		if (vpm_enable) {
2426 			snf_vmap_desbinfo *snfv;
2427 			mblk_t *nmp;
2428 			int mblk_size;
2429 			int maxsize;
2430 			int i;
2431 
2432 			mapoff = fileoff & PAGEOFFSET;
2433 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2434 
2435 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2436 			    KM_SLEEP);
2437 
2438 			/*
2439 			 * Get vpm mappings for maxsize with read access.
2440 			 * If the pages aren't available yet, we get
2441 			 * DEADLK, so wait and try again a little later using
2442 			 * an increasing wait. We might be here a long time.
2443 			 *
2444 			 * If delay_sig returns EINTR, be sure to exit and
2445 			 * pass it up to the caller.
2446 			 */
2447 			deadlk_wait = 0;
2448 			while ((error = vpm_map_pages(fvp, fileoff,
2449 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2450 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2451 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2452 				if ((error = delay_sig(deadlk_wait)) != 0) {
2453 					break;
2454 				}
2455 			}
2456 			if (error != 0) {
2457 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2458 				error = (error == EINTR) ? EINTR : EIO;
2459 				goto out;
2460 			}
2461 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2462 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2463 
2464 			/* Construct the mblk chain from the page mappings */
2465 			chain_size = 0;
2466 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2467 			    total_size > 0; i++) {
2468 				ASSERT(chain_size < maxsize);
2469 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2470 				    mapoff, total_size);
2471 				nmp = esballoca(
2472 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2473 				    mapoff, mblk_size, BPRI_HI,
2474 				    &snfv->snfv_frtn);
2475 
2476 				/*
2477 				 * We return EAGAIN after unmapping the pages
2478 				 * if we cannot allocate the the head of the
2479 				 * chain. Otherwise, we continue sending the
2480 				 * mblks constructed so far.
2481 				 */
2482 				if (nmp == NULL) {
2483 					if (i == 0) {
2484 						vpm_unmap_pages(snfv->snfv_vml,
2485 						    S_READ);
2486 						kmem_free(snfv,
2487 						    sizeof (snf_vmap_desbinfo));
2488 						error = EAGAIN;
2489 						goto out;
2490 					}
2491 					break;
2492 				}
2493 				/* Mark this dblk with the zero-copy flag */
2494 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2495 				nmp->b_wptr += mblk_size;
2496 				chain_size += mblk_size;
2497 				fileoff += mblk_size;
2498 				total_size -= mblk_size;
2499 				snfv->snfv_ref++;
2500 				mapoff = 0;
2501 				if (i > 0)
2502 					linkb(mp, nmp);
2503 				else
2504 					mp = nmp;
2505 			}
2506 			VN_HOLD(fvp);
2507 			snfv->snfv_vp = fvp;
2508 		} else {
2509 			/* vpm not supported. fallback to segmap */
2510 			snf_smap_desbinfo *snfi;
2511 
2512 			mapoff = fileoff & MAXBOFFSET;
2513 			chain_size = MAXBSIZE - mapoff;
2514 			if (chain_size > total_size)
2515 				chain_size = total_size;
2516 			/*
2517 			 * we don't forcefault because we'll call
2518 			 * segmap_fault(F_SOFTLOCK) next.
2519 			 *
2520 			 * S_READ will get the ref bit set (by either
2521 			 * segmap_getmapflt() or segmap_fault()) and page
2522 			 * shared locked.
2523 			 */
2524 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2525 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2526 
2527 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2528 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2529 			    PAGESIZE)- (mapoff & PAGEMASK);
2530 			/*
2531 			 * We must call segmap_fault() even for segmap_kpm
2532 			 * because that's how error gets returned.
2533 			 * (segmap_getmapflt() never fails but segmap_fault()
2534 			 * does.)
2535 			 *
2536 			 * If the pages aren't available yet, we get
2537 			 * DEADLK, so wait and try again a little later using
2538 			 * an increasing wait. We might be here a long time.
2539 			 *
2540 			 * If delay_sig returns EINTR, be sure to exit and
2541 			 * pass it up to the caller.
2542 			 */
2543 			deadlk_wait = 0;
2544 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2545 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2546 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2547 			    S_READ))) == EDEADLK) {
2548 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2549 				if ((error = delay_sig(deadlk_wait)) != 0) {
2550 					break;
2551 				}
2552 			}
2553 			if (error != 0) {
2554 				(void) segmap_release(segkmap, base, 0);
2555 				kmem_free(snfi, sizeof (*snfi));
2556 				error = (error == EINTR) ? EINTR : EIO;
2557 				goto out;
2558 			}
2559 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2560 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2561 			snfi->snfi_base = base;
2562 			snfi->snfi_mapoff = mapoff;
2563 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2564 			    BPRI_HI, &snfi->snfi_frtn);
2565 
2566 			if (mp == NULL) {
2567 				(void) segmap_fault(kas.a_hat, segkmap,
2568 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2569 				    mapoff) & PAGEMASK), snfi->snfi_len,
2570 				    F_SOFTUNLOCK, S_OTHER);
2571 				(void) segmap_release(segkmap, base, 0);
2572 				kmem_free(snfi, sizeof (*snfi));
2573 				freemsg(mp);
2574 				error = EAGAIN;
2575 				goto out;
2576 			}
2577 			VN_HOLD(fvp);
2578 			snfi->snfi_vp = fvp;
2579 			mp->b_wptr += chain_size;
2580 
2581 			/* Mark this dblk with the zero-copy flag */
2582 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2583 			fileoff += chain_size;
2584 			total_size -= chain_size;
2585 		}
2586 
2587 		if (total_size == 0 && !nowait) {
2588 			ASSERT(!dowait);
2589 			dowait = B_TRUE;
2590 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2591 		}
2592 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2593 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2594 		if (error != 0) {
2595 			/*
2596 			 * mp contains the mblks that were not sent by
2597 			 * socket_sendmblk. Use its size to update *count
2598 			 */
2599 			*count = ksize + (chain_size - msgdsize(mp));
2600 			if (mp != NULL)
2601 				freemsg(mp);
2602 			return (error);
2603 		}
2604 		ksize += chain_size;
2605 		if (total_size == 0)
2606 			goto done;
2607 
2608 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2609 		va.va_mask = AT_SIZE;
2610 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2611 		if (error)
2612 			break;
2613 		/* Read as much as possible. */
2614 		if (fileoff >= va.va_size)
2615 			break;
2616 		if (total_size + fileoff > va.va_size)
2617 			total_size = va.va_size - fileoff;
2618 	}
2619 out:
2620 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2621 done:
2622 	*count = ksize;
2623 	if (dowait) {
2624 		stdata_t *stp;
2625 
2626 		stp = vp->v_stream;
2627 		if (stp == NULL) {
2628 			struct sonode *so;
2629 			so = VTOSO(vp);
2630 			error = so_zcopy_wait(so);
2631 		} else {
2632 			mutex_enter(&stp->sd_lock);
2633 			while (!(stp->sd_flag & STZCNOTIFY)) {
2634 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2635 				    &stp->sd_lock) == 0) {
2636 					error = EINTR;
2637 					break;
2638 				}
2639 			}
2640 			stp->sd_flag &= ~STZCNOTIFY;
2641 			mutex_exit(&stp->sd_lock);
2642 		}
2643 	}
2644 	return (error);
2645 }
2646 
2647 int
2648 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2649     uint_t maxpsz, ssize_t *count)
2650 {
2651 	struct vnode *vp;
2652 	mblk_t *mp;
2653 	int iosize;
2654 	int extra = 0;
2655 	int error;
2656 	short fflag;
2657 	int ksize;
2658 	int ioflag;
2659 	struct uio auio;
2660 	struct iovec aiov;
2661 	struct vattr va;
2662 	int maxblk = 0;
2663 	int wroff = 0;
2664 	struct sonode *so;
2665 	struct nmsghdr msg;
2666 
2667 	vp = fp->f_vnode;
2668 	if (vp->v_type == VSOCK) {
2669 		stdata_t *stp;
2670 
2671 		/*
2672 		 * Get the extra space to insert a header and a trailer.
2673 		 */
2674 		so = VTOSO(vp);
2675 		stp = vp->v_stream;
2676 		if (stp == NULL) {
2677 			wroff = so->so_proto_props.sopp_wroff;
2678 			maxblk = so->so_proto_props.sopp_maxblk;
2679 			extra = wroff + so->so_proto_props.sopp_tail;
2680 		} else {
2681 			wroff = (int)(stp->sd_wroff);
2682 			maxblk = (int)(stp->sd_maxblk);
2683 			extra = wroff + (int)(stp->sd_tail);
2684 		}
2685 	}
2686 	bzero(&msg, sizeof (msg));
2687 	fflag = fp->f_flag;
2688 	ksize = 0;
2689 	auio.uio_iov = &aiov;
2690 	auio.uio_iovcnt = 1;
2691 	auio.uio_segflg = UIO_SYSSPACE;
2692 	auio.uio_llimit = MAXOFFSET_T;
2693 	auio.uio_fmode = fflag;
2694 	auio.uio_extflg = UIO_COPY_CACHED;
2695 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2696 	/* If read sync is not asked for, filter sync flags */
2697 	if ((ioflag & FRSYNC) == 0)
2698 		ioflag &= ~(FSYNC|FDSYNC);
2699 	for (;;) {
2700 		if (ISSIG(curthread, JUSTLOOKING)) {
2701 			error = EINTR;
2702 			break;
2703 		}
2704 		iosize = (int)MIN(maxpsz, size);
2705 
2706 		/*
2707 		 * For sockets acting as an SSL proxy, we
2708 		 * need to adjust the size to the maximum
2709 		 * SSL record size set in the stream head.
2710 		 *
2711 		 * Socket filters can limit the mblk size,
2712 		 * so limit reads to maxblk if there are
2713 		 */
2714 		if (vp->v_type == VSOCK &&
2715 		    (!SOCK_IS_NONSTR(so) &&
2716 		    SOTOTPI(so)->sti_kssl_ctx != NULL) ||
2717 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2718 			iosize = (int)MIN(iosize, maxblk);
2719 
2720 		if (is_system_labeled()) {
2721 			mp = allocb_cred(iosize + extra, CRED(),
2722 			    curproc->p_pid);
2723 		} else {
2724 			mp = allocb(iosize + extra, BPRI_MED);
2725 		}
2726 		if (mp == NULL) {
2727 			error = EAGAIN;
2728 			break;
2729 		}
2730 
2731 		mp->b_rptr += wroff;
2732 
2733 		aiov.iov_base = (caddr_t)mp->b_rptr;
2734 		aiov.iov_len = iosize;
2735 		auio.uio_loffset = fileoff;
2736 		auio.uio_resid = iosize;
2737 
2738 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2739 		iosize -= auio.uio_resid;
2740 
2741 		if (error == EINTR && iosize != 0)
2742 			error = 0;
2743 
2744 		if (error != 0 || iosize == 0) {
2745 			freeb(mp);
2746 			break;
2747 		}
2748 		mp->b_wptr = mp->b_rptr + iosize;
2749 
2750 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2751 
2752 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2753 
2754 		if (error != 0) {
2755 			*count = ksize;
2756 			if (mp != NULL)
2757 				freeb(mp);
2758 			return (error);
2759 		}
2760 		ksize += iosize;
2761 		size -= iosize;
2762 		if (size == 0)
2763 			goto done;
2764 
2765 		fileoff += iosize;
2766 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2767 		va.va_mask = AT_SIZE;
2768 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2769 		if (error)
2770 			break;
2771 		/* Read as much as possible. */
2772 		if (fileoff >= va.va_size)
2773 			size = 0;
2774 		else if (size + fileoff > va.va_size)
2775 			size = va.va_size - fileoff;
2776 	}
2777 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2778 done:
2779 	*count = ksize;
2780 	return (error);
2781 }
2782 
2783 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2784 /*
2785  * Largefile support for 32 bit applications only.
2786  */
2787 int
2788 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2789     ssize32_t *count32)
2790 {
2791 	ssize32_t sfv_len;
2792 	u_offset_t sfv_off, va_size;
2793 	struct vnode *vp, *fvp, *realvp;
2794 	struct vattr va;
2795 	stdata_t *stp;
2796 	ssize_t count = 0;
2797 	int error = 0;
2798 	boolean_t dozcopy = B_FALSE;
2799 	uint_t maxpsz;
2800 
2801 	sfv_len = (ssize32_t)sfv->sfv_len;
2802 	if (sfv_len < 0) {
2803 		error = EINVAL;
2804 		goto out;
2805 	}
2806 
2807 	if (sfv_len == 0) goto out;
2808 
2809 	sfv_off = (u_offset_t)sfv->sfv_off;
2810 
2811 	/* Same checks as in pread */
2812 	if (sfv_off > MAXOFFSET_T) {
2813 		error = EINVAL;
2814 		goto out;
2815 	}
2816 	if (sfv_off + sfv_len > MAXOFFSET_T)
2817 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2818 
2819 	/*
2820 	 * There are no more checks on sfv_len. So, we cast it to
2821 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2822 	 * 32 bit and 64 bit.
2823 	 *
2824 	 * TODO: should do nbl_need_check() like read()?
2825 	 */
2826 	if (sfv_len > sendfile_max_size) {
2827 		sf_stats.ss_file_not_cached++;
2828 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2829 		    &count);
2830 		goto out;
2831 	}
2832 	fvp = rfp->f_vnode;
2833 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2834 		fvp = realvp;
2835 	/*
2836 	 * Grab the lock as a reader to prevent the file size
2837 	 * from changing underneath.
2838 	 */
2839 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2840 	va.va_mask = AT_SIZE;
2841 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2842 	va_size = va.va_size;
2843 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2844 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2845 		goto out;
2846 	}
2847 	/* Read as much as possible. */
2848 	if (sfv_off + sfv_len > va_size)
2849 		sfv_len = va_size - sfv_off;
2850 
2851 	vp = fp->f_vnode;
2852 	stp = vp->v_stream;
2853 	/*
2854 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2855 	 * transfer size is large enough. This prevents performance loss
2856 	 * when the caller sends the file piece by piece.
2857 	 */
2858 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2859 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2860 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2861 		uint_t copyflag;
2862 		copyflag = stp != NULL ? stp->sd_copyflag :
2863 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2864 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2865 			int on = 1;
2866 
2867 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2868 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2869 				dozcopy = B_TRUE;
2870 		} else {
2871 			dozcopy = copyflag & STZCVMSAFE;
2872 		}
2873 	}
2874 	if (dozcopy) {
2875 		sf_stats.ss_file_segmap++;
2876 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2877 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2878 	} else {
2879 		if (vp->v_type == VSOCK && stp == NULL) {
2880 			sonode_t *so = VTOSO(vp);
2881 			maxpsz = so->so_proto_props.sopp_maxpsz;
2882 		} else if (stp != NULL) {
2883 			maxpsz = stp->sd_qn_maxpsz;
2884 		} else {
2885 			maxpsz = maxphys;
2886 		}
2887 
2888 		if (maxpsz == INFPSZ)
2889 			maxpsz = maxphys;
2890 		else
2891 			maxpsz = roundup(maxpsz, MAXBSIZE);
2892 		sf_stats.ss_file_cached++;
2893 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2894 		    maxpsz, &count);
2895 	}
2896 out:
2897 	releasef(sfv->sfv_fd);
2898 	*count32 = (ssize32_t)count;
2899 	return (error);
2900 }
2901 #endif
2902 
2903 #ifdef _SYSCALL32_IMPL
2904 /*
2905  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2906  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2907  */
2908 
2909 ssize_t
2910 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2911 {
2912 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2913 }
2914 
2915 ssize_t
2916 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2917 	caddr32_t name, caddr32_t namelenp)
2918 {
2919 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2920 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2921 }
2922 
2923 ssize_t
2924 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2925 {
2926 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2927 }
2928 
2929 ssize_t
2930 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2931 	caddr32_t name, socklen_t namelen)
2932 {
2933 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2934 	    (void *)(uintptr_t)name, namelen));
2935 }
2936 #endif	/* _SYSCALL32_IMPL */
2937 
2938 /*
2939  * Function wrappers (mostly around the sonode switch) for
2940  * backward compatibility.
2941  */
2942 
2943 int
2944 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2945 {
2946 	return (socket_accept(so, fflag, CRED(), nsop));
2947 }
2948 
2949 int
2950 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2951     int backlog, int flags)
2952 {
2953 	int	error;
2954 
2955 	error = socket_bind(so, name, namelen, flags, CRED());
2956 	if (error == 0 && backlog != 0)
2957 		return (socket_listen(so, backlog, CRED()));
2958 
2959 	return (error);
2960 }
2961 
2962 int
2963 solisten(struct sonode *so, int backlog)
2964 {
2965 	return (socket_listen(so, backlog, CRED()));
2966 }
2967 
2968 int
2969 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2970     int fflag, int flags)
2971 {
2972 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
2973 }
2974 
2975 int
2976 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2977 {
2978 	return (socket_recvmsg(so, msg, uiop, CRED()));
2979 }
2980 
2981 int
2982 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2983 {
2984 	return (socket_sendmsg(so, msg, uiop, CRED()));
2985 }
2986 
2987 int
2988 soshutdown(struct sonode *so, int how)
2989 {
2990 	return (socket_shutdown(so, how, CRED()));
2991 }
2992 
2993 int
2994 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2995     socklen_t *optlenp, int flags)
2996 {
2997 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
2998 	    flags, CRED()));
2999 }
3000 
3001 int
3002 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3003     t_uscalar_t optlen)
3004 {
3005 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3006 	    CRED()));
3007 }
3008 
3009 /*
3010  * Because this is backward compatibility interface it only needs to be
3011  * able to handle the creation of TPI sockfs sockets.
3012  */
3013 struct sonode *
3014 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3015     int *errorp)
3016 {
3017 	struct sonode *so;
3018 
3019 	ASSERT(sp != NULL);
3020 
3021 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3022 	    version, SOCKET_SLEEP, errorp, CRED());
3023 	if (so == NULL) {
3024 		SOCKPARAMS_DEC_REF(sp);
3025 	} else {
3026 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3027 			/* Cannot fail, only bumps so_count */
3028 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3029 		} else {
3030 			socket_destroy(so);
3031 			so = NULL;
3032 		}
3033 	}
3034 	return (so);
3035 }
3036