xref: /titanic_50/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision 2eeaed14a5e2ed9bd811643ad5bffc3510ca0310)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/file.h>
44 #include <sys/user.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/strsun.h>
48 #include <sys/sunddi.h>
49 #include <sys/esunddi.h>
50 #include <sys/flock.h>
51 #include <sys/modctl.h>
52 #include <sys/cmn_err.h>
53 #include <sys/vmsystm.h>
54 #include <sys/policy.h>
55 
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 
59 #include <sys/isa_defs.h>
60 #include <sys/inttypes.h>
61 #include <sys/systm.h>
62 #include <sys/cpuvar.h>
63 #include <sys/filio.h>
64 #include <sys/sendfile.h>
65 #include <sys/ddi.h>
66 #include <vm/seg.h>
67 #include <vm/seg_map.h>
68 #include <vm/seg_kpm.h>
69 #include <fs/sockfs/nl7c.h>
70 
71 #ifdef SOCK_TEST
72 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
73 #else
74 #define	do_useracc	1
75 #endif /* SOCK_TEST */
76 
77 extern int xnet_truncate_print;
78 
79 /*
80  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
81  *	 as there isn't a formal definition of IOV_MAX ???
82  */
83 #define	MSG_MAXIOVLEN	16
84 
85 /*
86  * Kernel component of socket creation.
87  *
88  * The socket library determines which version number to use.
89  * First the library calls this with a NULL devpath. If this fails
90  * to find a transport (using solookup) the library will look in /etc/netconfig
91  * for the appropriate transport. If one is found it will pass in the
92  * devpath for the kernel to use.
93  */
94 int
95 so_socket(int domain, int type, int protocol, char *devpath, int version)
96 {
97 	vnode_t *accessvp;
98 	struct sonode *so;
99 	vnode_t *vp;
100 	struct file *fp;
101 	int fd;
102 	int error;
103 	boolean_t wildcard = B_FALSE;
104 	int saved_error = 0;
105 	int sdomain = domain;
106 
107 	dprint(1, ("so_socket(%d,%d,%d,%p,%d)\n",
108 	    domain, type, protocol, devpath, version));
109 
110 	if (domain == AF_NCA) {
111 		/*
112 		 * The request is for an NCA socket so for NL7C use the
113 		 * INET domain instead and mark NL7C_AF_NCA below.
114 		 */
115 		domain = AF_INET;
116 		/*
117 		 * NL7C is not supported in non-global zones,
118 		 *  we enforce this restriction here.
119 		 */
120 		if (getzoneid() != GLOBAL_ZONEID) {
121 			return (set_errno(ENOTSUP));
122 		}
123 	}
124 
125 	accessvp = solookup(domain, type, protocol, devpath, &error);
126 	if (accessvp == NULL) {
127 		/*
128 		 * If there is either an EPROTONOSUPPORT or EPROTOTYPE error
129 		 * it makes sense doing the wildcard lookup since the
130 		 * protocol might not be in the table.
131 		 */
132 		if (devpath != NULL || protocol == 0 ||
133 		    !(error == EPROTONOSUPPORT || error == EPROTOTYPE))
134 			return (set_errno(error));
135 
136 		saved_error = error;
137 
138 		/*
139 		 * Try wildcard lookup. Never use devpath for wildcards.
140 		 */
141 		accessvp = solookup(domain, type, 0, NULL, &error);
142 		if (accessvp == NULL) {
143 			/*
144 			 * Can't find in kernel table - have library
145 			 * fall back to /etc/netconfig and tell us
146 			 * the devpath (The library will do this if it didn't
147 			 * already pass in a devpath).
148 			 */
149 			if (saved_error != 0)
150 				error = saved_error;
151 			return (set_errno(error));
152 		}
153 		wildcard = B_TRUE;
154 	}
155 
156 	/* Check the device policy */
157 	if ((error = secpolicy_spec_open(CRED(),
158 	    accessvp, FREAD|FWRITE)) != 0) {
159 		return (set_errno(error));
160 	}
161 
162 	if (protocol == IPPROTO_SCTP) {
163 		so = sosctp_create(accessvp, domain, type, protocol, version,
164 		    NULL, &error);
165 	} else if (protocol == PROTO_SDP) {
166 		so = sosdp_create(accessvp, domain, type, protocol, version,
167 		    NULL, &error);
168 	} else {
169 		so = sotpi_create(accessvp, domain, type, protocol, version,
170 		    NULL, &error);
171 	}
172 	if (so == NULL) {
173 		return (set_errno(error));
174 	}
175 	if (sdomain == AF_NCA && domain == AF_INET) {
176 		so->so_nl7c_flags = NL7C_AF_NCA;
177 	}
178 	vp = SOTOV(so);
179 
180 	if (wildcard) {
181 		/*
182 		 * Issue SO_PROTOTYPE setsockopt.
183 		 */
184 		error = SOP_SETSOCKOPT(so, SOL_SOCKET, SO_PROTOTYPE,
185 		    &protocol,
186 		    (t_uscalar_t)sizeof (protocol));
187 		if (error) {
188 			(void) VOP_CLOSE(vp, 0, 1, 0, CRED(), NULL);
189 			VN_RELE(vp);
190 			/*
191 			 * Setsockopt often fails with ENOPROTOOPT but socket()
192 			 * should fail with EPROTONOSUPPORT/EPROTOTYPE.
193 			 */
194 			if (saved_error != 0 && error == ENOPROTOOPT)
195 				error = saved_error;
196 			else
197 				error = EPROTONOSUPPORT;
198 			return (set_errno(error));
199 		}
200 	}
201 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
202 		(void) VOP_CLOSE(vp, 0, 1, 0, CRED(), NULL);
203 		VN_RELE(vp);
204 		return (set_errno(error));
205 	}
206 
207 	/*
208 	 * Now fill in the entries that falloc reserved
209 	 */
210 	mutex_exit(&fp->f_tlock);
211 	setf(fd, fp);
212 
213 	return (fd);
214 }
215 
216 /*
217  * Map from a file descriptor to a socket node.
218  * Returns with the file descriptor held i.e. the caller has to
219  * use releasef when done with the file descriptor.
220  */
221 struct sonode *
222 getsonode(int sock, int *errorp, file_t **fpp)
223 {
224 	file_t *fp;
225 	vnode_t *vp;
226 	struct sonode *so;
227 
228 	if ((fp = getf(sock)) == NULL) {
229 		*errorp = EBADF;
230 		eprintline(*errorp);
231 		return (NULL);
232 	}
233 	vp = fp->f_vnode;
234 	/* Check if it is a socket */
235 	if (vp->v_type != VSOCK) {
236 		releasef(sock);
237 		*errorp = ENOTSOCK;
238 		eprintline(*errorp);
239 		return (NULL);
240 	}
241 	/*
242 	 * Use the stream head to find the real socket vnode.
243 	 * This is needed when namefs sits above sockfs.
244 	 */
245 	if (vp->v_stream) {
246 		ASSERT(vp->v_stream->sd_vnode);
247 		vp = vp->v_stream->sd_vnode;
248 
249 		so = VTOSO(vp);
250 		if (so->so_version == SOV_STREAM) {
251 			releasef(sock);
252 			*errorp = ENOTSOCK;
253 			eprintsoline(so, *errorp);
254 			return (NULL);
255 		}
256 	} else {
257 		so = VTOSO(vp);
258 	}
259 	if (fpp)
260 		*fpp = fp;
261 	return (so);
262 }
263 
264 /*
265  * Allocate and copyin a sockaddr.
266  * Ensures NULL termination for AF_UNIX addresses by extending them
267  * with one NULL byte if need be. Verifies that the length is not
268  * excessive to prevent an application from consuming all of kernel
269  * memory. Returns NULL when an error occurred.
270  */
271 static struct sockaddr *
272 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
273 	    int *errorp)
274 {
275 	char	*faddr;
276 	size_t	namelen = (size_t)*namelenp;
277 
278 	ASSERT(namelen != 0);
279 	if (namelen > SO_MAXARGSIZE) {
280 		*errorp = EINVAL;
281 		eprintsoline(so, *errorp);
282 		return (NULL);
283 	}
284 
285 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
286 	if (copyin(name, faddr, namelen)) {
287 		kmem_free(faddr, namelen);
288 		*errorp = EFAULT;
289 		eprintsoline(so, *errorp);
290 		return (NULL);
291 	}
292 
293 	/*
294 	 * Add space for NULL termination if needed.
295 	 * Do a quick check if the last byte is NUL.
296 	 */
297 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
298 		/* Check if there is any NULL termination */
299 		size_t	i;
300 		int foundnull = 0;
301 
302 		for (i = sizeof (name->sa_family); i < namelen; i++) {
303 			if (faddr[i] == '\0') {
304 				foundnull = 1;
305 				break;
306 			}
307 		}
308 		if (!foundnull) {
309 			/* Add extra byte for NUL padding */
310 			char *nfaddr;
311 
312 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
313 			bcopy(faddr, nfaddr, namelen);
314 			kmem_free(faddr, namelen);
315 
316 			/* NUL terminate */
317 			nfaddr[namelen] = '\0';
318 			namelen++;
319 			ASSERT((socklen_t)namelen == namelen);
320 			*namelenp = (socklen_t)namelen;
321 			faddr = nfaddr;
322 		}
323 	}
324 	return ((struct sockaddr *)faddr);
325 }
326 
327 /*
328  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
329  */
330 static int
331 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
332 		void *kaddr, socklen_t klen)
333 {
334 	if (uaddr != NULL) {
335 		if (ulen > klen)
336 			ulen = klen;
337 
338 		if (ulen != 0) {
339 			if (copyout(kaddr, uaddr, ulen))
340 				return (EFAULT);
341 		}
342 	} else
343 		ulen = 0;
344 
345 	if (ulenp != NULL) {
346 		if (copyout(&ulen, ulenp, sizeof (ulen)))
347 			return (EFAULT);
348 	}
349 	return (0);
350 }
351 
352 /*
353  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
354  * If klen is greater than ulen it still uses the non-truncated
355  * klen to update ulenp.
356  */
357 static int
358 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
359 		void *kaddr, socklen_t klen)
360 {
361 	if (uaddr != NULL) {
362 		if (ulen >= klen)
363 			ulen = klen;
364 		else if (ulen != 0 && xnet_truncate_print) {
365 			printf("sockfs: truncating copyout of address using "
366 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
367 			    curproc->p_pid, klen, ulen);
368 		}
369 
370 		if (ulen != 0) {
371 			if (copyout(kaddr, uaddr, ulen))
372 				return (EFAULT);
373 		} else
374 			klen = 0;
375 	} else
376 		klen = 0;
377 
378 	if (ulenp != NULL) {
379 		if (copyout(&klen, ulenp, sizeof (klen)))
380 			return (EFAULT);
381 	}
382 	return (0);
383 }
384 
385 /*
386  * The socketpair() code in libsocket creates two sockets (using
387  * the /etc/netconfig fallback if needed) before calling this routine
388  * to connect the two sockets together.
389  *
390  * For a SOCK_STREAM socketpair a listener is needed - in that case this
391  * routine will create a new file descriptor as part of accepting the
392  * connection. The library socketpair() will check if svs[2] has changed
393  * in which case it will close the changed fd.
394  *
395  * Note that this code could use the TPI feature of accepting the connection
396  * on the listening endpoint. However, that would require significant changes
397  * to soaccept.
398  */
399 int
400 so_socketpair(int sv[2])
401 {
402 	int svs[2];
403 	struct sonode *so1, *so2;
404 	int error;
405 	struct sockaddr_ux *name;
406 	size_t namelen;
407 
408 	dprint(1, ("so_socketpair(%p)\n", sv));
409 
410 	error = useracc(sv, sizeof (svs), B_WRITE);
411 	if (error && do_useracc)
412 		return (set_errno(EFAULT));
413 
414 	if (copyin(sv, svs, sizeof (svs)))
415 		return (set_errno(EFAULT));
416 
417 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
418 		return (set_errno(error));
419 
420 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
421 		releasef(svs[0]);
422 		return (set_errno(error));
423 	}
424 
425 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
426 		error = EOPNOTSUPP;
427 		goto done;
428 	}
429 
430 	/*
431 	 * The code below makes assumptions about the "sockfs" implementation.
432 	 * So make sure that the correct implementation is really used.
433 	 */
434 	ASSERT(so1->so_ops == &sotpi_sonodeops);
435 	ASSERT(so2->so_ops == &sotpi_sonodeops);
436 
437 	if (so1->so_type == SOCK_DGRAM) {
438 		/*
439 		 * Bind both sockets and connect them with each other.
440 		 * Need to allocate name/namelen for soconnect.
441 		 */
442 		error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC);
443 		if (error) {
444 			eprintsoline(so1, error);
445 			goto done;
446 		}
447 		error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC);
448 		if (error) {
449 			eprintsoline(so2, error);
450 			goto done;
451 		}
452 		namelen = sizeof (struct sockaddr_ux);
453 		name = kmem_alloc(namelen, KM_SLEEP);
454 		name->sou_family = AF_UNIX;
455 		name->sou_addr = so2->so_ux_laddr;
456 		error = SOP_CONNECT(so1,
457 		    (struct sockaddr *)name,
458 		    (socklen_t)namelen,
459 		    0, _SOCONNECT_NOXLATE);
460 		if (error) {
461 			kmem_free(name, namelen);
462 			eprintsoline(so1, error);
463 			goto done;
464 		}
465 		name->sou_addr = so1->so_ux_laddr;
466 		error = SOP_CONNECT(so2,
467 		    (struct sockaddr *)name,
468 		    (socklen_t)namelen,
469 		    0, _SOCONNECT_NOXLATE);
470 		kmem_free(name, namelen);
471 		if (error) {
472 			eprintsoline(so2, error);
473 			goto done;
474 		}
475 		releasef(svs[0]);
476 		releasef(svs[1]);
477 	} else {
478 		/*
479 		 * Bind both sockets, with so1 being a listener.
480 		 * Connect so2 to so1 - nonblocking to avoid waiting for
481 		 * soaccept to complete.
482 		 * Accept a connection on so1. Pass out the new fd as sv[0].
483 		 * The library will detect the changed fd and close
484 		 * the original one.
485 		 */
486 		struct sonode *nso;
487 		struct vnode *nvp;
488 		struct file *nfp;
489 		int nfd;
490 
491 		/*
492 		 * We could simply call SOP_LISTEN() here (which would do the
493 		 * binding automatically) if the code didn't rely on passing
494 		 * _SOBIND_NOXLATE to the TPI implementation of SOP_BIND().
495 		 */
496 		error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC|_SOBIND_NOXLATE|
497 		    _SOBIND_LISTEN|_SOBIND_SOCKETPAIR);
498 		if (error) {
499 			eprintsoline(so1, error);
500 			goto done;
501 		}
502 		error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC);
503 		if (error) {
504 			eprintsoline(so2, error);
505 			goto done;
506 		}
507 
508 		namelen = sizeof (struct sockaddr_ux);
509 		name = kmem_alloc(namelen, KM_SLEEP);
510 		name->sou_family = AF_UNIX;
511 		name->sou_addr = so1->so_ux_laddr;
512 		error = SOP_CONNECT(so2,
513 		    (struct sockaddr *)name,
514 		    (socklen_t)namelen,
515 		    FNONBLOCK, _SOCONNECT_NOXLATE);
516 		kmem_free(name, namelen);
517 		if (error) {
518 			if (error != EINPROGRESS) {
519 				eprintsoline(so2, error);
520 				goto done;
521 			}
522 		}
523 
524 		error = SOP_ACCEPT(so1, 0, &nso);
525 		if (error) {
526 			eprintsoline(so1, error);
527 			goto done;
528 		}
529 
530 		/* wait for so2 being SS_CONNECTED ignoring signals */
531 		mutex_enter(&so2->so_lock);
532 		error = sowaitconnected(so2, 0, 1);
533 		mutex_exit(&so2->so_lock);
534 		nvp = SOTOV(nso);
535 		if (error != 0) {
536 			(void) VOP_CLOSE(nvp, 0, 1, 0, CRED(), NULL);
537 			VN_RELE(nvp);
538 			eprintsoline(so2, error);
539 			goto done;
540 		}
541 
542 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
543 			(void) VOP_CLOSE(nvp, 0, 1, 0, CRED(), NULL);
544 			VN_RELE(nvp);
545 			eprintsoline(nso, error);
546 			goto done;
547 		}
548 		/*
549 		 * fill in the entries that falloc reserved
550 		 */
551 		mutex_exit(&nfp->f_tlock);
552 		setf(nfd, nfp);
553 
554 		releasef(svs[0]);
555 		releasef(svs[1]);
556 		svs[0] = nfd;
557 
558 		/*
559 		 * The socketpair library routine will close the original
560 		 * svs[0] when this code passes out a different file
561 		 * descriptor.
562 		 */
563 		if (copyout(svs, sv, sizeof (svs))) {
564 			(void) closeandsetf(nfd, NULL);
565 			eprintline(EFAULT);
566 			return (set_errno(EFAULT));
567 		}
568 	}
569 	return (0);
570 
571 done:
572 	releasef(svs[0]);
573 	releasef(svs[1]);
574 	return (set_errno(error));
575 }
576 
577 int
578 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
579 {
580 	struct sonode *so;
581 	int error;
582 
583 	dprint(1, ("bind(%d, %p, %d)\n",
584 	    sock, name, namelen));
585 
586 	if ((so = getsonode(sock, &error, NULL)) == NULL)
587 		return (set_errno(error));
588 
589 	/* Allocate and copyin name */
590 	/*
591 	 * X/Open test does not expect EFAULT with NULL name and non-zero
592 	 * namelen.
593 	 */
594 	if (name != NULL && namelen != 0) {
595 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
596 		name = copyin_name(so, name, &namelen, &error);
597 		if (name == NULL) {
598 			releasef(sock);
599 			return (set_errno(error));
600 		}
601 	} else {
602 		name = NULL;
603 		namelen = 0;
604 	}
605 
606 	switch (version) {
607 	default:
608 		error = SOP_BIND(so, name, namelen, 0);
609 		break;
610 	case SOV_XPG4_2:
611 		error = SOP_BIND(so, name, namelen, _SOBIND_XPG4_2);
612 		break;
613 	case SOV_SOCKBSD:
614 		error = SOP_BIND(so, name, namelen, _SOBIND_SOCKBSD);
615 		break;
616 	}
617 done:
618 	releasef(sock);
619 	if (name != NULL)
620 		kmem_free(name, (size_t)namelen);
621 
622 	if (error)
623 		return (set_errno(error));
624 	return (0);
625 }
626 
627 /* ARGSUSED2 */
628 int
629 listen(int sock, int backlog, int version)
630 {
631 	struct sonode *so;
632 	int error;
633 
634 	dprint(1, ("listen(%d, %d)\n",
635 	    sock, backlog));
636 
637 	if ((so = getsonode(sock, &error, NULL)) == NULL)
638 		return (set_errno(error));
639 
640 	error = SOP_LISTEN(so, backlog);
641 
642 	releasef(sock);
643 	if (error)
644 		return (set_errno(error));
645 	return (0);
646 }
647 
648 /*ARGSUSED3*/
649 int
650 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
651 {
652 	struct sonode *so;
653 	file_t *fp;
654 	int error;
655 	socklen_t namelen;
656 	struct sonode *nso;
657 	struct vnode *nvp;
658 	struct file *nfp;
659 	int nfd;
660 
661 	dprint(1, ("accept(%d, %p, %p)\n",
662 	    sock, name, namelenp));
663 
664 	if ((so = getsonode(sock, &error, &fp)) == NULL)
665 		return (set_errno(error));
666 
667 	if (name != NULL) {
668 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
669 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
670 			releasef(sock);
671 			return (set_errno(EFAULT));
672 		}
673 		if (namelen != 0) {
674 			error = useracc(name, (size_t)namelen, B_WRITE);
675 			if (error && do_useracc) {
676 				releasef(sock);
677 				return (set_errno(EFAULT));
678 			}
679 		} else
680 			name = NULL;
681 	} else {
682 		namelen = 0;
683 	}
684 
685 	/*
686 	 * Allocate the user fd before SOP_ACCEPT() in order to
687 	 * catch EMFILE errors before calling SOP_ACCEPT().
688 	 */
689 	if ((nfd = ufalloc(0)) == -1) {
690 		eprintsoline(so, EMFILE);
691 		releasef(sock);
692 		return (set_errno(EMFILE));
693 	}
694 	error = SOP_ACCEPT(so, fp->f_flag, &nso);
695 	releasef(sock);
696 	if (error) {
697 		setf(nfd, NULL);
698 		return (set_errno(error));
699 	}
700 
701 	nvp = SOTOV(nso);
702 
703 	/*
704 	 * so_faddr_sa can not go away even though we are not holding so_lock.
705 	 * However, in theory its content could change from underneath us.
706 	 * But this is not possible in practice since it can only
707 	 * change due to either some socket system call
708 	 * or due to a T_CONN_CON being received from the stream head.
709 	 * Since the falloc/setf have not yet been done no thread
710 	 * can do any system call on nso and T_CONN_CON can not arrive
711 	 * on a socket that is already connected.
712 	 * Thus there is no reason to hold so_lock here.
713 	 *
714 	 * SOP_ACCEPT() is required to have set the valid bit for the faddr,
715 	 * but it could be instantly cleared by a disconnect from the transport.
716 	 * For that reason we ignore it here.
717 	 */
718 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
719 	error = copyout_name(name, namelen, namelenp,
720 	    nso->so_faddr_sa, (socklen_t)nso->so_faddr_len);
721 	if (error) {
722 		setf(nfd, NULL);
723 		(void) VOP_CLOSE(nvp, 0, 1, 0, CRED(), NULL);
724 		VN_RELE(nvp);
725 		return (set_errno(error));
726 	}
727 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
728 		setf(nfd, NULL);
729 		(void) VOP_CLOSE(nvp, 0, 1, 0, CRED(), NULL);
730 		VN_RELE(nvp);
731 		eprintsoline(so, error);
732 		return (set_errno(error));
733 	}
734 	/*
735 	 * fill in the entries that falloc reserved
736 	 */
737 	nfp->f_vnode = nvp;
738 	mutex_exit(&nfp->f_tlock);
739 	setf(nfd, nfp);
740 
741 	/*
742 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
743 	 */
744 	if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) {
745 		uint_t oflag = nfp->f_flag;
746 		int arg = 0;
747 
748 		if (so->so_state & SS_NONBLOCK)
749 			arg |= FNONBLOCK;
750 		else if (so->so_state & SS_NDELAY)
751 			arg |= FNDELAY;
752 
753 		/*
754 		 * This code is a simplification of the F_SETFL code in fcntl()
755 		 * Ignore any errors from VOP_SETFL.
756 		 */
757 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
758 		    != 0) {
759 			eprintsoline(so, error);
760 			error = 0;
761 		} else {
762 			mutex_enter(&nfp->f_tlock);
763 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
764 			nfp->f_flag |= arg;
765 			mutex_exit(&nfp->f_tlock);
766 		}
767 	}
768 	return (nfd);
769 }
770 
771 int
772 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
773 {
774 	struct sonode *so;
775 	file_t *fp;
776 	int error;
777 
778 	dprint(1, ("connect(%d, %p, %d)\n",
779 	    sock, name, namelen));
780 
781 	if ((so = getsonode(sock, &error, &fp)) == NULL)
782 		return (set_errno(error));
783 
784 	/* Allocate and copyin name */
785 	if (namelen != 0) {
786 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
787 		name = copyin_name(so, name, &namelen, &error);
788 		if (name == NULL) {
789 			releasef(sock);
790 			return (set_errno(error));
791 		}
792 	} else
793 		name = NULL;
794 
795 	error = SOP_CONNECT(so, name, namelen, fp->f_flag,
796 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2);
797 	releasef(sock);
798 	if (name)
799 		kmem_free(name, (size_t)namelen);
800 	if (error)
801 		return (set_errno(error));
802 	return (0);
803 }
804 
805 /*ARGSUSED2*/
806 int
807 shutdown(int sock, int how, int version)
808 {
809 	struct sonode *so;
810 	int error;
811 
812 	dprint(1, ("shutdown(%d, %d)\n",
813 	    sock, how));
814 
815 	if ((so = getsonode(sock, &error, NULL)) == NULL)
816 		return (set_errno(error));
817 
818 	error = SOP_SHUTDOWN(so, how);
819 
820 	releasef(sock);
821 	if (error)
822 		return (set_errno(error));
823 	return (0);
824 }
825 
826 /*
827  * Common receive routine.
828  */
829 static ssize_t
830 recvit(int sock,
831 	struct nmsghdr *msg,
832 	struct uio *uiop,
833 	int flags,
834 	socklen_t *namelenp,
835 	socklen_t *controllenp,
836 	int *flagsp)
837 {
838 	struct sonode *so;
839 	file_t *fp;
840 	void *name;
841 	socklen_t namelen;
842 	void *control;
843 	socklen_t controllen;
844 	ssize_t len;
845 	int error;
846 
847 	if ((so = getsonode(sock, &error, &fp)) == NULL)
848 		return (set_errno(error));
849 
850 	len = uiop->uio_resid;
851 	uiop->uio_fmode = fp->f_flag;
852 	uiop->uio_extflg = UIO_COPY_CACHED;
853 
854 	name = msg->msg_name;
855 	namelen = msg->msg_namelen;
856 	control = msg->msg_control;
857 	controllen = msg->msg_controllen;
858 
859 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
860 	    MSG_DONTWAIT | MSG_XPG4_2);
861 
862 	error = SOP_RECVMSG(so, msg, uiop);
863 	if (error) {
864 		releasef(sock);
865 		return (set_errno(error));
866 	}
867 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
868 	so_update_attrs(so, SOACC);
869 	releasef(sock);
870 
871 	error = copyout_name(name, namelen, namelenp,
872 	    msg->msg_name, msg->msg_namelen);
873 	if (error)
874 		goto err;
875 
876 	if (flagsp != NULL) {
877 		/*
878 		 * Clear internal flag.
879 		 */
880 		msg->msg_flags &= ~MSG_XPG4_2;
881 
882 		/*
883 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
884 		 * when controllen is zero and there is control data to
885 		 * copy out.
886 		 */
887 		if (controllen != 0 &&
888 		    (msg->msg_controllen > controllen || control == NULL)) {
889 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
890 			    msg->msg_controllen, controllen, control));
891 
892 			msg->msg_flags |= MSG_CTRUNC;
893 		}
894 		if (copyout(&msg->msg_flags, flagsp,
895 		    sizeof (msg->msg_flags))) {
896 			error = EFAULT;
897 			goto err;
898 		}
899 	}
900 	/*
901 	 * Note: This MUST be done last. There can be no "goto err" after this
902 	 * point since it could make so_closefds run twice on some part
903 	 * of the file descriptor array.
904 	 */
905 	if (controllen != 0) {
906 		if (!(flags & MSG_XPG4_2)) {
907 			/*
908 			 * Good old msg_accrights can only return a multiple
909 			 * of 4 bytes.
910 			 */
911 			controllen &= ~((int)sizeof (uint32_t) - 1);
912 		}
913 		error = copyout_arg(control, controllen, controllenp,
914 		    msg->msg_control, msg->msg_controllen);
915 		if (error)
916 			goto err;
917 
918 		if (msg->msg_controllen > controllen || control == NULL) {
919 			if (control == NULL)
920 				controllen = 0;
921 			so_closefds(msg->msg_control, msg->msg_controllen,
922 			    !(flags & MSG_XPG4_2), controllen);
923 		}
924 	}
925 	if (msg->msg_namelen != 0)
926 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
927 	if (msg->msg_controllen != 0)
928 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
929 	return (len - uiop->uio_resid);
930 
931 err:
932 	/*
933 	 * If we fail and the control part contains file descriptors
934 	 * we have to close the fd's.
935 	 */
936 	if (msg->msg_controllen != 0)
937 		so_closefds(msg->msg_control, msg->msg_controllen,
938 		    !(flags & MSG_XPG4_2), 0);
939 	if (msg->msg_namelen != 0)
940 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
941 	if (msg->msg_controllen != 0)
942 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
943 	return (set_errno(error));
944 }
945 
946 /*
947  * Native system call
948  */
949 ssize_t
950 recv(int sock, void *buffer, size_t len, int flags)
951 {
952 	struct nmsghdr lmsg;
953 	struct uio auio;
954 	struct iovec aiov[1];
955 
956 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
957 	    sock, buffer, len, flags));
958 
959 	if ((ssize_t)len < 0) {
960 		return (set_errno(EINVAL));
961 	}
962 
963 	aiov[0].iov_base = buffer;
964 	aiov[0].iov_len = len;
965 	auio.uio_loffset = 0;
966 	auio.uio_iov = aiov;
967 	auio.uio_iovcnt = 1;
968 	auio.uio_resid = len;
969 	auio.uio_segflg = UIO_USERSPACE;
970 	auio.uio_limit = 0;
971 
972 	lmsg.msg_namelen = 0;
973 	lmsg.msg_controllen = 0;
974 	lmsg.msg_flags = 0;
975 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
976 }
977 
978 ssize_t
979 recvfrom(int sock, void *buffer, size_t len, int flags,
980 	struct sockaddr *name, socklen_t *namelenp)
981 {
982 	struct nmsghdr lmsg;
983 	struct uio auio;
984 	struct iovec aiov[1];
985 
986 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
987 	    sock, buffer, len, flags, name, namelenp));
988 
989 	if ((ssize_t)len < 0) {
990 		return (set_errno(EINVAL));
991 	}
992 
993 	aiov[0].iov_base = buffer;
994 	aiov[0].iov_len = len;
995 	auio.uio_loffset = 0;
996 	auio.uio_iov = aiov;
997 	auio.uio_iovcnt = 1;
998 	auio.uio_resid = len;
999 	auio.uio_segflg = UIO_USERSPACE;
1000 	auio.uio_limit = 0;
1001 
1002 	lmsg.msg_name = (char *)name;
1003 	if (namelenp != NULL) {
1004 		if (copyin(namelenp, &lmsg.msg_namelen,
1005 		    sizeof (lmsg.msg_namelen)))
1006 			return (set_errno(EFAULT));
1007 	} else {
1008 		lmsg.msg_namelen = 0;
1009 	}
1010 	lmsg.msg_controllen = 0;
1011 	lmsg.msg_flags = 0;
1012 
1013 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1014 }
1015 
1016 /*
1017  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1018  * struct omsghdr or struct nmsghdr.
1019  */
1020 ssize_t
1021 recvmsg(int sock, struct nmsghdr *msg, int flags)
1022 {
1023 	STRUCT_DECL(nmsghdr, u_lmsg);
1024 	STRUCT_HANDLE(nmsghdr, umsgptr);
1025 	struct nmsghdr lmsg;
1026 	struct uio auio;
1027 	struct iovec aiov[MSG_MAXIOVLEN];
1028 	int iovcnt;
1029 	ssize_t len;
1030 	int i;
1031 	int *flagsp;
1032 	model_t	model;
1033 
1034 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1035 	    sock, msg, flags));
1036 
1037 	model = get_udatamodel();
1038 	STRUCT_INIT(u_lmsg, model);
1039 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1040 
1041 	if (flags & MSG_XPG4_2) {
1042 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1043 			return (set_errno(EFAULT));
1044 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1045 	} else {
1046 		/*
1047 		 * Assumes that nmsghdr and omsghdr are identically shaped
1048 		 * except for the added msg_flags field.
1049 		 */
1050 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1051 		    SIZEOF_STRUCT(omsghdr, model)))
1052 			return (set_errno(EFAULT));
1053 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1054 		flagsp = NULL;
1055 	}
1056 
1057 	/*
1058 	 * Code below us will kmem_alloc memory and hang it
1059 	 * off msg_control and msg_name fields. This forces
1060 	 * us to copy the structure to its native form.
1061 	 */
1062 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1063 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1064 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1065 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1066 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1067 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1068 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1069 
1070 	iovcnt = lmsg.msg_iovlen;
1071 
1072 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1073 		return (set_errno(EMSGSIZE));
1074 	}
1075 
1076 #ifdef _SYSCALL32_IMPL
1077 	/*
1078 	 * 32-bit callers need to have their iovec expanded, while ensuring
1079 	 * that they can't move more than 2Gbytes of data in a single call.
1080 	 */
1081 	if (model == DATAMODEL_ILP32) {
1082 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1083 		ssize32_t count32;
1084 
1085 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1086 		    iovcnt * sizeof (struct iovec32)))
1087 			return (set_errno(EFAULT));
1088 
1089 		count32 = 0;
1090 		for (i = 0; i < iovcnt; i++) {
1091 			ssize32_t iovlen32;
1092 
1093 			iovlen32 = aiov32[i].iov_len;
1094 			count32 += iovlen32;
1095 			if (iovlen32 < 0 || count32 < 0)
1096 				return (set_errno(EINVAL));
1097 			aiov[i].iov_len = iovlen32;
1098 			aiov[i].iov_base =
1099 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1100 		}
1101 	} else
1102 #endif /* _SYSCALL32_IMPL */
1103 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1104 		return (set_errno(EFAULT));
1105 	}
1106 	len = 0;
1107 	for (i = 0; i < iovcnt; i++) {
1108 		ssize_t iovlen = aiov[i].iov_len;
1109 		len += iovlen;
1110 		if (iovlen < 0 || len < 0) {
1111 			return (set_errno(EINVAL));
1112 		}
1113 	}
1114 	auio.uio_loffset = 0;
1115 	auio.uio_iov = aiov;
1116 	auio.uio_iovcnt = iovcnt;
1117 	auio.uio_resid = len;
1118 	auio.uio_segflg = UIO_USERSPACE;
1119 	auio.uio_limit = 0;
1120 
1121 	if (lmsg.msg_control != NULL &&
1122 	    (do_useracc == 0 ||
1123 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1124 	    B_WRITE) != 0)) {
1125 		return (set_errno(EFAULT));
1126 	}
1127 
1128 	return (recvit(sock, &lmsg, &auio, flags,
1129 	    STRUCT_FADDR(umsgptr, msg_namelen),
1130 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1131 }
1132 
1133 /*
1134  * Common send function.
1135  */
1136 static ssize_t
1137 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1138 {
1139 	struct sonode *so;
1140 	file_t *fp;
1141 	void *name;
1142 	socklen_t namelen;
1143 	void *control;
1144 	socklen_t controllen;
1145 	ssize_t len;
1146 	int error;
1147 
1148 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1149 		return (set_errno(error));
1150 
1151 	uiop->uio_fmode = fp->f_flag;
1152 
1153 	if (so->so_family == AF_UNIX)
1154 		uiop->uio_extflg = UIO_COPY_CACHED;
1155 	else
1156 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1157 
1158 	/* Allocate and copyin name and control */
1159 	name = msg->msg_name;
1160 	namelen = msg->msg_namelen;
1161 	if (name != NULL && namelen != 0) {
1162 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1163 		name = copyin_name(so,
1164 		    (struct sockaddr *)name,
1165 		    &namelen, &error);
1166 		if (name == NULL)
1167 			goto done3;
1168 		/* copyin_name null terminates addresses for AF_UNIX */
1169 		msg->msg_namelen = namelen;
1170 		msg->msg_name = name;
1171 	} else {
1172 		msg->msg_name = name = NULL;
1173 		msg->msg_namelen = namelen = 0;
1174 	}
1175 
1176 	control = msg->msg_control;
1177 	controllen = msg->msg_controllen;
1178 	if ((control != NULL) && (controllen != 0)) {
1179 		/*
1180 		 * Verify that the length is not excessive to prevent
1181 		 * an application from consuming all of kernel memory.
1182 		 */
1183 		if (controllen > SO_MAXARGSIZE) {
1184 			error = EINVAL;
1185 			goto done2;
1186 		}
1187 		control = kmem_alloc(controllen, KM_SLEEP);
1188 
1189 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1190 		if (copyin(msg->msg_control, control, controllen)) {
1191 			error = EFAULT;
1192 			goto done1;
1193 		}
1194 		msg->msg_control = control;
1195 	} else {
1196 		msg->msg_control = control = NULL;
1197 		msg->msg_controllen = controllen = 0;
1198 	}
1199 
1200 	len = uiop->uio_resid;
1201 	msg->msg_flags = flags;
1202 
1203 	error = SOP_SENDMSG(so, msg, uiop);
1204 done1:
1205 	if (control != NULL)
1206 		kmem_free(control, controllen);
1207 done2:
1208 	if (name != NULL)
1209 		kmem_free(name, namelen);
1210 done3:
1211 	if (error != 0) {
1212 		releasef(sock);
1213 		return (set_errno(error));
1214 	}
1215 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1216 	so_update_attrs(so, SOMOD);
1217 	releasef(sock);
1218 	return (len - uiop->uio_resid);
1219 }
1220 
1221 /*
1222  * Native system call
1223  */
1224 ssize_t
1225 send(int sock, void *buffer, size_t len, int flags)
1226 {
1227 	struct nmsghdr lmsg;
1228 	struct uio auio;
1229 	struct iovec aiov[1];
1230 
1231 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1232 	    sock, buffer, len, flags));
1233 
1234 	if ((ssize_t)len < 0) {
1235 		return (set_errno(EINVAL));
1236 	}
1237 
1238 	aiov[0].iov_base = buffer;
1239 	aiov[0].iov_len = len;
1240 	auio.uio_loffset = 0;
1241 	auio.uio_iov = aiov;
1242 	auio.uio_iovcnt = 1;
1243 	auio.uio_resid = len;
1244 	auio.uio_segflg = UIO_USERSPACE;
1245 	auio.uio_limit = 0;
1246 
1247 	lmsg.msg_name = NULL;
1248 	lmsg.msg_control = NULL;
1249 	if (!(flags & MSG_XPG4_2)) {
1250 		/*
1251 		 * In order to be compatible with the libsocket/sockmod
1252 		 * implementation we set EOR for all send* calls.
1253 		 */
1254 		flags |= MSG_EOR;
1255 	}
1256 	return (sendit(sock, &lmsg, &auio, flags));
1257 }
1258 
1259 /*
1260  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1261  * struct omsghdr or struct nmsghdr.
1262  */
1263 ssize_t
1264 sendmsg(int sock, struct nmsghdr *msg, int flags)
1265 {
1266 	struct nmsghdr lmsg;
1267 	STRUCT_DECL(nmsghdr, u_lmsg);
1268 	struct uio auio;
1269 	struct iovec aiov[MSG_MAXIOVLEN];
1270 	int iovcnt;
1271 	ssize_t len;
1272 	int i;
1273 	model_t	model;
1274 
1275 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, msg, flags));
1276 
1277 	model = get_udatamodel();
1278 	STRUCT_INIT(u_lmsg, model);
1279 
1280 	if (flags & MSG_XPG4_2) {
1281 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1282 		    STRUCT_SIZE(u_lmsg)))
1283 			return (set_errno(EFAULT));
1284 	} else {
1285 		/*
1286 		 * Assumes that nmsghdr and omsghdr are identically shaped
1287 		 * except for the added msg_flags field.
1288 		 */
1289 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1290 		    SIZEOF_STRUCT(omsghdr, model)))
1291 			return (set_errno(EFAULT));
1292 		/*
1293 		 * In order to be compatible with the libsocket/sockmod
1294 		 * implementation we set EOR for all send* calls.
1295 		 */
1296 		flags |= MSG_EOR;
1297 	}
1298 
1299 	/*
1300 	 * Code below us will kmem_alloc memory and hang it
1301 	 * off msg_control and msg_name fields. This forces
1302 	 * us to copy the structure to its native form.
1303 	 */
1304 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1305 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1306 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1307 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1308 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1309 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1310 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1311 
1312 	iovcnt = lmsg.msg_iovlen;
1313 
1314 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1315 		/*
1316 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1317 		 * be compatible with SunOS 4.X and 4.4BSD.
1318 		 */
1319 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1320 			return (set_errno(EMSGSIZE));
1321 	}
1322 
1323 #ifdef _SYSCALL32_IMPL
1324 	/*
1325 	 * 32-bit callers need to have their iovec expanded, while ensuring
1326 	 * that they can't move more than 2Gbytes of data in a single call.
1327 	 */
1328 	if (model == DATAMODEL_ILP32) {
1329 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1330 		ssize32_t count32;
1331 
1332 		if (iovcnt != 0 &&
1333 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1334 		    iovcnt * sizeof (struct iovec32)))
1335 			return (set_errno(EFAULT));
1336 
1337 		count32 = 0;
1338 		for (i = 0; i < iovcnt; i++) {
1339 			ssize32_t iovlen32;
1340 
1341 			iovlen32 = aiov32[i].iov_len;
1342 			count32 += iovlen32;
1343 			if (iovlen32 < 0 || count32 < 0)
1344 				return (set_errno(EINVAL));
1345 			aiov[i].iov_len = iovlen32;
1346 			aiov[i].iov_base =
1347 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1348 		}
1349 	} else
1350 #endif /* _SYSCALL32_IMPL */
1351 	if (iovcnt != 0 &&
1352 	    copyin(lmsg.msg_iov, aiov,
1353 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1354 		return (set_errno(EFAULT));
1355 	}
1356 	len = 0;
1357 	for (i = 0; i < iovcnt; i++) {
1358 		ssize_t iovlen = aiov[i].iov_len;
1359 		len += iovlen;
1360 		if (iovlen < 0 || len < 0) {
1361 			return (set_errno(EINVAL));
1362 		}
1363 	}
1364 	auio.uio_loffset = 0;
1365 	auio.uio_iov = aiov;
1366 	auio.uio_iovcnt = iovcnt;
1367 	auio.uio_resid = len;
1368 	auio.uio_segflg = UIO_USERSPACE;
1369 	auio.uio_limit = 0;
1370 
1371 	return (sendit(sock, &lmsg, &auio, flags));
1372 }
1373 
1374 ssize_t
1375 sendto(int sock, void *buffer, size_t len, int flags,
1376     struct sockaddr *name, socklen_t namelen)
1377 {
1378 	struct nmsghdr lmsg;
1379 	struct uio auio;
1380 	struct iovec aiov[1];
1381 
1382 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1383 	    sock, buffer, len, flags, name, namelen));
1384 
1385 	if ((ssize_t)len < 0) {
1386 		return (set_errno(EINVAL));
1387 	}
1388 
1389 	aiov[0].iov_base = buffer;
1390 	aiov[0].iov_len = len;
1391 	auio.uio_loffset = 0;
1392 	auio.uio_iov = aiov;
1393 	auio.uio_iovcnt = 1;
1394 	auio.uio_resid = len;
1395 	auio.uio_segflg = UIO_USERSPACE;
1396 	auio.uio_limit = 0;
1397 
1398 	lmsg.msg_name = (char *)name;
1399 	lmsg.msg_namelen = namelen;
1400 	lmsg.msg_control = NULL;
1401 	if (!(flags & MSG_XPG4_2)) {
1402 		/*
1403 		 * In order to be compatible with the libsocket/sockmod
1404 		 * implementation we set EOR for all send* calls.
1405 		 */
1406 		flags |= MSG_EOR;
1407 	}
1408 	return (sendit(sock, &lmsg, &auio, flags));
1409 }
1410 
1411 /*ARGSUSED3*/
1412 int
1413 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1414 {
1415 	struct sonode *so;
1416 	int error;
1417 	socklen_t namelen;
1418 	union {
1419 		struct sockaddr_in sin;
1420 		struct sockaddr_in6 sin6;
1421 	} sin;			/* Temporary buffer, common case */
1422 	void *addr;		/* Temporary buffer, uncommon case */
1423 	socklen_t addrlen, size;
1424 
1425 	dprint(1, ("getpeername(%d, %p, %p)\n",
1426 	    sock, name, namelenp));
1427 
1428 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1429 		goto bad;
1430 
1431 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1432 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1433 	    (name == NULL && namelen != 0)) {
1434 		error = EFAULT;
1435 		goto rel_out;
1436 	}
1437 	/*
1438 	 * If a connect or accept has been done, unless we're an Xnet socket,
1439 	 * the remote address has already been updated in so_faddr_sa.
1440 	 */
1441 	if (so->so_version != SOV_SOCKSTREAM && so->so_version != SOV_SOCKBSD ||
1442 	    !(so->so_state & SS_FADDR_VALID)) {
1443 		if ((error = SOP_GETPEERNAME(so)) != 0)
1444 			goto rel_out;
1445 	}
1446 
1447 	if (so->so_faddr_maxlen <= sizeof (sin)) {
1448 		size = 0;
1449 		addr = &sin;
1450 	} else {
1451 		/*
1452 		 * Allocate temporary to avoid holding so_lock across
1453 		 * copyout
1454 		 */
1455 		size = so->so_faddr_maxlen;
1456 		addr = kmem_alloc(size, KM_SLEEP);
1457 	}
1458 	/* Prevent so_faddr_sa/len from changing while accessed */
1459 	mutex_enter(&so->so_lock);
1460 	if (!(so->so_state & SS_ISCONNECTED)) {
1461 		mutex_exit(&so->so_lock);
1462 		error = ENOTCONN;
1463 		goto free_out;
1464 	}
1465 	addrlen = so->so_faddr_len;
1466 	bcopy(so->so_faddr_sa, addr, addrlen);
1467 	mutex_exit(&so->so_lock);
1468 
1469 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1470 	error = copyout_name(name, namelen, namelenp, addr,
1471 	    (so->so_state & SS_FADDR_NOXLATE) ? 0 : addrlen);
1472 free_out:
1473 	if (size != 0)
1474 		kmem_free(addr, size);
1475 rel_out:
1476 	releasef(sock);
1477 bad:	return (error != 0 ? set_errno(error) : 0);
1478 }
1479 
1480 /*ARGSUSED3*/
1481 int
1482 getsockname(int sock, struct sockaddr *name,
1483 		socklen_t *namelenp, int version)
1484 {
1485 	struct sonode *so;
1486 	int error;
1487 	socklen_t namelen;
1488 	union {
1489 		struct sockaddr_in sin;
1490 		struct sockaddr_in6 sin6;
1491 	} sin;			/* Temporary buffer, common case */
1492 	void *addr;		/* Temporary buffer, uncommon case */
1493 	socklen_t addrlen, size;
1494 
1495 	dprint(1, ("getsockname(%d, %p, %p)\n",
1496 	    sock, name, namelenp));
1497 
1498 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1499 		goto bad;
1500 
1501 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1502 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1503 	    (name == NULL && namelen != 0)) {
1504 		error = EFAULT;
1505 		goto rel_out;
1506 	}
1507 
1508 	/*
1509 	 * If a bind or accept has been done, unless we're an Xnet endpoint,
1510 	 * the local address has already been updated in so_laddr_sa.
1511 	 */
1512 	if ((so->so_version != SOV_SOCKSTREAM &&
1513 	    so->so_version != SOV_SOCKBSD) ||
1514 	    !(so->so_state & SS_LADDR_VALID)) {
1515 		if ((error = SOP_GETSOCKNAME(so)) != 0)
1516 			goto rel_out;
1517 	}
1518 
1519 	if (so->so_laddr_maxlen <= sizeof (sin)) {
1520 		size = 0;
1521 		addr = &sin;
1522 	} else {
1523 		/*
1524 		 * Allocate temporary to avoid holding so_lock across
1525 		 * copyout
1526 		 */
1527 		size = so->so_laddr_maxlen;
1528 		addr = kmem_alloc(size, KM_SLEEP);
1529 	}
1530 	/* Prevent so_laddr_sa/len from changing while accessed */
1531 	mutex_enter(&so->so_lock);
1532 	addrlen = so->so_laddr_len;
1533 	bcopy(so->so_laddr_sa, addr, addrlen);
1534 	mutex_exit(&so->so_lock);
1535 
1536 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1537 	error = copyout_name(name, namelen, namelenp,
1538 	    addr, addrlen);
1539 	if (size != 0)
1540 		kmem_free(addr, size);
1541 rel_out:
1542 	releasef(sock);
1543 bad:	return (error != 0 ? set_errno(error) : 0);
1544 }
1545 
1546 /*ARGSUSED5*/
1547 int
1548 getsockopt(int sock,
1549 	int level,
1550 	int option_name,
1551 	void *option_value,
1552 	socklen_t *option_lenp,
1553 	int version)
1554 {
1555 	struct sonode *so;
1556 	socklen_t optlen, optlen_res;
1557 	void *optval;
1558 	int error;
1559 
1560 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1561 	    sock, level, option_name, option_value, option_lenp));
1562 
1563 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1564 		return (set_errno(error));
1565 
1566 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1567 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1568 		releasef(sock);
1569 		return (set_errno(EFAULT));
1570 	}
1571 	/*
1572 	 * Verify that the length is not excessive to prevent
1573 	 * an application from consuming all of kernel memory.
1574 	 */
1575 	if (optlen > SO_MAXARGSIZE) {
1576 		error = EINVAL;
1577 		releasef(sock);
1578 		return (set_errno(error));
1579 	}
1580 	optval = kmem_alloc(optlen, KM_SLEEP);
1581 	optlen_res = optlen;
1582 	error = SOP_GETSOCKOPT(so, level, option_name, optval,
1583 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2);
1584 	releasef(sock);
1585 	if (error) {
1586 		kmem_free(optval, optlen);
1587 		return (set_errno(error));
1588 	}
1589 	error = copyout_arg(option_value, optlen, option_lenp,
1590 	    optval, optlen_res);
1591 	kmem_free(optval, optlen);
1592 	if (error)
1593 		return (set_errno(error));
1594 	return (0);
1595 }
1596 
1597 /*ARGSUSED5*/
1598 int
1599 setsockopt(int sock,
1600 	int level,
1601 	int option_name,
1602 	void *option_value,
1603 	socklen_t option_len,
1604 	int version)
1605 {
1606 	struct sonode *so;
1607 	intptr_t buffer[2];
1608 	void *optval = NULL;
1609 	int error;
1610 
1611 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1612 	    sock, level, option_name, option_value, option_len));
1613 
1614 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1615 		return (set_errno(error));
1616 
1617 	if (option_value != NULL) {
1618 		if (option_len != 0) {
1619 			/*
1620 			 * Verify that the length is not excessive to prevent
1621 			 * an application from consuming all of kernel memory.
1622 			 */
1623 			if (option_len > SO_MAXARGSIZE) {
1624 				error = EINVAL;
1625 				goto done2;
1626 			}
1627 			optval = option_len <= sizeof (buffer) ?
1628 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1629 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1630 			if (copyin(option_value, optval, (size_t)option_len)) {
1631 				error = EFAULT;
1632 				goto done1;
1633 			}
1634 		}
1635 	} else
1636 		option_len = 0;
1637 
1638 	error = SOP_SETSOCKOPT(so, level, option_name, optval,
1639 	    (t_uscalar_t)option_len);
1640 done1:
1641 	if (optval != buffer)
1642 		kmem_free(optval, (size_t)option_len);
1643 done2:
1644 	releasef(sock);
1645 	if (error)
1646 		return (set_errno(error));
1647 	return (0);
1648 }
1649 
1650 /*
1651  * Add config info when devpath is non-NULL; delete info when devpath is NULL.
1652  * devpath is a user address.
1653  */
1654 int
1655 sockconfig(int domain, int type, int protocol, char *devpath)
1656 {
1657 	char *kdevpath;		/* Copied in devpath string */
1658 	size_t kdevpathlen;
1659 	int error = 0;
1660 
1661 	dprint(1, ("sockconfig(%d, %d, %d, %p)\n",
1662 	    domain, type, protocol, devpath));
1663 
1664 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1665 		return (set_errno(EPERM));
1666 
1667 	if (devpath == NULL) {
1668 		/* Deleting an entry */
1669 		kdevpath = NULL;
1670 		kdevpathlen = 0;
1671 	} else {
1672 		/*
1673 		 * Adding an entry.
1674 		 * Copyin the devpath.
1675 		 * This also makes it possible to check for too long pathnames.
1676 		 * Compress the space needed for the devpath before passing it
1677 		 * to soconfig - soconfig will store the string until
1678 		 * the configuration is removed.
1679 		 */
1680 		char *buf;
1681 
1682 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1683 		if ((error = copyinstr(devpath, buf, MAXPATHLEN,
1684 		    &kdevpathlen)) != 0) {
1685 			kmem_free(buf, MAXPATHLEN);
1686 			goto done;
1687 		}
1688 
1689 		kdevpath = kmem_alloc(kdevpathlen, KM_SLEEP);
1690 		bcopy(buf, kdevpath, kdevpathlen);
1691 		kdevpath[kdevpathlen - 1] = '\0';
1692 
1693 		kmem_free(buf, MAXPATHLEN);
1694 	}
1695 	error = soconfig(domain, type, protocol, kdevpath, (int)kdevpathlen);
1696 done:
1697 	if (error) {
1698 		eprintline(error);
1699 		return (set_errno(error));
1700 	}
1701 	return (0);
1702 }
1703 
1704 
1705 /*
1706  * Sendfile is implemented through two schemes, direct I/O or by
1707  * caching in the filesystem page cache. We cache the input file by
1708  * default and use direct I/O only if sendfile_max_size is set
1709  * appropriately as explained below. Note that this logic is consistent
1710  * with other filesystems where caching is turned on by default
1711  * unless explicitly turned off by using the DIRECTIO ioctl.
1712  *
1713  * We choose a slightly different scheme here. One can turn off
1714  * caching by setting sendfile_max_size to 0. One can also enable
1715  * caching of files <= sendfile_max_size by setting sendfile_max_size
1716  * to an appropriate value. By default sendfile_max_size is set to the
1717  * maximum value so that all files are cached. In future, we may provide
1718  * better interfaces for caching the file.
1719  *
1720  * Sendfile through Direct I/O (Zero copy)
1721  * --------------------------------------
1722  *
1723  * As disks are normally slower than the network, we can't have a
1724  * single thread that reads the disk and writes to the network. We
1725  * need to have parallelism. This is done by having the sendfile
1726  * thread create another thread that reads from the filesystem
1727  * and queues it for network processing. In this scheme, the data
1728  * is never copied anywhere i.e it is zero copy unlike the other
1729  * scheme.
1730  *
1731  * We have a sendfile queue (snfq) where each sendfile
1732  * request (snf_req_t) is queued for processing by a thread. Number
1733  * of threads is dynamically allocated and they exit if they are idling
1734  * beyond a specified amount of time. When each request (snf_req_t) is
1735  * processed by a thread, it produces a number of mblk_t structures to
1736  * be consumed by the sendfile thread. snf_deque and snf_enque are
1737  * used for consuming and producing mblks. Size of the filesystem
1738  * read is determined by the tunable (sendfile_read_size). A single
1739  * mblk holds sendfile_read_size worth of data (except the last
1740  * read of the file) which is sent down as a whole to the network.
1741  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1742  * value for the UFS filesystem backed by a striped storage array.
1743  *
1744  * Synchronisation between read (producer) and write (consumer) threads.
1745  * --------------------------------------------------------------------
1746  *
1747  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1748  * adding and deleting items in this list. Error can happen anytime
1749  * during read or write. There could be unprocessed mblks in the
1750  * sr_ib_XXX list when a read or write error occurs. Whenever error
1751  * is encountered, we need two things to happen :
1752  *
1753  * a) One of the threads need to clean the mblks.
1754  * b) When one thread encounters an error, the other should stop.
1755  *
1756  * For (a), we don't want to penalize the reader thread as it could do
1757  * some useful work processing other requests. For (b), the error can
1758  * be detected by examining sr_read_error or sr_write_error.
1759  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1760  * writer encounters error, we need to report the write error back to
1761  * the application as that's what would have happened if the operations
1762  * were done sequentially. With this in mind, following should work :
1763  *
1764  * 	- Check for errors before read or write.
1765  *	- If the reader encounters error, set the error in sr_read_error.
1766  *	  Check sr_write_error, if it is set, send cv_signal as it is
1767  *	  waiting for reader to complete. If it is not set, the writer
1768  *	  is either running sinking data to the network or blocked
1769  *        because of flow control. For handling the latter case, we
1770  *	  always send a signal. In any case, it will examine sr_read_error
1771  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1772  *	  the writer that the reader is done in all the cases.
1773  *	- If the writer encounters error, set the error in sr_write_error.
1774  *	  The reader thread is either blocked because of flow control or
1775  *	  running reading data from the disk. For the former, we need to
1776  *	  wakeup the thread. Again to keep it simple, we always wake up
1777  *	  the reader thread. Then, wait for the read thread to complete
1778  *	  if it is not done yet. Cleanup and return.
1779  *
1780  * High and low water marks for the read thread.
1781  * --------------------------------------------
1782  *
1783  * If sendfile() is used to send data over a slow network, we need to
1784  * make sure that the read thread does not produce data at a faster
1785  * rate than the network. This can happen if the disk is faster than
1786  * the network. In such a case, we don't want to build a very large queue.
1787  * But we would still like to get all of the network throughput possible.
1788  * This implies that network should never block waiting for data.
1789  * As there are lot of disk throughput/network throughput combinations
1790  * possible, it is difficult to come up with an accurate number.
1791  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1792  * latency of 3ms for reading a disk block. Thus, the total latency to
1793  * initiate a new read, transfer data from the disk and queue for
1794  * transmission would take about a max of 25ms. Todays max transfer rate
1795  * for network is 100MB/sec. If the thread is blocked because of flow
1796  * control, it would take 25ms to get new data ready for transmission.
1797  * We have to make sure that network is not idling, while we are initiating
1798  * new transfers. So, at 100MB/sec, to keep network busy we would need
1799  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1800  * We need to pick a high water mark so that the woken up thread would
1801  * do considerable work before blocking again to prevent thrashing. Currently,
1802  * we pick this to be 10 times that of the low water mark.
1803  *
1804  * Sendfile with segmap caching (One copy from page cache to mblks).
1805  * ----------------------------------------------------------------
1806  *
1807  * We use the segmap cache for caching the file, if the size of file
1808  * is <= sendfile_max_size. In this case we don't use threads as VM
1809  * is reasonably fast enough to keep up with the network. If the underlying
1810  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1811  * of data into segmap space, and use the virtual address from segmap
1812  * directly through desballoc() to avoid copy. Once the transport is done
1813  * with the data, the mapping will be released through segmap_release()
1814  * called by the call-back routine.
1815  *
1816  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1817  * to copy the data from the filesystem into our temporary network buffer.
1818  *
1819  * To disable caching, set sendfile_max_size to 0.
1820  */
1821 
1822 uint_t sendfile_read_size = 1024 * 1024;
1823 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1824 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1825 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1826 struct sendfile_stats sf_stats;
1827 struct sendfile_queue *snfq;
1828 clock_t snfq_timeout;
1829 off64_t sendfile_max_size;
1830 
1831 static void snf_enque(snf_req_t *, mblk_t *);
1832 static mblk_t *snf_deque(snf_req_t *);
1833 
1834 void
1835 sendfile_init(void)
1836 {
1837 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1838 
1839 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1840 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1841 	snfq->snfq_max_threads = max_ncpus;
1842 	snfq_timeout = SNFQ_TIMEOUT;
1843 	/* Cache all files by default. */
1844 	sendfile_max_size = MAXOFFSET_T;
1845 }
1846 
1847 /*
1848  * Queues a mblk_t for network processing.
1849  */
1850 static void
1851 snf_enque(snf_req_t *sr, mblk_t *mp)
1852 {
1853 	mp->b_next = NULL;
1854 	mutex_enter(&sr->sr_lock);
1855 	if (sr->sr_mp_head == NULL) {
1856 		sr->sr_mp_head = sr->sr_mp_tail = mp;
1857 		cv_signal(&sr->sr_cv);
1858 	} else {
1859 		sr->sr_mp_tail->b_next = mp;
1860 		sr->sr_mp_tail = mp;
1861 	}
1862 	sr->sr_qlen += MBLKL(mp);
1863 	while ((sr->sr_qlen > sr->sr_hiwat) &&
1864 	    (sr->sr_write_error == 0)) {
1865 		sf_stats.ss_full_waits++;
1866 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1867 	}
1868 	mutex_exit(&sr->sr_lock);
1869 }
1870 
1871 /*
1872  * De-queues a mblk_t for network processing.
1873  */
1874 static mblk_t *
1875 snf_deque(snf_req_t *sr)
1876 {
1877 	mblk_t *mp;
1878 
1879 	mutex_enter(&sr->sr_lock);
1880 	/*
1881 	 * If we have encountered an error on read or read is
1882 	 * completed and no more mblks, return NULL.
1883 	 * We need to check for NULL sr_mp_head also as
1884 	 * the reads could have completed and there is
1885 	 * nothing more to come.
1886 	 */
1887 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
1888 	    ((sr->sr_read_error & SR_READ_DONE) &&
1889 	    sr->sr_mp_head == NULL)) {
1890 		mutex_exit(&sr->sr_lock);
1891 		return (NULL);
1892 	}
1893 	/*
1894 	 * To start with neither SR_READ_DONE is marked nor
1895 	 * the error is set. When we wake up from cv_wait,
1896 	 * following are the possibilities :
1897 	 *
1898 	 *	a) sr_read_error is zero and mblks are queued.
1899 	 *	b) sr_read_error is set to SR_READ_DONE
1900 	 *	   and mblks are queued.
1901 	 *	c) sr_read_error is set to SR_READ_DONE
1902 	 *	   and no mblks.
1903 	 *	d) sr_read_error is set to some error other
1904 	 *	   than SR_READ_DONE.
1905 	 */
1906 
1907 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
1908 		sf_stats.ss_empty_waits++;
1909 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1910 	}
1911 	/* Handle (a) and (b) first  - the normal case. */
1912 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
1913 	    (sr->sr_mp_head != NULL)) {
1914 		mp = sr->sr_mp_head;
1915 		sr->sr_mp_head = mp->b_next;
1916 		sr->sr_qlen -= MBLKL(mp);
1917 		if (sr->sr_qlen < sr->sr_lowat)
1918 			cv_signal(&sr->sr_cv);
1919 		mutex_exit(&sr->sr_lock);
1920 		mp->b_next = NULL;
1921 		return (mp);
1922 	}
1923 	/* Handle (c) and (d). */
1924 	mutex_exit(&sr->sr_lock);
1925 	return (NULL);
1926 }
1927 
1928 /*
1929  * Reads data from the filesystem and queues it for network processing.
1930  */
1931 void
1932 snf_async_read(snf_req_t *sr)
1933 {
1934 	size_t iosize;
1935 	u_offset_t fileoff;
1936 	u_offset_t size;
1937 	int ret_size;
1938 	int error;
1939 	file_t *fp;
1940 	mblk_t *mp;
1941 
1942 	fp = sr->sr_fp;
1943 	size = sr->sr_file_size;
1944 	fileoff = sr->sr_file_off;
1945 
1946 	/*
1947 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
1948 	 */
1949 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
1950 	    kcred, NULL, NULL);
1951 
1952 	while ((size != 0) && (sr->sr_write_error == 0)) {
1953 
1954 		iosize = (int)MIN(sr->sr_maxpsz, size);
1955 
1956 		if ((mp = allocb(iosize, BPRI_MED)) == NULL) {
1957 			error = EAGAIN;
1958 			break;
1959 		}
1960 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
1961 
1962 		/* Error or Reached EOF ? */
1963 		if ((error != 0) || (ret_size == 0)) {
1964 			freeb(mp);
1965 			break;
1966 		}
1967 		mp->b_wptr = mp->b_rptr + ret_size;
1968 
1969 		snf_enque(sr, mp);
1970 		size -= ret_size;
1971 		fileoff += ret_size;
1972 	}
1973 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
1974 	    kcred, NULL, NULL);
1975 	mutex_enter(&sr->sr_lock);
1976 	sr->sr_read_error = error;
1977 	sr->sr_read_error |= SR_READ_DONE;
1978 	cv_signal(&sr->sr_cv);
1979 	mutex_exit(&sr->sr_lock);
1980 }
1981 
1982 void
1983 snf_async_thread(void)
1984 {
1985 	snf_req_t *sr;
1986 	callb_cpr_t cprinfo;
1987 	clock_t time_left = 1;
1988 	clock_t now;
1989 
1990 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
1991 
1992 	mutex_enter(&snfq->snfq_lock);
1993 	for (;;) {
1994 		/*
1995 		 * If we didn't find a entry, then block until woken up
1996 		 * again and then look through the queues again.
1997 		 */
1998 		while ((sr = snfq->snfq_req_head) == NULL) {
1999 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2000 			if (time_left <= 0) {
2001 				snfq->snfq_svc_threads--;
2002 				CALLB_CPR_EXIT(&cprinfo);
2003 				thread_exit();
2004 				/* NOTREACHED */
2005 			}
2006 			snfq->snfq_idle_cnt++;
2007 
2008 			time_to_wait(&now, snfq_timeout);
2009 			time_left = cv_timedwait(&snfq->snfq_cv,
2010 			    &snfq->snfq_lock, now);
2011 			snfq->snfq_idle_cnt--;
2012 
2013 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2014 		}
2015 		snfq->snfq_req_head = sr->sr_next;
2016 		snfq->snfq_req_cnt--;
2017 		mutex_exit(&snfq->snfq_lock);
2018 		snf_async_read(sr);
2019 		mutex_enter(&snfq->snfq_lock);
2020 	}
2021 }
2022 
2023 
2024 snf_req_t *
2025 create_thread(int operation, struct vnode *vp, file_t *fp,
2026     u_offset_t fileoff, u_offset_t size)
2027 {
2028 	snf_req_t *sr;
2029 	stdata_t *stp;
2030 
2031 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2032 
2033 	sr->sr_vp = vp;
2034 	sr->sr_fp = fp;
2035 	stp = vp->v_stream;
2036 
2037 	/*
2038 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2039 	 * stream might be closed before thread returns from snf_async_read.
2040 	 */
2041 	if (stp->sd_qn_maxpsz > 0) {
2042 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2043 	} else {
2044 		sr->sr_maxpsz = MAXBSIZE;
2045 	}
2046 
2047 	sr->sr_operation = operation;
2048 	sr->sr_file_off = fileoff;
2049 	sr->sr_file_size = size;
2050 	sr->sr_hiwat = sendfile_req_hiwat;
2051 	sr->sr_lowat = sendfile_req_lowat;
2052 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2053 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2054 	/*
2055 	 * See whether we need another thread for servicing this
2056 	 * request. If there are already enough requests queued
2057 	 * for the threads, create one if not exceeding
2058 	 * snfq_max_threads.
2059 	 */
2060 	mutex_enter(&snfq->snfq_lock);
2061 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2062 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2063 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2064 		    TS_RUN, minclsyspri);
2065 		snfq->snfq_svc_threads++;
2066 	}
2067 	if (snfq->snfq_req_head == NULL) {
2068 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2069 		cv_signal(&snfq->snfq_cv);
2070 	} else {
2071 		snfq->snfq_req_tail->sr_next = sr;
2072 		snfq->snfq_req_tail = sr;
2073 	}
2074 	snfq->snfq_req_cnt++;
2075 	mutex_exit(&snfq->snfq_lock);
2076 	return (sr);
2077 }
2078 
2079 int
2080 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2081     ssize_t *count)
2082 {
2083 	snf_req_t *sr;
2084 	mblk_t *mp;
2085 	int iosize;
2086 	int error = 0;
2087 	short fflag;
2088 	struct vnode *vp;
2089 	int ksize;
2090 
2091 	ksize = 0;
2092 	*count = 0;
2093 
2094 	vp = fp->f_vnode;
2095 	fflag = fp->f_flag;
2096 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2097 		return (EAGAIN);
2098 
2099 	/*
2100 	 * We check for read error in snf_deque. It has to check
2101 	 * for successful READ_DONE and return NULL, and we might
2102 	 * as well make an additional check there.
2103 	 */
2104 	while ((mp = snf_deque(sr)) != NULL) {
2105 
2106 		if (ISSIG(curthread, JUSTLOOKING)) {
2107 			freeb(mp);
2108 			error = EINTR;
2109 			break;
2110 		}
2111 		iosize = MBLKL(mp);
2112 
2113 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2114 			freeb(mp);
2115 			break;
2116 		}
2117 		ksize += iosize;
2118 	}
2119 	*count = ksize;
2120 
2121 	mutex_enter(&sr->sr_lock);
2122 	sr->sr_write_error = error;
2123 	/* Look at the big comments on why we cv_signal here. */
2124 	cv_signal(&sr->sr_cv);
2125 
2126 	/* Wait for the reader to complete always. */
2127 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2128 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2129 	}
2130 	/* If there is no write error, check for read error. */
2131 	if (error == 0)
2132 		error = (sr->sr_read_error & ~SR_READ_DONE);
2133 
2134 	if (error != 0) {
2135 		mblk_t *next_mp;
2136 
2137 		mp = sr->sr_mp_head;
2138 		while (mp != NULL) {
2139 			next_mp = mp->b_next;
2140 			mp->b_next = NULL;
2141 			freeb(mp);
2142 			mp = next_mp;
2143 		}
2144 	}
2145 	mutex_exit(&sr->sr_lock);
2146 	kmem_free(sr, sizeof (snf_req_t));
2147 	return (error);
2148 }
2149 
2150 typedef struct {
2151 	frtn_t		snfi_frtn;
2152 	caddr_t		snfi_base;
2153 	uint_t		snfi_mapoff;
2154 	size_t		snfi_len;
2155 	vnode_t		*snfi_vp;
2156 } snf_smap_desbinfo;
2157 
2158 /*
2159  * The callback function when the last ref of the mblk is dropped,
2160  * normally occurs when TCP receives the ack. But it can be the driver
2161  * too due to lazy reclaim.
2162  */
2163 void
2164 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2165 {
2166 	if (!segmap_kpm) {
2167 		/*
2168 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2169 		 * segmap_kpm as long as the latter never falls back to
2170 		 * "use_segmap_range". (See segmap_getmapflt().)
2171 		 *
2172 		 * Using S_OTHER saves an redundant hat_setref() in
2173 		 * segmap_unlock()
2174 		 */
2175 		(void) segmap_fault(kas.a_hat, segkmap,
2176 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2177 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2178 		    F_SOFTUNLOCK, S_OTHER);
2179 	}
2180 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2181 	VN_RELE(snfi->snfi_vp);
2182 	kmem_free(snfi, sizeof (*snfi));
2183 }
2184 
2185 /*
2186  * Use segmap instead of bcopy to send down a chain of desballoca'ed, mblks.
2187  * Each mblk contains a segmap slot of no more than MAXBSIZE. The total
2188  * length of a chain is no more than sd_qn_maxpsz.
2189  *
2190  * At the end of the whole sendfile() operation, we wait till the data from
2191  * the last mblk is ack'ed by the transport before returning so that the
2192  * caller of sendfile() can safely modify the file content.
2193  */
2194 int
2195 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2196     uint_t maxpsz, ssize_t *count, boolean_t nowait)
2197 {
2198 	caddr_t base;
2199 	int mapoff;
2200 	vnode_t *vp;
2201 	mblk_t *mp, *mp1;
2202 	int iosize, iosize1;
2203 	int error;
2204 	short fflag;
2205 	int ksize;
2206 	snf_smap_desbinfo *snfi;
2207 	struct vattr va;
2208 	boolean_t dowait = B_FALSE;
2209 
2210 	vp = fp->f_vnode;
2211 	fflag = fp->f_flag;
2212 	ksize = 0;
2213 	for (;;) {
2214 		if (ISSIG(curthread, JUSTLOOKING)) {
2215 			error = EINTR;
2216 			break;
2217 		}
2218 		iosize = 0;
2219 		mp = NULL;
2220 		do {
2221 			mapoff = fileoff & MAXBOFFSET;
2222 			iosize1 = MAXBSIZE - mapoff;
2223 			if (iosize1 > size)
2224 				iosize1 = size;
2225 			/*
2226 			 * we don't forcefault because we'll call
2227 			 * segmap_fault(F_SOFTLOCK) next.
2228 			 *
2229 			 * S_READ will get the ref bit set (by either
2230 			 * segmap_getmapflt() or segmap_fault()) and page
2231 			 * shared locked.
2232 			 */
2233 			base = segmap_getmapflt(segkmap, fvp, fileoff, iosize1,
2234 			    segmap_kpm ? SM_FAULT : 0, S_READ);
2235 
2236 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2237 			snfi->snfi_len = (size_t)roundup(mapoff+iosize1,
2238 			    PAGESIZE)- (mapoff & PAGEMASK);
2239 			/*
2240 			 * We must call segmap_fault() even for segmap_kpm
2241 			 * because that's how error gets returned.
2242 			 * (segmap_getmapflt() never fails but segmap_fault()
2243 			 * does.)
2244 			 */
2245 			if (segmap_fault(kas.a_hat, segkmap,
2246 			    (caddr_t)(uintptr_t)(((uintptr_t)base + mapoff) &
2247 			    PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2248 			    S_READ) != 0) {
2249 				(void) segmap_release(segkmap, base, 0);
2250 				kmem_free(snfi, sizeof (*snfi));
2251 				freemsg(mp);
2252 				error = EIO;
2253 				goto out;
2254 			}
2255 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2256 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2257 			snfi->snfi_base = base;
2258 			snfi->snfi_mapoff = mapoff;
2259 			mp1 = esballoca((uchar_t *)base + mapoff,
2260 			    iosize1, BPRI_HI, &snfi->snfi_frtn);
2261 
2262 			if (mp1 == NULL) {
2263 				(void) segmap_fault(kas.a_hat, segkmap,
2264 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2265 				    mapoff) & PAGEMASK), snfi->snfi_len,
2266 				    F_SOFTUNLOCK, S_OTHER);
2267 				(void) segmap_release(segkmap, base, 0);
2268 				kmem_free(snfi, sizeof (*snfi));
2269 				freemsg(mp);
2270 				error = EAGAIN;
2271 				goto out;
2272 			}
2273 			VN_HOLD(fvp);
2274 			snfi->snfi_vp = fvp;
2275 			mp1->b_wptr += iosize1;
2276 
2277 			/* Mark this dblk with the zero-copy flag */
2278 			mp1->b_datap->db_struioflag |= STRUIO_ZC;
2279 			if (mp == NULL)
2280 				mp = mp1;
2281 			else
2282 				linkb(mp, mp1);
2283 			iosize += iosize1;
2284 			fileoff += iosize1;
2285 			size -= iosize1;
2286 		} while (iosize < maxpsz && size != 0);
2287 
2288 		if (size == 0 && !nowait) {
2289 			ASSERT(!dowait);
2290 			dowait = B_TRUE;
2291 			mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2292 		}
2293 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2294 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2295 			*count = ksize;
2296 			freemsg(mp);
2297 			return (error);
2298 		}
2299 		ksize += iosize;
2300 		if (size == 0)
2301 			goto done;
2302 
2303 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2304 		va.va_mask = AT_SIZE;
2305 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2306 		if (error)
2307 			break;
2308 		/* Read as much as possible. */
2309 		if (fileoff >= va.va_size)
2310 			break;
2311 		if (size + fileoff > va.va_size)
2312 			size = va.va_size - fileoff;
2313 	}
2314 out:
2315 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2316 done:
2317 	*count = ksize;
2318 	if (dowait) {
2319 		stdata_t *stp;
2320 
2321 		stp = vp->v_stream;
2322 		mutex_enter(&stp->sd_lock);
2323 		while (!(stp->sd_flag & STZCNOTIFY)) {
2324 			if (cv_wait_sig(&stp->sd_zcopy_wait,
2325 			    &stp->sd_lock) == 0) {
2326 				error = EINTR;
2327 				break;
2328 			}
2329 		}
2330 		stp->sd_flag &= ~STZCNOTIFY;
2331 		mutex_exit(&stp->sd_lock);
2332 	}
2333 	return (error);
2334 }
2335 
2336 int
2337 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2338     uint_t maxpsz, ssize_t *count)
2339 {
2340 	struct vnode *vp;
2341 	mblk_t *mp;
2342 	int iosize;
2343 	int error;
2344 	short fflag;
2345 	int ksize;
2346 	int ioflag;
2347 	struct uio auio;
2348 	struct iovec aiov;
2349 	struct vattr va;
2350 
2351 	vp = fp->f_vnode;
2352 	fflag = fp->f_flag;
2353 	ksize = 0;
2354 	auio.uio_iov = &aiov;
2355 	auio.uio_iovcnt = 1;
2356 	auio.uio_segflg = UIO_SYSSPACE;
2357 	auio.uio_llimit = MAXOFFSET_T;
2358 	auio.uio_fmode = fflag;
2359 	auio.uio_extflg = UIO_COPY_CACHED;
2360 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2361 	/* If read sync is not asked for, filter sync flags */
2362 	if ((ioflag & FRSYNC) == 0)
2363 		ioflag &= ~(FSYNC|FDSYNC);
2364 	for (;;) {
2365 		if (ISSIG(curthread, JUSTLOOKING)) {
2366 			error = EINTR;
2367 			break;
2368 		}
2369 		iosize = (int)MIN(maxpsz, size);
2370 		if ((mp = allocb(iosize, BPRI_MED)) == NULL) {
2371 			error = EAGAIN;
2372 			break;
2373 		}
2374 		aiov.iov_base = (caddr_t)mp->b_rptr;
2375 		aiov.iov_len = iosize;
2376 		auio.uio_loffset = fileoff;
2377 		auio.uio_resid = iosize;
2378 
2379 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2380 		iosize -= auio.uio_resid;
2381 
2382 		if (error == EINTR && iosize != 0)
2383 			error = 0;
2384 
2385 		if (error != 0 || iosize == 0) {
2386 			freeb(mp);
2387 			break;
2388 		}
2389 		mp->b_wptr = mp->b_rptr + iosize;
2390 
2391 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2392 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2393 			*count = ksize;
2394 			freeb(mp);
2395 			return (error);
2396 		}
2397 		ksize += iosize;
2398 		size -= iosize;
2399 		if (size == 0)
2400 			goto done;
2401 
2402 		fileoff += iosize;
2403 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2404 		va.va_mask = AT_SIZE;
2405 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2406 		if (error)
2407 			break;
2408 		/* Read as much as possible. */
2409 		if (fileoff >= va.va_size)
2410 			size = 0;
2411 		else if (size + fileoff > va.va_size)
2412 			size = va.va_size - fileoff;
2413 	}
2414 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2415 done:
2416 	*count = ksize;
2417 	return (error);
2418 }
2419 
2420 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2421 /*
2422  * Largefile support for 32 bit applications only.
2423  */
2424 int
2425 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2426     ssize32_t *count32)
2427 {
2428 	ssize32_t sfv_len;
2429 	u_offset_t sfv_off, va_size;
2430 	struct vnode *vp, *fvp, *realvp;
2431 	struct vattr va;
2432 	stdata_t *stp;
2433 	ssize_t count = 0;
2434 	int error = 0;
2435 	boolean_t dozcopy = B_FALSE;
2436 	uint_t maxpsz;
2437 
2438 	sfv_len = (ssize32_t)sfv->sfv_len;
2439 	if (sfv_len < 0) {
2440 		error = EINVAL;
2441 		goto out;
2442 	}
2443 
2444 	if (sfv_len == 0) goto out;
2445 
2446 	sfv_off = (u_offset_t)sfv->sfv_off;
2447 
2448 	/* Same checks as in pread */
2449 	if (sfv_off > MAXOFFSET_T) {
2450 		error = EINVAL;
2451 		goto out;
2452 	}
2453 	if (sfv_off + sfv_len > MAXOFFSET_T)
2454 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2455 
2456 	/*
2457 	 * There are no more checks on sfv_len. So, we cast it to
2458 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2459 	 * 32 bit and 64 bit.
2460 	 *
2461 	 * TODO: should do nbl_need_check() like read()?
2462 	 */
2463 	if (sfv_len > sendfile_max_size) {
2464 		sf_stats.ss_file_not_cached++;
2465 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2466 		    &count);
2467 		goto out;
2468 	}
2469 	fvp = rfp->f_vnode;
2470 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2471 		fvp = realvp;
2472 	/*
2473 	 * Grab the lock as a reader to prevent the file size
2474 	 * from changing underneath.
2475 	 */
2476 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2477 	va.va_mask = AT_SIZE;
2478 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2479 	va_size = va.va_size;
2480 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2481 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2482 		goto out;
2483 	}
2484 	/* Read as much as possible. */
2485 	if (sfv_off + sfv_len > va_size)
2486 		sfv_len = va_size - sfv_off;
2487 
2488 	vp = fp->f_vnode;
2489 	stp = vp->v_stream;
2490 	if (stp->sd_qn_maxpsz == INFPSZ)
2491 		maxpsz = maxphys;
2492 	else
2493 		maxpsz = roundup(stp->sd_qn_maxpsz, MAXBSIZE);
2494 	/*
2495 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2496 	 * transfer size is large enough. This prevents performance loss
2497 	 * when the caller sends the file piece by piece.
2498 	 */
2499 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2500 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2501 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2502 		if ((stp->sd_copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2503 			int on = 1;
2504 
2505 			if (SOP_SETSOCKOPT(VTOSO(vp), SOL_SOCKET,
2506 			    SO_SND_COPYAVOID, &on, sizeof (on)) == 0)
2507 				dozcopy = B_TRUE;
2508 		} else {
2509 			dozcopy = (stp->sd_copyflag & STZCVMSAFE);
2510 		}
2511 	}
2512 	if (dozcopy) {
2513 		sf_stats.ss_file_segmap++;
2514 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2515 		    maxpsz, &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2516 	} else {
2517 		sf_stats.ss_file_cached++;
2518 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2519 		    maxpsz, &count);
2520 	}
2521 out:
2522 	releasef(sfv->sfv_fd);
2523 	*count32 = (ssize32_t)count;
2524 	return (error);
2525 }
2526 #endif
2527 
2528 #ifdef _SYSCALL32_IMPL
2529 /*
2530  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2531  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2532  */
2533 
2534 ssize_t
2535 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2536 {
2537 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2538 }
2539 
2540 ssize_t
2541 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2542 	caddr32_t name, caddr32_t namelenp)
2543 {
2544 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2545 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2546 }
2547 
2548 ssize_t
2549 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2550 {
2551 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2552 }
2553 
2554 ssize_t
2555 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2556 	caddr32_t name, socklen_t namelen)
2557 {
2558 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2559 	    (void *)(uintptr_t)name, namelen));
2560 }
2561 #endif	/* _SYSCALL32_IMPL */
2562 
2563 /*
2564  * Function wrappers (mostly around the sonode switch) for
2565  * backward compatibility.
2566  */
2567 
2568 int
2569 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2570 {
2571 	return (SOP_ACCEPT(so, fflag, nsop));
2572 }
2573 
2574 int
2575 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2576     int backlog, int flags)
2577 {
2578 	int	error;
2579 
2580 	error = SOP_BIND(so, name, namelen, flags);
2581 	if (error == 0 && backlog != 0)
2582 		return (SOP_LISTEN(so, backlog));
2583 
2584 	return (error);
2585 }
2586 
2587 int
2588 solisten(struct sonode *so, int backlog)
2589 {
2590 	return (SOP_LISTEN(so, backlog));
2591 }
2592 
2593 int
2594 soconnect(struct sonode *so, const struct sockaddr *name, socklen_t namelen,
2595     int fflag, int flags)
2596 {
2597 	return (SOP_CONNECT(so, name, namelen, fflag, flags));
2598 }
2599 
2600 int
2601 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2602 {
2603 	return (SOP_RECVMSG(so, msg, uiop));
2604 }
2605 
2606 int
2607 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2608 {
2609 	return (SOP_SENDMSG(so, msg, uiop));
2610 }
2611 
2612 int
2613 sogetpeername(struct sonode *so)
2614 {
2615 	return (SOP_GETPEERNAME(so));
2616 }
2617 
2618 int
2619 sogetsockname(struct sonode *so)
2620 {
2621 	return (SOP_GETSOCKNAME(so));
2622 }
2623 
2624 int
2625 soshutdown(struct sonode *so, int how)
2626 {
2627 	return (SOP_SHUTDOWN(so, how));
2628 }
2629 
2630 int
2631 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2632     socklen_t *optlenp, int flags)
2633 {
2634 	return (SOP_GETSOCKOPT(so, level, option_name, optval, optlenp,
2635 	    flags));
2636 }
2637 
2638 int
2639 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
2640     t_uscalar_t optlen)
2641 {
2642 	return (SOP_SETSOCKOPT(so, level, option_name, optval, optlen));
2643 }
2644 
2645 /*
2646  * Because this is backward compatibility interface it only needs to be
2647  * able to handle the creation of TPI sockfs sockets.
2648  */
2649 struct sonode *
2650 socreate(vnode_t *accessvp, int domain, int type, int protocol, int version,
2651     struct sonode *tso, int *errorp)
2652 {
2653 	return (sotpi_create(accessvp, domain, type, protocol, version, tso,
2654 	    errorp));
2655 }
2656