xref: /titanic_50/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision 1ae0874509b6811fdde1dfd46f0d93fd09867a3f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/file.h>
44 #include <sys/user.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/strsun.h>
48 #include <sys/esunddi.h>
49 #include <sys/flock.h>
50 #include <sys/modctl.h>
51 #include <sys/cmn_err.h>
52 #include <sys/vmsystm.h>
53 #include <sys/policy.h>
54 
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 
58 #include <sys/isa_defs.h>
59 #include <sys/inttypes.h>
60 #include <sys/systm.h>
61 #include <sys/cpuvar.h>
62 #include <sys/filio.h>
63 #include <sys/sendfile.h>
64 #include <sys/ddi.h>
65 #include <vm/seg.h>
66 #include <vm/seg_map.h>
67 #include <vm/seg_kpm.h>
68 #include <fs/sockfs/nl7c.h>
69 
70 #ifdef SOCK_TEST
71 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
72 #else
73 #define	do_useracc	1
74 #endif /* SOCK_TEST */
75 
76 extern int xnet_truncate_print;
77 
78 /*
79  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
80  *	 as there isn't a formal definition of IOV_MAX ???
81  */
82 #define	MSG_MAXIOVLEN	16
83 
84 /*
85  * Kernel component of socket creation.
86  *
87  * The socket library determines which version number to use.
88  * First the library calls this with a NULL devpath. If this fails
89  * to find a transport (using solookup) the library will look in /etc/netconfig
90  * for the appropriate transport. If one is found it will pass in the
91  * devpath for the kernel to use.
92  */
93 int
94 so_socket(int domain, int type, int protocol, char *devpath, int version)
95 {
96 	vnode_t *accessvp;
97 	struct sonode *so;
98 	vnode_t *vp;
99 	struct file *fp;
100 	int fd;
101 	int error;
102 	boolean_t wildcard = B_FALSE;
103 	int saved_error = 0;
104 	int sdomain = domain;
105 
106 	dprint(1, ("so_socket(%d,%d,%d,%p,%d)\n",
107 		domain, type, protocol, devpath, version));
108 
109 	if (domain == AF_NCA) {
110 		/*
111 		 * The request is for an NCA socket so for NL7C use the
112 		 * INET domain instead and mark NL7C_AF_NCA below.
113 		 */
114 		domain = AF_INET;
115 		/*
116 		 * NL7C is not supported in non-global zones,
117 		 *  we enforce this restriction here.
118 		 */
119 		if (getzoneid() != GLOBAL_ZONEID) {
120 			return (set_errno(ENOTSUP));
121 		}
122 	}
123 
124 	accessvp = solookup(domain, type, protocol, devpath, &error);
125 	if (accessvp == NULL) {
126 		/*
127 		 * If there is either an EPROTONOSUPPORT or EPROTOTYPE error
128 		 * it makes sense doing the wildcard lookup since the
129 		 * protocol might not be in the table.
130 		 */
131 		if (devpath != NULL || protocol == 0 ||
132 		    !(error == EPROTONOSUPPORT || error == EPROTOTYPE))
133 			return (set_errno(error));
134 
135 		saved_error = error;
136 
137 		/*
138 		 * Try wildcard lookup. Never use devpath for wildcards.
139 		 */
140 		accessvp = solookup(domain, type, 0, NULL, &error);
141 		if (accessvp == NULL) {
142 			/*
143 			 * Can't find in kernel table - have library
144 			 * fall back to /etc/netconfig and tell us
145 			 * the devpath (The library will do this if it didn't
146 			 * already pass in a devpath).
147 			 */
148 			if (saved_error != 0)
149 				error = saved_error;
150 			return (set_errno(error));
151 		}
152 		wildcard = B_TRUE;
153 	}
154 
155 	/* Check the device policy */
156 	if ((error = secpolicy_spec_open(CRED(),
157 	    accessvp, FREAD|FWRITE)) != 0) {
158 		return (set_errno(error));
159 	}
160 
161 	if (protocol == IPPROTO_SCTP) {
162 		so = sosctp_create(accessvp, domain, type, protocol, version,
163 		    NULL, &error);
164 	} else {
165 		so = sotpi_create(accessvp, domain, type, protocol, version,
166 		    NULL, &error);
167 	}
168 	if (so == NULL) {
169 		return (set_errno(error));
170 	}
171 	if (sdomain == AF_NCA && domain == AF_INET) {
172 		so->so_nl7c_flags = NL7C_AF_NCA;
173 	}
174 	vp = SOTOV(so);
175 
176 	if (wildcard) {
177 		/*
178 		 * Issue SO_PROTOTYPE setsockopt.
179 		 */
180 		error = SOP_SETSOCKOPT(so, SOL_SOCKET, SO_PROTOTYPE,
181 				&protocol,
182 				(t_uscalar_t)sizeof (protocol));
183 		if (error) {
184 			(void) VOP_CLOSE(vp, 0, 1, 0, CRED());
185 			VN_RELE(vp);
186 			/*
187 			 * Setsockopt often fails with ENOPROTOOPT but socket()
188 			 * should fail with EPROTONOSUPPORT/EPROTOTYPE.
189 			 */
190 			if (saved_error != 0 && error == ENOPROTOOPT)
191 				error = saved_error;
192 			else
193 				error = EPROTONOSUPPORT;
194 			return (set_errno(error));
195 		}
196 	}
197 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
198 		(void) VOP_CLOSE(vp, 0, 1, 0, CRED());
199 		VN_RELE(vp);
200 		return (set_errno(error));
201 	}
202 
203 	/*
204 	 * Now fill in the entries that falloc reserved
205 	 */
206 	mutex_exit(&fp->f_tlock);
207 	setf(fd, fp);
208 
209 	return (fd);
210 }
211 
212 /*
213  * Map from a file descriptor to a socket node.
214  * Returns with the file descriptor held i.e. the caller has to
215  * use releasef when done with the file descriptor.
216  */
217 static struct sonode *
218 getsonode(int sock, int *errorp, file_t **fpp)
219 {
220 	file_t *fp;
221 	vnode_t *vp;
222 	struct sonode *so;
223 
224 	if ((fp = getf(sock)) == NULL) {
225 		*errorp = EBADF;
226 		eprintline(*errorp);
227 		return (NULL);
228 	}
229 	vp = fp->f_vnode;
230 	/* Check if it is a socket */
231 	if (vp->v_type != VSOCK) {
232 		releasef(sock);
233 		*errorp = ENOTSOCK;
234 		eprintline(*errorp);
235 		return (NULL);
236 	}
237 	/*
238 	 * Use the stream head to find the real socket vnode.
239 	 * This is needed when namefs sits above sockfs.
240 	 */
241 	if (vp->v_stream) {
242 		ASSERT(vp->v_stream->sd_vnode);
243 		vp = vp->v_stream->sd_vnode;
244 
245 		so = VTOSO(vp);
246 		if (so->so_version == SOV_STREAM) {
247 			releasef(sock);
248 			*errorp = ENOTSOCK;
249 			eprintsoline(so, *errorp);
250 			return (NULL);
251 		}
252 	} else {
253 		so = VTOSO(vp);
254 	}
255 	if (fpp)
256 		*fpp = fp;
257 	return (so);
258 }
259 
260 /*
261  * Allocate and copyin a sockaddr.
262  * Ensures NULL termination for AF_UNIX addresses by extending them
263  * with one NULL byte if need be. Verifies that the length is not
264  * excessive to prevent an application from consuming all of kernel
265  * memory. Returns NULL when an error occurred.
266  */
267 static struct sockaddr *
268 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
269 	    int *errorp)
270 {
271 	char	*faddr;
272 	size_t	namelen = (size_t)*namelenp;
273 
274 	ASSERT(namelen != 0);
275 	if (namelen > SO_MAXARGSIZE) {
276 		*errorp = EINVAL;
277 		eprintsoline(so, *errorp);
278 		return (NULL);
279 	}
280 
281 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
282 	if (copyin(name, faddr, namelen)) {
283 		kmem_free(faddr, namelen);
284 		*errorp = EFAULT;
285 		eprintsoline(so, *errorp);
286 		return (NULL);
287 	}
288 
289 	/*
290 	 * Add space for NULL termination if needed.
291 	 * Do a quick check if the last byte is NUL.
292 	 */
293 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
294 		/* Check if there is any NULL termination */
295 		size_t	i;
296 		int foundnull = 0;
297 
298 		for (i = sizeof (name->sa_family); i < namelen; i++) {
299 			if (faddr[i] == '\0') {
300 				foundnull = 1;
301 				break;
302 			}
303 		}
304 		if (!foundnull) {
305 			/* Add extra byte for NUL padding */
306 			char *nfaddr;
307 
308 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
309 			bcopy(faddr, nfaddr, namelen);
310 			kmem_free(faddr, namelen);
311 
312 			/* NUL terminate */
313 			nfaddr[namelen] = '\0';
314 			namelen++;
315 			ASSERT((socklen_t)namelen == namelen);
316 			*namelenp = (socklen_t)namelen;
317 			faddr = nfaddr;
318 		}
319 	}
320 	return ((struct sockaddr *)faddr);
321 }
322 
323 /*
324  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
325  */
326 static int
327 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
328 		void *kaddr, socklen_t klen)
329 {
330 	if (uaddr != NULL) {
331 		if (ulen > klen)
332 			ulen = klen;
333 
334 		if (ulen != 0) {
335 			if (copyout(kaddr, uaddr, ulen))
336 				return (EFAULT);
337 		}
338 	} else
339 		ulen = 0;
340 
341 	if (ulenp != NULL) {
342 		if (copyout(&ulen, ulenp, sizeof (ulen)))
343 			return (EFAULT);
344 	}
345 	return (0);
346 }
347 
348 /*
349  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
350  * If klen is greater than ulen it still uses the non-truncated
351  * klen to update ulenp.
352  */
353 static int
354 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
355 		void *kaddr, socklen_t klen)
356 {
357 	if (uaddr != NULL) {
358 		if (ulen >= klen)
359 			ulen = klen;
360 		else if (ulen != 0 && xnet_truncate_print) {
361 			printf("sockfs: truncating copyout of address using "
362 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
363 			    curproc->p_pid, klen, ulen);
364 		}
365 
366 		if (ulen != 0) {
367 			if (copyout(kaddr, uaddr, ulen))
368 				return (EFAULT);
369 		} else
370 			klen = 0;
371 	} else
372 		klen = 0;
373 
374 	if (ulenp != NULL) {
375 		if (copyout(&klen, ulenp, sizeof (klen)))
376 			return (EFAULT);
377 	}
378 	return (0);
379 }
380 
381 /*
382  * The socketpair() code in libsocket creates two sockets (using
383  * the /etc/netconfig fallback if needed) before calling this routine
384  * to connect the two sockets together.
385  *
386  * For a SOCK_STREAM socketpair a listener is needed - in that case this
387  * routine will create a new file descriptor as part of accepting the
388  * connection. The library socketpair() will check if svs[2] has changed
389  * in which case it will close the changed fd.
390  *
391  * Note that this code could use the TPI feature of accepting the connection
392  * on the listening endpoint. However, that would require significant changes
393  * to soaccept.
394  */
395 int
396 so_socketpair(int sv[2])
397 {
398 	int svs[2];
399 	struct sonode *so1, *so2;
400 	int error;
401 	struct sockaddr_ux *name;
402 	size_t namelen;
403 
404 	dprint(1, ("so_socketpair(%p)\n", sv));
405 
406 	error = useracc(sv, sizeof (svs), B_WRITE);
407 	if (error && do_useracc)
408 		return (set_errno(EFAULT));
409 
410 	if (copyin(sv, svs, sizeof (svs)))
411 		return (set_errno(EFAULT));
412 
413 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
414 		return (set_errno(error));
415 
416 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
417 		releasef(svs[0]);
418 		return (set_errno(error));
419 	}
420 
421 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
422 		error = EOPNOTSUPP;
423 		goto done;
424 	}
425 
426 	/*
427 	 * The code below makes assumptions about the "sockfs" implementation.
428 	 * So make sure that the correct implementation is really used.
429 	 */
430 	ASSERT(so1->so_ops == &sotpi_sonodeops);
431 	ASSERT(so2->so_ops == &sotpi_sonodeops);
432 
433 	if (so1->so_type == SOCK_DGRAM) {
434 		/*
435 		 * Bind both sockets and connect them with each other.
436 		 * Need to allocate name/namelen for soconnect.
437 		 */
438 		error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC);
439 		if (error) {
440 			eprintsoline(so1, error);
441 			goto done;
442 		}
443 		error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC);
444 		if (error) {
445 			eprintsoline(so2, error);
446 			goto done;
447 		}
448 		namelen = sizeof (struct sockaddr_ux);
449 		name = kmem_alloc(namelen, KM_SLEEP);
450 		name->sou_family = AF_UNIX;
451 		name->sou_addr = so2->so_ux_laddr;
452 		error = SOP_CONNECT(so1,
453 				(struct sockaddr *)name,
454 				(socklen_t)namelen,
455 				0, _SOCONNECT_NOXLATE);
456 		if (error) {
457 			kmem_free(name, namelen);
458 			eprintsoline(so1, error);
459 			goto done;
460 		}
461 		name->sou_addr = so1->so_ux_laddr;
462 		error = SOP_CONNECT(so2,
463 				(struct sockaddr *)name,
464 				(socklen_t)namelen,
465 				0, _SOCONNECT_NOXLATE);
466 		kmem_free(name, namelen);
467 		if (error) {
468 			eprintsoline(so2, error);
469 			goto done;
470 		}
471 		releasef(svs[0]);
472 		releasef(svs[1]);
473 	} else {
474 		/*
475 		 * Bind both sockets, with so1 being a listener.
476 		 * Connect so2 to so1 - nonblocking to avoid waiting for
477 		 * soaccept to complete.
478 		 * Accept a connection on so1. Pass out the new fd as sv[0].
479 		 * The library will detect the changed fd and close
480 		 * the original one.
481 		 */
482 		struct sonode *nso;
483 		struct vnode *nvp;
484 		struct file *nfp;
485 		int nfd;
486 
487 		/*
488 		 * We could simply call SOP_LISTEN() here (which would do the
489 		 * binding automatically) if the code didn't rely on passing
490 		 * _SOBIND_NOXLATE to the TPI implementation of SOP_BIND().
491 		 */
492 		error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC|_SOBIND_NOXLATE|
493 		    _SOBIND_LISTEN|_SOBIND_SOCKETPAIR);
494 		if (error) {
495 			eprintsoline(so1, error);
496 			goto done;
497 		}
498 		error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC);
499 		if (error) {
500 			eprintsoline(so2, error);
501 			goto done;
502 		}
503 
504 		namelen = sizeof (struct sockaddr_ux);
505 		name = kmem_alloc(namelen, KM_SLEEP);
506 		name->sou_family = AF_UNIX;
507 		name->sou_addr = so1->so_ux_laddr;
508 		error = SOP_CONNECT(so2,
509 				(struct sockaddr *)name,
510 				(socklen_t)namelen,
511 				FNONBLOCK, _SOCONNECT_NOXLATE);
512 		kmem_free(name, namelen);
513 		if (error) {
514 			if (error != EINPROGRESS) {
515 				eprintsoline(so2, error);
516 				goto done;
517 			}
518 		}
519 
520 		error = SOP_ACCEPT(so1, 0, &nso);
521 		if (error) {
522 			eprintsoline(so1, error);
523 			goto done;
524 		}
525 
526 		/* wait for so2 being SS_CONNECTED ignoring signals */
527 		mutex_enter(&so2->so_lock);
528 		error = sowaitconnected(so2, 0, 1);
529 		mutex_exit(&so2->so_lock);
530 		nvp = SOTOV(nso);
531 		if (error != 0) {
532 			(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
533 			VN_RELE(nvp);
534 			eprintsoline(so2, error);
535 			goto done;
536 		}
537 
538 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
539 			(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
540 			VN_RELE(nvp);
541 			eprintsoline(nso, error);
542 			goto done;
543 		}
544 		/*
545 		 * fill in the entries that falloc reserved
546 		 */
547 		mutex_exit(&nfp->f_tlock);
548 		setf(nfd, nfp);
549 
550 		releasef(svs[0]);
551 		releasef(svs[1]);
552 		svs[0] = nfd;
553 
554 		/*
555 		 * The socketpair library routine will close the original
556 		 * svs[0] when this code passes out a different file
557 		 * descriptor.
558 		 */
559 		if (copyout(svs, sv, sizeof (svs))) {
560 			(void) closeandsetf(nfd, NULL);
561 			eprintline(EFAULT);
562 			return (set_errno(EFAULT));
563 		}
564 	}
565 	return (0);
566 
567 done:
568 	releasef(svs[0]);
569 	releasef(svs[1]);
570 	return (set_errno(error));
571 }
572 
573 int
574 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
575 {
576 	struct sonode *so;
577 	int error;
578 
579 	dprint(1, ("bind(%d, %p, %d)\n",
580 		sock, name, namelen));
581 
582 	if ((so = getsonode(sock, &error, NULL)) == NULL)
583 		return (set_errno(error));
584 
585 	/* Allocate and copyin name */
586 	/*
587 	 * X/Open test does not expect EFAULT with NULL name and non-zero
588 	 * namelen.
589 	 */
590 	if (name != NULL && namelen != 0) {
591 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
592 		name = copyin_name(so, name, &namelen, &error);
593 		if (name == NULL) {
594 			releasef(sock);
595 			return (set_errno(error));
596 		}
597 	} else {
598 		name = NULL;
599 		namelen = 0;
600 	}
601 
602 	switch (version) {
603 	default:
604 		error = SOP_BIND(so, name, namelen, 0);
605 		break;
606 	case SOV_XPG4_2:
607 		error = SOP_BIND(so, name, namelen, _SOBIND_XPG4_2);
608 		break;
609 	case SOV_SOCKBSD:
610 		error = SOP_BIND(so, name, namelen, _SOBIND_SOCKBSD);
611 		break;
612 	}
613 done:
614 	releasef(sock);
615 	if (name != NULL)
616 		kmem_free(name, (size_t)namelen);
617 
618 	if (error)
619 		return (set_errno(error));
620 	return (0);
621 }
622 
623 /* ARGSUSED2 */
624 int
625 listen(int sock, int backlog, int version)
626 {
627 	struct sonode *so;
628 	int error;
629 
630 	dprint(1, ("listen(%d, %d)\n",
631 		sock, backlog));
632 
633 	if ((so = getsonode(sock, &error, NULL)) == NULL)
634 		return (set_errno(error));
635 
636 	error = SOP_LISTEN(so, backlog);
637 
638 	releasef(sock);
639 	if (error)
640 		return (set_errno(error));
641 	return (0);
642 }
643 
644 /*ARGSUSED3*/
645 int
646 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
647 {
648 	struct sonode *so;
649 	file_t *fp;
650 	int error;
651 	socklen_t namelen;
652 	struct sonode *nso;
653 	struct vnode *nvp;
654 	struct file *nfp;
655 	int nfd;
656 
657 	dprint(1, ("accept(%d, %p, %p)\n",
658 		sock, name, namelenp));
659 
660 	if ((so = getsonode(sock, &error, &fp)) == NULL)
661 		return (set_errno(error));
662 
663 	if (name != NULL) {
664 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
665 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
666 			releasef(sock);
667 			return (set_errno(EFAULT));
668 		}
669 		if (namelen != 0) {
670 			error = useracc(name, (size_t)namelen, B_WRITE);
671 			if (error && do_useracc) {
672 				releasef(sock);
673 				return (set_errno(EFAULT));
674 			}
675 		} else
676 			name = NULL;
677 	} else {
678 		namelen = 0;
679 	}
680 
681 	/*
682 	 * Allocate the user fd before SOP_ACCEPT() in order to
683 	 * catch EMFILE errors before calling SOP_ACCEPT().
684 	 */
685 	if ((nfd = ufalloc(0)) == -1) {
686 		eprintsoline(so, EMFILE);
687 		releasef(sock);
688 		return (set_errno(EMFILE));
689 	}
690 	error = SOP_ACCEPT(so, fp->f_flag, &nso);
691 	releasef(sock);
692 	if (error) {
693 		setf(nfd, NULL);
694 		return (set_errno(error));
695 	}
696 
697 	nvp = SOTOV(nso);
698 
699 	/*
700 	 * so_faddr_sa can not go away even though we are not holding so_lock.
701 	 * However, in theory its content could change from underneath us.
702 	 * But this is not possible in practice since it can only
703 	 * change due to either some socket system call
704 	 * or due to a T_CONN_CON being received from the stream head.
705 	 * Since the falloc/setf have not yet been done no thread
706 	 * can do any system call on nso and T_CONN_CON can not arrive
707 	 * on a socket that is already connected.
708 	 * Thus there is no reason to hold so_lock here.
709 	 *
710 	 * SOP_ACCEPT() is required to have set the valid bit for the faddr,
711 	 * but it could be instantly cleared by a disconnect from the transport.
712 	 * For that reason we ignore it here.
713 	 */
714 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
715 	error = copyout_name(name, namelen, namelenp,
716 	    nso->so_faddr_sa, (socklen_t)nso->so_faddr_len);
717 	if (error) {
718 		setf(nfd, NULL);
719 		(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
720 		VN_RELE(nvp);
721 		return (set_errno(error));
722 	}
723 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
724 		setf(nfd, NULL);
725 		(void) VOP_CLOSE(nvp, 0, 1, 0, CRED());
726 		VN_RELE(nvp);
727 		eprintsoline(so, error);
728 		return (set_errno(error));
729 	}
730 	/*
731 	 * fill in the entries that falloc reserved
732 	 */
733 	nfp->f_vnode = nvp;
734 	mutex_exit(&nfp->f_tlock);
735 	setf(nfd, nfp);
736 
737 	/*
738 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
739 	 */
740 	if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) {
741 		uint_t oflag = nfp->f_flag;
742 		int arg = 0;
743 
744 		if (so->so_state & SS_NONBLOCK)
745 			arg |= FNONBLOCK;
746 		else if (so->so_state & SS_NDELAY)
747 			arg |= FNDELAY;
748 
749 		/*
750 		 * This code is a simplification of the F_SETFL code in fcntl()
751 		 * Ignore any errors from VOP_SETFL.
752 		 */
753 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred)) != 0) {
754 			eprintsoline(so, error);
755 			error = 0;
756 		} else {
757 			mutex_enter(&nfp->f_tlock);
758 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
759 			nfp->f_flag |= arg;
760 			mutex_exit(&nfp->f_tlock);
761 		}
762 	}
763 	return (nfd);
764 }
765 
766 int
767 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
768 {
769 	struct sonode *so;
770 	file_t *fp;
771 	int error;
772 
773 	dprint(1, ("connect(%d, %p, %d)\n",
774 		sock, name, namelen));
775 
776 	if ((so = getsonode(sock, &error, &fp)) == NULL)
777 		return (set_errno(error));
778 
779 	/* Allocate and copyin name */
780 	if (namelen != 0) {
781 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
782 		name = copyin_name(so, name, &namelen, &error);
783 		if (name == NULL) {
784 			releasef(sock);
785 			return (set_errno(error));
786 		}
787 	} else
788 		name = NULL;
789 
790 	error = SOP_CONNECT(so, name, namelen, fp->f_flag,
791 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2);
792 	releasef(sock);
793 	if (name)
794 		kmem_free(name, (size_t)namelen);
795 	if (error)
796 		return (set_errno(error));
797 	return (0);
798 }
799 
800 /*ARGSUSED2*/
801 int
802 shutdown(int sock, int how, int version)
803 {
804 	struct sonode *so;
805 	int error;
806 
807 	dprint(1, ("shutdown(%d, %d)\n",
808 		sock, how));
809 
810 	if ((so = getsonode(sock, &error, NULL)) == NULL)
811 		return (set_errno(error));
812 
813 	error = SOP_SHUTDOWN(so, how);
814 
815 	releasef(sock);
816 	if (error)
817 		return (set_errno(error));
818 	return (0);
819 }
820 
821 /*
822  * Common receive routine.
823  */
824 static ssize_t
825 recvit(int sock,
826 	struct nmsghdr *msg,
827 	struct uio *uiop,
828 	int flags,
829 	socklen_t *namelenp,
830 	socklen_t *controllenp,
831 	int *flagsp)
832 {
833 	struct sonode *so;
834 	file_t *fp;
835 	void *name;
836 	socklen_t namelen;
837 	void *control;
838 	socklen_t controllen;
839 	ssize_t len;
840 	int error;
841 
842 	if ((so = getsonode(sock, &error, &fp)) == NULL)
843 		return (set_errno(error));
844 
845 	len = uiop->uio_resid;
846 	uiop->uio_fmode = fp->f_flag;
847 	uiop->uio_extflg = UIO_COPY_CACHED;
848 
849 	name = msg->msg_name;
850 	namelen = msg->msg_namelen;
851 	control = msg->msg_control;
852 	controllen = msg->msg_controllen;
853 
854 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
855 	    MSG_DONTWAIT | MSG_XPG4_2);
856 
857 	error = SOP_RECVMSG(so, msg, uiop);
858 	if (error) {
859 		releasef(sock);
860 		return (set_errno(error));
861 	}
862 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
863 	so_update_attrs(so, SOACC);
864 	releasef(sock);
865 
866 	error = copyout_name(name, namelen, namelenp,
867 	    msg->msg_name, msg->msg_namelen);
868 	if (error)
869 		goto err;
870 
871 	if (flagsp != NULL) {
872 		/*
873 		 * Clear internal flag.
874 		 */
875 		msg->msg_flags &= ~MSG_XPG4_2;
876 
877 		/*
878 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
879 		 * when controllen is zero and there is control data to
880 		 * copy out.
881 		 */
882 		if (controllen != 0 &&
883 		    (msg->msg_controllen > controllen || control == NULL)) {
884 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
885 			    msg->msg_controllen, controllen, control));
886 
887 			msg->msg_flags |= MSG_CTRUNC;
888 		}
889 		if (copyout(&msg->msg_flags, flagsp,
890 		    sizeof (msg->msg_flags))) {
891 			error = EFAULT;
892 			goto err;
893 		}
894 	}
895 	/*
896 	 * Note: This MUST be done last. There can be no "goto err" after this
897 	 * point since it could make so_closefds run twice on some part
898 	 * of the file descriptor array.
899 	 */
900 	if (controllen != 0) {
901 		if (!(flags & MSG_XPG4_2)) {
902 			/*
903 			 * Good old msg_accrights can only return a multiple
904 			 * of 4 bytes.
905 			 */
906 			controllen &= ~((int)sizeof (uint32_t) - 1);
907 		}
908 		error = copyout_arg(control, controllen, controllenp,
909 		    msg->msg_control, msg->msg_controllen);
910 		if (error)
911 			goto err;
912 
913 		if (msg->msg_controllen > controllen || control == NULL) {
914 			if (control == NULL)
915 				controllen = 0;
916 			so_closefds(msg->msg_control, msg->msg_controllen,
917 			    !(flags & MSG_XPG4_2), controllen);
918 		}
919 	}
920 	if (msg->msg_namelen != 0)
921 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
922 	if (msg->msg_controllen != 0)
923 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
924 	return (len - uiop->uio_resid);
925 
926 err:
927 	/*
928 	 * If we fail and the control part contains file descriptors
929 	 * we have to close the fd's.
930 	 */
931 	if (msg->msg_controllen != 0)
932 		so_closefds(msg->msg_control, msg->msg_controllen,
933 		    !(flags & MSG_XPG4_2), 0);
934 	if (msg->msg_namelen != 0)
935 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
936 	if (msg->msg_controllen != 0)
937 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
938 	return (set_errno(error));
939 }
940 
941 /*
942  * Native system call
943  */
944 ssize_t
945 recv(int sock, void *buffer, size_t len, int flags)
946 {
947 	struct nmsghdr lmsg;
948 	struct uio auio;
949 	struct iovec aiov[1];
950 
951 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
952 		sock, buffer, len, flags));
953 
954 	if ((ssize_t)len < 0) {
955 		return (set_errno(EINVAL));
956 	}
957 
958 	aiov[0].iov_base = buffer;
959 	aiov[0].iov_len = len;
960 	auio.uio_loffset = 0;
961 	auio.uio_iov = aiov;
962 	auio.uio_iovcnt = 1;
963 	auio.uio_resid = len;
964 	auio.uio_segflg = UIO_USERSPACE;
965 	auio.uio_limit = 0;
966 
967 	lmsg.msg_namelen = 0;
968 	lmsg.msg_controllen = 0;
969 	lmsg.msg_flags = 0;
970 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
971 }
972 
973 ssize_t
974 recvfrom(int sock, void *buffer, size_t len, int flags,
975 	struct sockaddr *name, socklen_t *namelenp)
976 {
977 	struct nmsghdr lmsg;
978 	struct uio auio;
979 	struct iovec aiov[1];
980 
981 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
982 		sock, buffer, len, flags, name, namelenp));
983 
984 	if ((ssize_t)len < 0) {
985 		return (set_errno(EINVAL));
986 	}
987 
988 	aiov[0].iov_base = buffer;
989 	aiov[0].iov_len = len;
990 	auio.uio_loffset = 0;
991 	auio.uio_iov = aiov;
992 	auio.uio_iovcnt = 1;
993 	auio.uio_resid = len;
994 	auio.uio_segflg = UIO_USERSPACE;
995 	auio.uio_limit = 0;
996 
997 	lmsg.msg_name = (char *)name;
998 	if (namelenp != NULL) {
999 		if (copyin(namelenp, &lmsg.msg_namelen,
1000 		    sizeof (lmsg.msg_namelen)))
1001 			return (set_errno(EFAULT));
1002 	} else {
1003 		lmsg.msg_namelen = 0;
1004 	}
1005 	lmsg.msg_controllen = 0;
1006 	lmsg.msg_flags = 0;
1007 
1008 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1009 }
1010 
1011 /*
1012  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1013  * struct omsghdr or struct nmsghdr.
1014  */
1015 ssize_t
1016 recvmsg(int sock, struct nmsghdr *msg, int flags)
1017 {
1018 	STRUCT_DECL(nmsghdr, u_lmsg);
1019 	STRUCT_HANDLE(nmsghdr, umsgptr);
1020 	struct nmsghdr lmsg;
1021 	struct uio auio;
1022 	struct iovec aiov[MSG_MAXIOVLEN];
1023 	int iovcnt;
1024 	ssize_t len;
1025 	int i;
1026 	int *flagsp;
1027 	model_t	model;
1028 
1029 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1030 		sock, msg, flags));
1031 
1032 	model = get_udatamodel();
1033 	STRUCT_INIT(u_lmsg, model);
1034 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1035 
1036 	if (flags & MSG_XPG4_2) {
1037 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1038 			return (set_errno(EFAULT));
1039 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1040 	} else {
1041 		/*
1042 		 * Assumes that nmsghdr and omsghdr are identically shaped
1043 		 * except for the added msg_flags field.
1044 		 */
1045 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1046 		    SIZEOF_STRUCT(omsghdr, model)))
1047 			return (set_errno(EFAULT));
1048 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1049 		flagsp = NULL;
1050 	}
1051 
1052 	/*
1053 	 * Code below us will kmem_alloc memory and hang it
1054 	 * off msg_control and msg_name fields. This forces
1055 	 * us to copy the structure to its native form.
1056 	 */
1057 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1058 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1059 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1060 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1061 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1062 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1063 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1064 
1065 	iovcnt = lmsg.msg_iovlen;
1066 
1067 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1068 		return (set_errno(EMSGSIZE));
1069 	}
1070 
1071 #ifdef _SYSCALL32_IMPL
1072 	/*
1073 	 * 32-bit callers need to have their iovec expanded, while ensuring
1074 	 * that they can't move more than 2Gbytes of data in a single call.
1075 	 */
1076 	if (model == DATAMODEL_ILP32) {
1077 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1078 		ssize32_t count32;
1079 
1080 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1081 		    iovcnt * sizeof (struct iovec32)))
1082 			return (set_errno(EFAULT));
1083 
1084 		count32 = 0;
1085 		for (i = 0; i < iovcnt; i++) {
1086 			ssize32_t iovlen32;
1087 
1088 			iovlen32 = aiov32[i].iov_len;
1089 			count32 += iovlen32;
1090 			if (iovlen32 < 0 || count32 < 0)
1091 				return (set_errno(EINVAL));
1092 			aiov[i].iov_len = iovlen32;
1093 			aiov[i].iov_base =
1094 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1095 		}
1096 	} else
1097 #endif /* _SYSCALL32_IMPL */
1098 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1099 		return (set_errno(EFAULT));
1100 	}
1101 	len = 0;
1102 	for (i = 0; i < iovcnt; i++) {
1103 		ssize_t iovlen = aiov[i].iov_len;
1104 		len += iovlen;
1105 		if (iovlen < 0 || len < 0) {
1106 			return (set_errno(EINVAL));
1107 		}
1108 	}
1109 	auio.uio_loffset = 0;
1110 	auio.uio_iov = aiov;
1111 	auio.uio_iovcnt = iovcnt;
1112 	auio.uio_resid = len;
1113 	auio.uio_segflg = UIO_USERSPACE;
1114 	auio.uio_limit = 0;
1115 
1116 	if (lmsg.msg_control != NULL &&
1117 	    (do_useracc == 0 ||
1118 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1119 			B_WRITE) != 0)) {
1120 		return (set_errno(EFAULT));
1121 	}
1122 
1123 	return (recvit(sock, &lmsg, &auio, flags,
1124 		STRUCT_FADDR(umsgptr, msg_namelen),
1125 		STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1126 }
1127 
1128 /*
1129  * Common send function.
1130  */
1131 static ssize_t
1132 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1133 {
1134 	struct sonode *so;
1135 	file_t *fp;
1136 	void *name;
1137 	socklen_t namelen;
1138 	void *control;
1139 	socklen_t controllen;
1140 	ssize_t len;
1141 	int error;
1142 
1143 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1144 		return (set_errno(error));
1145 
1146 	uiop->uio_fmode = fp->f_flag;
1147 
1148 	if (so->so_family == AF_UNIX)
1149 		uiop->uio_extflg = UIO_COPY_CACHED;
1150 	else
1151 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1152 
1153 	/* Allocate and copyin name and control */
1154 	name = msg->msg_name;
1155 	namelen = msg->msg_namelen;
1156 	if (name != NULL && namelen != 0) {
1157 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1158 		name = copyin_name(so,
1159 				(struct sockaddr *)name,
1160 				&namelen, &error);
1161 		if (name == NULL)
1162 			goto done3;
1163 		/* copyin_name null terminates addresses for AF_UNIX */
1164 		msg->msg_namelen = namelen;
1165 		msg->msg_name = name;
1166 	} else {
1167 		msg->msg_name = name = NULL;
1168 		msg->msg_namelen = namelen = 0;
1169 	}
1170 
1171 	control = msg->msg_control;
1172 	controllen = msg->msg_controllen;
1173 	if ((control != NULL) && (controllen != 0)) {
1174 		/*
1175 		 * Verify that the length is not excessive to prevent
1176 		 * an application from consuming all of kernel memory.
1177 		 */
1178 		if (controllen > SO_MAXARGSIZE) {
1179 			error = EINVAL;
1180 			goto done2;
1181 		}
1182 		control = kmem_alloc(controllen, KM_SLEEP);
1183 
1184 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1185 		if (copyin(msg->msg_control, control, controllen)) {
1186 			error = EFAULT;
1187 			goto done1;
1188 		}
1189 		msg->msg_control = control;
1190 	} else {
1191 		msg->msg_control = control = NULL;
1192 		msg->msg_controllen = controllen = 0;
1193 	}
1194 
1195 	len = uiop->uio_resid;
1196 	msg->msg_flags = flags;
1197 
1198 	error = SOP_SENDMSG(so, msg, uiop);
1199 done1:
1200 	if (control != NULL)
1201 		kmem_free(control, controllen);
1202 done2:
1203 	if (name != NULL)
1204 		kmem_free(name, namelen);
1205 done3:
1206 	if (error != 0) {
1207 		releasef(sock);
1208 		return (set_errno(error));
1209 	}
1210 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1211 	so_update_attrs(so, SOMOD);
1212 	releasef(sock);
1213 	return (len - uiop->uio_resid);
1214 }
1215 
1216 /*
1217  * Native system call
1218  */
1219 ssize_t
1220 send(int sock, void *buffer, size_t len, int flags)
1221 {
1222 	struct nmsghdr lmsg;
1223 	struct uio auio;
1224 	struct iovec aiov[1];
1225 
1226 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1227 		sock, buffer, len, flags));
1228 
1229 	if ((ssize_t)len < 0) {
1230 		return (set_errno(EINVAL));
1231 	}
1232 
1233 	aiov[0].iov_base = buffer;
1234 	aiov[0].iov_len = len;
1235 	auio.uio_loffset = 0;
1236 	auio.uio_iov = aiov;
1237 	auio.uio_iovcnt = 1;
1238 	auio.uio_resid = len;
1239 	auio.uio_segflg = UIO_USERSPACE;
1240 	auio.uio_limit = 0;
1241 
1242 	lmsg.msg_name = NULL;
1243 	lmsg.msg_control = NULL;
1244 	if (!(flags & MSG_XPG4_2)) {
1245 		/*
1246 		 * In order to be compatible with the libsocket/sockmod
1247 		 * implementation we set EOR for all send* calls.
1248 		 */
1249 		flags |= MSG_EOR;
1250 	}
1251 	return (sendit(sock, &lmsg, &auio, flags));
1252 }
1253 
1254 /*
1255  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1256  * struct omsghdr or struct nmsghdr.
1257  */
1258 ssize_t
1259 sendmsg(int sock, struct nmsghdr *msg, int flags)
1260 {
1261 	struct nmsghdr lmsg;
1262 	STRUCT_DECL(nmsghdr, u_lmsg);
1263 	struct uio auio;
1264 	struct iovec aiov[MSG_MAXIOVLEN];
1265 	int iovcnt;
1266 	ssize_t len;
1267 	int i;
1268 	model_t	model;
1269 
1270 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, msg, flags));
1271 
1272 	model = get_udatamodel();
1273 	STRUCT_INIT(u_lmsg, model);
1274 
1275 	if (flags & MSG_XPG4_2) {
1276 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1277 		    STRUCT_SIZE(u_lmsg)))
1278 			return (set_errno(EFAULT));
1279 	} else {
1280 		/*
1281 		 * Assumes that nmsghdr and omsghdr are identically shaped
1282 		 * except for the added msg_flags field.
1283 		 */
1284 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1285 		    SIZEOF_STRUCT(omsghdr, model)))
1286 			return (set_errno(EFAULT));
1287 		/*
1288 		 * In order to be compatible with the libsocket/sockmod
1289 		 * implementation we set EOR for all send* calls.
1290 		 */
1291 		flags |= MSG_EOR;
1292 	}
1293 
1294 	/*
1295 	 * Code below us will kmem_alloc memory and hang it
1296 	 * off msg_control and msg_name fields. This forces
1297 	 * us to copy the structure to its native form.
1298 	 */
1299 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1300 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1301 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1302 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1303 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1304 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1305 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1306 
1307 	iovcnt = lmsg.msg_iovlen;
1308 
1309 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1310 		/*
1311 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1312 		 * be compatible with SunOS 4.X and 4.4BSD.
1313 		 */
1314 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1315 			return (set_errno(EMSGSIZE));
1316 	}
1317 
1318 #ifdef _SYSCALL32_IMPL
1319 	/*
1320 	 * 32-bit callers need to have their iovec expanded, while ensuring
1321 	 * that they can't move more than 2Gbytes of data in a single call.
1322 	 */
1323 	if (model == DATAMODEL_ILP32) {
1324 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1325 		ssize32_t count32;
1326 
1327 		if (iovcnt != 0 &&
1328 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1329 		    iovcnt * sizeof (struct iovec32)))
1330 			return (set_errno(EFAULT));
1331 
1332 		count32 = 0;
1333 		for (i = 0; i < iovcnt; i++) {
1334 			ssize32_t iovlen32;
1335 
1336 			iovlen32 = aiov32[i].iov_len;
1337 			count32 += iovlen32;
1338 			if (iovlen32 < 0 || count32 < 0)
1339 				return (set_errno(EINVAL));
1340 			aiov[i].iov_len = iovlen32;
1341 			aiov[i].iov_base =
1342 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1343 		}
1344 	} else
1345 #endif /* _SYSCALL32_IMPL */
1346 	if (iovcnt != 0 &&
1347 	    copyin(lmsg.msg_iov, aiov,
1348 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1349 		return (set_errno(EFAULT));
1350 	}
1351 	len = 0;
1352 	for (i = 0; i < iovcnt; i++) {
1353 		ssize_t iovlen = aiov[i].iov_len;
1354 		len += iovlen;
1355 		if (iovlen < 0 || len < 0) {
1356 			return (set_errno(EINVAL));
1357 		}
1358 	}
1359 	auio.uio_loffset = 0;
1360 	auio.uio_iov = aiov;
1361 	auio.uio_iovcnt = iovcnt;
1362 	auio.uio_resid = len;
1363 	auio.uio_segflg = UIO_USERSPACE;
1364 	auio.uio_limit = 0;
1365 
1366 	return (sendit(sock, &lmsg, &auio, flags));
1367 }
1368 
1369 ssize_t
1370 sendto(int sock, void *buffer, size_t len, int flags,
1371     struct sockaddr *name, socklen_t namelen)
1372 {
1373 	struct nmsghdr lmsg;
1374 	struct uio auio;
1375 	struct iovec aiov[1];
1376 
1377 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1378 		sock, buffer, len, flags, name, namelen));
1379 
1380 	if ((ssize_t)len < 0) {
1381 		return (set_errno(EINVAL));
1382 	}
1383 
1384 	aiov[0].iov_base = buffer;
1385 	aiov[0].iov_len = len;
1386 	auio.uio_loffset = 0;
1387 	auio.uio_iov = aiov;
1388 	auio.uio_iovcnt = 1;
1389 	auio.uio_resid = len;
1390 	auio.uio_segflg = UIO_USERSPACE;
1391 	auio.uio_limit = 0;
1392 
1393 	lmsg.msg_name = (char *)name;
1394 	lmsg.msg_namelen = namelen;
1395 	lmsg.msg_control = NULL;
1396 	if (!(flags & MSG_XPG4_2)) {
1397 		/*
1398 		 * In order to be compatible with the libsocket/sockmod
1399 		 * implementation we set EOR for all send* calls.
1400 		 */
1401 		flags |= MSG_EOR;
1402 	}
1403 	return (sendit(sock, &lmsg, &auio, flags));
1404 }
1405 
1406 /*ARGSUSED3*/
1407 int
1408 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1409 {
1410 	struct sonode *so;
1411 	int error;
1412 	socklen_t namelen;
1413 	union {
1414 		struct sockaddr_in sin;
1415 		struct sockaddr_in6 sin6;
1416 	} sin;			/* Temporary buffer, common case */
1417 	void *addr;		/* Temporary buffer, uncommon case */
1418 	socklen_t addrlen, size;
1419 
1420 	dprint(1, ("getpeername(%d, %p, %p)\n",
1421 		sock, name, namelenp));
1422 
1423 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1424 		goto bad;
1425 
1426 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1427 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1428 	    (name == NULL && namelen != 0)) {
1429 		error = EFAULT;
1430 		goto rel_out;
1431 	}
1432 	/*
1433 	 * If a connect or accept has been done, unless we're an Xnet socket,
1434 	 * the remote address has already been updated in so_faddr_sa.
1435 	 */
1436 	if (so->so_version != SOV_SOCKSTREAM && so->so_version != SOV_SOCKBSD ||
1437 	    !(so->so_state & SS_FADDR_VALID)) {
1438 		if ((error = SOP_GETPEERNAME(so)) != 0)
1439 			goto rel_out;
1440 	}
1441 
1442 	if (so->so_faddr_maxlen <= sizeof (sin)) {
1443 		size = 0;
1444 		addr = &sin;
1445 	} else {
1446 		/*
1447 		 * Allocate temporary to avoid holding so_lock across
1448 		 * copyout
1449 		 */
1450 		size = so->so_faddr_maxlen;
1451 		addr = kmem_alloc(size, KM_SLEEP);
1452 	}
1453 	/* Prevent so_faddr_sa/len from changing while accessed */
1454 	mutex_enter(&so->so_lock);
1455 	if (!(so->so_state & SS_ISCONNECTED)) {
1456 		mutex_exit(&so->so_lock);
1457 		error = ENOTCONN;
1458 		goto free_out;
1459 	}
1460 	addrlen = so->so_faddr_len;
1461 	bcopy(so->so_faddr_sa, addr, addrlen);
1462 	mutex_exit(&so->so_lock);
1463 
1464 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1465 	error = copyout_name(name, namelen, namelenp, addr,
1466 	    (so->so_state & SS_FADDR_NOXLATE) ? 0 : addrlen);
1467 free_out:
1468 	if (size != 0)
1469 		kmem_free(addr, size);
1470 rel_out:
1471 	releasef(sock);
1472 bad:	return (error != 0 ? set_errno(error) : 0);
1473 }
1474 
1475 /*ARGSUSED3*/
1476 int
1477 getsockname(int sock, struct sockaddr *name,
1478 		socklen_t *namelenp, int version)
1479 {
1480 	struct sonode *so;
1481 	int error;
1482 	socklen_t namelen;
1483 	union {
1484 		struct sockaddr_in sin;
1485 		struct sockaddr_in6 sin6;
1486 	} sin;			/* Temporary buffer, common case */
1487 	void *addr;		/* Temporary buffer, uncommon case */
1488 	socklen_t addrlen, size;
1489 
1490 	dprint(1, ("getsockname(%d, %p, %p)\n",
1491 		sock, name, namelenp));
1492 
1493 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1494 		goto bad;
1495 
1496 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1497 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1498 	    (name == NULL && namelen != 0)) {
1499 		error = EFAULT;
1500 		goto rel_out;
1501 	}
1502 
1503 	/*
1504 	 * If a bind or accept has been done, unless we're an Xnet endpoint,
1505 	 * the local address has already been updated in so_laddr_sa.
1506 	 */
1507 	if ((so->so_version != SOV_SOCKSTREAM &&
1508 	    so->so_version != SOV_SOCKBSD) ||
1509 	    !(so->so_state & SS_LADDR_VALID)) {
1510 		if ((error = SOP_GETSOCKNAME(so)) != 0)
1511 			goto rel_out;
1512 	}
1513 
1514 	if (so->so_laddr_maxlen <= sizeof (sin)) {
1515 		size = 0;
1516 		addr = &sin;
1517 	} else {
1518 		/*
1519 		 * Allocate temporary to avoid holding so_lock across
1520 		 * copyout
1521 		 */
1522 		size = so->so_laddr_maxlen;
1523 		addr = kmem_alloc(size, KM_SLEEP);
1524 	}
1525 	/* Prevent so_laddr_sa/len from changing while accessed */
1526 	mutex_enter(&so->so_lock);
1527 	addrlen = so->so_laddr_len;
1528 	bcopy(so->so_laddr_sa, addr, addrlen);
1529 	mutex_exit(&so->so_lock);
1530 
1531 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1532 	error = copyout_name(name, namelen, namelenp,
1533 	    addr, addrlen);
1534 	if (size != 0)
1535 		kmem_free(addr, size);
1536 rel_out:
1537 	releasef(sock);
1538 bad:	return (error != 0 ? set_errno(error) : 0);
1539 }
1540 
1541 /*ARGSUSED5*/
1542 int
1543 getsockopt(int sock,
1544 	int level,
1545 	int option_name,
1546 	void *option_value,
1547 	socklen_t *option_lenp,
1548 	int version)
1549 {
1550 	struct sonode *so;
1551 	socklen_t optlen, optlen_res;
1552 	void *optval;
1553 	int error;
1554 
1555 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1556 		sock, level, option_name, option_value, option_lenp));
1557 
1558 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1559 		return (set_errno(error));
1560 
1561 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1562 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1563 		releasef(sock);
1564 		return (set_errno(EFAULT));
1565 	}
1566 	/*
1567 	 * Verify that the length is not excessive to prevent
1568 	 * an application from consuming all of kernel memory.
1569 	 */
1570 	if (optlen > SO_MAXARGSIZE) {
1571 		error = EINVAL;
1572 		releasef(sock);
1573 		return (set_errno(error));
1574 	}
1575 	optval = kmem_alloc(optlen, KM_SLEEP);
1576 	optlen_res = optlen;
1577 	error = SOP_GETSOCKOPT(so, level, option_name, optval,
1578 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2);
1579 	releasef(sock);
1580 	if (error) {
1581 		kmem_free(optval, optlen);
1582 		return (set_errno(error));
1583 	}
1584 	error = copyout_arg(option_value, optlen, option_lenp,
1585 	    optval, optlen_res);
1586 	kmem_free(optval, optlen);
1587 	if (error)
1588 		return (set_errno(error));
1589 	return (0);
1590 }
1591 
1592 /*ARGSUSED5*/
1593 int
1594 setsockopt(int sock,
1595 	int level,
1596 	int option_name,
1597 	void *option_value,
1598 	socklen_t option_len,
1599 	int version)
1600 {
1601 	struct sonode *so;
1602 	intptr_t buffer[2];
1603 	void *optval = NULL;
1604 	int error;
1605 
1606 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1607 		sock, level, option_name, option_value, option_len));
1608 
1609 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1610 		return (set_errno(error));
1611 
1612 	if (option_value != NULL) {
1613 		if (option_len != 0) {
1614 			/*
1615 			 * Verify that the length is not excessive to prevent
1616 			 * an application from consuming all of kernel memory.
1617 			 */
1618 			if (option_len > SO_MAXARGSIZE) {
1619 				error = EINVAL;
1620 				goto done2;
1621 			}
1622 			optval = option_len <= sizeof (buffer) ?
1623 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1624 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1625 			if (copyin(option_value, optval, (size_t)option_len)) {
1626 				error = EFAULT;
1627 				goto done1;
1628 			}
1629 		}
1630 	} else
1631 		option_len = 0;
1632 
1633 	error = SOP_SETSOCKOPT(so, level, option_name, optval,
1634 	    (t_uscalar_t)option_len);
1635 done1:
1636 	if (optval != buffer)
1637 		kmem_free(optval, (size_t)option_len);
1638 done2:
1639 	releasef(sock);
1640 	if (error)
1641 		return (set_errno(error));
1642 	return (0);
1643 }
1644 
1645 /*
1646  * Add config info when devpath is non-NULL; delete info when devpath is NULL.
1647  * devpath is a user address.
1648  */
1649 int
1650 sockconfig(int domain, int type, int protocol, char *devpath)
1651 {
1652 	char *kdevpath;		/* Copied in devpath string */
1653 	size_t kdevpathlen;
1654 	int error = 0;
1655 
1656 	dprint(1, ("sockconfig(%d, %d, %d, %p)\n",
1657 		domain, type, protocol, devpath));
1658 
1659 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1660 		return (set_errno(EPERM));
1661 
1662 	if (devpath == NULL) {
1663 		/* Deleting an entry */
1664 		kdevpath = NULL;
1665 		kdevpathlen = 0;
1666 	} else {
1667 		/*
1668 		 * Adding an entry.
1669 		 * Copyin the devpath.
1670 		 * This also makes it possible to check for too long pathnames.
1671 		 * Compress the space needed for the devpath before passing it
1672 		 * to soconfig - soconfig will store the string until
1673 		 * the configuration is removed.
1674 		 */
1675 		char *buf;
1676 
1677 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1678 		if ((error = copyinstr(devpath, buf, MAXPATHLEN,
1679 		    &kdevpathlen)) != 0) {
1680 			kmem_free(buf, MAXPATHLEN);
1681 			goto done;
1682 		}
1683 
1684 		kdevpath = kmem_alloc(kdevpathlen, KM_SLEEP);
1685 		bcopy(buf, kdevpath, kdevpathlen);
1686 		kdevpath[kdevpathlen - 1] = '\0';
1687 
1688 		kmem_free(buf, MAXPATHLEN);
1689 	}
1690 	error = soconfig(domain, type, protocol, kdevpath, (int)kdevpathlen);
1691 done:
1692 	if (error) {
1693 		eprintline(error);
1694 		return (set_errno(error));
1695 	}
1696 	return (0);
1697 }
1698 
1699 
1700 /*
1701  * Sendfile is implemented through two schemes, direct I/O or by
1702  * caching in the filesystem page cache. We cache the input file by
1703  * default and use direct I/O only if sendfile_max_size is set
1704  * appropriately as explained below. Note that this logic is consistent
1705  * with other filesystems where caching is turned on by default
1706  * unless explicitly turned off by using the DIRECTIO ioctl.
1707  *
1708  * We choose a slightly different scheme here. One can turn off
1709  * caching by setting sendfile_max_size to 0. One can also enable
1710  * caching of files <= sendfile_max_size by setting sendfile_max_size
1711  * to an appropriate value. By default sendfile_max_size is set to the
1712  * maximum value so that all files are cached. In future, we may provide
1713  * better interfaces for caching the file.
1714  *
1715  * Sendfile through Direct I/O (Zero copy)
1716  * --------------------------------------
1717  *
1718  * As disks are normally slower than the network, we can't have a
1719  * single thread that reads the disk and writes to the network. We
1720  * need to have parallelism. This is done by having the sendfile
1721  * thread create another thread that reads from the filesystem
1722  * and queues it for network processing. In this scheme, the data
1723  * is never copied anywhere i.e it is zero copy unlike the other
1724  * scheme.
1725  *
1726  * We have a sendfile queue (snfq) where each sendfile
1727  * request (snf_req_t) is queued for processing by a thread. Number
1728  * of threads is dynamically allocated and they exit if they are idling
1729  * beyond a specified amount of time. When each request (snf_req_t) is
1730  * processed by a thread, it produces a number of mblk_t structures to
1731  * be consumed by the sendfile thread. snf_deque and snf_enque are
1732  * used for consuming and producing mblks. Size of the filesystem
1733  * read is determined by the tuneable (sendfile_read_size). A single
1734  * mblk holds sendfile_read_size worth of data (except the last
1735  * read of the file) which is sent down as a whole to the network.
1736  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1737  * value for the UFS filesystem backed by a striped storage array.
1738  *
1739  * Synchronisation between read (producer) and write (consumer) threads.
1740  * --------------------------------------------------------------------
1741  *
1742  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1743  * adding and deleting items in this list. Error can happen anytime
1744  * during read or write. There could be unprocessed mblks in the
1745  * sr_ib_XXX list when a read or write error occurs. Whenever error
1746  * is encountered, we need two things to happen :
1747  *
1748  * a) One of the threads need to clean the mblks.
1749  * b) When one thread encounters an error, the other should stop.
1750  *
1751  * For (a), we don't want to penalise the reader thread as it could do
1752  * some useful work processing other requests. For (b), the error can
1753  * be detected by examining sr_read_error or sr_write_error.
1754  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1755  * writer encounters error, we need to report the write error back to
1756  * the application as that's what would have happened if the operations
1757  * were done sequentially. With this in mind, following should work :
1758  *
1759  * 	- Check for errors before read or write.
1760  *	- If the reader encounters error, set the error in sr_read_error.
1761  *	  Check sr_write_error, if it is set, send cv_signal as it is
1762  *	  waiting for reader to complete. If it is not set, the writer
1763  *	  is either running sinking data to the network or blocked
1764  *        because of flow control. For handling the latter case, we
1765  *	  always send a signal. In any case, it will examine sr_read_error
1766  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1767  *	  the writer that the reader is done in all the cases.
1768  *	- If the writer encounters error, set the error in sr_write_error.
1769  *	  The reader thread is either blocked because of flow control or
1770  *	  running reading data from the disk. For the former, we need to
1771  *	  wakeup the thread. Again to keep it simple, we always wake up
1772  *	  the reader thread. Then, wait for the read thread to complete
1773  *	  if it is not done yet. Cleanup and return.
1774  *
1775  * High and low water marks for the read thread.
1776  * --------------------------------------------
1777  *
1778  * If sendfile() is used to send data over a slow network, we need to
1779  * make sure that the read thread does not produce data at a faster
1780  * rate than the network. This can happen if the disk is faster than
1781  * the network. In such a case, we don't want to build a very large queue.
1782  * But we would still like to get all of the network throughput possible.
1783  * This implies that network should never block waiting for data.
1784  * As there are lot of disk throughput/network throughput combinations
1785  * possible, it is difficult to come up with an accurate number.
1786  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1787  * latency of 3ms for reading a disk block. Thus, the total latency to
1788  * initiate a new read, transfer data from the disk and queue for
1789  * transmission would take about a max of 25ms. Todays max transfer rate
1790  * for network is 100MB/sec. If the thread is blocked because of flow
1791  * control, it would take 25ms to get new data ready for transmission.
1792  * We have to make sure that network is not idling, while we are initiating
1793  * new transfers. So, at 100MB/sec, to keep network busy we would need
1794  * 2.5MB of data. Roundig off, we keep the low water mark to be 3MB of data.
1795  * We need to pick a high water mark so that the woken up thread would
1796  * do considerable work before blocking again to prevent thrashing. Currently,
1797  * we pick this to be 10 times that of the low water mark.
1798  *
1799  * Sendfile with segmap caching (One copy from page cache to mblks).
1800  * ----------------------------------------------------------------
1801  *
1802  * We use the segmap cache for caching the file, if the size of file
1803  * is <= sendfile_max_size. In this case we don't use threads as VM
1804  * is reasonably fast enough to keep up with the network. If the underlying
1805  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1806  * of data into segmap space, and use the virtual address from segmap
1807  * directly through desballoc() to avoid copy. Once the transport is done
1808  * with the data, the mapping will be released through segmap_release()
1809  * called by the call-back routine.
1810  *
1811  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1812  * to copy the data from the filesystem into our temporary network buffer.
1813  *
1814  * To disable caching, set sendfile_max_size to 0.
1815  */
1816 
1817 uint_t sendfile_read_size = 1024 * 1024;
1818 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1819 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1820 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1821 struct sendfile_stats sf_stats;
1822 struct sendfile_queue *snfq;
1823 clock_t snfq_timeout;
1824 off64_t sendfile_max_size;
1825 
1826 static void snf_enque(snf_req_t *, mblk_t *);
1827 static mblk_t *snf_deque(snf_req_t *);
1828 
1829 void
1830 sendfile_init(void)
1831 {
1832 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1833 
1834 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1835 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1836 	snfq->snfq_max_threads = max_ncpus;
1837 	snfq_timeout = SNFQ_TIMEOUT;
1838 	/* Cache all files by default. */
1839 	sendfile_max_size = MAXOFFSET_T;
1840 }
1841 
1842 /*
1843  * Queues a mblk_t for network processing.
1844  */
1845 static void
1846 snf_enque(snf_req_t *sr, mblk_t *mp)
1847 {
1848 	mp->b_next = NULL;
1849 	mutex_enter(&sr->sr_lock);
1850 	if (sr->sr_mp_head == NULL) {
1851 		sr->sr_mp_head = sr->sr_mp_tail = mp;
1852 		cv_signal(&sr->sr_cv);
1853 	} else {
1854 		sr->sr_mp_tail->b_next = mp;
1855 		sr->sr_mp_tail = mp;
1856 	}
1857 	sr->sr_qlen += MBLKL(mp);
1858 	while ((sr->sr_qlen > sr->sr_hiwat) &&
1859 	    (sr->sr_write_error == 0)) {
1860 		sf_stats.ss_full_waits++;
1861 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1862 	}
1863 	mutex_exit(&sr->sr_lock);
1864 }
1865 
1866 /*
1867  * De-queues a mblk_t for network processing.
1868  */
1869 static mblk_t *
1870 snf_deque(snf_req_t *sr)
1871 {
1872 	mblk_t *mp;
1873 
1874 	mutex_enter(&sr->sr_lock);
1875 	/*
1876 	 * If we have encountered an error on read or read is
1877 	 * completed and no more mblks, return NULL.
1878 	 * We need to check for NULL sr_mp_head also as
1879 	 * the reads could have completed and there is
1880 	 * nothing more to come.
1881 	 */
1882 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
1883 	    ((sr->sr_read_error & SR_READ_DONE) &&
1884 	    sr->sr_mp_head == NULL)) {
1885 		mutex_exit(&sr->sr_lock);
1886 		return (NULL);
1887 	}
1888 	/*
1889 	 * To start with neither SR_READ_DONE is marked nor
1890 	 * the error is set. When we wake up from cv_wait,
1891 	 * following are the possibilities :
1892 	 *
1893 	 *	a) sr_read_error is zero and mblks are queued.
1894 	 *	b) sr_read_error is set to SR_READ_DONE
1895 	 *	   and mblks are queued.
1896 	 *	c) sr_read_error is set to SR_READ_DONE
1897 	 *	   and no mblks.
1898 	 *	d) sr_read_error is set to some error other
1899 	 *	   than SR_READ_DONE.
1900 	 */
1901 
1902 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
1903 		sf_stats.ss_empty_waits++;
1904 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1905 	}
1906 	/* Handle (a) and (b) first  - the normal case. */
1907 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
1908 	    (sr->sr_mp_head != NULL)) {
1909 		mp = sr->sr_mp_head;
1910 		sr->sr_mp_head = mp->b_next;
1911 		sr->sr_qlen -= MBLKL(mp);
1912 		if (sr->sr_qlen < sr->sr_lowat)
1913 			cv_signal(&sr->sr_cv);
1914 		mutex_exit(&sr->sr_lock);
1915 		mp->b_next = NULL;
1916 		return (mp);
1917 	}
1918 	/* Handle (c) and (d). */
1919 	mutex_exit(&sr->sr_lock);
1920 	return (NULL);
1921 }
1922 
1923 /*
1924  * Reads data from the filesystem and queues it for network processing.
1925  */
1926 void
1927 snf_async_read(snf_req_t *sr)
1928 {
1929 	size_t iosize;
1930 	u_offset_t fileoff;
1931 	u_offset_t size;
1932 	int ret_size;
1933 	int error;
1934 	file_t *fp;
1935 	mblk_t *mp;
1936 
1937 	fp = sr->sr_fp;
1938 	size = sr->sr_file_size;
1939 	fileoff = sr->sr_file_off;
1940 
1941 	/*
1942 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
1943 	 */
1944 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
1945 	    kcred, NULL);
1946 
1947 	while ((size != 0) && (sr->sr_write_error == 0)) {
1948 
1949 		iosize = (int)MIN(sr->sr_maxpsz, size);
1950 
1951 		if ((mp = allocb(iosize, BPRI_MED)) == NULL) {
1952 			error = EAGAIN;
1953 			break;
1954 		}
1955 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
1956 
1957 		/* Error or Reached EOF ? */
1958 		if ((error != 0) || (ret_size == 0)) {
1959 			freeb(mp);
1960 			break;
1961 		}
1962 		mp->b_wptr = mp->b_rptr + ret_size;
1963 
1964 		snf_enque(sr, mp);
1965 		size -= ret_size;
1966 		fileoff += ret_size;
1967 	}
1968 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
1969 	    kcred, NULL);
1970 	mutex_enter(&sr->sr_lock);
1971 	sr->sr_read_error = error;
1972 	sr->sr_read_error |= SR_READ_DONE;
1973 	cv_signal(&sr->sr_cv);
1974 	mutex_exit(&sr->sr_lock);
1975 }
1976 
1977 void
1978 snf_async_thread(void)
1979 {
1980 	snf_req_t *sr;
1981 	callb_cpr_t cprinfo;
1982 	clock_t time_left = 1;
1983 	clock_t now;
1984 
1985 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
1986 
1987 	mutex_enter(&snfq->snfq_lock);
1988 	for (;;) {
1989 		/*
1990 		 * If we didn't find a entry, then block until woken up
1991 		 * again and then look through the queues again.
1992 		 */
1993 		while ((sr = snfq->snfq_req_head) == NULL) {
1994 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1995 			if (time_left <= 0) {
1996 				snfq->snfq_svc_threads--;
1997 				CALLB_CPR_EXIT(&cprinfo);
1998 				thread_exit();
1999 				/* NOTREACHED */
2000 			}
2001 			snfq->snfq_idle_cnt++;
2002 
2003 			time_to_wait(&now, snfq_timeout);
2004 			time_left = cv_timedwait(&snfq->snfq_cv,
2005 			    &snfq->snfq_lock, now);
2006 			snfq->snfq_idle_cnt--;
2007 
2008 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2009 		}
2010 		snfq->snfq_req_head = sr->sr_next;
2011 		snfq->snfq_req_cnt--;
2012 		mutex_exit(&snfq->snfq_lock);
2013 		snf_async_read(sr);
2014 		mutex_enter(&snfq->snfq_lock);
2015 	}
2016 }
2017 
2018 
2019 snf_req_t *
2020 create_thread(int operation, struct vnode *vp, file_t *fp,
2021     u_offset_t fileoff, u_offset_t size)
2022 {
2023 	snf_req_t *sr;
2024 	stdata_t *stp;
2025 
2026 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2027 
2028 	sr->sr_vp = vp;
2029 	sr->sr_fp = fp;
2030 	stp = vp->v_stream;
2031 
2032 	/*
2033 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2034 	 * stream might be closed before thread returns from snf_async_read.
2035 	 */
2036 	if (stp->sd_qn_maxpsz > 0) {
2037 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2038 	} else {
2039 		sr->sr_maxpsz = MAXBSIZE;
2040 	}
2041 
2042 	sr->sr_operation = operation;
2043 	sr->sr_file_off = fileoff;
2044 	sr->sr_file_size = size;
2045 	sr->sr_hiwat = sendfile_req_hiwat;
2046 	sr->sr_lowat = sendfile_req_lowat;
2047 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2048 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2049 	/*
2050 	 * See whether we need another thread for servicing this
2051 	 * request. If there are already enough requests queued
2052 	 * for the threads, create one if not exceeding
2053 	 * snfq_max_threads.
2054 	 */
2055 	mutex_enter(&snfq->snfq_lock);
2056 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2057 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2058 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2059 		    TS_RUN, minclsyspri);
2060 		snfq->snfq_svc_threads++;
2061 	}
2062 	if (snfq->snfq_req_head == NULL) {
2063 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2064 		cv_signal(&snfq->snfq_cv);
2065 	} else {
2066 		snfq->snfq_req_tail->sr_next = sr;
2067 		snfq->snfq_req_tail = sr;
2068 	}
2069 	snfq->snfq_req_cnt++;
2070 	mutex_exit(&snfq->snfq_lock);
2071 	return (sr);
2072 }
2073 
2074 int
2075 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2076     ssize_t *count)
2077 {
2078 	snf_req_t *sr;
2079 	mblk_t *mp;
2080 	int iosize;
2081 	int error = 0;
2082 	short fflag;
2083 	struct vnode *vp;
2084 	int ksize;
2085 
2086 	ksize = 0;
2087 	*count = 0;
2088 
2089 	vp = fp->f_vnode;
2090 	fflag = fp->f_flag;
2091 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2092 		return (EAGAIN);
2093 
2094 	/*
2095 	 * We check for read error in snf_deque. It has to check
2096 	 * for successful READ_DONE and return NULL, and we might
2097 	 * as well make an additional check there.
2098 	 */
2099 	while ((mp = snf_deque(sr)) != NULL) {
2100 
2101 		if (ISSIG(curthread, JUSTLOOKING)) {
2102 			freeb(mp);
2103 			error = EINTR;
2104 			break;
2105 		}
2106 		iosize = MBLKL(mp);
2107 
2108 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2109 			freeb(mp);
2110 			break;
2111 		}
2112 		ksize += iosize;
2113 	}
2114 	*count = ksize;
2115 
2116 	mutex_enter(&sr->sr_lock);
2117 	sr->sr_write_error = error;
2118 	/* Look at the big comments on why we cv_signal here. */
2119 	cv_signal(&sr->sr_cv);
2120 
2121 	/* Wait for the reader to complete always. */
2122 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2123 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2124 	}
2125 	/* If there is no write error, check for read error. */
2126 	if (error == 0)
2127 		error = (sr->sr_read_error & ~SR_READ_DONE);
2128 
2129 	if (error != 0) {
2130 		mblk_t *next_mp;
2131 
2132 		mp = sr->sr_mp_head;
2133 		while (mp != NULL) {
2134 			next_mp = mp->b_next;
2135 			mp->b_next = NULL;
2136 			freeb(mp);
2137 			mp = next_mp;
2138 		}
2139 	}
2140 	mutex_exit(&sr->sr_lock);
2141 	kmem_free(sr, sizeof (snf_req_t));
2142 	return (error);
2143 }
2144 
2145 typedef struct {
2146 	frtn_t		snfi_frtn;
2147 	caddr_t		snfi_base;
2148 	uint_t		snfi_mapoff;
2149 	size_t		snfi_len;
2150 	vnode_t		*snfi_vp;
2151 } snf_smap_desbinfo;
2152 
2153 /*
2154  * The callback function when the last ref of the mblk is dropped,
2155  * normally occurs when TCP receives the ack. But it can be the driver
2156  * too due to lazy reclaim.
2157  */
2158 void
2159 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2160 {
2161 	if (!segmap_kpm) {
2162 		/*
2163 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2164 		 * segmap_kpm as long as the latter never falls back to
2165 		 * "use_segmap_range". (See segmap_getmapflt().)
2166 		 *
2167 		 * Using S_OTHER saves an redundant hat_setref() in
2168 		 * segmap_unlock()
2169 		 */
2170 		(void) segmap_fault(kas.a_hat, segkmap,
2171 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2172 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2173 		    F_SOFTUNLOCK, S_OTHER);
2174 	}
2175 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2176 	VN_RELE(snfi->snfi_vp);
2177 	kmem_free(snfi, sizeof (*snfi));
2178 }
2179 
2180 /*
2181  * Use segmap instead of bcopy to send down a chain of desballoca'ed, mblks.
2182  * Each mblk contains a segmap slot of no more than MAXBSIZE. The total
2183  * length of a chain is no more than sd_qn_maxpsz.
2184  *
2185  * At the end of the whole sendfile() operation, we wait till the data from
2186  * the last mblk is ack'ed by the transport before returning so that the
2187  * caller of sendfile() can safely modify the file content.
2188  */
2189 int
2190 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2191     uint_t maxpsz, ssize_t *count, boolean_t nowait)
2192 {
2193 	caddr_t base;
2194 	int mapoff;
2195 	vnode_t *vp;
2196 	mblk_t *mp, *mp1;
2197 	int iosize, iosize1;
2198 	int error;
2199 	short fflag;
2200 	int ksize;
2201 	snf_smap_desbinfo *snfi;
2202 	struct vattr va;
2203 	boolean_t dowait = B_FALSE;
2204 
2205 	vp = fp->f_vnode;
2206 	fflag = fp->f_flag;
2207 	ksize = 0;
2208 	for (;;) {
2209 		if (ISSIG(curthread, JUSTLOOKING)) {
2210 			error = EINTR;
2211 			break;
2212 		}
2213 		iosize = 0;
2214 		mp = NULL;
2215 		do {
2216 			mapoff = fileoff & MAXBOFFSET;
2217 			iosize1 = MAXBSIZE - mapoff;
2218 			if (iosize1 > size)
2219 				iosize1 = size;
2220 			/*
2221 			 * we don't forcefault because we'll call
2222 			 * segmap_fault(F_SOFTLOCK) next.
2223 			 *
2224 			 * S_READ will get the ref bit set (by either
2225 			 * segmap_getmapflt() or segmap_fault()) and page
2226 			 * shared locked.
2227 			 */
2228 			base = segmap_getmapflt(segkmap, fvp, fileoff, iosize1,
2229 			    segmap_kpm ? SM_FAULT : 0, S_READ);
2230 
2231 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2232 			snfi->snfi_len = (size_t)roundup(mapoff+iosize1,
2233 			    PAGESIZE)- (mapoff & PAGEMASK);
2234 			/*
2235 			 * We must call segmap_fault() even for segmap_kpm
2236 			 * because that's how error gets returned.
2237 			 * (segmap_getmapflt() never fails but segmap_fault()
2238 			 * does.)
2239 			 */
2240 			if (segmap_fault(kas.a_hat, segkmap,
2241 			    (caddr_t)(uintptr_t)(((uintptr_t)base + mapoff) &
2242 			    PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2243 			    S_READ) != 0) {
2244 				(void) segmap_release(segkmap, base, 0);
2245 				kmem_free(snfi, sizeof (*snfi));
2246 				freemsg(mp);
2247 				error = EIO;
2248 				goto out;
2249 			}
2250 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2251 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2252 			snfi->snfi_base = base;
2253 			snfi->snfi_mapoff = mapoff;
2254 			mp1 = desballoca((uchar_t *)base + mapoff,
2255 			    iosize1, BPRI_HI, &snfi->snfi_frtn);
2256 
2257 			if (mp1 == NULL) {
2258 				(void) segmap_fault(kas.a_hat, segkmap,
2259 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2260 				    mapoff) & PAGEMASK), snfi->snfi_len,
2261 				    F_SOFTUNLOCK, S_OTHER);
2262 				(void) segmap_release(segkmap, base, 0);
2263 				kmem_free(snfi, sizeof (*snfi));
2264 				freemsg(mp);
2265 				error = EAGAIN;
2266 				goto out;
2267 			}
2268 			VN_HOLD(fvp);
2269 			snfi->snfi_vp = fvp;
2270 			mp1->b_wptr += iosize1;
2271 
2272 			/* Mark this dblk with the zero-copy flag */
2273 			mp1->b_datap->db_struioflag |= STRUIO_ZC;
2274 			if (mp == NULL)
2275 				mp = mp1;
2276 			else
2277 				linkb(mp, mp1);
2278 			iosize += iosize1;
2279 			fileoff += iosize1;
2280 			size -= iosize1;
2281 		} while (iosize < maxpsz && size != 0);
2282 
2283 		if (size == 0 && !nowait) {
2284 			ASSERT(!dowait);
2285 			dowait = B_TRUE;
2286 			mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2287 		}
2288 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2289 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2290 			*count = ksize;
2291 			freemsg(mp);
2292 			return (error);
2293 		}
2294 		ksize += iosize;
2295 		if (size == 0)
2296 			goto done;
2297 
2298 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2299 		va.va_mask = AT_SIZE;
2300 		error = VOP_GETATTR(fvp, &va, 0, kcred);
2301 		if (error)
2302 			break;
2303 		/* Read as much as possible. */
2304 		if (fileoff >= va.va_size)
2305 			break;
2306 		if (size + fileoff > va.va_size)
2307 			size = va.va_size - fileoff;
2308 	}
2309 out:
2310 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2311 done:
2312 	*count = ksize;
2313 	if (dowait) {
2314 		stdata_t *stp;
2315 
2316 		stp = vp->v_stream;
2317 		mutex_enter(&stp->sd_lock);
2318 		while (!(stp->sd_flag & STZCNOTIFY)) {
2319 			(void) cv_wait_sig(&stp->sd_zcopy_wait,
2320 			    &stp->sd_lock);
2321 		}
2322 		stp->sd_flag &= ~STZCNOTIFY;
2323 		mutex_exit(&stp->sd_lock);
2324 	}
2325 	return (error);
2326 }
2327 
2328 int
2329 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2330     uint_t maxpsz, ssize_t *count)
2331 {
2332 	struct vnode *vp;
2333 	mblk_t *mp;
2334 	int iosize;
2335 	int error;
2336 	short fflag;
2337 	int ksize;
2338 	int ioflag;
2339 	struct uio auio;
2340 	struct iovec aiov;
2341 	struct vattr va;
2342 
2343 	vp = fp->f_vnode;
2344 	fflag = fp->f_flag;
2345 	ksize = 0;
2346 	auio.uio_iov = &aiov;
2347 	auio.uio_iovcnt = 1;
2348 	auio.uio_segflg = UIO_SYSSPACE;
2349 	auio.uio_llimit = MAXOFFSET_T;
2350 	auio.uio_fmode = fflag;
2351 	auio.uio_extflg = UIO_COPY_CACHED;
2352 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2353 	/* If read sync is not asked for, filter sync flags */
2354 	if ((ioflag & FRSYNC) == 0)
2355 		ioflag &= ~(FSYNC|FDSYNC);
2356 	for (;;) {
2357 		if (ISSIG(curthread, JUSTLOOKING)) {
2358 			error = EINTR;
2359 			break;
2360 		}
2361 		iosize = (int)MIN(maxpsz, size);
2362 		if ((mp = allocb(iosize, BPRI_MED)) == NULL) {
2363 			error = EAGAIN;
2364 			break;
2365 		}
2366 		aiov.iov_base = (caddr_t)mp->b_rptr;
2367 		aiov.iov_len = iosize;
2368 		auio.uio_loffset = fileoff;
2369 		auio.uio_resid = iosize;
2370 
2371 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2372 		iosize -= auio.uio_resid;
2373 
2374 		if (error == EINTR && iosize != 0)
2375 			error = 0;
2376 
2377 		if (error != 0 || iosize == 0) {
2378 			freeb(mp);
2379 			break;
2380 		}
2381 		mp->b_wptr = mp->b_rptr + iosize;
2382 
2383 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2384 		if ((error = kstrwritemp(vp, mp, fflag)) != 0) {
2385 			*count = ksize;
2386 			freeb(mp);
2387 			return (error);
2388 		}
2389 		ksize += iosize;
2390 		size -= iosize;
2391 		if (size == 0)
2392 			goto done;
2393 
2394 		fileoff += iosize;
2395 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2396 		va.va_mask = AT_SIZE;
2397 		error = VOP_GETATTR(fvp, &va, 0, kcred);
2398 		if (error)
2399 			break;
2400 		/* Read as much as possible. */
2401 		if (fileoff >= va.va_size)
2402 			size = 0;
2403 		else if (size + fileoff > va.va_size)
2404 			size = va.va_size - fileoff;
2405 	}
2406 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2407 done:
2408 	*count = ksize;
2409 	return (error);
2410 }
2411 
2412 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2413 /*
2414  * Largefile support for 32 bit applications only.
2415  */
2416 int
2417 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2418     ssize32_t *count32)
2419 {
2420 	ssize32_t sfv_len;
2421 	u_offset_t sfv_off, va_size;
2422 	struct vnode *vp, *fvp, *realvp;
2423 	struct vattr va;
2424 	stdata_t *stp;
2425 	ssize_t count = 0;
2426 	int error = 0;
2427 	boolean_t dozcopy = B_FALSE;
2428 	uint_t maxpsz;
2429 
2430 	sfv_len = (ssize32_t)sfv->sfv_len;
2431 	if (sfv_len < 0) {
2432 		error = EINVAL;
2433 		goto out;
2434 	}
2435 
2436 	if (sfv_len == 0) goto out;
2437 
2438 	sfv_off = (u_offset_t)sfv->sfv_off;
2439 
2440 	/* Same checks as in pread */
2441 	if (sfv_off > MAXOFFSET_T) {
2442 		error = EINVAL;
2443 		goto out;
2444 	}
2445 	if (sfv_off + sfv_len > MAXOFFSET_T)
2446 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2447 
2448 	/*
2449 	 * There are no more checks on sfv_len. So, we cast it to
2450 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2451 	 * 32 bit and 64 bit.
2452 	 *
2453 	 * TODO: should do nbl_need_check() like read()?
2454 	 */
2455 	if (sfv_len > sendfile_max_size) {
2456 		sf_stats.ss_file_not_cached++;
2457 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2458 		    &count);
2459 		goto out;
2460 	}
2461 	fvp = rfp->f_vnode;
2462 	if (VOP_REALVP(fvp, &realvp) == 0)
2463 		fvp = realvp;
2464 	/*
2465 	 * Grab the lock as a reader to prevent the file size
2466 	 * from changing underneath.
2467 	 */
2468 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2469 	va.va_mask = AT_SIZE;
2470 	error = VOP_GETATTR(fvp, &va, 0, kcred);
2471 	va_size = va.va_size;
2472 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2473 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2474 		goto out;
2475 	}
2476 	/* Read as much as possible. */
2477 	if (sfv_off + sfv_len > va_size)
2478 		sfv_len = va_size - sfv_off;
2479 
2480 	vp = fp->f_vnode;
2481 	stp = vp->v_stream;
2482 	if (stp->sd_qn_maxpsz == INFPSZ)
2483 		maxpsz = MAXOFF32_T;
2484 	else
2485 		maxpsz = roundup(stp->sd_qn_maxpsz, MAXBSIZE);
2486 	/*
2487 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2488 	 * transfer size is large enough. This prevents performance loss
2489 	 * when the caller sends the file piece by piece.
2490 	 */
2491 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2492 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2493 	    !vn_has_flocks(fvp)) {
2494 		if ((stp->sd_copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2495 			int on = 1;
2496 
2497 			if (SOP_SETSOCKOPT(VTOSO(vp), SOL_SOCKET,
2498 			    SO_SND_COPYAVOID, &on, sizeof (on)) == 0)
2499 				dozcopy = B_TRUE;
2500 		} else {
2501 			dozcopy = (stp->sd_copyflag & STZCVMSAFE);
2502 		}
2503 	}
2504 	if (dozcopy) {
2505 		sf_stats.ss_file_segmap++;
2506 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2507 		    maxpsz, &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2508 	} else {
2509 		sf_stats.ss_file_cached++;
2510 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2511 		    maxpsz, &count);
2512 	}
2513 out:
2514 	releasef(sfv->sfv_fd);
2515 	*count32 = (ssize32_t)count;
2516 	return (error);
2517 }
2518 #endif
2519 
2520 #ifdef _SYSCALL32_IMPL
2521 /*
2522  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2523  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2524  */
2525 
2526 ssize_t
2527 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2528 {
2529 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2530 }
2531 
2532 ssize_t
2533 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2534 	caddr32_t name, caddr32_t namelenp)
2535 {
2536 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2537 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2538 }
2539 
2540 ssize_t
2541 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2542 {
2543 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2544 }
2545 
2546 ssize_t
2547 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2548 	caddr32_t name, socklen_t namelen)
2549 {
2550 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2551 	    (void *)(uintptr_t)name, namelen));
2552 }
2553 #endif	/* _SYSCALL32_IMPL */
2554 
2555 /*
2556  * Function wrappers (mostly arround the sonode switch) for
2557  * backward compatibility.
2558  */
2559 
2560 int
2561 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2562 {
2563 	return (SOP_ACCEPT(so, fflag, nsop));
2564 }
2565 
2566 int
2567 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2568     int backlog, int flags)
2569 {
2570 	int	error;
2571 
2572 	error = SOP_BIND(so, name, namelen, flags);
2573 	if (error == 0 && backlog != 0)
2574 		return (SOP_LISTEN(so, backlog));
2575 
2576 	return (error);
2577 }
2578 
2579 int
2580 solisten(struct sonode *so, int backlog)
2581 {
2582 	return (SOP_LISTEN(so, backlog));
2583 }
2584 
2585 int
2586 soconnect(struct sonode *so, const struct sockaddr *name, socklen_t namelen,
2587     int fflag, int flags)
2588 {
2589 	return (SOP_CONNECT(so, name, namelen, fflag, flags));
2590 }
2591 
2592 int
2593 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2594 {
2595 	return (SOP_RECVMSG(so, msg, uiop));
2596 }
2597 
2598 int
2599 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2600 {
2601 	return (SOP_SENDMSG(so, msg, uiop));
2602 }
2603 
2604 int
2605 sogetpeername(struct sonode *so)
2606 {
2607 	return (SOP_GETPEERNAME(so));
2608 }
2609 
2610 int
2611 sogetsockname(struct sonode *so)
2612 {
2613 	return (SOP_GETSOCKNAME(so));
2614 }
2615 
2616 int
2617 soshutdown(struct sonode *so, int how)
2618 {
2619 	return (SOP_SHUTDOWN(so, how));
2620 }
2621 
2622 int
2623 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2624     socklen_t *optlenp, int flags)
2625 {
2626 	return (SOP_GETSOCKOPT(so, level, option_name, optval, optlenp,
2627 	    flags));
2628 }
2629 
2630 int
2631 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
2632     t_uscalar_t optlen)
2633 {
2634 	return (SOP_SETSOCKOPT(so, level, option_name, optval, optlen));
2635 }
2636 
2637 /*
2638  * Because this is backward compatibility interface it only needs to be
2639  * able to handle the creation of TPI sockfs sockets.
2640  */
2641 struct sonode *
2642 socreate(vnode_t *accessvp, int domain, int type, int protocol, int version,
2643     struct sonode *tso, int *errorp)
2644 {
2645 	return (sotpi_create(accessvp, domain, type, protocol, version, tso,
2646 	    errorp));
2647 }
2648