xref: /titanic_50/usr/src/uts/common/fs/proc/prsubr.c (revision 0a586cea3ceec7e5e50e7e54c745082a7a333ac2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/cmn_err.h>
34 #include <sys/cred.h>
35 #include <sys/priv.h>
36 #include <sys/debug.h>
37 #include <sys/errno.h>
38 #include <sys/inline.h>
39 #include <sys/kmem.h>
40 #include <sys/mman.h>
41 #include <sys/proc.h>
42 #include <sys/sobject.h>
43 #include <sys/sysmacros.h>
44 #include <sys/systm.h>
45 #include <sys/uio.h>
46 #include <sys/var.h>
47 #include <sys/vfs.h>
48 #include <sys/vnode.h>
49 #include <sys/session.h>
50 #include <sys/pcb.h>
51 #include <sys/signal.h>
52 #include <sys/user.h>
53 #include <sys/disp.h>
54 #include <sys/class.h>
55 #include <sys/ts.h>
56 #include <sys/bitmap.h>
57 #include <sys/poll.h>
58 #include <sys/shm_impl.h>
59 #include <sys/fault.h>
60 #include <sys/syscall.h>
61 #include <sys/procfs.h>
62 #include <sys/processor.h>
63 #include <sys/cpuvar.h>
64 #include <sys/copyops.h>
65 #include <sys/time.h>
66 #include <sys/msacct.h>
67 #include <vm/as.h>
68 #include <vm/rm.h>
69 #include <vm/seg.h>
70 #include <vm/seg_vn.h>
71 #include <vm/seg_dev.h>
72 #include <vm/seg_spt.h>
73 #include <vm/page.h>
74 #include <sys/vmparam.h>
75 #include <sys/swap.h>
76 #include <fs/proc/prdata.h>
77 #include <sys/task.h>
78 #include <sys/project.h>
79 #include <sys/contract_impl.h>
80 #include <sys/contract/process.h>
81 #include <sys/contract/process_impl.h>
82 #include <sys/schedctl.h>
83 #include <sys/pool.h>
84 #include <sys/zone.h>
85 #include <sys/atomic.h>
86 #include <sys/sdt.h>
87 
88 #define	MAX_ITERS_SPIN	5
89 
90 typedef struct prpagev {
91 	uint_t *pg_protv;	/* vector of page permissions */
92 	char *pg_incore;	/* vector of incore flags */
93 	size_t pg_npages;	/* number of pages in protv and incore */
94 	ulong_t pg_pnbase;	/* pn within segment of first protv element */
95 } prpagev_t;
96 
97 size_t pagev_lim = 256 * 1024;	/* limit on number of pages in prpagev_t */
98 
99 extern struct seg_ops segdev_ops;	/* needs a header file */
100 extern struct seg_ops segspt_shmops;	/* needs a header file */
101 
102 static	int	set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t);
103 static	void	clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t);
104 
105 /*
106  * Choose an lwp from the complete set of lwps for the process.
107  * This is called for any operation applied to the process
108  * file descriptor that requires an lwp to operate upon.
109  *
110  * Returns a pointer to the thread for the selected LWP,
111  * and with the dispatcher lock held for the thread.
112  *
113  * The algorithm for choosing an lwp is critical for /proc semantics;
114  * don't touch this code unless you know all of the implications.
115  */
116 kthread_t *
117 prchoose(proc_t *p)
118 {
119 	kthread_t *t;
120 	kthread_t *t_onproc = NULL;	/* running on processor */
121 	kthread_t *t_run = NULL;	/* runnable, on disp queue */
122 	kthread_t *t_sleep = NULL;	/* sleeping */
123 	kthread_t *t_hold = NULL;	/* sleeping, performing hold */
124 	kthread_t *t_susp = NULL;	/* suspended stop */
125 	kthread_t *t_jstop = NULL;	/* jobcontrol stop, w/o directed stop */
126 	kthread_t *t_jdstop = NULL;	/* jobcontrol stop with directed stop */
127 	kthread_t *t_req = NULL;	/* requested stop */
128 	kthread_t *t_istop = NULL;	/* event-of-interest stop */
129 	kthread_t *t_dtrace = NULL;	/* DTrace stop */
130 
131 	ASSERT(MUTEX_HELD(&p->p_lock));
132 
133 	/*
134 	 * If the agent lwp exists, it takes precedence over all others.
135 	 */
136 	if ((t = p->p_agenttp) != NULL) {
137 		thread_lock(t);
138 		return (t);
139 	}
140 
141 	if ((t = p->p_tlist) == NULL)	/* start at the head of the list */
142 		return (t);
143 	do {		/* for eacn lwp in the process */
144 		if (VSTOPPED(t)) {	/* virtually stopped */
145 			if (t_req == NULL)
146 				t_req = t;
147 			continue;
148 		}
149 
150 		thread_lock(t);		/* make sure thread is in good state */
151 		switch (t->t_state) {
152 		default:
153 			panic("prchoose: bad thread state %d, thread 0x%p",
154 			    t->t_state, (void *)t);
155 			/*NOTREACHED*/
156 		case TS_SLEEP:
157 			/* this is filthy */
158 			if (t->t_wchan == (caddr_t)&p->p_holdlwps &&
159 			    t->t_wchan0 == NULL) {
160 				if (t_hold == NULL)
161 					t_hold = t;
162 			} else {
163 				if (t_sleep == NULL)
164 					t_sleep = t;
165 			}
166 			break;
167 		case TS_RUN:
168 		case TS_WAIT:
169 			if (t_run == NULL)
170 				t_run = t;
171 			break;
172 		case TS_ONPROC:
173 			if (t_onproc == NULL)
174 				t_onproc = t;
175 			break;
176 		case TS_ZOMB:		/* last possible choice */
177 			break;
178 		case TS_STOPPED:
179 			switch (t->t_whystop) {
180 			case PR_SUSPENDED:
181 				if (t_susp == NULL)
182 					t_susp = t;
183 				break;
184 			case PR_JOBCONTROL:
185 				if (t->t_proc_flag & TP_PRSTOP) {
186 					if (t_jdstop == NULL)
187 						t_jdstop = t;
188 				} else {
189 					if (t_jstop == NULL)
190 						t_jstop = t;
191 				}
192 				break;
193 			case PR_REQUESTED:
194 				if (t->t_dtrace_stop && t_dtrace == NULL)
195 					t_dtrace = t;
196 				else if (t_req == NULL)
197 					t_req = t;
198 				break;
199 			case PR_SYSENTRY:
200 			case PR_SYSEXIT:
201 			case PR_SIGNALLED:
202 			case PR_FAULTED:
203 				/*
204 				 * Make an lwp calling exit() be the
205 				 * last lwp seen in the process.
206 				 */
207 				if (t_istop == NULL ||
208 				    (t_istop->t_whystop == PR_SYSENTRY &&
209 				    t_istop->t_whatstop == SYS_exit))
210 					t_istop = t;
211 				break;
212 			case PR_CHECKPOINT:	/* can't happen? */
213 				break;
214 			default:
215 				panic("prchoose: bad t_whystop %d, thread 0x%p",
216 				    t->t_whystop, (void *)t);
217 				/*NOTREACHED*/
218 			}
219 			break;
220 		}
221 		thread_unlock(t);
222 	} while ((t = t->t_forw) != p->p_tlist);
223 
224 	if (t_onproc)
225 		t = t_onproc;
226 	else if (t_run)
227 		t = t_run;
228 	else if (t_sleep)
229 		t = t_sleep;
230 	else if (t_jstop)
231 		t = t_jstop;
232 	else if (t_jdstop)
233 		t = t_jdstop;
234 	else if (t_istop)
235 		t = t_istop;
236 	else if (t_dtrace)
237 		t = t_dtrace;
238 	else if (t_req)
239 		t = t_req;
240 	else if (t_hold)
241 		t = t_hold;
242 	else if (t_susp)
243 		t = t_susp;
244 	else			/* TS_ZOMB */
245 		t = p->p_tlist;
246 
247 	if (t != NULL)
248 		thread_lock(t);
249 	return (t);
250 }
251 
252 /*
253  * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop.
254  * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI
255  * on the /proc file descriptor.  Called from stop() when a traced
256  * process stops on an event of interest.  Also called from exit()
257  * and prinvalidate() to indicate POLLHUP and POLLERR respectively.
258  */
259 void
260 prnotify(struct vnode *vp)
261 {
262 	prcommon_t *pcp = VTOP(vp)->pr_common;
263 
264 	mutex_enter(&pcp->prc_mutex);
265 	cv_broadcast(&pcp->prc_wait);
266 	mutex_exit(&pcp->prc_mutex);
267 	if (pcp->prc_flags & PRC_POLL) {
268 		/*
269 		 * We call pollwakeup() with POLLHUP to ensure that
270 		 * the pollers are awakened even if they are polling
271 		 * for nothing (i.e., waiting for the process to exit).
272 		 * This enables the use of the PRC_POLL flag for optimization
273 		 * (we can turn off PRC_POLL only if we know no pollers remain).
274 		 */
275 		pcp->prc_flags &= ~PRC_POLL;
276 		pollwakeup(&pcp->prc_pollhead, POLLHUP);
277 	}
278 }
279 
280 /* called immediately below, in prfree() */
281 static void
282 prfreenotify(vnode_t *vp)
283 {
284 	prnode_t *pnp;
285 	prcommon_t *pcp;
286 
287 	while (vp != NULL) {
288 		pnp = VTOP(vp);
289 		pcp = pnp->pr_common;
290 		ASSERT(pcp->prc_thread == NULL);
291 		pcp->prc_proc = NULL;
292 		/*
293 		 * We can't call prnotify() here because we are holding
294 		 * pidlock.  We assert that there is no need to.
295 		 */
296 		mutex_enter(&pcp->prc_mutex);
297 		cv_broadcast(&pcp->prc_wait);
298 		mutex_exit(&pcp->prc_mutex);
299 		ASSERT(!(pcp->prc_flags & PRC_POLL));
300 
301 		vp = pnp->pr_next;
302 		pnp->pr_next = NULL;
303 	}
304 }
305 
306 /*
307  * Called from a hook in freeproc() when a traced process is removed
308  * from the process table.  The proc-table pointers of all associated
309  * /proc vnodes are cleared to indicate that the process has gone away.
310  */
311 void
312 prfree(proc_t *p)
313 {
314 	uint_t slot = p->p_slot;
315 
316 	ASSERT(MUTEX_HELD(&pidlock));
317 
318 	/*
319 	 * Block the process against /proc so it can be freed.
320 	 * It cannot be freed while locked by some controlling process.
321 	 * Lock ordering:
322 	 *	pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex
323 	 */
324 	mutex_enter(&pr_pidlock);	/* protects pcp->prc_proc */
325 	mutex_enter(&p->p_lock);
326 	while (p->p_proc_flag & P_PR_LOCK) {
327 		mutex_exit(&pr_pidlock);
328 		cv_wait(&pr_pid_cv[slot], &p->p_lock);
329 		mutex_exit(&p->p_lock);
330 		mutex_enter(&pr_pidlock);
331 		mutex_enter(&p->p_lock);
332 	}
333 
334 	ASSERT(p->p_tlist == NULL);
335 
336 	prfreenotify(p->p_plist);
337 	p->p_plist = NULL;
338 
339 	prfreenotify(p->p_trace);
340 	p->p_trace = NULL;
341 
342 	/*
343 	 * We broadcast to wake up everyone waiting for this process.
344 	 * No one can reach this process from this point on.
345 	 */
346 	cv_broadcast(&pr_pid_cv[slot]);
347 
348 	mutex_exit(&p->p_lock);
349 	mutex_exit(&pr_pidlock);
350 }
351 
352 /*
353  * Called from a hook in exit() when a traced process is becoming a zombie.
354  */
355 void
356 prexit(proc_t *p)
357 {
358 	ASSERT(MUTEX_HELD(&p->p_lock));
359 
360 	if (pr_watch_active(p)) {
361 		pr_free_watchpoints(p);
362 		watch_disable(curthread);
363 	}
364 	/* pr_free_watched_pages() is called in exit(), after dropping p_lock */
365 	if (p->p_trace) {
366 		VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY;
367 		prnotify(p->p_trace);
368 	}
369 	cv_broadcast(&pr_pid_cv[p->p_slot]);	/* pauselwps() */
370 }
371 
372 /*
373  * Called when a thread calls lwp_exit().
374  */
375 void
376 prlwpexit(kthread_t *t)
377 {
378 	vnode_t *vp;
379 	prnode_t *pnp;
380 	prcommon_t *pcp;
381 	proc_t *p = ttoproc(t);
382 	lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry;
383 
384 	ASSERT(t == curthread);
385 	ASSERT(MUTEX_HELD(&p->p_lock));
386 
387 	/*
388 	 * The process must be blocked against /proc to do this safely.
389 	 * The lwp must not disappear while the process is marked P_PR_LOCK.
390 	 * It is the caller's responsibility to have called prbarrier(p).
391 	 */
392 	ASSERT(!(p->p_proc_flag & P_PR_LOCK));
393 
394 	for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
395 		pnp = VTOP(vp);
396 		pcp = pnp->pr_common;
397 		if (pcp->prc_thread == t) {
398 			pcp->prc_thread = NULL;
399 			pcp->prc_flags |= PRC_DESTROY;
400 		}
401 	}
402 
403 	for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) {
404 		pnp = VTOP(vp);
405 		pcp = pnp->pr_common;
406 		pcp->prc_thread = NULL;
407 		pcp->prc_flags |= PRC_DESTROY;
408 		prnotify(vp);
409 	}
410 
411 	if (p->p_trace)
412 		prnotify(p->p_trace);
413 }
414 
415 /*
416  * Called when a zombie thread is joined or when a
417  * detached lwp exits.  Called from lwp_hash_out().
418  */
419 void
420 prlwpfree(proc_t *p, lwpent_t *lep)
421 {
422 	vnode_t *vp;
423 	prnode_t *pnp;
424 	prcommon_t *pcp;
425 
426 	ASSERT(MUTEX_HELD(&p->p_lock));
427 
428 	/*
429 	 * The process must be blocked against /proc to do this safely.
430 	 * The lwp must not disappear while the process is marked P_PR_LOCK.
431 	 * It is the caller's responsibility to have called prbarrier(p).
432 	 */
433 	ASSERT(!(p->p_proc_flag & P_PR_LOCK));
434 
435 	vp = lep->le_trace;
436 	lep->le_trace = NULL;
437 	while (vp) {
438 		prnotify(vp);
439 		pnp = VTOP(vp);
440 		pcp = pnp->pr_common;
441 		ASSERT(pcp->prc_thread == NULL &&
442 		    (pcp->prc_flags & PRC_DESTROY));
443 		pcp->prc_tslot = -1;
444 		vp = pnp->pr_next;
445 		pnp->pr_next = NULL;
446 	}
447 
448 	if (p->p_trace)
449 		prnotify(p->p_trace);
450 }
451 
452 /*
453  * Called from a hook in exec() when a thread starts exec().
454  */
455 void
456 prexecstart(void)
457 {
458 	proc_t *p = ttoproc(curthread);
459 	klwp_t *lwp = ttolwp(curthread);
460 
461 	/*
462 	 * The P_PR_EXEC flag blocks /proc operations for
463 	 * the duration of the exec().
464 	 * We can't start exec() while the process is
465 	 * locked by /proc, so we call prbarrier().
466 	 * lwp_nostop keeps the process from being stopped
467 	 * via job control for the duration of the exec().
468 	 */
469 
470 	ASSERT(MUTEX_HELD(&p->p_lock));
471 	prbarrier(p);
472 	lwp->lwp_nostop++;
473 	p->p_proc_flag |= P_PR_EXEC;
474 }
475 
476 /*
477  * Called from a hook in exec() when a thread finishes exec().
478  * The thread may or may not have succeeded.  Some other thread
479  * may have beat it to the punch.
480  */
481 void
482 prexecend(void)
483 {
484 	proc_t *p = ttoproc(curthread);
485 	klwp_t *lwp = ttolwp(curthread);
486 	vnode_t *vp;
487 	prnode_t *pnp;
488 	prcommon_t *pcp;
489 	model_t model = p->p_model;
490 	id_t tid = curthread->t_tid;
491 	int tslot = curthread->t_dslot;
492 
493 	ASSERT(MUTEX_HELD(&p->p_lock));
494 
495 	lwp->lwp_nostop--;
496 	if (p->p_flag & SEXITLWPS) {
497 		/*
498 		 * We are on our way to exiting because some
499 		 * other thread beat us in the race to exec().
500 		 * Don't clear the P_PR_EXEC flag in this case.
501 		 */
502 		return;
503 	}
504 
505 	/*
506 	 * Wake up anyone waiting in /proc for the process to complete exec().
507 	 */
508 	p->p_proc_flag &= ~P_PR_EXEC;
509 	if ((vp = p->p_trace) != NULL) {
510 		pcp = VTOP(vp)->pr_common;
511 		mutex_enter(&pcp->prc_mutex);
512 		cv_broadcast(&pcp->prc_wait);
513 		mutex_exit(&pcp->prc_mutex);
514 		for (; vp != NULL; vp = pnp->pr_next) {
515 			pnp = VTOP(vp);
516 			pnp->pr_common->prc_datamodel = model;
517 		}
518 	}
519 	if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) {
520 		/*
521 		 * We dealt with the process common above.
522 		 */
523 		ASSERT(p->p_trace != NULL);
524 		pcp = VTOP(vp)->pr_common;
525 		mutex_enter(&pcp->prc_mutex);
526 		cv_broadcast(&pcp->prc_wait);
527 		mutex_exit(&pcp->prc_mutex);
528 		for (; vp != NULL; vp = pnp->pr_next) {
529 			pnp = VTOP(vp);
530 			pcp = pnp->pr_common;
531 			pcp->prc_datamodel = model;
532 			pcp->prc_tid = tid;
533 			pcp->prc_tslot = tslot;
534 		}
535 	}
536 }
537 
538 /*
539  * Called from a hook in relvm() just before freeing the address space.
540  * We free all the watched areas now.
541  */
542 void
543 prrelvm(void)
544 {
545 	proc_t *p = ttoproc(curthread);
546 
547 	mutex_enter(&p->p_lock);
548 	prbarrier(p);	/* block all other /proc operations */
549 	if (pr_watch_active(p)) {
550 		pr_free_watchpoints(p);
551 		watch_disable(curthread);
552 	}
553 	mutex_exit(&p->p_lock);
554 	pr_free_watched_pages(p);
555 }
556 
557 /*
558  * Called from hooks in exec-related code when a traced process
559  * attempts to exec(2) a setuid/setgid program or an unreadable
560  * file.  Rather than fail the exec we invalidate the associated
561  * /proc vnodes so that subsequent attempts to use them will fail.
562  *
563  * All /proc vnodes, except directory vnodes, are retained on a linked
564  * list (rooted at p_plist in the process structure) until last close.
565  *
566  * A controlling process must re-open the /proc files in order to
567  * regain control.
568  */
569 void
570 prinvalidate(struct user *up)
571 {
572 	kthread_t *t = curthread;
573 	proc_t *p = ttoproc(t);
574 	vnode_t *vp;
575 	prnode_t *pnp;
576 	int writers = 0;
577 
578 	mutex_enter(&p->p_lock);
579 	prbarrier(p);	/* block all other /proc operations */
580 
581 	/*
582 	 * At this moment, there can be only one lwp in the process.
583 	 */
584 	ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
585 
586 	/*
587 	 * Invalidate any currently active /proc vnodes.
588 	 */
589 	for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
590 		pnp = VTOP(vp);
591 		switch (pnp->pr_type) {
592 		case PR_PSINFO:		/* these files can read by anyone */
593 		case PR_LPSINFO:
594 		case PR_LWPSINFO:
595 		case PR_LWPDIR:
596 		case PR_LWPIDDIR:
597 		case PR_USAGE:
598 		case PR_LUSAGE:
599 		case PR_LWPUSAGE:
600 			break;
601 		default:
602 			pnp->pr_flags |= PR_INVAL;
603 			break;
604 		}
605 	}
606 	/*
607 	 * Wake up anyone waiting for the process or lwp.
608 	 * p->p_trace is guaranteed to be non-NULL if there
609 	 * are any open /proc files for this process.
610 	 */
611 	if ((vp = p->p_trace) != NULL) {
612 		prcommon_t *pcp = VTOP(vp)->pr_pcommon;
613 
614 		prnotify(vp);
615 		/*
616 		 * Are there any writers?
617 		 */
618 		if ((writers = pcp->prc_writers) != 0) {
619 			/*
620 			 * Clear the exclusive open flag (old /proc interface).
621 			 * Set prc_selfopens equal to prc_writers so that
622 			 * the next O_EXCL|O_WRITE open will succeed
623 			 * even with existing (though invalid) writers.
624 			 * prclose() must decrement prc_selfopens when
625 			 * the invalid files are closed.
626 			 */
627 			pcp->prc_flags &= ~PRC_EXCL;
628 			ASSERT(pcp->prc_selfopens <= writers);
629 			pcp->prc_selfopens = writers;
630 		}
631 	}
632 	vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace;
633 	while (vp != NULL) {
634 		/*
635 		 * We should not invalidate the lwpiddir vnodes,
636 		 * but the necessities of maintaining the old
637 		 * ioctl()-based version of /proc require it.
638 		 */
639 		pnp = VTOP(vp);
640 		pnp->pr_flags |= PR_INVAL;
641 		prnotify(vp);
642 		vp = pnp->pr_next;
643 	}
644 
645 	/*
646 	 * If any tracing flags are in effect and any vnodes are open for
647 	 * writing then set the requested-stop and run-on-last-close flags.
648 	 * Otherwise, clear all tracing flags.
649 	 */
650 	t->t_proc_flag &= ~TP_PAUSE;
651 	if ((p->p_proc_flag & P_PR_TRACE) && writers) {
652 		t->t_proc_flag |= TP_PRSTOP;
653 		aston(t);		/* so ISSIG will see the flag */
654 		p->p_proc_flag |= P_PR_RUNLCL;
655 	} else {
656 		premptyset(&up->u_entrymask);		/* syscalls */
657 		premptyset(&up->u_exitmask);
658 		up->u_systrap = 0;
659 		premptyset(&p->p_sigmask);		/* signals */
660 		premptyset(&p->p_fltmask);		/* faults */
661 		t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING);
662 		p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE);
663 		prnostep(ttolwp(t));
664 	}
665 
666 	mutex_exit(&p->p_lock);
667 }
668 
669 /*
670  * Acquire the controlled process's p_lock and mark it P_PR_LOCK.
671  * Return with pr_pidlock held in all cases.
672  * Return with p_lock held if the the process still exists.
673  * Return value is the process pointer if the process still exists, else NULL.
674  * If we lock the process, give ourself kernel priority to avoid deadlocks;
675  * this is undone in prunlock().
676  */
677 proc_t *
678 pr_p_lock(prnode_t *pnp)
679 {
680 	proc_t *p;
681 	prcommon_t *pcp;
682 
683 	mutex_enter(&pr_pidlock);
684 	if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL)
685 		return (NULL);
686 	mutex_enter(&p->p_lock);
687 	while (p->p_proc_flag & P_PR_LOCK) {
688 		/*
689 		 * This cv/mutex pair is persistent even if
690 		 * the process disappears while we sleep.
691 		 */
692 		kcondvar_t *cv = &pr_pid_cv[p->p_slot];
693 		kmutex_t *mp = &p->p_lock;
694 
695 		mutex_exit(&pr_pidlock);
696 		cv_wait(cv, mp);
697 		mutex_exit(mp);
698 		mutex_enter(&pr_pidlock);
699 		if (pcp->prc_proc == NULL)
700 			return (NULL);
701 		ASSERT(p == pcp->prc_proc);
702 		mutex_enter(&p->p_lock);
703 	}
704 	p->p_proc_flag |= P_PR_LOCK;
705 	THREAD_KPRI_REQUEST();
706 	return (p);
707 }
708 
709 /*
710  * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock.
711  * This prevents any lwp of the process from disappearing and
712  * blocks most operations that a process can perform on itself.
713  * Returns 0 on success, a non-zero error number on failure.
714  *
715  * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when
716  * the subject process is a zombie (ZYES) or fail for zombies (ZNO).
717  *
718  * error returns:
719  *	ENOENT: process or lwp has disappeared or process is exiting
720  *		(or has become a zombie and zdisp == ZNO).
721  *	EAGAIN: procfs vnode has become invalid.
722  *	EINTR:  signal arrived while waiting for exec to complete.
723  */
724 int
725 prlock(prnode_t *pnp, int zdisp)
726 {
727 	prcommon_t *pcp;
728 	proc_t *p;
729 
730 again:
731 	pcp = pnp->pr_common;
732 	p = pr_p_lock(pnp);
733 	mutex_exit(&pr_pidlock);
734 
735 	/*
736 	 * Return ENOENT immediately if there is no process.
737 	 */
738 	if (p == NULL)
739 		return (ENOENT);
740 
741 	ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL);
742 
743 	/*
744 	 * Return ENOENT if process entered zombie state or is exiting
745 	 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies.
746 	 */
747 	if (zdisp == ZNO &&
748 	    ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) {
749 		prunlock(pnp);
750 		return (ENOENT);
751 	}
752 
753 	/*
754 	 * If lwp-specific, check to see if lwp has disappeared.
755 	 */
756 	if (pcp->prc_flags & PRC_LWP) {
757 		if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) ||
758 		    pcp->prc_tslot == -1) {
759 			prunlock(pnp);
760 			return (ENOENT);
761 		}
762 	}
763 
764 	/*
765 	 * Return EAGAIN if we have encountered a security violation.
766 	 * (The process exec'd a set-id or unreadable executable file.)
767 	 */
768 	if (pnp->pr_flags & PR_INVAL) {
769 		prunlock(pnp);
770 		return (EAGAIN);
771 	}
772 
773 	/*
774 	 * If process is undergoing an exec(), wait for
775 	 * completion and then start all over again.
776 	 */
777 	if (p->p_proc_flag & P_PR_EXEC) {
778 		pcp = pnp->pr_pcommon;	/* Put on the correct sleep queue */
779 		mutex_enter(&pcp->prc_mutex);
780 		prunlock(pnp);
781 		if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) {
782 			mutex_exit(&pcp->prc_mutex);
783 			return (EINTR);
784 		}
785 		mutex_exit(&pcp->prc_mutex);
786 		goto again;
787 	}
788 
789 	/*
790 	 * We return holding p->p_lock.
791 	 */
792 	return (0);
793 }
794 
795 /*
796  * Undo prlock() and pr_p_lock().
797  * p->p_lock is still held; pr_pidlock is no longer held.
798  *
799  * prunmark() drops the P_PR_LOCK flag and wakes up another thread,
800  * if any, waiting for the flag to be dropped; it retains p->p_lock.
801  *
802  * prunlock() calls prunmark() and then drops p->p_lock.
803  */
804 void
805 prunmark(proc_t *p)
806 {
807 	ASSERT(p->p_proc_flag & P_PR_LOCK);
808 	ASSERT(MUTEX_HELD(&p->p_lock));
809 
810 	cv_signal(&pr_pid_cv[p->p_slot]);
811 	p->p_proc_flag &= ~P_PR_LOCK;
812 	THREAD_KPRI_RELEASE();
813 }
814 
815 void
816 prunlock(prnode_t *pnp)
817 {
818 	prcommon_t *pcp = pnp->pr_common;
819 	proc_t *p = pcp->prc_proc;
820 
821 	/*
822 	 * If we (or someone) gave it a SIGKILL, and it is not
823 	 * already a zombie, set it running unconditionally.
824 	 */
825 	if ((p->p_flag & SKILLED) &&
826 	    !(p->p_flag & SEXITING) &&
827 	    !(pcp->prc_flags & PRC_DESTROY) &&
828 	    !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1))
829 		(void) pr_setrun(pnp, 0);
830 	prunmark(p);
831 	mutex_exit(&p->p_lock);
832 }
833 
834 /*
835  * Called while holding p->p_lock to delay until the process is unlocked.
836  * We enter holding p->p_lock; p->p_lock is dropped and reacquired.
837  * The process cannot become locked again until p->p_lock is dropped.
838  */
839 void
840 prbarrier(proc_t *p)
841 {
842 	ASSERT(MUTEX_HELD(&p->p_lock));
843 
844 	if (p->p_proc_flag & P_PR_LOCK) {
845 		/* The process is locked; delay until not locked */
846 		uint_t slot = p->p_slot;
847 
848 		while (p->p_proc_flag & P_PR_LOCK)
849 			cv_wait(&pr_pid_cv[slot], &p->p_lock);
850 		cv_signal(&pr_pid_cv[slot]);
851 	}
852 }
853 
854 /*
855  * Return process/lwp status.
856  * The u-block is mapped in by this routine and unmapped at the end.
857  */
858 void
859 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp)
860 {
861 	kthread_t *t;
862 
863 	ASSERT(MUTEX_HELD(&p->p_lock));
864 
865 	t = prchoose(p);	/* returns locked thread */
866 	ASSERT(t != NULL);
867 	thread_unlock(t);
868 
869 	/* just bzero the process part, prgetlwpstatus() does the rest */
870 	bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t));
871 	sp->pr_nlwp = p->p_lwpcnt;
872 	sp->pr_nzomb = p->p_zombcnt;
873 	prassignset(&sp->pr_sigpend, &p->p_sig);
874 	sp->pr_brkbase = (uintptr_t)p->p_brkbase;
875 	sp->pr_brksize = p->p_brksize;
876 	sp->pr_stkbase = (uintptr_t)prgetstackbase(p);
877 	sp->pr_stksize = p->p_stksize;
878 	sp->pr_pid = p->p_pid;
879 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
880 	    (p->p_flag & SZONETOP)) {
881 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
882 		/*
883 		 * Inside local zones, fake zsched's pid as parent pids for
884 		 * processes which reference processes outside of the zone.
885 		 */
886 		sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
887 	} else {
888 		sp->pr_ppid = p->p_ppid;
889 	}
890 	sp->pr_pgid  = p->p_pgrp;
891 	sp->pr_sid   = p->p_sessp->s_sid;
892 	sp->pr_taskid = p->p_task->tk_tkid;
893 	sp->pr_projid = p->p_task->tk_proj->kpj_id;
894 	sp->pr_zoneid = p->p_zone->zone_id;
895 	hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
896 	hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
897 	TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime);
898 	TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime);
899 	prassignset(&sp->pr_sigtrace, &p->p_sigmask);
900 	prassignset(&sp->pr_flttrace, &p->p_fltmask);
901 	prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
902 	prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
903 	switch (p->p_model) {
904 	case DATAMODEL_ILP32:
905 		sp->pr_dmodel = PR_MODEL_ILP32;
906 		break;
907 	case DATAMODEL_LP64:
908 		sp->pr_dmodel = PR_MODEL_LP64;
909 		break;
910 	}
911 	if (p->p_agenttp)
912 		sp->pr_agentid = p->p_agenttp->t_tid;
913 
914 	/* get the chosen lwp's status */
915 	prgetlwpstatus(t, &sp->pr_lwp, zp);
916 
917 	/* replicate the flags */
918 	sp->pr_flags = sp->pr_lwp.pr_flags;
919 }
920 
921 #ifdef _SYSCALL32_IMPL
922 void
923 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp)
924 {
925 	proc_t *p = ttoproc(t);
926 	klwp_t *lwp = ttolwp(t);
927 	struct mstate *ms = &lwp->lwp_mstate;
928 	hrtime_t usr, sys;
929 	int flags;
930 	ulong_t instr;
931 
932 	ASSERT(MUTEX_HELD(&p->p_lock));
933 
934 	bzero(sp, sizeof (*sp));
935 	flags = 0L;
936 	if (t->t_state == TS_STOPPED) {
937 		flags |= PR_STOPPED;
938 		if ((t->t_schedflag & TS_PSTART) == 0)
939 			flags |= PR_ISTOP;
940 	} else if (VSTOPPED(t)) {
941 		flags |= PR_STOPPED|PR_ISTOP;
942 	}
943 	if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
944 		flags |= PR_DSTOP;
945 	if (lwp->lwp_asleep)
946 		flags |= PR_ASLEEP;
947 	if (t == p->p_agenttp)
948 		flags |= PR_AGENT;
949 	if (!(t->t_proc_flag & TP_TWAIT))
950 		flags |= PR_DETACH;
951 	if (t->t_proc_flag & TP_DAEMON)
952 		flags |= PR_DAEMON;
953 	if (p->p_proc_flag & P_PR_FORK)
954 		flags |= PR_FORK;
955 	if (p->p_proc_flag & P_PR_RUNLCL)
956 		flags |= PR_RLC;
957 	if (p->p_proc_flag & P_PR_KILLCL)
958 		flags |= PR_KLC;
959 	if (p->p_proc_flag & P_PR_ASYNC)
960 		flags |= PR_ASYNC;
961 	if (p->p_proc_flag & P_PR_BPTADJ)
962 		flags |= PR_BPTADJ;
963 	if (p->p_proc_flag & P_PR_PTRACE)
964 		flags |= PR_PTRACE;
965 	if (p->p_flag & SMSACCT)
966 		flags |= PR_MSACCT;
967 	if (p->p_flag & SMSFORK)
968 		flags |= PR_MSFORK;
969 	if (p->p_flag & SVFWAIT)
970 		flags |= PR_VFORKP;
971 	sp->pr_flags = flags;
972 	if (VSTOPPED(t)) {
973 		sp->pr_why   = PR_REQUESTED;
974 		sp->pr_what  = 0;
975 	} else {
976 		sp->pr_why   = t->t_whystop;
977 		sp->pr_what  = t->t_whatstop;
978 	}
979 	sp->pr_lwpid = t->t_tid;
980 	sp->pr_cursig  = lwp->lwp_cursig;
981 	prassignset(&sp->pr_lwppend, &t->t_sig);
982 	schedctl_finish_sigblock(t);
983 	prassignset(&sp->pr_lwphold, &t->t_hold);
984 	if (t->t_whystop == PR_FAULTED) {
985 		siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info);
986 		if (t->t_whatstop == FLTPAGE)
987 			sp->pr_info.si_addr =
988 			    (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr;
989 	} else if (lwp->lwp_curinfo)
990 		siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info);
991 	if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
992 	    sp->pr_info.si_zoneid != zp->zone_id) {
993 		sp->pr_info.si_pid = zp->zone_zsched->p_pid;
994 		sp->pr_info.si_uid = 0;
995 		sp->pr_info.si_ctid = -1;
996 		sp->pr_info.si_zoneid = zp->zone_id;
997 	}
998 	sp->pr_altstack.ss_sp =
999 	    (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp;
1000 	sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size;
1001 	sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags;
1002 	prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1003 	sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext;
1004 	sp->pr_ustack = (caddr32_t)lwp->lwp_ustack;
1005 	(void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1006 	    sizeof (sp->pr_clname) - 1);
1007 	if (flags & PR_STOPPED)
1008 		hrt2ts32(t->t_stoptime, &sp->pr_tstamp);
1009 	usr = ms->ms_acct[LMS_USER];
1010 	sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1011 	scalehrtime(&usr);
1012 	scalehrtime(&sys);
1013 	hrt2ts32(usr, &sp->pr_utime);
1014 	hrt2ts32(sys, &sp->pr_stime);
1015 
1016 	/*
1017 	 * Fetch the current instruction, if not a system process.
1018 	 * We don't attempt this unless the lwp is stopped.
1019 	 */
1020 	if ((p->p_flag & SSYS) || p->p_as == &kas)
1021 		sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1022 	else if (!(flags & PR_STOPPED))
1023 		sp->pr_flags |= PR_PCINVAL;
1024 	else if (!prfetchinstr(lwp, &instr))
1025 		sp->pr_flags |= PR_PCINVAL;
1026 	else
1027 		sp->pr_instr = (uint32_t)instr;
1028 
1029 	/*
1030 	 * Drop p_lock while touching the lwp's stack.
1031 	 */
1032 	mutex_exit(&p->p_lock);
1033 	if (prisstep(lwp))
1034 		sp->pr_flags |= PR_STEP;
1035 	if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1036 		int i;
1037 
1038 		sp->pr_syscall = get_syscall32_args(lwp,
1039 		    (int *)sp->pr_sysarg, &i);
1040 		sp->pr_nsysarg = (ushort_t)i;
1041 	}
1042 	if ((flags & PR_STOPPED) || t == curthread)
1043 		prgetprregs32(lwp, sp->pr_reg);
1044 	if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1045 	    (flags & PR_VFORKP)) {
1046 		long r1, r2;
1047 		user_t *up;
1048 		auxv_t *auxp;
1049 		int i;
1050 
1051 		sp->pr_errno = prgetrvals(lwp, &r1, &r2);
1052 		if (sp->pr_errno == 0) {
1053 			sp->pr_rval1 = (int32_t)r1;
1054 			sp->pr_rval2 = (int32_t)r2;
1055 			sp->pr_errpriv = PRIV_NONE;
1056 		} else
1057 			sp->pr_errpriv = lwp->lwp_badpriv;
1058 
1059 		if (t->t_sysnum == SYS_execve) {
1060 			up = PTOU(p);
1061 			sp->pr_sysarg[0] = 0;
1062 			sp->pr_sysarg[1] = (caddr32_t)up->u_argv;
1063 			sp->pr_sysarg[2] = (caddr32_t)up->u_envp;
1064 			for (i = 0, auxp = up->u_auxv;
1065 			    i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1066 			    i++, auxp++) {
1067 				if (auxp->a_type == AT_SUN_EXECNAME) {
1068 					sp->pr_sysarg[0] =
1069 					    (caddr32_t)
1070 					    (uintptr_t)auxp->a_un.a_ptr;
1071 					break;
1072 				}
1073 			}
1074 		}
1075 	}
1076 	if (prhasfp())
1077 		prgetprfpregs32(lwp, &sp->pr_fpreg);
1078 	mutex_enter(&p->p_lock);
1079 }
1080 
1081 void
1082 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp)
1083 {
1084 	kthread_t *t;
1085 
1086 	ASSERT(MUTEX_HELD(&p->p_lock));
1087 
1088 	t = prchoose(p);	/* returns locked thread */
1089 	ASSERT(t != NULL);
1090 	thread_unlock(t);
1091 
1092 	/* just bzero the process part, prgetlwpstatus32() does the rest */
1093 	bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t));
1094 	sp->pr_nlwp = p->p_lwpcnt;
1095 	sp->pr_nzomb = p->p_zombcnt;
1096 	prassignset(&sp->pr_sigpend, &p->p_sig);
1097 	sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase;
1098 	sp->pr_brksize = (uint32_t)p->p_brksize;
1099 	sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p);
1100 	sp->pr_stksize = (uint32_t)p->p_stksize;
1101 	sp->pr_pid   = p->p_pid;
1102 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
1103 	    (p->p_flag & SZONETOP)) {
1104 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
1105 		/*
1106 		 * Inside local zones, fake zsched's pid as parent pids for
1107 		 * processes which reference processes outside of the zone.
1108 		 */
1109 		sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
1110 	} else {
1111 		sp->pr_ppid = p->p_ppid;
1112 	}
1113 	sp->pr_pgid  = p->p_pgrp;
1114 	sp->pr_sid   = p->p_sessp->s_sid;
1115 	sp->pr_taskid = p->p_task->tk_tkid;
1116 	sp->pr_projid = p->p_task->tk_proj->kpj_id;
1117 	sp->pr_zoneid = p->p_zone->zone_id;
1118 	hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
1119 	hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
1120 	TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime);
1121 	TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime);
1122 	prassignset(&sp->pr_sigtrace, &p->p_sigmask);
1123 	prassignset(&sp->pr_flttrace, &p->p_fltmask);
1124 	prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
1125 	prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
1126 	switch (p->p_model) {
1127 	case DATAMODEL_ILP32:
1128 		sp->pr_dmodel = PR_MODEL_ILP32;
1129 		break;
1130 	case DATAMODEL_LP64:
1131 		sp->pr_dmodel = PR_MODEL_LP64;
1132 		break;
1133 	}
1134 	if (p->p_agenttp)
1135 		sp->pr_agentid = p->p_agenttp->t_tid;
1136 
1137 	/* get the chosen lwp's status */
1138 	prgetlwpstatus32(t, &sp->pr_lwp, zp);
1139 
1140 	/* replicate the flags */
1141 	sp->pr_flags = sp->pr_lwp.pr_flags;
1142 }
1143 #endif	/* _SYSCALL32_IMPL */
1144 
1145 /*
1146  * Return lwp status.
1147  */
1148 void
1149 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp)
1150 {
1151 	proc_t *p = ttoproc(t);
1152 	klwp_t *lwp = ttolwp(t);
1153 	struct mstate *ms = &lwp->lwp_mstate;
1154 	hrtime_t usr, sys;
1155 	int flags;
1156 	ulong_t instr;
1157 
1158 	ASSERT(MUTEX_HELD(&p->p_lock));
1159 
1160 	bzero(sp, sizeof (*sp));
1161 	flags = 0L;
1162 	if (t->t_state == TS_STOPPED) {
1163 		flags |= PR_STOPPED;
1164 		if ((t->t_schedflag & TS_PSTART) == 0)
1165 			flags |= PR_ISTOP;
1166 	} else if (VSTOPPED(t)) {
1167 		flags |= PR_STOPPED|PR_ISTOP;
1168 	}
1169 	if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
1170 		flags |= PR_DSTOP;
1171 	if (lwp->lwp_asleep)
1172 		flags |= PR_ASLEEP;
1173 	if (t == p->p_agenttp)
1174 		flags |= PR_AGENT;
1175 	if (!(t->t_proc_flag & TP_TWAIT))
1176 		flags |= PR_DETACH;
1177 	if (t->t_proc_flag & TP_DAEMON)
1178 		flags |= PR_DAEMON;
1179 	if (p->p_proc_flag & P_PR_FORK)
1180 		flags |= PR_FORK;
1181 	if (p->p_proc_flag & P_PR_RUNLCL)
1182 		flags |= PR_RLC;
1183 	if (p->p_proc_flag & P_PR_KILLCL)
1184 		flags |= PR_KLC;
1185 	if (p->p_proc_flag & P_PR_ASYNC)
1186 		flags |= PR_ASYNC;
1187 	if (p->p_proc_flag & P_PR_BPTADJ)
1188 		flags |= PR_BPTADJ;
1189 	if (p->p_proc_flag & P_PR_PTRACE)
1190 		flags |= PR_PTRACE;
1191 	if (p->p_flag & SMSACCT)
1192 		flags |= PR_MSACCT;
1193 	if (p->p_flag & SMSFORK)
1194 		flags |= PR_MSFORK;
1195 	if (p->p_flag & SVFWAIT)
1196 		flags |= PR_VFORKP;
1197 	if (p->p_pgidp->pid_pgorphaned)
1198 		flags |= PR_ORPHAN;
1199 	if (p->p_pidflag & CLDNOSIGCHLD)
1200 		flags |= PR_NOSIGCHLD;
1201 	if (p->p_pidflag & CLDWAITPID)
1202 		flags |= PR_WAITPID;
1203 	sp->pr_flags = flags;
1204 	if (VSTOPPED(t)) {
1205 		sp->pr_why   = PR_REQUESTED;
1206 		sp->pr_what  = 0;
1207 	} else {
1208 		sp->pr_why   = t->t_whystop;
1209 		sp->pr_what  = t->t_whatstop;
1210 	}
1211 	sp->pr_lwpid = t->t_tid;
1212 	sp->pr_cursig  = lwp->lwp_cursig;
1213 	prassignset(&sp->pr_lwppend, &t->t_sig);
1214 	schedctl_finish_sigblock(t);
1215 	prassignset(&sp->pr_lwphold, &t->t_hold);
1216 	if (t->t_whystop == PR_FAULTED)
1217 		bcopy(&lwp->lwp_siginfo,
1218 		    &sp->pr_info, sizeof (k_siginfo_t));
1219 	else if (lwp->lwp_curinfo)
1220 		bcopy(&lwp->lwp_curinfo->sq_info,
1221 		    &sp->pr_info, sizeof (k_siginfo_t));
1222 	if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
1223 	    sp->pr_info.si_zoneid != zp->zone_id) {
1224 		sp->pr_info.si_pid = zp->zone_zsched->p_pid;
1225 		sp->pr_info.si_uid = 0;
1226 		sp->pr_info.si_ctid = -1;
1227 		sp->pr_info.si_zoneid = zp->zone_id;
1228 	}
1229 	sp->pr_altstack = lwp->lwp_sigaltstack;
1230 	prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1231 	sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext;
1232 	sp->pr_ustack = lwp->lwp_ustack;
1233 	(void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1234 	    sizeof (sp->pr_clname) - 1);
1235 	if (flags & PR_STOPPED)
1236 		hrt2ts(t->t_stoptime, &sp->pr_tstamp);
1237 	usr = ms->ms_acct[LMS_USER];
1238 	sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1239 	scalehrtime(&usr);
1240 	scalehrtime(&sys);
1241 	hrt2ts(usr, &sp->pr_utime);
1242 	hrt2ts(sys, &sp->pr_stime);
1243 
1244 	/*
1245 	 * Fetch the current instruction, if not a system process.
1246 	 * We don't attempt this unless the lwp is stopped.
1247 	 */
1248 	if ((p->p_flag & SSYS) || p->p_as == &kas)
1249 		sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1250 	else if (!(flags & PR_STOPPED))
1251 		sp->pr_flags |= PR_PCINVAL;
1252 	else if (!prfetchinstr(lwp, &instr))
1253 		sp->pr_flags |= PR_PCINVAL;
1254 	else
1255 		sp->pr_instr = instr;
1256 
1257 	/*
1258 	 * Drop p_lock while touching the lwp's stack.
1259 	 */
1260 	mutex_exit(&p->p_lock);
1261 	if (prisstep(lwp))
1262 		sp->pr_flags |= PR_STEP;
1263 	if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1264 		int i;
1265 
1266 		sp->pr_syscall = get_syscall_args(lwp,
1267 		    (long *)sp->pr_sysarg, &i);
1268 		sp->pr_nsysarg = (ushort_t)i;
1269 	}
1270 	if ((flags & PR_STOPPED) || t == curthread)
1271 		prgetprregs(lwp, sp->pr_reg);
1272 	if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1273 	    (flags & PR_VFORKP)) {
1274 		user_t *up;
1275 		auxv_t *auxp;
1276 		int i;
1277 
1278 		sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2);
1279 		if (sp->pr_errno == 0)
1280 			sp->pr_errpriv = PRIV_NONE;
1281 		else
1282 			sp->pr_errpriv = lwp->lwp_badpriv;
1283 
1284 		if (t->t_sysnum == SYS_execve) {
1285 			up = PTOU(p);
1286 			sp->pr_sysarg[0] = 0;
1287 			sp->pr_sysarg[1] = (uintptr_t)up->u_argv;
1288 			sp->pr_sysarg[2] = (uintptr_t)up->u_envp;
1289 			for (i = 0, auxp = up->u_auxv;
1290 			    i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1291 			    i++, auxp++) {
1292 				if (auxp->a_type == AT_SUN_EXECNAME) {
1293 					sp->pr_sysarg[0] =
1294 					    (uintptr_t)auxp->a_un.a_ptr;
1295 					break;
1296 				}
1297 			}
1298 		}
1299 	}
1300 	if (prhasfp())
1301 		prgetprfpregs(lwp, &sp->pr_fpreg);
1302 	mutex_enter(&p->p_lock);
1303 }
1304 
1305 /*
1306  * Get the sigaction structure for the specified signal.  The u-block
1307  * must already have been mapped in by the caller.
1308  */
1309 void
1310 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp)
1311 {
1312 	bzero(sp, sizeof (*sp));
1313 
1314 	if (sig != 0 && (unsigned)sig < NSIG) {
1315 		sp->sa_handler = up->u_signal[sig-1];
1316 		prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1317 		if (sigismember(&up->u_sigonstack, sig))
1318 			sp->sa_flags |= SA_ONSTACK;
1319 		if (sigismember(&up->u_sigresethand, sig))
1320 			sp->sa_flags |= SA_RESETHAND;
1321 		if (sigismember(&up->u_sigrestart, sig))
1322 			sp->sa_flags |= SA_RESTART;
1323 		if (sigismember(&p->p_siginfo, sig))
1324 			sp->sa_flags |= SA_SIGINFO;
1325 		if (sigismember(&up->u_signodefer, sig))
1326 			sp->sa_flags |= SA_NODEFER;
1327 		if (sig == SIGCLD) {
1328 			if (p->p_flag & SNOWAIT)
1329 				sp->sa_flags |= SA_NOCLDWAIT;
1330 			if ((p->p_flag & SJCTL) == 0)
1331 				sp->sa_flags |= SA_NOCLDSTOP;
1332 		}
1333 	}
1334 }
1335 
1336 #ifdef _SYSCALL32_IMPL
1337 void
1338 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp)
1339 {
1340 	bzero(sp, sizeof (*sp));
1341 
1342 	if (sig != 0 && (unsigned)sig < NSIG) {
1343 		sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1];
1344 		prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1345 		if (sigismember(&up->u_sigonstack, sig))
1346 			sp->sa_flags |= SA_ONSTACK;
1347 		if (sigismember(&up->u_sigresethand, sig))
1348 			sp->sa_flags |= SA_RESETHAND;
1349 		if (sigismember(&up->u_sigrestart, sig))
1350 			sp->sa_flags |= SA_RESTART;
1351 		if (sigismember(&p->p_siginfo, sig))
1352 			sp->sa_flags |= SA_SIGINFO;
1353 		if (sigismember(&up->u_signodefer, sig))
1354 			sp->sa_flags |= SA_NODEFER;
1355 		if (sig == SIGCLD) {
1356 			if (p->p_flag & SNOWAIT)
1357 				sp->sa_flags |= SA_NOCLDWAIT;
1358 			if ((p->p_flag & SJCTL) == 0)
1359 				sp->sa_flags |= SA_NOCLDSTOP;
1360 		}
1361 	}
1362 }
1363 #endif	/* _SYSCALL32_IMPL */
1364 
1365 /*
1366  * Count the number of segments in this process's address space.
1367  */
1368 int
1369 prnsegs(struct as *as, int reserved)
1370 {
1371 	int n = 0;
1372 	struct seg *seg;
1373 
1374 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1375 
1376 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1377 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1378 		caddr_t saddr, naddr;
1379 		void *tmp = NULL;
1380 
1381 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1382 			(void) pr_getprot(seg, reserved, &tmp,
1383 			    &saddr, &naddr, eaddr);
1384 			if (saddr != naddr)
1385 				n++;
1386 		}
1387 
1388 		ASSERT(tmp == NULL);
1389 	}
1390 
1391 	return (n);
1392 }
1393 
1394 /*
1395  * Convert uint32_t to decimal string w/o leading zeros.
1396  * Add trailing null characters if 'len' is greater than string length.
1397  * Return the string length.
1398  */
1399 int
1400 pr_u32tos(uint32_t n, char *s, int len)
1401 {
1402 	char cbuf[11];		/* 32-bit unsigned integer fits in 10 digits */
1403 	char *cp = cbuf;
1404 	char *end = s + len;
1405 
1406 	do {
1407 		*cp++ = (char)(n % 10 + '0');
1408 		n /= 10;
1409 	} while (n);
1410 
1411 	len = (int)(cp - cbuf);
1412 
1413 	do {
1414 		*s++ = *--cp;
1415 	} while (cp > cbuf);
1416 
1417 	while (s < end)		/* optional pad */
1418 		*s++ = '\0';
1419 
1420 	return (len);
1421 }
1422 
1423 /*
1424  * Convert uint64_t to decimal string w/o leading zeros.
1425  * Return the string length.
1426  */
1427 static int
1428 pr_u64tos(uint64_t n, char *s)
1429 {
1430 	char cbuf[21];		/* 64-bit unsigned integer fits in 20 digits */
1431 	char *cp = cbuf;
1432 	int len;
1433 
1434 	do {
1435 		*cp++ = (char)(n % 10 + '0');
1436 		n /= 10;
1437 	} while (n);
1438 
1439 	len = (int)(cp - cbuf);
1440 
1441 	do {
1442 		*s++ = *--cp;
1443 	} while (cp > cbuf);
1444 
1445 	return (len);
1446 }
1447 
1448 void
1449 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr)
1450 {
1451 	char *s = name;
1452 	struct vfs *vfsp;
1453 	struct vfssw *vfsswp;
1454 
1455 	if ((vfsp = vp->v_vfsp) != NULL &&
1456 	    ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) &&
1457 	    *vfsswp->vsw_name) {
1458 		(void) strcpy(s, vfsswp->vsw_name);
1459 		s += strlen(s);
1460 		*s++ = '.';
1461 	}
1462 	s += pr_u32tos(getmajor(vattr->va_fsid), s, 0);
1463 	*s++ = '.';
1464 	s += pr_u32tos(getminor(vattr->va_fsid), s, 0);
1465 	*s++ = '.';
1466 	s += pr_u64tos(vattr->va_nodeid, s);
1467 	*s++ = '\0';
1468 }
1469 
1470 struct seg *
1471 break_seg(proc_t *p)
1472 {
1473 	caddr_t addr = p->p_brkbase;
1474 	struct seg *seg;
1475 	struct vnode *vp;
1476 
1477 	if (p->p_brksize != 0)
1478 		addr += p->p_brksize - 1;
1479 	seg = as_segat(p->p_as, addr);
1480 	if (seg != NULL && seg->s_ops == &segvn_ops &&
1481 	    (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL))
1482 		return (seg);
1483 	return (NULL);
1484 }
1485 
1486 /*
1487  * Implementation of service functions to handle procfs generic chained
1488  * copyout buffers.
1489  */
1490 typedef struct pr_iobuf_list {
1491 	list_node_t	piol_link;	/* buffer linkage */
1492 	size_t		piol_size;	/* total size (header + data) */
1493 	size_t		piol_usedsize;	/* amount to copy out from this buf */
1494 } piol_t;
1495 
1496 #define	MAPSIZE	(64 * 1024)
1497 #define	PIOL_DATABUF(iol)	((void *)(&(iol)[1]))
1498 
1499 void
1500 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n)
1501 {
1502 	piol_t	*iol;
1503 	size_t	initial_size = MIN(1, n) * itemsize;
1504 
1505 	list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link));
1506 
1507 	ASSERT(list_head(iolhead) == NULL);
1508 	ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1509 	ASSERT(initial_size > 0);
1510 
1511 	/*
1512 	 * Someone creating chained copyout buffers may ask for less than
1513 	 * MAPSIZE if the amount of data to be buffered is known to be
1514 	 * smaller than that.
1515 	 * But in order to prevent involuntary self-denial of service,
1516 	 * the requested input size is clamped at MAPSIZE.
1517 	 */
1518 	initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol));
1519 	iol = kmem_alloc(initial_size, KM_SLEEP);
1520 	list_insert_head(iolhead, iol);
1521 	iol->piol_usedsize = 0;
1522 	iol->piol_size = initial_size;
1523 }
1524 
1525 void *
1526 pr_iol_newbuf(list_t *iolhead, size_t itemsize)
1527 {
1528 	piol_t	*iol;
1529 	char	*new;
1530 
1531 	ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1532 	ASSERT(list_head(iolhead) != NULL);
1533 
1534 	iol = (piol_t *)list_tail(iolhead);
1535 
1536 	if (iol->piol_size <
1537 	    iol->piol_usedsize + sizeof (*iol) + itemsize) {
1538 		/*
1539 		 * Out of space in the current buffer. Allocate more.
1540 		 */
1541 		piol_t *newiol;
1542 
1543 		newiol = kmem_alloc(MAPSIZE, KM_SLEEP);
1544 		newiol->piol_size = MAPSIZE;
1545 		newiol->piol_usedsize = 0;
1546 
1547 		list_insert_after(iolhead, iol, newiol);
1548 		iol = list_next(iolhead, iol);
1549 		ASSERT(iol == newiol);
1550 	}
1551 	new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize;
1552 	iol->piol_usedsize += itemsize;
1553 	bzero(new, itemsize);
1554 	return (new);
1555 }
1556 
1557 int
1558 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin)
1559 {
1560 	int error = errin;
1561 	piol_t	*iol;
1562 
1563 	while ((iol = list_head(iolhead)) != NULL) {
1564 		list_remove(iolhead, iol);
1565 		if (!error) {
1566 			if (copyout(PIOL_DATABUF(iol), *tgt,
1567 			    iol->piol_usedsize))
1568 				error = EFAULT;
1569 			*tgt += iol->piol_usedsize;
1570 		}
1571 		kmem_free(iol, iol->piol_size);
1572 	}
1573 	list_destroy(iolhead);
1574 
1575 	return (error);
1576 }
1577 
1578 int
1579 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin)
1580 {
1581 	offset_t	off = uiop->uio_offset;
1582 	char		*base;
1583 	size_t		size;
1584 	piol_t		*iol;
1585 	int		error = errin;
1586 
1587 	while ((iol = list_head(iolhead)) != NULL) {
1588 		list_remove(iolhead, iol);
1589 		base = PIOL_DATABUF(iol);
1590 		size = iol->piol_usedsize;
1591 		if (off <= size && error == 0 && uiop->uio_resid > 0)
1592 			error = uiomove(base + off, size - off,
1593 			    UIO_READ, uiop);
1594 		off = MAX(0, off - (offset_t)size);
1595 		kmem_free(iol, iol->piol_size);
1596 	}
1597 	list_destroy(iolhead);
1598 
1599 	return (error);
1600 }
1601 
1602 /*
1603  * Return an array of structures with memory map information.
1604  * We allocate here; the caller must deallocate.
1605  */
1606 int
1607 prgetmap(proc_t *p, int reserved, list_t *iolhead)
1608 {
1609 	struct as *as = p->p_as;
1610 	prmap_t *mp;
1611 	struct seg *seg;
1612 	struct seg *brkseg, *stkseg;
1613 	struct vnode *vp;
1614 	struct vattr vattr;
1615 	uint_t prot;
1616 
1617 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1618 
1619 	/*
1620 	 * Request an initial buffer size that doesn't waste memory
1621 	 * if the address space has only a small number of segments.
1622 	 */
1623 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1624 
1625 	if ((seg = AS_SEGFIRST(as)) == NULL)
1626 		return (0);
1627 
1628 	brkseg = break_seg(p);
1629 	stkseg = as_segat(as, prgetstackbase(p));
1630 
1631 	do {
1632 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1633 		caddr_t saddr, naddr;
1634 		void *tmp = NULL;
1635 
1636 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1637 			prot = pr_getprot(seg, reserved, &tmp,
1638 			    &saddr, &naddr, eaddr);
1639 			if (saddr == naddr)
1640 				continue;
1641 
1642 			mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1643 
1644 			mp->pr_vaddr = (uintptr_t)saddr;
1645 			mp->pr_size = naddr - saddr;
1646 			mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1647 			mp->pr_mflags = 0;
1648 			if (prot & PROT_READ)
1649 				mp->pr_mflags |= MA_READ;
1650 			if (prot & PROT_WRITE)
1651 				mp->pr_mflags |= MA_WRITE;
1652 			if (prot & PROT_EXEC)
1653 				mp->pr_mflags |= MA_EXEC;
1654 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1655 				mp->pr_mflags |= MA_SHARED;
1656 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1657 				mp->pr_mflags |= MA_NORESERVE;
1658 			if (seg->s_ops == &segspt_shmops ||
1659 			    (seg->s_ops == &segvn_ops &&
1660 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1661 				mp->pr_mflags |= MA_ANON;
1662 			if (seg == brkseg)
1663 				mp->pr_mflags |= MA_BREAK;
1664 			else if (seg == stkseg) {
1665 				mp->pr_mflags |= MA_STACK;
1666 				if (reserved) {
1667 					size_t maxstack =
1668 					    ((size_t)p->p_stk_ctl +
1669 					    PAGEOFFSET) & PAGEMASK;
1670 					mp->pr_vaddr =
1671 					    (uintptr_t)prgetstackbase(p) +
1672 					    p->p_stksize - maxstack;
1673 					mp->pr_size = (uintptr_t)naddr -
1674 					    mp->pr_vaddr;
1675 				}
1676 			}
1677 			if (seg->s_ops == &segspt_shmops)
1678 				mp->pr_mflags |= MA_ISM | MA_SHM;
1679 			mp->pr_pagesize = PAGESIZE;
1680 
1681 			/*
1682 			 * Manufacture a filename for the "object" directory.
1683 			 */
1684 			vattr.va_mask = AT_FSID|AT_NODEID;
1685 			if (seg->s_ops == &segvn_ops &&
1686 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1687 			    vp != NULL && vp->v_type == VREG &&
1688 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
1689 				if (vp == p->p_exec)
1690 					(void) strcpy(mp->pr_mapname, "a.out");
1691 				else
1692 					pr_object_name(mp->pr_mapname,
1693 					    vp, &vattr);
1694 			}
1695 
1696 			/*
1697 			 * Get the SysV shared memory id, if any.
1698 			 */
1699 			if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1700 			    (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1701 			    SHMID_NONE) {
1702 				if (mp->pr_shmid == SHMID_FREE)
1703 					mp->pr_shmid = -1;
1704 
1705 				mp->pr_mflags |= MA_SHM;
1706 			} else {
1707 				mp->pr_shmid = -1;
1708 			}
1709 		}
1710 		ASSERT(tmp == NULL);
1711 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1712 
1713 	return (0);
1714 }
1715 
1716 #ifdef _SYSCALL32_IMPL
1717 int
1718 prgetmap32(proc_t *p, int reserved, list_t *iolhead)
1719 {
1720 	struct as *as = p->p_as;
1721 	prmap32_t *mp;
1722 	struct seg *seg;
1723 	struct seg *brkseg, *stkseg;
1724 	struct vnode *vp;
1725 	struct vattr vattr;
1726 	uint_t prot;
1727 
1728 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1729 
1730 	/*
1731 	 * Request an initial buffer size that doesn't waste memory
1732 	 * if the address space has only a small number of segments.
1733 	 */
1734 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1735 
1736 	if ((seg = AS_SEGFIRST(as)) == NULL)
1737 		return (0);
1738 
1739 	brkseg = break_seg(p);
1740 	stkseg = as_segat(as, prgetstackbase(p));
1741 
1742 	do {
1743 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1744 		caddr_t saddr, naddr;
1745 		void *tmp = NULL;
1746 
1747 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1748 			prot = pr_getprot(seg, reserved, &tmp,
1749 			    &saddr, &naddr, eaddr);
1750 			if (saddr == naddr)
1751 				continue;
1752 
1753 			mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1754 
1755 			mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
1756 			mp->pr_size = (size32_t)(naddr - saddr);
1757 			mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1758 			mp->pr_mflags = 0;
1759 			if (prot & PROT_READ)
1760 				mp->pr_mflags |= MA_READ;
1761 			if (prot & PROT_WRITE)
1762 				mp->pr_mflags |= MA_WRITE;
1763 			if (prot & PROT_EXEC)
1764 				mp->pr_mflags |= MA_EXEC;
1765 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1766 				mp->pr_mflags |= MA_SHARED;
1767 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1768 				mp->pr_mflags |= MA_NORESERVE;
1769 			if (seg->s_ops == &segspt_shmops ||
1770 			    (seg->s_ops == &segvn_ops &&
1771 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1772 				mp->pr_mflags |= MA_ANON;
1773 			if (seg == brkseg)
1774 				mp->pr_mflags |= MA_BREAK;
1775 			else if (seg == stkseg) {
1776 				mp->pr_mflags |= MA_STACK;
1777 				if (reserved) {
1778 					size_t maxstack =
1779 					    ((size_t)p->p_stk_ctl +
1780 					    PAGEOFFSET) & PAGEMASK;
1781 					uintptr_t vaddr =
1782 					    (uintptr_t)prgetstackbase(p) +
1783 					    p->p_stksize - maxstack;
1784 					mp->pr_vaddr = (caddr32_t)vaddr;
1785 					mp->pr_size = (size32_t)
1786 					    ((uintptr_t)naddr - vaddr);
1787 				}
1788 			}
1789 			if (seg->s_ops == &segspt_shmops)
1790 				mp->pr_mflags |= MA_ISM | MA_SHM;
1791 			mp->pr_pagesize = PAGESIZE;
1792 
1793 			/*
1794 			 * Manufacture a filename for the "object" directory.
1795 			 */
1796 			vattr.va_mask = AT_FSID|AT_NODEID;
1797 			if (seg->s_ops == &segvn_ops &&
1798 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1799 			    vp != NULL && vp->v_type == VREG &&
1800 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
1801 				if (vp == p->p_exec)
1802 					(void) strcpy(mp->pr_mapname, "a.out");
1803 				else
1804 					pr_object_name(mp->pr_mapname,
1805 					    vp, &vattr);
1806 			}
1807 
1808 			/*
1809 			 * Get the SysV shared memory id, if any.
1810 			 */
1811 			if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1812 			    (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1813 			    SHMID_NONE) {
1814 				if (mp->pr_shmid == SHMID_FREE)
1815 					mp->pr_shmid = -1;
1816 
1817 				mp->pr_mflags |= MA_SHM;
1818 			} else {
1819 				mp->pr_shmid = -1;
1820 			}
1821 		}
1822 		ASSERT(tmp == NULL);
1823 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1824 
1825 	return (0);
1826 }
1827 #endif	/* _SYSCALL32_IMPL */
1828 
1829 /*
1830  * Return the size of the /proc page data file.
1831  */
1832 size_t
1833 prpdsize(struct as *as)
1834 {
1835 	struct seg *seg;
1836 	size_t size;
1837 
1838 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1839 
1840 	if ((seg = AS_SEGFIRST(as)) == NULL)
1841 		return (0);
1842 
1843 	size = sizeof (prpageheader_t);
1844 	do {
1845 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1846 		caddr_t saddr, naddr;
1847 		void *tmp = NULL;
1848 		size_t npage;
1849 
1850 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1851 			(void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1852 			if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1853 				size += sizeof (prasmap_t) + round8(npage);
1854 		}
1855 		ASSERT(tmp == NULL);
1856 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1857 
1858 	return (size);
1859 }
1860 
1861 #ifdef _SYSCALL32_IMPL
1862 size_t
1863 prpdsize32(struct as *as)
1864 {
1865 	struct seg *seg;
1866 	size_t size;
1867 
1868 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1869 
1870 	if ((seg = AS_SEGFIRST(as)) == NULL)
1871 		return (0);
1872 
1873 	size = sizeof (prpageheader32_t);
1874 	do {
1875 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1876 		caddr_t saddr, naddr;
1877 		void *tmp = NULL;
1878 		size_t npage;
1879 
1880 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1881 			(void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1882 			if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1883 				size += sizeof (prasmap32_t) + round8(npage);
1884 		}
1885 		ASSERT(tmp == NULL);
1886 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1887 
1888 	return (size);
1889 }
1890 #endif	/* _SYSCALL32_IMPL */
1891 
1892 /*
1893  * Read page data information.
1894  */
1895 int
1896 prpdread(proc_t *p, uint_t hatid, struct uio *uiop)
1897 {
1898 	struct as *as = p->p_as;
1899 	caddr_t buf;
1900 	size_t size;
1901 	prpageheader_t *php;
1902 	prasmap_t *pmp;
1903 	struct seg *seg;
1904 	int error;
1905 
1906 again:
1907 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1908 
1909 	if ((seg = AS_SEGFIRST(as)) == NULL) {
1910 		AS_LOCK_EXIT(as, &as->a_lock);
1911 		return (0);
1912 	}
1913 	size = prpdsize(as);
1914 	if (uiop->uio_resid < size) {
1915 		AS_LOCK_EXIT(as, &as->a_lock);
1916 		return (E2BIG);
1917 	}
1918 
1919 	buf = kmem_zalloc(size, KM_SLEEP);
1920 	php = (prpageheader_t *)buf;
1921 	pmp = (prasmap_t *)(buf + sizeof (prpageheader_t));
1922 
1923 	hrt2ts(gethrtime(), &php->pr_tstamp);
1924 	php->pr_nmap = 0;
1925 	php->pr_npage = 0;
1926 	do {
1927 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1928 		caddr_t saddr, naddr;
1929 		void *tmp = NULL;
1930 
1931 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1932 			struct vnode *vp;
1933 			struct vattr vattr;
1934 			size_t len;
1935 			size_t npage;
1936 			uint_t prot;
1937 			uintptr_t next;
1938 
1939 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1940 			if ((len = (size_t)(naddr - saddr)) == 0)
1941 				continue;
1942 			npage = len / PAGESIZE;
1943 			next = (uintptr_t)(pmp + 1) + round8(npage);
1944 			/*
1945 			 * It's possible that the address space can change
1946 			 * subtlely even though we're holding as->a_lock
1947 			 * due to the nondeterminism of page_exists() in
1948 			 * the presence of asychronously flushed pages or
1949 			 * mapped files whose sizes are changing.
1950 			 * page_exists() may be called indirectly from
1951 			 * pr_getprot() by a SEGOP_INCORE() routine.
1952 			 * If this happens we need to make sure we don't
1953 			 * overrun the buffer whose size we computed based
1954 			 * on the initial iteration through the segments.
1955 			 * Once we've detected an overflow, we need to clean
1956 			 * up the temporary memory allocated in pr_getprot()
1957 			 * and retry. If there's a pending signal, we return
1958 			 * EINTR so that this thread can be dislodged if
1959 			 * a latent bug causes us to spin indefinitely.
1960 			 */
1961 			if (next > (uintptr_t)buf + size) {
1962 				pr_getprot_done(&tmp);
1963 				AS_LOCK_EXIT(as, &as->a_lock);
1964 
1965 				kmem_free(buf, size);
1966 
1967 				if (ISSIG(curthread, JUSTLOOKING))
1968 					return (EINTR);
1969 
1970 				goto again;
1971 			}
1972 
1973 			php->pr_nmap++;
1974 			php->pr_npage += npage;
1975 			pmp->pr_vaddr = (uintptr_t)saddr;
1976 			pmp->pr_npage = npage;
1977 			pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1978 			pmp->pr_mflags = 0;
1979 			if (prot & PROT_READ)
1980 				pmp->pr_mflags |= MA_READ;
1981 			if (prot & PROT_WRITE)
1982 				pmp->pr_mflags |= MA_WRITE;
1983 			if (prot & PROT_EXEC)
1984 				pmp->pr_mflags |= MA_EXEC;
1985 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1986 				pmp->pr_mflags |= MA_SHARED;
1987 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1988 				pmp->pr_mflags |= MA_NORESERVE;
1989 			if (seg->s_ops == &segspt_shmops ||
1990 			    (seg->s_ops == &segvn_ops &&
1991 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1992 				pmp->pr_mflags |= MA_ANON;
1993 			if (seg->s_ops == &segspt_shmops)
1994 				pmp->pr_mflags |= MA_ISM | MA_SHM;
1995 			pmp->pr_pagesize = PAGESIZE;
1996 			/*
1997 			 * Manufacture a filename for the "object" directory.
1998 			 */
1999 			vattr.va_mask = AT_FSID|AT_NODEID;
2000 			if (seg->s_ops == &segvn_ops &&
2001 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2002 			    vp != NULL && vp->v_type == VREG &&
2003 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
2004 				if (vp == p->p_exec)
2005 					(void) strcpy(pmp->pr_mapname, "a.out");
2006 				else
2007 					pr_object_name(pmp->pr_mapname,
2008 					    vp, &vattr);
2009 			}
2010 
2011 			/*
2012 			 * Get the SysV shared memory id, if any.
2013 			 */
2014 			if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2015 			    (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2016 			    SHMID_NONE) {
2017 				if (pmp->pr_shmid == SHMID_FREE)
2018 					pmp->pr_shmid = -1;
2019 
2020 				pmp->pr_mflags |= MA_SHM;
2021 			} else {
2022 				pmp->pr_shmid = -1;
2023 			}
2024 
2025 			hat_getstat(as, saddr, len, hatid,
2026 			    (char *)(pmp + 1), HAT_SYNC_ZERORM);
2027 			pmp = (prasmap_t *)next;
2028 		}
2029 		ASSERT(tmp == NULL);
2030 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2031 
2032 	AS_LOCK_EXIT(as, &as->a_lock);
2033 
2034 	ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2035 	error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2036 	kmem_free(buf, size);
2037 
2038 	return (error);
2039 }
2040 
2041 #ifdef _SYSCALL32_IMPL
2042 int
2043 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop)
2044 {
2045 	struct as *as = p->p_as;
2046 	caddr_t buf;
2047 	size_t size;
2048 	prpageheader32_t *php;
2049 	prasmap32_t *pmp;
2050 	struct seg *seg;
2051 	int error;
2052 
2053 again:
2054 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2055 
2056 	if ((seg = AS_SEGFIRST(as)) == NULL) {
2057 		AS_LOCK_EXIT(as, &as->a_lock);
2058 		return (0);
2059 	}
2060 	size = prpdsize32(as);
2061 	if (uiop->uio_resid < size) {
2062 		AS_LOCK_EXIT(as, &as->a_lock);
2063 		return (E2BIG);
2064 	}
2065 
2066 	buf = kmem_zalloc(size, KM_SLEEP);
2067 	php = (prpageheader32_t *)buf;
2068 	pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t));
2069 
2070 	hrt2ts32(gethrtime(), &php->pr_tstamp);
2071 	php->pr_nmap = 0;
2072 	php->pr_npage = 0;
2073 	do {
2074 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2075 		caddr_t saddr, naddr;
2076 		void *tmp = NULL;
2077 
2078 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2079 			struct vnode *vp;
2080 			struct vattr vattr;
2081 			size_t len;
2082 			size_t npage;
2083 			uint_t prot;
2084 			uintptr_t next;
2085 
2086 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2087 			if ((len = (size_t)(naddr - saddr)) == 0)
2088 				continue;
2089 			npage = len / PAGESIZE;
2090 			next = (uintptr_t)(pmp + 1) + round8(npage);
2091 			/*
2092 			 * It's possible that the address space can change
2093 			 * subtlely even though we're holding as->a_lock
2094 			 * due to the nondeterminism of page_exists() in
2095 			 * the presence of asychronously flushed pages or
2096 			 * mapped files whose sizes are changing.
2097 			 * page_exists() may be called indirectly from
2098 			 * pr_getprot() by a SEGOP_INCORE() routine.
2099 			 * If this happens we need to make sure we don't
2100 			 * overrun the buffer whose size we computed based
2101 			 * on the initial iteration through the segments.
2102 			 * Once we've detected an overflow, we need to clean
2103 			 * up the temporary memory allocated in pr_getprot()
2104 			 * and retry. If there's a pending signal, we return
2105 			 * EINTR so that this thread can be dislodged if
2106 			 * a latent bug causes us to spin indefinitely.
2107 			 */
2108 			if (next > (uintptr_t)buf + size) {
2109 				pr_getprot_done(&tmp);
2110 				AS_LOCK_EXIT(as, &as->a_lock);
2111 
2112 				kmem_free(buf, size);
2113 
2114 				if (ISSIG(curthread, JUSTLOOKING))
2115 					return (EINTR);
2116 
2117 				goto again;
2118 			}
2119 
2120 			php->pr_nmap++;
2121 			php->pr_npage += npage;
2122 			pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
2123 			pmp->pr_npage = (size32_t)npage;
2124 			pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
2125 			pmp->pr_mflags = 0;
2126 			if (prot & PROT_READ)
2127 				pmp->pr_mflags |= MA_READ;
2128 			if (prot & PROT_WRITE)
2129 				pmp->pr_mflags |= MA_WRITE;
2130 			if (prot & PROT_EXEC)
2131 				pmp->pr_mflags |= MA_EXEC;
2132 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
2133 				pmp->pr_mflags |= MA_SHARED;
2134 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
2135 				pmp->pr_mflags |= MA_NORESERVE;
2136 			if (seg->s_ops == &segspt_shmops ||
2137 			    (seg->s_ops == &segvn_ops &&
2138 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
2139 				pmp->pr_mflags |= MA_ANON;
2140 			if (seg->s_ops == &segspt_shmops)
2141 				pmp->pr_mflags |= MA_ISM | MA_SHM;
2142 			pmp->pr_pagesize = PAGESIZE;
2143 			/*
2144 			 * Manufacture a filename for the "object" directory.
2145 			 */
2146 			vattr.va_mask = AT_FSID|AT_NODEID;
2147 			if (seg->s_ops == &segvn_ops &&
2148 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2149 			    vp != NULL && vp->v_type == VREG &&
2150 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
2151 				if (vp == p->p_exec)
2152 					(void) strcpy(pmp->pr_mapname, "a.out");
2153 				else
2154 					pr_object_name(pmp->pr_mapname,
2155 					    vp, &vattr);
2156 			}
2157 
2158 			/*
2159 			 * Get the SysV shared memory id, if any.
2160 			 */
2161 			if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2162 			    (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2163 			    SHMID_NONE) {
2164 				if (pmp->pr_shmid == SHMID_FREE)
2165 					pmp->pr_shmid = -1;
2166 
2167 				pmp->pr_mflags |= MA_SHM;
2168 			} else {
2169 				pmp->pr_shmid = -1;
2170 			}
2171 
2172 			hat_getstat(as, saddr, len, hatid,
2173 			    (char *)(pmp + 1), HAT_SYNC_ZERORM);
2174 			pmp = (prasmap32_t *)next;
2175 		}
2176 		ASSERT(tmp == NULL);
2177 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2178 
2179 	AS_LOCK_EXIT(as, &as->a_lock);
2180 
2181 	ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2182 	error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2183 	kmem_free(buf, size);
2184 
2185 	return (error);
2186 }
2187 #endif	/* _SYSCALL32_IMPL */
2188 
2189 ushort_t
2190 prgetpctcpu(uint64_t pct)
2191 {
2192 	/*
2193 	 * The value returned will be relevant in the zone of the examiner,
2194 	 * which may not be the same as the zone which performed the procfs
2195 	 * mount.
2196 	 */
2197 	int nonline = zone_ncpus_online_get(curproc->p_zone);
2198 
2199 	/*
2200 	 * Prorate over online cpus so we don't exceed 100%
2201 	 */
2202 	if (nonline > 1)
2203 		pct /= nonline;
2204 	pct >>= 16;		/* convert to 16-bit scaled integer */
2205 	if (pct > 0x8000)	/* might happen, due to rounding */
2206 		pct = 0x8000;
2207 	return ((ushort_t)pct);
2208 }
2209 
2210 /*
2211  * Return information used by ps(1).
2212  */
2213 void
2214 prgetpsinfo(proc_t *p, psinfo_t *psp)
2215 {
2216 	kthread_t *t;
2217 	struct cred *cred;
2218 	hrtime_t hrutime, hrstime;
2219 
2220 	ASSERT(MUTEX_HELD(&p->p_lock));
2221 
2222 	if ((t = prchoose(p)) == NULL)	/* returns locked thread */
2223 		bzero(psp, sizeof (*psp));
2224 	else {
2225 		thread_unlock(t);
2226 		bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2227 	}
2228 
2229 	/*
2230 	 * only export SSYS and SMSACCT; everything else is off-limits to
2231 	 * userland apps.
2232 	 */
2233 	psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2234 	psp->pr_nlwp = p->p_lwpcnt;
2235 	psp->pr_nzomb = p->p_zombcnt;
2236 	mutex_enter(&p->p_crlock);
2237 	cred = p->p_cred;
2238 	psp->pr_uid = crgetruid(cred);
2239 	psp->pr_euid = crgetuid(cred);
2240 	psp->pr_gid = crgetrgid(cred);
2241 	psp->pr_egid = crgetgid(cred);
2242 	mutex_exit(&p->p_crlock);
2243 	psp->pr_pid = p->p_pid;
2244 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2245 	    (p->p_flag & SZONETOP)) {
2246 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2247 		/*
2248 		 * Inside local zones, fake zsched's pid as parent pids for
2249 		 * processes which reference processes outside of the zone.
2250 		 */
2251 		psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2252 	} else {
2253 		psp->pr_ppid = p->p_ppid;
2254 	}
2255 	psp->pr_pgid = p->p_pgrp;
2256 	psp->pr_sid = p->p_sessp->s_sid;
2257 	psp->pr_taskid = p->p_task->tk_tkid;
2258 	psp->pr_projid = p->p_task->tk_proj->kpj_id;
2259 	psp->pr_poolid = p->p_pool->pool_id;
2260 	psp->pr_zoneid = p->p_zone->zone_id;
2261 	if ((psp->pr_contract = PRCTID(p)) == 0)
2262 		psp->pr_contract = -1;
2263 	psp->pr_addr = (uintptr_t)prgetpsaddr(p);
2264 	switch (p->p_model) {
2265 	case DATAMODEL_ILP32:
2266 		psp->pr_dmodel = PR_MODEL_ILP32;
2267 		break;
2268 	case DATAMODEL_LP64:
2269 		psp->pr_dmodel = PR_MODEL_LP64;
2270 		break;
2271 	}
2272 	hrutime = mstate_aggr_state(p, LMS_USER);
2273 	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2274 	hrt2ts((hrutime + hrstime), &psp->pr_time);
2275 	TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2276 
2277 	if (t == NULL) {
2278 		int wcode = p->p_wcode;		/* must be atomic read */
2279 
2280 		if (wcode)
2281 			psp->pr_wstat = wstat(wcode, p->p_wdata);
2282 		psp->pr_ttydev = PRNODEV;
2283 		psp->pr_lwp.pr_state = SZOMB;
2284 		psp->pr_lwp.pr_sname = 'Z';
2285 		psp->pr_lwp.pr_bindpro = PBIND_NONE;
2286 		psp->pr_lwp.pr_bindpset = PS_NONE;
2287 	} else {
2288 		user_t *up = PTOU(p);
2289 		struct as *as;
2290 		dev_t d;
2291 		extern dev_t rwsconsdev, rconsdev, uconsdev;
2292 
2293 		d = cttydev(p);
2294 		/*
2295 		 * If the controlling terminal is the real
2296 		 * or workstation console device, map to what the
2297 		 * user thinks is the console device. Handle case when
2298 		 * rwsconsdev or rconsdev is set to NODEV for Starfire.
2299 		 */
2300 		if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2301 			d = uconsdev;
2302 		psp->pr_ttydev = (d == NODEV) ? PRNODEV : d;
2303 		psp->pr_start = up->u_start;
2304 		bcopy(up->u_comm, psp->pr_fname,
2305 		    MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2306 		bcopy(up->u_psargs, psp->pr_psargs,
2307 		    MIN(PRARGSZ-1, PSARGSZ));
2308 		psp->pr_argc = up->u_argc;
2309 		psp->pr_argv = up->u_argv;
2310 		psp->pr_envp = up->u_envp;
2311 
2312 		/* get the chosen lwp's lwpsinfo */
2313 		prgetlwpsinfo(t, &psp->pr_lwp);
2314 
2315 		/* compute %cpu for the process */
2316 		if (p->p_lwpcnt == 1)
2317 			psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2318 		else {
2319 			uint64_t pct = 0;
2320 			hrtime_t cur_time = gethrtime_unscaled();
2321 
2322 			t = p->p_tlist;
2323 			do {
2324 				pct += cpu_update_pct(t, cur_time);
2325 			} while ((t = t->t_forw) != p->p_tlist);
2326 
2327 			psp->pr_pctcpu = prgetpctcpu(pct);
2328 		}
2329 		if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2330 			psp->pr_size = 0;
2331 			psp->pr_rssize = 0;
2332 		} else {
2333 			mutex_exit(&p->p_lock);
2334 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2335 			psp->pr_size = btopr(as->a_resvsize) *
2336 			    (PAGESIZE / 1024);
2337 			psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024);
2338 			psp->pr_pctmem = rm_pctmemory(as);
2339 			AS_LOCK_EXIT(as, &as->a_lock);
2340 			mutex_enter(&p->p_lock);
2341 		}
2342 	}
2343 }
2344 
2345 #ifdef _SYSCALL32_IMPL
2346 void
2347 prgetpsinfo32(proc_t *p, psinfo32_t *psp)
2348 {
2349 	kthread_t *t;
2350 	struct cred *cred;
2351 	hrtime_t hrutime, hrstime;
2352 
2353 	ASSERT(MUTEX_HELD(&p->p_lock));
2354 
2355 	if ((t = prchoose(p)) == NULL)	/* returns locked thread */
2356 		bzero(psp, sizeof (*psp));
2357 	else {
2358 		thread_unlock(t);
2359 		bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2360 	}
2361 
2362 	/*
2363 	 * only export SSYS and SMSACCT; everything else is off-limits to
2364 	 * userland apps.
2365 	 */
2366 	psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2367 	psp->pr_nlwp = p->p_lwpcnt;
2368 	psp->pr_nzomb = p->p_zombcnt;
2369 	mutex_enter(&p->p_crlock);
2370 	cred = p->p_cred;
2371 	psp->pr_uid = crgetruid(cred);
2372 	psp->pr_euid = crgetuid(cred);
2373 	psp->pr_gid = crgetrgid(cred);
2374 	psp->pr_egid = crgetgid(cred);
2375 	mutex_exit(&p->p_crlock);
2376 	psp->pr_pid = p->p_pid;
2377 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2378 	    (p->p_flag & SZONETOP)) {
2379 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2380 		/*
2381 		 * Inside local zones, fake zsched's pid as parent pids for
2382 		 * processes which reference processes outside of the zone.
2383 		 */
2384 		psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2385 	} else {
2386 		psp->pr_ppid = p->p_ppid;
2387 	}
2388 	psp->pr_pgid = p->p_pgrp;
2389 	psp->pr_sid = p->p_sessp->s_sid;
2390 	psp->pr_taskid = p->p_task->tk_tkid;
2391 	psp->pr_projid = p->p_task->tk_proj->kpj_id;
2392 	psp->pr_poolid = p->p_pool->pool_id;
2393 	psp->pr_zoneid = p->p_zone->zone_id;
2394 	if ((psp->pr_contract = PRCTID(p)) == 0)
2395 		psp->pr_contract = -1;
2396 	psp->pr_addr = 0;	/* cannot represent 64-bit addr in 32 bits */
2397 	switch (p->p_model) {
2398 	case DATAMODEL_ILP32:
2399 		psp->pr_dmodel = PR_MODEL_ILP32;
2400 		break;
2401 	case DATAMODEL_LP64:
2402 		psp->pr_dmodel = PR_MODEL_LP64;
2403 		break;
2404 	}
2405 	hrutime = mstate_aggr_state(p, LMS_USER);
2406 	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2407 	hrt2ts32(hrutime + hrstime, &psp->pr_time);
2408 	TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2409 
2410 	if (t == NULL) {
2411 		extern int wstat(int, int);	/* needs a header file */
2412 		int wcode = p->p_wcode;		/* must be atomic read */
2413 
2414 		if (wcode)
2415 			psp->pr_wstat = wstat(wcode, p->p_wdata);
2416 		psp->pr_ttydev = PRNODEV32;
2417 		psp->pr_lwp.pr_state = SZOMB;
2418 		psp->pr_lwp.pr_sname = 'Z';
2419 	} else {
2420 		user_t *up = PTOU(p);
2421 		struct as *as;
2422 		dev_t d;
2423 		extern dev_t rwsconsdev, rconsdev, uconsdev;
2424 
2425 		d = cttydev(p);
2426 		/*
2427 		 * If the controlling terminal is the real
2428 		 * or workstation console device, map to what the
2429 		 * user thinks is the console device. Handle case when
2430 		 * rwsconsdev or rconsdev is set to NODEV for Starfire.
2431 		 */
2432 		if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2433 			d = uconsdev;
2434 		(void) cmpldev(&psp->pr_ttydev, d);
2435 		TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start);
2436 		bcopy(up->u_comm, psp->pr_fname,
2437 		    MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2438 		bcopy(up->u_psargs, psp->pr_psargs,
2439 		    MIN(PRARGSZ-1, PSARGSZ));
2440 		psp->pr_argc = up->u_argc;
2441 		psp->pr_argv = (caddr32_t)up->u_argv;
2442 		psp->pr_envp = (caddr32_t)up->u_envp;
2443 
2444 		/* get the chosen lwp's lwpsinfo */
2445 		prgetlwpsinfo32(t, &psp->pr_lwp);
2446 
2447 		/* compute %cpu for the process */
2448 		if (p->p_lwpcnt == 1)
2449 			psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2450 		else {
2451 			uint64_t pct = 0;
2452 			hrtime_t cur_time;
2453 
2454 			t = p->p_tlist;
2455 			cur_time = gethrtime_unscaled();
2456 			do {
2457 				pct += cpu_update_pct(t, cur_time);
2458 			} while ((t = t->t_forw) != p->p_tlist);
2459 
2460 			psp->pr_pctcpu = prgetpctcpu(pct);
2461 		}
2462 		if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2463 			psp->pr_size = 0;
2464 			psp->pr_rssize = 0;
2465 		} else {
2466 			mutex_exit(&p->p_lock);
2467 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2468 			psp->pr_size = (size32_t)
2469 			    (btopr(as->a_resvsize) * (PAGESIZE / 1024));
2470 			psp->pr_rssize = (size32_t)
2471 			    (rm_asrss(as) * (PAGESIZE / 1024));
2472 			psp->pr_pctmem = rm_pctmemory(as);
2473 			AS_LOCK_EXIT(as, &as->a_lock);
2474 			mutex_enter(&p->p_lock);
2475 		}
2476 	}
2477 
2478 	/*
2479 	 * If we are looking at an LP64 process, zero out
2480 	 * the fields that cannot be represented in ILP32.
2481 	 */
2482 	if (p->p_model != DATAMODEL_ILP32) {
2483 		psp->pr_size = 0;
2484 		psp->pr_rssize = 0;
2485 		psp->pr_argv = 0;
2486 		psp->pr_envp = 0;
2487 	}
2488 }
2489 #endif	/* _SYSCALL32_IMPL */
2490 
2491 void
2492 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp)
2493 {
2494 	klwp_t *lwp = ttolwp(t);
2495 	sobj_ops_t *sobj;
2496 	char c, state;
2497 	uint64_t pct;
2498 	int retval, niceval;
2499 	hrtime_t hrutime, hrstime;
2500 
2501 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2502 
2503 	bzero(psp, sizeof (*psp));
2504 
2505 	psp->pr_flag = 0;	/* lwpsinfo_t.pr_flag is deprecated */
2506 	psp->pr_lwpid = t->t_tid;
2507 	psp->pr_addr = (uintptr_t)t;
2508 	psp->pr_wchan = (uintptr_t)t->t_wchan;
2509 
2510 	/* map the thread state enum into a process state enum */
2511 	state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2512 	switch (state) {
2513 	case TS_SLEEP:		state = SSLEEP;		c = 'S';	break;
2514 	case TS_RUN:		state = SRUN;		c = 'R';	break;
2515 	case TS_ONPROC:		state = SONPROC;	c = 'O';	break;
2516 	case TS_ZOMB:		state = SZOMB;		c = 'Z';	break;
2517 	case TS_STOPPED:	state = SSTOP;		c = 'T';	break;
2518 	case TS_WAIT:		state = SWAIT;		c = 'W';	break;
2519 	default:		state = 0;		c = '?';	break;
2520 	}
2521 	psp->pr_state = state;
2522 	psp->pr_sname = c;
2523 	if ((sobj = t->t_sobj_ops) != NULL)
2524 		psp->pr_stype = SOBJ_TYPE(sobj);
2525 	retval = CL_DONICE(t, NULL, 0, &niceval);
2526 	if (retval == 0) {
2527 		psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2528 		psp->pr_nice = niceval + NZERO;
2529 	}
2530 	psp->pr_syscall = t->t_sysnum;
2531 	psp->pr_pri = t->t_pri;
2532 	psp->pr_start.tv_sec = t->t_start;
2533 	psp->pr_start.tv_nsec = 0L;
2534 	hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2535 	scalehrtime(&hrutime);
2536 	hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2537 	    lwp->lwp_mstate.ms_acct[LMS_TRAP];
2538 	scalehrtime(&hrstime);
2539 	hrt2ts(hrutime + hrstime, &psp->pr_time);
2540 	/* compute %cpu for the lwp */
2541 	pct = cpu_update_pct(t, gethrtime_unscaled());
2542 	psp->pr_pctcpu = prgetpctcpu(pct);
2543 	psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;	/* [0..99] */
2544 	if (psp->pr_cpu > 99)
2545 		psp->pr_cpu = 99;
2546 
2547 	(void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2548 	    sizeof (psp->pr_clname) - 1);
2549 	bzero(psp->pr_name, sizeof (psp->pr_name));	/* XXX ??? */
2550 	psp->pr_onpro = t->t_cpu->cpu_id;
2551 	psp->pr_bindpro = t->t_bind_cpu;
2552 	psp->pr_bindpset = t->t_bind_pset;
2553 	psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2554 }
2555 
2556 #ifdef _SYSCALL32_IMPL
2557 void
2558 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp)
2559 {
2560 	proc_t *p = ttoproc(t);
2561 	klwp_t *lwp = ttolwp(t);
2562 	sobj_ops_t *sobj;
2563 	char c, state;
2564 	uint64_t pct;
2565 	int retval, niceval;
2566 	hrtime_t hrutime, hrstime;
2567 
2568 	ASSERT(MUTEX_HELD(&p->p_lock));
2569 
2570 	bzero(psp, sizeof (*psp));
2571 
2572 	psp->pr_flag = 0;	/* lwpsinfo_t.pr_flag is deprecated */
2573 	psp->pr_lwpid = t->t_tid;
2574 	psp->pr_addr = 0;	/* cannot represent 64-bit addr in 32 bits */
2575 	psp->pr_wchan = 0;	/* cannot represent 64-bit addr in 32 bits */
2576 
2577 	/* map the thread state enum into a process state enum */
2578 	state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2579 	switch (state) {
2580 	case TS_SLEEP:		state = SSLEEP;		c = 'S';	break;
2581 	case TS_RUN:		state = SRUN;		c = 'R';	break;
2582 	case TS_ONPROC:		state = SONPROC;	c = 'O';	break;
2583 	case TS_ZOMB:		state = SZOMB;		c = 'Z';	break;
2584 	case TS_STOPPED:	state = SSTOP;		c = 'T';	break;
2585 	case TS_WAIT:		state = SWAIT;		c = 'W';	break;
2586 	default:		state = 0;		c = '?';	break;
2587 	}
2588 	psp->pr_state = state;
2589 	psp->pr_sname = c;
2590 	if ((sobj = t->t_sobj_ops) != NULL)
2591 		psp->pr_stype = SOBJ_TYPE(sobj);
2592 	retval = CL_DONICE(t, NULL, 0, &niceval);
2593 	if (retval == 0) {
2594 		psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2595 		psp->pr_nice = niceval + NZERO;
2596 	} else {
2597 		psp->pr_oldpri = 0;
2598 		psp->pr_nice = 0;
2599 	}
2600 	psp->pr_syscall = t->t_sysnum;
2601 	psp->pr_pri = t->t_pri;
2602 	psp->pr_start.tv_sec = (time32_t)t->t_start;
2603 	psp->pr_start.tv_nsec = 0L;
2604 	hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2605 	scalehrtime(&hrutime);
2606 	hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2607 	    lwp->lwp_mstate.ms_acct[LMS_TRAP];
2608 	scalehrtime(&hrstime);
2609 	hrt2ts32(hrutime + hrstime, &psp->pr_time);
2610 	/* compute %cpu for the lwp */
2611 	pct = cpu_update_pct(t, gethrtime_unscaled());
2612 	psp->pr_pctcpu = prgetpctcpu(pct);
2613 	psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;	/* [0..99] */
2614 	if (psp->pr_cpu > 99)
2615 		psp->pr_cpu = 99;
2616 
2617 	(void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2618 	    sizeof (psp->pr_clname) - 1);
2619 	bzero(psp->pr_name, sizeof (psp->pr_name));	/* XXX ??? */
2620 	psp->pr_onpro = t->t_cpu->cpu_id;
2621 	psp->pr_bindpro = t->t_bind_cpu;
2622 	psp->pr_bindpset = t->t_bind_pset;
2623 	psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2624 }
2625 #endif	/* _SYSCALL32_IMPL */
2626 
2627 /*
2628  * This used to get called when microstate accounting was disabled but
2629  * microstate information was requested.  Since Microstate accounting is on
2630  * regardless of the proc flags, this simply makes it appear to procfs that
2631  * microstate accounting is on.  This is relatively meaningless since you
2632  * can't turn it off, but this is here for the sake of appearances.
2633  */
2634 
2635 /*ARGSUSED*/
2636 void
2637 estimate_msacct(kthread_t *t, hrtime_t curtime)
2638 {
2639 	proc_t *p;
2640 
2641 	if (t == NULL)
2642 		return;
2643 
2644 	p = ttoproc(t);
2645 	ASSERT(MUTEX_HELD(&p->p_lock));
2646 
2647 	/*
2648 	 * A system process (p0) could be referenced if the thread is
2649 	 * in the process of exiting.  Don't turn on microstate accounting
2650 	 * in that case.
2651 	 */
2652 	if (p->p_flag & SSYS)
2653 		return;
2654 
2655 	/*
2656 	 * Loop through all the LWPs (kernel threads) in the process.
2657 	 */
2658 	t = p->p_tlist;
2659 	do {
2660 		t->t_proc_flag |= TP_MSACCT;
2661 	} while ((t = t->t_forw) != p->p_tlist);
2662 
2663 	p->p_flag |= SMSACCT;			/* set process-wide MSACCT */
2664 }
2665 
2666 /*
2667  * It's not really possible to disable microstate accounting anymore.
2668  * However, this routine simply turns off the ms accounting flags in a process
2669  * This way procfs can still pretend to turn microstate accounting on and
2670  * off for a process, but it actually doesn't do anything.  This is
2671  * a neutered form of preemptive idiot-proofing.
2672  */
2673 void
2674 disable_msacct(proc_t *p)
2675 {
2676 	kthread_t *t;
2677 
2678 	ASSERT(MUTEX_HELD(&p->p_lock));
2679 
2680 	p->p_flag &= ~SMSACCT;		/* clear process-wide MSACCT */
2681 	/*
2682 	 * Loop through all the LWPs (kernel threads) in the process.
2683 	 */
2684 	if ((t = p->p_tlist) != NULL) {
2685 		do {
2686 			/* clear per-thread flag */
2687 			t->t_proc_flag &= ~TP_MSACCT;
2688 		} while ((t = t->t_forw) != p->p_tlist);
2689 	}
2690 }
2691 
2692 /*
2693  * Return resource usage information.
2694  */
2695 void
2696 prgetusage(kthread_t *t, prhusage_t *pup)
2697 {
2698 	klwp_t *lwp = ttolwp(t);
2699 	hrtime_t *mstimep;
2700 	struct mstate *ms = &lwp->lwp_mstate;
2701 	int state;
2702 	int i;
2703 	hrtime_t curtime;
2704 	hrtime_t waitrq;
2705 	hrtime_t tmp1;
2706 
2707 	curtime = gethrtime_unscaled();
2708 
2709 	pup->pr_lwpid	= t->t_tid;
2710 	pup->pr_count	= 1;
2711 	pup->pr_create	= ms->ms_start;
2712 	pup->pr_term    = ms->ms_term;
2713 	scalehrtime(&pup->pr_create);
2714 	scalehrtime(&pup->pr_term);
2715 	if (ms->ms_term == 0) {
2716 		pup->pr_rtime = curtime - ms->ms_start;
2717 		scalehrtime(&pup->pr_rtime);
2718 	} else {
2719 		pup->pr_rtime = ms->ms_term - ms->ms_start;
2720 		scalehrtime(&pup->pr_rtime);
2721 	}
2722 
2723 
2724 	pup->pr_utime    = ms->ms_acct[LMS_USER];
2725 	pup->pr_stime    = ms->ms_acct[LMS_SYSTEM];
2726 	pup->pr_ttime    = ms->ms_acct[LMS_TRAP];
2727 	pup->pr_tftime   = ms->ms_acct[LMS_TFAULT];
2728 	pup->pr_dftime   = ms->ms_acct[LMS_DFAULT];
2729 	pup->pr_kftime   = ms->ms_acct[LMS_KFAULT];
2730 	pup->pr_ltime    = ms->ms_acct[LMS_USER_LOCK];
2731 	pup->pr_slptime  = ms->ms_acct[LMS_SLEEP];
2732 	pup->pr_wtime    = ms->ms_acct[LMS_WAIT_CPU];
2733 	pup->pr_stoptime = ms->ms_acct[LMS_STOPPED];
2734 
2735 	prscaleusage(pup);
2736 
2737 	/*
2738 	 * Adjust for time waiting in the dispatcher queue.
2739 	 */
2740 	waitrq = t->t_waitrq;	/* hopefully atomic */
2741 	if (waitrq != 0) {
2742 		tmp1 = curtime - waitrq;
2743 		scalehrtime(&tmp1);
2744 		pup->pr_wtime += tmp1;
2745 		curtime = waitrq;
2746 	}
2747 
2748 	/*
2749 	 * Adjust for time spent in current microstate.
2750 	 */
2751 	if (ms->ms_state_start > curtime) {
2752 		curtime = gethrtime_unscaled();
2753 	}
2754 
2755 	i = 0;
2756 	do {
2757 		switch (state = t->t_mstate) {
2758 		case LMS_SLEEP:
2759 			/*
2760 			 * Update the timer for the current sleep state.
2761 			 */
2762 			switch (state = ms->ms_prev) {
2763 			case LMS_TFAULT:
2764 			case LMS_DFAULT:
2765 			case LMS_KFAULT:
2766 			case LMS_USER_LOCK:
2767 				break;
2768 			default:
2769 				state = LMS_SLEEP;
2770 				break;
2771 			}
2772 			break;
2773 		case LMS_TFAULT:
2774 		case LMS_DFAULT:
2775 		case LMS_KFAULT:
2776 		case LMS_USER_LOCK:
2777 			state = LMS_SYSTEM;
2778 			break;
2779 		}
2780 		switch (state) {
2781 		case LMS_USER:		mstimep = &pup->pr_utime;	break;
2782 		case LMS_SYSTEM:	mstimep = &pup->pr_stime;	break;
2783 		case LMS_TRAP:		mstimep = &pup->pr_ttime;	break;
2784 		case LMS_TFAULT:	mstimep = &pup->pr_tftime;	break;
2785 		case LMS_DFAULT:	mstimep = &pup->pr_dftime;	break;
2786 		case LMS_KFAULT:	mstimep = &pup->pr_kftime;	break;
2787 		case LMS_USER_LOCK:	mstimep = &pup->pr_ltime;	break;
2788 		case LMS_SLEEP:		mstimep = &pup->pr_slptime;	break;
2789 		case LMS_WAIT_CPU:	mstimep = &pup->pr_wtime;	break;
2790 		case LMS_STOPPED:	mstimep = &pup->pr_stoptime;	break;
2791 		default:		panic("prgetusage: unknown microstate");
2792 		}
2793 		tmp1 = curtime - ms->ms_state_start;
2794 		if (tmp1 < 0) {
2795 			curtime = gethrtime_unscaled();
2796 			i++;
2797 			continue;
2798 		}
2799 		scalehrtime(&tmp1);
2800 	} while (tmp1 < 0 && i < MAX_ITERS_SPIN);
2801 
2802 	*mstimep += tmp1;
2803 
2804 	/* update pup timestamp */
2805 	pup->pr_tstamp = curtime;
2806 	scalehrtime(&pup->pr_tstamp);
2807 
2808 	/*
2809 	 * Resource usage counters.
2810 	 */
2811 	pup->pr_minf  = lwp->lwp_ru.minflt;
2812 	pup->pr_majf  = lwp->lwp_ru.majflt;
2813 	pup->pr_nswap = lwp->lwp_ru.nswap;
2814 	pup->pr_inblk = lwp->lwp_ru.inblock;
2815 	pup->pr_oublk = lwp->lwp_ru.oublock;
2816 	pup->pr_msnd  = lwp->lwp_ru.msgsnd;
2817 	pup->pr_mrcv  = lwp->lwp_ru.msgrcv;
2818 	pup->pr_sigs  = lwp->lwp_ru.nsignals;
2819 	pup->pr_vctx  = lwp->lwp_ru.nvcsw;
2820 	pup->pr_ictx  = lwp->lwp_ru.nivcsw;
2821 	pup->pr_sysc  = lwp->lwp_ru.sysc;
2822 	pup->pr_ioch  = lwp->lwp_ru.ioch;
2823 }
2824 
2825 /*
2826  * Convert ms_acct stats from unscaled high-res time to nanoseconds
2827  */
2828 void
2829 prscaleusage(prhusage_t *usg)
2830 {
2831 	scalehrtime(&usg->pr_utime);
2832 	scalehrtime(&usg->pr_stime);
2833 	scalehrtime(&usg->pr_ttime);
2834 	scalehrtime(&usg->pr_tftime);
2835 	scalehrtime(&usg->pr_dftime);
2836 	scalehrtime(&usg->pr_kftime);
2837 	scalehrtime(&usg->pr_ltime);
2838 	scalehrtime(&usg->pr_slptime);
2839 	scalehrtime(&usg->pr_wtime);
2840 	scalehrtime(&usg->pr_stoptime);
2841 }
2842 
2843 
2844 /*
2845  * Sum resource usage information.
2846  */
2847 void
2848 praddusage(kthread_t *t, prhusage_t *pup)
2849 {
2850 	klwp_t *lwp = ttolwp(t);
2851 	hrtime_t *mstimep;
2852 	struct mstate *ms = &lwp->lwp_mstate;
2853 	int state;
2854 	int i;
2855 	hrtime_t curtime;
2856 	hrtime_t waitrq;
2857 	hrtime_t tmp;
2858 	prhusage_t conv;
2859 
2860 	curtime = gethrtime_unscaled();
2861 
2862 	if (ms->ms_term == 0) {
2863 		tmp = curtime - ms->ms_start;
2864 		scalehrtime(&tmp);
2865 		pup->pr_rtime += tmp;
2866 	} else {
2867 		tmp = ms->ms_term - ms->ms_start;
2868 		scalehrtime(&tmp);
2869 		pup->pr_rtime += tmp;
2870 	}
2871 
2872 	conv.pr_utime = ms->ms_acct[LMS_USER];
2873 	conv.pr_stime = ms->ms_acct[LMS_SYSTEM];
2874 	conv.pr_ttime = ms->ms_acct[LMS_TRAP];
2875 	conv.pr_tftime = ms->ms_acct[LMS_TFAULT];
2876 	conv.pr_dftime = ms->ms_acct[LMS_DFAULT];
2877 	conv.pr_kftime = ms->ms_acct[LMS_KFAULT];
2878 	conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK];
2879 	conv.pr_slptime = ms->ms_acct[LMS_SLEEP];
2880 	conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU];
2881 	conv.pr_stoptime = ms->ms_acct[LMS_STOPPED];
2882 
2883 	prscaleusage(&conv);
2884 
2885 	pup->pr_utime	+= conv.pr_utime;
2886 	pup->pr_stime	+= conv.pr_stime;
2887 	pup->pr_ttime	+= conv.pr_ttime;
2888 	pup->pr_tftime	+= conv.pr_tftime;
2889 	pup->pr_dftime	+= conv.pr_dftime;
2890 	pup->pr_kftime	+= conv.pr_kftime;
2891 	pup->pr_ltime	+= conv.pr_ltime;
2892 	pup->pr_slptime	+= conv.pr_slptime;
2893 	pup->pr_wtime	+= conv.pr_wtime;
2894 	pup->pr_stoptime += conv.pr_stoptime;
2895 
2896 	/*
2897 	 * Adjust for time waiting in the dispatcher queue.
2898 	 */
2899 	waitrq = t->t_waitrq;	/* hopefully atomic */
2900 	if (waitrq != 0) {
2901 		tmp = curtime - waitrq;
2902 		scalehrtime(&tmp);
2903 		pup->pr_wtime += tmp;
2904 		curtime = waitrq;
2905 	}
2906 
2907 	/*
2908 	 * Adjust for time spent in current microstate.
2909 	 */
2910 	if (ms->ms_state_start > curtime) {
2911 		curtime = gethrtime_unscaled();
2912 	}
2913 
2914 	i = 0;
2915 	do {
2916 		switch (state = t->t_mstate) {
2917 		case LMS_SLEEP:
2918 			/*
2919 			 * Update the timer for the current sleep state.
2920 			 */
2921 			switch (state = ms->ms_prev) {
2922 			case LMS_TFAULT:
2923 			case LMS_DFAULT:
2924 			case LMS_KFAULT:
2925 			case LMS_USER_LOCK:
2926 				break;
2927 			default:
2928 				state = LMS_SLEEP;
2929 				break;
2930 			}
2931 			break;
2932 		case LMS_TFAULT:
2933 		case LMS_DFAULT:
2934 		case LMS_KFAULT:
2935 		case LMS_USER_LOCK:
2936 			state = LMS_SYSTEM;
2937 			break;
2938 		}
2939 		switch (state) {
2940 		case LMS_USER:		mstimep = &pup->pr_utime;	break;
2941 		case LMS_SYSTEM:	mstimep = &pup->pr_stime;	break;
2942 		case LMS_TRAP:		mstimep = &pup->pr_ttime;	break;
2943 		case LMS_TFAULT:	mstimep = &pup->pr_tftime;	break;
2944 		case LMS_DFAULT:	mstimep = &pup->pr_dftime;	break;
2945 		case LMS_KFAULT:	mstimep = &pup->pr_kftime;	break;
2946 		case LMS_USER_LOCK:	mstimep = &pup->pr_ltime;	break;
2947 		case LMS_SLEEP:		mstimep = &pup->pr_slptime;	break;
2948 		case LMS_WAIT_CPU:	mstimep = &pup->pr_wtime;	break;
2949 		case LMS_STOPPED:	mstimep = &pup->pr_stoptime;	break;
2950 		default:		panic("praddusage: unknown microstate");
2951 		}
2952 		tmp = curtime - ms->ms_state_start;
2953 		if (tmp < 0) {
2954 			curtime = gethrtime_unscaled();
2955 			i++;
2956 			continue;
2957 		}
2958 		scalehrtime(&tmp);
2959 	} while (tmp < 0 && i < MAX_ITERS_SPIN);
2960 
2961 	*mstimep += tmp;
2962 
2963 	/* update pup timestamp */
2964 	pup->pr_tstamp = curtime;
2965 	scalehrtime(&pup->pr_tstamp);
2966 
2967 	/*
2968 	 * Resource usage counters.
2969 	 */
2970 	pup->pr_minf  += lwp->lwp_ru.minflt;
2971 	pup->pr_majf  += lwp->lwp_ru.majflt;
2972 	pup->pr_nswap += lwp->lwp_ru.nswap;
2973 	pup->pr_inblk += lwp->lwp_ru.inblock;
2974 	pup->pr_oublk += lwp->lwp_ru.oublock;
2975 	pup->pr_msnd  += lwp->lwp_ru.msgsnd;
2976 	pup->pr_mrcv  += lwp->lwp_ru.msgrcv;
2977 	pup->pr_sigs  += lwp->lwp_ru.nsignals;
2978 	pup->pr_vctx  += lwp->lwp_ru.nvcsw;
2979 	pup->pr_ictx  += lwp->lwp_ru.nivcsw;
2980 	pup->pr_sysc  += lwp->lwp_ru.sysc;
2981 	pup->pr_ioch  += lwp->lwp_ru.ioch;
2982 }
2983 
2984 /*
2985  * Convert a prhusage_t to a prusage_t.
2986  * This means convert each hrtime_t to a timestruc_t
2987  * and copy the count fields uint64_t => ulong_t.
2988  */
2989 void
2990 prcvtusage(prhusage_t *pup, prusage_t *upup)
2991 {
2992 	uint64_t *ullp;
2993 	ulong_t *ulp;
2994 	int i;
2995 
2996 	upup->pr_lwpid = pup->pr_lwpid;
2997 	upup->pr_count = pup->pr_count;
2998 
2999 	hrt2ts(pup->pr_tstamp,	&upup->pr_tstamp);
3000 	hrt2ts(pup->pr_create,	&upup->pr_create);
3001 	hrt2ts(pup->pr_term,	&upup->pr_term);
3002 	hrt2ts(pup->pr_rtime,	&upup->pr_rtime);
3003 	hrt2ts(pup->pr_utime,	&upup->pr_utime);
3004 	hrt2ts(pup->pr_stime,	&upup->pr_stime);
3005 	hrt2ts(pup->pr_ttime,	&upup->pr_ttime);
3006 	hrt2ts(pup->pr_tftime,	&upup->pr_tftime);
3007 	hrt2ts(pup->pr_dftime,	&upup->pr_dftime);
3008 	hrt2ts(pup->pr_kftime,	&upup->pr_kftime);
3009 	hrt2ts(pup->pr_ltime,	&upup->pr_ltime);
3010 	hrt2ts(pup->pr_slptime,	&upup->pr_slptime);
3011 	hrt2ts(pup->pr_wtime,	&upup->pr_wtime);
3012 	hrt2ts(pup->pr_stoptime, &upup->pr_stoptime);
3013 	bzero(upup->filltime, sizeof (upup->filltime));
3014 
3015 	ullp = &pup->pr_minf;
3016 	ulp = &upup->pr_minf;
3017 	for (i = 0; i < 22; i++)
3018 		*ulp++ = (ulong_t)*ullp++;
3019 }
3020 
3021 #ifdef _SYSCALL32_IMPL
3022 void
3023 prcvtusage32(prhusage_t *pup, prusage32_t *upup)
3024 {
3025 	uint64_t *ullp;
3026 	uint32_t *ulp;
3027 	int i;
3028 
3029 	upup->pr_lwpid = pup->pr_lwpid;
3030 	upup->pr_count = pup->pr_count;
3031 
3032 	hrt2ts32(pup->pr_tstamp,	&upup->pr_tstamp);
3033 	hrt2ts32(pup->pr_create,	&upup->pr_create);
3034 	hrt2ts32(pup->pr_term,		&upup->pr_term);
3035 	hrt2ts32(pup->pr_rtime,		&upup->pr_rtime);
3036 	hrt2ts32(pup->pr_utime,		&upup->pr_utime);
3037 	hrt2ts32(pup->pr_stime,		&upup->pr_stime);
3038 	hrt2ts32(pup->pr_ttime,		&upup->pr_ttime);
3039 	hrt2ts32(pup->pr_tftime,	&upup->pr_tftime);
3040 	hrt2ts32(pup->pr_dftime,	&upup->pr_dftime);
3041 	hrt2ts32(pup->pr_kftime,	&upup->pr_kftime);
3042 	hrt2ts32(pup->pr_ltime,		&upup->pr_ltime);
3043 	hrt2ts32(pup->pr_slptime,	&upup->pr_slptime);
3044 	hrt2ts32(pup->pr_wtime,		&upup->pr_wtime);
3045 	hrt2ts32(pup->pr_stoptime,	&upup->pr_stoptime);
3046 	bzero(upup->filltime, sizeof (upup->filltime));
3047 
3048 	ullp = &pup->pr_minf;
3049 	ulp = &upup->pr_minf;
3050 	for (i = 0; i < 22; i++)
3051 		*ulp++ = (uint32_t)*ullp++;
3052 }
3053 #endif	/* _SYSCALL32_IMPL */
3054 
3055 /*
3056  * Determine whether a set is empty.
3057  */
3058 int
3059 setisempty(uint32_t *sp, uint_t n)
3060 {
3061 	while (n--)
3062 		if (*sp++)
3063 			return (0);
3064 	return (1);
3065 }
3066 
3067 /*
3068  * Utility routine for establishing a watched area in the process.
3069  * Keep the list of watched areas sorted by virtual address.
3070  */
3071 int
3072 set_watched_area(proc_t *p, struct watched_area *pwa)
3073 {
3074 	caddr_t vaddr = pwa->wa_vaddr;
3075 	caddr_t eaddr = pwa->wa_eaddr;
3076 	ulong_t flags = pwa->wa_flags;
3077 	struct watched_area *target;
3078 	avl_index_t where;
3079 	int error = 0;
3080 
3081 	/* we must not be holding p->p_lock, but the process must be locked */
3082 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3083 	ASSERT(p->p_proc_flag & P_PR_LOCK);
3084 
3085 	/*
3086 	 * If this is our first watchpoint, enable watchpoints for the process.
3087 	 */
3088 	if (!pr_watch_active(p)) {
3089 		kthread_t *t;
3090 
3091 		mutex_enter(&p->p_lock);
3092 		if ((t = p->p_tlist) != NULL) {
3093 			do {
3094 				watch_enable(t);
3095 			} while ((t = t->t_forw) != p->p_tlist);
3096 		}
3097 		mutex_exit(&p->p_lock);
3098 	}
3099 
3100 	target = pr_find_watched_area(p, pwa, &where);
3101 	if (target != NULL) {
3102 		/*
3103 		 * We discovered an existing, overlapping watched area.
3104 		 * Allow it only if it is an exact match.
3105 		 */
3106 		if (target->wa_vaddr != vaddr ||
3107 		    target->wa_eaddr != eaddr)
3108 			error = EINVAL;
3109 		else if (target->wa_flags != flags) {
3110 			error = set_watched_page(p, vaddr, eaddr,
3111 			    flags, target->wa_flags);
3112 			target->wa_flags = flags;
3113 		}
3114 		kmem_free(pwa, sizeof (struct watched_area));
3115 	} else {
3116 		avl_insert(&p->p_warea, pwa, where);
3117 		error = set_watched_page(p, vaddr, eaddr, flags, 0);
3118 	}
3119 
3120 	return (error);
3121 }
3122 
3123 /*
3124  * Utility routine for clearing a watched area in the process.
3125  * Must be an exact match of the virtual address.
3126  * size and flags don't matter.
3127  */
3128 int
3129 clear_watched_area(proc_t *p, struct watched_area *pwa)
3130 {
3131 	struct watched_area *found;
3132 
3133 	/* we must not be holding p->p_lock, but the process must be locked */
3134 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3135 	ASSERT(p->p_proc_flag & P_PR_LOCK);
3136 
3137 
3138 	if (!pr_watch_active(p)) {
3139 		kmem_free(pwa, sizeof (struct watched_area));
3140 		return (0);
3141 	}
3142 
3143 	/*
3144 	 * Look for a matching address in the watched areas.  If a match is
3145 	 * found, clear the old watched area and adjust the watched page(s).  It
3146 	 * is not an error if there is no match.
3147 	 */
3148 	if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL &&
3149 	    found->wa_vaddr == pwa->wa_vaddr) {
3150 		clear_watched_page(p, found->wa_vaddr, found->wa_eaddr,
3151 		    found->wa_flags);
3152 		avl_remove(&p->p_warea, found);
3153 		kmem_free(found, sizeof (struct watched_area));
3154 	}
3155 
3156 	kmem_free(pwa, sizeof (struct watched_area));
3157 
3158 	/*
3159 	 * If we removed the last watched area from the process, disable
3160 	 * watchpoints.
3161 	 */
3162 	if (!pr_watch_active(p)) {
3163 		kthread_t *t;
3164 
3165 		mutex_enter(&p->p_lock);
3166 		if ((t = p->p_tlist) != NULL) {
3167 			do {
3168 				watch_disable(t);
3169 			} while ((t = t->t_forw) != p->p_tlist);
3170 		}
3171 		mutex_exit(&p->p_lock);
3172 	}
3173 
3174 	return (0);
3175 }
3176 
3177 /*
3178  * Frees all the watched_area structures
3179  */
3180 void
3181 pr_free_watchpoints(proc_t *p)
3182 {
3183 	struct watched_area *delp;
3184 	void *cookie;
3185 
3186 	cookie = NULL;
3187 	while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL)
3188 		kmem_free(delp, sizeof (struct watched_area));
3189 
3190 	avl_destroy(&p->p_warea);
3191 }
3192 
3193 /*
3194  * This one is called by the traced process to unwatch all the
3195  * pages while deallocating the list of watched_page structs.
3196  */
3197 void
3198 pr_free_watched_pages(proc_t *p)
3199 {
3200 	struct as *as = p->p_as;
3201 	struct watched_page *pwp;
3202 	uint_t prot;
3203 	int    retrycnt, err;
3204 	void *cookie;
3205 
3206 	if (as == NULL || avl_numnodes(&as->a_wpage) == 0)
3207 		return;
3208 
3209 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
3210 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3211 
3212 	pwp = avl_first(&as->a_wpage);
3213 
3214 	cookie = NULL;
3215 	while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) {
3216 		retrycnt = 0;
3217 		if ((prot = pwp->wp_oprot) != 0) {
3218 			caddr_t addr = pwp->wp_vaddr;
3219 			struct seg *seg;
3220 		retry:
3221 
3222 			if ((pwp->wp_prot != prot ||
3223 			    (pwp->wp_flags & WP_NOWATCH)) &&
3224 			    (seg = as_segat(as, addr)) != NULL) {
3225 				err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot);
3226 				if (err == IE_RETRY) {
3227 					ASSERT(retrycnt == 0);
3228 					retrycnt++;
3229 					goto retry;
3230 				}
3231 			}
3232 		}
3233 		kmem_free(pwp, sizeof (struct watched_page));
3234 	}
3235 
3236 	avl_destroy(&as->a_wpage);
3237 	p->p_wprot = NULL;
3238 
3239 	AS_LOCK_EXIT(as, &as->a_lock);
3240 }
3241 
3242 /*
3243  * Insert a watched area into the list of watched pages.
3244  * If oflags is zero then we are adding a new watched area.
3245  * Otherwise we are changing the flags of an existing watched area.
3246  */
3247 static int
3248 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr,
3249 	ulong_t flags, ulong_t oflags)
3250 {
3251 	struct as *as = p->p_as;
3252 	avl_tree_t *pwp_tree;
3253 	struct watched_page *pwp, *newpwp;
3254 	struct watched_page tpw;
3255 	avl_index_t where;
3256 	struct seg *seg;
3257 	uint_t prot;
3258 	caddr_t addr;
3259 
3260 	/*
3261 	 * We need to pre-allocate a list of structures before we grab the
3262 	 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks
3263 	 * held.
3264 	 */
3265 	newpwp = NULL;
3266 	for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3267 	    addr < eaddr; addr += PAGESIZE) {
3268 		pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP);
3269 		pwp->wp_list = newpwp;
3270 		newpwp = pwp;
3271 	}
3272 
3273 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3274 
3275 	/*
3276 	 * Search for an existing watched page to contain the watched area.
3277 	 * If none is found, grab a new one from the available list
3278 	 * and insert it in the active list, keeping the list sorted
3279 	 * by user-level virtual address.
3280 	 */
3281 	if (p->p_flag & SVFWAIT)
3282 		pwp_tree = &p->p_wpage;
3283 	else
3284 		pwp_tree = &as->a_wpage;
3285 
3286 again:
3287 	if (avl_numnodes(pwp_tree) > prnwatch) {
3288 		AS_LOCK_EXIT(as, &as->a_lock);
3289 		while (newpwp != NULL) {
3290 			pwp = newpwp->wp_list;
3291 			kmem_free(newpwp, sizeof (struct watched_page));
3292 			newpwp = pwp;
3293 		}
3294 		return (E2BIG);
3295 	}
3296 
3297 	tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3298 	if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) {
3299 		pwp = newpwp;
3300 		newpwp = newpwp->wp_list;
3301 		pwp->wp_list = NULL;
3302 		pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr &
3303 		    (uintptr_t)PAGEMASK);
3304 		avl_insert(pwp_tree, pwp, where);
3305 	}
3306 
3307 	ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE);
3308 
3309 	if (oflags & WA_READ)
3310 		pwp->wp_read--;
3311 	if (oflags & WA_WRITE)
3312 		pwp->wp_write--;
3313 	if (oflags & WA_EXEC)
3314 		pwp->wp_exec--;
3315 
3316 	ASSERT(pwp->wp_read >= 0);
3317 	ASSERT(pwp->wp_write >= 0);
3318 	ASSERT(pwp->wp_exec >= 0);
3319 
3320 	if (flags & WA_READ)
3321 		pwp->wp_read++;
3322 	if (flags & WA_WRITE)
3323 		pwp->wp_write++;
3324 	if (flags & WA_EXEC)
3325 		pwp->wp_exec++;
3326 
3327 	if (!(p->p_flag & SVFWAIT)) {
3328 		vaddr = pwp->wp_vaddr;
3329 		if (pwp->wp_oprot == 0 &&
3330 		    (seg = as_segat(as, vaddr)) != NULL) {
3331 			SEGOP_GETPROT(seg, vaddr, 0, &prot);
3332 			pwp->wp_oprot = (uchar_t)prot;
3333 			pwp->wp_prot = (uchar_t)prot;
3334 		}
3335 		if (pwp->wp_oprot != 0) {
3336 			prot = pwp->wp_oprot;
3337 			if (pwp->wp_read)
3338 				prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3339 			if (pwp->wp_write)
3340 				prot &= ~PROT_WRITE;
3341 			if (pwp->wp_exec)
3342 				prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3343 			if (!(pwp->wp_flags & WP_NOWATCH) &&
3344 			    pwp->wp_prot != prot &&
3345 			    (pwp->wp_flags & WP_SETPROT) == 0) {
3346 				pwp->wp_flags |= WP_SETPROT;
3347 				pwp->wp_list = p->p_wprot;
3348 				p->p_wprot = pwp;
3349 			}
3350 			pwp->wp_prot = (uchar_t)prot;
3351 		}
3352 	}
3353 
3354 	/*
3355 	 * If the watched area extends into the next page then do
3356 	 * it over again with the virtual address of the next page.
3357 	 */
3358 	if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr)
3359 		goto again;
3360 
3361 	AS_LOCK_EXIT(as, &as->a_lock);
3362 
3363 	/*
3364 	 * Free any pages we may have over-allocated
3365 	 */
3366 	while (newpwp != NULL) {
3367 		pwp = newpwp->wp_list;
3368 		kmem_free(newpwp, sizeof (struct watched_page));
3369 		newpwp = pwp;
3370 	}
3371 
3372 	return (0);
3373 }
3374 
3375 /*
3376  * Remove a watched area from the list of watched pages.
3377  * A watched area may extend over more than one page.
3378  */
3379 static void
3380 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags)
3381 {
3382 	struct as *as = p->p_as;
3383 	struct watched_page *pwp;
3384 	struct watched_page tpw;
3385 	avl_tree_t *tree;
3386 	avl_index_t where;
3387 
3388 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3389 
3390 	if (p->p_flag & SVFWAIT)
3391 		tree = &p->p_wpage;
3392 	else
3393 		tree = &as->a_wpage;
3394 
3395 	tpw.wp_vaddr = vaddr =
3396 	    (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3397 	pwp = avl_find(tree, &tpw, &where);
3398 	if (pwp == NULL)
3399 		pwp = avl_nearest(tree, where, AVL_AFTER);
3400 
3401 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3402 		ASSERT(vaddr <=  pwp->wp_vaddr);
3403 
3404 		if (flags & WA_READ)
3405 			pwp->wp_read--;
3406 		if (flags & WA_WRITE)
3407 			pwp->wp_write--;
3408 		if (flags & WA_EXEC)
3409 			pwp->wp_exec--;
3410 
3411 		if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) {
3412 			/*
3413 			 * Reset the hat layer's protections on this page.
3414 			 */
3415 			if (pwp->wp_oprot != 0) {
3416 				uint_t prot = pwp->wp_oprot;
3417 
3418 				if (pwp->wp_read)
3419 					prot &=
3420 					    ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3421 				if (pwp->wp_write)
3422 					prot &= ~PROT_WRITE;
3423 				if (pwp->wp_exec)
3424 					prot &=
3425 					    ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3426 				if (!(pwp->wp_flags & WP_NOWATCH) &&
3427 				    pwp->wp_prot != prot &&
3428 				    (pwp->wp_flags & WP_SETPROT) == 0) {
3429 					pwp->wp_flags |= WP_SETPROT;
3430 					pwp->wp_list = p->p_wprot;
3431 					p->p_wprot = pwp;
3432 				}
3433 				pwp->wp_prot = (uchar_t)prot;
3434 			}
3435 		} else {
3436 			/*
3437 			 * No watched areas remain in this page.
3438 			 * Reset everything to normal.
3439 			 */
3440 			if (pwp->wp_oprot != 0) {
3441 				pwp->wp_prot = pwp->wp_oprot;
3442 				if ((pwp->wp_flags & WP_SETPROT) == 0) {
3443 					pwp->wp_flags |= WP_SETPROT;
3444 					pwp->wp_list = p->p_wprot;
3445 					p->p_wprot = pwp;
3446 				}
3447 			}
3448 		}
3449 
3450 		pwp = AVL_NEXT(tree, pwp);
3451 	}
3452 
3453 	AS_LOCK_EXIT(as, &as->a_lock);
3454 }
3455 
3456 /*
3457  * Return the original protections for the specified page.
3458  */
3459 static void
3460 getwatchprot(struct as *as, caddr_t addr, uint_t *prot)
3461 {
3462 	struct watched_page *pwp;
3463 	struct watched_page tpw;
3464 
3465 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
3466 
3467 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3468 	if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL)
3469 		*prot = pwp->wp_oprot;
3470 }
3471 
3472 static prpagev_t *
3473 pr_pagev_create(struct seg *seg, int check_noreserve)
3474 {
3475 	prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP);
3476 	size_t total_pages = seg_pages(seg);
3477 
3478 	/*
3479 	 * Limit the size of our vectors to pagev_lim pages at a time.  We need
3480 	 * 4 or 5 bytes of storage per page, so this means we limit ourself
3481 	 * to about a megabyte of kernel heap by default.
3482 	 */
3483 	pagev->pg_npages = MIN(total_pages, pagev_lim);
3484 	pagev->pg_pnbase = 0;
3485 
3486 	pagev->pg_protv =
3487 	    kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP);
3488 
3489 	if (check_noreserve)
3490 		pagev->pg_incore =
3491 		    kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP);
3492 	else
3493 		pagev->pg_incore = NULL;
3494 
3495 	return (pagev);
3496 }
3497 
3498 static void
3499 pr_pagev_destroy(prpagev_t *pagev)
3500 {
3501 	if (pagev->pg_incore != NULL)
3502 		kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char));
3503 
3504 	kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t));
3505 	kmem_free(pagev, sizeof (prpagev_t));
3506 }
3507 
3508 static caddr_t
3509 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr)
3510 {
3511 	ulong_t lastpg = seg_page(seg, eaddr - 1);
3512 	ulong_t pn, pnlim;
3513 	caddr_t saddr;
3514 	size_t len;
3515 
3516 	ASSERT(addr >= seg->s_base && addr <= eaddr);
3517 
3518 	if (addr == eaddr)
3519 		return (eaddr);
3520 
3521 refill:
3522 	ASSERT(addr < eaddr);
3523 	pagev->pg_pnbase = seg_page(seg, addr);
3524 	pnlim = pagev->pg_pnbase + pagev->pg_npages;
3525 	saddr = addr;
3526 
3527 	if (lastpg < pnlim)
3528 		len = (size_t)(eaddr - addr);
3529 	else
3530 		len = pagev->pg_npages * PAGESIZE;
3531 
3532 	if (pagev->pg_incore != NULL) {
3533 		/*
3534 		 * INCORE cleverly has different semantics than GETPROT:
3535 		 * it returns info on pages up to but NOT including addr + len.
3536 		 */
3537 		SEGOP_INCORE(seg, addr, len, pagev->pg_incore);
3538 		pn = pagev->pg_pnbase;
3539 
3540 		do {
3541 			/*
3542 			 * Guilty knowledge here:  We know that segvn_incore
3543 			 * returns more than just the low-order bit that
3544 			 * indicates the page is actually in memory.  If any
3545 			 * bits are set, then the page has backing store.
3546 			 */
3547 			if (pagev->pg_incore[pn++ - pagev->pg_pnbase])
3548 				goto out;
3549 
3550 		} while ((addr += PAGESIZE) < eaddr && pn < pnlim);
3551 
3552 		/*
3553 		 * If we examined all the pages in the vector but we're not
3554 		 * at the end of the segment, take another lap.
3555 		 */
3556 		if (addr < eaddr)
3557 			goto refill;
3558 	}
3559 
3560 	/*
3561 	 * Need to take len - 1 because addr + len is the address of the
3562 	 * first byte of the page just past the end of what we want.
3563 	 */
3564 out:
3565 	SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv);
3566 	return (addr);
3567 }
3568 
3569 static caddr_t
3570 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg,
3571     caddr_t *saddrp, caddr_t eaddr, uint_t *protp)
3572 {
3573 	/*
3574 	 * Our starting address is either the specified address, or the base
3575 	 * address from the start of the pagev.  If the latter is greater,
3576 	 * this means a previous call to pr_pagev_fill has already scanned
3577 	 * further than the end of the previous mapping.
3578 	 */
3579 	caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE;
3580 	caddr_t addr = MAX(*saddrp, base);
3581 	ulong_t pn = seg_page(seg, addr);
3582 	uint_t prot, nprot;
3583 
3584 	/*
3585 	 * If we're dealing with noreserve pages, then advance addr to
3586 	 * the address of the next page which has backing store.
3587 	 */
3588 	if (pagev->pg_incore != NULL) {
3589 		while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) {
3590 			if ((addr += PAGESIZE) == eaddr) {
3591 				*saddrp = addr;
3592 				prot = 0;
3593 				goto out;
3594 			}
3595 			if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3596 				addr = pr_pagev_fill(pagev, seg, addr, eaddr);
3597 				if (addr == eaddr) {
3598 					*saddrp = addr;
3599 					prot = 0;
3600 					goto out;
3601 				}
3602 				pn = seg_page(seg, addr);
3603 			}
3604 		}
3605 	}
3606 
3607 	/*
3608 	 * Get the protections on the page corresponding to addr.
3609 	 */
3610 	pn = seg_page(seg, addr);
3611 	ASSERT(pn >= pagev->pg_pnbase);
3612 	ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages));
3613 
3614 	prot = pagev->pg_protv[pn - pagev->pg_pnbase];
3615 	getwatchprot(seg->s_as, addr, &prot);
3616 	*saddrp = addr;
3617 
3618 	/*
3619 	 * Now loop until we find a backed page with different protections
3620 	 * or we reach the end of this segment.
3621 	 */
3622 	while ((addr += PAGESIZE) < eaddr) {
3623 		/*
3624 		 * If pn has advanced to the page number following what we
3625 		 * have information on, refill the page vector and reset
3626 		 * addr and pn.  If pr_pagev_fill does not return the
3627 		 * address of the next page, we have a discontiguity and
3628 		 * thus have reached the end of the current mapping.
3629 		 */
3630 		if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3631 			caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr);
3632 			if (naddr != addr)
3633 				goto out;
3634 			pn = seg_page(seg, addr);
3635 		}
3636 
3637 		/*
3638 		 * The previous page's protections are in prot, and it has
3639 		 * backing.  If this page is MAP_NORESERVE and has no backing,
3640 		 * then end this mapping and return the previous protections.
3641 		 */
3642 		if (pagev->pg_incore != NULL &&
3643 		    pagev->pg_incore[pn - pagev->pg_pnbase] == 0)
3644 			break;
3645 
3646 		/*
3647 		 * Otherwise end the mapping if this page's protections (nprot)
3648 		 * are different than those in the previous page (prot).
3649 		 */
3650 		nprot = pagev->pg_protv[pn - pagev->pg_pnbase];
3651 		getwatchprot(seg->s_as, addr, &nprot);
3652 
3653 		if (nprot != prot)
3654 			break;
3655 	}
3656 
3657 out:
3658 	*protp = prot;
3659 	return (addr);
3660 }
3661 
3662 size_t
3663 pr_getsegsize(struct seg *seg, int reserved)
3664 {
3665 	size_t size = seg->s_size;
3666 
3667 	/*
3668 	 * If we're interested in the reserved space, return the size of the
3669 	 * segment itself.  Everything else in this function is a special case
3670 	 * to determine the actual underlying size of various segment types.
3671 	 */
3672 	if (reserved)
3673 		return (size);
3674 
3675 	/*
3676 	 * If this is a segvn mapping of a regular file, return the smaller
3677 	 * of the segment size and the remaining size of the file beyond
3678 	 * the file offset corresponding to seg->s_base.
3679 	 */
3680 	if (seg->s_ops == &segvn_ops) {
3681 		vattr_t vattr;
3682 		vnode_t *vp;
3683 
3684 		vattr.va_mask = AT_SIZE;
3685 
3686 		if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 &&
3687 		    vp != NULL && vp->v_type == VREG &&
3688 		    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
3689 
3690 			u_offset_t fsize = vattr.va_size;
3691 			u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base);
3692 
3693 			if (fsize < offset)
3694 				fsize = 0;
3695 			else
3696 				fsize -= offset;
3697 
3698 			fsize = roundup(fsize, (u_offset_t)PAGESIZE);
3699 
3700 			if (fsize < (u_offset_t)size)
3701 				size = (size_t)fsize;
3702 		}
3703 
3704 		return (size);
3705 	}
3706 
3707 	/*
3708 	 * If this is an ISM shared segment, don't include pages that are
3709 	 * beyond the real size of the spt segment that backs it.
3710 	 */
3711 	if (seg->s_ops == &segspt_shmops)
3712 		return (MIN(spt_realsize(seg), size));
3713 
3714 	/*
3715 	 * If this is segment is a mapping from /dev/null, then this is a
3716 	 * reservation of virtual address space and has no actual size.
3717 	 * Such segments are backed by segdev and have type set to neither
3718 	 * MAP_SHARED nor MAP_PRIVATE.
3719 	 */
3720 	if (seg->s_ops == &segdev_ops &&
3721 	    ((SEGOP_GETTYPE(seg, seg->s_base) &
3722 	    (MAP_SHARED | MAP_PRIVATE)) == 0))
3723 		return (0);
3724 
3725 	/*
3726 	 * If this segment doesn't match one of the special types we handle,
3727 	 * just return the size of the segment itself.
3728 	 */
3729 	return (size);
3730 }
3731 
3732 uint_t
3733 pr_getprot(struct seg *seg, int reserved, void **tmp,
3734 	caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr)
3735 {
3736 	struct as *as = seg->s_as;
3737 
3738 	caddr_t saddr = *saddrp;
3739 	caddr_t naddr;
3740 
3741 	int check_noreserve;
3742 	uint_t prot;
3743 
3744 	union {
3745 		struct segvn_data *svd;
3746 		struct segdev_data *sdp;
3747 		void *data;
3748 	} s;
3749 
3750 	s.data = seg->s_data;
3751 
3752 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3753 	ASSERT(saddr >= seg->s_base && saddr < eaddr);
3754 	ASSERT(eaddr <= seg->s_base + seg->s_size);
3755 
3756 	/*
3757 	 * Don't include MAP_NORESERVE pages in the address range
3758 	 * unless their mappings have actually materialized.
3759 	 * We cheat by knowing that segvn is the only segment
3760 	 * driver that supports MAP_NORESERVE.
3761 	 */
3762 	check_noreserve =
3763 	    (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL &&
3764 	    (s.svd->vp == NULL || s.svd->vp->v_type != VREG) &&
3765 	    (s.svd->flags & MAP_NORESERVE));
3766 
3767 	/*
3768 	 * Examine every page only as a last resort.  We use guilty knowledge
3769 	 * of segvn and segdev to avoid this: if there are no per-page
3770 	 * protections present in the segment and we don't care about
3771 	 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment.
3772 	 */
3773 	if (!check_noreserve && saddr == seg->s_base &&
3774 	    seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) {
3775 		prot = s.svd->prot;
3776 		getwatchprot(as, saddr, &prot);
3777 		naddr = eaddr;
3778 
3779 	} else if (saddr == seg->s_base && seg->s_ops == &segdev_ops &&
3780 	    s.sdp != NULL && s.sdp->pageprot == 0) {
3781 		prot = s.sdp->prot;
3782 		getwatchprot(as, saddr, &prot);
3783 		naddr = eaddr;
3784 
3785 	} else {
3786 		prpagev_t *pagev;
3787 
3788 		/*
3789 		 * If addr is sitting at the start of the segment, then
3790 		 * create a page vector to store protection and incore
3791 		 * information for pages in the segment, and fill it.
3792 		 * Otherwise, we expect *tmp to address the prpagev_t
3793 		 * allocated by a previous call to this function.
3794 		 */
3795 		if (saddr == seg->s_base) {
3796 			pagev = pr_pagev_create(seg, check_noreserve);
3797 			saddr = pr_pagev_fill(pagev, seg, saddr, eaddr);
3798 
3799 			ASSERT(*tmp == NULL);
3800 			*tmp = pagev;
3801 
3802 			ASSERT(saddr <= eaddr);
3803 			*saddrp = saddr;
3804 
3805 			if (saddr == eaddr) {
3806 				naddr = saddr;
3807 				prot = 0;
3808 				goto out;
3809 			}
3810 
3811 		} else {
3812 			ASSERT(*tmp != NULL);
3813 			pagev = (prpagev_t *)*tmp;
3814 		}
3815 
3816 		naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot);
3817 		ASSERT(naddr <= eaddr);
3818 	}
3819 
3820 out:
3821 	if (naddr == eaddr)
3822 		pr_getprot_done(tmp);
3823 	*naddrp = naddr;
3824 	return (prot);
3825 }
3826 
3827 void
3828 pr_getprot_done(void **tmp)
3829 {
3830 	if (*tmp != NULL) {
3831 		pr_pagev_destroy((prpagev_t *)*tmp);
3832 		*tmp = NULL;
3833 	}
3834 }
3835 
3836 /*
3837  * Return true iff the vnode is a /proc file from the object directory.
3838  */
3839 int
3840 pr_isobject(vnode_t *vp)
3841 {
3842 	return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT);
3843 }
3844 
3845 /*
3846  * Return true iff the vnode is a /proc file opened by the process itself.
3847  */
3848 int
3849 pr_isself(vnode_t *vp)
3850 {
3851 	/*
3852 	 * XXX: To retain binary compatibility with the old
3853 	 * ioctl()-based version of /proc, we exempt self-opens
3854 	 * of /proc/<pid> from being marked close-on-exec.
3855 	 */
3856 	return (vn_matchops(vp, prvnodeops) &&
3857 	    (VTOP(vp)->pr_flags & PR_ISSELF) &&
3858 	    VTOP(vp)->pr_type != PR_PIDDIR);
3859 }
3860 
3861 static ssize_t
3862 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr)
3863 {
3864 	ssize_t pagesize, hatsize;
3865 
3866 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
3867 	ASSERT(IS_P2ALIGNED(saddr, PAGESIZE));
3868 	ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE));
3869 	ASSERT(saddr < eaddr);
3870 
3871 	pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr);
3872 	ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize));
3873 	ASSERT(pagesize != 0);
3874 
3875 	if (pagesize == -1)
3876 		pagesize = PAGESIZE;
3877 
3878 	saddr += P2NPHASE((uintptr_t)saddr, pagesize);
3879 
3880 	while (saddr < eaddr) {
3881 		if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr))
3882 			break;
3883 		ASSERT(IS_P2ALIGNED(saddr, pagesize));
3884 		saddr += pagesize;
3885 	}
3886 
3887 	*naddrp = ((saddr < eaddr) ? saddr : eaddr);
3888 	return (hatsize);
3889 }
3890 
3891 /*
3892  * Return an array of structures with extended memory map information.
3893  * We allocate here; the caller must deallocate.
3894  */
3895 int
3896 prgetxmap(proc_t *p, list_t *iolhead)
3897 {
3898 	struct as *as = p->p_as;
3899 	prxmap_t *mp;
3900 	struct seg *seg;
3901 	struct seg *brkseg, *stkseg;
3902 	struct vnode *vp;
3903 	struct vattr vattr;
3904 	uint_t prot;
3905 
3906 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
3907 
3908 	/*
3909 	 * Request an initial buffer size that doesn't waste memory
3910 	 * if the address space has only a small number of segments.
3911 	 */
3912 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
3913 
3914 	if ((seg = AS_SEGFIRST(as)) == NULL)
3915 		return (0);
3916 
3917 	brkseg = break_seg(p);
3918 	stkseg = as_segat(as, prgetstackbase(p));
3919 
3920 	do {
3921 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
3922 		caddr_t saddr, naddr, baddr;
3923 		void *tmp = NULL;
3924 		ssize_t psz;
3925 		char *parr;
3926 		uint64_t npages;
3927 		uint64_t pagenum;
3928 
3929 		/*
3930 		 * Segment loop part one: iterate from the base of the segment
3931 		 * to its end, pausing at each address boundary (baddr) between
3932 		 * ranges that have different virtual memory protections.
3933 		 */
3934 		for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
3935 			prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
3936 			ASSERT(baddr >= saddr && baddr <= eaddr);
3937 
3938 			/*
3939 			 * Segment loop part two: iterate from the current
3940 			 * position to the end of the protection boundary,
3941 			 * pausing at each address boundary (naddr) between
3942 			 * ranges that have different underlying page sizes.
3943 			 */
3944 			for (; saddr < baddr; saddr = naddr) {
3945 				psz = pr_getpagesize(seg, saddr, &naddr, baddr);
3946 				ASSERT(naddr >= saddr && naddr <= baddr);
3947 
3948 				mp = pr_iol_newbuf(iolhead, sizeof (*mp));
3949 
3950 				mp->pr_vaddr = (uintptr_t)saddr;
3951 				mp->pr_size = naddr - saddr;
3952 				mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
3953 				mp->pr_mflags = 0;
3954 				if (prot & PROT_READ)
3955 					mp->pr_mflags |= MA_READ;
3956 				if (prot & PROT_WRITE)
3957 					mp->pr_mflags |= MA_WRITE;
3958 				if (prot & PROT_EXEC)
3959 					mp->pr_mflags |= MA_EXEC;
3960 				if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
3961 					mp->pr_mflags |= MA_SHARED;
3962 				if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
3963 					mp->pr_mflags |= MA_NORESERVE;
3964 				if (seg->s_ops == &segspt_shmops ||
3965 				    (seg->s_ops == &segvn_ops &&
3966 				    (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
3967 				    vp == NULL)))
3968 					mp->pr_mflags |= MA_ANON;
3969 				if (seg == brkseg)
3970 					mp->pr_mflags |= MA_BREAK;
3971 				else if (seg == stkseg)
3972 					mp->pr_mflags |= MA_STACK;
3973 				if (seg->s_ops == &segspt_shmops)
3974 					mp->pr_mflags |= MA_ISM | MA_SHM;
3975 
3976 				mp->pr_pagesize = PAGESIZE;
3977 				if (psz == -1) {
3978 					mp->pr_hatpagesize = 0;
3979 				} else {
3980 					mp->pr_hatpagesize = psz;
3981 				}
3982 
3983 				/*
3984 				 * Manufacture a filename for the "object" dir.
3985 				 */
3986 				mp->pr_dev = PRNODEV;
3987 				vattr.va_mask = AT_FSID|AT_NODEID;
3988 				if (seg->s_ops == &segvn_ops &&
3989 				    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
3990 				    vp != NULL && vp->v_type == VREG &&
3991 				    VOP_GETATTR(vp, &vattr, 0, CRED(),
3992 				    NULL) == 0) {
3993 					mp->pr_dev = vattr.va_fsid;
3994 					mp->pr_ino = vattr.va_nodeid;
3995 					if (vp == p->p_exec)
3996 						(void) strcpy(mp->pr_mapname,
3997 						    "a.out");
3998 					else
3999 						pr_object_name(mp->pr_mapname,
4000 						    vp, &vattr);
4001 				}
4002 
4003 				/*
4004 				 * Get the SysV shared memory id, if any.
4005 				 */
4006 				if ((mp->pr_mflags & MA_SHARED) &&
4007 				    p->p_segacct && (mp->pr_shmid = shmgetid(p,
4008 				    seg->s_base)) != SHMID_NONE) {
4009 					if (mp->pr_shmid == SHMID_FREE)
4010 						mp->pr_shmid = -1;
4011 
4012 					mp->pr_mflags |= MA_SHM;
4013 				} else {
4014 					mp->pr_shmid = -1;
4015 				}
4016 
4017 				npages = ((uintptr_t)(naddr - saddr)) >>
4018 				    PAGESHIFT;
4019 				parr = kmem_zalloc(npages, KM_SLEEP);
4020 
4021 				SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4022 
4023 				for (pagenum = 0; pagenum < npages; pagenum++) {
4024 					if (parr[pagenum] & SEG_PAGE_INCORE)
4025 						mp->pr_rss++;
4026 					if (parr[pagenum] & SEG_PAGE_ANON)
4027 						mp->pr_anon++;
4028 					if (parr[pagenum] & SEG_PAGE_LOCKED)
4029 						mp->pr_locked++;
4030 				}
4031 				kmem_free(parr, npages);
4032 			}
4033 		}
4034 		ASSERT(tmp == NULL);
4035 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4036 
4037 	return (0);
4038 }
4039 
4040 /*
4041  * Return the process's credentials.  We don't need a 32-bit equivalent of
4042  * this function because prcred_t and prcred32_t are actually the same.
4043  */
4044 void
4045 prgetcred(proc_t *p, prcred_t *pcrp)
4046 {
4047 	mutex_enter(&p->p_crlock);
4048 	cred2prcred(p->p_cred, pcrp);
4049 	mutex_exit(&p->p_crlock);
4050 }
4051 
4052 /*
4053  * Compute actual size of the prpriv_t structure.
4054  */
4055 
4056 size_t
4057 prgetprivsize(void)
4058 {
4059 	return (priv_prgetprivsize(NULL));
4060 }
4061 
4062 /*
4063  * Return the process's privileges.  We don't need a 32-bit equivalent of
4064  * this function because prpriv_t and prpriv32_t are actually the same.
4065  */
4066 void
4067 prgetpriv(proc_t *p, prpriv_t *pprp)
4068 {
4069 	mutex_enter(&p->p_crlock);
4070 	cred2prpriv(p->p_cred, pprp);
4071 	mutex_exit(&p->p_crlock);
4072 }
4073 
4074 #ifdef _SYSCALL32_IMPL
4075 /*
4076  * Return an array of structures with HAT memory map information.
4077  * We allocate here; the caller must deallocate.
4078  */
4079 int
4080 prgetxmap32(proc_t *p, list_t *iolhead)
4081 {
4082 	struct as *as = p->p_as;
4083 	prxmap32_t *mp;
4084 	struct seg *seg;
4085 	struct seg *brkseg, *stkseg;
4086 	struct vnode *vp;
4087 	struct vattr vattr;
4088 	uint_t prot;
4089 
4090 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
4091 
4092 	/*
4093 	 * Request an initial buffer size that doesn't waste memory
4094 	 * if the address space has only a small number of segments.
4095 	 */
4096 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
4097 
4098 	if ((seg = AS_SEGFIRST(as)) == NULL)
4099 		return (0);
4100 
4101 	brkseg = break_seg(p);
4102 	stkseg = as_segat(as, prgetstackbase(p));
4103 
4104 	do {
4105 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4106 		caddr_t saddr, naddr, baddr;
4107 		void *tmp = NULL;
4108 		ssize_t psz;
4109 		char *parr;
4110 		uint64_t npages;
4111 		uint64_t pagenum;
4112 
4113 		/*
4114 		 * Segment loop part one: iterate from the base of the segment
4115 		 * to its end, pausing at each address boundary (baddr) between
4116 		 * ranges that have different virtual memory protections.
4117 		 */
4118 		for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4119 			prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4120 			ASSERT(baddr >= saddr && baddr <= eaddr);
4121 
4122 			/*
4123 			 * Segment loop part two: iterate from the current
4124 			 * position to the end of the protection boundary,
4125 			 * pausing at each address boundary (naddr) between
4126 			 * ranges that have different underlying page sizes.
4127 			 */
4128 			for (; saddr < baddr; saddr = naddr) {
4129 				psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4130 				ASSERT(naddr >= saddr && naddr <= baddr);
4131 
4132 				mp = pr_iol_newbuf(iolhead, sizeof (*mp));
4133 
4134 				mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
4135 				mp->pr_size = (size32_t)(naddr - saddr);
4136 				mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
4137 				mp->pr_mflags = 0;
4138 				if (prot & PROT_READ)
4139 					mp->pr_mflags |= MA_READ;
4140 				if (prot & PROT_WRITE)
4141 					mp->pr_mflags |= MA_WRITE;
4142 				if (prot & PROT_EXEC)
4143 					mp->pr_mflags |= MA_EXEC;
4144 				if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
4145 					mp->pr_mflags |= MA_SHARED;
4146 				if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
4147 					mp->pr_mflags |= MA_NORESERVE;
4148 				if (seg->s_ops == &segspt_shmops ||
4149 				    (seg->s_ops == &segvn_ops &&
4150 				    (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
4151 				    vp == NULL)))
4152 					mp->pr_mflags |= MA_ANON;
4153 				if (seg == brkseg)
4154 					mp->pr_mflags |= MA_BREAK;
4155 				else if (seg == stkseg)
4156 					mp->pr_mflags |= MA_STACK;
4157 				if (seg->s_ops == &segspt_shmops)
4158 					mp->pr_mflags |= MA_ISM | MA_SHM;
4159 
4160 				mp->pr_pagesize = PAGESIZE;
4161 				if (psz == -1) {
4162 					mp->pr_hatpagesize = 0;
4163 				} else {
4164 					mp->pr_hatpagesize = psz;
4165 				}
4166 
4167 				/*
4168 				 * Manufacture a filename for the "object" dir.
4169 				 */
4170 				mp->pr_dev = PRNODEV32;
4171 				vattr.va_mask = AT_FSID|AT_NODEID;
4172 				if (seg->s_ops == &segvn_ops &&
4173 				    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
4174 				    vp != NULL && vp->v_type == VREG &&
4175 				    VOP_GETATTR(vp, &vattr, 0, CRED(),
4176 				    NULL) == 0) {
4177 					(void) cmpldev(&mp->pr_dev,
4178 					    vattr.va_fsid);
4179 					mp->pr_ino = vattr.va_nodeid;
4180 					if (vp == p->p_exec)
4181 						(void) strcpy(mp->pr_mapname,
4182 						    "a.out");
4183 					else
4184 						pr_object_name(mp->pr_mapname,
4185 						    vp, &vattr);
4186 				}
4187 
4188 				/*
4189 				 * Get the SysV shared memory id, if any.
4190 				 */
4191 				if ((mp->pr_mflags & MA_SHARED) &&
4192 				    p->p_segacct && (mp->pr_shmid = shmgetid(p,
4193 				    seg->s_base)) != SHMID_NONE) {
4194 					if (mp->pr_shmid == SHMID_FREE)
4195 						mp->pr_shmid = -1;
4196 
4197 					mp->pr_mflags |= MA_SHM;
4198 				} else {
4199 					mp->pr_shmid = -1;
4200 				}
4201 
4202 				npages = ((uintptr_t)(naddr - saddr)) >>
4203 				    PAGESHIFT;
4204 				parr = kmem_zalloc(npages, KM_SLEEP);
4205 
4206 				SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4207 
4208 				for (pagenum = 0; pagenum < npages; pagenum++) {
4209 					if (parr[pagenum] & SEG_PAGE_INCORE)
4210 						mp->pr_rss++;
4211 					if (parr[pagenum] & SEG_PAGE_ANON)
4212 						mp->pr_anon++;
4213 					if (parr[pagenum] & SEG_PAGE_LOCKED)
4214 						mp->pr_locked++;
4215 				}
4216 				kmem_free(parr, npages);
4217 			}
4218 		}
4219 		ASSERT(tmp == NULL);
4220 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4221 
4222 	return (0);
4223 }
4224 #endif	/* _SYSCALL32_IMPL */
4225